
Oracle® TopLink
Developer’s Guide

10g (10.1.3.1.0)

B28218-01

September 2006

Oracle TopLink Developer’s Guide, 10g (10.1.3.1.0)

B28218-01

Copyright © 1997, 2006, Oracle. All rights reserved.

Primary Author: Peter Purich

Contributing Author: Rick Sapir. Liza Rekadze

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface .. xlix

Part I Building a TopLink Application

1 Understanding TopLink

What is TopLink?.. 1-1
Solving the Object-Persistence Impedance Mismatch ... 1-2
TopLink Key Features.. 1-4
TopLink Application Architectures .. 1-4

2 Understanding TopLink Application Development

Developing Your Application With TopLink ... 2-1
Typical Development Stages .. 2-2
Oracle Development Support... 2-3

Designing Your Application With TopLink .. 2-3
Understanding TopLink Usage.. 2-3

Relational Database Usage .. 2-4
Object-Relational Database Usage.. 2-4
Oracle XML Database (XDB) Usage... 2-4
Enterprise Information System (EIS) Usage.. 2-4
XML Usage... 2-4

Understanding Target Platforms ... 2-5
Selecting an Architecture With TopLink ... 2-5

Tiers.. 2-5
Three Tier ... 2-6
Two Tier ... 2-6

Service Layer... 2-7
EJB Session Beans.. 2-7
EJB Entity Beans .. 2-7
EJB 3.0 JPA Entities ... 2-8
Plain Old Java Objects (POJO) .. 2-8

Data Access ... 2-9
Data Type ... 2-9
Multiple Data Sources .. 2-9
Isolating Data Access.. 2-9

iv

Historical Data Access.. 2-9
Caching .. 2-9

Cache Type.. 2-10
Refreshing ... 2-10
Cache Coordination... 2-10

Locking ... 2-11
Optimistic Locking .. 2-11
Pessimistic Locking.. 2-11

Building and Using the Persistence Layer ... 2-11
Implementation Options .. 2-12
Persistent Class Requirements .. 2-12
Persistence Layer Components ... 2-12

Mapping Metadata .. 2-13
Session Metadata.. 2-13
Cache.. 2-13
Queries and Expressions... 2-13
Transactions .. 2-14

Using the Persistence Layer... 2-14
Deploying the Application.. 2-15

Understanding Deployments .. 2-15
TopLink in a J2EE Application.. 2-15

Optimizing and Customizing the Application.. 2-15
Troubleshooting the Application ... 2-16
Understanding Object Persistence... 2-16

Application Object Model .. 2-16
Data Storage Schema .. 2-17
Primary Keys and Object Identity .. 2-17
Mappings.. 2-17
Foreign Keys and Object Relationships ... 2-17
Inheritance.. 2-18
Concurrency... 2-18
Caching ... 2-18
Nonintrusive Persistence ... 2-19
Indirection .. 2-19

Understanding TopLink Metadata... 2-19
Advantages of the TopLink Metadata Architecture .. 2-20
Creating Project Metadata ... 2-20

Descriptors and Mappings ... 2-21
Data Source Login Information ... 2-21

Creating Session Metadata .. 2-21
Deploying Metadata ... 2-22

Understanding the Three-Tier Architecture... 2-22
Example Implementations ... 2-22
Advantages and Disadvantages ... 2-22
Variation Using Remote Sessions ... 2-23
Technical Challenges .. 2-23

Understanding the Two-Tier Architecture .. 2-24

v

Example Implementations ... 2-24
Advantages and Disadvantages ... 2-24
Technical Challenges .. 2-24

Understanding the EJB Session Bean Facade Architecture... 2-25
Example Implementation... 2-25
Advantages and Disadvantages ... 2-26
Understanding Session Beans ... 2-26
Technical Challenges .. 2-26
Unit of Work Merge.. 2-27

Understanding the EJB Entity Beans With CMP Architecture ... 2-27
Example Implementation... 2-28
Advantages and Disadvantages ... 2-28
Technical Challenges .. 2-29

External JDBC Pools .. 2-29
JTA/JTS Integration... 2-29
Cache Coordination... 2-29
Maintaining Bidirectional Relationships .. 2-29
Managing Dependent Objects.. 2-30
Managing Collections of EJBObject Objects... 2-31

Understanding the EJB Entity Beans With BMP Architecture ... 2-31
Example Implementations ... 2-32
Advantages and Disadvantages ... 2-32
Technical Challenges .. 2-33

External JDBC Pools .. 2-33
JTA/JTS Integration... 2-33
Cache Coordination... 2-33

Understanding the EJB 3.0 JPA Entity Architecture ... 2-33
Example Implementations ... 2-34
Advantages and Disadvantages ... 2-35

Understanding the Web Services Architecture.. 2-35
Example Implementations ... 2-35
Advantages and Disadvantages ... 2-36
Technical Challenges .. 2-36

Part II Using TopLink Development Tools

3 Understanding TopLink Development Tools

Development Environment .. 3-2
TopLink Run-Time Environment .. 3-2

4 Using TopLink Workbench

Understanding TopLink Workbench.. 4-1
Configuring the TopLink Workbench Environment ... 4-2
Working With TopLink Workbench ... 4-3

Using the Menus .. 4-5
Menu Bar Menus... 4-5

vi

Context Menus .. 4-5
Using the Toolbars ... 4-6

Standard Toolbar .. 4-6
Context Toolbar... 4-7

Using the Navigator... 4-9
Using the Editor .. 4-10
Using the Problems Window .. 4-11
Using the Online Help.. 4-12

Working With TopLink Workbench Preferences .. 4-12
General Preferences .. 4-13
Help Preferences ... 4-14
Mappings Preferences .. 4-15
Class Preferences ... 4-16
EJB Preferences .. 4-16
Database Preferences .. 4-17
Sessions Configuration Preferences ... 4-18
New Names Preferences .. 4-19
Platform Preferences... 4-20

Working With Databases ... 4-21
Working With Database Tables in the Navigator Window.. 4-21

Logging In and Out of a Database... 4-21
Creating New Tables ... 4-22
Importing Tables From a Database ... 4-22
Removing Tables.. 4-24
Renaming Tables.. 4-24
Refreshing Tables From the Database... 4-24

Working With Database Tables in the Editor Window... 4-25
Working With Column Properties .. 4-25
Setting a Primary Key for Database Tables.. 4-26
Creating Table References .. 4-26
Creating Field Associations.. 4-28

Generating Data From Database Tables .. 4-29
Generating SQL Creation Scripts... 4-29
Generating Classes and Descriptors From Database Tables ... 4-30
Generating EJB Entity Beans and Descriptors From Database Tables 4-31
Generating Tables on the Database ... 4-32

Working With XML Schemas .. 4-33
Working With XML Schemas in the Navigator.. 4-33
Working With XML Schema Structure .. 4-34
Importing an XML Schema.. 4-34
Configuring XML Schema Reference ... 4-36

Using TopLink Workbench .. 4-36
Using Java ... 4-37

Configuring XML Schema Namespace.. 4-37
Using TopLink Workbench .. 4-38
Using Java ... 4-39

Working With Classes .. 4-40

vii

Creating Classes .. 4-40
Using TopLink Workbench .. 4-40

Configuring Classes.. 4-41
Configuring Class Information .. 4-41
Configuring Class Modifiers .. 4-42
Configuring Class Interfaces .. 4-43
Adding Attributes.. 4-44
Configuring Attribute Modifiers ... 4-44
Configuring Attribute Type Information ... 4-45
Configuring Attribute Accessing Methods .. 4-46
Adding Methods .. 4-47
Configuring Method Modifiers ... 4-48
Configuring Method Type Information ... 4-48
Configuring Method Parameters... 4-49

Importing and Updating Classes.. 4-50
Using TopLink Workbench .. 4-50

Managing Nondescriptor Classes... 4-51
Renaming Packages .. 4-52

Using TopLink Workbench .. 4-52
Integrating TopLink Workbench With Apache Ant ... 4-53

Configuring Ant to Use TopLink Workbench Tasks ... 4-53
Library Dependencies ... 4-53
Declaring TopLink Workbench Tasks .. 4-54

Understanding TopLink Workbench Ant Task API .. 4-54
Creating TopLink Workbench Ant Tasks.. 4-55
mappings.validate... 4-56

Parameters... 4-57
Parameters Specified as Nested Elements.. 4-57
Examples ... 4-57

session.validate.. 4-57
Parameters... 4-58
Parameters Specified as Nested Elements.. 4-58
Examples ... 4-58

mappings.export ... 4-58
Parameters... 4-58
Parameters Specified as Nested Elements.. 4-59
Examples ... 4-59

classpath ... 4-59
Parameters... 4-60
Parameters Specified as Nested Elements.. 4-60
Examples ... 4-60

ignoreerror ... 4-60
Parameters... 4-60
Parameters Specified as Nested Elements.. 4-60
Examples ... 4-61

ignoreerrorset... 4-61
Parameters... 4-61

viii

Parameters Specified as Nested Elements.. 4-61
Examples ... 4-61

loginspec... 4-62
Parameters... 4-62
Parameters Specified as Nested Elements.. 4-62
Examples ... 4-62

5 Using the Schema Manager

Understanding the Schema Manager ... 5-1
Schema Manager Java and Database Type Conversion ... 5-3
Sequencing .. 5-3

Creating a Table Creator.. 5-4
Using TopLink Workbench During Development.. 5-4
Using the Default Table Generator at Run Time ... 5-4
Using Java.. 5-4

Creating a TableCreator Class... 5-5
Creating a TableDefinition Class .. 5-5
Adding Fields to a TableDefinition.. 5-5
Defining Sybase and Microsoft SQL Server Native Sequencing.. 5-6

Creating Tables With a Table Creator ... 5-6
Automatic Database Table Creation ... 5-6

6 Using an Integrated Development Environment

Configuring TopLink for Oracle JDeveloper.. 6-1
Using TopLink Mappings ... 6-1
Using TopLink Sessions .. 6-3

Configuring TopLink Workbench With Source Control Management Software........................ 6-3
Using a Source Control Management System.. 6-3
Merging Files .. 6-4

Merging Project Files .. 6-4
Merging Table, Descriptor, and Class Files .. 6-5

Sharing Project Objects.. 6-6
Managing the ejb-jar.xml File ... 6-6
Working With Locked Files .. 6-6

Part III Deploying a TopLink Application

7 Integrating TopLink With an Application Server

Application Server Support ... 7-1
Application Server Integration Concepts .. 7-2

Software Requirements ... 7-2
XML Parser Platform Configuration ... 7-2

Configuring XML Parser Platform ... 7-3
Creating an XML Parser Platform .. 7-3
XML Parser Limitations ... 7-3

Security Permissions.. 7-4

ix

Persistence Manager Migration ... 7-4
Clustering .. 7-4

Oracle Containers for J2EE (OC4J).. 7-5
CMP Integration ... 7-5
Migrating OC4J Orion Persistence to OC4J TopLink Persistence... 7-5

Overview.. 7-6
Using the TopLink Migration Tool From TopLink Workbench .. 7-9
Using the TopLink Migration Tool From the Command Line.. 7-10
Post-Migration Changes ... 7-12
Troubleshooting Your Migration... 7-13

JTA Integration .. 7-14
BEA WebLogic Server... 7-14

Classpath .. 7-15
CMP Integration .. 7-15
Migrating BEA WebLogic Persistence to OC4J TopLink Persistence...................................... 7-16

Overview... 7-16
Using the TopLink Migration Tool From TopLink Workbench 7-18
Using the TopLink Migration Tool From the Command Line.. 7-18

JTA Integration .. 7-20
Security Manager .. 7-20

IBM WebSphere Application Server ... 7-21
Classpath .. 7-21

Configuring Classpath for IBM WebSphere Application Server 4.0................................ 7-21
Configuring Classpath for IBM WebSphere Application Server 5.0 and Later.............. 7-21

CMP Integration .. 7-22
JTA Integration .. 7-22
Clustering on IBM WebSphere Application Server ... 7-22

Understanding Security Permissions .. 7-22
Permissions Required by TopLink Features ... 7-23

System Properties... 7-23
Loading project.xml or sessions.xml Files.. 7-23
Cache Coordination... 7-23
Accessing a Data Source by Port ... 7-24
Logging With java.util.logging .. 7-24
J2EE Application Deployment ... 7-24

Permissions Required When doPrivileged is Disabled... 7-24
Disabling doPrivileged Operation.. 7-25

Configuring Miscellaneous EJB Options ... 7-25
Setter Parameter Type Checking... 7-25
Unknown Primary Key Class Support... 7-25
Single-Object Finder Return Type Checking .. 7-26

8 Creating TopLink Files for Deployment

Understanding TopLink Deployment File Creation ... 8-1
project.xml File ... 8-2

XSD File Format .. 8-2
Non-CMP Applications and Project Metadata ... 8-2

x

CMP Applications and Project Metadata .. 8-3
Creating project.xml With TopLink Workbench.. 8-3
Creating project.xml Programatically .. 8-3

sessions.xml File ... 8-4
XSD File Format .. 8-4
Non-CMP Applications and Session Metadata .. 8-4
CMP Applications and Session Metadata ... 8-4

ejb-jar.xml File... 8-5
<J2EE-Container>-ejb-jar.xml File... 8-5

OC4J and the orion-ejb-jar.xml File .. 8-6
BEA WebLogic Server and the weblogic-ejb-jar.xml File ... 8-6

toplink-ejb-jar.xml File .. 8-6
OC4J and the toplink-ejb-jar.xml File .. 8-7
BEA WebLogic Server and the toplink-ejb-jar.xml File... 8-7
IBM WebSphere Application Server and the toplink-ejb-jar.xml File................................. 8-8

Java Applications.. 8-8
JavaServer Pages and Servlet Applications... 8-8
Session Bean Applications ... 8-9
CMP Applications .. 8-9
BMP Applications .. 8-9
Configuring the orion-ejb-jar.xml File for OC4J.. 8-9

Configuring persistence-manager Entries... 8-10
Configuring pm-properties .. 8-10
Configuring cache-synchronization Properties... 8-11
Configuring default-mapping Properties... 8-12

Configuring the weblogic-ejb-jar.xml File for BEA WebLogic Server 8-13
Configuring persistence-descriptor Entries .. 8-14
Unsupported weblogic-ejb-jar.xml File Tags .. 8-15

9 Packaging a TopLink Application

Java Applications.. 9-1
JavaServer Pages and Servlet Applications... 9-2

TopLink Domain JAR .. 9-2
Session Bean Applications ... 9-3

TopLink Domain JAR .. 9-3
EJB JAR .. 9-4

CMP Applications .. 9-4
EJB JAR .. 9-5

BMP Applications .. 9-5
TopLink Domain JAR .. 9-6
EJB JAR .. 9-7

Packaging With TopLink Metadata File Resource Paths .. 9-7

10 Deploying a TopLink Application

Java Applications... 10-1
JavaServer Pages and Servlets .. 10-1
Session Bean Applications .. 10-1

xi

CMP Applications ... 10-2
Deploying a CMP Application to OC4J ... 10-2
Deploying a CMP Application to BEA WebLogic Server ... 10-2

Troubleshooting ejbc ... 10-3
Deploying a CMP Application to IBM WebSphere Application Server 4.0 10-3

Starting the Entity Bean .. 10-3
BMP Applications ... 10-4
Hot Deployment of EJB.. 10-4

Hot Deployment in a CMP Application .. 10-4
Hot Deployment in a non-CMP Application .. 10-4

Using the WebSphere Deploy Tool.. 10-5
Using the Deploy Tool on its Own ... 10-5
Using the Deploy Tool With WebSphere Studio Application Developer 10-5

Troubleshooting ... 10-6

Part IV Optimizing and Customizing a TopLink Application

11 Optimization

Understanding Optimization.. 11-1
Sources of Application Performance Problems... 11-2
Measuring TopLink Performance With the TopLink Profiler .. 11-2

Configuring the TopLink Performance Profiler ... 11-3
Accessing the TopLink Profiler Results ... 11-3

Measuring TopLink Performance With the Oracle Dynamic Monitoring System (DMS) 11-4
Configuring the Oracle DMS Profiler .. 11-6

OC4J Applications ... 11-7
Non-OC4J Applications .. 11-7

Accessing Oracle DMS Profiler Data Using JMX ... 11-7
Accessing Oracle DMS Profiler Data Using the DMS Spy Servlet... 11-7

General Performance Optimization .. 11-8
Schema Optimization ... 11-8

Schema Case 1: Aggregation of Two Tables into One ... 11-9
Schema Case 2: Splitting One Table Into Many.. 11-9
Schema Case 3: Collapsed Hierarchy... 11-11
Schema Case 4: Choosing One out of Many ... 11-12

Mapping and Descriptor Optimization .. 11-13
Session Optimization ... 11-13
Cache Optimization .. 11-13
Data Access Optimization ... 11-14

JDBC Driver Properties Optimization.. 11-14
Data Format Optimization... 11-15
Batch Writing ... 11-15
Parameterized SQL (Binding) and Prepared Statement Caching .. 11-15

Query Optimization.. 11-17
Parameterized SQL and Prepared Statement Caching.. 11-17
Named Queries.. 11-17

xii

Batch and Join Reading .. 11-17
Partial Object Queries and Fetch Groups .. 11-17
JDBC Fetch Size ... 11-18
Cursored Streams and Scrollable Cursors... 11-19
Read Optimization Examples.. 11-19

Reading Case 1: Displaying Names in a List ... 11-20
Reading Case 2: Batch Reading Objects.. 11-23
Reading Case 3: Using Complex Custom SQL Queries ... 11-24
Reading Case 4: Using View Objects .. 11-25
Reading Case 5: Inheritance Views ... 11-26

Write Optimization Examples... 11-26
Writing Case: Batch Writes... 11-27

Unit of Work Optimization ... 11-30
Application Server and Database Optimization ... 11-30

12 Customization

Overview ... 12-1
Creating Custom Data Types .. 12-1
Using Public Source.. 12-2

Part V Troubleshooting a TopLink Application

13 TopLink Exception Reference

Descriptor Exceptions (1 – 201) ... 13-2
Concurrency Exceptions (2001 – 2009) ... 13-25
Conversion Exceptions (3001– 3008) .. 13-26
Database Exceptions (4002 – 4018).. 13-27
Optimistic Lock Exceptions (5001 – 5009) ... 13-29
Query Exceptions (6001 – 6129) ... 13-31
Validation Exceptions (7001 – 7200) ... 13-43
EJB QL Exceptions (8001 – 8010) ... 13-63
Session Loader Exceptions (9000 - 9010) ... 13-64
Communication Exceptions (12000 - 12003).. 13-65
EIS Exceptions (17007 – 17025), 90000, 91000 .. 13-66
JMS Processing Exceptions (18001 - 18004)... 13-69
Default Mapping Exceptions (20001 - 20008) ... 13-69
Discovery Exceptions (22001 - 22004)... 13-70
Remote Command Manager Exceptions (22101 - 22111) .. 13-71
Transaction Exceptions (23001 - 23015) .. 13-73
XML Conversion Exceptions (25501) ... 13-74
Migration Utility Exceptions (26001 - 26020).. 13-74
EJB JAR XML Exceptions (72000 – 72023) ... 13-77
Entity Manager Setup Exceptions (28001 – 28007) .. 13-80
XML Marshal Exceptions (25001 – 25020) ... 13-81
XML Platform Exceptions (27001 – 27006, 27101 – 27103, 27201 – 27202) 13-83

xiii

14 TopLink Workbench Error Reference

Miscellaneous Errors (1 – 89, 106 – 133)... 14-1
Project Errors (100 – 102) .. 14-3
Descriptor Errors (200 – 399).. 14-3
Mapping Errors (400 – 483) .. 14-13
Table Errors (500 – 610) ... 14-17
XML Schema Errors (700 – 706) ... 14-23
Session Errors (800 – 812) ... 14-23
Common Classpath Problems... 14-25
Data Source Problems .. 14-25

Database Connection Problems .. 14-25

15 Troubleshooting Application Deployment

Generating Deployment JAR Files .. 15-1
Common J2SE Deployment Exceptions .. 15-1

Classpath Exceptions .. 15-2
Communication Exceptions... 15-2
Descriptor Validation Exceptions ... 15-2

Common BEA WebLogic Server Deployment Exceptions .. 15-3
Common BEA WebLogic Server 6.1 Exceptions .. 15-5

Development Exceptions ... 15-6
Deployment and Run-Time Exceptions... 15-6

Common BEA WebLogic 7.0 Exceptions ... 15-8
Development Exceptions ... 15-8
Deployment Exceptions ... 15-9

Common BEA WebLogic 8.1 Exceptions ... 15-10
Development Exceptions ... 15-10
Deployment Exceptions ... 15-11

Common IBM WebSphere Application Server Exceptions .. 15-12
Problems at Run Time .. 15-14
Common TopLink for IBM WebSphere Deploy Tool Exceptions.. 15-15

Part VI Mapping and Configuration Overview

16 Understanding TopLink Mapping and Configuration Concepts

Mapping and Configuration Concepts ... 16-1
Projects.. 16-1
Descriptors ... 16-2
Mappings.. 16-2

Part VII Projects

17 Understanding Projects

TopLink Project Types .. 17-1
Project Concepts .. 17-2

xiv

Project Architecture .. 17-2
Relational and Nonrelational Projects.. 17-2
Persistent and Nonpersistent Projects.. 17-2
Projects and Login... 17-3

Non-CMP Session Role: Session Login... 17-3
CMP Deployment Role: Deployment Login .. 17-3
Development Role: Development Login .. 17-4

Projects and Platforms.. 17-4
Projects and Sequencing... 17-4

Configuring how to Obtain Sequence Values.. 17-5
Configuring Where to Write Sequence Values.. 17-5

XML Namespaces.. 17-5
Relational Projects... 17-6

Building Relational Projects for a Relational Database ... 17-6
Building Relational Projects for an Object-Relational Database .. 17-6

EIS Projects ... 17-7
Building EIS Projects With XML Records.. 17-9
Building EIS Projects With Indexed or Mapped Records ... 17-9

XML Projects .. 17-9
TopLink Support for Java Architecture for XML Binding (JAXB)... 17-10

Understanding JAXB-Specific Generated Files ... 17-10
Understanding TopLink-Specific Generated Files.. 17-11
Using TopLink JAXB Compiler Generated Files at Run Time .. 17-12

JAXB Validation .. 17-14
Understanding the Project API... 17-14

Project Inheritance Hierarchy.. 17-14
Understanding Sequencing in Relational Projects... 17-14

Sequencing Configuration Options .. 17-15
Sequencing Types.. 17-16

Table Sequencing ... 17-16
Unary Table Sequencing ... 17-17
Query Sequencing.. 17-18
Default Sequencing.. 17-18
Native Sequencing With an Oracle Database Platform.. 17-18
Native Sequencing With a Non-Oracle Database Platform... 17-19

Sequencing and Preallocation Size ... 17-20
Sequencing With Entity Beans WIth Container-Managed Persistence 17-21

Understanding XML Namespaces.. 17-22
TopLink Workbench Namespace Resolution ... 17-22
Element and Attribute Form Options .. 17-23

Element Form Default Qualified and Attribute Form Default Unqualified 17-23
Element and Attribute Form Default Unqualified.. 17-24
Element and Attribute Form Default Qualified .. 17-25

TopLink Runtime Namespace Resolution... 17-26

18 Creating a Project

Project Creation Overview .. 18-1

xv

Using TopLink Workbench ... 18-2
Creating New TopLink Workbench Projects ... 18-2

Using Java... 18-3
Creating a Project for an Existing Object and Data Model ... 18-5

Using TopLink Workbench ... 18-5
Creating a Project From an Existing Object Model .. 18-5

Using TopLink Workbench ... 18-5
Creating a Project From an Existing Data Model .. 18-5

Using TopLink Workbench ... 18-6
Creating an XML Project From an XML Schema... 18-6

Using TopLink Workbench ... 18-6
Using the Command Line.. 18-8

Creating a Project by Migrating an EAR to OC4J ... 18-9
Creating a Project From an OC4J EJB CMP EAR at Deployment Time.................................... 18-10
Working With Projects.. 18-10

Opening Existing Projects .. 18-10
Saving Projects... 18-11

Saving Projects With a New Name or Location .. 18-12
Generating the Project Status Report ... 18-12

Exporting Project Information .. 18-13
Exporting Deployment XML Information... 18-14
Exporting Model Java Source .. 18-14
Exporting Project Java Source ... 18-14
Exporting Table Creator Files.. 18-15

Working With the ejb-jar.xml File.. 18-15
Writing to the ejb-jar.xml File.. 18-16
Reading From the ejb-jar.xml File... 18-16

19 Configuring a Project

Configuring Common Project Options... 19-1
Configuring Project Save Location .. 19-2

Using TopLink Workbench ... 19-2
Configuring Project Classpath.. 19-3

Using TopLink Workbench ... 19-3
Configuring Mapped Field Access at the Project Level... 19-4

Using TopLink Workbench ... 19-4
Configuring Persistence Type... 19-5

Using TopLink Workbench ... 19-6
Configuring Default Descriptor Advanced Properties.. 19-7

Using TopLink Workbench ... 19-8
Configuring Existence Checking at the Project Level.. 19-8

Using TopLink Workbench ... 19-9
Configuring Project Deployment XML Options... 19-10

Using TopLink Workbench ... 19-10
Configuring Model Java Source Code Options... 19-11

Using TopLink Workbench ... 19-11
Configuring Deprecated Direct Mappings .. 19-12

xvi

Using TopLink Workbench ... 19-13
Configuring Cache Type and Size at the Project Level.. 19-13

Using TopLink Workbench ... 19-14
Configuring Cache Isolation at the Project Level ... 19-16

Using TopLink Workbench ... 19-16
Configuring Cache Coordination Change Propagation at the Project Level........................... 19-17

Using TopLink Workbench ... 19-18
Configuring Cache Expiration at the Project Level .. 19-19

Using TopLink Workbench ... 19-20
Configuring Project Comments.. 19-20

Using TopLink Workbench ... 19-21

20 Configuring a Relational Project

Relational Project Configuration Overview .. 20-1
Configuring Relational Database Platform at the Project Level.. 20-2

Using TopLink Workbench ... 20-2
Configuring Sequencing at the Project Level .. 20-3

Using TopLink Workbench ... 20-3
Using Java... 20-4

Configuring Login Information ... 20-5
Using TopLink Workbench ... 20-5

Configuring Development and Deployment Logins ... 20-6
Using TopLink Workbench ... 20-6

Logging in to the Database ... 20-7
Configuring Named Query Parameterized SQL and Statement Caching at the Project Level.........
20-7

Using TopLink Workbench ... 20-8
Configuring Table Generation Options.. 20-9

Using TopLink Workbench ... 20-9
Configuring Table Creator Java Source Options... 20-10

Using TopLink Workbench ... 20-10
Configuring Project Java Source Code Options .. 20-11

Using TopLink Workbench ... 20-11

21 Configuring an EIS Project

EIS Project Configuration Overview... 21-1
Configuring EIS Data Source Platform at the Project Level ... 21-2

Using TopLink Workbench ... 21-2
Configuring EIS Connection Specification Options at the Project Level 21-2

Using TopLink Workbench ... 21-3

22 Configuring an XML Project

XML Project Configuration Overview .. 22-1

Part VIII Descriptors

xvii

23 Understanding Descriptors

Descriptor Types .. 23-1
Descriptor Concepts.. 23-2

Descriptor Architecture.. 23-2
Descriptors and Inheritance... 23-3
Descriptors and EJB .. 23-3

Nondeferred Changes ... 23-3
Creating a New Entity Bean and ejbCreate / ejbPostCreate Methods 23-4
Inheritance .. 23-4

Fetch Groups ... 23-5
Amendment and After-Load Methods .. 23-5
Descriptors and Aggregation .. 23-5

Aggregate and Composite Descriptors in Relational Projects .. 23-5
Root and Composite Descriptors in EIS Projects... 23-8
Composite Descriptors in XML Projects... 23-8

Descriptor Event Manager... 23-8
Descriptor Query Manager.. 23-8
Descriptors and Sequencing .. 23-9
Descriptors and Locking .. 23-9
Default Root Element ... 23-9

Relational Descriptors .. 23-11
Object-Relational Descriptors .. 23-11
EIS Descriptors .. 23-12
XML Descriptors.. 23-12
Understanding Descriptors and Inheritance ... 23-12

Specifying a Class Indicator... 23-14
Using Class Indicator Fields... 23-14
Using Class Extraction Methods.. 23-15

Inheritance and Primary Keys (Relational and EIS Only)... 23-16
Single and Multi-Table Inheritance (Relational Only)... 23-16

Single Table Inheritance.. 23-16
Multitable Inheritance ... 23-16

Aggregate and Composite Descriptors and Inheritance ... 23-17
Inheritance and EJB... 23-17

Understanding Descriptors and Locking ... 23-18
Optimistic Version Locking Policies .. 23-18
Optimistic Version Locking Policies and Cascading ... 23-19
Optimistic Locking and Rollbacks.. 23-20
Optimistic Field Locking Policies ... 23-20
Pessimistic Locking Policy... 23-22
Locking in a Three-Tier Application .. 23-22

Optimistic Locking in a Three-Tier Application ... 23-22
Pessimistic Locking in a Three-Tier Application .. 23-23

Understanding the Descriptor API .. 23-23
Descriptor Inheritance Hierarchy ... 23-23

xviii

24 Creating a Descriptor

Descriptor Creation Overview.. 24-1
Creating a Relational Descriptor .. 24-1

Using TopLink Workbench ... 24-2
Relational Class Descriptors... 24-2
Relational Aggregate Descriptors.. 24-2
Relational Interface Descriptors... 24-2

Using Java... 24-2
Creating an Object-Relational Descriptor .. 24-3

Using Java... 24-3
Creating an EIS Descriptor .. 24-4

Using TopLink Workbench ... 24-4
EIS Root Descriptors.. 24-5
EIS Composite Descriptors ... 24-5

Using Java... 24-5
Creating an XML Descriptor ... 24-5

Using TopLink Workbench ... 24-5
Using Java... 24-5

Validating Descriptors.. 24-6
Generating Java Code for Descriptors .. 24-6

25 Configuring a Descriptor

Configuring Common Descriptor Options .. 25-1
Configuring Primary Keys .. 25-3

Using TopLink Workbench ... 25-3
Using Java... 25-4

Relational Projects.. 25-4
EIS Projects.. 25-5

Configuring Read-Only Descriptors ... 25-5
Using Read-Only Entity Beans.. 25-5
Using TopLink Workbench ... 25-5
Using Java... 25-6

Configuring Unit of Work Conforming at the Descriptor Level ... 25-6
Using TopLink Workbench ... 25-7
Using Java... 25-7

Configuring Descriptor Alias ... 25-7
Using TopLink Workbench ... 25-8
Using Java... 25-9

Configuring Descriptor Comments ... 25-9
Using TopLink Workbench ... 25-9

Configuring Named Queries at the Descriptor Level .. 25-10
Using TopLink Workbench ... 25-10

Adding Named Queries.. 25-12
Configuring Named Query Type and Parameters ... 25-13
Configuring Named Query Selection Criteria... 25-14
Configuring Read All Query Order .. 25-15
Configuring Named Query Optimization.. 25-16

xix

Configuring Named Query Attributes ... 25-17
Configuring Named Query Group/Order Options ... 25-19
Creating an EIS Interaction for a Named Query ... 25-20
Configuring Named Query Options ... 25-22
Configuring Named Query Advanced Options.. 25-24

Using Java... 25-25
Configuring Query Timeout at the Descriptor Level ... 25-26

Using TopLink Workbench ... 25-26
Using Java... 25-27

Configuring Cache Refreshing ... 25-27
Using TopLink Workbench ... 25-28
Using Java... 25-29

Configuring Query Keys.. 25-30
Using TopLink Workbench ... 25-31
Using Java... 25-31

Configuring Interface Query Keys .. 25-33
Using TopLink Workbench ... 25-34
Using Java... 25-34

Configuring Cache Type and Size at the Descriptor Level ... 25-35
Using TopLink Workbench ... 25-36
Using Java... 25-37

Configuring Cache Isolation at the Descriptor Level .. 25-37
Using TopLink Workbench ... 25-38
Using Java... 25-38

Configuring Unit of Work Cache Isolation at the Descriptor Level.. 25-38
Using Java... 25-39

Configuring Cache Coordination Change Propagation at the Descriptor Level 25-40
Using TopLink Workbench ... 25-40
Using Java... 25-41

Configuring Cache Expiration at the Descriptor Level.. 25-42
Using TopLink Workbench ... 25-42
Using Java... 25-43

Configuring Cache Existence Checking at the Descriptor Level ... 25-43
Using TopLink Workbench ... 25-44
Using Java... 25-45

Configuring a Descriptor With EJB Information .. 25-45
Using TopLink Workbench ... 25-46
Using Java... 25-48

Configuring CMP Information .. 25-48
Configuring BMP Information... 25-49

Configuring Reading Subclasses on Queries .. 25-49
Using TopLink Workbench ... 25-49
Using Java... 25-50

Configuring Inheritance for a Child (Branch or Leaf) Class Descriptor 25-51
Using TopLink Workbench ... 25-51
Using Java... 25-52

Configuring Inheritance for a Parent (Root) Descriptor.. 25-52

xx

Using TopLink Workbench ... 25-53
Using Java... 25-54

Configuring Inheritance Expressions for a Parent (Root) Class Descriptor 25-55
Using Java... 25-57

Configuring Inherited Attribute Mapping in a Subclass.. 25-58
Using TopLink Workbench ... 25-58
Using Java... 25-59

Configuring a Domain Object Method as an Event Handler ... 25-59
Using TopLink Workbench ... 25-60
Using Java... 25-62

Configuring a Descriptor Event Listener as an Event Handler.. 25-62
Using Java... 25-64

Configuring Locking Policy .. 25-64
Using TopLink Workbench ... 25-65
Using Java... 25-67

Configuring an Optimistic Locking Policy .. 25-67
Configuring Optimistic Locking Policy Cascading .. 25-67
Configuring a Pessimistic Locking Policy.. 25-67

Configuring Returning Policy .. 25-67
Using TopLink Workbench ... 25-68
Using Java... 25-69

Configuring Instantiation Policy ... 25-70
Using TopLink Workbench ... 25-70
Using Java... 25-71

Configuring Copy Policy ... 25-71
Using TopLink Workbench ... 25-72
Using Java... 25-72

Configuring Change Policy ... 25-73
Using Java... 25-73

Configuring Deferred Change Detection Policy ... 25-73
Configuring Object Change Tracking Policy ... 25-73
Configuring Attribute Change Tracking Policy .. 25-75

Configuring a History Policy .. 25-76
Using Java... 25-77

Configuring Write Responsibility ... 25-77
Configuring Wrapper Policy ... 25-78

Using Java... 25-79
Configuring Fetch Groups... 25-79

Using Java... 25-80
Configuring Amendment Methods ... 25-81

Using TopLink Workbench ... 25-81

26 Configuring a Relational Descriptor

Relational Descriptor Configuration Overview.. 26-1
Configuring Associated Tables... 26-2

Using TopLink Workbench ... 26-2
Using Java... 26-3

xxi

Configuring Sequencing at the Descriptor Level ... 26-3
Using TopLink Workbench ... 26-4
Using Java... 26-5

Configuring a Sequence by Name... 26-5
Configuring the Same Sequence for Multiple Descriptors .. 26-5
Configuring the Platform Default Sequence.. 26-6

Configuring Custom SQL Queries for Basic Persistence Operations... 26-6
Using TopLink Workbench ... 26-7
Using Java... 26-8

Configuring Interface Alias .. 26-10
Using TopLink Workbench ... 26-11
Using Java... 26-11

Configuring a Relational Descriptor as a Class or Aggregate Type .. 26-11
Using TopLink Workbench ... 26-12
Using Java... 26-12

Configuring Multitable Information .. 26-13
Using TopLink Workbench ... 26-13
Using Java... 26-14

27 Configuring an Object-Relational Descriptor

Object-Relational Descriptor Configuration Overview .. 27-1
Configuring Field Ordering .. 27-2

Using Java... 27-2

28 Configuring an EIS Descriptor

EIS Descriptor Configuration Overview .. 28-1
Configuring Schema Context for an EIS Descriptor .. 28-2

Using TopLink Workbench ... 28-2
Choosing a Schema Context ... 28-3

Using Java... 28-3
Configuring Default Root Element ... 28-3

Using TopLink Workbench ... 28-4
Choosing a Root Element.. 28-4

Using Java... 28-5
Configuring Record Format .. 28-5

Using Java... 28-6
Configuring Custom EIS Interactions for Basic Persistence Operations 28-6

Using TopLink Workbench ... 28-6
Using Java... 28-8

Configuring an EIS Descriptor as a Root or Composite Type .. 28-8
Using TopLink Workbench ... 28-9
Using Java... 28-9

29 Configuring an XML Descriptor

XML Descriptor Configuration Overview ... 29-1
Configuring Schema Context for an XML Descriptor.. 29-1

xxii

Using TopLink Workbench ... 29-2
Choosing a Schema Context ... 29-2

Using Java... 29-3
Configuring for Complex Type of anyType ... 29-3

Using TopLink Workbench ... 29-4
Configuring Default Root Element ... 29-5

Using TopLink Workbench ... 29-5
Choosing a Root Element.. 29-5

Configuring Document Preservation .. 29-6
Using TopLink Workbench ... 29-6
Using Java... 29-6

Part IX Mappings

30 Understanding Mappings

Mapping Types .. 30-1
Mapping Concepts .. 30-2

Mapping Architecture .. 30-2
Example Mapping... 30-3
Automatic Mappings.. 30-4

Automapping With TopLink Workbench at Development Time 30-4
Default Mapping in CMP Projects Using OC4J at Run Time .. 30-4
JAXB Project Generation at Development Time.. 30-5

Indirection .. 30-5
Value Holder Indirection .. 30-7
Transparent Indirect Container Indirection... 30-8
Proxy Indirection ... 30-8
Indirection and EJB.. 30-9
Indirection, Serialization, and Detachment.. 30-9

Method Accessors and Attribute Accessors.. 30-10
Mapping Converters and Transformers .. 30-10

Serialized Object Converter.. 30-10
Type Conversion Converter ... 30-11
Object Type Converter .. 30-12
Simple Type Translator ... 30-12
Transformation Mappings.. 30-14

Mappings and XPath .. 30-15
XPath by Position... 30-15
XPath by Path and Name.. 30-15
XPath by Name... 30-16
Self XPath .. 30-16

Mappings and xsd:list and xsd:union Types .. 30-17
Mapping an xsd:union Type .. 30-17
Mapping an xsd:list Type ... 30-18
Mapping a List of Unions ... 30-18
Mapping a Union of Lists ... 30-19
Mapping a Union of Unions... 30-19

xxiii

Mappings and the jaxb:class Customization... 30-20
all, choice, or sequence Structure... 30-20
group Structure .. 30-21
sequence or choice Structure Containing a group .. 30-21
group Structure Containing a sequence or choice .. 30-22
group Structure Containing a group... 30-23
Limitations of jaxb:class Customization Support.. 30-23

Mappings and JAXB Typesafe Enumerations... 30-24
Understanding the Mapping API... 30-25
Relational Mappings .. 30-25
Object-Relational Mappings... 30-26
XML Mappings .. 30-27
EIS Mappings... 30-27

31 Creating a Mapping

Mapping Creation Overview .. 31-1
Creating Mappings Manually During Development .. 31-1

Using TopLink Workbench ... 31-1
Creating Mappings Automatically During Development .. 31-2

Using TopLink Workbench ... 31-2
Creating Mappings Automatically During Deployment .. 31-2
Creating Mappings to Oracle LOB Database Objects.. 31-2

Using the Oracle JDBC OCI Driver or Server Driver... 31-3
Using the Oracle JDBC Thin Driver ... 31-5

Removing Mappings .. 31-6
Using TopLink Workbench ... 31-6

32 Configuring a Mapping

Configuring Common Mapping Options... 32-1
Configuring Read-Only Mappings.. 32-2

Using TopLink Workbench ... 32-3
Using Java... 32-3

Configuring Indirection... 32-3
Using TopLink Workbench ... 32-4
Using Java... 32-5

Configuring ValueHolder Indirection ... 32-6
Configuring ValueHolder Indirection With Method Accessing....................................... 32-7
Configuring ValueHolder Indirection With EJB 3.0 on OC4J ... 32-8
Configuring IndirectContainer Indirection ... 32-8
Configuring Proxy Indirection... 32-9

Configuring XPath .. 32-10
Using TopLink Workbench ... 32-11

Choosing the XPath ... 32-12
Configuring a Default Null Value at the Mapping Level ... 32-12

Using TopLink Workbench ... 32-13
Using Java... 32-13

xxiv

Configuring Method Accessing.. 32-14
Using TopLink Workbench ... 32-14
Using Java... 32-15

Configuring Private or Independent Relationships... 32-16
Using TopLink Workbench ... 32-17
Using Java... 32-17

Configuring Mapping Comments.. 32-18
Using TopLink Workbench ... 32-18

Configuring a Serialized Object Converter ... 32-18
Using TopLink Workbench ... 32-19
Using Java... 32-19

Configuring a Type Conversion Converter .. 32-20
Using TopLink Workbench ... 32-20
Using Java... 32-21

Configuring an Object Type Converter .. 32-22
Using TopLink Workbench ... 32-22
Using Java... 32-23

Configuring a Simple Type Translator.. 32-23
Using TopLink Workbench ... 32-24
Using Java... 32-24

Configuring a JAXB Typesafe Enumeration Converter ... 32-25
Using Java... 32-26

Configuring Container Policy... 32-26
Using TopLink Workbench ... 32-27
Using Java... 32-28

Configuring Attribute Transformer ... 32-29
Using TopLink Workbench ... 32-30
Using Java... 32-31

Configuring Field Transformer Associations .. 32-31
Using TopLink Workbench ... 32-32

Specifying Field-to-Transformer Associations .. 32-32
Using Java... 32-33

Configuring Mutable Mappings .. 32-33
Using TopLink Workbench ... 32-34
Using Java... 32-34

Configuring Bidirectional Relationship ... 32-34
Using TopLink Workbench ... 32-35

Configuring the Use of a Single Node .. 32-36
Using TopLink Workbench ... 32-36
Using Java... 32-37

Part X Relational Mappings

33 Understanding Relational Mappings

Relational Mapping Types .. 33-1
Relational Mapping Concepts .. 33-2

Directionality ... 33-2

xxv

Converters and Transformers ... 33-3
Using a Direct Mapping.. 33-3
Using a Converter Mapping... 33-3
Using a Transformation Mapping ... 33-3

Relational Mappings and EJB.. 33-3
Direct-to-Field Mapping .. 33-4
Direct-to-XMLType Mapping.. 33-4
One-to-One Mapping ... 33-5

One-to-One Mappings and EJB... 33-6
Variable One-to-One Mapping ... 33-6
One-to-Many Mapping .. 33-7

One-to-Many Mappings and EJB.. 33-8
Many-to-Many Mapping ... 33-8

Many-to-Many Mappings and EJB... 33-9
Aggregate Collection Mapping .. 33-10

Aggregate Collection Mappings and Inheritance .. 33-10
Aggregate Collection Mappings and EJB .. 33-11
Implementing Aggregate Collection Mappings ... 33-11

Direct Collection Mapping.. 33-11
Direct Map Mapping .. 33-12
Aggregate Object Mapping ... 33-12

Aggregate Object Mappings with a Single Source Object... 33-13
Aggregate Object Mappings With Multiple Source Objects... 33-14
Implementing an Aggregate Object Relationship Mapping... 33-14

Transformation Mapping... 33-15

34 Configuring a Relational Mapping

Configuring Common Relational Mapping Options... 34-1
Configuring a Database Field ... 34-2

Using TopLink Workbench ... 34-4
Configuring Reference Descriptor... 34-5

Using TopLink Workbench ... 34-5
Configuring Batch Reading... 34-6

Using TopLink Workbench ... 34-7
Using Java... 34-7

Configuring Query Key Order ... 34-8
Using TopLink Workbench ... 34-8

Configuring Table and Field References (Foreign and Target Foreign Keys) 34-8
Using TopLink Workbench ... 34-9

35 Configuring a Relational Direct-to-Field Mapping

Relational Direct-to-Field Mapping Configuration Overview .. 35-1

36 Configuring a Relational Direct-to-XMLType Mapping

Relational Direct-to-XMLType Mapping Overview... 36-1
Configuring Read Whole Document... 36-1

xxvi

Using TopLink Workbench ... 36-1

37 Configuring a Relational One-to-One Mapping

Relational One-to-One Mapping Configuration Overview ... 37-1
Configuring Joining at the Mapping Level.. 37-1

Using TopLink Workbench ... 37-2

38 Configuring a Relational Variable One-to-One Mapping

Relational Variable One-to-One Mapping Configuration Overview ... 38-1
Configuring Class Indicator .. 38-1

Using TopLink Workbench ... 38-2
Configuring Unique Primary Key ... 38-3

Understanding Unique Primary Key ... 38-3
Using TopLink Workbench ... 38-3
Using Java... 38-4

Configuring Query Key Association ... 38-4
Using TopLink Workbench ... 38-4

39 Configuring a Relational One-to-Many Mapping

Relational One-to-Many Mapping Configuration Overview .. 39-1

40 Configuring a Relational Many-to-Many Mapping

Relational Many-to-Many Mapping Configuration Overview.. 40-1
Configuring a Relation Table.. 40-1

Using TopLink Workbench ... 40-2

41 Configuring a Relational Aggregate Collection Mapping

Relational Aggregate Collection Mapping Configuration Overview... 41-1

42 Configuring a Relational Direct Collection Mapping

Relational Direct Collection Mapping Configuration Overview .. 42-1
Configuring Target Table ... 42-1

Using TopLink Workbench ... 42-2
Configuring Direct Value Field .. 42-2

Using TopLink Workbench ... 42-2

43 Configuring a Relational Aggregate Object Mapping

Relational Aggregate Object Mapping Configuration Overview ... 43-1
Configuring Aggregate Fields .. 43-1

Using TopLink Workbench ... 43-2
Configuring Allowing Null Values ... 43-2

Using TopLink Workbench ... 43-2

xxvii

44 Configuring a Relational Direct Map Mapping

Relational Direct Map Mapping Configuration Overview .. 44-1
Configuring Direct Value Field .. 44-1

Using TopLink Workbench ... 44-1
Configuring Direct Key Field ... 44-2

Using TopLink Workbench ... 44-2
Configuring Key Converters ... 44-3

Using TopLink Workbench ... 44-3
Configuring Value Converters.. 44-4

Using TopLink Workbench ... 44-4

45 Configuring a Relational Transformation Mapping

Relational Transformation Mapping Configuration Overview ... 45-1

Part XI Object-Relational Mappings

46 Understanding Object-Relational Mappings

Object-Relational Mapping Types ... 46-1
Object-Relational Structure Mapping... 46-2
Object-Relational Reference Mapping ... 46-2
Object-Relational Array Mapping ... 46-2
Object-Relational Object Array Mapping .. 46-2
Object-Relational Nested Table Mapping.. 46-3

47 Configuring an Object-Relational Mapping

Configuring Common Object-Relational Mapping Options ... 47-1
Configuring Reference Class .. 47-2

Using Java... 47-2
Configuring Attribute Name .. 47-2

Using Java... 47-3
Configuring Field Name .. 47-3

Using Java... 47-3
Configuring Structure Name .. 47-4

Using Java... 47-4

48 Configuring an Object-Relational Structure Mapping

Object-Relational Structure Mapping Configuration Overview... 48-1

49 Configuring an Object-Relational Reference Mapping

Object-Relational Reference Mapping Configuration Overview ... 49-1

50 Configuring an Object-Relational Array Mapping

Object-Relational Array Mapping Configuration Overview ... 50-1

xxviii

51 Configuring an Object-Relational Object Array Mapping

Object-Relational Object Array Mapping Configuration Overview .. 51-1

52 Configuring an Object-Relational Nested Table Mapping

Object-Relational Nested Table Mapping Configuration Overview.. 52-1

Part XII EIS Mappings

53 Understanding EIS Mappings

EIS Mapping Types... 53-1
EIS Mapping Concepts... 53-2

EIS Record Type .. 53-2
Indexed Records... 53-2
Mapped Records .. 53-3
XML Records .. 53-3

XPath Support.. 53-3
xsd:list and xsd:union Support ... 53-3
jaxb:class Support.. 53-3
Typesafe Enumeration Support .. 53-3
Composite and Reference EIS Mappings .. 53-4

Composite EIS Mappings ... 53-4
Reference EIS Mappings ... 53-4

EIS Mapping Architecture ... 53-5
EIS Direct Mapping .. 53-5
EIS Composite Direct Collection Mapping.. 53-6
EIS Composite Object Mapping... 53-7
EIS Composite Collection Mapping .. 53-7
EIS One-to-One Mapping.. 53-8

EIS One-to-One Mappings With Key on Source... 53-9
EIS One-to-One Mappings With Key on Target ... 53-10

EIS One-to-Many Mapping ... 53-12
EIS One-to-Many Mappings With Key on Source.. 53-13
EIS One-to-Many Mappings With Key on Target .. 53-15

EIS Transformation Mapping ... 53-17

54 Configuring an EIS Mapping

Configuring Common EIS Mapping Options ... 54-1
Configuring Reference Descriptors ... 54-2

Using TopLink Workbench ... 54-2
Configuring Selection Interaction ... 54-3

Using TopLink Workbench ... 54-4

55 Configuring an EIS Direct Mapping

EIS Direct Mapping Configuration Overview .. 55-1

xxix

56 Configuring an EIS Composite Direct Collection Mapping

EIS Composite Direct Collection Mapping Configuration Overview.. 56-1

57 Configuring an EIS Composite Object Mapping

EIS Composite Object Mapping Configuration Overview... 57-1

58 Configuring an EIS Composite Collection Mapping

EIS Composite Collection Mapping Configuration Overview .. 58-1

59 Configuring an EIS One-to-One Mapping

EIS One-to-One Mapping Configuration Overview.. 59-1
Configuring Foreign Key Pairs... 59-1

Using TopLink Workbench ... 59-2

60 Configuring an EIS One-to-Many Mapping

EIS One-to-Many Mapping Configuration Overview ... 60-1
Configuring Foreign Key Pairs... 60-1

Using TopLink Workbench ... 60-2
Configuring Delete All Interactions.. 60-3

Using TopLink Workbench ... 60-4

61 Configuring an EIS Transformation Mapping

EIS Transformation Mapping Configuration Overview ... 61-1

Part XIII XML Mappings

62 Understanding XML Mappings

XML Mapping Types .. 62-1
XML Mapping Concepts .. 62-2

Mapping to Simple and Complex Types ... 62-2
Mapping Order.. 62-3
XPath Support.. 62-3
xsd:list and xsd:union Support ... 62-3
xs:any and xs:anyType Support.. 62-4
jaxb:class Support.. 62-4
Typesafe Enumeration Support .. 62-4
Mapping Extensions ... 62-4

XML Direct Mapping.. 62-5
Mapping to a Text Node .. 62-5

Mapping to a Simple Text Node.. 62-5
Mapping to a Text Node in a Simple Sequence... 62-6
Mapping to a Text Node in a Subelement.. 62-6
Mapping to a Text Node by Position .. 62-7

Mapping to an Attribute .. 62-8

xxx

Mapping to a Specified Schema Type .. 62-9
Mapping to a List Field With an XML Direct Mapping .. 62-10
Mapping to a Union Field With an XML Direct Mapping.. 62-10
Mapping to a Union of Lists With an XML Direct Mapping.. 62-12
Mapping to a Union of Unions With an XML Direct Mapping ... 62-12
Mapping With a Simple Type Translator .. 62-13

XML Composite Direct Collection Mapping ... 62-14
Mapping to Multiple Text Nodes ... 62-15

Mapping to a Simple Sequence.. 62-15
Mapping to a Sequence in a Subelement.. 62-15

Mapping to Multiple Attributes.. 62-16
Mapping to a Single Text Node With an XML Composite Direct Collection Mapping 62-17
Mapping to a Single Attribute With an XML Composite Direct Collection Mapping 62-18
Mapping to a List of Unions With an XML Composite Direct Collection Mapping........... 62-18
Mapping to a Union of Lists With an XML Composite Direct Collection Mapping........... 62-19
Specifying the Content Type of a Collection With an XML Composite Direct Collection
Mapping 62-20

XML Composite Object Mapping .. 62-21
Mapping Into the Parent Record... 62-21
Mapping to an Element .. 62-22
Mapping to Different Elements by Element Name.. 62-23
Mapping to Different Elements by Element Position .. 62-24

XML Composite Collection Mapping ... 62-25
XML Any Object Mapping .. 62-27
XML Any Collection Mapping ... 62-29
XML Transformation Mapping... 62-31

63 Configuring an XML Mapping

Configuring Common XML Mapping Options .. 63-1
Configuring Reference Descriptor... 63-2

Using TopLink Workbench ... 63-2
Configuring Maps to Wildcard... 63-3

Using TopLink Workbench ... 63-3

64 Configuring an XML Direct Mapping

XML Direct Mapping Configuration Overview.. 64-1

65 Configuring an XML Composite Direct Collection Mapping

XML Composite Direct Collection Mapping Configuration Overview 65-1

66 Configuring an XML Composite Object Mapping

XML Composite Object Mapping Configuration Overview .. 66-1

67 Configuring an XML Composite Collection Mapping

XML Composite Collection Mapping Configuration Overview ... 67-1

xxxi

68 Configuring an XML Any Object Mapping

XML Any Object Mapping Configuration Overview .. 68-1

69 Configuring an XML Any Collection Mapping

XML Any Collection Mapping Configuration Overview ... 69-1

70 Configuring an XML Transformation Mapping

XML Transformation Mapping Configuration Overview... 70-1

Part XIV Using TopLink Overview

71 Understanding the Persistence Layer

Overview of the Persistence Layer... 71-1
Sessions ... 71-1
Data Access ... 71-1
Cache.. 71-2
Queries and Expressions.. 71-2
Transactions .. 71-3

Part XV TopLink Sessions

72 Understanding TopLink Sessions

Session Types ... 72-1
Session Concepts ... 72-2

Session Architecture ... 72-2
Object Cache ... 72-3
Connection Pools ... 72-3
Query Mechanism.. 72-4
Java Object Builder .. 72-4

Session Configuration and the sessions.xml File.. 72-4
Session Customization ... 72-4
Acquiring a Session at Run Time With the Session Manager... 72-5
Managing Session Events With the Session Event Manager .. 72-5

Session Event Manager Events .. 72-6
Session Event Listeners ... 72-7

Logging... 72-7
Log Types .. 72-8
Log Output.. 72-10
Log Level ... 72-10
Logging SQL... 72-10
Logging Chained Exceptions ... 72-11
Viewing TopLink Log Messages From the Application Server Control Console 72-11

Profiler .. 72-11
TopLink Profiler ... 72-12
Oracle Dynamic Monitoring System (DMS) .. 72-12

xxxii

Integrity Checker... 72-12
Exception Handlers... 72-12
Registering Descriptors .. 72-13
Sessions and CMP ... 72-13
Sessions and Sequencing.. 72-13

Server and Client Sessions .. 72-14
Three-Tier Architecture Overview ... 72-14
Advantages of the TopLink Three-Tier Architecture .. 72-15

Shared Resources ... 72-15
Providing Read Access.. 72-16
Providing Write Access... 72-17
Security and User Privileges .. 72-18
Concurrency.. 72-18
Connection Allocation... 72-18

Unit of Work Sessions .. 72-19
Isolated Client Sessions ... 72-19

Isolated Client Sessions and Oracle Virtual Private Database (VPD) 72-21
VPD With Oracle Database Proxy Authentication ... 72-22
VPD Without Oracle Database Proxy Authentication ... 72-22
Isolated Client Session Life Cycle.. 72-22

Isolated Client Session Limitations... 72-24
Historical Sessions .. 72-25

Historical Session Limitations ... 72-25
Session Broker and Client Sessions .. 72-26

Session Broker Architecture .. 72-26
Committing a Transaction with a Session Broker .. 72-27

Committing a Session with a JTA Driver: Two-Phase Commits 72-27
Committing a Session Without a JTA Driver: Two-Stage Commits............................... 72-27

Session Broker Session Limitations .. 72-28
Many-to-Many Join Tables and Direct Collection Tables .. 72-28

Session Broker Alternatives ... 72-28
Database Linking ... 72-28
Multiple Sessions .. 72-28

Database Sessions ... 72-29
Remote Sessions .. 72-30

Architectural Overview.. 72-30
Application Layer .. 72-31
Transport Layer.. 72-31
Server Layer .. 72-31

Remote Session Concepts... 72-31
Securing Remote Session Access ... 72-32
Queries... 72-32
Refreshing ... 72-32
Indirection ... 72-32
Cursored Streams... 72-32
Unit of Work ... 72-32

Sessions and the Cache .. 72-33

xxxiii

Server and Database Session Cache ... 72-33
Isolated Session Cache.. 72-33
Historical Session Cache .. 72-33

Understanding the Session API ... 72-33

73 Creating Sessions

Session Creation Overview ... 73-1
Creating a Sessions Configuration .. 73-1

Using TopLink Workbench ... 73-2
Configuring a Sessions Configuration ... 73-2

Using TopLink Workbench ... 73-2
Creating a Server Session .. 73-4

Using TopLink Workbench ... 73-4
Using Java... 73-5

Creating Session Broker and Client Sessions.. 73-6
Using TopLink Workbench ... 73-6
Using Java... 73-8

Creating Database Sessions .. 73-8
Using TopLink Workbench ... 73-8
Using Java... 73-10

Creating Remote Sessions ... 73-10
Using Java... 73-10

Server ... 73-11
Client.. 73-11

74 Configuring a Session

Configuring Common Session Options ... 74-1
Configuring a Primary Mapping Project .. 74-2

Using TopLink Workbench ... 74-3
Using Java... 74-3

Configuring a Session Login... 74-4
Configuring Logging .. 74-4

Using TopLink Workbench ... 74-5
Using Java... 74-7

Using Session Logging API .. 74-7
Configuring a Session to use java.util.logging Package... 74-8
Configuring Logging in a CMP Application ... 74-9

Configuring Multiple Mapping Projects.. 74-9
Using TopLink Workbench ... 74-9
Using Java... 74-10

Configuring a Performance Profiler .. 74-10
Using TopLink Workbench ... 74-11
Using Java... 74-12

Configuring an Exception Handler.. 74-12
Using TopLink Workbench ... 74-12
Using Java... 74-12

xxxiv

Configuring Customizer Class ... 74-13
Using TopLink Workbench ... 74-14

Configuring the Server Platform.. 74-14
Using TopLink Workbench ... 74-15
Using Java... 74-17

Configuring Session Event Listeners .. 74-17
Using TopLink Workbench ... 74-17
Using Java... 74-18

Configuring the Integrity Checker .. 74-18
Using Java... 74-19

Configuring Connection Policy.. 74-19
Using TopLink Workbench ... 74-20
Using Java... 74-21

Configuring Named Queries at the Session Level ... 74-21
Using Java... 74-22

75 Acquiring and Using Sessions at Run Time

Session Acquisition Overview ... 75-1
Understanding the Session Manager ... 75-2
Multiple Sessions... 75-2

Acquiring the Session Manager ... 75-2
Acquiring a Session From the Session Manager... 75-3

Loading a Session From sessions.xml Using Defaults... 75-3
Loading a Session From sessions.xml With an Alternative Class Loader 75-4
Loading a Session From an Alternative Session Configuration File 75-4
Loading a Session Without Logging In.. 75-5
Reloading and Refreshing Session Configuration.. 75-5
Refreshing a Session When the Class Loader Changes ... 75-6

Acquiring a Client Session .. 75-6
Acquiring an Isolated Client Session ... 75-7
Acquiring a Client Session That Uses Exclusive Connections ... 75-7
Acquiring a Client Session That Uses Connection Properties.. 75-8
Acquiring a Client Session That Uses a Named Connection Pool... 75-8
Acquiring a Client Session That Does Not Use Lazy Connection Allocation 75-9

Acquiring a Historical Session ... 75-9
Logging In to a Session .. 75-10
Using Session API ... 75-10
Logging Out of a Session ... 75-10
Storing Sessions in the Session Manager Instance .. 75-10
Destroying Sessions in the Session Manager Instance.. 75-11

76 Configuring Server Sessions

Server Session Configuration Overview .. 76-1
Configuring Internal Connection Pools ... 76-1
Configuring External Connection Pools ... 76-2

xxxv

77 Configuring Exclusive Isolated Client Sessions for Virtual Private Database

Exclusive Isolated Client Session Configuration Overview... 77-1
PostAcquireExclusiveConnection Event Handler .. 77-1

Using Java... 77-2
PreReleaseExclusiveConnection Event Handler ... 77-2

Using Java... 77-2
NoRowsModifiedSessionEvent Event Handler.. 77-3

Using Java... 77-3
ValidationException Handler.. 77-3

78 Configuring Historical Sessions

Historical Session Configuration Overview .. 78-1
Configuring Historical Sessions Using an Oracle Platform.. 78-1
Configuring Historical Sessions Using a TopLink HistoryPolicy.. 78-1

79 Configuring Session Broker and Client Sessions

Session Broker and Client Session Configuration Overview .. 79-1
Removing, Renaming, or Adding Sessions ... 79-1

Using TopLink Workbench ... 79-2

80 Configuring Database Sessions

Database Session Configuration Overview ... 80-1
Configuring External Connection Pools ... 80-1

Part XVI Data Access

81 Understanding Data Access

Data Access Concepts ... 81-1
Externally Managed Transactional Data Sources... 81-1
Data Source Login Types ... 81-2

DatabaseLogin.. 81-2
EISLogin .. 81-3

Data Source Platform Types .. 81-3
Database Platforms .. 81-3
EIS Platforms .. 81-4

Authentication ... 81-5
Simple JDBC Authentication.. 81-5
Oracle Database Proxy Authentication... 81-5
Auditing .. 81-6

Connections.. 81-6
Connection Pools... 81-7

Internal Connection Pools... 81-7
External Connection Pools.. 81-8
Default (Write) and Read Connection Pools.. 81-8
Sequence Connection Pools.. 81-8

xxxvi

Application-Specific Connection Pools... 81-9
Understanding Data Access API .. 81-9

Login Inheritance Hierarchy ... 81-10
Platform Inheritance Hierarchy .. 81-10

82 Configuring a Data Source Login

Configuring Common Data Source Login Options.. 82-1
Configuring User Name and Password .. 82-1

Using TopLink Workbench ... 82-2
Configuring Password Encryption .. 82-2

Using Java... 82-2
Configuring External Connection Pooling... 82-2

Using TopLink Workbench ... 82-3
Configuring Properties... 82-4

Using TopLink Workbench ... 82-4
Using Java... 82-5

Configuring a Default Null Value at the Login Level.. 82-5
Using Java... 82-6

83 Configuring a Database Login

Database Login Configuration Overview .. 83-1
Configuring a Relational Database Platform at the Session Level ... 83-1

Using TopLink Workbench ... 83-1
Configuring Database Login Connection Options... 83-2

Using TopLink Workbench ... 83-2
Configuring Sequencing at the Session Level... 83-4

Using TopLink Workbench ... 83-5
Using Java... 83-5

Using the Platform Default Sequence ... 83-6
Configuring Multiple Sequences ... 83-6
Configuring Query Sequencing ... 83-7

Configuring a Table Qualifier .. 83-8
Using TopLink Workbench ... 83-8

Configuring JDBC Options ... 83-9
Using TopLink Workbench ... 83-9
Using Java... 83-11

Configuring Advanced Options ... 83-11
Using TopLink Workbench ... 83-11

Configuring Oracle Database Proxy Authentication ... 83-12
Using Java... 83-13

84 Configuring an EIS Login

EIS Login Configuration Overview... 84-1
Configuring an EIS Data Source Platform at the Session Level .. 84-1

Using TopLink Workbench ... 84-1
Configuring EIS Connection Specification Options at the Session Level................................. 84-2

xxxvii

Using TopLink Workbench ... 84-2

85 Creating an Internal Connection Pool

Internal Connection Pool Creation Overview ... 85-1
Using TopLink Workbench ... 85-1

86 Configuring an Internal Connection Pool

Internal Connection Pool Configuration Overview ... 86-1
Configuring Connection Pool Sizes .. 86-1

Using TopLink Workbench ... 86-2
Configuring Properties... 86-2

Using TopLink Workbench ... 86-2
Using Java... 86-3

Configuring a Nontransactional Read Login... 86-3
Using TopLink Workbench ... 86-3

Configuring Connection Pool Connection Options ... 86-4
Using TopLink Workbench ... 86-4

Configuring Exclusive Read Connections.. 86-6
Using TopLink Workbench ... 86-6

Part XVII Cache

87 Understanding the Cache

Cache Architecture .. 87-1
Session Cache... 87-2
Unit of Work Cache .. 87-2

Cache Concepts .. 87-2
Cache Type and Object Identity.. 87-3

Full Identity Map ... 87-3
Weak Identity Map .. 87-3
Soft and Hard Cache Weak Identity Maps... 87-4
No Identity Map... 87-4
Guidelines for Configuring the Cache and Identity Maps .. 87-4
Understanding the Internals of Soft and Hard Cache Weak Identity Map 87-5

Querying and the Cache... 87-6
Handling Stale Data.. 87-6

Configure a Locking Policy .. 87-6
Configure the Cache on a Per-Class Basis .. 87-7
Force a Cache Refresh When Required on a Per-Query Basis... 87-7
Configure Cache Invalidation .. 87-7
Configure Cache Coordination.. 87-7

Explicit Query Refreshes.. 87-7
Refresh Policy ... 87-8
EJB Finders and Refresh Policy.. 87-8

Cache Invalidation .. 87-8
Cache Coordination .. 87-9

xxxviii

Cache Isolation .. 87-9
Cache Locking and Transaction Isolation.. 87-9
Cache Optimization .. 87-10

Understanding Cache Coordination .. 87-10
When to use Cache Coordination ... 87-11
Coordinated Cache Architecture .. 87-11

Session ... 87-11
Descriptor.. 87-12
Unit of Work ... 87-12

Coordinated Cache Types.. 87-12
JMS Coordinated Cache .. 87-12
RMI Coordinated Cache ... 87-12
CORBA Coordinated Cache ... 87-13

Custom Coordinated Cache .. 87-13
Understanding the Cache API .. 87-13

Object Identity API ... 87-14
Cache Refresh API... 87-14
Cache Invalidation API .. 87-14
Cache Coordination API .. 87-15

88 Configuring a Coordinated Cache

Configuring Common Coordinated Cache Options .. 88-1
Configuring the Synchronous Change Propagation Mode... 88-2

Using TopLink Workbench ... 88-2
Configuring a Service Channel .. 88-3

Using TopLink Workbench ... 88-3
Configuring a Multicast Group Address .. 88-4

Using TopLink Workbench ... 88-5
Configuring a Multicast Port .. 88-5

Using TopLink Workbench ... 88-6
Configuring a Naming Service Type ... 88-7
Configuring JNDI Naming Service Information .. 88-7

Using TopLink Workbench ... 88-8
Configuring RMI Registry Naming Service Information ... 88-9

Using TopLink Workbench ... 88-10
Configuring an Announcement Delay.. 88-11

Using TopLink Workbench ... 88-12
Configuring Connection Handling.. 88-13

Using TopLink Workbench ... 88-13
Configuring Context Properties ... 88-14

Using TopLink Workbench ... 88-14
Configuring a Packet Time-to-Live.. 88-15

Using TopLink Workbench ... 88-16

89 Configuring a JMS Coordinated Cache

JMS Coordinated Cache Configuration Overview ... 89-1
Configuring a Topic Name .. 89-1

xxxix

Using TopLink Workbench ... 89-1
Configuring a Topic Connection Factory Name .. 89-2

Using TopLink Workbench ... 89-2
Configuring a Topic Host URL ... 89-3

Using TopLink Workbench ... 89-3

90 Configuring an RMI Coordinated Cache

RMI Coordinated Cache Configuration Overview .. 90-1

91 Configuring a CORBA Coordinated Cache

CORBA Coordinated Cache Configuration Overview .. 91-1

92 Configuring a Custom Coordinated Cache

Custom Coordinated Cache Configuration Overview... 92-1
Configuring Transport Class ... 92-1

Using TopLink Workbench ... 92-1

Part XVIII Queries

93 Understanding TopLink Queries

Query Types.. 93-1
Query Concepts ... 93-2

Call... 93-3
DatabaseQuery .. 93-3
Data-Level and Object-Level Queries .. 93-3
Summary Queries ... 93-3
Descriptor Query Manager.. 93-3
TopLink Expressions .. 93-3
Query Keys... 93-4
Query Languages .. 93-4

SQL Queries .. 93-4
EJB QL Queries... 93-5
XML Queries... 93-5
EIS Interactions... 93-5
Query-by-Example... 93-6

Building Queries ... 93-6
Executing Queries ... 93-6
Handling Query Results .. 93-8

Collection Query Results.. 93-8
Report Query Results ... 93-8
Stream and Cursor Query Results .. 93-8

Session Queries ... 93-9
Read-Object Session Queries ... 93-9
Create, Update, and Delete Object Session Queries... 93-10

Database Queries... 93-10

xl

Object-Level Read Query ... 93-11
ReadObjectQuery... 93-11
ReadAllQuery... 93-11
Partial Object Queries.. 93-11
Join Reading and Object-Level Read Queries.. 93-12
Fetch Groups and Object-Level Read Queries... 93-13

Data-Level Read Query.. 93-13
DataReadQuery.. 93-13
DirectReadQuery ... 93-13
ValueReadQuery.. 93-14

Object-Level Modify Query... 93-14
WriteObjectQuery.. 93-14
UpdateObjectQuery... 93-14
InsertObjectQuery.. 93-14
DeleteObjectQuery... 93-14
UpdateAllQuery... 93-14
Object-Level Modify Queries and Privately Owned Parts .. 93-15

Data-Level Modify Query.. 93-15
Report Query ... 93-15

Named Queries .. 93-16
Call Queries .. 93-17

SQL Calls .. 93-17
SQLCall.. 93-17
StoredProcedureCall.. 93-17
StoredFunctionCall .. 93-18
Oracle Extensions... 93-18

EJB QL Calls ... 93-19
Enterprise Information System (EIS) Interactions.. 93-19

IndexedInteraction... 93-19
MappedInteraction .. 93-19
XMLInteraction .. 93-20
XQueryInteraction ... 93-20
QueryStringInteraction ... 93-20

Redirect Queries .. 93-20
Historical Queries ... 93-21

Using an ObjectLevelReadQuery With an AsOfClause .. 93-21
Using an ObjectLevelReadQuery With Expression Operator asOf 93-22
Using an ObjectLevelReadQuery in a Historical Session.. 93-22

Interface and Inheritance Queries ... 93-22
Descriptor Query Manager Queries .. 93-23

Configuring Named Queries... 93-23
Configuring Default Query Implementations .. 93-23
Configuring Additional Join Expressions ... 93-24

EJB Finders ... 93-24
Predefined Finders.. 93-24

Predefined CMP Finders... 93-25
Predefined BMP Finders ... 93-25

xli

Default Finders .. 93-26
Call Finders .. 93-26
DatabaseQuery Finders.. 93-26
Named Query Finders.. 93-27
Primary Key Finders... 93-27
Expression Finders.. 93-27
EJB QL Finders... 93-27
SQL Finders.. 93-28
Redirect Finders... 93-28
The ejbSelect Method.. 93-28

Queries and the Cache.. 93-29
Configuring the Cache ... 93-29
Using In-Memory Queries ... 93-30

Configuring Cache Usage for In-Memory Queries... 93-30
Expression Options for In-Memory Queries.. 93-31
Handling Exceptions Resulting From In-Memory Queries... 93-33

Primary Key Queries and the Cache .. 93-34
Disabling the Identity Map Cache Update During a Read Query... 93-34
Refreshing the Cache .. 93-35

Object Refresh... 93-35
Cascading Object Refresh ... 93-35
Refreshing the Identity Map Cache During a Read Query.. 93-35

Caching Query Results in the Session Cache.. 93-36
Caching Query Results in the Query Cache.. 93-36

Internal Query Cache Restrictions... 93-37
Caching and EJB Finders.. 93-37

Caching Options... 93-37
Disabling Cache for Returned Finder Results ... 93-38
Refreshing Finder Results... 93-38

Understanding the Query API .. 93-38

94 Using Basic Query API

Using Session Queries.. 94-1
Reading Objects With a Session Query.. 94-1

Reading an Object With a Session Query... 94-2
Reading All Objects With a Session Query ... 94-2
Refreshing an Object With a Session Query... 94-2

Creating, Updating, and Deleting Objects With a Session Query ... 94-3
Writing a Single Object to the Database With a Session Query .. 94-3
Writing All Objects to the Database With a Session Query... 94-3
Adding New Objects to the Database With a Session Query.. 94-4
Modifying Existing Objects in the Database With a Session Query................................. 94-4
Deleting Objects in the Database With a Session Query.. 94-4

Using DatabaseQuery Queries ... 94-4
Reading Objects Using a DatabaseQuery.. 94-4

Basic DatabaseQuery Read Operations .. 94-5
Reading Objects Using Partial Object Queries .. 94-6

xlii

Reading Objects Using Report Queries .. 94-6
Reading Objects Using Query-By-Example ... 94-6
Specifying Read Ordering .. 94-9
Specifying a Collection Class ... 94-9
Specifying the Maximum Rows Returned ... 94-10
Configuring Query Timeout at the Query Level... 94-10
Using Batch Reading ... 94-10
Using Join Reading .. 94-11

Creating, Updating, and Deleting Objects With a DatabaseQuery 94-13
Write Query Overview.. 94-13
UpdateAll Queries ... 94-13
Noncascading Write Queries ... 94-14
Disabling the Identity Map Cache During a Write Query... 94-15

Reading Data With a DatabaseQuery .. 94-15
Using a DataReadQuery ... 94-15
Using a DirectReadQuery... 94-16
Using a ValueReadQuery ... 94-16

Updating Data With a DatabaseQuery .. 94-16
Specifying a Custom SQL String in a DatabaseQuery... 94-16
Specifying a Custom EJB QL String in a DatabaseQuery.. 94-17
Using Parameterized SQL and Statement Caching in a DatabaseQuery.............................. 94-17

Using Named Queries .. 94-18
Using SQL Calls .. 94-19

Using an SQLCall .. 94-19
Specifying a SQLCall Input Parameter ... 94-20
Specifying a SQLCall Output Parameter.. 94-20
Specifying a SQLCall Input / Output Parameter.. 94-21

Using a StoredProcedureCall .. 94-21
Specifying an Input Parameter .. 94-22
Specifying an Output Parameter ... 94-22
Specifying an Input / Output Parameter ... 94-22
Using an Output Parameter Event .. 94-23

Using a StoredFunctionCall... 94-23
Using EJB QL Calls ... 94-24
Using EIS Interactions.. 94-24
Handling Exceptions... 94-25
Handling Collection Query Results .. 94-26
Handling Report Query Results... 94-26

95 Understanding TopLink Expressions

Understanding the Expression Framework.. 95-1
Expressions Compared to SQL ... 95-1

Expression Components... 95-2
Boolean Logic... 95-3
Database Functions and Operators .. 95-3
Mathematical Functions ... 95-4
XMLType Functions ... 95-5

xliii

Platform and User-Defined Functions ... 95-5
Expressions for One-to-One and Aggregate Object Relationships.. 95-5
Expressions for Joining and Complex Relationships .. 95-6

Understanding Joins.. 95-6
Using TopLink Expression API For Joins... 95-7

Parameterized Expressions .. 95-8
Expression Method getParameter... 95-8
Expression Method getField.. 95-9

Query Keys and Expressions... 95-10
Using Multiple Expressions .. 95-10

Subselects and Subqueries ... 95-10
Parallel Expressions .. 95-11

Data Queries and Expressions .. 95-12
getField ... 95-12
getTable .. 95-12

Creating an Expression... 95-13
Using TopLink Workbench ... 95-13

Adding Arguments.. 95-14
Using Java... 95-15

Creating and Using a User-Defined Function ... 95-16
Making a User-Defined Function Available to a Specific Platform....................................... 95-17
Making a User-Defined Function Available to All Platforms .. 95-17

Using a User-Defined Function ... 95-17

96 Using Advanced Query API

Using Redirect Queries .. 96-1
Creating a Redirect Query ... 96-1

Using Historical Queries.. 96-2
Using Queries With Fetch Groups ... 96-2

Configuring Default Fetch Group Behavior.. 96-3
Querying With a Static Fetch Group .. 96-3
Querying With a Dynamic Fetch Group.. 96-4

Querying on Interfaces... 96-4
Querying on an Inheritance Hierarchy ... 96-4
Appending Additional Join Expressions.. 96-4

Using Java... 96-5
Using Queries on Variable One-to-One Mappings .. 96-5
Using Oracle Database Features... 96-5

Oracle Hints ... 96-6
Hierarchical Queries ... 96-6

startWith Parameter .. 96-7
connectBy Parameter ... 96-7
orderSibling Parameter ... 96-7

Using EJB Finders.. 96-7
Creating a Finder... 96-8

ejb-jar.xml Finder Options.. 96-9
Using DatabaseQuery Finders .. 96-10

xliv

Using Named Query Finders .. 96-10
Using Primary Key Finders ... 96-11
Using EJB QL Finders ... 96-11
Using SQL Finders .. 96-12
Using Redirect Finders ... 96-12
Using the ejbSelect Method ... 96-15

Handling Cursor and Stream Query Results ... 96-15
Cursors and Java Iterators ... 96-16

Traversing Data With Scrollable Cursors... 96-16
Java Streams... 96-17

Cursored Stream Support ... 96-17
Optimizing Streams .. 96-18
Using Cursors and Streams With EJB Finders .. 96-18

Building the Query .. 96-19
Executing the Finder From the Client... 96-19

Using Queries and the Cache.. 96-20
Caching Results in a ReadQuery .. 96-20
Configuring Cache Expiration at the Query Level... 96-21

Part XIX Transactions

97 Understanding TopLink Transactions

Unit of Work Architecture ... 97-1
Unit of Work Transaction Context.. 97-2
Unit of Work Transaction Demarcation... 97-2

JTA Controlled Transactions .. 97-3
OTS Controlled Transactions ... 97-3
CMP Controlled Transactions.. 97-3

Unit of Work Transaction Isolation .. 97-4
Unit of Work Concepts ... 97-4

Unit of Work Benefits ... 97-4
Unit of Work Life Cycle ... 97-5
Unit of Work and Change Policy .. 97-6

Deferred Change Detection Policy .. 97-7
Object-Level Change Tracking Policy... 97-7
Attribute Change Tracking Policy... 97-8
Change Policy Mapping Support .. 97-9

Clones and the Unit of Work... 97-9
Nested and Parallel Units of Work... 97-9

Nested Unit of Work ... 97-10
Parallel Unit of Work... 97-10

Commit and Rollback Transactions ... 97-10
Commit Transactions .. 97-10
Rollback Transactions.. 97-11

Primary Keys ... 97-11
Unit of Work Optimization.. 97-11

Understanding the Unit of Work API.. 97-11

xlv

Unit of Work as Session ... 97-12
Reading and Querying Objects with the Unit of Work.. 97-12
Locking and the Unit of Work ... 97-12

Example Model Object and Schema.. 97-12

98 Using Basic Unit of Work API

Acquiring a Unit of Work .. 98-1
Creating an Object .. 98-2
Modifying an Object .. 98-2
Associating a New Target to an Existing Source Object .. 98-3

Associating Without Reference to the Cache Object.. 98-3
Associating With Reference to the Cache Object.. 98-4

Associating a New Source to an Existing Target Object .. 98-6
Associating an Existing Source to an Existing Target Object ... 98-7
Deleting Objects .. 98-7

Using privateOwnedRelationship .. 98-8
Explicitly Deleting From the Database .. 98-9
Understanding the Order in Which Objects Are Deleted ... 98-9

99 Using Advanced Unit of Work API

Registering and Unregistering Objects... 99-1
Creating and Registering an Object in One Step .. 99-2
Using registerNewObject ... 99-2

Registering a New Object With registerNewObject ... 99-2
Associating New Objects With One Another .. 99-3

Using registerAllObjects .. 99-4
Using Registration and Existence Checking ... 99-5

Check Database .. 99-5
Assume Existence .. 99-5
Assume Nonexistence ... 99-5

Working With Aggregates ... 99-6
Unregistering Working Clones ... 99-6

Declaring Read-Only Classes ... 99-6
Configuring Read-Only Classes for a Single Unit of Work .. 99-6
Configuring Default Read-Only Classes ... 99-7
Read-Only Descriptors ... 99-7

Writing Changes Before Commit Time ... 99-7
Using Conforming Queries and Descriptors ... 99-8

Guidelines for Using Conforming .. 99-8
Ensure That the Query Supports Conforming .. 99-8
Consider how Conforming Affects Database Results .. 99-9
Register New Objects and Instantiate Relationships .. 99-10

Using Conforming Queries.. 99-11
Using Conforming Descriptors ... 99-12
Conforming Query Alternatives ... 99-12

Using Unit of Work Method writeChanges Instead of Conforming.............................. 99-12

xlvi

Using Unit of Work Properties Instead of Conforming ... 99-13
Merging Changes in Working Copy Clones .. 99-13
Resuming a Unit of Work After Commit .. 99-14
Reverting a Unit of Work ... 99-15
Using a Nested or Parallel Unit of Work .. 99-15

Parallel Unit of Work.. 99-15
Nested Unit of Work... 99-15

Using a Unit of Work With Custom SQL.. 99-16
Controlling the Order of Delete Operations.. 99-16

Using the Unit of Work setShouldPerformDeletesFirst Method ... 99-17
Using the Descriptor addConstraintDependencies Method .. 99-17
Using deleteAllObjects Without addConstraintDependencies.. 99-17
Using deleteAllObjects With addConstraintDependencies.. 99-17

Using Optimistic Read Locking With forceUpdateToVersionField .. 99-18
Forcing a Check of the Optimistic Read Lock... 99-18
Forcing a Version Field Update .. 99-19
Disabling forceUpdateToVersionField .. 99-20

Implementing User and Date Auditing With the Unit of Work .. 99-21
Integrating the Unit of Work With an External Transaction Service... 99-21

Acquiring a Unit of Work With an External Transaction Service.. 99-21
Using a Unit of Work When an External Transaction Exists.. 99-22
Using a Unit of Work When No External Transaction Exists... 99-23
Using the Unit of Work to Handle External Transaction Timeouts and Exceptions 99-23

External Transaction Commit Timeouts... 99-24
External Transaction Commit Exceptions .. 99-24

Integrating the Unit of Work With CMP .. 99-24
CMP Transaction Attribute.. 99-25
Local Transactions... 99-25
Nondeferred Changes .. 99-26

Database Transaction Isolation Levels .. 99-26
General Factors Affecting Transaction Isolation Level.. 99-26

External Applications .. 99-27
TopLink Coordinated Cache .. 99-27
DatabaseLogin Method setTransactionIsolation... 99-27
Reading Through the Write Connection .. 99-28
Managing Cache Access.. 99-29
CMP and External Transactions .. 99-30

Read Uncommitted Level .. 99-30
Read Committed Level... 99-30
Repeatable Read Levels.. 99-30
Serializable Read Levels... 99-30

Troubleshooting a Unit of Work... 99-31
Avoiding the Use of Post-Commit Clones .. 99-31
Determining Whether or Not an Object Is the Cache Object.. 99-32
Dumping the Contents of a Unit of Work ... 99-32
Handling Exceptions .. 99-33

Exceptions at Commit Time ... 99-33

xlvii

Exceptions During Conforming... 99-34
Validating a Unit of Work.. 99-34

Validating the Unit of Work Before Commit Time... 99-35

Index

xlviii

xlix

Preface

Oracle TopLink Developer’s Guide explains how to use Oracle TopLink to design,
implement, deploy, and optimize an advanced persistence or object-to-XML
transformation layer for a wide range of Java 2 Enterprise Edition (J2EE) and Java
applications. It describes TopLink mapping metadata, sessions, data access, queries,
transactions (both with and without an external transaction controller), and cache.

It describes how to use TopLink application development tools and how to integrate
TopLink with a variety of J2EE containers. It also introduces the concepts with which
you should be familiar to get the most out of TopLink.

Audience
Oracle TopLink Developer’s Guide is intended for application developers creating
applications that use TopLink to manage persistence.

This document assumes that you are familiar with the concepts of object-oriented
programming, the Enterprise JavaBeans (EJB) specification, and your own particular
Java development environment.

The document also assumes that you are familiar with your particular operating
system (such as Windows, UNIX, or other). The general operation of any operating
system is described in the user documentation for that system, and is not repeated in
this manual.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an

l

otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documentation
For more information, see the following documents:

■ Oracle TopLink Release Notes

■ Oracle Application Server Release Notes

■ Oracle TopLink Getting Started Guide

■ Oracle TopLink API Reference

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
 Building a TopLink Application

This part describes the architecture of TopLink and how TopLink fits into your
development process. It contains the following chapters:

■ Chapter 1, "Understanding TopLink"

This chapter contains general information on TopLink. It discusses the TopLink
application space, development process, components, and the TopLink
metamodel.

■ Chapter 2, "Understanding TopLink Application Development"

This chapter contains an overview of the key stages in the TopLink development
process including choosing an application architecture and platform, object and
relational mapping, building the persistence layer, and deploying and maintaining
a TopLink application.

Understanding TopLink 1-1

1
Understanding TopLink

Oracle TopLink is an advanced, object-persistence and object-transformation
framework that provides development tools and run-time capabilities that reduce
development and maintenance efforts, and increase enterprise application
functionality.

This chapter describes the following topics:

■ What is TopLink?

■ Solving the Object-Persistence Impedance Mismatch

■ TopLink Key Features

■ TopLink Application Architectures

What is TopLink?
Oracle TopLink builds high-performance applications that store persistent
object-oriented data in a relational database. It successfully transforms object-oriented
data into either relational data or Extensible Markup Language (XML) elements.

Figure 1–1 TopLink Runtime Architecture

Solving the Object-Persistence Impedance Mismatch

1-2 Oracle TopLink Developer’s Guide

Using TopLink, you can integrate persistence and object-transformation into your
application, while staying focused on your primary domain problem by taking
advantage of an efficient, flexible, and field-proven solution (see "Solving the
Object-Persistence Impedance Mismatch" on page 1-2).

TopLink is suitable for use with a wide range of Java 2 Enterprise Edition (J2EE) and
Java application architectures (see "TopLink Application Architectures" on page 1-4).
Use TopLink to design, implement, deploy, and optimize an advanced,
object-persistence and object-transformation layer that supports a variety of data
sources and formats, including the following:

■ Relational–for transactional persistence of Java objects to a relational database
accessed using Java Database Connectivity (JDBC) drivers.

■ Object-Relational–for transactional persistence of Java objects to special purpose
structured data source representations optimized for storage in object-relational
databases such as Oracle Database.

■ Enterprise information system (EIS)–for transactional persistence of Java objects to
a nonrelational data source accessed using a J2EE Connector architecture (J2C)
adapter, and any supported EIS record type, including indexed, mapped, or XML.

■ XML–for nontransactional, nonpersistent (in-memory) conversion between Java
objects and XML Schema Document (XSD)-based XML documents using Java
Architecture for XML Binding (JAXB).

TopLink includes support for container-managed persistence (CMP) containers from a
variety of vendors–such as Oracle Containers for J2EE (OC4J), IBM WebSphere
application server, and BEA WebLogic Server–and support for base classes that
simplify bean-managed persistence (BMP) development.

The extensive suite of development tools that TopLink provides, including Oracle
TopLink Workbench, lets you quickly capture and define object-to-data source and
object-to-data representation mappings in a flexible, efficient metadata format (see
"Understanding TopLink Metadata" on page 2-19).

The TopLink runtime lets your application exploit this mapping metadata with a
simple session facade that provides in-depth support for data access, queries,
transactions (both with and without an external transaction controller), and caching.

For more information about TopLink, see "TopLink Key Features" on page 1-4.

Solving the Object-Persistence Impedance Mismatch
Java-to-data source integration is a widely underestimated problem when creating
enterprise Java applications. This complex problem involves more than simply reading
from and writing to a data source. The data source elements include tables, rows,
columns, and primary and foreign keys. The Java and J2EE include entity classes
(regular Java classes or Enterprise JavaBeans (EJB) entity beans), business rules,
complex relationships, and inheritance. In a nonrelational data source, you must
match your Java entities with EIS records or XML elements and schemas. These
differences (as shown in Figure 1–2) are known as the object-persistence impedance
mismatch.

Solving the Object-Persistence Impedance Mismatch

Understanding TopLink 1-3

Figure 1–2 Solving Object-Persistence Impedance Mismatch

Successful solution requires bridging these different technologies, and solving the
object-persistence impedance mismatch–a challenging and resource-intensive
problem. To solve this problem, you must resolve the following issues between J2EE
and data source elements:

■ Fundamentally different technologies

■ Different skill sets

■ Different staff and ownership for each of the technologies

■ Different modeling and design principles

Application developers need a product that enables them to integrate Java
applications with any data source, without compromising ideal application design or
data integrity. In addition, Java developers need the ability to store (that is, persist)
and retrieve business domain objects using a relational database or a nonrelational
data source as a repository.

TopLink Solution
TopLink addresses the disparity between Java objects and data sources. TopLink is a
persistence framework that manages relational, object-relational, EIS, and XML
mappings in a seamless manner. This allows developers to rapidly build applications
that combine the best aspects of object technology and the specific data source.

TopLink lets you do the following:

■ Persist Java objects to virtually any relational database supported by a
JDBC-compliant driver.

■ Persist Java objects to virtually any nonrelational data source supported by a J2EE
Connector architecture (J2C) adapter using indexed, mapped, or XML enterprise
information system (EIS) records.

■ Perform in-memory conversions between Java objects and XML Schema (XSD)
based XML documents using JAXB.

■ Map any object model to any relational or nonrelational schema, using the Oracle
TopLink Workbench graphical mapping tool.

■ Use TopLink successfully, even if you are unfamiliar with SQL or JDBC, because
TopLink offers a clear, object-oriented view of data sources.

TopLink Key Features

1-4 Oracle TopLink Developer’s Guide

TopLink Key Features
TopLink provides an extensive and thorough set of features. Java developers can use
these features to rapidly build high-performance enterprise applications that are both
scalable and maintainable.

Some of the primary features of TopLink are the following:

■ Nonintrusive, flexible, metadata-based architecture (see "Understanding TopLink
Metadata" on page 2-19)

■ Comprehensive visual TopLink Workbench

■ Advanced mapping support and flexibility (relational, object-relational, EIS, and
XML)

■ Object caching support

■ Query flexibility

■ Just-in-time reading

■ Caching

■ Object-level transaction support and integration

■ Locking

■ Multiple performance tuning options

■ Architectural flexibility

For additional information, see the TopLink page on OTN:

http://www.oracle.com/technology/products/ias/toplink/index.html

TopLink Application Architectures
You can use TopLink in a variety of application architectures, including three- and
two-tier architectures, with or without J2EE, to access a variety of data types on both
relational and nonrelational data sources.

Figure 1–3 TopLink and Your Application Architecture

For more information on strategies for incorporating TopLink into your application
architecture, see "Designing Your Application With TopLink" on page 2-3.

This section introduces some of the following common enterprise architectures used
by TopLink applications:

■ Three-Tier

The three-tier (or J2EE Web) application is one of the most common TopLink
architectures. This architecture is characterized by a server-hosted environment in

TopLink Application Architectures

Understanding TopLink 1-5

which the business logic, persistent entities, and the Oracle TopLink Foundation
Library all exist in a single Java Virtual Machine (JVM). See "Understanding the
Three-Tier Architecture" on page 2-22 for more information.

The most common example of this architecture is a simple three-tier application in
which the client browser accesses the application through servlets, JavaServer
Pages (JSP) and HTML. The presentation layer communicates with TopLink
through other Java classes in the same JVM, to provide the necessary persistence
logic. This architecture supports multiple servers in a clustered environment, but
there is no separation across JVMs from the presentation layer and the code that
invokes the persistence logic against the persistent entities using TopLink.

■ EJB Session Bean Facade

A popular variation on the three-tier application involves wrapping the business
logic, including the TopLink access, in EJB session beans. This architecture
provides a scalable deployment and includes integration with transaction services
from the host application server. See "Understanding the EJB Session Bean Facade
Architecture" on page 2-25 for more information.

Communication from the presentation layer occurs through calls to the EJB session
beans. This architecture separates the application into different tiers for the
deployment. The session bean architecture can persist either Java objects or EJB
entity beans.

■ EJB 3.0 Entities with JPA

The EJB 3.0 specification includes an additional persistence specification called the
Java Persistence API (JPA). You can use this API for creating, removing and
querying across lightweight Java objects both within a compliant EJB 3.0 container
and a standard Java SE 5 environment.

TopLink Essentials is the open-source community edition of TopLink. It provides
the JPA functionality for the EJB 3.0 reference implementation.

When using TopLink JPA, you can access the API through extensions. The
extensions allow you to reach down to the TopLink API and modify the JPA
implementation.

To obtain more information, see the following:

– http://www.oracle.com/technology/products/ias/toplink/jpa/in
dex.html.

– "Understanding the EJB 3.0 JPA Entity Architecture" on page 2-33.

■ EJB Entity Beans with CMP

TopLink provides CMP support for applications that require the use of EJB entity
beans. This support is available on the leading application servers. TopLink CMP
support provides you with an EJB 1.0, 1.1, 2.0 and 2.1 CMP solution transparent to
the application code, but still offers all the TopLink run-time benefits. See
"Understanding the EJB Entity Beans With CMP Architecture" on page 2-27 for
more information.

Applications can access TopLink-enabled entity beans with container-managed
persistence directly from the client, or from within a session bean layer. TopLink

Note: TopLink Essentials is the default JPA implementation in OC4J.

TopLink Application Architectures

1-6 Oracle TopLink Developer’s Guide

also offers the ability to use regular Java objects in relationships with enterprise
entity beans.

■ EJB Entity Beans with BMP

Another option for using EJB entity beans is to use TopLink BMP in the
application. This architecture enables developers to access the persistent data
through the EJB application programming interface (API), but is platform
independent. See "Understanding the EJB Entity Beans With BMP Architecture" on
page 2-31 for complete information.

The BMP approach is portable–that is, after you create an application, you can
move it from one application server platform to another.

■ Web Services

A Web services architecture is similar to the three-tier or session-bean architecture.
However, in a Web services architecture you encapsulate business logic (the
service) in a Web service instead of (or in addition to) using session beans. In a
Web services architecture, clients communicate with your application using XML.

As in any architecture, you can use TopLink to persist objects to relational or EIS
data sources. However, in a Web services architecture you can also use TopLink to
map your object model to an XML schema for use with the Web service or as the
Web service XML serializer.

See "Understanding the Web Services Architecture" on page 2-35 for more
information

■ Two-Tier

A two-tier (or client/server) application is one in which the TopLink application
accesses the database directly. Although less common than the other architectures
discussed here, TopLink supports this architecture for smaller or embedded data
processing applications. See "Understanding the Two-Tier Architecture" on
page 2-24 for more information.

Note: Even though TopLink fully supports EJB 1.0, 1.1, 2.0, 2.1 and,
preliminarily EJB 3.0, this version of Oracle TopLink Developer’s
Guide only focuses on EJB 2.0 and 2.1. For detailed information on
TopLink support for EJB 1.0 and 1.1, refer to the earlier versions of
Oracle TopLink Developer’s Guide.

Understanding TopLink Application Development 2-1

2
Understanding TopLink

Application Development

This chapter describes how to build a TopLink application, including suggested
development processes, architectures, and technologies.

This chapter includes information on the following topics:

■ Developing Your Application With TopLink

■ Designing Your Application With TopLink

■ Selecting an Architecture With TopLink

■ Building and Using the Persistence Layer

■ Deploying the Application

■ Optimizing and Customizing the Application

■ Troubleshooting the Application

■ Understanding Object Persistence

■ Understanding TopLink Metadata

■ Understanding the Three-Tier Architecture

■ Understanding the Two-Tier Architecture

■ Understanding the EJB Session Bean Facade Architecture

■ Understanding the EJB Entity Beans With CMP Architecture

■ Understanding the EJB Entity Beans With BMP Architecture

■ Understanding the Web Services Architecture

Developing Your Application With TopLink
To ensure the best design for your TopLink application, Oracle recommends that you
follow an iterative step-by-step development process. The flexibility of TopLink lets
you use any development tool.

This section describes following recommended development process:

■ Typical Development Stages

■ Oracle Development Support

Developing Your Application With TopLink

2-2 Oracle TopLink Developer’s Guide

Typical Development Stages
This section describes the general development stages of a TopLink application.
Figure 2–1 illustrates the TopLink development process.

Figure 2–1 TopLink Development Process

Design the Application (1)
Define your application requirements, select an architecture, and determine the target
platform. See "Designing Your Application With TopLink" on page 2-3 for more
information. Remember, TopLink works with any architecture and any platform.

When designing the application, you should also create an object model for the
application. See "Understanding Object Persistence" on page 2-16 for more
information. It is important to create the object model before using TopLink to map
objects, because defining persistent mappings for an incorrect or rapidly changing
model can be very difficult.

Develop the Application (2, 3, 4)
Create the Java classes and decide how the classes should be implemented by the data
source. When working with a legacy system, decide how the classes relate to the
existing data. If there is no legacy data source to integrate, decide how to store each
class in the data source and create the required schema. Alternatively, you may use
TopLink to create your initial tables.

Using TopLink Workbench, create descriptors and mappings for the persistent classes.
Use TopLink sessions to manipulate the persistent classes, including querying and
changing data. See Part II, "Using TopLink Development Tools" for more information.

Avoid building all your model's descriptors in a single iteration. Start with a small
subset of your classes. Build and test their descriptors, then gradually add new
descriptors and relationships. This lets you catch common problems before they
proliferate through your entire design.

Designing Your Application With TopLink

Understanding TopLink Application Development 2-3

Write Java code to use database sessions. Sessions are used to query for database
objects and write objects to the database. See Chapter 72, "Understanding TopLink
Sessions" for more information.

Deploy the Application (5)
Generate, package, then deploy the necessary files to your application server. The
required information will vary, depending on your environment and architecture. See
Part III, "Deploying a TopLink Application" for more information.

Maintain the Application (6)
TopLink includes many options that can enhance application performance. You can
customize most aspects of TopLink to suit your requirements. Use advanced TopLink
features or write custom querying routines to access the database in specific ways, and
to optimize performance. See Part IV, "Optimizing and Customizing a TopLink
Application" for more information.

Oracle Development Support
Oracle provides additional support for you as a TopLink developer on the Oracle
Technology Network (OTN), including the following:

■ Metalink support

■ Discussion forums

■ How-to documents

■ Examples

You must register online before using OTN; registration is free of charge and can be
done at

http://www.oracle.com/technology/membership

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://www.oracle.com/technology/docs

Using your OTN user name and password, you can also access the TopLink
developer’s forum to post questions and get answers about using TopLink at

http://forums.oracle.com/forums/forum.jsp?forum=48

Designing Your Application With TopLink
When you design your application, you must choose how and where to use TopLink.
You can use TopLink to perform a variety of persistence and data transformation
functions (see "Understanding TopLink Usage" on page 2-3) on a variety of
Java-supporting platforms (see "Understanding Target Platforms" on page 2-5). When
you design your application architecture, keep these capabilities in mind (see
"Selecting an Architecture With TopLink" on page 2-5).

Understanding TopLink Usage
This section describes the basic ways in which you can use TopLink, including the
following usage types:

Designing Your Application With TopLink

2-4 Oracle TopLink Developer’s Guide

■ Relational Database Usage

■ Object-Relational Database Usage

■ Oracle XML Database (XDB) Usage

■ Enterprise Information System (EIS) Usage

■ XML Usage

Relational Database Usage
You can use TopLink to persist Java objects to relational databases that support SQL
data types accessed using JDBC.

For more information, see "Building Relational Projects for a Relational Database" on
page 17-6.

Object-Relational Database Usage
You can use TopLink to persist Java objects to object-relational databases that support
data types specialized for object storage (such as Oracle Database) accessed using
JDBC.

For more information, see "Building Relational Projects for a Relational Database" on
page 17-6.

Oracle XML Database (XDB) Usage
You can use TopLink to persist XML documents to an Oracle XML database using
TopLink direct-to-XMLType mappings.

For more information, see "Relational Projects" on page 17-6 and "Direct-to-XMLType
Mapping" on page 33-4.

Enterprise Information System (EIS) Usage
You can use TopLink to persist Java objects to an EIS data source using a J2C adapter.

In this scenario, the application invokes EIS data source-defined operations by sending
EIS interactions to the J2C adapter. Operations can take (and return) EIS records.
Using TopLink EIS descriptors and mappings, you can easily map Java objects to the
EIS record types supported by your J2C adapter and EIS data source.

This usage is common in applications that connect to legacy data sources and is also
applicable to Web services.

For more information, see "EIS Projects" on page 17-7.

XML Usage
You can use TopLink for in-memory, nonpersistent Java object-to-XML transformation
with XML Schema (XSD) based XML documents and JAXB.

You can use the TopLink JAXB compiler with your XSD to generate both JAXB-specific
artifacts (such as content and element interfaces, implementation classes, and object
factory class) and TopLink-specific artifacts (such as sessions and project XML files
and TopLink Workbench project). For more information, see "TopLink Support for Java
Architecture for XML Binding (JAXB)" on page 17-10.

This usage has many applications, including messaging and Web services.

For more information, see "XML Projects" on page 17-9.

Selecting an Architecture With TopLink

Understanding TopLink Application Development 2-5

Understanding Target Platforms
TopLink supports any enterprise architecture that uses Java, including the following:

■ Java application servers and J2EE containers, such as Oracle Application Server
and Oracle Containers for J2EE (OC4J)

■ Java-supporting databases, such as Oracle Database

■ Java-compatible browsers, such as Netscape and Internet Explorer

■ Server Java platforms, such as AS/400, OS/390, and UNIX

Application packaging requirements of the specific target platform (for deployment in
the host Java or J2EE environment) influences how you use and configure TopLink.
For example, you package a J2EE application in an Enterprise Archive (EAR) file.
Within the EAR file, there are several ways to package persistent entities within Web
Archive (WAR) and Java Archive (JAR). How you configure TopLink depends, in part,
on how you package the application and how you use the host application server class
loader.

In addition, TopLink provides custom CMP integration for a variety of application
servers.

For detailed information about supported application server versions, custom
integration, and configuration requirements, see "Integrating TopLink With an
Application Server" on page 7-1.

Selecting an Architecture With TopLink
This section describes some of the key aspects of application architecture that apply to
TopLink and discusses the various options available for each, including the following:

■ Tiers

■ Service Layer

■ Data Access

■ Caching

■ Locking

Tiers
This section describes choices you need to make when deciding on how to separate
client and server functionality in your application architecture.

These choices can be summarized as follows:

■ Three Tier

– J2EE or Non-J2EE

– Client

* Web client

* XML/Web service client

* Java (fat) client

■ Two Tier

Selecting an Architecture With TopLink

2-6 Oracle TopLink Developer’s Guide

Three Tier
Oracle recommends a three-tier application architecture. With a three-tier architecture,
Oracle recommends using TopLink server sessions and client sessions (see "Server and
Client Sessions" on page 72-14) and the TopLink unit of work (see Chapter 97,
"Understanding TopLink Transactions").

For more information, see "Understanding the Three-Tier Architecture" on page 2-22.

J2EE or Non-J2EE You can use TopLink in a J2EE or non-J2EE application architecture.
Oracle recommends that you use a J2EE application architecture.

With a J2EE application, you should use external connection pools (see "External
Connection Pools" on page 81-8). You may consider using Java Transaction API (JTA)
integration (see "JTA Controlled Transactions" on page 97-3), EJB session and/or entity
beans.

With a non-J2EE application, you should use internal connection pools (see "Internal
Connection Pools" on page 81-7).

Client In a three-tier application architecture, you can implement any of the following
types of client:

■ Web client–Oracle recommends that you implement a Web client.

■ XML/Web service client–With this client type, you can use TopLink XML (see
"XML Usage" on page 2-4).

■ Java (fat) client–With this client type, you can choose the means of communicating
with the server:

– EJB session beans–Oracle recommends this approach. You may consider using
the UnitOfWork method mergeClone to handle merging deserialized
objects (see "Merging Changes in Working Copy Clones" on page 99-13). The
disadvantage of this approach is that your application must handle
serialization. Avoid serializing deep object graphs. You should use indirection
(see "Configuring Indirection" on page 32-3). Consider using the
data-transfer-object pattern.

– XML/Web service–Use TopLink XML (see "XML Usage" on page 2-4).

– EJB entity bean–Use TopLink CMP integration or BMP support. The
disadvantage of this approach is that remote entity beans may not perform or
scale well.

– RMI–You may consider using a TopLink remote session (see "Remote
Sessions" on page 72-30). The disadvantage of this approach is that a remote
session is stateful and may not scale well.

See also "Service Layer" on page 2-7.

Two Tier
With a two-tier application architecture, Oracle recommends using TopLink database
sessions (see "Database Sessions" on page 72-29) and the TopLink unit of work (see
Chapter 97, "Understanding TopLink Transactions"). The disadvantages of this
architecture are that it is not Web-enabled and does not scale well to large
deployments.

For more information, see "Understanding the Two-Tier Architecture" on page 2-24.

Selecting an Architecture With TopLink

Understanding TopLink Application Development 2-7

Service Layer
This section describes choices you need to make when deciding on how to encapsulate
your application’s business logic (or service).

These choices can be summarized as follows:

■ EJB Session Beans

– Stateful

– Stateless

■ EJB Entity Beans

– Container-Managed Persistence (CMP)

– Bean-Managed Persistence (BMP)

■ EJB 3.0 JPA Entities

■ Plain Old Java Objects (POJO)

See also:

■ "Data Access" on page 2-9

■ "Caching" on page 2-9.

EJB Session Beans
Oracle recommends using EJB session beans.

With EJB session beans, you should use JTA integration (see "JTA Controlled
Transactions" on page 97-3) and external connection pools (see "External Connection
Pools" on page 81-8). You should acquire a unit of work using Server method
getActiveUnitOfWork (see "Acquiring a Unit of Work With an External Transaction
Service" on page 99-21). If your session bean and data source are not in the same JVM,
you may consider using UnitOfWork method mergeClone to handle merging
deserialized objects (see "Merging Changes in Working Copy Clones" on page 99-13).

For more information, see "Understanding the EJB Session Bean Facade Architecture"
on page 2-25.

Stateful If you are using stateful session beans, then note that a reference to a client
session cannot be passivated. In this case, you must reacquire a client session (see
"Acquiring a Session at Run Time With the Session Manager" on page 72-5) on activate
or per request.

Stateless If you are using stateless session beans, you must acquire new client session
(see "Acquiring a Session at Run Time With the Session Manager" on page 72-5) for
each request.

EJB Entity Beans
EJB entity bean architectures are slightly different from other TopLink architectures,
because the EJB entity bean interfaces hide TopLink functionality completely from the
client application developer.

You can use entity beans in almost any J2EE application. For TopLink, how the
application uses the entity beans is not important; how entity beans are mapped and
implemented is important to TopLink.

Selecting an Architecture With TopLink

2-8 Oracle TopLink Developer’s Guide

Container-Managed Persistence (CMP) Oracle recommends using entity beans with
container-managed persistence. In this case, you should use the TopLink CMP
integration for your application server. You must ensure that you are using a J2EE
server that TopLink supports (see "Integrating TopLink With an Application Server" on
page 7-1).

For more information, see "Understanding the EJB Entity Beans With CMP
Architecture" on page 2-27.

Bean-Managed Persistence (BMP) If you are using entity beans with bean-managed
persistence, you should use the TopLink BMP integration. The disadvantages of this
architecture are that the BMP architecture is restrictive and may not provide good
performance.

For more information, see "Understanding the EJB Entity Beans With BMP
Architecture" on page 2-31.

EJB 3.0 JPA Entities
EJB 3.0 Java Persistence API (JPA) is a specification for persistence in Java EE and SE
applications. In JPA, a persistent class is referred to as an entity. An entity is a plain
old Java object (POJO) class (see "Plain Old Java Objects (POJO)" on page 2-8) that is
mapped to the database and configured for usage through JPA using annotations
and/or XML.

With JPA, when your application is running inside a container, all of the benefits of
the container support and ease of use apply. Note that you can configure the same
application to run outside the container.

You can use session beans (see "EJB Session Beans" on page 2-7) as the means for your
application to interact with JPA.

If you choose to use JPA for your application development, consider the following
options:

■ TopLink Essentials–the open-source community edition of TopLink. TopLink
Essentials is derived from TopLink providing core object-relational mapping
functionality necessary for the reference implementation of JPA in EJB 3.0.
TopLink Essentials is available in source and binary distributions as the
entity-persistence module of GlassFish Open Source Java EE 5 Application Server.

■ TopLink–a commercial implementation that provides the preview functionality of
JPA.

Both options provide excellent support for this new standard, as well as additional
functionality and performance benefits.

For more information, see "Understanding the EJB 3.0 JPA Entity Architecture" on
page 2-33 and "TopLink Application Architectures" on page 1-4.

Plain Old Java Objects (POJO)
If you choose to build your service layer with non-EJB Java objects with a J2EE
application server, you should use external connection pools (see "External Connection
Pools" on page 81-8). If you use a non-J2EE Web server, you should use internal
connection pools (see "Internal Connection Pools" on page 81-7). In either case, you
may consider using JTA integration (see "JTA Controlled Transactions" on page 97-3).

Selecting an Architecture With TopLink

Understanding TopLink Application Development 2-9

Data Access
This section describes choices you need to make when deciding on what type of data
your application architecture must support.

These choices can be summarized as follows:

■ Data Type

■ Multiple Data Sources

■ Isolating Data Access

■ Historical Data Access

See also "Locking" on page 2-11.

Data Type
You can use TopLink to manage any of the following types of data:

■ relational (see "Relational Database Usage" on page 2-4)

■ object-relational (see "Object-Relational Database Usage" on page 2-4)

■ Oracle XDB (see "Oracle XML Database (XDB) Usage" on page 2-4)

■ EIS, nonrelational, legacy data (see "Enterprise Information System (EIS) Usage"
on page 2-4)

■ XML and Web service data (see "XML Usage" on page 2-4)

Multiple Data Sources
If your application architecture must access more than one data source, Oracle
recommends that you use a session broker (see "Session Broker and Client Sessions" on
page 72-26) and JTA integration (see "JTA Controlled Transactions" on page 97-3) for
two-phase commit.

Alternatively, you may use multiple sessions.

Isolating Data Access
If your application architecture requires that some data be restricted to a private cache
and isolated from the TopLink shared session cache, Oracle recommends that you use
an isolated session (see "Isolated Client Sessions" on page 72-19). You can also use an
isolated session with the Oracle Virtual Private Database (VPD) feature (see "Isolated
Client Sessions and Oracle Virtual Private Database (VPD)" on page 72-21).

Historical Data Access
If your data source maintains past or historical versions of objects, Oracle recommends
that you use a TopLink historical session (see "Historical Sessions" on page 72-25) to
access this historical data so that you can express read queries conditional on how
your objects are changing over time.

Caching
This section describes choices you need to make when deciding on how to use the
TopLink cache (see Chapter 87, "Understanding the Cache") in your application
architecture.

These choices can be summarized as follows:

■ Cache Type

Selecting an Architecture With TopLink

2-10 Oracle TopLink Developer’s Guide

■ Refreshing

■ Cache Coordination

– Protocol

– Synchronization

See also "Locking" on page 2-11.

Cache Type
Choose a cache type (see "Cache Type and Object Identity" on page 87-3) appropriate
for the type of data your application processes. For example, consider a weak identity
map for volatile data (see "Guidelines for Configuring the Cache and Identity Maps"
on page 87-4).

Refreshing
Consider how your application architecture may be affected by stale data (see
"Handling Stale Data" on page 87-6): for example, consider using query or descriptor
refresh options (see "Refreshing" on page 2-10) or cache invalidation (see "Cache
Invalidation" on page 87-8). Consider using an isolated session’s cache (see "Isolated
Client Sessions" on page 72-19) for volatile data.

Avoid using no identity map (see"No Identity Map" on page 87-4) for objects that are
involved in relationships or that require object identity.

Cache Coordination
TopLink provides a distributed cache coordination feature that allows multiple,
possibly distributed, instances of a session to broadcast object changes among each
other so that each session’s cache is kept up to date (see "Understanding Cache
Coordination" on page 87-10). Before using cache coordination, ensure that it is
appropriate for your application (see "When to use Cache Coordination" on
page 87-11).

Protocol You can configure a coordinated cache to broadcast changes using any of the
following communication protocols:

■ Java Message Service (JMS)–Oracle recommends using a JMS coordinated cache
(see "JMS Coordinated Cache" on page 87-12).

■ Remote Method Invocation (RMI)–Oracle recommends that you use RMI cache
coordination only if you require synchronous change propagation (see
"Configuring the Synchronous Change Propagation Mode" on page 88-2). For
more information, see "RMI Coordinated Cache" on page 87-12.

■ Common Object Request Broker Architecture (CORBA)–Currently, TopLink
provides support for the Sun ORB (see "CORBA Coordinated Cache" on
page 87-13).

Synchronization You can configure synchronization strategy that a coordinated cache
uses to determine what it broadcasts when an object changes. You can configure this at
the project (see "Configuring Cache Coordination Change Propagation at the Project
Level" on page 19-17) or descriptor ("Configuring Cache Coordination Change
Propagation at the Descriptor Level" on page 25-40) level as follows:

■ invalidate changed objects–Propagate an object invalidation that marks the object
as invalid in all other sessions. This tells other sessions that they must update their

Building and Using the Persistence Layer

Understanding TopLink Application Development 2-11

cache from the data source the next time this object is read. Oracle recommends
using this synchronization strategy.

■ synchronize changes–Propagate a change notification that contains each changed
attribute.

■ synchronize changes and new objects–Propagate a change notification that
contains each changed attribute. For new objects, propagate an object creation
(along with all the new instance’s attributes).

Locking
This section describes choices you need to make when deciding on how to use
TopLink locking options in your application architecture. Oracle strongly recommends
always using a locking policy in a concurrent system (see "Configuring Locking
Policy" on page 25-64).

These choices can be summarized as follows:

■ Optimistic Locking

■ Pessimistic Locking

If you are building a three-tier application, be aware of how that architecture affects
the way you use locking (see "Locking in a Three-Tier Application" on page 23-22).

For more information, see "Understanding Descriptors and Locking" on page 23-18.

Optimistic Locking
Oracle recommends using TopLink optimistic locking. With optimistic locking, all
users have read access to the data. When a user attempts to write a change, the
application checks to ensure the data has not changed since the user read the data.

You can use version (see "Optimistic Version Locking Policies" on page 23-18) or field
(see "Optimistic Field Locking Policies" on page 23-20) locking policies. Oracle
recommends using version locking policies.

Pessimistic Locking
With pessimistic locking, the first user who accesses the data with the purpose of
updating it locks the data until completing the update. The disadvantage of this
approach is that it may lead to reduced concurrency and deadlocks.

Consider using pessimistic locking support at the query level (see "Configuring
Named Query Options" on page 25-22).

If are using CMP, you may consider using bean-level pessimistic locking support (see
"Configuring Named Query Options" on page 25-22).

Building and Using the Persistence Layer
Oracle TopLink requires that classes must meet certain minimum requirements before
they can become persistent. TopLink also provides alternatives to most requirements.
TopLink uses a nonintrusive approach by employing a metadata architecture that
allows for minimal object model intrusions.

This section includes the following information:

■ Implementation Options

■ Persistent Class Requirements

Building and Using the Persistence Layer

2-12 Oracle TopLink Developer’s Guide

■ Persistence Layer Components

■ Using the Persistence Layer

Implementation Options
Persistence layer components may be generated as metadata (see "Understanding
TopLink Metadata" on page 2-19) from TopLink Workbench, or expressed as Java
classes.

Oracle recommends using TopLink Workbench to create the necessary metadata
(stored as XML). You can easily export and update the project.xml and
sessions.xml files. This reduces development effort by eliminating the need to
regenerate and recompile Java code each time you change the project. With TopLink
Workbench, you write Java code only for your own application classes and any
necessary amendment methods. For information about the XML structure of the
project.xml and sessions.xml files, refer to the appropriate XML schemas (XSD)
in the <TOPLINK_HOME>\config\xsds directory.

To use Java code, you must manually write code for each element of the TopLink
project including: project, login, platform, descriptors, and mappings. This may be
more efficient if your application is model-based and relies heavily on code
generation. Depending on the type of project you are creating, TopLink Workbench
can export Java code for projects, tables, and your model source (see "Exporting Project
Information" on page 18-13).

Persistent Class Requirements
The following requirements apply to plain Java objects.

You can use direct access on private or protected attributes. For more information on
direct and method access, see "Configuring Method Accessing" on page 32-14.

When using nontransparent indirection, the attributes must be of the type
ValueHolderInterface rather than the original attribute type. The value holder
does not instantiate a referenced object until it is needed.

TopLink provides transparent indirection for Collection, List, Set, and Map
attribute types for any collection mappings. Using transparent indirection does not
require the use of the ValueHolderInterface or any other object model
requirements.

See "Indirection" on page 30-5 for more information on indirection and transparent
indirection.

Persistence Layer Components
Typically, the TopLink persistence layer contains the following components:

■ Mapping Metadata

■ Session Metadata

■ Cache

Note: for EJB 2.0 entity beans with container-managed persistence,
the bean requirements are defined by the EJB 2.0 specification; for EJB
2.1 entity beans with container-managed persistence, the bean
requirements are defined by the EJB 2.1 specification.

Building and Using the Persistence Layer

Understanding TopLink Application Development 2-13

■ Queries and Expressions

■ Transactions

Mapping Metadata
The TopLink application metadata model is based on the TopLink project. The project
includes descriptors, mappings, and various policies that customize the run-time
capabilities. You associate this mapping and configuration information with a
particular data source and application by referencing the project from a session.

For more information, see the following:

■ "Creating Project Metadata" on page 2-20

■ Chapter 17, "Understanding Projects"

■ Chapter 23, "Understanding Descriptors"

■ Chapter 30, "Understanding Mappings"

Session Metadata
A session is the primary interface between the client application and TopLink, and
represents the connection to the underlying data source.

TopLink offers several different session types (see Chapter 72, "Understanding
TopLink Sessions"), each optimized for different design requirements and
architectures. The most commonly used session is the server session, a session that
clients access on the server through a client session. The server session provides a
shared cache and shared connection resources. You define a session with session
metadata.

For CMP projects, the TopLink run-time creates and uses a session internally, but your
application does not acquire or use this session directly. Depending on the application
server you use, you can specify some of the parameters for this internal session.

For more information, see the following:

■ "Creating Session Metadata" on page 2-21

■ "Using the Persistence Layer" on page 2-14

Cache
By default, a TopLink session provides an object-level cache that guarantees object
identity and enhances performance by reducing the number of times the application
needs to access the data source. TopLink provides a variety of cache options, including
locking, refresh, invalidation, isolation, and coordination. Using cache coordination,
you can configure TopLink to synchronize changes with other instances of the
deployed application. You configure most cache options at the session level. You can
also configure cache options on a per-query basis or on a descriptor to apply to all
queries on the reference class.

For more information, see Chapter 87, "Understanding the Cache".

Queries and Expressions
TopLink provides several object and data query types, and offers flexible options for
query selection criteria, including the following:

■ TopLink expressions

■ EJB Query Language (QL)

Building and Using the Persistence Layer

2-14 Oracle TopLink Developer’s Guide

■ SQL

■ Stored procedures

■ Query by example

With these options, you can build any type of query. Oracle recommends using
predefined queries to define application queries. Predefined queries are held in the
project metadata and referenced by name. This simplifies application development
and encapsulates the queries to reduce maintenance costs.

When using entity beans, you can code finders completely using EJB QL (in addition
to any of the other TopLink query options), enabling the application to comply with
the J2EE specification.

Regardless of the architecture or persistent entity type, you are free to use any of the
query options. TopLink Workbench provides the simplest way to define queries.
Alternatively, you can build queries in code, using the TopLink API.

For more information, see Chapter 93, "Understanding TopLink Queries" and
Chapter 95, "Understanding TopLink Expressions".

Transactions
TopLink provides the ability to write transactional code isolated from the underlying
database and schema by using a unit of work, a specific transactional session.

The unit of work isolates changes in a transaction from other threads until it
successfully commits the changes to the database. Unlike other transaction
mechanisms, the unit of work automatically manages changes to the objects in the
transaction, the order of the changes, and changes that might invalidate other TopLink
caches. The unit of work manages these issues by calculating a minimal change set,
ordering the database calls to comply with referential integrity rules and deadlock
avoidance, and merging changed objects into the shared cache. In a clustered
environment, the unit of work also synchronizes changes with the other servers in the
coordinated cache.

If an application uses entity beans, you do not access the unit of work API directly, but
you still benefit from its features: the integration between the TopLink runtime and
the J2EE container automatically uses the unit of work to the application’s best
advantage.

For more information, see Chapter 93, "Understanding TopLink Queries".

Using the Persistence Layer
At run time, your application uses the TopLink metadata (see "Understanding TopLink
Metadata" on page 2-19).

For a non-CMP project, your application loads a session.xml file at run time using
the session manager (see Chapter 75, "Acquiring and Using Sessions at Run Time").
The session.xml file contains a reference to the mapping metadata project.xml
file. Using the session, your application accesses the TopLink runtime and the
project.xml mapping metadata.

For a CMP project, the metadata required is dependent upon the J2EE application
server you deploy your application to (see "Creating TopLink Files for Deployment" on
page 8-1). All application servers require an ejb-jar.xml and a TopLink project
XML file. The session configuration is dependent on the specific J2EE application
server.

Optimizing and Customizing the Application

Understanding TopLink Application Development 2-15

Deploying the Application
Application packaging (for deployment in the host Java or J2EE environment)
influences TopLink use and configuration. For example, you package a J2EE
application in an EAR file. Within the EAR file, there are several ways to package
persistent entities within WAR and JAR. How you configure TopLink depends, in
part, on how you package the application and how you use the class loader of the host
application server.

This section discusses packaging and deployment from a TopLink perspective.
However, if you deploy your application to a J2EE container, you must configure
elements of your application to enable TopLink container support.

This section includes the following information:

■ Understanding Deployments

■ TopLink in a J2EE Application

For more information, see Part III, "Deploying a TopLink Application".

Understanding Deployments
The TopLink approach to deployment involves packaging application files into a
single file, such as aJAR file, or an EAR file. This approach lets you create clean and
self-contained deployments that do not require significant file management.

After creating these files, deploy the project.

TopLink in a J2EE Application
Although TopLink is an integral part of a J2EE application, in most cases the client
does not interact with TopLink directly. Instead, TopLink features are invoked
indirectly by way of EJB container callbacks.

As a result, the typical deployment process involves the following steps:

1. Build the project elements, including beans, classes, and data sources.

2. Define the application mappings in TopLink Workbench.

3. Build the application deployment files. Use TopLink Workbench to create the files.

4. Package and deploy the application.

5. Add code to the client application to enable it to access the TopLink application.

Optimizing and Customizing the Application
TopLink provides a diverse set of features to optimize performance including the
following:

■ Enhancing queries

■ Tuning the cache

■ Scaling to multiple server configuration

You enable or disable most features in the descriptors or session, making any resulting
performance gains global.

Using TopLink EIS (see "Enterprise Information System (EIS) Usage" on page 2-4), you
can integrate a TopLink application with legacy data sources using a J2C adapter. This

Troubleshooting the Application

2-16 Oracle TopLink Developer’s Guide

is the most efficient way to customize a TopLink application to accommodate unusual
or nonstandard systems.

Using TopLink XML (see "XML Usage" on page 2-4), you can integrate a TopLink
application with legacy data sources using a Web service.

See Part IV, "Optimizing and Customizing a TopLink Application" for details on
optimizing and customizing TopLink.

Troubleshooting the Application
See Part V, "Troubleshooting a TopLink Application" for detailed information on
troubleshooting all aspects of a TopLink application including development and
deployment.

Understanding Object Persistence
This section includes a brief description of relational mapping and provides important
information and restrictions to guide object and relational modeling. This information
is useful when building TopLink applications.

This section includes information on the following:

■ Application Object Model

■ Data Storage Schema

■ Primary Keys and Object Identity

■ Mappings

■ Foreign Keys and Object Relationships

■ Inheritance

■ Concurrency

■ Caching

■ Nonintrusive Persistence

■ Indirection

These sections contain additional detail on these features, and explain how to
implement and use them with TopLink.

Application Object Model
Object modeling refers to the design of the Java classes that represent your application
objects. With TopLink, you can use your favorite integrated development environment
(IDE) or Unified Modeling Language (UML) modeling tool to define and create your
application object model.

Any class that registers a descriptor with a TopLink database session is called a
persistent class. TopLink does not require that persistent classes provide public
accessor methods for any private or protected attributes stored in the database. Refer
to "Persistent Class Requirements" on page 2-12 for more information.

Understanding Object Persistence

Understanding TopLink Application Development 2-17

Data Storage Schema
Your data storage schema refers to the design that you implement to organize the
persistent data in your application. This schema refers to the data itself–not the actual
data source (such as a relational database or nonrelational legacy system).

During the design phase of the TopLink application development process (see "Typical
Development Stages" on page 2-2), you should decide how to implement the classes in
the data source. When integrating existing data source information, you must
determine how the classes relate to the existing data. If no legacy information exists to
integrate, decide how you will store each class, then create the necessary schema.

You can also use TopLink Workbench (see Chapter 4) or database schema manager (see
Chapter 5) to create the necessary information.

Primary Keys and Object Identity
When making objects persistent, each object requires an identity to uniquely identify it
for storage and retrieval. Object identity is typically implemented using a unique
primary key. This key is used internally by TopLink to identify each object, and to
create and manage references. Violating object identity can corrupt the object model.

In a Java application, object identity is preserved if each object in memory is
represented by one, and only one, object instance. Multiple retrievals of the same
object return references to the same object instance–not multiple copies of the same
object.

TopLink supports multiple identity maps to maintain object identity (including
composite primary keys). Refer to "Cache Type and Object Identity" on page 87-3 for
additional information.

Mappings
TopLink uses the metadata produced by TopLink Workbench (see "Understanding
TopLink Metadata" on page 2-19) to describe how objects and beans map to the data
source. This approach isolates persistence information from the object model–you are
free to design their ideal object model, and DBAs are free to design their ideal schema.

You use TopLink Workbench to create and manage the mapping information. At run
time, TopLink uses the metadata to seamlessly and dynamically interact with the data
source, as required by the application.

TopLink provides an extensive mapping hierarchy that supports the wide variety of
data types and references that an object model might contain. For more information,
see Chapter 30, "Understanding Mappings".

Foreign Keys and Object Relationships
A foreign key is a combination of columns that reference a unique key, usually the
primary key, in another table. Foreign keys can be any number of fields (similar to
primary key), all of which are treated as a unit. A foreign key and the primary parent
key it references must have the same number and type of fields.

Foreign keys represents relationships from a column or columns in one table to a
column or columns in another table. For example, if every Employee has an attribute
address that contains an instance of Address (which has its own descriptor and
table), the one-to-one mapping for the address attribute would specify foreign key
information to find an address for a particular Employee.

Understanding Object Persistence

2-18 Oracle TopLink Developer’s Guide

Refer to "Configuring Table and Field References (Foreign and Target Foreign Keys)"
on page 34-8 for more information.

Inheritance
Object-oriented systems allow classes to be defined in terms of other classes. For
example: motorcycles, sedans, and vans are all kinds of vehicles. Each of the vehicle
types is a subclass of the Vehicle class. Similarly, the Vehicle class is the superclass
of each specific vehicle type. Each subclass inherits attributes and methods from its
superclass (in addition to having its own attributes and methods).

Inheritance provides several application benefits, including the following:

■ Using subclasses to provide specialized behaviors from the basis of common
elements provided by the superclass. By using inheritance, you can reuse the code
in the superclass many times.

■ Implementing abstract superclasses that define generic behaviors. This abstract
superclass may define and partially implement behavior, while allowing you to
complete the details with specialized subclasses.

Refer to "Configuring Inheritance for a Child (Branch or Leaf) Class Descriptor" on
page 25-51 and "Configuring Inherited Attribute Mapping in a Subclass" on page 25-58
for detailed information on using inheritance with TopLink.

Concurrency
To have concurrent clients logged in at the same time, the server must spawn a
dedicated thread of execution for each client. J2EE application servers do this
automatically. Dedicated threads enable each client to work without having to wait for
the completion of other clients. TopLink ensures that these threads do not interfere
with each other when they make changes to the identity map or perform database
transactions.

Using the TopLink UnitOfWork class, your client can make transactional changes in
an isolated and thread safe manner. The unit of work manages clones for the objects
you modify to isolate each client’s work from other concurrent clients and threads. The
unit of work is essentially an object-level transaction mechanism that maintains all of
the ACID (Atomicity, Consistency, Isolation, Durability) transaction principles as a
database transaction. For more information on the unit of work, see Chapter 97,
"Understanding TopLink Transactions".

TopLink supports configurable optimistic and pessimistic locking strategies to let you
customize the type of locking that the TopLink concurrency manager uses. For more
information, see "Understanding Descriptors and Locking" on page 23-18.

Caching
TopLink caching improves application performance by automatically storing data
returned as objects from the database for future use. This caching provides several
advantages:

■ Reusing Java objects that have been previously read from the database minimizes
database access

■ Minimizing SQL calls to the database when objects already exist in the cache

■ Minimizing network access to the database

■ Setting caching policies a class-by-class and bean-by-bean basis

Understanding TopLink Metadata

Understanding TopLink Application Development 2-19

■ Basing caching options and behavior on Java garbage collection

TopLink supports several caching polices to provide extensive flexibility. You can
fine-tune the cache for maximum performance, based on individual application
performance. Refer to Part XVII, "Cache" for complete information.

Nonintrusive Persistence
The TopLink nonintrusive approach of achieving persistence through a metadata
architecture (see "Understanding TopLink Metadata" on page 2-19) means that there
are almost no object model intrusions.

To persist Java objects, TopLink does not require any of the following:

■ Persistent superclass or implementation of persistent interfaces

■ Store, delete, or load methods required in the object model

■ Special persistence methods

■ Generating source code into or wrapping the object model

When using entity beans with container-managed persistence, TopLink does not
require any additional intrusion to the object model, other than the CMP specification
requirements.

See "Building and Using the Persistence Layer" on page 2-11 for additional information
on this nonintrusive approach.

Indirection
An indirection object takes the place of an application object so the application object is
not read from the database until it is needed. Using indirection allows TopLink to
create stand-ins for related objects. This results in significant performance
improvements, especially when the application requires the contents of only the
retrieved object rather than all related objects.

Without indirection, each time the application retrieves a persistent object, it also
retrieves all the objects referenced by that object. This may result in lower performance
for some applications.

TopLink provides several indirection models, such as proxy indirection, transparent
indirection, and value holder indirection. TopLink also provides indirection support
for EJB (see "Indirection and EJB" on page 30-9).

See "Indirection" on page 30-5 for more information.

Understanding TopLink Metadata
The TopLink metadata is the bridge between the development of an application and
its deployed run-time environment. Capture the metadata using TopLink Workbench
(see "Creating Project Metadata" on page 2-20 and "Creating Session Metadata" on
page 2-21), and pass the metadata to the run-time environment using deployment
XML files (such as project.xml and sessions.xml). You could also manually
code these files using Java and the TopLink API, but this approach is more
labor-intensive.

Note: Oracle strongly recommends that you use indirection in all
situations.

Understanding TopLink Metadata

2-20 Oracle TopLink Developer’s Guide

The metadata, encapsulated in deployment XML files, lets you pass configuration
information into the run-time environment. The run-time environment uses the
information in conjunction with the persistent entities (Java objects or EJB entity
beans) and the code written with the TopLink API, to complete the application.

Figure 2–2 TopLink Metadata

This section describes the following:

■ Advantages of the TopLink Metadata Architecture

■ Creating Project Metadata

■ Creating Session Metadata

■ Deploying Metadata

Advantages of the TopLink Metadata Architecture
The TopLink metadata architecture provides many important benefits, including the
following:

■ Stores mapping information in XML descriptors–not in the domain model objects

■ By using the metadata, TopLink does not intrude in the object model or the
database schema

■ Allows you to design the object model as needed, without forcing any specific
design

■ Allows DBAs to design the database as needed, without forcing any specific
design

■ Does not rely on code-generation (which can cause serious design,
implementation, and maintenance issues)

■ Is unintrusive: adapts to the object model and database schema, rather than
requiring you to design their object model or database schema to suit TopLink

Creating Project Metadata
A TopLink project contains the mapping metadata that the TopLink runtime uses to
map objects to a data source. The project is the primary object used by the TopLink
runtime.

This section describes the principal contents of project metadata, including the
following:

■ Descriptors and Mappings

■ Data Source Login Information

Understanding TopLink Metadata

Understanding TopLink Application Development 2-21

For more information about creating project.xml metadata, see "project.xml File"
on page 8-2.

Descriptors and Mappings
TopLink maps persistent entities to the database in the application, using the
descriptors and mappings you build with TopLink Workbench. TopLink Workbench
supports several approaches to project development, including the following:

■ Importing classes and tables for mapping

■ Importing classes and generating tables and mappings

■ Importing tables and generating classes and mappings

■ Creating both class and table definitions

TopLink Workbench supports all these options. The most common solution is to
develop the persistent entities using a development tool, such as an integrated
development environment (IDE) like Oracle JDeveloper, or a modeling tool, and to
develop the relational model through appropriate relational design tools. You then use
TopLink Workbench to construct mappings that relate these two models.

Although TopLink Workbench does offer the ability to generate persistent entities or
the relational model components for an application, these utilities are intended only to
assist in rapid initial development strategies–not complete round-trip application
development.

For more information, see Chapter 23, "Understanding Descriptors" and Chapter 30,
"Understanding Mappings".

Amending Descriptors An amendment method lets you implement a TopLink feature
that is not currently supported by TopLink Workbench. Simply write a Java method to
amend the descriptor after it is loaded, and specify the method in TopLink Workbench
for inclusion in the project metadata. See "Configuring Amendment Methods" on
page 25-81 for detailed information on implementing an amendment method for a
TopLink descriptor.

Data Source Login Information
For non-CMP projects, you configure a session login in the session metadata that
specifies the information required to access the data source (see "Creating Session
Metadata" on page 2-21).

For CMP projects, the project contains a deployment login that specifies the
information required to access the data source.

For more information, see "Projects and Login" on page 17-3.

Creating Session Metadata
A TopLink session contains a reference to a particular project.xml file, plus the
information required to access the data source. The session is the primary object used
by your application to access the features of the TopLink runtime.

The agent responsible for creating and accessing session metadata differs depending
on whether or not you are creating a CMP project. In a non-CMP project, your
application acquires and accesses a session directly (see "Non-CMP Applications and
Session Metadata" on page 8-4). In a CMP project, your application indirectly accesses
a session acquired internally by the TopLink runtime (see "CMP Applications and
Session Metadata" on page 8-4).

Understanding the Three-Tier Architecture

2-22 Oracle TopLink Developer’s Guide

Deploying Metadata
The project.xml and sessions.xml file are packaged for deployment differently
according to the type of application you are deploying.

For more information, see the following:

■ "Creating TopLink Files for Deployment" on page 8-1

■ "Packaging a TopLink Application" on page 9-1

Understanding the Three-Tier Architecture
The three-tier Web application architecture generally includes the connection of a
server-side Java application to the database through a JDBC connection (see
Figure 2–3). In this pattern, TopLink resides within a Java server (a J2EE server or a
custom server), with several possible server integration points. The application can
support Web clients such as servlets, Java clients, and generic clients using XML or
Common Object Request Broker Architecture (CORBA).

The three-tier application is a common architecture in which TopLink resides within a
Java server (either a J2EE server or a custom server). In this architecture, the server
session provides clients with shared access to JDBC connections and a shared object
cache. Because it resides on a single JVM, this architecture is simple and easily
scalable. The TopLink persistent entities in this architecture are generally Java objects.

This architecture often supports Web-based applications in which the client
application is a Web client, a Java client, or a server component.

Figure 2–3 Three Tier Architecture

Although not all three-tier applications are Web-based, this architecture is ideally
suited to distributed Web applications. In addition, although it is also common to use
EJB in a Web application, this TopLink architecture does not.

Example Implementations
Examples of three-tier architecture implementation include the following:

■ A Model-View-Controller Model 2 architectural design pattern that runs in a J2EE
container with servlets and JSP that uses TopLink to access data without EJB.

■ A Swing or Abstract Window Toolkit (AWT) client that connects to a server-side
Java application through RMI, without an application server or container.

Advantages and Disadvantages
The three-tier Web application architecture offers the following advantages:

■ High performance, lightweight persistent objects

Understanding the Three-Tier Architecture

Understanding TopLink Application Development 2-23

■ High degree of flexibility in deployment platform and configuration

The disadvantage of this architecture is it is less standard than EJB.

Variation Using Remote Sessions
TopLink includes a session type called remote session. The session offers the full
session API and contains a cache of its own, but exists on the client system rather than
on the TopLink server. Communications can be configured to use RMI or RMI-Internet
Inter-Object Request Broker Protocol (IIOP).

Remote session operations require a corresponding client session on the server.

Although this is an excellent option for you if you wish to simplify the access from the
client tier to the server tier, it is less scalable than using a client session and does not
easily allow changes to server-side behavior.

For more information, see "Remote Sessions" on page 72-30.

Technical Challenges
The three-tier application with a stateless client presents several technical challenges,
including the following:

■ Transaction management in a stateless environment

A common design practice is to delimit client requests within a single unit of work
(transactional session). In a stateless environment, this may affect how you design
the presentation layer. For example, if a client requires multiple pages to collect
information for a transaction, then the presentation layer must retain the
information from page to page until the application accumulates the full set of
changes or requests. At that point, the presentation layer invokes the unit of work
to modify the database.

■ Optimistic locking in a stateless environment

In a stateless environment, take care to avoid processing out-of-date (stale) data. A
common strategy for avoiding stale data is to implement optimistic locking, and
store the optimistic lock values in the object.

This solution requires careful implementation if the stateless application serializes
the objects, or sends the contents of the object to the client in an alternative format.
In this case, transport the optimistic lock values to the client in the HTTP contents
of an edit page. You must then use the returned values in any write transaction to
ensure that the data did not change while the client was performing its work.

For more information about locking, see "Configuring Locking Policy" on
page 25-64.

■ External JDBC pools

By default, TopLink manages its own connection pools. You can also configure
TopLink to use connection pooling offered by the host application server. This
feature is useful for shared connection pools and is required for JTA/JTS
integration (see "Configuring External Connection Pooling" on page 82-2).

■ JTA/JTS Integration

JTA and JTS are standard Java components that enable sessions to participate in
distributed transactions. You must configure TopLink to use JTA/JTS to use
session beans in the architecture (see "Integrating the Unit of Work With an
External Transaction Service" on page 99-21).

Understanding the Two-Tier Architecture

2-24 Oracle TopLink Developer’s Guide

■ Cache coordination

If you choose to use multiple servers to scale your application, you may require
TopLink cache coordination (see Chapter 87, "Understanding the Cache").

Understanding the Two-Tier Architecture
A two-tier application generally includes a Java client that connects directly to the
database through TopLink. The two-tier architecture is most common in complex user
interfaces with limited deployment. The database session provides TopLink support
for two-tier applications.

For more information, see Chapter 72, "Understanding TopLink Sessions".

Figure 2–4 Two-Tier Architecture

Although the two-tier architecture is the simplest TopLink application pattern, it is
also the most restrictive, because each client application requires its own session. As a
result, two-tier applications do not scale as easily as other architectures.

Two-tier applications are often implemented as user interfaces that directly access the
database (see Figure 2–4). They can also be non-interface processing engines. In either
case, the two-tier model is not as common as the three-tier model.

The following are key elements of an efficient two-tier (client-server) architecture with
TopLink:

■ Minimal dedicated connections from the client to the database

■ An isolated object cache

Example Implementations
An example of a two-tier architecture implementation is a Java user interface
(Swing/AWT) and batch data processing.

Advantages and Disadvantages
The advantage of the two-tier design is its simplicity. The TopLink database session
that builds the two-tier architecture provides all the TopLink features in a single
session type, thereby making the two-tier architecture simple to build and use.

The most important limitation of the two-tier architecture is that it is not scalable,
because each client requires its own database session.

Technical Challenges
The current trend toward multitiered Web applications makes the two-tier
architecture less common in production systems, but no less viable. Because there is no

Understanding the EJB Session Bean Facade Architecture

Understanding TopLink Application Development 2-25

shared cache in a two-tier system, you risk encountering stale data if you run multiple
instances of the application. This risk increases as the number of individual database
sessions increases.

To minimize this problem, TopLink offers support for several data locking strategies.
These include pessimistic locking and several variations of optimistic locking. For
more information, see "Configuring Locking Policy" on page 25-64.

Understanding the EJB Session Bean Facade Architecture
This architecture is an extension of the three-tier pattern, with the addition of EJB
session beans wrapping the access to the application tier. Session beans provide public
API access to application operations, enabling you to separate the presentation tier
from the application tier. The architecture also lets you use session beans within a J2EE
container.

This type of architecture generally includes JTA integration, and serialization of data
to the client.

Figure 2–5 Three-Tier Architecture Using Session Beans and Java Objects

A common extension to the three-tier architecture is to combine session beans and
persistent Java objects managed by TopLink. The resulting application includes
session beans and Java objects on a TopLink three-tier architecture (see Figure 2–5).

The three-tier architecture creates a server session and shares it between the session
beans in the application. When a session bean needs to access a TopLink session, the
bean obtains a client session from the shared server session. This architecture has the
following key features:

■ Session beans delimit transactions.

Configure TopLink to work with a JTA system and its associated connection pool.

■ Accessing the persistent objects on the client side causes them to be serialized.

Ensure that when the objects re-emerge on the server-side, they properly merge
into the cache to maintain identity.

Example Implementation
An example of the EJB session bean facade architecture implementation is a
Model-View-Controller Model 2 architectural design pattern that runs in a J2EE
container with servlets and JSP and uses the session bean enabled by TopLink to
access data without EJB.

Understanding the EJB Session Bean Facade Architecture

2-26 Oracle TopLink Developer’s Guide

Advantages and Disadvantages
The EJB session bean facade architecture is a popular and effective compromise
between the performance of persistent Java objects, and the benefits of EJB for
standardized client development and server scalability. It offers the following
advantages:

■ Less overhead than an EJB entity bean application

TopLink shares access to the project, descriptor, and login information across the
beans in the application.

■ Future compatibility with other servers

This design isolates login and EJB server-specific information from the beans,
which lets you migrate the application from one application server to another
without major recoding or rebuilding.

■ Shared read cache

This design offers increased efficiency by providing a shared cache for reading
objects.

The key disadvantage of this model is the need to transport the persistent model to the
client. If the model involves complex object graphs in conjunction with indirection,
this can present many challenges with inheritance, indirection, and relationships.

For more information about managing inheritance, indirection and relationships, see
Part IX, "Mappings".

Understanding Session Beans
Session beans model a process, operation, or service and as such, are not persistent
entities. However, session beans can use persistence mechanisms to perform the
services they model.

Under the session bean model, a client application invokes methods on a session bean
that, in turn, performs operations on Java objects enabled by TopLink. Session beans
execute all operations related to TopLink on behalf of the client.

The EJB specifications describe session beans as either stateless or stateful.

Stateful beans maintain a conversational state with a client; that is, they retain
information between method calls issued by a particular client. This enables the client
to use multiple method calls to manipulate persistent objects.

Stateless beans do not retain data between method calls. When the client interacts
with stateless session beans, it must complete any object manipulations within a single
method call.

Technical Challenges
Your application can use both stateful and stateless session beans with a TopLink
client session or database session. When you use session beans with a TopLink session,
the type of bean used affects how it interacts with the session.

■ Stateless session beans and the TopLink session

Stateless beans store no information between method calls from the client. As a
result, reestablish the connection of the bean to the session for each client method
call. Each method call through TopLink obtains a client session, makes the
appropriate calls, and releases the reference to the client session.

Understanding the EJB Entity Beans With CMP Architecture

Understanding TopLink Application Development 2-27

■ Stateful session beans and the TopLink session

Your EJB server configuration includes settings that affect the way it manages
beans–settings designed to increase performance, limit memory footprint, or set a
maximum number of beans. When you use stateful beans, the server may
deactivate a stateful session bean enabled by TopLink out of the JVM memory
space between calls to satisfy one of these settings. The server then reactivates the
bean when required, and brings it back into memory.

This behavior is important, because a TopLink session instance does not survive
passivation. To maintain the session between method calls, release the session
during the passivation process and re-obtain it when you reactivate the bean.

■ External JDBC pools

By default, TopLink manages its own connection pools. For the session bean
architecture, you must configure TopLink to use connection pooling offered by the
host application server. This feature is useful for shared connection pools and is
required for JTA/JTS integration (see "Configuring External Connection Pooling"
on page 82-2).

■ JTA/JTS integration

JTA and JTS are standard Java components that enable sessions to participate in
distributed transactions. You must configure TopLink to use JTA/JTS to use
session beans in the architecture (see "Integrating the Unit of Work With an
External Transaction Service" on page 99-21).

■ Cache coordination

If you choose to use multiple servers to scale your application, you may require
TopLink cache coordination (see "Understanding Cache Coordination" on
page 87-10).

Unit of Work Merge
You can use a unit of work to enable your client application to modify objects on the
database. The unit of work merge functions employ mappings to copy the values from
the serialized object into the unit of work, and to calculate changes.

For more information, see "Merging Changes in Working Copy Clones" on page 99-13.

Understanding the EJB Entity Beans With CMP Architecture
CMP is the part of the J2EE component model that provides an object persistence
service that an EJB container uses to persist entity beans. CMP provides distributed,
transactional, secure access to persistent data, with a guaranteed portable interface.

This architecture is an extension of the three-tier architecture, in which the
implementation of persistence methods is handled by the container at runtime. As a
bean provider, you only need to specify in a deployment descriptor those persistent
fields and relationships for which the container must handle data access and,
optionally, an abstract representation of the database schema.

TopLink CMP is an extension of the TopLink persistence framework that provides
custom integration to EJB containers of various application servers (see "Application
Server Support" on page 7-1). For more information about choosing an application
server, see "Understanding Target Platforms" on page 2-5. TopLink integrates with the
EJB container in this architecture to augment (or, in the case of OC4J, become) the
container’s persistence manager.

Understanding the EJB Entity Beans With CMP Architecture

2-28 Oracle TopLink Developer’s Guide

TopLink CMP integration is nonintrusive (see Figure 2–6). Through a combination of
run-time integration and code generation, the container uses TopLink internally and
the bean user interacts with entity beans with container-managed persistence
according to their standard API. This lets you combine the standard interfaces and
power of CMP and a container with TopLink flexibility, performance, and
productivity.

Figure 2–6 Three-Tier CMP Architecture

For more information, see the following:

■ "Integrating TopLink With an Application Server" on page 7-1

■ "Creating TopLink Files for Deployment" on page 8-1

■ "Packaging a TopLink Application" on page 9-1

■ "Deploying a TopLink Application" on page 10-1

■ "Configuring Persistence Type" on page 19-5

Example Implementation
An example of the entity beans with container-managed persistence implementation is
a Model-View-Controller Model 2 architectural design pattern that runs in a J2EE
container, with servlets and JSP that access either session beans or entity beans with
container-managed persistence enhanced by TopLink.

Advantages and Disadvantages
A three-tier architecture using entity beans with container-managed persistence offers
the following advantages:

■ It allows for entity beans with container-managed persistence supplied with
sophisticated TopLink features such as caching and mapping support, storing
bean data across more than one table, composite primary keys, and data
conversion.

■ It presents a standard method to access data, which lets you create standardized,
reusable business objects.

Note: When using OC4J and Java 1.5, TopLink supports a subset of
the persistence features anticipated in the final EJB 3.0 specification.
For more information on EJB 3.0 support, see Oracle Containers for J2EE
Enterprise JavaBeans Developer’s Guide.

EJB 3.0 feature support is subject to change and dependent upon the
contents of the final specification.

Understanding the EJB Entity Beans With CMP Architecture

Understanding TopLink Application Development 2-29

■ It is well-suited to create coarse-grained objects, which TopLink relates to
dependent, lightweight, regular Java objects (TopLink can also manage
container-managed relationships to lightweight dependent Java objects).

■ TopLink provides for lazy initialization of referenced objects and beans (see
"Indirection" on page 30-5).

■ TopLink provides functionality for transactional copies of beans, allowing
concurrent access by several clients, rather than relying on individual serialization.

■ TopLink provides advanced query capabilities, as well as dynamic querying,
including the ability to define queries at the bean-level rather than the data source
level and to use a rich set of querying and finder options.

■ TopLink maintains bean and object identity.

The disadvantage of this architecture is that pure entity bean with container-managed
persistence architectures can impose a high overhead cost. This is especially true when
a data model has a large number of fine-grained classes with complex relationships.

Technical Challenges
The key technical challenge in this architecture lies in integrating components into a
cohesive system. For example, this architecture requires a specific TopLink integration
with the application server or J2EE container.

Other issues include the following:

■ External JDBC Pools

■ JTA/JTS Integration

■ Cache Coordination

■ Maintaining Bidirectional Relationships

■ Managing Dependent Objects

■ Managing Collections of EJBObject Objects

External JDBC Pools
By default, TopLink manages its own connection pools. You can also configure
TopLink to use connection pooling offered by the host application server. This feature
is useful for shared connection pools and is required for JTA/JTS integration (see
"Configuring External Connection Pooling" on page 82-2).

JTA/JTS Integration
JTA and JTS are standard Java components that enable sessions to participate in
distributed transactions. You must configure TopLink to use JTA/JTS to use session
beans in the architecture (see "Integrating the Unit of Work With an External
Transaction Service" on page 99-21).

Cache Coordination
If you choose to use multiple servers to scale your application, you may require
TopLink cache coordination (see "Understanding Cache Coordination" on page 87-10).

Maintaining Bidirectional Relationships
When one-to-one or many-to-many relationship is bidirectional, you must maintain
the back pointers as the relationships change.

Understanding the EJB Entity Beans With CMP Architecture

2-30 Oracle TopLink Developer’s Guide

TopLink automatically maintains the relationship between two entity beans.

To set the back pointer manually, do one of the following:

■ Code the entity bean to maintain the back pointer when the relationship is
established or modified (recommended).

■ Code the client to explicitly set the back pointer.

If you code the entity bean to set back pointers, the client is freed of this responsibility.
This has the advantage of encapsulating this maintenance implementation in the bean.

In a one-to-many relationship, a source bean might have several dependent target
objects. For example, an EmployeeBean might own several dependent PhoneNumber
instances. When you add a new dependent object (a PhoneNumber, in this example)
to an employee, you must set the PhoneNumber instance’s back pointer to its owner
(the employee). Maintaining a one-to-many relationship in the entity bean involves
getting the local object reference from the context of the EmployeeBean, and then
updating the back pointer as Example 2–1 shows.

Example 2–1 Setting the Back-Pointer in the Entity Bean

// obtain owner and phoneNumber
owner = empHome.findByPrimaryKey(ownerId);
phoneNumber = new PhoneNumber("cell", "613", "5551212");
// add phoneNumber to the phoneNumbers of the owner
owner.addPhoneNumber(phoneNumber);

// Maintain the relationship in the Employee's addPhoneNumber method
public void addPhoneNumber(PhoneNumber newPhoneNumber) {

// get, then set the back pointer to the owner
Employee owner = (Employee)this.getEntityContext().getEJBLocalObject();
newPhoneNumber.setOwner(owner);
// add new phone
getPhoneNumbers().add(newPhoneNumber);

}

For more information, see the following:

■ Configuring Bidirectional Relationship on page 32-34

■ "Directionality" on page 33-2

Managing Dependent Objects
Unlike EJB, TopLink dependent persistent objects can be sent back and forth between
a client and a server. When objects are serialized, the risk exists the objects can cause
the cache to lose the identity of the objects or attempt to cache duplicate identical
objects. To avoid potential problems, use the bean setter methods when adding
dependent objects to relationship collections as Example 2–2 shows. This enables
TopLink to handle merging of objects in the cache.

Example 2–2 Managing Dependent Objects

addPhoneNumber(PhoneNumber phone) {
Collection phones = this.getPhoneNumbers();
Vector newCollection = new Vector();
newCollection.addAll(phones);
newCollection.add(phone);
this.setPhones(newCollection);

}

Understanding the EJB Entity Beans With BMP Architecture

Understanding TopLink Application Development 2-31

Managing Collections of EJBObject Objects
Collections generally use the equals method to compare objects. This is not a
problem in the case of an object that contains a collection of EJBObject objects,
because the EJB container collection handles equality appropriately.

Understanding the EJB Entity Beans With BMP Architecture
BMP is the part of the J2EE component model that lets you, the bean provider,
implement the entity bean’s persistence directly in the entity bean class or in one or
more helper classes that you provide.

This architecture is an extension of the three-tier architecture, in which the persistent
data is bean managed within an entity bean using code that you implement. The client
code accesses the data through the entity bean interface.

TopLink BMP is an extension of the TopLink persistence framework that provides
base class BMPEntityBase as a starting point for your BMP development. This class
provides an implementation for all methods (except ejbPassivate) required by the
EJB specifications prior to 3.0. Subclass BMPEntityBase to create a TopLink-enabled
entity bean with bean-managed persistence.

To use the BMPEntityBase class, perform the following:

1. Create a TopLink session (see Chapter 72, "Understanding TopLink Sessions") for
your application.

2. Add a BMPWrapperPolicy to each descriptor that represents an entity bean with
bean-managed persistence.

The BMPWrapperPolicy provides TopLink with the information to create remote
objects for entity beans and to extract the data out of a remote object.

3. Create the home and remote interfaces.

4. Create deployment descriptors (see "Integrating TopLink With an Application
Server" on page 7-1 and "Creating TopLink Files for Deployment" on page 8-1).

5. Package your application (see "Packaging a TopLink Application" on page 9-1).

6. Deploy the beans (see "Deploying a TopLink Application" on page 10-1).

To make full use of TopLink session and unit of work features, TopLink provides a
hook into its functionality through the BMPDataStore class. Use this class to translate
EJB-required functionality into simple calls.

The BMPDataStore class provides implementations of LOAD and STORE, multiple
finders, and REMOVE functionality. The BMPDataStore class requires a TopLink
session. A single instance of BMPDataStore must exist for each bean type deployed
within a session. When creating a BMPDataStore, pass in the session name of the
session that the BMPDataStore must use to persist the beans and the class of the bean
type being persisted. Store the BMPDataStore in a global location so that each
instance of a bean type uses the correct store method.

TopLink BMP support (see Figure 2–7) lets you combine the standard interfaces of
entity beans with bean-managed persistence with TopLink flexibility, performance,
and productivity.

Understanding the EJB Entity Beans With BMP Architecture

2-32 Oracle TopLink Developer’s Guide

Figure 2–7 Three-Tier BMP Architecture

TopLink supports BMP. To use BMP support, the home interface must inherit from the
oracle.toplink.ejb.EJB20Home. To make calls to the BMPEntityBase, the
findAll method must call the EJB 2.0 version of the methods. These methods are
prefixed with ejb20. For example, in the EJB 2.0 version, the findAll method
appears as ejb20FindAll.

To use local beans, use the oracle.toplink.ejb.EJB20LocalHome setting instead
of the default oracle.toplink.ejb.EJB20Home. Instead of the
oracle.toplink.ejb.BMPWrapperPolicy setting, use the
oracle.toplink.ejb.bmp.BMPLocalWrapperPolicy setting.

To accommodate both local and remote configurations, ensure the following:

■ For a bean that has a single interface, use the corresponding wrapper policy (local
or remote) for the descriptor.

■ Beans can only participate in relationships as either local or remote interfaces, not
both.

For more information, see the following:

■ "Integrating TopLink With an Application Server" on page 7-1

■ "Creating TopLink Files for Deployment" on page 8-1

■ "Packaging a TopLink Application" on page 9-1

■ "Deploying a TopLink Application" on page 10-1

■ "Configuring Persistence Type" on page 19-5

■ "Configuring the Server Platform" on page 74-14

Example Implementations
An example of the entity beans with bean-managed persistence implementation is a
Model-View-Controller Model 2 architectural design pattern that runs in a J2EE
container, with servlets and JSP that access session beans and entity beans with
bean-managed persistence enhanced by TopLink.

Advantages and Disadvantages
Using BMP with a TopLink three-tier architecture offers the following advantages:

■ It simplifies the BMP method calls. These can be inherited from an abstract bean
class, rather than being generated.

■ TopLink makes BMP easier to implement.

■ It enables you to implement database-independent code in the bean methods.

Understanding the EJB 3.0 JPA Entity Architecture

Understanding TopLink Application Development 2-33

■ The architecture supports features such as complex relationships, caching,
object-level and dynamic queries, and the unit of work.

The main disadvantages of BMP include the following:

■ You must create the persistence mechanisms in the bean code.

■ It is not as transparent or efficient as CMP.

■ TopLink-only Java object applications offer the same degree of independence from
the application server.

Technical Challenges
The key technical challenge in this architecture lies in integrating components into a
cohesive system. For example, this architecture requires a specific TopLink integration
with the application server or J2EE container.

Other issues include the following:

■ External JDBC Pools

■ JTA/JTS Integration

■ Cache Coordination

External JDBC Pools
By default, TopLink manages its own connection pools. You can also configure
TopLink to use connection pooling offered by the host application server. This feature
is useful for shared connection pools and is required for JTA/JTS integration (see
"Configuring External Connection Pooling" on page 82-2).

JTA/JTS Integration
JTA and JTS are standard Java components that enable sessions to participate in
distributed transactions. You must configure TopLink to use JTA/JTS to use session
beans in the architecture (see "Integrating the Unit of Work With an External
Transaction Service" on page 99-21).

Cache Coordination
If you choose to use multiple servers to scale your application, you may require
TopLink cache coordination (see "Understanding Cache Coordination" on page 87-10).

Understanding the EJB 3.0 JPA Entity Architecture
A part of the EJB 3.0 specification, the Java Persistence API (JPA) is a lightweight,
POJO-based framework for Java persistence. JPA focuses on object-relational mapping
and contains a full object-relational mapping specification supporting the use of Java
language metadata annotations and/or XML descriptors to define the mapping
between Java objects and a relational database. Object-relational mapping with the
JPA is completely metadata-driven. JPA supports a SQL-like query language for both
static and dynamic queries. It also supports the use of pluggable persistence providers.

JPA includes the following concepts:

■ Entity–any application-defined object with the following characteristics can be an
entity:

– it can be made persistent;

Understanding the EJB 3.0 JPA Entity Architecture

2-34 Oracle TopLink Developer’s Guide

– it has a persistent identity (a key that uniquely identifies an entity instance
and distinguishes it from other instances of the same entity type. An entity has
a persistent identity when there is a representation of it in a data store);

– it is partially transactional in a sense that a persistence view of an entity is
transactional (an entity is created, updated and deleted within a transaction,
and a transaction is required for the changes to be committed in the database).
However, in-memory entities can be changed without the changes being
persisted.

– it is not a primitive, a primitive wrapper, or built-in object. An entity is a
fine-graned object that has a set of aggregated state that is typically stored in a
single place (such as a row in a table), and have relationships to other entities.

■ Entity metadata–describes every entity. Metadata could be expressed as
annotations (specifically defined types that may be attached to or place in front of
Java programming elements) or XML (descriptors).

■ Entity manager–enables API calls to perform operations on an entity. Until an
entity manager is used to create, read, or write an entity, the entity is just a regular
nonpersistent Java object. When an entity manager obtains a reference to an entity,
that entity becomes managed by the entity manager. The set of managed entity
instances within an entity manager at any given time is called its persistence
context–only one Java instance with the same persistent identity may exist in a
persistence context at any time.

You can configure an entity manager to be able to persist or manage certain types
of objects, read or write to a particular database, and be implemented by a specific
persistence provider. The persistence provider supplies the backing
implementation engine for JPA, including the EntityManager interface
implementation, the Query implementation, and the SQL generation.

Entity managers are provided by an EntityManagerFactory. The configuration
for an entity manager is bound to the EntityManagerFactory, but it is defined
separately as a persistence unit. You name persistence units to allow
differentiation between EntityManagerFactory objects. This way your
application obtains control over which configuration to use for operations on a
specific entity. The configuration that describes the persistence unit is defined in a
persistence.xml file.

The following description expresses relationships between JPA concepts:

– Persistence creates one or more EntityManagerFactory objects;

– each EntityManagerFactory is configured by one persistence unit;

– EntityManagerFactory creates one or more EntityManager objects;

– one or more EntityManager manages one PersistenceContext.

For more information, see the following:

■

http://www.oracle.com/technology/products/ias/toplink/jpa/ind
ex.html

■ Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example Implementations
An example of the entity beans with bean-managed persistence implementation is a
Model-View-Controller Model 2 architectural design pattern that runs in a Java EE

Understanding the Web Services Architecture

Understanding TopLink Application Development 2-35

container, with servlets and JSP that access session beans and EJB 3.0-compliant
entities using the TopLink-based JPA persistence provider.

Advantages and Disadvantages
The use of TopLink JPA entities offers the following advantages:

■ POJO persistence–in JPA, persistent objects are POJOs.

■ Object-relational mapping is completely metadata-driven.

■ The persistence API exists as a separate layer form the persistent objects and does
not intrude upon them.

■ Using the query framework you can query across entities and their relationships
without having to use concrete foreign keys or database columns. Also, you can
define queries statically in metadata or create them dynamically by passing query
criteria on construction. Queries can return entities as results.

■ Entities are mobile–objects are able to move from one JVM to another and back,
and at the same time be usable by the application.

■ You can configure persistence features through the use of Java SE 5 annotations, or
XML, or a combination of both. You may also rely on defaults.

■ If your application is running inside a container, the container provides support
and ease of use; you can configure the same application to run outside a container.

Understanding the Web Services Architecture
A Web services architecture is similar to the three-tier (see "Understanding the
Three-Tier Architecture" on page 2-22) or session bean (see "Understanding the EJB
Session Bean Facade Architecture" on page 2-25) architecture, however, in a Web
services architecture, you encapsulate business logic (the service) in a Web service
instead of (or in addition to) using session beans. In a Web services architecture, clients
communicate with your application using SOAP messages (XML over HTTP).

Figure 2–8 Web Services Architecture

As in any architecture, you can use TopLink to persist objects to relational or EIS data
sources. However, in a Web services architecture, you can also use TopLink to map
your object model to an XML schema for use with the Web service or as the Web
service XML serializer.

Example Implementations
An example of a Web services architecture implementation is the use of a Web service
to expose parts of an existing application to a remote client (typically another
application) by way of SOAP messages. In this application, you can use TopLink XML

Understanding the Web Services Architecture

2-36 Oracle TopLink Developer’s Guide

to unmarshall XML messages to Java objects to facilitate requests and marshall Java
object responses back into XML for transmission to the client.

Advantages and Disadvantages
Using TopLink in Web services architecture has many advantages, including, but not
limited to, the following:

■ you can map XML messages to an existing Java object model.

■ you can achieve a high level of complexity of mapping support

■ compliance with the JAXB standards

■ providing a scalable, high-performing solution

One debatable disadvantage is this solution’s complexity over a simple RMI session
bean service.

Technical Challenges
As with any technology, there are technical challenges associated with the use of
TopLink in Web services architecture. These technical challenges are mostly related to
special-case scenarios, such as when you need to implement a custom serializer
because you have both the Java objects and the schema.

For more information, see the following:

■ Oracle TopLink as a Custom Serializer in a JAX-RPC 1.1 Web service at
http://www.oracle.com/technology/products/ias/toplink/technic
al/tips/jaxRpc11/index.htm

■ Part XIII, "XML Mappings"

Part II
 Using TopLink Development Tools

This part describes the development tools and tool support TopLink provides. It
contains the following chapters.

■ Chapter 3, "Understanding TopLink Development Tools"

This chapter describes the development tools and tool support TopLink provides.

■ Chapter 4, "Using TopLink Workbench"

This chapter describes how to use TopLink Workbench including working with
databases, generating data from database tables, and creating and editing a
sessions.xml file.

■ Chapter 6, "Using an Integrated Development Environment"

This chapter explains how to integrate TopLink with an IDE. Detailed instructions
are given for the Oracle JDeveloper IDE.

■ Chapter 5, "Using the Schema Manager"

This chapter explains how to use the TopLink schema manager to create databases,
tables, stored procedures, and to populate database tables.

Understanding TopLink Development Tools 3-1

3
Understanding TopLink Development Tools

The TopLink runtime provides Java or J2EE applications with access to persistent
entities stored in a data source. In addition to run-time capabilities, the TopLink
Foundation Library includes the TopLink Application Programming Interface (API).
This API enables applications to access TopLink run-time features.

TopLink includes additional development tools that simplify application
development. These tools capture mapping and run-time configuration information in
metadata files that TopLink passes to the application at run time.

TopLink application development includes the following:

■ Development Environment

■ TopLink Run-Time Environment

TopLink metadata is the link between the two (see "Understanding TopLink Metadata"
on page 2-19).

Figure 3–1 illustrates how these elements interact with the data source.

Figure 3–1 TopLink Components in Development Lifecycle

Development Environment

3-2 Oracle TopLink Developer’s Guide

Development Environment
To create a TopLink application, use TopLink Workbench to map objects to data
sources using relational and nonrelational models. Capture the resulting mappings
and additional run-time configurations in the TopLink project file (project.xml) and
build a session configuration file (sessions.xml). These files together represent your
entire TopLink project, as shown in Figure 3–2.

During development, you can use the TopLink API to define query and transaction
logic. When you use entity beans, there is generally little or no direct use of the
TopLink API and there is no session or sessions.xml file.

Figure 3–2 TopLink Workbench in Development Environment

TopLink Workbench can import compiled entity classes (Java objects or EJB entity
beans), as well as relational or nonrelational schemas through a JDBC driver
(configured by the developer). Because TopLink imports the object and relational
models for mapping, developers can develop the two models relatively independently
from the mapping phase of a project development.

TopLink Run-Time Environment
The TopLink Foundation Library provides the TopLink run-time component. Access
the run-time component either directly through the TopLink API or indirectly through
a J2EE container when using entity beans with container-managed persistence. The
run-time environment is not a separate or external process–it is embedded within the
application. Application calls invoke TopLink to provide persistence behavior. This
function allows for transactional and thread-safe access to shared database connections
and cached objects.

In addition to J2EE environments, TopLink fully supports non-J2EE environments as
well. See "Selecting an Architecture With TopLink" on page 2-5 for more information.

Using TopLink Workbench 4-1

4
Using TopLink Workbench

This chapter provides information about understanding, using, and customizing
TopLink Workbench.

This chapter includes the following sections:

■ Understanding TopLink Workbench

■ Configuring the TopLink Workbench Environment

■ Working With TopLink Workbench

■ Working With TopLink Workbench Preferences

■ Working With Databases

■ Working With XML Schemas

■ Working With Classes

■ Integrating TopLink Workbench With Apache Ant

For information on using TopLink Workbench to configure sessions XML, refer to
Part XV, "TopLink Sessions".

Understanding TopLink Workbench
TopLink Workbench is a separate component from the TopLink runtime–it lets you
graphically configure descriptors and map your project. TopLink Workbench can
verify the descriptor options, access the data source (either a database or an XML
schema), and create the database schema. Using TopLink Workbench, you can define
TopLink descriptors and configurations without using code.

TopLink Workbench can be used during the development phase of the development
process (see "Developing Your Application With TopLink" on page 2-1). Typically, this
phase includes the following:

1. Defining an object model (a set of Java classes) to describe and solve your
problem.

2. Creating a TopLink Workbench project, importing your Java classes and data
sources, and using descriptors to describe how the Java classes map to your data
source model.

3. Creating a TopLink session and registering your descriptors. In your application,
use the session to retrieve and store objects from and to the data source.

TopLink Workbench creates a <projectName>.mwp file to store all TopLink project
information, including object model, descriptor, and session information.

Configuring the TopLink Workbench Environment

4-2 Oracle TopLink Developer’s Guide

The <projectName>.mwp file is used only by TopLink Workbench. Typically, the
only time you need to modify the <projectName>.mwp file is to merge changes
during application development by a team of developers ("Merging Files" on
page 6-4).

Using TopLink Workbench, you export this information into a project.xml file that
your TopLink enabled application reads at run time.

For more information on using TopLink Workbench as the development environment,
see Figure 3–2 on page 3-2.

Configuring the TopLink Workbench Environment
TopLink Workbench reads its environment variables from the setenv script in the
<TOPLINK_HOME>\bin directory.

Before you launch TopLink Workbench, you must configure its environment as
follows:

1. Use a text editor to open the <TOPLINK_HOME>\bin\setenv script.

■ For Windows, open the setenv.cmd file.

■ For UNIX, open the setenv.sh file.

2. Ensure that the JAVA_HOME environment variable is set:

■ For Windows: set JAVA_HOME=C:/j2sdk1.4.2_04

■ For UNIX: JAVA_HOME=/usr/local/packages/java; export JAVA_
HOME

3. Update the DRIVER_CLASSPATH environment variable to add the location of the
following (if necessary):

■ JDBC drivers–if you are using relational projects (see "Relational Projects" on
page 17-6).

■ J2EE Connector Architecture (J2C) adapters–if you are using EIS projects (see
"EIS Projects" on page 17-7).

■ J2C connector.jar file–if you are using EIS projects (see "EIS Projects" on
page 17-7).

The connector.jar file contains javax.resource.cci and
javax.resource.spi interfaces that TopLink EIS uses. By default, TopLink
Workbench updates its classpath to include the Java 1.5 connector.jar file
from <TOPLINK_HOME>/j2ee/home/lib. If this version of the
connector.jar file is incompatible with your environment, edit the
workbench.cmd or workbench.sh file in <TOPLINK_HOME>/bin to change
the path to this file.

At runtime, this connector.jar file (or its equivalent) must be on your
application or application server classpath.

Note: Do not include any Java classes for your persistent business
objects in the DRIVER_CLASSPATH variable. Instead, add these
persistent business objects in your TopLink Workbench project
classpath (see "Configuring Project Classpath" on page 19-3).

Working With TopLink Workbench

Using TopLink Workbench 4-3

■ Oracle Database ORACLE_HOME/rdbms/jlib/xdb.jar file - if you are using
direct-to-XMLType mappings with an Oracle9i or higher database (see
"Direct-to-XMLType Mapping" on page 33-4).

■ Custom Collection class that you use to override the default Collection
class that TopLink uses with a mapping container policy (see "Configuring
Container Policy" on page 32-26).

Example 4–1 shows how to set the DRIVER_CLASSPATH variable for Windows
and Example 4–2 for UNIX.

Example 4–1 Setting DRIVER_CLASSPATH on Windows

set DRIVER_
CLASSPATH=C:\OraHome2\jdbc\lib\ojdbc14.jar;C:\Attunity\Connect\Java\lib\attunityResourceAdapt
er.jar;C:\OraHome2\rdbms\jlib\xdb.jar

Example 4–2 Setting DRIVER_CLASSPATH on UNIX

DRIVER_
CLASSPATH=/OraHome2/jdbc/lib/ojdbc14.jar;/attunity/connect/java/lib/attunityResourceAdapter.j
ar;/OraHome2/rdbms/jlib/xdb.jar; export JDBC_CLASSPATH

4. Save and close the setenv script.

To use TopLink Workbench in a language different than your default, add the
-Duser.language and -Duser.country options to the JVM_ARGS variable in the
workbench.cmd or .sh file. For example, the following arguments will start TopLink
Workbench in US English, regardless of default language of your operating system:

JVM_ARGS="-Duser.language=en -Duser.country=en_US"

Working With TopLink Workbench
Figure 4–1 shows the primary parts of TopLink Workbench window.

Note: If the path to your driver(s) contains spaces, you must enclose
the path in double-quotes in the setenv.cmd file. For example:

set DRIVER_CLASSPATH="C:\Program Files\some directory\driver.jar\"

Working With TopLink Workbench

4-4 Oracle TopLink Developer’s Guide

Figure 4–1 TopLink Workbench Window

The numbered callouts in Figure 4–1 identify the following user interface components:

1. Menu bar

The menu bar contains menus for each TopLink Workbench function. Some
objects also contain context-sensitive menus. See "Using the Menus" on page 4-5
for more information.

2. Toolbars

The toolbars contain shortcuts to specific functions. See "Using the Toolbars" on
page 4-6 for more information.

3. Navigator window section

The Navigator window section shows the project navigation tree for all open
projects (see "Using the Navigator" on page 4-9). Click the plus (+) or minus (–)
sign next to an object (or double-click the object) to expand or collapse the tree.
When you select an object in the Navigator window section, its properties appear
in the Editor window.

4. Editor window section

The Editor window section contains specific property sheets and option tabs for
the currently selected object. See "Using the Editor" on page 4-10 for more
information.

5. Problems window section

Working With TopLink Workbench

Using TopLink Workbench 4-5

The Problems window section shows messages and errors for the currently
selected object in the Navigator window section (see "Using the Problems
Window" on page 4-11). Chapter 14, "TopLink Workbench Error Reference"
contains detailed information on each error message.

Using the Menus
TopLink Workbench contains two types of menus:

■ Menu Bar Menus

■ Context Menus

Menu Bar Menus
The menu bar, located at the top of the TopLink Workbench window, provides menus
for each TopLink Workbench function. Some menus (such as Selected) are
context-sensitive; the available options may vary, depending on the currently selected
object.

Figure 4–2 Sample Menu Bar Menu

Context Menus
When you right-click objects in the Navigator window, a context menu appears with
functions specific to the selected object.

Working With TopLink Workbench

4-6 Oracle TopLink Developer’s Guide

Figure 4–3 Sample Context Menu

Using the Toolbars
TopLink Workbench contains the following toolbars at the top of the window:

■ Standard Toolbar

■ Context Toolbar

Toolbars provide tool tips: each toolbar button provides a brief description when you
position the mouse pointer over it.

Standard Toolbar
The standard toolbar furnishes quick access to the standard menu options (File, Edit,
Selected, and so on).

Table 4–1 Standard Toolbar Buttons

Button Description Available for ...

New All

Open All

Save All

Save as All

Save all All

Close All

Close all All

Help topics All

Working With TopLink Workbench

Using TopLink Workbench 4-7

Context Toolbar
The context toolbar provides quick access to functions for the currently selected object
in the Navigator (see "Using the Navigator" on page 4-9). The available buttons will
vary, depending on which item you have selected.

You can also right-click the item and choose the appropriate option from the context
menu.

Export deployment XML Projects

Refresh classes Projects

Add or refresh classes Projects

Create new class Projects

Table 4–2 Context Toolbar Buttons

Button Description Available for ...

Login to database Databases

Logout of database Databases

Add new table Databases

Add or update tables from database Databases

Refresh from database Database tables

Remove table Database tables

Rename Database tables

Add database platform Database platform repositories

Rename repository Database platform repositories

Delete platform Database platform repositories

Clone platform Database platform repositories

Add database type Database platform repositories

Import schema Schemas

Relational aggregate descriptor Descriptors

Relational class descriptor Descriptors

Relational EJB descriptor Descriptors

EIS composite descriptor Descriptors

EIS root descriptor Descriptors

Table 4–1 (Cont.) Standard Toolbar Buttons

Button Description Available for ...

Working With TopLink Workbench

4-8 Oracle TopLink Developer’s Guide

EIS EJB descriptor Descriptors

XML descriptor Descriptors

Direct-to-field mapping Attributes in relational descriptors

Object type mapping1 Attributes in relational descriptors

Type conversion mapping1 Attributes in relational descriptors

Serialized mapping1 Attributes in relational descriptors

Direct-to-XMLType mapping Attributes in relational descriptors

Direct collection mapping Attributes in relational descriptors

Direct map mapping Attributes in relational descriptors

Aggregate mapping Attributes in relational descriptors

One-to-one mapping Attributes in relational descriptors

Variable one-to-one mapping Attributes in relational descriptors

One-to-many mapping Attributes in relational descriptors

Many-to-many mapping Attributes in relational descriptors

Direct mapping Attributes in EIS descriptors

Direct collection mapping Attributes in EIS descriptors

Composite object mapping Attributes in EIS descriptors

Composite collection mapping Attributes in EIS descriptors

One-to-one mapping Attributes in EIS descriptors

One-to-many mapping Attributes in EIS descriptors

Direct-to-XML mapping Attributes in XML descriptors

Direct collection mapping Attributes in XML descriptors

Composite object mapping Attributes in XML descriptors

Composite collection mapping Attributes in XML descriptors

Any object mapping Attributes in XML descriptors

Any collection mapping Attributes in XML descriptors

Transformation mapping Attributes in all descriptors

Unmap Attributes in all descriptors

Table 4–2 (Cont.) Context Toolbar Buttons

Button Description Available for ...

Working With TopLink Workbench

Using TopLink Workbench 4-9

Using the Navigator
TopLink displays the items included in each project (descriptors, mappings, data
source, and so on) in the Navigator on the left side of the TopLink Workbench
window, as Figure 4–4 shows.

Figure 4–4 Sample Navigator

The numbered callouts on Figure 4–4 identify the following user interface
components:

1. Project (relational project)

2. Package

3. TopLink Descriptor (relational descriptor)

4. Attribute/mapping (direct to field mapping)

5. Unsaved/changed item

6. Database

7. Database table

Click the plus (+) or minus (–) sign next to the item, or double-click the item name to
expand or collapse the item.

Session Sessions configurations

Session Broker Sessions configurations

Named connection pool Server sessions

Sequence connection pool Server sessions

Write connection pool Server sessions

Rename Database sessions, session brokers

Delete session Database sessions, session brokers

1 Deprecated. For more information, see "Using a Converter Mapping" on page 33-3

Table 4–2 (Cont.) Context Toolbar Buttons

Button Description Available for ...

Working With TopLink Workbench

4-10 Oracle TopLink Developer’s Guide

TopLink Workbench identifies items that have been changed but not yet saved by
adding an asterisk (*) in front of the item name.

When you select an item in the Navigator, its properties appear in the Editor (see
"Using the Editor" on page 4-10).

To perform specific functions for an item, select the item in the Navigator and do one
of the following:

■ Right-click on the object and select the function from the context menu (see
"Context Menus" on page 4-5).

■ Choose a function from the Selected menu (see "Menu Bar Menus" on page 4-5).

For information on using the Navigator with a database in relational projects, see
"Working With Database Tables in the Navigator Window" on page 4-21.

For information on using the Navigator with an XML schema in EIS projects (using
XML records) and XML projects, see "Working With XML Schemas in the Navigator"
on page 4-33.

Active and Inactive Descriptors
Inactive descriptors appear dimmed in the Navigator. Inactive descriptors are not
registered with the session when the project is loaded into Java. This feature lets you
define and test subsets of descriptors. To activate or deactivate a descriptor, right-click
the descriptor and select Activate/Deactivate Descriptor from the context menu.

Figure 4–5 Sample Active and Inactive Descriptors

Figure 4–5 numbered callouts show the following user interface components:

1. Inactive descriptor

2. Active descriptor

Errors and Missing Information
If an element in the project (such as a descriptor or mapping) contains an error or some
deficiency (sometimes called neediness), a warning icon appears beside the element
icon in the Navigator, and TopLink Workbench displays a message in the Problems
window (see "Using the Problems Window" on page 4-11).

Chapter 14, "TopLink Workbench Error Reference", contains more information on each
TopLink Workbench error message.

Using the Editor
The Editor, on the right side of the TopLink Workbench window, displays the property
sheet associated with the currently selected item in the Navigator, as Figure 4–6
shows.

Working With TopLink Workbench

Using TopLink Workbench 4-11

Figure 4–6 Sample Editor

Figure 4–6 numbered callouts identify the following user interface components:

1. Selected element (from the Navigator)

2. Editor property tabs

Using the Problems Window
If an element in the project (such as a descriptor or mapping) contains an error or some
deficiency (sometimes called neediness), the TopLink Workbench displays a caution
icon (represented by a yellow triangle with a black exclamation point in the middle) to
the left of the deficient element in the Navigator (see "Using the Navigator" on
page 4-9) and displays a message in the Problems window as Figure 4–7 shows.

If you select the error, then TopLink Workbench displays the complete error message
in the Problems window. Chapter 14, "TopLink Workbench Error Reference" contains
detailed information on each error message.

Figure 4–7 Sample Deficient Mapping

Working With TopLink Workbench Preferences

4-12 Oracle TopLink Developer’s Guide

Double-click any error message in the Problems window to automatically highlight
the specific node in the Navigator. To display or hide the Problems window, select
Window > Show Problems from the menu.

You can also create a status report (see "Generating the Project Status Report" on
page 18-12) that includes all errors in a selected project.

Using the Online Help
TopLink Workbench contains an extensive online Help system to assist you in
developing TopLink applications. You can use the online Help system in a hosted or
local environment (see "Help Preferences" on page 4-14).

To receive help on any field, tab, or element in TopLink Workbench, right-click the
element and select Help from the context menu or press F1.

To review the complete TopLink documentation and Quick Start, click Help.

Working With TopLink Workbench Preferences
To customize TopLink Workbench, select Tools > Preferences from the menu. The
Preferences dialog box appears.

Figure 4–8 Preferences Dialog Box

TopLink Workbench provides the following preferences:

■ General Preferences

– Help Preferences

■ Mappings Preferences

– Class Preferences

– EJB Preferences

– Database Preferences

■ Sessions Configuration Preferences

– New Names Preferences

Working With TopLink Workbench Preferences

Using TopLink Workbench 4-13

– Platform Preferences

Use this dialog box to configure TopLink Workbench preferences. After changing
preferences, you must restart TopLink Workbench.

To import your preferences from an existing file, click Import and select the file.

To export your preferences, click Export and select a directory location and filename.

General Preferences
Use the General preferences to customize the look and feel (the graphical user
interface) of TopLink Workbench as well as to specify any proxy information required
to access the Internet (for example, to allow TopLink to access XML schemas and
on-line documentation hosted on Internet sites). Follow these steps to customize the
General preferences:

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Select General in the Category window.

Figure 4–9 Preferences–General Dialog Box

Use the following information to enter data in each field of the dialog box:

Field Description

Display Splash Screen Specify if TopLink Workbench should show the graphical splash
screen when starting.

Look and Feel Select the look and feel to use for TopLink Workbench.

Size of recently opened
files list

Select the number of projects to maintain in the File > Reopen
option. See "Opening Existing Projects" on page 18-10 for more
information.

HTTP Proxy Host Specify if your PC requires a proxy server to access the internet.

HTTP Proxy Port Specify the port used by your proxy host.

Network Connect
Timeout

Specify the timeout (in seconds) to establish a network or internet
connection.

Working With TopLink Workbench Preferences

4-14 Oracle TopLink Developer’s Guide

You must restart TopLink Workbench to apply the changes.

Help Preferences
Use the Help preferences to select the location of the TopLink documentation (in
addition to the online Help) and other Help system preferences.

By default, TopLink installs includes only the online Help and release notes. All other
documentation (such as Oracle TopLink Getting Started Guide and Oracle TopLink
Developer’s Guide) can be accessed from a hosted location.

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Expand General in the Category window and select Help. The Preferences–Help
dialog box appears.

Figure 4–10 Preferences–General–Help Dialog Box

Use the following information to enter data in each field:

Network Read Timeout Specify the timeout (in seconds) when accessing data from a
network or internet connection.

Reopen Projects on
Startup

Select to reopen the projects that were open the last time you exited
the TopLink Workbench.

Field Description

Display Welcome at
Startup

Specify if TopLink should show the Welcome screen each time you
start TopLink Workbench.

External HTML Browser Click Browse and select the location of your default Web browser.
You must specify a Web browser to access the Quick Tour, Javadoc
(API), and other Web-based material.

Field Description

Working With TopLink Workbench Preferences

Using TopLink Workbench 4-15

Mappings Preferences
Use the Mappings preferences to specify general mapping preferences. Follow these
steps to set the Mapping preferences:

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Select Mappings in the Category window. The Mappings dialog box appears.

Figure 4–11 Preferences–Mappings Dialog Box

Use the following information to enter data in each field:

Hosted Help Content1 Access the complete TopLink documentation set located on Oracle
Technology Network (OTN). Selecting this option requires your PC
to have Internet access.

Note: Depending on your Internet connection, using Hosted
Documentation may impact performance when searching the
documentation.

Local Help Content1 Access the complete TopLink documentation set from a local
location (such as your PC or your company’s intranet).

Click Browse and select the help JAR file location.
1 You must restart TopLink Workbench to apply changes to this option.

Note: When using Hosted Help Content, ensure that your proxy
information, specified in the General Preferences, is correct.

When using Local Help Content, download the complete
documentation from OTN. See Oracle TopLink Getting Started Guide for
more information.

Field Description

Working With TopLink Workbench Preferences

4-16 Oracle TopLink Developer’s Guide

Class Preferences
Use the Class preferences to specify how TopLink Workbench maintains classes when
renaming or editing a zero-argument constructor. Follow these steps to set the Class
preferences:

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Expand Mappings in the Category window and select Class.

Figure 4–12 Preferences – Mappings – Class Dialog Box

On the Preferences–Mappings–Class dialog box, specify how TopLink Workbench
maintains classes when renaming or editing a zero-argument constructor.

EJB Preferences
Use the EJB preferences to specify how TopLink Workbench updates the
ejb-jar.xml file when saving EJB projects. Follow these steps to set the EJB
preferences:

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Expand Mappings in the Category window and select EJB.

Field Description

Allow changing query
type

Configure whether or not TopLink Workbench always allows,
never allows, or prompts before allowing you to change the query
type associated with a descriptor.

Allow changing query
format

Configure whether or not TopLink Workbench always allows,
never allows, or prompts before allowing you to change the
configuration of a query associated with a descriptor.

Working With TopLink Workbench Preferences

Using TopLink Workbench 4-17

Figure 4–13 Preferences–Mappings–EJB Preferences Dialog Box

Use the following information to select how TopLink Workbench will update the
ejb-jar.xml file:

Database Preferences
Use the Database preferences to specify custom database divers and connection URLs
for TopLink Workbench. These drivers and URLs can then be used when defining
database logins. Follow these steps to set the Database preferences:

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Expand Mappings in the Category window and select Database.

Field Description

Write ejb-jar.xml on
project save

Configure whether or not TopLink Workbench always updates,
never updates, or prompts before updating the ejb-jar.xml file
each time you save the project.

Allow removing EJB
info

Configure whether or not TopLink Workbench always allows,
never allows, or prompts before allowing you to remove the EJB
information associated with a descriptor. See "Configuring a
Descriptor With EJB Information" on page 25-45 for more
information.

Allow removing EJB 2.x
info

Configure whether or not TopLink Workbench always allows,
never allows, or prompts before allowing you to remove the EJB 2.0
or 2.1 information associated with a descriptor. See "Configuring a
Descriptor With EJB Information" on page 25-45 for more
information.

Working With TopLink Workbench Preferences

4-18 Oracle TopLink Developer’s Guide

Figure 4–14 Preferences–Mappings–Database Preferences Dialog Box

Use the following information to enter data in each field:

Sessions Configuration Preferences
Use the Sessions preferences to specify default classpaths to be added to each newly
created TopLink sessions configuration for features that require an external Java class
(for example, session event listeners). The entries added here will automatically
appear on the Sessions Configuration property sheet (see "Configuring a Sessions
Configuration" on page 73-2). Follow these steps to set the Sessions Configuration
preferences:

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Select Sessions Configuration in the Category window.

Field Description

Database Driver Enter the custom database driver class name.

Connection URL Enter the custom database connection URL.

Working With TopLink Workbench Preferences

Using TopLink Workbench 4-19

Figure 4–15 Preferences–Sessions Configuration Dialog Box

To add a JAR or ZIP file, click Add Entry or Browse and add the JAR or ZIP files that
contain the default compiled Java classes for this sessions configuration.

To remove a JAR or ZIP file, select the file and click Remove.

To change the order in which TopLink searches these JAR or ZIP files, select a file and
click Up to move it up, or click Down to move it down in the list.

New Names Preferences
Use the New Names preferences to specify the default values and names of newly
created sessions, session brokers, and connection pools. Follow these steps to set the
New Names preferences:

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Expand Sessions Configuration in the Category window and select New Names.

Figure 4–16 Preferences–Sessions Configuration–New Names Dialog Box

Working With TopLink Workbench Preferences

4-20 Oracle TopLink Developer’s Guide

Use the following information to enter data in each field:

Platform Preferences
Use the Platform preferences to specify the default data source type for newly created
sessions. The type selected here will automatically appear on the Create New Session
dialog box. Follow these steps to set the Platform preferences:

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Expand Sessions Configuration in the Category window and select Platform.

Figure 4–17 Preferences–Sessions Configuration–Platform Preferences Dialog Box

Use the following information to enter data in each field:

Field Description

Sessions Configuration Specify the default name for newly created sessions configuration
files (default, sessions.xml). See "Creating a Sessions
Configuration" on page 73-1 for more information.

Session Specify the default name for newly created sessions (default,
Session). See "Session Creation Overview" on page 73-1 for more
information.

Broker Specify the default name for newly created session brokers (default,
SessionBroker). See "Creating Session Broker and Client
Sessions" on page 73-6 for more information.

Connection Pool Specify the default name for newly created connection pools
(default, ConnectionPool). See Chapter 85, "Creating an Internal
Connection Pool" for more information.

Field Description

Use Server Platform Specify the default application server platform for newly created
sessions configuration files (default, sessions.xml). See "Creating
a Sessions Configuration" on page 73-1 for more information.

Default Data Source
Type

Select the default data source type (Database, EIS, or XML) and
platform for newly created sessions. See "Configuring the Server
Platform" on page 74-14 for more information.

Working With Databases

Using TopLink Workbench 4-21

Working With Databases
In relational projects, when you expand the database object in the Navigator, TopLink
Workbench displays the database tables associated with the project. You can associate
tables by importing them from the database, or by creating them within TopLink
Workbench.

Figure 4–18 Sample Database Tables

Figure 4–18 numbered callouts identify the following database icons.

1. Project

2. Database

3. Database table

Each database table property sheet contains the following tabs in the Editor:

■ Columns–Add or modify the table’s fields, and specify each field’s properties.

■ References–Specify references between tables.

This section includes information on the following topics:

■ Working With Database Tables in the Navigator Window

■ Working With Database Tables in the Editor Window

■ Generating Data From Database Tables

Working With Database Tables in the Navigator Window
This section describes the following options:

■ Logging In and Out of a Database

■ Creating New Tables

■ Importing Tables From a Database

■ Removing Tables

■ Renaming Tables

■ Refreshing Tables From the Database

See "Working With Database Tables in the Editor Window" on page 4-25 for more
information.

Logging In and Out of a Database
To log in or out of a relational database, do the following:

1. Create a database login (see "Database Login Configuration Overview" on
page 83-1).

Working With Databases

4-22 Oracle TopLink Developer’s Guide

2. To log in to a relational database, right-click the database object in the Navigator,
and choose Log In to Database from the context menu or choose Selected > Log
In to Database from the menu.

3. To log out of a relational database, right-click the database object in the Navigator
and choose Log Out of Database from the context menu or choose Selected > Log
Out of Database from the menu.

Creating New Tables
To create a new database table within TopLink Workbench, use the following
procedure:

1. Select the database object in the Navigator window and click Add New Table. The
New Table dialog box appears.

You can also right-click the database object and choose Add New Table from the
context menu, or choose Selected > Add New Table from the menu.

Figure 4–19 New Table Dialog Box

Use the following information to enter data in each field:

TopLink Workbench adds the database table to the project.

Although the database table has been added to the project, it has not been written to
the actual database. See "Generating Tables on the Database" on page 4-32 for more
information on creating the table in the database.

Continue with "Working With Database Tables in the Editor Window" on page 4-25 to
use these tables in your project.

Importing Tables From a Database
TopLink Workbench can automatically read the schema for a relational database and
import the table data into the project as long as your JDBC driver supports the
following JDBC methods:

■ getTables

Field Description

Catalog Use to identify specific database information for the table. Consult
your database administrator for more information.

Schema Use to identify specific database information for the table. Consult
your database administrator for more information.

Table Name Specify the name of this database table.

Working With Databases

Using TopLink Workbench 4-23

■ getTableTypes

■ getImportedKeys

■ getCatalogs

■ getPrimaryKeys

The JDBC driver must be on the TopLink Workbench classpath (see "Configuring the
TopLink Workbench Environment" on page 4-2).

To import tables from the database, use the following procedure:

1. Select the database object in the Navigator, and click Add/Update Existing Tables
from Database. The Import Tables from Database dialog box appears.

You can also right-click on the database object in the Navigator and choose
Add/Update Existing Tables from Database from the context menu or choose
Selected > Add/Update Existing Tables from Database from the menu.

Figure 4–20 Import Tables from Database Dialog Box

Figure 4–20 numbered callouts identify the following user interface components:

1. Filters

2. Database tables that match the filters

Use the following information to enter data in each field of the dialog box:

Field Description

Table Name Pattern Specify the name of database table(s) to import. Use percent
character (%) as a wildcard. Tables that match the Table Name
Pattern can be imported.

Catalog Specify the catalog of database table(s) to import.

Schema Pattern Specify the schema of database table(s) to import.

Table Type Specify the type of database table(s) to import.

Available Tables Click Get Table Names to make TopLink display tables that match
Table Name Pattern, Catalog, Schema Pattern, and Table Type
settings.

Working With Databases

4-24 Oracle TopLink Developer’s Guide

Examine each table’s properties to verify that the imported tables contain the correct
information. See "Working With Database Tables in the Editor Window" on page 4-25
for more information.

Removing Tables
To remove a database table from the project, use the following procedure:

1. Select a database table in the Navigator, and click Remove Table on the toolbar.
TopLink Workbench prompts for confirmation.

You can also right-click on the database object and choose Remove from the
context menu or choose Selected > Remove Table from the menu.

2. Click OK. TopLink Workbench removes the table from the project.

Renaming Tables
To rename a database table in the TopLink Workbench project, use the following
procedure:

1. Right-click the table in the Navigator and choose Rename from the context menu.
The Rename dialog box appears.

You can also select the table and choose Selected > Rename from the menu.

2. Enter a new name and click OK. TopLink Workbench renames the table.

Refreshing Tables From the Database
To refresh (that is, reload) the database tables in the TopLink Workbench project, use
this procedure:

Select a database table in the Navigator, and click Refresh from Database on the
toolbar.

You can also select the table and choose Selected > Refresh from Database from the
menu, or click Refresh. TopLink Workbench reloads the database table.

When refreshing tables from the database, if there are multiple database tables with
similar names, the Duplicate Tables dialog box appears.

Selected Tables Select the tables in the Available Tables area to import, and click
the right-arrow button. TopLink adds the table to the Selected
Tables field.

Click OK to import the tables from the database into the TopLink
Workbench project.

Import Fully Qualified
Names

Specify whether or not the tables’ names are fully qualified against
the schema and catalog.

Note: Although you have removed the table from the TopLink
Workbench project, the table remains in the database.

Note: Although you have renamed the table in the TopLink
Workbench project, the original table name remains in the database.

Field Description

Working With Databases

Using TopLink Workbench 4-25

Figure 4–21 Duplicate Table Dialog Box

Select the specific database table to update, and then click OK.

Working With Database Tables in the Editor Window
When you select a database table in the Navigator, its properties appear in the Editor.
Each database table contains the following property tabs:

■ Columns–Add or modify the table fields, and specify each field properties.

■ References–Specify references between tables.

This section describes how to use these tabs to configure the following:

■ Working With Column Properties

■ Setting a Primary Key for Database Tables

■ Creating Table References

■ Creating Field Associations

Working With Column Properties
Use the database table’s Column tab to specify properties for the database table’s
fields.

To specify a table’s column properties, use this procedure:

1. Select a database table in the Navigator. The table’s property sheet displays in the
Editor.

2. Click the Columns tab.

Figure 4–22 Fields Properties

Use the following information to fill each column on the Columns tab:

Working With Databases

4-26 Oracle TopLink Developer’s Guide

To add a new field, click Add.

To remove a field, select the field and click Remove.

To rename a field, select the field and click Rename.

Setting a Primary Key for Database Tables
To set a primary key(s) for a database table, use this procedure:

1. Select a database table in the Navigator. Its property sheet appears in the Editor.

2. Click the Columns tab.

Figure 4–23 Setting Primary Key for a Database Table

3. Select the Primary Key field(s) for the table.

Creating Table References
References are table properties that contain the foreign key; they may or may not
correspond to an actual constraint that exists on the database. TopLink Workbench

Field Description

Name Specify the name of the field.

Type Use the drop-down list to select the field’s type.

Note: The valid values will vary, depending on the database.

Size Specify the size of the field.

Sub-Size Specify the sub-size of the field.

Allows Null Specify if this field can be null.

Unique Specify whether the value must be unique within the table.

Primary Key Specify whether or not this field is a primary key for the table (see
"Setting a Primary Key for Database Tables" on page 4-26).

Identity Use to indicate a Sybase, SQL Server or Informix identity field.

Note: Some properties may be unavailable, depending on your
database type.

Note: TopLink Workbench can automatically import primary key
information if supported by the JDBC driver.

Working With Databases

Using TopLink Workbench 4-27

uses these references when you define relationship mappings and multiple table
associations.

When importing tables from the database, TopLink Workbench can automatically
create references (if the driver supports this), or you can define references from the
workbench. See "Importing Tables From a Database" on page 4-22.

To create a new table reference, use this procedure:

1. Select a database table in the Navigator. The table’s properties display in the
Editor.

2. Click the References tab.

Figure 4–24 References Tab

Figure 4–26 numbered callouts identify the following user interface components:

1. Table References area

2. Key Pairs area

3. In the References area, click Add. The New Reference dialog box appears.

Figure 4–25 New Reference Dialog Box

Use the following information to enter data in each field of the dialog box:

Field Description

Enter Name of New
Reference

Specify the name of the reference table. If you leave this field
blank, TopLink Workbench automatically creates a name based on
the format: SOURCETABLE_TARGETTABLE.

Working With Databases

4-28 Oracle TopLink Developer’s Guide

Continue with "Creating Field Associations" on page 4-28.

Creating Field Associations
For each table reference, you can specify one or more field associations that define how
fields in the source table relate to fields in the target table. See "Creating Table
References" on page 4-26.

To create new field references, use this procedure:

1. Select a database table in the Navigator. The table’s properties display in the
Editor.

2. Click the References tab.

Figure 4–26 References Tab

Figure 4–26 numbered callouts identify the following user interface components:

1. Table references area

2. Key pairs area

3. Select a table reference from the references area.

4. To create a new key pair, click Add in the key pairs area and complete each field in
the key pairs area using the following information:

Select the Source Table Specify the name of the source database table (the currently
selected table in the Navigator).

Select the Target Table Use the list to specify the target table for this reference.

On Database Specify if you want to create the reference on the database when
you create the table. Not all database drivers support this option.

Field Description

Table References Area

Reference Name Specify the name of this table reference

Target Table Specify the database table that is the target of this
reference.

On Table Specify if the reference exists on the database.

Key Pairs Area

Source Field Select the database field from the source table.

Field Description

Working With Databases

Using TopLink Workbench 4-29

Generating Data From Database Tables
 TopLink Workbench can automatically generate a variety of information from the
database tables. This section describes the following:

■ Generating SQL Creation Scripts

■ Generating Classes and Descriptors From Database Tables

■ Generating EJB Entity Beans and Descriptors From Database Tables

■ Generating Tables on the Database

Generating SQL Creation Scripts
Using the TopLink Workbench, you can generate SQL scripts that you can use to create
tables in a relational database.

To automatically generate SQL scripts to create the tables in a project, use this
procedure:

1. Select the database table(s) in the Navigator.

2. Right-click the table(s) and choose Generate Creation Script for > Selected Table
or All Tables from the context menu. The SQL Creation Script dialog box appears.

You can also choose Selected > Generate Creation Script for > Selected Table or
All Tables from the menu.

Figure 4–27 SQL Creation Script Dialog Box

Copy the script and paste it into a file. You may need to edit the file to include
additional SQL information that TopLink Workbench could not generate. If the
database table or column name is an SQL reserved word, you must edit the SQL script
and enclose the database table or column in quotes. See "Oracle Database Reserved
Words" in the Oracle Database SQL Reference Guide for more information.

Target Field Select the database field from the target table.

Note: If TopLink cannot determine how a particular table feature
should be implemented in SQL, it generates a descriptive message
in the script.

Field Description

Working With Databases

4-30 Oracle TopLink Developer’s Guide

Generating Classes and Descriptors From Database Tables
TopLink Workbench can automatically generate Java class definitions, descriptor
definitions, and associated mappings from the information in database tables. You can
later edit the generated information if necessary.

For each table, TopLink Workbench does the following:

■ Creates a class definition and a descriptor definition.

■ Adds attributes to the class for each column in the table.

■ Automatically generates access methods, if specified.

■ Creates direct-to-field mappings for all direct (nonforeign key) fields in the table.

■ Creates relationship mappings (one-to-one and one-to-many) if there is sufficient
foreign key information. You may be required to determine the exact mapping
type.

To generate classes and descriptors from database tables, use the following
procedure:
1. Select the database table(s) in the Navigator.

2. Right-click the table(s) and choose Generate Classes and Descriptors from >
Selected Table or All Tables from the context menu.

You can also choose Selected > Generate Classes and Descriptors from >
Selected Table or All Tables from the menu.

3. Click Yes. The Generate Classes and Descriptors dialog box appears.

Figure 4–28 Generate Classes and Descriptors Dialog Box

Use the following information to enter data in each field:

If the table contains foreign key fields that may represent relationship mappings, then
the Choose Relationships to Generate dialog box appears.

Note: Class and attribute names are generated based on the table
and column names. You can edit the class properties to change
their names.

Field Description

Package Name Specify the name of package to generate. The package name must
comply with Java naming standards.

Generate Accessing
Methods

Specify if TopLink Workbench generates accessing methods for
each class and descriptor.

Working With Databases

Using TopLink Workbench 4-31

Figure 4–29 Choose Relationships to Generate Dialog Box

Select an entry from Potential Relationships and click the 1:1 Mapping or 1:M
Mapping button, located between the Potential Relationships and Selected
Relationships windows. See Chapter 33, "Understanding Relational Mappings" for
more information on mappings.

You can also specify whether the relationships are bidirectional. See "Configuring
Bidirectional Relationship" on page 32-34 for more information.

Click OK to automatically create the relationships.

The newly created descriptors appear in the Navigator of TopLink Workbench.

Generating EJB Entity Beans and Descriptors From Database Tables
Using TopLink Workbench, you can automatically generate EJB entity beans and
descriptors for each database table, including the following:

■ One EJB descriptor that implements the <javax.ejb.EntityBean> and entity
bean classes

■ Bean relation attributes (CMP or BMP)

■ Java source for each class

■ EJB-compliant method stubs

To automatically generate EJB entity beans and descriptors for each database table, use
this procedure:

1. Select the database table(s) in the Navigator.

2. Right-click the table(s) and choose Generate EJB Entities and Descriptors from >
Selected Table or All Tables from the context menu. TopLink Workbench prompts
you to save your project.

You can also choose Selected > Generate EJB Entities and Descriptors from >
Selected Table or All Tables from the menu.

3. Click Yes to save your project before generating EJB entities. The Generate EJB
Entity Classes and Descriptors dialog box appears.

Note: This option is available only for projects with
container-managed or bean-managed persistence. See "Configuring
Persistence Type" on page 19-5 for more information.

Working With Databases

4-32 Oracle TopLink Developer’s Guide

Figure 4–30 Generate EJB Entity Classes and Descriptors Dialog Box

Use the following information to enter data in each field on the Generate EJB Entity
Classes and Descriptors dialog box:

If the table contains foreign key fields that may represent relationship mappings, then
the Choose Relationships to Generate dialog box appears. Select a potential
relationship and click the 1:1 Mapping or 1:M Mapping button, located between the
Potential Relationships and Selected Relationships windows.

You can also specify if the relationships are bidirectional (see "Configuring
Bidirectional Relationship" on page 32-34).

Repeat for all appropriate sets of tables.

Click OK to generate the relationship mappings.

The system creates the remote primary key, home, and bean classes for each bean and
adds this information to the project.

Generating Tables on the Database
To create a table in the database, based on the information in TopLink Workbench, use
this procedure:

1. Select the database table(s) in the Navigator.

2. Right-click the table(s) and choose Create on Database > Selected Table or All
Tables from the context menu.

You can also create tables by selecting Selected > Create on Database > Selected
Table or All Tables from the menu.

TopLink Workbench creates the tables on the database.

Field Description

Package Name Name of the package to contain the generated entity
beans and descriptors.

Generate Local Interfaces1

1 For CMP and BMP projects only. See "Configuring a Descriptor With EJB Information" on page 25-45 for
more information.

Specify if TopLink creates local interfaces for the EJB
entity beans.

Generate Remote Interfaces1 Specify if TopLink creates remote interfaces for the EJB
entity beans.

Note: You must log in the database before creating tables. See
"Logging in to the Database" on page 20-7 for more information.

Working With XML Schemas

Using TopLink Workbench 4-33

Alternatively, you can generate tables at run time by exporting the information in
TopLink Workbench to a TableCreator class (see "Understanding the Schema
Manager" on page 5-1).

Working With XML Schemas
For XML and EIS projects, TopLink Workbench maps each TopLink descriptor to your
XML schema.

This section includes information on the following topics:

■ Working With XML Schemas in the Navigator

■ Working With XML Schema Structure

■ Importing an XML Schema

■ Configuring XML Schema Reference

■ Configuring XML Schema Namespace

Working With XML Schemas in the Navigator
After you import one or more XML schemas into your project (see Importing an XML
Schema on page 4-34) and you expand the schema object in the Navigator, TopLink
Workbench displays the schemas associated with the project.

Figure 4–31 Sample XML Schemas

Figure 4–31 numbered callouts identify the following schema icons:

1. Project

2. Schemas object

3. Specific schema

Working With XML Schemas

4-34 Oracle TopLink Developer’s Guide

For more information, see the following:

■ "Working With XML Schema Structure" on page 4-34

■ "Configuring XML Schema Reference" on page 4-36

■ "Configuring XML Schema Namespace" on page 4-37

Working With XML Schema Structure
When you select a specific XML schema in the Navigator, you can display the
structure and details of the schema using the Schema Structure tab.

To display the structure and details of a schema, use this procedure:

1. Select a schema element in the Navigator. Its properties appear in the Editor.

2. Click the Schema Structure tab. The Schema Structure tab appears.

3. Select an element in the schema. The element’s details appear.

Figure 4–32 Schema Structure Tab

Use the following information to verify data in each field in the Schema Document
Info tab:

These fields are for display only and cannot be changed in TopLink Workbench.

Importing an XML Schema
The first step in configuring an EIS project (using XML records) or XML project is
importing the XML schema(s) that your project uses.

When you import a schema, you define a schema reference that gives TopLink the
information it needs to locate the schema itself. Anytime after you import an XML
schema, you can update the schema reference (see "Configuring XML Schema
Reference" on page 4-36) if necessary.

After importing an XML schema, you can configure XML schema namespaces (see
"Configuring XML Schema Namespace" on page 4-37).

Field Description

Schema Structure Displays the elements of the schema, listed in alphabetical order, in
an expandable or collapsible tree structure.

Details Displays detailed information (such as name and type) for the
currently selected element in the Schema Structure area.

Working With XML Schemas

Using TopLink Workbench 4-35

To import an XML schema into an EIS project (using XML records) or an EIS project,
use this procedure:

1. Right-click the schemas element in the Navigator and select Import Schema from
the context menu. The Import Schema dialog box appears.

Figure 4–33 Import Schema Dialog Box

Use the following information to enter data in each field in the Import Shema dialog
box:

To reimport a specific schema, right-click on the specific schema in the Navigator and
select Reimport Schema from the context menu.

To reimport all schemas in a project, right-click on Schemas in the Navigator and select
Reimport All Schemas from the context menu.

Field Description

Name Specify the name of this schema. This is the display name that
TopLink Workbench uses. It can be different than the name you
specify when you configure Source.

Source Select how TopLink Workbench should import the schema.

File Specify that TopLink Workbench should import the schema from a
file.

Enter the fully qualified directory path and filename of the schema
file.

URL Specify that TopLink Workbench should import the schema using a
URL.

Enter the complete URL of the schema file.

Note: When importing schemas by URL, ensure you have set your
proxy information correctly. See "General Preferences" on page 4-13
for more information.

Classpath Specify that TopLink Workbench should import the schema from the
project classpath.

Resource Name Enter the fully qualified name of the XML schema file including the
name of the package of which it is a part. For example, if your XML
schema mySchema.xsd is in C:\project\config and you add this
directory to your project classpath (see "Configuring Project
Classpath" on page 19-3, specify a resource name of
project.config.mySchema.xsd.

Working With XML Schemas

4-36 Oracle TopLink Developer’s Guide

To change a schema’s source, right-click on the specific schema in the Navigator
window and select Properties from the context menu. The Schema Properties dialog
appears.

Configuring XML Schema Reference
After you import an XML schema (see "Importing an XML Schema" on page 4-34), you
can update its source by configuring the schema reference.

Using TopLink Workbench
To specify the source of a schema, use this procedure:

1. Select a schema element in the Navigator. Its properties appear in the Editor.

2. Click the Schema Document Info tab. The Schema Document Info tab appears.

Figure 4–34 Schema Document Info Tab–Source Field

3. Click Edit to select a new source for the selected schema. The Schema Properties
dialog box appears.

Figure 4–35 Schema Properties Dialog Box

Working With XML Schemas

Using TopLink Workbench 4-37

Use the following information to complete each field in the Schema Properties dialog
box:

Using Java
Use Java to configure schema reference. Create a descriptor amendment method (see
"Configuring Amendment Methods" on page 25-81) that instantiates the appropriate
type of XMLSchemaReference (XMLSchemaClassPathReference,
XMLSchemaFileReference, or XMLSchemaURLReference) and configures the
descriptor with it, as follows:

■ If you are using EISDescriptors, the TopLink runtime does not use the schema
reference; no further configuration is required.

■ If you are using XMLDescriptors, configure the descriptor with the
XMLSchemaReference using XMLDescriptor method setSchemaReference.

Configuring XML Schema Namespace
As defined in http://www.w3.org/TR/REC-xml-names/, an XML namespace is a
collection of names, identified by a URI reference, which are used in XML documents
as element types and attribute names. To promote reusability and modularity, XML
document constructs should have universal names, whose scope extends beyond their
containing document. XML namespaces are the mechanism which accomplishes this.

When you import an XML schema (see "Importing an XML Schema" on page 4-34)
such as the one that Example 4–3 shows, TopLink Workbench organizes the various
namespaces that the XML schema identifies as Table 4–3 shows.

Example 4–3 XML Schema with Namespace Options

<xsd:schema

Field Description

Name Specify the name of this schema. This is the display name that
TopLink Workbench uses. It can be different than the name you
specify when you configure Source.

Source Select how TopLink Workbench should import the schema.

File Specify that TopLink Workbench should import the schema from a
file.

Enter the fully qualified directory path and filename of the schema
file.

URL Specify that TopLink Workbench should import the schema using a
URL.

Enter the complete URL of the schema file.

Note: When importing schemas by URL, ensure you have set your
proxy information correctly. See "General Preferences" on page 4-13
for more information.

Classpath Specify that TopLink Workbench should import the schema from the
project classpath.

Resource Name Enter the fully qualified name of the XML schema file including the
name of the package of which it is a part. For example, if your XML
schema mySchema.xsd is in C:\project\config and you add this
directory to your project classpath (see "Configuring Project
Classpath" on page 19-3, specify a resource name of
project.config.mySchema.xsd.

Working With XML Schemas

4-38 Oracle TopLink Developer’s Guide

xmlns:<prefix>="<URI>" <!-- TopLink Workbench Built-in Namespace -->
targetNamespace="<URI>" <!-- TopLink Workbench Target Namespace -->
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="10.1.3">
<xsd:import <!-- TopLink Workbench Imported Namespace -->

namespace="http://xmlns.oracle.com/ias/xsds/opm"
schemaLocation="object-persistence_1_0.xsd"

/>
...
</xsd:schema>

For more information, see "Understanding XML Namespaces" on page 17-22.

Using TopLink Workbench
To specify the namespaces of a schema, use this procedure:

1. Select a schema element in the Navigator. Its properties appear in the Editor.

2. Click the Schema Document Info tab. The Schema Document Info tab appears.

Table 4–3 TopLink Workbench XML Schema Categories

TopLink
Workbench
Category Defined By Purpose When Needed

Built-in xmlns:<prefix>="<URI>" Provides access to types
defined in other XML
schemas for use as is.

If your project uses more
than one XML schema or if
you want to use xsi or xsd
types.

Target targetNamespace="<URI>" The namespace you use to
qualify the types you define
for your application. If set, all
XML documents that use
these types must use this
namespace qualifier.

You may need to specify a
target namespace
depending on how element
and attribute form options
are set (see "Element and
Attribute Form Options" on
page 17-23).

Imported xsd:import Provides access to types
defined in the corresponding
built-in XML schema so that
you can extend the built-in
types. Extended types must
be qualified by the target
namespace.

If your project uses more
than one XML schema and
you want to extend one or
more built-in types.

Working With XML Schemas

Using TopLink Workbench 4-39

Figure 4–36 Schema Document Info Tab–Namespaces Field

Use the following information to complete each Namespaces field in the tab:

Using Java
Using Java, to configure XML schema namespaces for an EIS descriptor (with XML
records) or an XML descriptor, create a descriptor amendment method (see
"Configuring Amendment Methods" on page 25-81) that uses EISDescriptor or
XMLDescriptor method getNamespaceResolver to configure the descriptor’s
NamespaceResolver accordingly as Example 4–4 shows.

Field Description

Built-in Namespaces All namespaces defined by xmlns:<prefix>="<URI>".

Note that when a schema is imported to the TopLink
Workbench (see "Importing an XML Schema" on page 4-34),
none of the built-in namespaces’ URLs are selected. If you are
using inheritance, declare the built-in namespace with xsi
prefix. Otherwise, TopLink will throw exceptions.

Target Namespaces All namespaces defined by targetNamespace="<URI>".

Imported Namespaces All namespaces defined by xsd:import.

Prefix Double-click in the Prefix field to specify the prefix that
corresponds to the given namespace.

When the TopLink runtime marshalls (writes) an object to an
XML document, it uses the namespace prefixes you specify
here.

When the TopLink runtime unmarshalls (reads) an XML
document, the document may use any prefix value as long as it
corresponds to the appropriate namespace. For more
information, see "TopLink Runtime Namespace Resolution" on
page 17-26.

Declare When selected, XML documents must use the corresponding
URI qualifier when referring to types from this namespace.
XML documents may use a different prefix value as long as
that value is associated with the appropriate namespace URI.
For more information, see "TopLink Runtime Namespace
Resolution" on page 17-26.

Working With Classes

4-40 Oracle TopLink Developer’s Guide

Example 4–4 Configuring Namespaces

public void addToDescriptor(ClassDescriptor descriptor) {
descriptor.getNamespaceResolver.put(

prefix,
namespaceURI

);
}

Working With Classes
Using TopLink Workbench, you can create Java classes and packages. This section
includes information on the following:

■ Creating Classes

■ Configuring Classes

■ Importing and Updating Classes

■ Managing Nondescriptor Classes

■ Renaming Packages

Creating Classes
Oracle recommends that you develop your Java classes using an IDE such as Oracle
JDeveloper and import these existing classes into TopLink Workbench (see "Importing
and Updating Classes" on page 4-50)

However, it is sometimes convenient to create and configure classes in TopLink
Workbench: for example, when generating an object model from a database schema.

This section includes information on using TopLink Workbench to create Java classes.

For more information on using TopLink Workbench to edit classes, see "Creating
Classes" on page 4-40.

Using TopLink Workbench
To create new classes and packages from within TopLink Workbench, use this
procedure:

1. Select the project in the Navigator and click Create New Class.

You can also right-click the project in the Navigator and choose Create New Class
from the context menu or choose Selected > Create New Class from the menu.

Figure 4–37 Add New Class Dialog Box

Use the following information to enter data in each field on the Add New Class dialog
box:

Working With Classes

Using TopLink Workbench 4-41

For more information on using TopLink Workbench to edit classes, see "Configuring
Classes" on page 4-41.

Configuring Classes
Oracle recommends that you develop your Java classes using an IDE such as Oracle
JDeveloper and import these existing classes into TopLink Workbench (see "Importing
and Updating Classes" on page 4-50)

However, it is sometimes convenient to create (see "Creating Classes" on page 4-40)
and configure classes in TopLink Workbench: for example, when generating an object
model from a database schema.

This section describes using TopLink Workbench to edit classes, including the
following:

■ Configuring Class Information

■ Configuring Class Modifiers

■ Configuring Class Interfaces

■ Adding Attributes

■ Configuring Attribute Modifiers

■ Configuring Attribute Type Information

■ Configuring Attribute Accessing Methods

■ Adding Methods

■ Configuring Method Modifiers

■ Configuring Method Type Information

■ Configuring Method Parameters

Configuring Class Information
This section includes information on Using TopLink Workbench to configure class
information.

Using TopLink Workbench To configure class and superclass information, use this
procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Class tab.

Field Description

Package Name Choose an existing package or enter a new package name. If
blank, TopLink Workbench uses the default package name.

New Class Name Enter a class name. The New Class Name must be unique within
the package.

Working With Classes

4-42 Oracle TopLink Developer’s Guide

Figure 4–38 Class Tab, Class Information Fields

Use the following information to enter data in each field on the tab:

Configuring Class Modifiers
This section includes information on Using TopLink Workbench to configure class
modifiers.

Using TopLink Workbench To configure class modifiers, use this procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Class tab.

Figure 4–39 Class Tab, Class Modifiers Fields

Field Description

Name The name of the class. This field is for display only.

Superclass Click Browse and select a class and package that contains the
class (that is, the superclass).

Working With Classes

Using TopLink Workbench 4-43

Use the following information to enter data in each field on the tab:

Configuring Class Interfaces
 This section includes information on Using TopLink Workbench to specify the
interfaces implemented by a class. You can choose any interface in the TopLink
Workbench classpath (see "Configuring Project Classpath" on page 19-3).

Although you may add interfaces to a project directly (see "Importing and Updating
Classes" on page 4-50), you do not need to do so in order to configure a class to
implement an interface.

Using TopLink Workbench To implement interfaces, use this procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Class tab.

Figure 4–40 Class Tab, Interfaces Implemented Fields

Use the following information to enter data in the Interfaces Implemented field on the
Class tab:

Field Description

Access Modifiers Use to specify whether the class is accessible publicly or not.

Only public classes are visible to the Oracle TopLink
Workbench.

Other Modifiers Specify if the class is Final or Abstract, or both. Final classes are
not included in the superclass selection lists for other classes to
extend.

Field Description

Interfaces Implemented To add an interface, click Add and select the interface and
package.

To remove an interface, select the interface and click Remove

Working With Classes

4-44 Oracle TopLink Developer’s Guide

Adding Attributes
This section includes information on Using TopLink Workbench to add an attribute to
a class.

Using TopLink Workbench To add a new attribute (field) to the descriptor, click Add.

To delete an existing attribute, select the attribute and click Remove.

To rename an existing attribute, select the attribute and click on Rename.

The Attributes tab contains the following tabs:

■ General

■ Accessors

Configuring Attribute Modifiers
This section includes information on Using TopLink Workbench to configure attribute
modifiers.

Using TopLink Workbench To specify access modifiers, use this procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Attributes tab. The Attributes tab contains two sub-tabs.

4. Click the General tab.

Figure 4–41 Attributes Tab, Modifiers Fields

Use the following information to enter data in the Modifiers fields on the Attributes
tab:

Working With Classes

Using TopLink Workbench 4-45

Configuring Attribute Type Information
This section includes information on Using TopLink Workbench to configure attribute
type information.

Using TopLink Workbench To specify attribute type information, use this procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Attributes tab. The Attributes tab contains two sub-tabs.

4. Click the General tab.

Figure 4–42 Attributes Tab, Type Information Fields

Use the following information to enter data in Type Information fields on the
Attributes tab:

Field Description

Access Modifiers Specify how the attribute is accessible:

Public

Protected–only visible within its own package and
subclasses.

Private–not visible for subclasses

Default–only visible within its own package

Other Modifiers Specify whether the attribute is Final, Static, Transient, or
Volatile.

Note: Selecting some modifiers may disable others.

Field Description

Type Click Browse and select a class and package for the attribute.

Type Dimensionality Specify the length of an array. This field applies only if Type is
an array.

Working With Classes

4-46 Oracle TopLink Developer’s Guide

Configuring Attribute Accessing Methods
This section includes information on Using TopLink Workbench to configure attribute
accessing methods. If you change an attribute and regenerate the accessing methods,
TopLink does not remove any previously generated methods.

Using TopLink Workbench To specify attribute accessing methods, use this procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Attributes tab. The Attributes tab contains two sub-tabs.

4. Click the Accessors tab.

Figure 4–43 Attributes Tab, Accessors Fields

Use the following information to complete the Accessors fields on the Attributes tab:

Value Type Click Browse and select a class and package for the attribute.

This field applies for ValueHolderInterface types only.

Map Key Type Click Browse and select a class and package for the attribute.

This field applies for Map types only.

Map Value Type Click Browse and select a class and package for the attribute.

This field applies for Map types only.

Element Type Click Browse and select a class and package for the attribute.

This field applies for List types only.

Field Description

Get Method Choose the get method for the attribute.

This field applies for non-Collection types only.

Set Method Choose the set method for the attribute.

This field applies for non-Collection types only.

Field Description

Working With Classes

Using TopLink Workbench 4-47

Adding Methods
This section includes information on Using TopLink Workbench to add a method to a
class.

Using TopLink Workbench To add or remove methods, use this procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Methods tab.

Figure 4–44 Class Info–Methods Tab

To add a new method to the descriptor, click Add.

To delete an existing method, select the method and click Remove.

Add Method Choose the add method for the attribute.

This field applies for List and Map types only.

Remove Method Choose the remove method for the attribute.

This field applies for List and Map types only.

Value Holder Get Method Choose the method used to return the
ValueHolderInterface type.

This field applies for ValueHolderInterface types only.

Value Holder Set Method Choose the method used to set the ValueHolderInterface
type.

This field applies for ValueHolderInterface types only.

Value Get Method Choose the method used to return the actual value.

This field applies for ValueHolderInterface types only.

Value Set Method Choose the method used to set the actual value.

This field applies for ValueHolderInterface types only.

Field Description

Working With Classes

4-48 Oracle TopLink Developer’s Guide

To rename an existing method, select the method and click Rename.

Configuring Method Modifiers
This section includes information on Using TopLink Workbench to configure method
modifiers.

Using TopLink Workbench To specify access modifiers, use this procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Methods tab.

Figure 4–45 Methods Tab, Modifiers Fields

Use the following information to enter data in Modifiers fields on the Methods tab:

Configuring Method Type Information
This section includes information on Using TopLink Workbench to configure method
type information.

Field Description

Access Modifiers Specify how the method can be accessed:

Public

Protected–only visible within its own package and
subclasses.

Private–not visible for subclasses.

Default–only visible within its own package.

Other Modifiers Specify whether the method is Abstract, Final, Synchronized,
Static, or Native.

Note: Selecting some modifiers may disable others.

Working With Classes

Using TopLink Workbench 4-49

Using TopLink Workbench To specify method type information, use this procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Methods tab.

Figure 4–46 Methods Tab, Type Information Fields

Use the following information to enter data in Type Information fields on the Methods
tab:

Configuring Method Parameters
This section includes information on Using TopLink Workbench to configure method
parameters.

Using TopLink Workbench To specify additional method parameters, use this procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Methods tab.

Field Description

Return Type Click Browse and select a class and package for the method.

Type Dimensionality Specify the length of an array. This field applies only if Type is
an array.

Working With Classes

4-50 Oracle TopLink Developer’s Guide

Figure 4–47 Methods Tab, Method Parameters Fields

Use the following information to enter data in Parameters fields on the Methods tab:

Importing and Updating Classes
This section includes information on Using TopLink Workbench to import and update
Java classes.

You can import Java classes and interfaces created in any IDE.

You can import any class on the system classpath or project classpath.

If a class exists on both the system classpath and the project classpath, TopLink
Workbench will update the class from the system classpath. To update or refresh from
the project classpath, remove the class from the system classpath and restart TopLink
Workbench.

For more information, see "Configuring Project Classpath" on page 19-3.

Using TopLink Workbench
Use this procedure to update or refresh the classes in the TopLink Workbench project.

1. Define the available classes and packages for the project on the General tab. See
"Configuring Project Classpath" on page 19-3 for information on classes and
packages.

2. Click Add or Refresh Class. The Select Classes dialog box appears.

You can also update the classes by choosing Selected > Add or Refresh Classes
from the menu.

Field Description

Type Click Browse and select a class and package for the method.

Dimensionality Specify the length of an array. This field applies only if Type is
an array.

Working With Classes

Using TopLink Workbench 4-51

Figure 4–48 Select Classes Dialog Box

Select the packages or classes (or both) to import into the project and click OK.
TopLink Workbench adds the new classes to your project in the Navigator.

By default, TopLink Workbench creates the following descriptor types for each
package and class (depending on your project type):

■ Relational projects–Relational class descriptors (see "Relational Class Descriptors"
on page 24-2)

■ EIS projects–EIS composite descriptors (see "EIS Composite Descriptors" on
page 24-5)

■ XML projects–XML descriptors (see "XML Descriptors" on page 23-12)

See Chapter 24, "Creating a Descriptor" for more information.

To Remove a Class From a Project, do the following:
Select the descriptor and click Remove, or choose Selected > Remove from the menu.

Managing Nondescriptor Classes
Some of the mappings in your TopLink project may reference classes that do not have
TopLink descriptors or are not included in the project.

To add, remove, or refresh Java classes that do not have TopLink descriptors, use this
procedure:

From the menu, select Workbench > Manage Non-Descriptor Classes. The Manage
Non-Descriptor Classes dialog box appears.

You can access the dialog box by right-clicking the TopLink project icon in the
Navigator and selecting Manage Non-Descriptor Classes from the context menu.

Note: If the class exists on both the system classpath and the
project classpath, TopLink Workbench will update the class from
the system classpath. To update or refresh from the project
classpath, remove the class from the system classpath and restart
TopLink Workbench.

Working With Classes

4-52 Oracle TopLink Developer’s Guide

Figure 4–49 Manage Non-Descriptor Classes Dialog Box

Select one of the following options:

■ To add new classes, click Add. The Select Classes dialog box appears.

■ To add new classes, click Add. The Select Classes dialog box appears (see
Figure 4–48, "Select Classes Dialog Box" on page 4-51.

Only classes that have been added to the project’s class path can be added as
nondescriptor classes. See "Configuring Project Classpath" on page 19-3 for more
information.

■ To delete an existing class, select the class and click Remove.

■ To refresh the classes (for example, if you edited the classes in an IDE), click
Refresh.

Renaming Packages
When you add classes to a project, TopLink Workbench shows the classes contained in
the package to which they belong (see "Using the Navigator" on page 4-9).

You can use TopLink Workbench to change the package statements in all the Java
classes of a selected package (to move the all the classes contained by the selected
package to a new package). This is useful if you are refactoring an existing TopLink
Workbench project.

For more information on using TopLink Workbench to edit classes, see "Configuring
Classes" on page 4-41.

Using TopLink Workbench
To change the package of an existing class in TopLink Workbench, use this procedure:

Note: The TopLink Workbench package rename feature is not
intended for migrating projects from older versions of TopLink: for
this, you must still use the TopLink Package Renamer. The Package
Renamer updates import statements for TopLink classes: it does not
change the package statements in user application classes.

For information on the TopLink Package Renamer, refer to Oracle
TopLink Release Notes and Oracle TopLink Getting Started Guide for more
information.

Integrating TopLink Workbench With Apache Ant

Using TopLink Workbench 4-53

1. Right-click the package in the Navigator and select Rename.

You can also select the package and choose Selected > Rename from the menu.

Figure 4–50 Rename Package Dialog Box

Enter the package name and click OK. TopLink Workbench changes the name of the
package in the Navigator window.

For more information on using TopLink Workbench to edit classes, see "Configuring
Classes" on page 4-41.

Integrating TopLink Workbench With Apache Ant
If you use the Apache Ant Java-based build tool, you can use the Ant task and type
definitions that TopLink provides to invoke certain TopLink Workbench functions
from an Ant build file. Using these tasks, you can integrate TopLink Workbench into
your automated build process.

This section describes the following:

■ Configuring Ant to Use TopLink Workbench Tasks

■ Understanding TopLink Workbench Ant Task API

■ Creating TopLink Workbench Ant Tasks

For more information about Ant, see http://ant.apache.org/manual/.

Configuring Ant to Use TopLink Workbench Tasks
Before you can use TopLink Workbench tasks in your Ant build files, you must
consider their library dependencies (see "Library Dependencies" on page 4-53).

To declare TopLink Workbench tasks in your Ant build.xml file, declare them
directly (see "Declaring TopLink Workbench Tasks" on page 4-54).

Library Dependencies
In addition to the Ant library dependencies (see
http://ant.apache.org/manual/install.html#librarydependencies),
Table 4–4 lists the TopLink-specific JAR files that must be in your Ant classpath.

Table 4–4 TopLink Workbench Ant Task Library Dependencies

JAR Name Needed For ... Available At ...

toplinkmw.jar TopLink Workbench Ant task and type definitions. <TOPLINK_HOME>/jlib

Integrating TopLink Workbench With Apache Ant

4-54 Oracle TopLink Developer’s Guide

Declaring TopLink Workbench Tasks
After you declare the TopLink Workbench task definitions (see Table 4–6) and data
definitions (see Table 4–4) in the toplink-ant-lib.xml file as Example 4–5 shows,
you can use a TopLink Workbench task in a build.xml file, as Example 4–6 shows:

Example 4–5 Declaring TopLink Workbench Ant Task and Data Types in a
toplink-ant-lib.xml File

<?xml version="1.0"?>
<antlib>

<taskdef name="mappings.export"
classname="oracle.toplink.workbench.ant.taskdefs.ExportDeploymentXMLTask" />

<taskdef name="mappings.validate"
classname="oracle.toplink.workbench.ant.taskdefs.MappingsValidateTask" />

<taskdef name="session.validate"
classname="oracle.toplink.workbench.ant.taskdefs.SessionValidateTask" />

<typedef name="ignoreerror"

classname="oracle.toplink.workbench.ant.typedefs.IgnoreError" />

<typedef name="ignoreerrorset"
classname="oracle.toplink.workbench.ant.typedefs.IgnoreErrorSet" />

<typedef name="loginspec"
classname="oracle.toplink.workbench.ant.typedefs.LoginSpec" />

</antlib>

Example 4–6 Specifying the toplink-ant-lib.xml File in the build.xml File

<project name="MyBuild" default="validate.session" basedir="." xmlns:toplink="toplinklib">

<typedef file = "toplink-ant-lib.xml" classpathref = "mw.classpath" uri = "toplinklib" />
...
</project>

Understanding TopLink Workbench Ant Task API
Table 4–5 lists the TopLink Workbench Ant task definitions that TopLink provides.

Table 4–6 lists the TopLink Workbench Ant type definitions that TopLink provides.

Table 4–5 TopLink Workbench Ant Task Definitions

Task Name TopLink Class

mappings.validate oracle.toplink.workbench.ant.taskdefs.MappingsValidateTask

session.validate oracle.toplink.workbench.ant.taskdefs.SessionValidateTask

mappings.export oracle.toplink.workbench.ant.taskdefs.ExportDeploymentXMLTask

Table 4–6 TopLink Workbench Ant Type Definitions

Type Name TopLink Class

ignoreerror oracle.toplink.workbench.ant.typedefs.IgnoreError

ignoreerrorset oracle.toplink.workbench.ant.typedefs.IgnoreErrorSet

loginspec oracle.toplink.workbench.ant.typedefs.LoginSpec

Integrating TopLink Workbench With Apache Ant

Using TopLink Workbench 4-55

Creating TopLink Workbench Ant Tasks
Example 4–7 shows a typical Ant build.xml file that declares and uses the TopLink
Workbench Ant task and type definitions.

Example 4–7 Example Ant Build File with TopLink Workbench Ant Tasks

<project name="MyBuild" default="validate.session" basedir="." xmlns:toplink="toplinklib">
<!-- === -->
<!-- Properties -->
<!-- === -->
<target name="init">

<property file="build.properties"/>

<property name = "toplink.mwp.dir" value = "${basedir}/mw"/>
<property name = "toplink.sessions.dir" value = "${basedir}/config"/>
<property name = " myProject.classes" value = "${basedir}/classes "/>

<path id = "database.classpath">
<pathelement path = "${toplink.home}/jlib /dms.jar"/>
<pathelement path = "${toplink.home}/jlib /OracleThinJDBC.jar"/>

</path>
<path id = "toplink.classpath">

<pathelement path = "${toplink.home}/jlib /toplink.jar"/>
<pathelement path = "${toplink.home}/jlib /ejb.jar"/>
<pathelement path = "${toplink.home}/jlib /xmlparserv2.jar"/>
<pathelement path = "${toplink.home}/jlib /antlr.jar"/>

</path>
<path id = "mw.classpath">

<pathelement path = "${toplink.home}/jlib /tlmwcore.jar"/>
<pathelement path = "${toplink.home}/jlib /toplinkmw.jar"/>

</path>
<path id = "mwplatforms.classpath">

<pathelement path = "${toplink.home}/config"/>
</path>

<typedef file = "toplink-ant-lib.xml"

classpathref = "mw.classpath"
uri = "toplinklib" />

</target>
<!-- === -->
<!-- Define task parameter -->
<!-- === -->
<target name="parameter.definition" depends="init">

<toplink:ignoreerrorset id = "ignoreErrors">
<toplink:ignoreerror code = "0233" />
</toplink:ignoreerrorset>

<toplink:loginspec id = "loginSpec"
url = "jdbc:cloudscape:stagedb;create=true"
driverclass = "COM.cloudscape.core.JDBCDriver"
user = "scott"
password="tiger" />

</target>
 <!-- == -->
<!-- Validate the MW Project -->
<!-- === -->
<target name="validate.project" depends="parameter.definition">

<toplink:mappings.validate
projectfile = "${toplink.mwp.dir}/myProject.mwp"
reportfile = "${toplink.mwp.dir}/problem-report.html"
reportformat = "html"
property = "mw-valid"
classpathref = "mwplatforms.classpath" >

Integrating TopLink Workbench With Apache Ant

4-56 Oracle TopLink Developer’s Guide

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = "toplink.classpath" />

<toplink:ignoreerrorset refid = "ignoreErrors"/>

</toplink:mappings.validate>
</target>
<!-- === -->
<!-- TopLink deployment descriptor XML generation -->
<!-- === -->
<target name="export.deployment" depends="validate.project" if="mw-valid">

<toplink:mappings.export
projectfile = "${toplink.mwp.dir}/myProject.mwp"
deploymentfile = "${toplink.sessions.dir}/sessions.xml"
property = "export-completed"
failonerror = "true"
classpathref = "toplink.classpath">

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = "mwplatforms.classpath" />

<toplink:ignoreerrorset refid = "ignoreErrors"/>
<toplink:loginspec refid = "loginSpec" />

</toplink:mappings.export>
</target>
<!-- === -->
<!-- TopLink Session Validate -->
<!-- === -->
<target name="validate.session" depends="export.deployment" if="export-completed">

<toplink:session.validate
sessionsfile = "${toplink.sessions.dir}/sessions.xml"
sessionname = "ThreeTierEmployee"
property = "session-valid"
classpathref = "toplink.classpath"
classpath = "${ myProject.classes}" >

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = " database.classpath" />

<toplink:loginspec refid = "loginSpec" />
</toplink:session.validate>

</target>
<project>

mappings.validate
The mapings.validate task is a testing task that you use to list of all the problems
in a TopLink Workbench project (.mwp) file.

This task provides the ability to:

■ log all the problems to a file in text or HTML format

■ set an Ant property to indicate that the TopLink Workbench project is valid (has no
errors)

Integrating TopLink Workbench With Apache Ant

Using TopLink Workbench 4-57

Parameters

Parameters Specified as Nested Elements
You can specify the following parameters as nested elements of this task:

■ classpath

■ "ignoreerror" on page 4-60

■ "ignoreerrorset" on page 4-61

Examples
Example 4–8 shows a typical mappings.validate task.

Example 4–8 A mappings.validate Task

<toplink:mappings.validate
projectfile = "${toplink.mwp.dir}/myProject.mwp"
reportfile = "${toplink.mwp.dir}/problem-report.html"
reportformat = "html"
property = "mw-valid"
classpath = "${mwplatforms.classpath}" >

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = "toplink.classpath" />

<toplink:ignoreerrorset refid = "ignoreErrors"/>
<toplink:ignoreerror code = "0555" />

</toplink:mappings.validate>

session.validate
The session.validate task is a testing task that you use to test your TopLink
deployment XML by running TopLink.

This task provides the ability to:

■ specify the test type using a nested element

■ set an Ant property to indicate that the TopLink Workbench project is valid (has no
errors)

Table 4–7 mappings.validate Task Parameters

Attribute Description Required

projectfile Fully qualified TopLink Workbench projects file name (.mwp). Yes

reportfile Fully qualified file name to which to write the output. No

reportformat The format of the generated output. Must be html or text. No–default to text.

classpath Project classpath. No

classpathref Reference to a path defined elsewhere. No

property The name of the property to set (true if there is no problem). No

Integrating TopLink Workbench With Apache Ant

4-58 Oracle TopLink Developer’s Guide

Parameters

Parameters Specified as Nested Elements
You can specify the following parameters as nested elements of this task:

■ classpath

■ "loginspec" on page 4-62

Examples
Example 4–9 shows a typical session.validate task.

Example 4–9 A session.validate Task

<toplink:session.validate
sessionsfile = "${toplink.sessions.dir}/sessions.xml"
sessionname = "ThreeTierEmployee"
property = "session-valid"
classpathref = "toplink.classpath"
classpath = "${ myProject.classes}" >

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = " database.classpath" />

<toplink:loginspec refid = "loginSpec" />
</toplink:session.validate>

mappings.export
The mappings.export task is a generation task that you use to generate a TopLink
deployment XML file for a given TopLink Workbench project (.mwp). The
mappings.export task executes a mappings.validate (see "mappings.validate"
on page 4-56) before executing. A BuildException is thrown if validation fails.

This task provides the ability to override the TopLink Workbench project database
login information.

Parameters

Table 4–8 session.validate Task Parameters

Attribute Description Required

sessionsfile Fully qualified sessions.xml file. No–default to sessions.xml
and to classpath.

sessionname Name of the session to test. Yes

classpath Project classpath. No

classpathref Reference to a path defined elsewhere. No

property The name of the property to set (true if valid). No

Table 4–9 mappings.export Task Parameters

Attribute Description Required

projectfile Fully qualified TopLink Workbench projects file
name (.mwp).

Yes

Integrating TopLink Workbench With Apache Ant

Using TopLink Workbench 4-59

Parameters Specified as Nested Elements
You can specify the following parameters as nested elements of this task:

■ classpath

■ "loginspec" on page 4-62

■ "ignoreerror" on page 4-60

■ "ignoreerrorset" on page 4-61

Examples
Example 4–9 shows a typical mappings.export task.

Example 4–10 A mappings.export Task

<toplink:mappings.export
projectfile = "${toplink.mwp.dir}/myProject.mwp"
deploymentfile = "${toplink.sessions.dir}/sessions.xml"
property = "export-completed"
failonerror = "true"
classpathref = "toplink.classpath">

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = "mwplatforms.classpath" />

<toplink:ignoreerrorset refid = "ignoreErrors"/>
<toplink:ignoreerror code = "0545" />
<toplink:loginspec

url = "jdbc:cloudscape:stagedb;create=true"
driverclass = "COM.cloudscape.core.JDBCDriver"
user = "scott"
password="tiger" />

</toplink:mappings.export>

classpath
Use the classpath element to define the Java classpath necessary to run a task. For
more information, see http://ant.apache.org/manual/using.html#path.

deploymentfile Fully qualified TopLink project deployment file
name (.xml).

No–default to the name
specified in the TopLink
Workbench project (.mwp).

ejbjarxmldir The directory that contains the ejb-jar.xml
file (only applicable to J2EE project).

No–default to the directory
specified in the TopLink
Workbench project (.mwp).

classpath Project classpath. No

classpathref Reference to a path defined elsewhere. No

failonerror Indicates whether the build will continue even if
there are export errors; defaults to true.

No

property The name of the property to set (true if export
completed successfully).

No

Table 4–9 (Cont.) mappings.export Task Parameters

Attribute Description Required

Integrating TopLink Workbench With Apache Ant

4-60 Oracle TopLink Developer’s Guide

Parameters

Parameters Specified as Nested Elements
You can specify the following parameters as nested elements of this task:

■ pathelement

■ fileset

■ dirset

■ filelist

Examples
Example 4–11 shows a typical classpath element.

Example 4–11 A classpath Element

<classpath>
<pathelement path="${classpath}"/>

<fileset dir="lib">
<include name="**/*.jar"/>

</fileset>
<pathelement location="classes"/>

<dirset dir="${build.dir}">
<include name="apps/**/classes"/>
<exclude name="apps/**/*Test*"/>

</dirset>
<filelist refid="third-party_jars"/>

</classpath>

ignoreerror
Use the ignoreerror element to instruct a TopLink Ant task to ignore a specific
TopLink Foundation Library (see "TopLink Exception Reference" on page 13-1) or
TopLink Workbench (see "TopLink Workbench Error Reference" on page 14-1) run-time
error code.

To instruct a TopLink Ant task to ignore multiple error codes, consider using an
ignoreerrorset element (see "ignoreerrorset" on page 4-61).

Parameters

Parameters Specified as Nested Elements
You cannot specify parameters as nested elements of this element.

Table 4–10 classpath Element Parameters

Attribute Description Required

location Specifies a single file or directory relative to the
project's base directory (or an absolute filename).

No

path Specifies one or multiple files or directories separated
by a colon or semicolon.

No

refid Reference to a path defined elsewhere. No

Table 4–11 ignoreerror Element Parameters

Attribute Description Required

code Error code of the problem to ignore. Yes

Integrating TopLink Workbench With Apache Ant

Using TopLink Workbench 4-61

Examples
Example 4–12 shows a typical ignoreerror element. This element instructs a
mappings.export task to ignore TopLink Workbench error code 0545.

Example 4–12 An ignoreerror Element

<toplink:mappings.export
projectfile = "${toplink.mwp.dir}/myProject.mwp"
deploymentfile = "${toplink.sessions.dir}/sessions.xml"
classpathref = "toplink.classpath">

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = "mwplatforms.classpath" />

<toplink:ignoreerror code = "0545" />

</toplink:mappings.export>

ignoreerrorset
Use the ignoreerrorset element to instruct a TopLink Ant task to ignore any of
multiple TopLink Foundation Library (see "TopLink Exception Reference" on
page 13-1) or TopLink Workbench (see "TopLink Workbench Error Reference" on
page 14-1) run-time error codes.

Parameters

Parameters Specified as Nested Elements
You can specify the following parameters as nested elements of this element:

■ "ignoreerror" on page 4-60

Examples
Example 4–13 shows a typical ignoreerrorset element. This element instructs a
mappings.export task to ignore all of TopLink Workbench error codes 0402 and
0570. Note that the mappings.export task also uses an explicitly ignoreerror
element: this means that the mappings.export task will ignore all of error codes
0402, 0570, and 0545.

Example 4–13 An ignoreerrorset Element

<toplink:ignoreerrorset id = "ignoreErrors">
<toplink:ignoreerror code = "0402" />
<toplink:ignoreerror code = "0570" />

</toplink:ignoreerrorset>
...
<toplink:mappings.export

projectfile = "${toplink.mwp.dir}/myProject.mwp"
deploymentfile = "${toplink.sessions.dir}/sessions.xml"
classpathref = "toplink.classpath">

Table 4–12 ignoreerrorset Element Parameters

Attribute Description Required

id Unique identifier for this type instance, can be used to
reference this type in scripts.

No

refid Reference to a ignoreerrorset defined elsewhere. No

Integrating TopLink Workbench With Apache Ant

4-62 Oracle TopLink Developer’s Guide

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = "mwplatforms.classpath" />

<toplink:ignoreerrorset refid = "ignoreErrors"/>
<toplink:ignoreerror code = "0545" />

</toplink:mappings.export>

loginspec
Use the loginspec element to instruct a TopLink Ant task to override the project
database login information in a TopLink Workbench project. For more information, see
Chapter 81, "Understanding Data Access".

Parameters

Parameters Specified as Nested Elements
You cannot specify parameters as nested elements of this element.

Examples
Example 4–14 shows a typical loginspec element.

Example 4–14 A loginspec Element

<toplink:mappings.export
projectfile = "${toplink.mwp.dir}/myProject.mwp"
deploymentfile = "${toplink.sessions.dir}/sessions.xml"
classpathref = "toplink.classpath">

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = "mwplatforms.classpath" />

Note: You can only use this element with a relational project (see
"Relational Projects" on page 17-6).

You cannot use this element with a J2EE project.

Table 4–13 loginspec Element Parameters

Attribute Description Required

id Unique identifier for this type instance, can be used
to reference this type in scripts.

No

refid Reference to a loginspec defined elsewhere. No

driverclass Fully qualified class of the data source driver (see
"Configuring Database Login Connection Options"
on page 83-2).

No–default to the class that the
TopLink Workbench project
specifies.

url URL of the driver see "Configuring Database Login
Connection Options" on page 83-2).

Yes

user Login user name (see "Configuring User Name and
Password" on page 82-1).

No–default to the value that the
TopLink Workbench project
specifies

password Login password (see "Configuring User Name and
Password" on page 82-1).

No–default to the value that the
TopLink Workbench project
specifies

Integrating TopLink Workbench With Apache Ant

Using TopLink Workbench 4-63

<toplink:loginspec
url = "jdbc:cloudscape:stagedb;create=true"
driverclass = "COM.cloudscape.core.JDBCDriver"
user = "scott"
password="tiger" />

</toplink:mappings.export>

Integrating TopLink Workbench With Apache Ant

4-64 Oracle TopLink Developer’s Guide

Using the Schema Manager 5-1

5
Using the Schema Manager

The SchemaManager and its related classes provide API that you can use from a Java
application to specify database tables in a generic format, and then create and modify
them in a specific relational database. This decouples your TopLink project from a
particular database schema while giving you a programmatic means of creating a
database schema based on your TopLink project. For example, you can use the schema
manager to recreate a production database in a nonproduction environment. This lets
you build models of your existing databases, and modify and test them during
development.

This chapter includes information on the following topics:

■ Understanding the Schema Manager

■ Creating a Table Creator

■ Creating Tables With a Table Creator

■ Automatic Database Table Creation

Understanding the Schema Manager
Figure 5–1 summarizes the important SchemaManager classes and the primary
means of using them.

Note: You can also create database tables manually during
development using TopLink Workbench (see "Creating New Tables"
on page 4-22 and "Generating Tables on the Database" on page 4-32).

Understanding the Schema Manager

5-2 Oracle TopLink Developer’s Guide

Figure 5–1 SchemaManager Usage

Although you can use the SchemaManager API directly, Oracle recommends that you
create a TableCreator class and use its API (which, in turn, uses the
SchemaManager).

You can automatically generate a TableCreator using:

■ TopLink Workbench during development (see "Using TopLink Workbench During
Development" on page 5-4)

■ DefaultTableGenerator at run time (see "Using the Default Table Generator at
Run Time" on page 5-4)

The TableCreator class owns one or more TableDefinition classes (one for each
database table) and the TableDefinition class owns one or more
FieldDefinition classes (one for each field).

The TableDefinition class lets you specify a database table schema in a generic
format. At run time, TopLink uses the session associated with your TopLink project to
determine the specific database type, and uses the generic schema to create the
appropriate tables and fields for that database.

After creating a TableCreator class, you can use its API to create and drop tables
(see "Creating Tables With a Table Creator" on page 5-6). You can also configure
TopLink to do this automatically (see "Automatic Database Table Creation" on
page 5-6).

Because the schema manager uses Java types rather than database types, it is
database-independent. However, because it does not account for database-specific
optimizations, it is best-suited for development purposes rather than production. For
more information on how the schema manager maps Java types to database types, see
"Schema Manager Java and Database Type Conversion" on page 5-3.

Although the schema manager can handle the sequencing configuration that you
specify in your TopLink project, if you are using sequencing with non-Oracle
databases, there are some sequencing restrictions you should be aware of (see
"Sequencing" on page 5-3).

Understanding the Schema Manager

Using the Schema Manager 5-3

Schema Manager Java and Database Type Conversion
Table 5–1 lists the Java type to database type conversions that the schema manager
supports depending on the database platform your TopLink project uses. This list is
specific to the schema manager and does not apply to mappings. TopLink
automatically performs conversions between any database types within mappings.

For more information about database platforms that TopLink supports, see "Database
Platforms" on page 81-3.

Sequencing
If you generate a TableCreator class using TopLink Workbench (see "Using TopLink
Workbench During Development" on page 5-4) or DefaultTableGenerator (see
"Using the Default Table Generator at Run Time" on page 5-4), then sequencing
configuration is included in your TableCreator according to your TopLink project
configuration. In this case, when you use TableCreator method createTables, it
does the following:

■ Creates the sequence table as defined in the session DatabaseLogin

■ Creates or inserts sequences for each sequence name for all registered descriptors
in the session

■ Creates the Oracle sequence object if you use Oracle native sequencing

You can use advanced API to handle special cases like Sybase or Microsoft SQL Server
native sequencing (see "Using Java" on page 5-4).

For more information about sequencing, see "Understanding Sequencing in Relational
Projects" on page 17-14.

Table 5–1 Java and Database Field Type Conversion

Java Type Oracle DB2 Sybase MySQL MS Access

java.lang.Boolean NUMBER SMALLINT BIT default 0 TINYINT(1) SHORT

java.lang.Byte NUMBER SMALLINT SMALLINT TINYINT SHORT

java.lang.Byte[] LONG RAW BLOB IMAGE BLOB LONGBINARY

java.lang.Character CHAR CHAR CHAR CHAR TEXT

java.lang.Character[] LONG CLOB TEXT TEXT LONGTEXT

java.lang.Double NUMBER FLOAT FLOAT(32) DOUBLE DOUBLE

java.lang.Float NUMBER FLOAT FLOAT(16) FLOAT DOUBLE

java.lang.Integer NUMBER INTEGER INTEGER INTEGER LONG

java.lang.Long NUMBER INTEGER NUMERIC BIGINT DOUBLE

java.lang.Short NUMBER SMALLINT SMALLINT SMALLINT SHORT

java.lang.String VARCHAR2 VARCHAR VARCHAR VARCHAR TEXT

java.math.BigDecimal NUMBER DECIMAL NUMERIC DECIMAL DOUBLE

java.math.BigInteger NUMBER DECIMAL NUMERIC BIGINT DOUBLE

java.sql.Date DATE DATE DATETIME DATE DATETIME

java.sql.Time DATE TIME DATETIME TIME DATETIME

java.sql.Timestamp DATE TIMESTAMP DATETIME DATETIME DATETIME

Creating a Table Creator

5-4 Oracle TopLink Developer’s Guide

Creating a Table Creator
You can automatically generate a TableCreator using:

■ TopLink Workbench during development (see "Using TopLink Workbench During
Development" on page 5-4)

■ DefaultTableGenerator at run time (see "Using the Default Table Generator at
Run Time" on page 5-4)

After creating a TableCreator class, you can use its API to create and drop tables
(see "Creating Tables With a Table Creator" on page 5-6).

Using TopLink Workbench During Development
To create a TableCreator class that you can use in a Java application to recreate a
database schema using the SchemaManager, use this procedure:

1. Right-click the project in the Navigator and choose Export > Table Creator Java
Source from the context menu. The Table Creator dialog box appears.

You can also select the table and choose Selected > Export > Table Creator Java
Source from the menu.

2. Enter a name for the table creator class and click OK. The Save As dialog box
appears.

3. Choose a location for your table creator class and click OK. TopLink Workbench
exports the table creator Java class to the location you specify.

Using the Default Table Generator at Run Time
To create a TableCreator class in Java using the DefaultTableGenerator, use
this procedure:

1. Create an instance of DefaultTableGenerator, passing in an instance of your
TopLink project:

DefaultTableGenerator myDefTblGen = new DefaultTableGenerator(toplinkProject);

2. Create a TableCreator instance:

■ If you want a TableCreator that can support any session, use:

TableCreator myTblCre = myDefTblGen.generateDefaultTableCreator();

■ If you want a TableCreator customized for a specific TopLink session, use:

TableCreator myTblCre =
myDefTblGen.generateFilteredDefaultTableCreator(toplinkSession);

You can also configure TopLink to use the DefaultTableGenerator to
automatically generate and execute a TableCreator at run time (see "Automatic
Database Table Creation" on page 5-6).

Using Java
This section describes how to create a TableCreator class in Java, including the
following:

■ Creating a TableCreator Class

■ Creating a TableDefinition Class

Creating a Table Creator

Using the Schema Manager 5-5

■ Adding Fields to a TableDefinition

■ Defining Sybase and Microsoft SQL Server Native Sequencing

Creating a TableCreator Class
To create your own TableCreator instance, you should extend TableCreator as
Example 5–1 shows:

Example 5–1 Creating a TableCreator Class

public class MyTableCreator extends oracle.toplink.tools.schemaframework.TableCreator {

public M7TableCreator() {
setName("MyTableCreator");
addTableDefinition(buildADDRESSTable());

...
}

public TableDefinition buildADDRESSTable() {
TableDefinition table = new TableDefinition();
...
return table;

}
...
}

Creating a TableDefinition Class
The TableDefinition class includes all the information required to create a new
table, including the names and properties of a table and all its fields.

The TableDefinition class has the following methods:

■ setName

■ addField

■ addPrimaryKeyField

■ addIdentityField

■ addForeignKeyConstraint

All table definitions must call the setName method to set the name of the table that is
described by the TableDefinition.

Adding Fields to a TableDefinition
Use the addField method to add fields to the TableDefinition. To add the
primary key field to the table, use the addPrimaryKeyField method rather than the
addField method.

To maintain compatibility among different databases, the type parameter requires a
Java class rather than a database field type. TopLink translates the Java class to the
appropriate database field type at run time. For example, the String class translates
to the CHAR type for dBase databases. However, if you are connecting to Sybase, the
String class translates to VARCHAR. For more information, see "Schema Manager Java
and Database Type Conversion" on page 5-3.

The addField method can also be called with the fieldSize or fieldSubSize
parameters for column types that require size and subsize to be specified.

Some databases require a subsize, but others do not. TopLink automatically provides
the required information, as necessary.

Creating Tables With a Table Creator

5-6 Oracle TopLink Developer’s Guide

Defining Sybase and Microsoft SQL Server Native Sequencing
Use FieldDefinition method addIdentityField to add fields representing a
generated sequence number from Sybase or Microsoft SQL Server native sequencing.
See "Native Sequencing With a Non-Oracle Database Platform" on page 17-19 for
detailed information on using sequencing.

Creating Tables With a Table Creator
After creating a TableCreator class (see "Creating a Table Creator" on page 5-4), you
can use its API to create and drop tables. The important TableCreator methods are
as follows (each method takes an instance of DatabaseSession):

■ createTables–this method creates tables, adds constraints, and creates
sequence tables and sequences (if sequence tables already exist, this method drops
them and recreates them).

■ dropTables–his method drops all constraints and drops all tables (except
sequence tables) that the TableCreator defines.

■ createConstraints–this method creates constraints on all pre-existing tables
that the TableCreator defines.

■ dropConstraints–this method drops constraints on all pre-existing tables that
the TableCreator defines.

■ replaceTables–this method drops and then creates all tables that the
TableCreator defines.

Automatic Database Table Creation
If you deploy a CMP project to OC4J configured to use TopLink as the persistence
manager, then you can configure OC4J to automatically create (and, optionally, delete)
database tables for your persistent objects.

You can configure automatic database table creation at one of three levels as Table 5–2
shows. You can override the system level configuration at the application level and
you can override system and application configuration at the EJB module level.

Table 5–2 Configuring Automatic Table Generation

Level Configuration File Setting Values

System (global) <OC4J_HOME>/config/
application.xml

autocreate-tables True1 or False

1 Default.

autodelete-tables True or False1

Application (EAR) orion-application.xml autocreate-tables True1 or False

autodelete-tables True or False1

EJB Module (JAR) orion-ejb-jar.xml pm-properties sub-element
default-mapping attribute
db-table-gen2

2 For more information, see "Configuring default-mapping Properties" on page 8-12.

Create,
DropAndCreate,
or UseExisting3

3 See Table 5–3.

Automatic Database Table Creation

Using the Schema Manager 5-7

If you configure automatic table generation at the EJB module level, the value you
assign to the db-table-gen attribute corresponds to the autocreate-tables and
autodelete-tables settings as Table 5–3 shows.

You can use this feature in conjunction with default mapping (see "Default Mapping in
CMP Projects Using OC4J at Run Time" on page 30-4).

Table 5–3 Equivalent Settings for db-table-gen

db-table-gen Setting autocreate-tables Setting autodelete-tables Setting

Create True False

DropAndCreate True True

UseExisting False NA

Automatic Database Table Creation

5-8 Oracle TopLink Developer’s Guide

Using an Integrated Development Environment 6-1

6
Using an Integrated

Development Environment

This chapter includes information on using TopLink with an integrated development
environment (IDE). This chapter includes the following sections:

■ Configuring TopLink for Oracle JDeveloper

■ Configuring TopLink Workbench With Source Control Management Software

In addition to the development environment described here, TopLink can be used
with any J2EE development environment and process.

Configuring TopLink for Oracle JDeveloper
This section contains information on how to configure TopLink for use with Oracle
JDeveloper. JDeveloper is a J2EE development environment with end-to-end support
to develop, debug, and deploy e-business applications and Web services.

Using TopLink Mappings
Starting with Oracle JDeveloper 10g, the standard JDeveloper installation includes an
embedded TopLink editor. Refer to the JDeveloper documentation for complete
information.

To use TopLink with JDeveloper 9.0.4 (and earlier), use the following procedure to
add the TopLink JAR files to your JDeveloper projects:

1. Select a JDeveloper project in the System Navigator window.

2. Choose Project > Project Settings. The Project Settings window appears.

3. Choose Configurations > Development > Libraries. A list of predefined and
user-defined libraries appears.

Configuring TopLink for Oracle JDeveloper

6-2 Oracle TopLink Developer’s Guide

Figure 6–1 List of Available Libraries

4. Click New to create a new library that will contain the TopLink .jar files. The
New Library dialog box appears.

5. Enter a name for the new library–for example, TopLink. Ensure that the default
choice for Location remains as User Libraries.

Figure 6–2 Creating a New Library Dialog Box

6. To edit the Class Path and add the TopLink .jar files, click Edit.

Add the following to the beginning of your Class Path:

<ORACLE_HOME>\toplink\jlib\toplink.jar
<ORACLE_HOME>\toplink\jlib\antlr.jar
<ORACLE_HOME>\lib\xmlparserv2.jar
<ORACLE_HOME>\lib\xml.jar

7. Click OK. On the Project Settings window click OK.

Configuring TopLink Workbench With Source Control Management Software

Using an Integrated Development Environment 6-3

Using an Existing User-Defined TopLink Library
After a user library is created, it can be referenced again by any other project. Revisit
the Libraries window of the Project Settings, and add the TopLink Library to any
project with which you want to use TopLink.

Using TopLink Sessions
When using TopLink 10g (10.1.3.1.0) with Oracle JDeveloper, you should be aware that
you cannot configure all sessions.xml options with the JDeveloper mapping editor.

To configure supported options (prior to 10g (10.1.3.1.0)), use the JDeveloper mapping
editor. For details, refer to the JDeveloper online help at:

http://www.oracle.com/technology/documentation/9i_jdev.html

To configure the new TopLink 10g (10.1.3.1.0) options, including, cache coordination
options (see Chapter 88, "Configuring a Coordinated Cache"), historical sessions (see
Chapter 78, "Configuring Historical Sessions"), and connection policy for server
sessions (see "Configuring Connection Policy" on page 74-19) use one of the following
methods:

■ Use a SessionEventListener.preLogin(SessionEvent) method

■ When accessing the session from the session manager, request it with the
loggedIn option set to false. The returned session can then be customized and
you can invoke login.

Configuring TopLink Workbench With
Source Control Management Software

You can use TopLink Workbench with a source control management (SCM) system to
facilitate enterprise-level team development (see "Using a Source Control Management
System" on page 6-3). If you have a small development team, you can manage the
changes from within XML files (see "Sharing Project Objects" on page 6-6).

When using a TopLink Workbench project in a team environment, you must
synchronize your changes with other developers. See "Merging Files" on page 6-4 for
more information.

Using a Source Control Management System
If you use an enterprise, file-based source control management system to manage your
Java source files, you can use the same system with your TopLink Workbench project
files. These project files are maintained by TopLink Workbench and written out in
XML file format.

The check in and check out mechanism for the source control system defines how to
manage the source (the XML source and TopLink Workbench project file) in a
multiuser environment.

Checking Out and Checking In TopLink Workbench Project Files
Although your actual development process will vary depending on your SCM tool, a
typical process involves the following steps:

1. Determine (based on your SCM system) which files to retrieve from the source
management system.

2. Edit the project using TopLink Workbench.

Configuring TopLink Workbench With Source Control Management Software

6-4 Oracle TopLink Developer’s Guide

3. Save the edited project. If TopLink Workbench displays the Read-Only Files dialog
box, make a note of these files, they must be unlocked and possibly merged. See
"Working With Locked Files" on page 6-6 for more information.

4. Merge the required project files. See "Merging Files" on page 6-4 for details.

5. Check in the modified files, then retrieve from the repository any files that have
been added or modified for this TopLink Workbench project.

Merging Files
The most difficult aspect of application development is merging changes from two (or
more) development team members that have simultaneously edited the same file. If
one developer checks in his or her changes, a merge condition exists. Use a file
comparison tool to determine the merged aspects of the project. The files to edit will
vary, depending on the type of merge:

■ Merging Project Files

■ Merging Table, Descriptor, and Class Files

Example 6–1 and Example 6–2 demonstrate a merge out merging technique.

Merging Project Files
Project files contain references to the objects in the project. Generally, your project
<projectName>.mwp contains the following elements:

■ Database information: <database>

■ Database tables: <tables>

■ Descriptors: <descriptors>

■ Repository: <repository>

■ Classes: <classpath-entries>

Changes in these parts of the .mwp file are usually caused by adding, deleting, or
renaming project elements.

To merge project files, you will generally need to merge a project file if another
developer has added or removed a descriptor, table, or class, and checked in the
project while you were adding or removing descriptors, tables, or classes from the
same project. To merge the project’s .mwp file, use this procedure:

1. Perform a file comparison between the <projectName>.mwp file in the repository
and your local copy. The file comparison shows the addition or removal of a
project element inside the owner (that is, <database>, <descriptors>, or
<repository>).

2. Insert the XML script to, or delete from your local <projectName>.mwp file
(inside the corresponding owner element). This brings your local code up-to-date to
the current code in the code repository.

3. Retrieve any updated files, as indicated by your source control system.

Your local source now matches the repository.

Example 6–1 Merging Projects

Another developer has added and checked in a new Employee class descriptor to the
com.demo package while you were working with the same TopLink Workbench
project. To merge your work with the newly changed project, follow these steps:

Configuring TopLink Workbench With Source Control Management Software

Using an Integrated Development Environment 6-5

1. Perform a file comparison on the <projectName>.mwp file to determine the
differences between your local file and the file in the repository. Your SCM system
may show the file in merge status.

The file comparison shows the addition of the <package-descriptor> tag and
a <name> element inside that tag:

<package-descriptor>
<name>com.demo.Employee.ClassDescriptor</name>

</package-descriptor>

2. Insert this XML into your <projectName>.mwp file (inside the <descriptors>
element) to bring it up-to-date with the current files in the source repository.

3. Retrieve any new or updated files from your source control system. This includes
the newly added Employee class descriptor.

4. Check in files that you have modified.

Merging Table, Descriptor, and Class Files
Developers who concurrently modify the same existing table, descriptor, or class file
will create a merge condition for the following files:

■ Table: <tableName>.xml (one for each table)

■ Descriptor: <descriptorName.type>.xml (one for each descriptor)

■ Class: <className>.xml (one for each class)

TopLink Workbench changes these files when saving a project if you have changed
any of the contents within them (such as adding a mapping to a descriptor, adding an
attribute to a class, or a changing a field reference in a table).

If another developer has changed an attribute in a table, descriptor, or class, while you
were changing a different mapping on that same descriptor, you will need to merge
your project. To merge your project, use this procedure:

1. Perform a file comparison on the specific .xml files in merge status (that is, table,
descriptor, or class). The file comparison shows the addition or removal of an
XML element.

2. Insert the XML script to, or remove from your local .xml file to bring it up-to-date
with the current files in the source repository.

Example 6–2 Merging Files

Another developer has added and checked in the firstName mapping to the
Employee class descriptor while you were changing a different mapping on that same
descriptor. To merge your work with the newly changed project, use this procedure:

1. Perform a file comparison on the
com.demo.Employee.ClassDescriptor.xml file located in
<projectRoot>/Descriptor/ directory that is in merge status.

The file comparison shows the addition of the <mapping> tag and the elements
inside that tag:

<mapping>
<uses-method-accessing>false</uses-method-accessing>
<inherited>false</inherited>
<read-only>false</read-only>
<instance-variable-name>firstName</instance-variable-name>
<default-field-names>

Configuring TopLink Workbench With Source Control Management Software

6-6 Oracle TopLink Developer’s Guide

<default-field-name>direct field=</default-field-name>
</default-field-names>
<field-handle>

<field-handle>
<table>EMPLOYEE</table>
<field-name>F_NAME</field-name>

</field-handle>
</field-handle>

<mapping-class>MWDirectToFieldMapping </mapping-class>
</mapping>

2. Insert this XML block into your local
com.demo.Employee.ClassDescriptor.xml file (inside the existing
<mapping> element) to bring it up to date to the current files in the source
repository.

3. Retrieve any new files noted as missing by your source control system. This
includes any tables or descriptors that may be referenced by the new mapping.

4. Check in files that you have modified.

Sharing Project Objects
You can also share project objects by copying the table or descriptor files into the
appropriate directories in the target project.

After copying the files, insert a reference to the table, descriptor, or class in the
appropriate place in the <projectName>.mwp file. All references contained within
the project file must refer to an existing object in the project.

Managing the ejb-jar.xml File
When working in a team environment, manage the ejb-jar.xml file similarly
to the .xml project files. TopLink Workbench edits and updates the ejb-jar.xml
file, if necessary, when working with an EJB project.

If you use a version control system, perform the same check in and check out
procedures. For merge conditions, use a file comparison tool to determine which
elements have been added or removed. Modify the file as necessary and check in the
file to exercise version control on your work.

Working With Locked Files
When working in a team environment, your source control system may lock files when
you retrieve them from the repository. If TopLink Workbench attempts to save a locked
file, the Version Control Assistance dialog box appears, showing the locked files.

Configuring TopLink Workbench With Source Control Management Software

Using an Integrated Development Environment 6-7

Figure 6–3 Version Control Assistance Dialog Box

Select one of the following methods to save your project:

■ Use your source control system to unlock the files, and then click Save.

■ Click Save As to save the project to a new location.

See "Saving Projects" on page 18-11 for more information.

Configuring TopLink Workbench With Source Control Management Software

6-8 Oracle TopLink Developer’s Guide

Part III
 Deploying a TopLink Application

This part describes how to package and deploy a TopLink application to an
application server. It contains the following chapters.

■ Chapter 7, "Integrating TopLink With an Application Server"

This chapter contains information on software requirements for integrating
TopLink with your specific application server.

■ Chapter 8, "Creating TopLink Files for Deployment"

This chapter describes how to create the necessary TopLink files for deployment to
your application server.

■ Chapter 9, "Packaging a TopLink Application"

This chapter explains how to package the deployment files.

■ Chapter 10, "Deploying a TopLink Application"

This chapter provides procedures for deploying different types of TopLink
applications in a variety of environments.

Integrating TopLink With an Application Server 7-1

7
Integrating TopLink With an Application

Server

This chapter describes how to configure Oracle TopLink for use with J2EE containers
and application servers. It includes sections on the following:

■ Application Server Support

■ Application Server Integration Concepts

For more information, see the following:

■ "Creating TopLink Files for Deployment" on page 8-1

■ "Packaging a TopLink Application" on page 9-1

■ "Deploying a TopLink Application" on page 10-1

Application Server Support
TopLink can be used with any J2EE application server.

Table 7–1 lists the application servers for which TopLink provides special EJB and
CMP integration.

Table 7–1 TopLink Integration Support by Application Server Type

Application Server Type
TopLink Integration for
Application Server Version

TopLink Integration for
EJB Version

"Oracle Containers for J2EE (OC4J)"
on page 7-5

■ 10.1.3

■ 10.1.2

■ 9.0.4

■ 9.0.3

■ 2.n, 3.01

■ 2.n

■ 2.n

■ 2.n

"BEA WebLogic Server" on
page 7-14

■ 9.0

■ 8.1

■ 7.0 (Service Pack 2)

■ 6.1 (Service Pack 4)

■ 2.n

■ 2.n

■ 2.n

■ 2.n

"IBM WebSphere Application
Server" on page 7-21

■ 6.0

■ 5.1

■ 5.0

■ 4.0

■ 2.n

■ 2.n

■ 2.n

■ 2.n

Application Server Integration Concepts

7-2 Oracle TopLink Developer’s Guide

Application Server Integration Concepts
This section describes concepts unique to TopLink application server integration,
including the following:

■ Software Requirements

■ XML Parser Platform Configuration

■ Security Permissions

■ Persistence Manager Migration

■ Clustering

Software Requirements
To run a TopLink application within a J2EE container, your system must meet the
following software requirements:

■ An application server or J2EE container (see Table 7–1)

■ XML parser (see "XML Parser Platform Configuration" on page 7-2)

■ A JDBC driver configured to connect with your local database system (for more
information, see your database administrator)

■ A Java development environment, such as:

– Oracle JDeveloper

– IBM WebSphere Studio Application Developer (WSAD)

– Sun Java Development Kit (JDK) 1.3.1 or later. Oracle recommends using 1.4.2
(or later).

■ Any other Java environment that is compatible with the Sun JDK 1.3.1 or later

■ A command-line JVM executable (such as java.exe or jre.exe)

XML Parser Platform Configuration
The TopLink run-time environment uses an XML parser to do the following:

■ Read and write XML configuration files (see "project.xml File" on page 8-2 and
"sessions.xml File" on page 8-4)

■ Read and write TopLink Workbench project files (see "Understanding TopLink
Workbench" on page 4-1)

■ Perform object-to-XML transformations in EIS projects using XML records (see
Chapter 53, "Understanding EIS Mappings"

■ Perform object-to-XML transformations in XML projects (see Chapter 62,
"Understanding XML Mappings"

Application servers use an XML parser to read deployment files such as
ejb-jar.xml and <J2EE container>-ejb-jar.xml (see "Creating TopLink
Files for Deployment" on page 8-1).

1 When using OC4J and Java 1.5, TopLink supports a subset of the persistent features anticipated in the final
EJB 3.0 specification. EJB 3.0 feature support is subject to change and dependent upon the contents of the
final specification. For more information on EJB 3.0 support, see Oracle Containers for J2EE Enterprise
JavaBeans Developer’s Guide.

Application Server Integration Concepts

Integrating TopLink With an Application Server 7-3

To avoid XML parser conflicts, you must configure your TopLink application to use
the same XML parser as that used by the application server on which you deploy your
application.

Internally, TopLink accesses its XML parser using an instance of
oracle.toplink.platform.xml.XMLPlatform class.

You can configure TopLink to use any XML parser for which an XMLPlatform class
exists (see "Configuring XML Parser Platform" on page 7-3).

You can also create your own XMLPlatform to provide access to an XML parser not
currently supported by TopLink (see "Creating an XML Parser Platform" on page 7-3).

Configuring XML Parser Platform
TopLink provides the XMLPlatform instances shown in Table 7–2.

To configure your TopLink application to use a particular instance of the
XMLPlatform class, set system property toplink.xml.platform to the fully
qualified name of your XMLPlatform class as Example 7–1 shows.

Example 7–1 Configuring XML Platform

toplink.xml.platform=oracle.toplink.platform.xml.jaxp.JAXPPlatform

Creating an XML Parser Platform
Using the oracle.toplink.platform.xml classes included in the public source
files shipped with TopLink (see "Using Public Source" on page 12-2), you can create
your own instance of the oracle.toplink.platform.xml.XMLPlatform class to
specify an XML parser not listed in Table 7–2.

After creating your XMLPlatform, configure TopLink to use it (see "Configuring XML
Parser Platform" on page 7-3).

XML Parser Limitations
Crimson (http://xml.apache.org/crimson/) is the XML parser supplied in the
Java 2 Platform, Standard Edition (J2SE) and in some JAXP reference implementations.

Table 7–2 Supported XML Platforms

XMLPlatform... Provides Access too... Use With...

oracle.toplink.platform.xml.xdk.XDKPlatform1

1 Default:

XDKParser: this class provides access to
the Oracle XML Developer’s Kit (XDK)
XML parser (see
http://www.oracle.com/technology
/tech/xml/xdkhome.html).

Oracle Containers
for J2EE (OC4J)

oracle.toplink.platform.xml.jaxp.JAXPPlatform JAXPParser: this class provides access to
the Java SDK XML parser in the
javax.xml.parsers package (see
http://java.sun.com/j2ee/1.4/doc
s/tutorial/doc/JAXPIntro2.html).

BEA WebLogic
Server

IBM WebSphere
Application Server

Note: To use an XML parser not listed in Table 7–2, create your own
XMLPlatform (see "Creating an XML Parser Platform" on page 7-3).

Application Server Integration Concepts

7-4 Oracle TopLink Developer’s Guide

If you use Crimson with the JAXP API to parse XML files whose system identifier is
not a fully qualified URL, then XML parsing will fail with a not valid URL exception.

Other XML parsers defer validation of the system identifier URL until it is specifically
referenced.

If you are experiencing this problem, consider one of the following alternatives:

■ Ensure that your XML files use a fully qualified system identifier URL.

■ Use another XML parser (such as the OracleAS XML Parser for Java v2).

Security Permissions
By default, when you run a TopLink-enabled application in a JVM configured with a
nondefault java.lang.SecurityManager, the TopLink run-time environment
executes certain internal functions by executing a PrivilegedAction with
java.security.AccessController method doPrivileged. This ensures that
you do not need to grant many permissions to TopLink for it to perform its most
common operations. You need only grant certain permissions depending on the types
of optional TopLink features you use.

For more information, see "Understanding Security Permissions" on page 7-22.

If you run a TopLink-enabled application in a JVM without a nondefault
SecurityManager, you do not need to set any permissions.

Persistence Manager Migration
From the perspective of an application server, TopLink is a persistence manager. You
can configure an application server to use TopLink as the default persistence manager.

You can only use one persistence manager for all the entity beans with
container-managed persistence in a JAR file.

TopLink provides automated support for migrating an existing J2EE application to use
TopLink as the persistence manager. For more information, see the following:

■ "Migrating OC4J Orion Persistence to OC4J TopLink Persistence" on page 7-5

■ "Migrating BEA WebLogic Persistence to OC4J TopLink Persistence" on page 7-16

Clustering
Most application servers include a clustering service that you can use with your
TopLink application. To use TopLink with an application server cluster, use this
procedure:

1. Install the toplink.jar file (and include it in the classpath) on each application
server in the cluster to which you deploy TopLink applications.

2. Configure TopLink cache consistency options appropriate for your application.

For more information, see Chapter 87, "Understanding the Cache".

If you are deploying a CMP application, see also "Configuring
cache-synchronization Properties" on page 8-11.

3. Configure clustering on each application server.

For more information, see your application server documentation.

Oracle Containers for J2EE (OC4J)

Integrating TopLink With an Application Server 7-5

Oracle Containers for J2EE (OC4J)
To integrate a TopLink application with OC4J, you must consider the following:

■ CMP Integration

■ Migrating OC4J Orion Persistence to OC4J TopLink Persistence

■ JTA Integration

In addition to configuring these OC4J specific options, you must also consider the
general application server integration issues in "Application Server Integration
Concepts" on page 7-2.

CMP Integration
To enable TopLink CMP integration in OC4J, use the following procedure (this
procedure assumes you have already installed TopLink):

1. If necessary, migrate your CMP application using the TopLink migration tool (see
"Migrating OC4J Orion Persistence to OC4J TopLink Persistence" on page 7-5).

2. Evaluate your choice of UnitOfWork change policy (see "Unit of Work and
Change Policy" on page 97-6).

3. Ensure that all necessary deployment descriptor files are in place (see "Creating
TopLink Files for Deployment" on page 8-1 and "Packaging a TopLink
Application" on page 9-1).

4. Optionally, consider the EJB customization options that TopLink provides (see
"Configuring Miscellaneous EJB Options" on page 7-25).

Migrating OC4J Orion Persistence to OC4J TopLink Persistence
In 10g (10.1.3.1.0), OC4J is shipped configured to use TopLink as its default persistence
manager.

If you upgrade your OC4J to this release, you must migrate persistence configuration
from your original orion-ejb-jar.xml file to the toplink-ejb-jar.xml file.

In this release, Oracle provides a TopLink migration tool that you can use to automate
this migration for Release 2 (9.0.4) or later OC4J installations.

Note: If you are using EJB 3.0, you can let TopLink configure your
persistent classes with the most efficient change policy (see "Attribute
Change Tracking Policy" on page 97-8) at class-loading time using
byte code weaving.

Note: If you are using EJB 3.0, you can use annotations to specify
most of what you formerly specified in deployment descriptors. Use
deployment descriptors to override annotations or specify options not
supported by annotations. For more information on what annotations
are currently supported, see Oracle Containers for J2EE Enterprise
JavaBeans Developer’s Guide.

Oracle Containers for J2EE (OC4J)

7-6 Oracle TopLink Developer’s Guide

After using the TopLink migration tool, you may need to make some additional
changes as described in "Post-Migration Changes" on page 12.

If you encounter problems during migration, see "Troubleshooting Your Migration" on
page 7-13.

This section explains how to use the TopLink migration tool, including:

■ Overview

■ Using the TopLink Migration Tool From TopLink Workbench

■ Using the TopLink Migration Tool From the Command Line

■ Post-Migration Changes

■ Troubleshooting Your Migration

Overview
Before using the TopLink migration tool, review this section to understand how the
TopLink migration tool works and to determine what OC4J persistence manager
metadata is, and is not, migrated.

Input and Output
The TopLink migration tool takes the following files as input:

■ ejb-jar.xml

■ orion-ejb-jar.xml

It migrates as much OC4J-specific persistence configuration as possible to a new
toplink-ejb-jar.xml file and creates the following new files in a target directory
you specify:

■ orion-ejb-jar.xml

■ toplink-ejb-jar.xml

■ TopLink Workbench project file TLCmpProject.mwp

The ejb-jar.xml and orion-ejb-jar.xml files may be in an EAR, JAR, or just
standalone XML files. If you migrate from standalone XML files (rather than an EAR
or JAR file), ensure that the domain classes are accessible and included in your
classpath.

The TopLink migration tool creates a new orion-ejb-jar.xml and
toplink-ejb-jar.xml file to the target directory you specify in the same format as
it reads the original files. For example, if you specify an EAR file as input, then the
TopLink migration tool stages and creates a new EAR file that contains both the new
orion-ejb-jar.xml and the new toplink-ejb-jar.xml file, but is otherwise
identical to the original.

The TopLink Workbench project file is always created as a separate file.

Migration
As it operates, the TopLink migration tool logs all errors and diagnostic output to a log
file named oc4j_migration.log in the output directory. If you use the TopLink

Note: Oracle recommends that you make a backup copy of
your orion-ejb-jar.xml file before using the TopLink
migration tool.

Oracle Containers for J2EE (OC4J)

Integrating TopLink With an Application Server 7-7

migration tool from TopLink Workbench, see also the TopLink Workbench log file
oracle.toplink.workbench.log located in your user home directory (for
example, C:\Documents and Settings\<user-name>).

The TopLink migration tool processes descriptor, mapping, and query information
from the input files as follows:

■ It builds a TopLink descriptor object for each entity bean and migrates native
persistence metadata like mapped tables, primary keys, and mappings for CMP
and CMR fields.

■ It builds a TopLink mapping object for every CMP and CMR field of an entity
bean and migrates native persistence metadata like foreign key references.

■ It builds a TopLink query object for each finder or ejbSelect of an entity bean
and migrates persistence metadata like customized query statements.

Table 7–3 lists OC4J <entity-deployment> attributes and subelements from the
orion-ejb-jar.xml file and for each, indicates whether or not the TopLink
migration tool:

■ Retains it in the new orion-ejb-jar.xml file

■ Migrates it to the new toplink-ejb-jar.xml file

In Table 7–3, elements are identified with angle brackets. Note that in some cases an
attribute is migrated when set to one value, but discarded if set to another value (for
example, exclusive-write-access).

Table 7–3 OC4J orion-ejb-jar.xml Feature Migration

orion-ejb-jar.xml Feature
Retained in New
orion-ejb-jar.xml

Migrated to New
toplink-ejb-jar.xml

<entity-deployment>

clustering-schema

copy-by-value

data-source

location

max-instances

min-instances

max-tx-retries

disable-wrapper-cache

name

pool-cache-timeout

wrapper

local-wrapper

call-timeout

exclusive-write-access

true

false

do-select-before-insert

true

false

isolation

locking-mode

Oracle Containers for J2EE (OC4J)

7-8 Oracle TopLink Developer’s Guide

Table 7–4 lists OC4J features and their TopLink equivalents configured by the TopLink
migration tool.

pessimistic

optimistic

read-only

old_pessimistic

update-changed-fields-only

true

false

table

force-update

true1

false

data-synchronization-option

ejbCreate

ejbPostCreate

batch-size

Any value greater than 1

<ior-security-config>

<env-entry-mapping>

<resource-ref-mapping>

<resource-env-ref-mapping>

<primkey-mapping>

<cmp-field-mapping>

one-to-one-join

inner

outer2

shared

<finder-method>

<persistence-type>3

1 You can enable force-update after migration. For more information, see "Configuring a Descriptor
With EJB Information" on page 25-45.

2 TopLink supports both outer and inner joins at run time.You can manually configure EJB descriptors
with these options. For more information, see "Join Reading and Object-Level Read Queries" on
page 93-12.

3 The persistence-type attribute’s table column size, if present, is discarded. For more information, see
"Recovering persistence-type Table Column Size" on page 7-12.

Table 7–4 OC4J and TopLink Feature Comparison

Feature orion-ejb-jar.xml toplink-ejb-jar.xml

CMP field mapping Direct

Serialized object

Direct-to-field

Serialized object

Table 7–3 (Cont.) OC4J orion-ejb-jar.xml Feature Migration

orion-ejb-jar.xml Feature
Retained in New
orion-ejb-jar.xml

Migrated to New
toplink-ejb-jar.xml

Oracle Containers for J2EE (OC4J)

Integrating TopLink With an Application Server 7-9

Using the TopLink Migration Tool From TopLink Workbench
To use the TopLink migration tool and create a new, mapped TopLink Workbench
project from an OC4J application, use this procedure:

1. From TopLink Workbench, select File > Migrate > From OC4J 9.0.x.

CMR field mapping One-to-one

One-to-many

Many-to-many

One-to-one

One-to-many

Many-to-many

Partial query Full SQL statement SQL Call

Finder Oracle specific syntax SQL Call or EJB QL

Lazy loading (fetch group) Lazy loading of primary key and
CMP fields

Not supported

Alternatively, you can manually
configure the TopLink equivalent, if
appropriate (see "Fetch Groups" on
page 23-5).

SQL statement caching Cache static SQL Not supported at the bean level.

TopLink supports parameterized SQL
and statement caching at the session
and query level (see Chapter 93,
"Understanding TopLink Queries").

Locking Optimistic: database-level

Pessimistic: bean instance-level

Optimistic: object-level

Pessimistic: query lock at
database-level

Read-only Attempt to change throws
Exception

Attempt to change throws
Exception

Validity timeout Read-only bean validity timeout
before reloaded.

Cache timeout

Isolation level Committed

Serializable

Committed

Serializable

Not Committed

Not Repeatable

Delay update until commit Supported Supported (see "Configuring a
Descriptor With EJB Information" on
page 25-45).

Exclusive write access on bean Default value is false Assume true

Insert without existence check Supported Supported

Update changed fields only Supported Supported (see "Attribute Change
Tracking Policy" on page 97-8).

Force update Invoke bean life cycle ejbStore
method even though persistent
fields have not changed

Supported

Table 7–4 (Cont.) OC4J and TopLink Feature Comparison

Feature orion-ejb-jar.xml toplink-ejb-jar.xml

Oracle Containers for J2EE (OC4J)

7-10 Oracle TopLink Developer’s Guide

Figure 7–1 Create Project from OC4J Migration Dialog Box

2. Continue with "Post-Migration Changes" on page 7-12.

Use the following information to enter data in each field of the Create Project from
OC4J dialog box:

Using the TopLink Migration Tool From the Command Line
To use the TopLink migration tool from the command line, you must perform the
following steps:

1. Ensure that the following is in your classpath:

■ <TOPLINK_HOME>/jlib/antlr.jar

■ <TOPLINK_HOME>/jlib/ejb.jar

Field Description

From Use these fields to specify the location of the existing OC4J files.
These files may be included as part of a JAR, EAR, or individual
files.

Individual Files Select to convert from individual ejb-jar.xml and
orion-ejb-jar.xml files in the Input Directory. Click
Browse and select the directory location that contains the XML
files to convert from.

Archive File Select to use a specific archive file. Click Browse and select the
archive file to convert from..

To Use these fields to specify the location to which migrated files
are written.

Output Directory Click Browse and select a directory location in which to create
the new XML files and TopLink Workbench project.

Classpath If you are migrating from individual files, ensure that the
domain classes are accessible and included in your classpath.

Show Migration Log Select to have migration log output displayed in a separate
window.

Oracle Containers for J2EE (OC4J)

Integrating TopLink With an Application Server 7-11

■ <TOPLINK_HOME>/jlib/toplink.jar

■ <TOPLINK_HOME>/jlib/cmpmigrator.jar

■ <TOPLINK_HOME>/jlib/toplinkmw.jar

■ <TOPLINK_HOME>/jlib/tlmwcore.jar

■ <TOPLINK_HOME>/config

■ <ORACLE_HOME>/lib/xmlparserv2.jar

2. If you intend to migrate from plain XML files (rather than an EAR or JAR file),
ensure that the domain classes are accessible and included in your classpath.

3. Make a backup copy of your original XML files.

4. Execute the TopLink migration tool as Example 7–2 illustrates using the
appropriate arguments listed in Table 7–5.

The usage information for the TopLink migration tool is:

java -Dtoplink.ejbjar.schemavalidation=<true|false>
-Dtoplink.migrationtool.generateWorkbenchProject=<true|false>
-Dhttp.proxyHost=<proxyHost> -Dhttp.proxyPort=<proxyPort>
oracle.toplink.tools.migration.TopLinkCMPMigrator -s<nativePM> -i<inputDir>
-a<ear>|<jar> -x -o<outputDir> -v

To identify the input files, you must specify one of -a or -x.

For troubleshooting information, see "Troubleshooting Your Migration" on
page 13.

Example 7–2 Using the TopLink Migration Tool from the Command Line

java -Dhttp.proxyHost=www-proxy.us.oracle.com -Dhttp.proxyPort=80
oracle.toplink.tools.migration.TopLinkCMPMigrator -sOc4j-native -iC:/mywork/in
-aEmployee.ear -oC:/mywork/out -v

Table 7–5 TopLink Migration Tool Arguments

Argument Description

toplink.ejbjar.schemavalidation The system property used to turn on schema validation if
ejb-jar.xml uses XML Schema (XSD) instead of DTD. The
default value is false.

toplink.migrationtool.generateWorkbenchProject The system property used enable generation of the TopLink
Workbench project. The default value is true.

<proxyHost> The address of your local HTTP proxy host

<proxyHost> The port number on which your local HTTP proxy host receives
HTTP requests.

-s <source> The name of the native persistence manager from which you are
migrating.

For OC4J, use the name Oc4j-native.

-i <input-directory> Fully qualified path to the input directory that contains both the
OC4J ejb-jar.xml and orion-ejb-jar.xml files to
migrate. Default: current working directory.

-a <EAR-or-JAR> Fully qualified path to the archive file (either an EAR or JAR)
that contains both the OC4J ejb-jar.xml and
orion-ejb-jar.xml files to migrate.

Oracle Containers for J2EE (OC4J)

7-12 Oracle TopLink Developer’s Guide

Post-Migration Changes
After you migrate the orion-ejb-jar.xml file persistence configuration to your
toplink-ejb-jar.xml file, consider the following post-migration changes:

■ Recovering persistence-type Table Column Size

■ Updating the Unknown Primary Key Class Mapping Sequence Table

■ Project Customization

Recovering persistence-type Table Column Size
In the orion-ejb-jar.xml file, you can specify this mapping,
cmp-field-mapping, with a persistence-type attribute that provides both the
type and column size as shown in Example 7–3.

Example 7–3 A cmp-field-mapping with persistence-type Specifying a Column Size

<cmp-field-mapping ejb-reference-home="MyOtherEntity" name="myField"
persistence-name="myField" persistence-type="VARCHAR2(30)">

The TopLink migration tool migrates the persistence type but not the column size
because a TopLink project does not normally contain this size information.

To recover the persistence-type column size, do the following:

1. Perform the migration as described in "Using the TopLink Migration Tool From
the Command Line" on page 10.

2. Launch the generated TopLink Workbench project file TLCmpProject.mwp.

3. Log in to your database (see "Logging In and Out of a Database" on page 4-21).

TopLink Workbench retrieves all column sizes.

Updating the Unknown Primary Key Class Mapping Sequence Table
TopLink supports the use of an unknown primary key class (see "Unknown Primary
Key Class Support" on page 7-25) and so the TopLink migration tool also supports this
feature.

OC4J uses a native run-time key generator to generate unique keys for auto-id key
fields. In contrast, TopLink uses a sequencing table.

-x Tells the TopLink migration tool that the OC4J files in the input
directory to migrate from are plain XML files (not in an archive
file).

If you use this option, ensure that the domain classes are
accessible and included in your classpath.

-o <output-directory <targetDir> is the path to the directory into which the
TopLink migration tool writes the new orion-ejb-jar.xml,
toplink-ejb-jar.xml, and log files. The path may be
absolute or relative to the current working directory. You must
specify this argument value.

Ensure that permissions are set on this directory to allow the
TopLink migration tool to create files and subdirectories.

-v Verbose mode. Tells the TopLink migration tool to log errors and
diagnostic information to the console.

Table 7–5 (Cont.) TopLink Migration Tool Arguments

Argument Description

Oracle Containers for J2EE (OC4J)

Integrating TopLink With an Application Server 7-13

If your OC4J persistence configuration includes the use of an unknown primary key
class, then the TopLink migration tool will create a sequencing table for this purpose.

Before deploying your application after migration, you must do the following:

1. Determine the largest key value generated prior to migration.

2. Manually update the counter of the TopLink migration tool-generated sequence
table to a number that must be one larger than the largest key value generated
prior to migration.

Project Customization
You can customize the following components of your project:

■ EJB 3.0 Persistence Manager Customization

■ EJB 2.1 Persistence Manager Customization

■ Session Event Listener

EJB 3.0 Persistence Manager Customization For an EJB 3.0 persistent application deployed
to OC4J, you customize the TopLink persistence manager by creating a TopLink
project XML file named toplink-ejb-jar.xml and a TopLink session XML file
named ejb3-toplink-sessions.xml and packaging them in the META-INF
directory of the EJB-JAR that contains your entities. For more information, see
"Customizing the TopLink Persistence Manager in an EJB 3.0 Application" in the Oracle
Containers for J2EE Enterprise JavaBeans Developer’s Guide.

EJB 2.1 Persistence Manager Customization For an EJB 2.1 CMP application deployed to
OC4J, you customize the TopLink persistence manager by configuring properties in
the orion-ejb-jar.xml file. These properties are used to configure the TopLink
session that the TopLink runtime uses internally for CMP projects. For more
information, see "Configuring persistence-manager Entries" on page 8-10.

Session Event Listener After you applied the default settings to your project at
deployment time, you may wish to customize the TopLink session by configuring the
session event listener. The pre-login event that the session raises is particularly useful.
It lets you define the custom (nondefault) specifics for the session just before the
session initializes and acquires connections.

For more information, see the following:

■ "Session Customization" on page 72-4

■ "Managing Session Events With the Session Event Manager" on page 72-5

■ "Configuring Session Event Listeners" on page 74-17

Troubleshooting Your Migration
This section describes solutions for problems you may encounter during migration,
including the following:

■ Log Messages

■ Unexpected Relational Multiplicity

Log Messages
As it operates, the TopLink migration tool logs all errors and diagnostic output to a log
file named oc4j_migration.log in the output directory. If you use the TopLink
migration tool from TopLink Workbench, see also the TopLink Workbench log file

BEA WebLogic Server

7-14 Oracle TopLink Developer’s Guide

oracle.toplink.workbench.log located in your user home directory (for
example, C:\Documents and Settings\<user-name>)

In addition to these warnings, the TopLink migration tool logs an error if it encounters
a problem that prevents it from completing the migration. Table 7–6 lists these
problems and suggests possible solutions.

Unexpected Relational Multiplicity
The TopLink migration tool retrieves relationship multiplicity from the
orion-ejb-jar.xml file and not from the OC4J ejb-jar.xml file.

Thus, even though the OC4J ejb-jar.xml file defines a relationship to be
one-to-many, if the orion-ejb-jar.xml file defines the same relationship as
many-to-many, then the TopLink migration tool will migrate the relationship as
many-to-many.

JTA Integration
For applications that require JTA integration, specify the external transaction controller
when you configure the server platform in your session (see "Configuring the Server
Platform" on page 74-14).

For more information, see "Integrating the Unit of Work With an External Transaction
Service" on page 99-21.

BEA WebLogic Server
To integrate a TopLink application with BEA WebLogic Server, you must consider the
following:

■ Classpath

■ CMP Integration

■ Migrating BEA WebLogic Persistence to OC4J TopLink Persistence

■ JTA Integration

Table 7–6 TopLink Migration Tool Error Messages

Error Message Description

There is no ejb-jar.xml
in the input file. You must
provide the ejb-jar.xml
in order for the migration
process to work.

The ejb-jar.xml file is missing. The TopLink migration tool
stops and copies the original input files into the target directory.

Verify that the ejb-jar.xml file is present in the specified EAR,
JAR, or as a plain XML file. Empty the target directory and execute
the TopLink migration tool again.

There is not an
orion-ejb-jar.xml
with native persistent
metadata defined, no
migration needed.

The orion-ejb-jar.xml file is missing. The TopLink migration
tool stops and copies the original input files into the target
directory.

Verify that the orion-ejb-jar.xml file is present in the
specified EAR, JAR, or as a plain XML file. Empty the target
directory and execute the TopLink migration tool again.

toplink-ejb-jar.xml
is already defined in the
archive, no migration
needed.

A toplink-ejb-jar.xml file is already present in the target
directory. The TopLink migration tool stops and copies the original
input files into the target directory.

Remove the toplink-ejb-jar.xml file from the target
directory. Empty the target directory and execute the TopLink
migration tool again.

BEA WebLogic Server

Integrating TopLink With an Application Server 7-15

■ Security Manager

In addition to configuring these BEA WebLogic Server-specific options, you must also
consider the general application server integration issues in "Application Server
Integration Concepts" on page 7-2.

Classpath
To configure TopLink support for BEA WebLogic Server, do the following:

1. Add the following JAR files to the application server classpath:

<ORACLE_HOME>\toplink\jlib\toplink.jar

2. Ensure that your TopLink application defines an XML parser platform (see "XML
Parser Platform Configuration" on page 7-2).

CMP Integration
To enable TopLink CMP integration in BEA WebLogic Server, use the following
procedure (assuming you have already installed TopLink):

1. Locate the persistence directory, located above the installation drive and root
directory of your BEA WebLogic Server executable, as follows:

Do one of the following:

■ Use a text editor to open the persistence.install file in the
BEA WebLogic Server persistence directory, and add a new line that references
the TopLink_CMP_Descriptor.xml file.

■ Replace the WebLogic persistence.install file with the TopLink
persistence.install file found in the
<ORACLE_HOME>\toplink\config directory.

2. Add the following JAR files to the application server classpath:

<ORACLE_HOME>\toplink\jlib\toplink.jar
<ORACLE_HOME>\lib\xmlparserv2.jar

3. If necessary, migrate your CMP application using the TopLink migration tool
("Migrating BEA WebLogic Persistence to OC4J TopLink Persistence" on
page 7-16).

4. Ensure that all necessary deployment descriptor files are in place (see "Creating
TopLink Files for Deployment" on page 8-1 and "Packaging a TopLink
Application" on page 9-1).

5. Optionally, consider the EJB customization options that TopLink provides
("Configuring Miscellaneous EJB Options" on page 7-25).

6. Start the container, and then start the TopLink application. Where supported, use a
startup script to start the server. If you write your own startup script, ensure that
the classpath includes the files listed in Step 2.

Version Persistence Directory (above the <WebLogic_INSTALL_DIR>)

6.1 (Service Pack 4) \wlserver6.1\lib\persistence

7.0 (Service Pack 2) \weblogic700\server\lib\persistence

8.1 \weblogic81\server\lib\persistence

BEA WebLogic Server

7-16 Oracle TopLink Developer’s Guide

Migrating BEA WebLogic Persistence to OC4J TopLink Persistence
You can migrate a BEA WebLogic application that uses the default BEA WebLogic
persistence manager to an Oracle Containers for J2EE (OC4J) application that uses
TopLink as the persistence manager. In this release, Oracle provides a TopLink
migration tool that you can use to automate this migration.

This section includes the following:

■ Overview

■ Using the TopLink Migration Tool From TopLink Workbench

■ Using the TopLink Migration Tool From the Command Line

If you encounter problems during migration, see "Troubleshooting Your Migration" on
page 7-13.

After using the TopLink migration tool, you may need to make some additional
changes as described in "Post-Migration Changes" on page 12.

Overview
Before using the TopLink migration tool, review this section to understand how the
TopLink migration tool works and to determine what BEA WebLogic persistence
manager metadata is, and is not, migrated.

Input and Output
The TopLink migration tool takes the following files as input:

■ weblogic-ejb-jar.xml

■ weblogic-cmp-rdbms-jar.xml

It migrates as much BEA WebLogic-specific persistence configuration as possible to a
new toplink-ejb-jar.xml file and creates the following new files in a target
directory you specify:

■ orion-ejb-jar.xml

■ toplink-ejb-jar.xml

■ TopLink Workbench project file TLCmpProject.mwp

The input BEA WebLogic files may be in an EAR, JAR, or just standalone XML files. If
you migrate from standalone XML files (rather than an EAR or JAR file), ensure that
the domain classes are accessible and included in your classpath.

The TopLink migration tool creates a new orion-ejb-jar.xml and
toplink-ejb-jar.xml file to the target directory you specify in the same format as
it reads the original files. For example, if you specify an EAR file as input, then the
TopLink migration tool stages and creates a new EAR file that contains both the new
orion-ejb-jar.xml and the new toplink-ejb-jar.xml file, but is otherwise
identical to the original.

The TopLink Workbench project file is always created as a separate file.

Note: Oracle recommends that you make a backup copy of
your weblogic-ejb-jar.xml,
weblogic-cmp-rdbms-jar.xml, and
toplink-ejb-jar.xml files before using the TopLink
migration tool.

BEA WebLogic Server

Integrating TopLink With an Application Server 7-17

For information on configuring the weblogic-ejb-jar.xml file, see "Configuring the
weblogic-ejb-jar.xml File for BEA WebLogic Server" on page 8-13.

Migration
As it operates, the TopLink migration tool logs all errors and diagnostic output to a log
file named wls_migration.log in the output directory. If you use the TopLink
migration tool from TopLink Workbench, see also TopLink Workbench log file
oracle.toplink.workbench.log located in your user home directory (for
example, C:\Documents and Settings\<user-name>).

The TopLink migration tool processes descriptor, mapping, and query information
from the input files. It performs the following:

■ It builds a TopLink descriptor object for each entity bean and migrates native
persistence metadata like mapped tables, primary keys, and mappings for CMP
and CMR fields.

■ It builds a TopLink mapping object for every CMP and CMR field of an entity
bean and migrates native persistence metadata like foreign key references.

■ It builds a TopLink query object for each finder or ejbSelect of an entity bean
and migrates persistence metadata like customized query statements.

Table 7–7 lists BEA WebLogic features and their TopLink equivalents configured by the
TopLink migration tool.

Table 7–7 BEA WebLogic and TopLink Feature Comparison

Feature weblogic-cmp-rdbms-jar.xml toplink-ejb-jar.xml

Direct mapping Field mapping

Table mapping

Direct-to-field

Relational mapping WebLogic-RDBMS relation One-to-one

One-to-many

Many-to-many

Multiple tables Table mapping Supported

Read-only Read-only: concurrency strategy Supported

Pessimistic locking Enforce pessimistic concurrency on a
per-bean basis

Supported

Large Objects (LOB) support Map the current field to one of the
following:

1. CLOB or BLOB in an Oracle
database

2. LongString or SybaseBinary
in a Sybase database

Supported for Oracle BLOB only

Optimistic locking Optimistic: concurrency strategy

Verify columns: optimistic
concurrency strategy

Version

Timestamp

Cascade delete Database cascade delete Privately owned

Sorting database dependency Order database operations unit of work

Lazy loading (fetch group) Field group Not supported.

Alternatively, you can manually
configure the TopLink equivalent,
if appropriate (see "Fetch Groups"
on page 23-5).

BEA WebLogic Server

7-18 Oracle TopLink Developer’s Guide

Using the TopLink Migration Tool From TopLink Workbench
To use the TopLink migration tool and create a new, mapped TopLink Workbench
project from a BEA WebLogic application, use this procedure:

1. From TopLink Workbench, select File > Migrate > From Weblogic Server.

Figure 7–2 Create Projects from WebLogic Server Migration Dialog Box

2. Continue with "Post-Migration Changes" on page 7-12.

Use the following information to enter data in each field on the Create Project from
WebLogic dialog box:

Using the TopLink Migration Tool From the Command Line
To use the TopLink migration tool from the command line, you must do the following:

Field Description

From Use these fields to specify the location of the existing BEA
WebLogic files. These files may be included as part of a JAR,
EAR, or individual files.

Individual Files Select to convert from individual weblogic-ejb-jar.xml
and weblogic-cmp-rdbms-jar.xml files in the Input
Directory. Click Browse and select the directory location that
contains the XML files to convert from.

Archive File Select to use a specific archive file. Click Browse and select the
archive file to convert from..

To Use this field to specify the location to which migrated files are
written.

Output Directory Click Browse and select a directory location in which to create
the new XML files and TopLink Workbench project.

Classpath If you are migrating from individual files, ensure that the
domain classes are accessible and included in your classpath.

Show Migration Log Select to have migration log output displayed in a separate
window.

BEA WebLogic Server

Integrating TopLink With an Application Server 7-19

1. Ensure that the following is in your classpath:

■ <TOPLINK_HOME>/jlib/antlr.jar

■ <TOPLINK_HOME>/jlib/ejb.jar

■ <TOPLINK_HOME>/jlib/toplink.jar

■ <TOPLINK_HOME>/jlib/cmpmigrator.jar

■ <TOPLINK_HOME>/jlib/toplinkmw.jar

■ <TOPLINK_HOME>/jlib/tlmwcore.jar

■ <TOPLINK_HOME>/config

■ <ORACLE_HOME>/lib/xmlparserv2.jar

2. If you intend to migrate from plain XML files (rather than an EAR or JAR file),
ensure that the domain classes are accessible and included in your classpath.

3. Make a backup copy of your original XML files.

4. Execute the TopLink migration tool as Example 7–4 illustrates using the
appropriate arguments listed in Table 7–8.

The usage information for the TopLink migration tool is:

java -Dtoplink.ejbjar.schemavalidation=<true|false>
-Dtoplink.migrationtool.generateWorkbenchProject=<true|false>
-Dhttp.proxyHost=<proxyHost> -Dhttp.proxyPort=<proxyPort>
oracle.toplink.tools.migration.TopLinkCMPMigrator -s<nativePM> -i<inputDir>
-a<ear>|<jar> -x -o<outputDir> -v

To identify the input files, you must specify one of -a or -x.

For troubleshooting information, see "Troubleshooting Your Migration" on
page 13.

Example 7–4 Using the TopLink Migration Tool from the Command Line

java -Dhttp.proxyHost=www-proxy.us.oracle.com -Dhttp.proxyPort=80
oracle.toplink.tools.migration.TopLinkCMPMigrator -sWebLogic -iC:/mywork/in
-aEmployee.ear -oC:/mywork/out -v

Table 7–8 TopLink Migration Tool Arguments

Argument Description

toplink.ejbjar.schemavalidation The system property used to turn on schema validation if
ejb-jar.xml uses XML Schema (XSD) instead of DTD. The
default value is false.

toplink.migrationtool.generateWorkbenchProject The system property used enable generation of the TopLink
Workbench project. The default value is true.

<proxyHost> The address of your local HTTP proxy host

<proxyHost> The port number on which your local HTTP proxy host receives
HTTP requests.

-s <source> The name of the native persistence manager from which you are
migrating.

For BEA WebLogic, use the name WebLogic.

-i <input-directory> Fully qualified path to the input directory that contains the BEA
WebLogic weblogic-ejb-jar.xml and
weblogic-cmp-rdbms-jar.xml files to migrate. Default:
current working directory.

BEA WebLogic Server

7-20 Oracle TopLink Developer’s Guide

JTA Integration
For applications that require JTA integration, specify the external transaction controller
when you configure the server platform in your session (see "Configuring the Server
Platform" on page 74-14).

For more information, see "Integrating the Unit of Work With an External Transaction
Service" on page 99-21.

Security Manager
If you use a security manager, specify a security policy file in the weblogic.policy
file (normally located in the BEA WebLogic install directory), as follows:

-Djava.security.manager
-Djava.security.policy==c:\weblogic\weblogic.policy

The BEA WebLogic installation procedure includes a sample security policy file. You
need to edit the weblogic.policy file to grant permission for TopLink to use
reflection.

The following example illustrates only the permissions that TopLink requires, but
most weblogic.policy files contain more permissions than are shown in this
example.

Example 7–5 A Subset of a "Grant" Section from a BEA WebLogic.policy File

grant {
// "enableSubstitution" required to run the WebLogic console
permission java.io.SerializablePermission "enableSubstitution";
// "modifyThreadGroup" required to run the WebLogic Server
permission java.lang.RuntimePermission "modifyThreadGroup";
// grant permission for TopLink to use reflection

permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
};

-a <EAR-or-JAR> Fully qualified path to the archive file (either an EAR or JAR)
that contains both the BEA WebLogic
weblogic-ejb-jar.xml and
weblogic-cmp-rdbms-jar.xml files to migrate.

-x Tells the TopLink migration tool that the BEA WebLogic files in
the input directory to migrate from are plain XML files (not in an
archive file).

If you use this option, ensure that the domain classes are
accessible and included in your classpath.

-o <output-directory The path to the directory into which the TopLink migration tool
writes the new orion-ejb-jar.xml,
toplink-ejb-jar.xml, and log files. The path may be
absolute or relative to the current working directory. You must
specify this argument value.

Ensure that permissions are set on this directory to allow the
TopLink migration tool to create files and subdirectories.

-v Verbose mode. Tells the TopLink migration tool to log errors and
diagnostic information to the console.

Table 7–8 (Cont.) TopLink Migration Tool Arguments

Argument Description

IBM WebSphere Application Server

Integrating TopLink With an Application Server 7-21

IBM WebSphere Application Server
To integrate a TopLink application with IBM WebSphere Application Server, you must
consider the following:

■ Classpath

■ CMP Integration

■ JTA Integration

In addition to configuring these IBM WebSphere application server-specific options,
you must also consider the general application server integration issues in
"Application Server Integration Concepts" on page 7-2.

Classpath
You configure the IBM WebSphere application server classpath differently depending
on what version of this server you are using:

■ Configuring Classpath for IBM WebSphere Application Server 4.0

■ Configuring Classpath for IBM WebSphere Application Server 5.0 and Later

Configuring Classpath for IBM WebSphere Application Server 4.0
TopLink provides CMP support for IBM WebSphere application server 4.0. To
configure the classpath for this version, do the following:

1. Add the following JAR files to the application server classpath directory (see
Table 7–9):

<ORACLE_HOME>\toplink\jlib\toplink.jar

2. Ensure that your TopLink application defines an XML parser platform (see "XML
Parser Platform Configuration" on page 7-2).

Table 7–9 lists the default application classpath directories for IBM container
components in IBM WebSphere application server 4.0.

Configuring Classpath for IBM WebSphere Application Server 5.0 and Later
TopLink provides JTA and general integration support for IBM WebSphere application
server 5.0 and later. To configure the classpath for this version, do the following:

1. Create a shared library that contains the following Toplink JAR files and associate
the shared library with the application:

<ORACLE_HOME>\toplink\jlib\toplink.jar

2. Ensure that your TopLink application defines an XML parser platform (see "XML
Parser Platform Configuration" on page 7-2).

Table 7–9 Classpath Directories for IBM WebSphere 4.0 Container Components

Container Default Application Classpath

WebSphere Application Server 4.0
(for Windows)

\WebSphere\AppServer\lib\app

WebSphere Studio Application Developer 4.0
 (for Windows)

\Program Files\ibm\Application
Developer\plugins\com.ibm.etools.
websphere.runtime\lib\app

Understanding Security Permissions

7-22 Oracle TopLink Developer’s Guide

CMP Integration
To enable TopLink CMP integration in IBM WebSphere application server, use the
following procedure (assuming you have already installed TopLink):

1. Ensure that all necessary deployment descriptor files are in place (see "Creating
TopLink Files for Deployment" on page 8-1 and "Packaging a TopLink
Application" on page 9-1).

2. Optionally, consider the EJB customization options that TopLink provides
("Configuring Miscellaneous EJB Options" on page 7-25).

JTA Integration
For applications that require JTA integration, specify the external transaction controller
when you configure the server platform in your session (see "Configuring the Server
Platform" on page 74-14).

For more information, see "Integrating the Unit of Work With an External Transaction
Service" on page 99-21.

Clustering on IBM WebSphere Application Server
For more information on integrating a TopLink application with an application server
cluster, see "Clustering" on page 7-4.

Understanding Security Permissions
By default, when you run a TopLink-enabled application in a JVM configured with a
nondefault java.lang.SecurityManager, the TopLink run time executes certain
internal functions by executing a PrivilegedAction with
java.security.AccessController method doPrivileged. This ensures that
you do not need to grant many permissions to TopLink for it to perform its most
common operations. You need only grant certain permissions depending on the types
of optional TopLink features you use (see "Permissions Required by TopLink Features"
on page 7-23).

While using doPrivileged method provides enhanced security, it will severely
impact overall performance. Alternatively, you can configure TopLink to disable the
use of doPrivileged method even when a nondefault SecurityManager is
present (see "Disabling doPrivileged Operation" on page 7-25). In this case, you must
grant TopLink all required permissions (see "Permissions Required by TopLink
Features" on page 7-23 and "Permissions Required When doPrivileged is Disabled" on
page 7-24).

If you run a TopLink-enabled application in a JVM without a nondefault
SecurityManager, you do not need to grant any permissions.

Note: While enabling the use of doPriviledged method enhances
TopLink application security, it does not guarantee that secure code
cannot be called by application code in ways that the system did not
intend. You must consider the use of doPriviledged method within
the context of your overall application security strategy. For more
information, see http://java.sun.com/security/index.jsp.

Understanding Security Permissions

Integrating TopLink With an Application Server 7-23

Permissions Required by TopLink Features
When you run a TopLink-enabled application in a JVM configured with a nondefault
java.lang.SecurityManager and doPrivileged operation is enabled, you may
need to grant additional permissions if your application requires any of the following:

■ System Properties

■ Loading project.xml or sessions.xml Files

■ Cache Coordination

■ Accessing a Data Source by Port

■ Logging With java.util.logging

■ J2EE Application Deployment

System Properties
By default, a TopLink-enabled application requires access to the system properties
granted in the default <JAVA_HOME>/lib/security/java.policy file. If your
application requires access to other platform-specific, environment, or custom
properties, then grant further PropertyPermission permissions as Example 7–6
shows.

Example 7–6 Permissions for System Properties

permission java.util.PropertyPermission "my.property", "read";

Loading project.xml or sessions.xml Files
Most TopLink-enabled applications read in project.xml and sessions.xml files
directly. Grant permissions to the specific files or file locations as Example 7–7 shows.
This example assumes that both project.xml and sessions.xml files are located
in the same directory (given by application-specific system property
deployment.xml.home). Alternatively, you can specify a separate
FilePermission for each file.

Example 7–7 Permissions for Loading Deployment XML Files

permission java.io.FilePermission "${deployment.xml.home}/*.xml", "read";

For information on FilePermission settings for J2EE applications, see "J2EE
Application Deployment" on page 7-24.

Cache Coordination
If your application uses cache coordination (see "Understanding Cache Coordination"
on page 87-10), then grant accept, connect, listen, and resolve permissions to
the specific sockets used by your coordinated cache as Example 7–8 shows. This
example assumes that the coordinated cache multicast port (see "Configuring a
Multicast Port" on page 88-5) is 1024.

Example 7–8 Permissions for Cache Coordination

permission java.net.SocketPermission "localhost:1024-", "accept, connect, listen, resolve";

Understanding Security Permissions

7-24 Oracle TopLink Developer’s Guide

Accessing a Data Source by Port
If your TopLink-enabled application accesses a data source using a socket, then grant
connect and resolve permissions for that socket as Example 7–9 shows. This
example assumes that the host name (or IP address) of the remote host that provides
the data source (such as a relational database server host) is given by
application-specific system property remote.data.source.host and that this host
accepts data source connections on port 1025.

Example 7–9 Permissions for non-J2EE Data Source Connections

permission java.net.SocketPermission "${remote.data.source.host}:1025-", "connect, resolve";

For J2EE applications, data source socket permissions are usually handled by the
application server.

Logging With java.util.logging
If you configure your TopLink-enabled application to use java.util.logging
package (see "Configuring Logging" on page 74-4), then grant your application
control permissions as Example 7–10 shows.

Example 7–10 Permissions for java.util.logging

permission java.util.logging.LoggingPermission "control"

J2EE Application Deployment
If you are deploying a TopLink-enabled J2EE application, you must grant
permissions for:

■ The toplink.jar file. For example:

grant codeBase "file:<TOPLINK_HOME>/jlib/toplink.jar" {
 permission java.security.AllPermission;
};

If you are using an XML platform, you must also grant the following permissions:

■ The toplink.xml.platform system property. For Example:

permission java.util.PropertyPermission "toplink.xml.platform", "read"

Permissions Required When doPrivileged is Disabled
If you disable doPrivileged operation when you run a TopLink-enabled application
in a JVM configured with a nondefault java.lang.SecurityManager, you must
grant the following permissions:

■ java.lang.reflect.RelectPermission "suppressAccessChecks"

■ java.lang.RuntimePermission "accessDeclaredMembers"

■ java.lang.RuntimePermission "getClassLoader"

You may also have to grant additional permissions depending on the TopLink features
your application uses. For more information, see "Permissions Required by TopLink
Features" on page 7-23.

Configuring Miscellaneous EJB Options

Integrating TopLink With an Application Server 7-25

Disabling doPrivileged Operation
To disable doPrivileged operation when you run a TopLink-enabled application in
a JVM configured with a nondefault java.lang.SecurityManager, set system
property oracle.j2ee.toplink.security.usedoprivileged to false. If you
are using OC4J, set system property oracle.j2ee.security.usedoprivileged
to false.

To enable doPrivileged operation, set these system properties to true.

Configuring Miscellaneous EJB Options
TopLink provides system properties that you can use to customize the following EJB
options:

■ Setter Parameter Type Checking

■ Unknown Primary Key Class Support

■ Single-Object Finder Return Type Checking

Setter Parameter Type Checking
To make TopLink verify that the parameters to one-to-one and one-to-many
relationship setters are of the same type as the corresponding CMR field, set system
property toplink.cts.collection.checkParameters to a value of true (not
case sensitive). If the setters are not the same type, then TopLink throws a
java.lang.IllegalArgumentException.

If you set the property to false (the default value), TopLink does not make this
verification. In this case, it is up to your application to make sure the parameters are of
the correct type.

For more information, see the EJB 2.1 specification, section 10.3.6.

Unknown Primary Key Class Support
In special situations, you may choose not to specify the primary key class or the
primary key fields for an entity bean with container-managed persistence. For
example, if the entity bean does not have a natural primary key or you want the
deployer to select the primary key fields at deployment time, you may choose to defer
primary key type specification.

If this is the case, you must declare the type of the argument of the
findByPrimaryKey method as java.lang.Object and you must also specify the
primary key class (prim-key-class) in the deployment descriptor (ejb-jar.xml)
as java.lang.Object.

TopLink now provides run-time support for such deferred primary key type
specification.

For more information, see the EJB 2.1 specification, section 10.8.3.

Note: Setting this property to true will affect performance. Use this
setting only if necessary.

Configuring Miscellaneous EJB Options

7-26 Oracle TopLink Developer’s Guide

Single-Object Finder Return Type Checking
By setting system property toplink.cts.checkMultipleRows to true, you can
configure TopLink to throw a javax.ejb.FinderException if multiple beans are
returned from a single-object finder method.

For more information, see the EJB 2.1 specification, section 10.5.6.1.

Creating TopLink Files for Deployment 8-1

8
Creating TopLink Files for Deployment

This chapter includes TopLink information you need when creating deployment files
for the following types of applications:

■ Java Applications

■ JavaServer Pages and Servlet Applications

■ Session Bean Applications

■ CMP Applications

■ BMP Applications

For more information on packaging and deployment, see the following:

■ "Understanding TopLink Deployment File Creation" on page 8-1

■ "Integrating TopLink With an Application Server" on page 7-1

■ "Packaging a TopLink Application" on page 9-1

■ "Deploying a TopLink Application" on page 10-1

Understanding TopLink Deployment File Creation
Depending on the type of application you are deploying, you may need to create any
of the following deployment files:

■ project.xml File

■ sessions.xml File

■ ejb-jar.xml File

■ <J2EE-Container>-ejb-jar.xml File

■ toplink-ejb-jar.xml File

TopLink Workbench provides the ability to create deployment files from a TopLink
Workbench project (see "Exporting Project Information" on page 18-13). After you
build a project, you have two options to create the deployment files:

■ Create XML deployment files that require no compiling.

■ Create Java source files, which you compile and deploy outside of TopLink
Workbench.

Oracle recommends XML deployment because XML files are easier to deploy and
troubleshoot than compiled Java files. This approach gives you a very flexible
configuration that enables you to make changes safely and easily. XML deployment
files do not require third-party applications or compilers to deploy successfully.

Understanding TopLink Deployment File Creation

8-2 Oracle TopLink Developer’s Guide

project.xml File
The project.xml file is the core of your application. It contains the descriptors and
mappings you define and also includes any named queries or finders associated with
your project.

This section describes the following:

■ XSD File Format

■ Non-CMP Applications and Project Metadata

■ CMP Applications and Project Metadata

■ Creating project.xml With TopLink Workbench

■ Creating project.xml Programatically

XSD File Format
Starting with 10g (10.1.3.1.0), the project.xml file uses an XML schema file format
(XSD file) instead of the old document type definition. This defines not only the
elements and attributes, but also the rules that govern how the elements and attributes
are used in a valid XML file. The XSD file is formatted as standard XML and fully
compliant with Oracle namespaces. Although TopLink can read both the current XSD
and older DTD formats, only the current XSD format is written out.

Previously formats were defined only by the DTDs. You can now generate
deployment XML files based on the following XML schemas:

■ object-persistence_1_0.xsd: This schema defines general persistence and
mapping concepts.

■ toplink-object-persistence_10_1_3.xsd: This schema extends the
general concepts to include additional TopLink specific data.

For more information, refer to the appropriate XSD in the <TOPLINK_
HOME>\config\xsds directory. The XSD files are also available on OTN at:

■ http://www.oracle.com/technology/oracleas/schema/object-persist
ence_1_0.xsd

■ http://www.oracle.com/technology/oracleas/schema/toplink-object
-persistence_10_1_3.xsd

Non-CMP Applications and Project Metadata
For a non-CMP application, you define your project metadata in a project.xml file.

The project.xml file provides a simple and flexible way to configure, modify, and
troubleshoot the project metadata. Because of these attributes, the project.xml file
is the preferred way to configure a TopLink project.

Note: If you are using EJB 3.0, you can use annotations to specify
most of what you formerly specified in deployment descriptors. Use
deployment descriptors to override annotations or specify options not
supported by annotations. For more information on what annotations
are currently supported, see Oracle Containers for J2EE Enterprise
JavaBeans Developer’s Guide.

Understanding TopLink Deployment File Creation

Creating TopLink Files for Deployment 8-3

TopLink Workbench provides a graphical tool to build and edit the project.xml
file. For information on creating projects with TopLink Workbench, see "Creating
project.xml With TopLink Workbench" on page 8-3.

CMP Applications and Project Metadata
For a CMP application, how you specify project metadata is dependent upon the J2EE
application server you are deploying your application (see "toplink-ejb-jar.xml File" on
page 8-6).

Creating project.xml With TopLink Workbench
Because you must synchronize the project.xml file with the classes and data source
associated with your application, Oracle recommends that you not modify this file
manually. TopLink Workbench ensures proper synchronization, and is the best way to
make changes to the project. Simply modify the project in TopLink Workbench and
redeploy the project.xml file. Using this option reduces development time by
eliminating the need to regenerate and recompile Java code each time the project
changes.

See "Exporting Project Information" on page 18-13 for detailed information on
exporting the deployment XML information.

Creating project.xml Programatically
Optionally, you can use the DeploymentXMLGenerator API to programatically
generate the project.xml file in either of the following ways:

■ From an application, instantiate the DeploymentXMLGenerator and your java
source. Call the following method:

generate (<MW_Project.mwp>, <output file.xml>)

■ From the command line, use:

java -classpath
toplink.jar;toplinkmw.jar;xmlparserv2.jar;ejb.jar;
oracle.toplink.workbench.external.api.DeploymentXMLGenerator
<MW_Project.mwp> <output file.xml>

Before you use either method, ensure your the classpath includes the <ORACLE_
HOME>\toplink\config directory.

Note: You can name this file with a name other than project.xml;
however, for clarity, this discussion assumes that the file has not been
renamed.

Note: If you are using EJB 3.0, you can use annotations to specify
most of what you formerly specified in the project.xml file. To
override annotations or specify options not supported by annotations,
you can still provide a project.xml file in your EJB 3.0 application.
For more information on what annotations are currently supported,
see Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Understanding TopLink Deployment File Creation

8-4 Oracle TopLink Developer’s Guide

sessions.xml File
Each TopLink project belongs to a TopLink session. A session is the facade through
which an application accesses TopLink functionality (for more information on
sessions, see Part XV, "TopLink Sessions"). Where you define a session differs
depending on whether or not your application uses CMP.

This section describes the following:

■ XSD File Format

■ Non-CMP Applications and Session Metadata

■ CMP Applications and Session Metadata

XSD File Format
Starting with 10g (10.1.3.1.0), the sessions.xml file uses an XML schema file format
(XSD file) instead of the old document type definition. In addition to gaining all the
benefits of using an XSD, this change ensures that the TopLink run-time environment
provides better diagnostics during sessions.xml file loading and validation.

The XSD files are also available on OTN at:
http://www.oracle.com/technology/oracleas/schema/sessions_10_1_
3.xsd

When you use the XSD formatted sessions.xml file, the TopLink run time separates
sessions.xml file validation from session instantiation. Separating XML file
formatting problems from Session Manager session instantiation problems simplifies
troubleshooting. Exceptions thrown during validation clearly indicate that the failure
is due to an invalid sessions.xml file as Example 8–1 illustrates.

Example 8–1 Enhanced Validation Exceptions

Exception [TOPLINK-9010] (Oracle TopLink - 10g (10.0.3)(Build 040127Dev)):
oracle.toplink.exceptions.SessionLoaderException
Exception Description: A End tag does not match start tag 'session'. was thrown while parsing
the XML file against the XML schema.
Internal Exception: oracle.xml.parser.v2.XMLParseException: End tag does not match start tag
'session'.

Non-CMP Applications and Session Metadata
For a non-CMP application, you define your sessions in a sessions.xml file.

The sessions.xml file provides a simple and flexible way to configure, modify, and
troubleshoot the application sessions. Because of these attributes, the sessions.xml
file is the preferred way to configure a TopLink session.

TopLink Workbench provides a graphical tool to build and edit the sessions.xml
file. For information on creating sessions with TopLink Workbench, see Chapter 73,
"Creating Sessions".

CMP Applications and Session Metadata
For a CMP project, how you specify session metadata is dependent upon the J2EE
application server to which you are deploying your application:

■ For OC4J, the session configuration is done in the orion-ejb-jar.xml file. You
can specify the data-source, some common session options, and a session
customizer class (see "OC4J and the orion-ejb-jar.xml File" on page 8-6). In this

Understanding TopLink Deployment File Creation

Creating TopLink Files for Deployment 8-5

case, you name the TopLink project XML file as toplink-ejb-jar.xml (see
"project.xml File" on page 8-2)

■ For BEA WebLogic Server, the session configuration is done in the
toplink-ejb-jar.xml file. You can specify the data-source, some common
session options, and a session customizer class (see "toplink-ejb-jar.xml File" on
page 8-6).

■ For IBM WebSphere application server, the session configuration is done in a
sessions.xml file which must be named toplink-ejb-jar.xml (see
Chapter 73, "Creating Sessions").

ejb-jar.xml File
Each EJB module contains one ejb-jar.xml file that describes all the EJB in the
module.

 Most IDEs provide facilities to create the ejb-jar.xml file. For more information
about generating this file from your IDE, see your IDE documentation.

If you build an EJB application, Oracle recommends that you use TopLink Workbench
to build the ejb-jar.xml file. Because TopLink Workbench can both read and write
the ejb-jar.xml file, you can use TopLink Workbench to maintain your
ejb-jar.xml file in the following ways:

■ When you change the file manually outside of TopLink Workbench, reimport the
ejb-jar.xml file into TopLink Workbench project to refresh the project.

■ When you change the TopLink Workbench project, TopLink Workbench updates
the ejb-jar.xml file automatically when you save the project.

For more information about managing the ejb-jar.xml file in TopLink Workbench,
see "Working With the ejb-jar.xml File" on page 18-15 for more information.

<J2EE-Container>-ejb-jar.xml File
The contents of the <J2EE-Container>-ejb-jar.xml file depend on the container
to which you deploy your EJB. To create this file, use the tools that accompany your
container.

In most cases, the <J2EE-Container>-ejb-jar.xml file integrates with TopLink
without revision. However, in some cases, you must make some TopLink-specific
modifications.

Note: If you are using EJB 3.0, you cannot use annotations to specify
session configuration. You must provide a sessions.xml file, if one
is applicable to your application type.

Note: If you are using EJB 3.0, you can use annotations to specify
most of what you formerly specified in the ejb-jar.xml file. To
override annotations or specify options not supported by annotations,
you can still provide an ejb-jar.xml file in your EJB 3.0 application.
For more information on what annotations are currently supported,
see Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide.

Understanding TopLink Deployment File Creation

8-6 Oracle TopLink Developer’s Guide

For more information, see the following:

■ OC4J and the orion-ejb-jar.xml File

■ BEA WebLogic Server and the weblogic-ejb-jar.xml File

OC4J and the orion-ejb-jar.xml File
Table 8–1 summarizes the scenarios in which you may choose to modify the
orion-ejb-jar.xml file.

For more information on configuring the orion-ejb.jar.xml file, see "Configuring
the orion-ejb-jar.xml File for OC4J" on page 8-9.

BEA WebLogic Server and the weblogic-ejb-jar.xml File
For more information on configuring the weblogic-ejb-jar.xml, see "Configuring
the weblogic-ejb-jar.xml File for BEA WebLogic Server" on page 8-13.

toplink-ejb-jar.xml File
The toplink-ejb-jar.xml file is used only in CMP projects. The TopLink runtime
uses properties set in the <J2EE container>-ejb-jar.xml file (see
"<J2EE-Container>-ejb-jar.xml File" on page 8-5) to locate the
toplink-ejb-jar.xml file and read it in.

Note: If you are using EJB 3.0, you can use annotations to specify
most of what you formerly specified in the
<J2EE-Container>-ejb-jar.xml file. To override annotations or
specify options not supported by annotations, you can still provide a
<J2EE-Container>-ejb-jar.xml file in your EJB 3.0 application.
For more information on what annotations are currently supported,
see Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide.

Table 8–1 When to Modify the orion-ejb-jar.xml File

CMP Type Mapping Type Action

Orion Specified in orion-ejb-jar.xml 1. Deploy.

Orion Default mappings 1. Edit the orion-ejb-jar.xml file to set
persistence-manager attribute name to orion.

2. Deploy.

Toplink Specified in
toplink-ejb-jar.xml (default
persistence manager properties)

1. Deploy.

Toplink Specified in
toplink-ejb-jar.xml (custom
persistence manager properties)

1. Edit the orion-ejb-jar.xml file to set
persistence-manager attribute name to
toplink.

2. Edit additional persistence-manager subentries
(see "Configuring the orion-ejb-jar.xml File for
OC4J" on page 8-9).

3. Deploy.

Toplink Default mappings (no
toplink-ejb-jar.xml)

1. Deploy.

Understanding TopLink Deployment File Creation

Creating TopLink Files for Deployment 8-7

The purpose of toplink-ejb-jar.xml file depends on the type of application
server you are using:

■ OC4J and the toplink-ejb-jar.xml File

■ BEA WebLogic Server and the toplink-ejb-jar.xml File

■ IBM WebSphere Application Server and the toplink-ejb-jar.xml File

OC4J and the toplink-ejb-jar.xml File
When deploying a CMP application to OC4J, the toplink-ejb-jar.xml file is the
name used for the project.xml file.

To create the toplink-ejb-jar.xml file in this case, simply rename your
project.xml file. For more information, see "project.xml File" on page 8-2.

BEA WebLogic Server and the toplink-ejb-jar.xml File
When deploying a CMP application to BEA WebLogic Server, the
toplink-ejb-jar.xml file contains a reference to the project.xml file.

Example 8–2 shows a typical BEA WebLogic Server toplink-ejb-jar.xml file:

Example 8–2 BEA WebLogic Server toplink-ejb-jar.xml File

<?xml version="1.0"?>
<!DOCTYPE toplink-ejb-jar PUBLIC "-//Oracle Corp.//DTD TopLink CMP WebLogic 10.0.3 Developer
Preview//EN" "toplink-wls-ejb-jar_10_0_3.dtd">
<toplink-ejb-jar>

<session>
<name>ejb20_EmployeeDemo</name>
<project-xml>Employee.xml</project-xml>
<login>

<datasource>jdbc/JTSTopLinkDS</datasource>
<non-jts-datasource>jdbc/TopLinkDS</non-jts-datasource>

</login>
<customization-class>

oracle.toplink.demos.ejb.cmp.wls.employee.EmployeeCustomizer
</customization-class>

</session>
</toplink-ejb-jar>

For BEA WegLogic Server, you can specify an optional deployment customization
class (that implements oracle.toplink.ejb.cmp.DeploymentCustomization
interface) used to allow deployment customization of TopLink mapping and run-time
configuration. In Example 8–2, the deployment customization class is named
EmployeeCustomizer. This deployment customization class must be fully qualified
by its package name and included in the deployment JAR.

At deployment time, the TopLink runtime creates a new instance of this class and
invokes its methods beforeLoginCustomization (before the TopLink runtime logs

Note: If you are using EJB 3.0, you can use annotations to specify
most of what you formerly specified in the toplink-ejb-jar.xml
file. To override annotations or specify options not supported by
annotations, you can still provide a toplink-ejb-jar.xml file in
your EJB 3.0 application. For more information on what annotations
are currently supported, see Oracle Containers for J2EE Enterprise
JavaBeans Developer’s Guide

Java Applications

8-8 Oracle TopLink Developer’s Guide

in to the session) and afterLoginCustomization (after the TopLink runtime logs
in to the session), passing in the TopLink session as a parameter.

Use your implementation of the beforeLoginCustomization method to configure
session attributes not supported by the pm-properties, including the following:

■ cache coordination

■ parameterized SQL

■ native SQL

■ batch writing/batch size

■ byte-array/string binding

■ EIS login

■ event listeners

■ table qualifier

■ sequencing

In Example 8–2, notice the <non-jts-datasource> element. The usage of this
element is not limited to BEA WebLogic Server toplink-ejb-jar.xml file. Any
time you use cache coordination with Java Transaction API (JTA), you need to
configure this element through TopLink Workbench (see "Configuring a
Nontransactional Read Login" on page 86-3). This enables TopLink to do the
out-of-context read operations and optimization of the sequencing assignments (see
"Externally Managed Transactional Data Sources" on page 81-1).

For more information about session configuration, see Chapter 74, "Configuring a
Session".

IBM WebSphere Application Server and the toplink-ejb-jar.xml File
When deploying a CMP application to IBM WebSphere application server, the
toplink-ejb-jar.xml file is the name used for the sessions.xml file and
contains a reference to the project.xml file.

To create the toplink-ejb-jar.xml file in this case, simply rename your
sessions.xml file. For more information, see "sessions.xml File" on page 8-4.

Java Applications
In a Java application, TopLink does not use a J2EE container for deployment. Instead,
it relies on TopLink mechanisms to provide functionality and persistence. The key
elements of this type of application are the lack of a J2EE container and the fact that
you deploy the application by placing the application JAR file on the classpath.

Java applications require the following deployment files:

■ project.xml File

■ sessions.xml File

JavaServer Pages and Servlet Applications
Many designers build TopLink applications that use JavaServer Pages (JSP) and Java
servlets. This type of design generally supports Web-based applications.

JSP and servlet applications require the following deployment files:

Configuring the orion-ejb-jar.xml File for OC4J

Creating TopLink Files for Deployment 8-9

■ project.xml File

■ sessions.xml File

Session Bean Applications
Session beans generally model a process, operation, or service and as such, are not
persistent. You can build TopLink applications that wrap interaction with TopLink in
session beans. Session beans execute all TopLink-related operations on behalf of the
client.

This type of design uses JTS and externally managed transactions, but does not incur
the overhead associated with CMP applications. Session bean applications also scale
and deploy easily.

Session bean applications require the following deployment files:

■ project.xml File

■ sessions.xml File

CMP Applications
Many applications use the persistence mechanisms a J2EE container offers. TopLink
provides full support for this type of application.

You can only use one persistence manager for all the entity beans with
container-managed persistence in a JAR file.

CMP applications require the following deployment files:

■ ejb-jar.xml File

■ <J2EE-Container>-ejb-jar.xml File

■ toplink-ejb-jar.xml File

BMP Applications
If you choose to write your own persistence code with BMP, you can take advantage
of the classes in oracle.toplink.ejb.bmp package. Whether or not you use these
classes, BMP applications require the following deployment files:

■ project.xml File

■ sessions.xml File

■ ejb-jar.xml File

Configuring the orion-ejb-jar.xml File for OC4J
To deploy a TopLink application to OC4J 10g (10.1.3.1.0) or later, modify the
orion-ejb-jar.xml file as follows:

■ Configuring persistence-manager Entries

If you are migrating an application from a previous release of OC4J, you can use the
TopLink migration tool to automatically migrate persistence information from your
orion-ejb-jar.xml file to a new toplink-ejb-jar.xml. For more information,
see "Migrating OC4J Orion Persistence to OC4J TopLink Persistence" on page 7-5.

Configuring the orion-ejb-jar.xml File for OC4J

8-10 Oracle TopLink Developer’s Guide

Configuring persistence-manager Entries
If you are using TopLink as your OC4J persistence manager, the default persistence
manager in 10g (10.1.3.1.0), you can configure the persistence-manager subentry
(see Table 8–2) in the orion-ejb-jar.xml file. For more information on the
scenarios in which you would want to modify orion-ejb-jar.xml, see "OC4J and
the orion-ejb-jar.xml File" on page 8-6.

If you are not using TopLink as your OC4J persistence manager, do not modify the
persistence-manager subentries.

OC4J 10g (10.1.3.1.0) and later do not support entity-deployment attribute
pm-name. Use persistence-manager attribute name instead (see Table 8–2). When
OC4J parses the orion-ejb.jar.xml file, if it finds a pm-name attribute, OC4J
ignores its value and logs the following warning message:

Configuring pm-properties
When you select TopLink as the persistence manager (see name in Table 8–2), use the
persistence-manager subentries for pm-properties (see Table 8–3) to configure
the TopLink session that the TopLink run time creates and uses internally for CMP
projects. The persistence-manager subentries take the place of a sessions.xml
file in a CMP project.

WARNING: Use of pm-name is unsupported and will be removed
in a future release. Specify pm usage using
<persistence-manager> ’name’ instead.

Table 8–2 orion-ejb-jar.xml File persistence-manager Entries

Entry Description

name The name of the persistence manager to use. Set this value to toplink.

If you set the name property to toplink, you may also configure
pm-properties (see "Configuring pm-properties" on page 8-10).

class-name Do not configure this attribute. If name is set to toplink, then
class-name is set correctly by default.

descriptor This property applies only when name is set to toplink.

If you export your TopLink mapping metadata to a deployment XML file,
set this property to the name of the deployment XML file (default:
toplink-ejb-jar.xml).

Do not set this property if you are using a TopLink project class instead of
a mapping metadata file (see project-class in Table 8–3).

Note: You can only configure a subset of session features using
these properties and in most cases, default configuration applies. To
configure all session features and to override defaults, you must use a
customization class (see customization-class in Table 8–3).

Configuring the orion-ejb-jar.xml File for OC4J

Creating TopLink Files for Deployment 8-11

Configuring cache-synchronization Properties
When you select TopLink as the persistence manager (see name in Table 8–2), use the
pm-properties subentry for cache-synchronization (see Table 8–4) to
configure TopLink cache coordination features of the session that the TopLink run time
uses internally for CMP projects. For more information about TopLink cache
coordination, see "Understanding Cache Coordination" on page 87-10.

When this subentry is present, you must use a customization class (see
customization-class in Table 8–3) to complete cache coordination configuration.

Table 8–3 orion-ejb-jar.xml File persistence-manager Subentries for pm-properties

Entry Description

session-name Unique name for this TopLink-persisted EJB deployment JAR file. Must be
unique among all TopLink-persisted deployed JAR files in this application
server instance.

When the TopLink run time internally creates a TopLink session for this
TopLink-persisted deployed JAR file, the TopLink session manager stores
the session instance under this session-name. For more information
about the session manager, see Chapter 75, "Acquiring and Using Sessions
at Run Time").

If you do not specify a name, the TopLink runtime will generate a unique
name.

project-class If you export your TopLink mapping metadata to a Java class (that
extends oracle.toplink.sessions.Project), set this property to
the name of the class, fully qualified by its package name. Be sure to
include the class file in the deployable JAR file.

Do not set this property if you are using a mapping metadata file (see
descriptor in Table 8–2).

customization-class Optional Java class (that implements
oracle.toplink.ejb.cmp.DeploymentCustomization) used to
allow deployment customization of TopLink mapping and run-time
configuration. At deployment time, the TopLink run time creates a new
instance of this class and invokes its methods
beforeLoginCustomization (before the TopLink run time logs into
the session) and afterLoginCustomization (after the TopLink
runtime logs into the session), passing in the TopLink session as a
parameter.

Use your implementation of the beforeLoginCustomization method
to configure session attributes not supported by the pm-properties
including: cache coordination (see also "Configuring
cache-synchronization Properties" on page 8-11), parameterized SQL,
native SQL, batch writing/batch size, byte-array/string binding, EIS
login, event listeners, table qualifier, and sequencing. For more
information about session configuration, see Chapter 74, "Configuring a
Session".

The class must be fully qualified by its package name and included in the
deployment JAR file.

db-platform-class Optional TopLink database platform class (instance of
oracle.toplink.platform.database or
oracle.toplink.platform.database.oracle) containing TopLink
support specific to a particular database.

Set this value to the database platform class that corresponds to the
database that your application uses. The class must be fully qualified by
its package name.

remote-relationships Optional flag to allow relationships between remote objects. Valid values
are:

■ true: All relationships will be maintained through the remote
interfaces of the entity beans

■ false: Disables this feature.

cache-synchronization See "Configuring cache-synchronization Properties" on page 8-11.

default-mapping See "Configuring default-mapping Properties" on page 8-12.

Configuring the orion-ejb-jar.xml File for OC4J

8-12 Oracle TopLink Developer’s Guide

For more information about TopLink cache coordination configuration, see Chapter 88,
"Configuring a Coordinated Cache".

Configuring default-mapping Properties
When you select TopLink as the persistence manager (see name in Table 8–2), use the
pm-properties subentry for default-mapping (see Table 8–5) to configure the
TopLink default mapping and automatic table generation feature.

For more information about TopLink default mappings, see "Default Mapping in CMP
Projects Using OC4J at Run Time" on page 30-4.

For more information about TopLink automatic table generation, see "Automatic
Database Table Creation" on page 5-6.

Table 8–4 orion-ejb-jar.xml File pm-properties Subentries for cache-synchronization

Entry Description

mode An indicator of whether or not cache coordination updates should be propagated
to other servers synchronously or asynchronously. Valid values are as follows:

■ asynchronous (default)

■ synchronous

server-url For a JMS coordinated cache: assuming that you are using the Oracle Application
Server Containers for J2EE (OC4J) JNDI naming service and that all the hosts in
your coordinated cache can communicate using OC4J proprietary RMI protocol
ORMI, use a URL like:

ormi://<JMS-host-IP>:<JMS-host-port>

where JMS-host-IP is the IP address of the host on which the JMS service
provider is running and JMS-host-port is the port on which the JMS service
provider is listening for JMS requests.

For an RMI or CORBA coordinated cache: assuming that you are using the OC4J
JNDI naming service and that all the hosts in your coordinated cache can
communicate using OC4J proprietary RMI protocol ORMI on OC4J default port
23791, use a URL like:

ormi://<session-host-IP>:23791

where session-host-IP is the IP address of the host on which this session is
deployed.

server-user Optional username required to log in to the JNDI naming service.

Configuring the weblogic-ejb-jar.xml File for BEA WebLogic Server

Creating TopLink Files for Deployment 8-13

Configuring the weblogic-ejb-jar.xml File for BEA WebLogic Server
To deploy a TopLink application to a BEA WebLogic Server, modify the
weblogic-ejb-jar.xml file as described in:

Table 8–5 orion-ejb-jar.xml File pm-properties Subentries for default-mapping

Entry Description

db-table-gen Optional element that determines what TopLink will do to prepare the
database tables that are being mapped to. Valid values are:

■ Create (default): This value tells TopLink to create the mapped
tables during the deployment. If the tables already exist, TopLink
will log an appropriate warning messages (such as "Table already
existed...") and keeps processing the deployment.

■ DropAndCreate: This value tells TopLink to drop tables before
creating them during deployment. If a table does not initially exist,
the drop operation will cause anSQLException to be thrown through
the driver. However, TopLink handles the exception (logs and
ignores it) and moves on to process the table creation operation. The
deployment fails only if both drop and create operations fail.

■ UseExisting: This value tells TopLink to perform no table
manipulation. If the tables do not exist, deployment still goes
through without error.

If no orion-ejb-jar.xml file is defined in your EAR file, the OC4J
container generates one during deployment. In this case, to specify a value
for db-table-gen, use the TopLink system property
toplink.defaultmapping.dbTableGenSetting. For example:
-Dtoplink.defaultmapping.dbTableGenSetting="DropAndCre
ate".

The orion-ejb-jar.xml property overrides the system property. If
both the orion-ejb-jar.xml property and the system property are
present, TopLink retrieves the setting from the orion-ejb-jar.xml file.

This setting overrides autocreate-tables and autodelete-tables
configuration at the application (EAR) or system level. For more
information, see "Automatic Database Table Creation" on page 5-6.

extended-table-names An element used if the generated table names are not long enough to be
unique. Values are restricted to true or false (default). When set to
true, the TopLink run time will ensure that generated tables names are
unique.

In default mapping, each entity is mapped to one table. The only
exception is in many-to-many mappings where there is one extra relation
table involved in the source and target entities.

When extended-table-names is set to false (the default), a simple
table naming algorithm is used as follows: table names are defined as TL_
<bean_name>. For example, if the bean name is Employee, the
associated table name would be TL_EMPLOYEE.

However, if the same entity is defined in multiple JAR files in an
application, or across multiple applications, table-naming collision is
inevitable.

To address this problem, set extended-table-names to true. When
set to true, TopLink uses an alternative table-naming algorithm as
follows: table names are defined as <bean_name>_<jar_name>_<app_
name>. This algorithm uses the combination of bean, JAR, and EAR
names to form a table name unique across the application. For example,
given a bean named Employee, which is in Test.jar, which is in
Demo.ear (and the application name is "Demo"), then the corresponding
table name will be EMPLOYEE_TEST_DEMO.

If there is no orion-ejb-jar.xml file defined in the EAR file, the OC4J
container generates one during deployment. In this case, to specify a value
for extended-table-names, use the TopLink system property
toplink.defaultmapping.useExtendedTableNames. For example:
-Dtoplink.defaultmapping.useExtendedTableNames="true".

The orion-ejb-jar.xml property overrides the system property. If
both the orion-ejb-jar.xml property and the system property are
present, TopLink retrieves the setting from the orion-ejb-jar.xml file.

Configuring the weblogic-ejb-jar.xml File for BEA WebLogic Server

8-14 Oracle TopLink Developer’s Guide

■ Configuring persistence-descriptor Entries

Avoid the weblogic-ejb-jar.xml tags that TopLink either does not support or
does not require (see "Unsupported weblogic-ejb-jar.xml File Tags" on page 8-15).

If you are migrating a BEA WEbLogic Server application to OC4J, you can use the
TopLink migration tool to automatically migrate persistence information from your
weblogic-ejb-jar.xml file to a new toplink-ejb-jar.xml file. For more
information, see "Migrating BEA WebLogic Persistence to OC4J TopLink Persistence"
on page 7-16.

Configuring persistence-descriptor Entries
Within the weblogic-ejb-jar.xml file, each bean must have a
persistence-descriptor entry with subentries, as follows:

■ Configure the persistence-descriptor entry with subentries that indicate
TopLink is available and should be used:

– If you deploy to WebLogic 6.1 (Service Pack 4), include a
persistence-type element and a persistence-use element. Both
elements require a type-identifier and a type-version tag. Table 8–6
lists the options for the type-identifier tag, and Table 8–7 lists the options
for the type-version tag.

– If you deploy to WebLogic 7.0 or 8.1, include a persistence-use element
with a type-identifier and a type-version tag. Table 8–6 lists the
options for the type-identifier tag, and Table 8–7 lists the options for the
type-version tag.

■ If you use WebLogic 6.1, add the element type-storage to the
persistence-type element, and set it to META-INF\toplink-ejb-jar.xml.

■ If you use WebLogic 7.0 or 8.1, add the element type-storage to the persistence-use
element, and set it to META-INF\toplink-ejb-jar.xml.

■ Set the enable-call-by-reference element to TRUE to enable
call-by-reference:

<weblogic-enterprise-bean>
<ejb-name>AccountBean</ejb-name>
...

<enable-call-by-reference>True</enable-call-by-reference>
...

</weblogic-enterprise-bean>

Table 8–6 WebLogic type-identifier Settings

EJB Version XML Elements

2.0 <type-identifier>TopLink_CMP_2_0</type-identifier>

Table 8–7 WebLogic type-version Settings

WebLogic EJB Version XML Elements

6.1 <type-version>4.0</type-version>

7.0 <type-version>4.5</type-version>

8.1 <type-version>9.0.4</type-version>

Configuring the weblogic-ejb-jar.xml File for BEA WebLogic Server

Creating TopLink Files for Deployment 8-15

Unsupported weblogic-ejb-jar.xml File Tags
The weblogic-ejb-jar.xml file includes several tags that TopLink either does not
support or does not require:

■ concurrency-strategy: This tag specifies how WebLogic manages concurrent
users for a given bean. Because TopLink manages concurrent access internally, it
does not require this tag.

For more information about the TopLink concurrency strategy, see "Configuring
Locking Policy" on page 25-64.

■ db-is-shared: Because TopLink does not make any assumptions about the
exclusivity of database access, TopLink does not require this tag. TopLink
addresses multiuser access issues through various locking and refreshing policies.

■ delay-updates-until-end-of-tx: TopLink always delays updates until the
end of a transaction, and does not require this tag.

■ finders-load-bean: TopLink always loads the bean upon execution of the
finder, and does not require this tag.

■ pool: TopLink does not use a pooling strategy for entity beans. This avoids
object-identity problems that can occur due to pooling.

■ lifecycle: This element manages beans that follow a pooling strategy. Because
TopLink does not use a pooling strategy, TopLink ignores this tag.

■ is-modified-method-name: TopLink does not require a bean
developer-defined method to detect changes in the object state.

■ isolation-level: Because isolation level settings for the cache or database
transactions are specified in the TopLink project, TopLink ignores this tag.

■ cache: Because you define TopLink cache properties in TopLink Workbench, this
tag is unnecessary.

Configuring the weblogic-ejb-jar.xml File for BEA WebLogic Server

8-16 Oracle TopLink Developer’s Guide

Packaging a TopLink Application 9-1

9
Packaging a TopLink Application

How you package the components of your application depends on the type of
application and how you plan to deploy it.

This section describes TopLink-specific details applicable to the common packaging
strategies used for the following types of application:

■ Java Applications

■ JavaServer Pages and Servlet Applications

■ Session Bean Applications

■ CMP Applications

■ BMP Applications

For information, see the following:

■ "Integrating TopLink With an Application Server" on page 7-1

■ "Creating TopLink Files for Deployment" on page 8-1

■ "Deploying a TopLink Application" on page 10-1

Java Applications
For non-J2EE Java applications, it is common to package the application in a single
JAR file as Figure 9–1 shows.

Figure 9–1 Packaging a non-J2EE Java Application

This JAR contains the TopLink files and domain objects required by the application,
including:

Note: If you are using EJB 3.0, you may be using annotations instead
of some deployment files. Include deployment descriptors to override
annotations or specify options not supported by annotations.

JavaServer Pages and Servlet Applications

9-2 Oracle TopLink Developer’s Guide

■ sessions.xml File

■ project.xml File (or the compiled project class file if you are not using XML files for
deployment)

■ The mapped classes required by the application, in a fully-resolved directory
structure

When you create the JAR file, the JAR building utility automatically creates a directory
structure within the JAR. Ensure that the sessions.xml file and the project.xml
file (or project class file) appear at the root of the JAR file. Ensure that the class
directory structure starts at the root of the JAR.

If you do not store the project.xml or sessions.xml files at the root of the JAR
file, see "Packaging With TopLink Metadata File Resource Paths" on page 9-7.

JavaServer Pages and Servlet Applications
For simple J2EE applications without EJB, it is common to package the application in
an Enterprise Archive (EAR) file made up of various J2EE application component
archives as Figure 9–2 shows.

Figure 9–2 Packaging a J2EE JSP or Servlet Application Without EJB

The component archives with TopLink dependencies include the following:

■ TopLink Domain JAR

TopLink Domain JAR
The domain JAR contains the TopLink files and domain objects required by the
application, including:

■ sessions.xml File

■ project.xml File (or the compiled Project class file, if you are not using XML files
for deployment)

Session Bean Applications

Packaging a TopLink Application 9-3

■ The mapped classes required by the application, in a fully resolved directory
structure

When you create the JAR file, the JAR building utility automatically creates a directory
structure within the JAR. Ensure that the sessions.xml file and the project.xml
file (or project.class file) appear at the root of the JAR file. Also ensure that the
class directory structure starts at the root of the JAR.

If you do not store the project.xml or sessions.xml files at the root of the JAR
file, see "Packaging With TopLink Metadata File Resource Paths" on page 9-7.

Session Bean Applications
For J2EE applications with session beans, it is common to package the application in
an Enterprise Archive (EAR) file made up of various J2EE application component
archives as Figure 9–3 shows.

Figure 9–3 Packaging a J2EE Application With Session Beans

The component archives with TopLink dependencies include the following:

■ TopLink Domain JAR

■ EJB JAR

TopLink Domain JAR
The domain JAR contains the TopLink files and domain objects required by the
application, including the following:

■ sessions.xml File

■ project.xml File (or the compiled project.class file if you are not using XML files for
deployment)

CMP Applications

9-4 Oracle TopLink Developer’s Guide

■ The mapped classes required by the application, in a fully-resolved directory
structure

When you create the JAR file, the JAR building utility automatically creates a directory
structure within the JAR. Ensure that the sessions.xml file and the project.xml
file (or project.class file) appear at the root of the JAR file. Also ensure that the
class directory structure starts at the root of the JAR.

If you do not store the project.xml or sessions.xml files at the root of the JAR
file, see "Packaging With TopLink Metadata File Resource Paths" on page 9-7.

EJB JAR
In this type of application, the EJB JAR contains session beans. Consequently, its
orion-ejb-jar.xml file does not contain persistence-manager or
pm-properties entries. These entries apply only to CMP applications.

CMP Applications
For J2EE applications that use CMP to persist entity beans, it is common to package
the application in an Enterprise Archive (EAR) file made up of various J2EE
application component archives as Figure 9–4 shows.

Figure 9–4 Packaging a J2EE Application With Entity Beans With Container-Managed
Persistence

The component archives with TopLink dependencies include the following:

■ EJB JAR

BMP Applications

Packaging a TopLink Application 9-5

EJB JAR
In this type of application, the EJB JAR file specifically service both non-entity and
entity EJB. It includes the following:

■ The home and remote, and all implementation code for all mapped beans in the
application.

■ All mapped non-EJB classes from the TopLink Workbench project

■ The home and remote, and all implementation code for any session beans
included in the application.

■ Helper classes that contain TopLink amendment methods, and any other classes
the application requires.

For example, an instance of
oracle.toplink.ejb.cmp.DeploymentCustomization (for more
information, see customization-class in Table 8–3 in "Configuring
persistence-manager Entries" on page 8-10).

Store the following XML files in the EJB JAR \meta-inf directory:

■ ejb-jar.xml File

■ <J2EE-Container>-ejb-jar.xml File

■ toplink-ejb-jar.xml File

Because the EJB JAR contains both session and entity beans, if you are using OC4J or
BEA WebLogic (WLS), the <J2EE-Container>-ejb-jar.xml file must contain
persistence-manager and pm-properties entries. For more information, see
"Configuring persistence-manager Entries" on page 8-10.

You must persist all of the entity beans to the same data source. For a CMP
application, TopLink does not support the session broker functionality (see "Session
Broker and Client Sessions" on page 72-26).

BMP Applications
For J2EE applications that use BMP to persist entity beans, it is common to package the
application in an Enterprise Archive (EAR) file made up of various J2EE application
component archives as Figure 9–5 shows.

Note: If you do not use XML files for deployment, include your
compiled oracle.toplink.sessions.Project file at the root of
the EJB JAR (not in the \meta-inf directory).

BMP Applications

9-6 Oracle TopLink Developer’s Guide

Figure 9–5 Packaging a J2EE Application With Entity Beans With Bean-Managed
Persistence

The component archives with TopLink dependencies include the following:

■ TopLink Domain JAR

■ EJB JAR

TopLink Domain JAR
The domain JAR contains the TopLink files and domain objects required by the
application, including the following:

■ sessions.xml File

■ project.xml File (or the compiled project.class file if you are not using XML files for
deployment)

■ The mapped classes required by the application, in a fully resolved directory
structure

When you create the JAR file, the JAR building utility automatically creates a directory
structure within the JAR. Ensure that the sessions.xml file and the project.xml
file (or project.class file) appear at the root of the JAR file. Also ensure that the
class directory structure starts at the root of the JAR.

If you do not store the project.xml or sessions.xml files at the root of the JAR
file, see "Packaging With TopLink Metadata File Resource Paths" on page 9-7.

Packaging With TopLink Metadata File Resource Paths

Packaging a TopLink Application 9-7

EJB JAR
In this type of application, the EJB JAR file specifically services both session and entity
beans. It includes the following:

■ The home and remote, and all implementation code for all mapped beans in the
application

■ All mapped non-EJB classes from the TopLink Workbench project

■ The home and remote, and all implementation code for any session beans
included in the application

■ Helper classes that contain TopLink amendment methods, and any other classes
the application requires

Store the following XML files in the EJB JAR \meta-inf directory:

■ ejb-jar.xml File

■ <J2EE-Container>-ejb-jar.xml File

Because the EJB JAR does not contain entity beans with container-managed
persistence, its orion-ejb-jar.xml file must not contain persistence-manager
or pm-properties entries.

For more information, see "Configuring persistence-manager Entries" on page 8-10.

Packaging With TopLink Metadata File Resource Paths
If you do not store the project.xml or sessions.xml files at the root of the JAR
file, then you must provide the full resource path to the files when accessing them.
Ensure that you use "/" in resources paths, not "\". Using "\" will not work in Java.

For example, in the jar element, reference the project.xml and sessions.xml
files as follows:

<jar>/myapp/ordersys/persist/sessions.xml
<jar>/myapp/ordersys/persist/project.xml

In the sessions.xml file, reference the project.xml as follows:

myapp/ordersys/persist/project.xml

To acquire the session, use the following:

SessionManager.getManager().getSession(
new XMLSessionConfigLoader("myapp/ordersys/persist/sessions.xml"),
"OrdersysSession",
getClass().getClassLoader()

);

For more information about acquiring sessions at run time, see "Acquiring a Session
From the Session Manager" on page 75-3.

Packaging With TopLink Metadata File Resource Paths

9-8 Oracle TopLink Developer’s Guide

Deploying a TopLink Application 10-1

10
Deploying a TopLink Application

This chapter includes deployment information on the following TopLink applications:

■ Java Applications

■ JavaServer Pages and Servlets

■ Session Bean Applications

■ CMP Applications

■ BMP Applications

For more information, see the following:

■ "Integrating TopLink With an Application Server" on page 7-1

■ "Creating TopLink Files for Deployment" on page 8-1

■ "Packaging a TopLink Application" on page 9-1

Java Applications
Build the JAR file (see "Java Applications" on page 9-1) and place it on the classpath.

For more information on accessing TopLink from your client application, see
Chapter 75, "Acquiring and Using Sessions at Run Time".

JavaServer Pages and Servlets
After you build the WAR and JAR files (see "JavaServer Pages and Servlet
Applications" on page 9-2), build them into an EAR file for deployment. To deploy the
EAR to your JSP servlet server, copy the EAR to a commonly used directory. You may
also need to use server-specific deployment tools. For more information, see the server
documentation.

For more information on accessing TopLink from your client application, see "Loading
a Session From sessions.xml With an Alternative Class Loader" on page 75-4.

Session Bean Applications
After you build the WAR and JAR files (see "Session Bean Applications" on page 9-3),
build them into an EAR file for deployment. To deploy the EAR file to your J2EE
server, copy the EAR to a commonly used directory. You may also need to use
server-specific deployment tools. For more information, see the server documentation.

For more information on accessing TopLink from your client application, see "Loading
a Session From sessions.xml With an Alternative Class Loader" on page 75-4.

CMP Applications

10-2 Oracle TopLink Developer’s Guide

Optionally, you may also consider "Hot Deployment of EJB" on page 10-4.

CMP Applications
After you build the WAR and JAR files (see "CMP Applications" on page 9-4), build
them into an EAR file for deployment. To deploy the EAR file to your J2EE server,
copy the EAR to a commonly used directory. You may also need to use server-specific
deployment tools. For more information, see the server documentation.

This section describes the following:

■ Deploying a CMP Application to OC4J

■ Deploying a CMP Application to BEA WebLogic Server

■ Deploying a CMP Application to IBM WebSphere Application Server 4.0

For additional information on server-specific configuration, see Chapter 7, "Integrating
TopLink With an Application Server".

Optionally, you may also consider "Hot Deployment of EJB" on page 10-4.

Deploying a CMP Application to OC4J
The most efficient way to deploy a CMP application to OC4J is using Oracle Enterprise
Manager 10g. For more information, see Oracle Application Server Administrator’s Guide.

When you deploy a CMP application to OC4J, the following happens:

■ OC4J performs a partial EJB conformance check on the beans and their associated
interfaces.

■ OC4J builds the internal OC4J classes that manage security and transactions, as
well as the RMI stubs and skeletons that enable client access to the beans.

■ TopLink builds concrete bean subclasses and EJB finder method implementations.

Deploying a CMP Application to BEA WebLogic Server
TopLink CMP support includes integration for BEA WebLogic Server. To enable
TopLink CMP for BEA WebLogic entity beans, use the WebLogic EJB Compiler (ejbc)
to compile the EJB JAR file, as follows:

■ Run ejbc from the command line. Include the EJB JAR file as a command line
argument. ejbc creates an EJB JAR file that contains the original classes as well as
all required generated classes and files.

When you run ejbc, the following happens:

■ ejbc performs a partial EJB conformance check on the beans and their associated
interfaces.

■ ejbc builds the internal BEA WebLogic classes that manage security and
transactions, as well as the RMI stubs and skeletons that enable client access to the
beans.

■ TopLink builds concrete bean subclasses and EJB finder method implementations.

For more information about running ejbc, see the BEA WebLogic Server
documentation.

CMP Applications

Deploying a TopLink Application 10-3

Troubleshooting ejbc
When you start ejbc, it processes the data in a series of stages. If errors occur while
running ejbc, attempt to determine which stage causes the problem. Common
problems include the following:

■ Bean classes that do not conform with the EJB specification

■ Classes missing from the classpath (all domain classes, required TopLink classes,
and all required BEA WebLogic classes must be on the classpath)

■ Java compiler (javac) problems, often caused by using an incorrect version of the
JDK

■ A failure when generating the RMI stubs and skeletons (a failure of RMI compiler
(rmic))

Refer to Chapter 15, "Troubleshooting Application Deployment" for additional
information.

Deploying a CMP Application to IBM WebSphere Application Server 4.0
TopLink CMP support includes an integration for IBM WebSphere application server
4.0. Use the following procedure to deploy your application to WebSphere applicaton
server:

1. Use the TopLink Deploy Tool for WebSphere to compile the EJB JAR file. For more
information, see "Using the WebSphere Deploy Tool" on page 10-5.

2. Start the WebSphere Administration Server.

3. Start the Administration Console and deploy the compiled JAR file.

For more information about deploying the JAR file, see the IBM WebSphere
application server documentation.

It is not necessary to deploy the EJB JAR file in WebSphere Studio Application
Developer (WSAD), because deployment is carried out using the Deploy Tool (see
"Using the WebSphere Deploy Tool" on page 10-5).

Starting the Entity Bean
You can start the bean in either the WebSphere application server or in WSAD.

To start the bean in IBM WebSphere application server, do the following:

1. Select the application that contains the entity beans.

2. Right-click and choose Start.

A message dialog box appears if the bean starts successfully. If an error occurs, consult
Part V, "Troubleshooting a TopLink Application" for troubleshooting information.

To start the bean in WSAD, do the following:

1. Right-click the EJB project, and choose Run on Server.

2. To view the status of the process, open the Console tab of the Server view.

Note: When you deploy an application that contains an entity bean,
set up a data source and associate it with the bean. For more
information about how to create and associate data sources, see the
IBM WebSphere application server documentation.

BMP Applications

10-4 Oracle TopLink Developer’s Guide

BMP Applications
After you build the WAR and JAR files, build them into an EAR file for deployment.
To deploy the EAR file to your J2EE server, copy the EAR to a commonly used
directory. You may also need to use server-specific deployment tools. For more
information, see the server documentation.

For additional information on server-specific configuration, see Chapter 7, "Integrating
TopLink With an Application Server".

Optionally, you may also consider "Hot Deployment of EJB" on page 10-4.

Hot Deployment of EJB
Many J2EE containers support hot deployment, a feature that enables you to deploy EJB
on a running server. Hot deployment allows you to do the following:

■ Deploy newly developed EJB to a running production system.

■ Remove (undeploy) deployed EJB from a running server.

■ Modify (redeploy) the behavior of deployed EJB by updating the bean class
definition.

The client receives deployment exceptions when attempting to access undeployed or
re-deployed bean instances. The client application must catch and handle the
exceptions.

How you configure hot deployment of EJB depends on the type of J2EE application
you are deploying:

■ Hot Deployment in a CMP Application

■ Hot Deployment in a non-CMP Application

For more information about hot deployment, see the J2EE container documentation.

Hot Deployment in a CMP Application
When you take advantage of hot deployment in a CMP application, consider the
following:

■ You must deploy all related beans (all beans that share a common TopLink
project) within the same EJB JAR file. Because TopLink views deployment on a
project level, deploy all the project beans (rather than just a portion of them) to
maintain consistency across the project.

■ When you redeploy a bean, you automatically reset its TopLink project. This
flushes all object caches and rolls back any active object transactions associated
with the project.

Hot Deployment in a non-CMP Application
When you take advantage of hot deployment in a non-CMP application, you must
refresh the TopLink session using the SessionManager method getSession with
the appropriate arguments (see "Refreshing a Session When the Class Loader
Changes" on page 75-6.

If you do not use this SessionManager method, then your application is responsible
for destroying or refreshing the session when a hot deployment (or hot redeployment)
occurs.

Using the WebSphere Deploy Tool

Deploying a TopLink Application 10-5

Using the WebSphere Deploy Tool
TopLink integration for IBM WebSphere application server includes a deployment
tool that helps you deploy your projects to WebSphere. The Deploy Tool for
WebSphere is a graphical tool that makes project deployment to WebSphere easier to
configure and execute. The Deploy Tool also includes a command-line option that lets
you deploy your project while bypassing the graphical interface element of the tool.

You can use the Deploy Tool on its own (see "Using the Deploy Tool on its Own" on
page 10-5) or with the WebSphere Studio Application Developer (see "Using the
Deploy Tool With WebSphere Studio Application Developer" on page 10-5).

Using the Deploy Tool on its Own
To deploy a JAR file, use this procedure:

1. Start the WebSphere Deploy Tool by executing the appropriate <TOPLINK_
HOME>/bin/wasDeployTool script: on Windows, execute
wasDeployTool.cmd; on UNIX, execute wasDeployTool.sh.

The WebSphere Deploy Tool dialog box appears (see Figure 10–1).

Figure 10–1 The Deploy Tool Set Up for Use with WSAD

2. Enable the Copy generated source to directory option to save a copy of the
generated code in the specified directory. This is a quick and efficient way to copy
the files into a WSAD project working directory.

3. Enable the Turn on tracing option if you want to see the details of the process.

4. Click Deploy EJB.

Using the Deploy Tool With WebSphere Studio Application Developer
The Deploy tool is compatible with the WSAD.

Using the WebSphere Deploy Tool

10-6 Oracle TopLink Developer’s Guide

To deploy from the Deploy Tool to WSAD, do the following:

1. Select the EJB Project in WSAD and choose to generate Deploy and RMIC Code.

2. Export the EJB Project to an EJB JAR file, making sure that the TopLink project and
toplink-ejb-jar.xml files are included in the EJB JAR file.

3. Start the WebSphere Deploy Tool by executing the appropriate <TOPLINK_
HOME>/bin/wasDeployTool script: on Windows, execute
wasDeployTool.cmd; on UNIX, execute wasDeployTool.sh.

The WebSphere Deploy Tool dialog appears (see Figure 10–1).

4. Choose the EJB Project working directory so that TopLink overrides the WSAD
deploy code with the TopLink deploy code.

5. If the source is copied to a directory other than the WSAD EJB Project directory,
manually copy the source files to the WSAD EJB Project under the ejbModule
directory of the project.

6. Enter appropriate directories in the fields of the Deploy Tool.

7. Choose Deploy EJB JAR to create the deployed EJB JAR file.

8. Choose Rebuild all from the Project menu to compile the deploy code to
incorporate CMP.

Troubleshooting
The most common error you might encounter when you use the Deploy Tool is the
NoClassDefFoundError exception. To resolve this error condition, add the required
resources to the Classpath. The Turn on tracing option also helps to debug errors
during deployment code generation.

When an obscure error appears during the generating stub phase, copy the Java
command and run it at the command prompt. This gives a more detailed error
message.

See Chapter 7, "Integrating TopLink With an Application Server" for additional
information.

Part IV
 Optimizing and Customizing a TopLink

Application

This part describes how to optimize and customize a TopLink application. It contains
the following chapters.

■ Chapter 11, "Optimization"

This chapter contains information on the diverse set of features TopLink provides
to optimize performance.

■ Chapter 12, "Customization"

This chapter describes how to customize various aspects of TopLink, based on
your application’s specific needs.

Optimization 11-1

11
Optimization

TopLink provides a diverse set of features to measure and optimize application
performance. You can enable or disable most features in the descriptors or session,
making any resulting performance gains global.

This chapter includes the following sections:

■ Understanding Optimization

■ Sources of Application Performance Problems

■ Measuring TopLink Performance With the TopLink Profiler

■ Measuring TopLink Performance With the Oracle
Dynamic Monitoring System (DMS)

Understanding Optimization
Performance considerations are present at every step of the development cycle.
Although this implies an awareness of performance issues in your design and
implementation, it does not mean that you should expect to achieve the best possible
performance in your first pass.

For example, if optimization complicates the design, leave it until the final
development phase. You should still plan for these optimizations from your first
iteration, to make them easier to integrate later.

The most important concept associated with tuning your TopLink application is the
idea of an iterative approach. The most effective way to tune your application is to do
the following:

1. Measure application performance using the TopLink profiler (see "Measuring
TopLink Performance With the TopLink Profiler" on page 11-2) or the Oracle
Dynamic Monitoring System (DMS) profiler (see "Measuring TopLink
Performance With the Oracle Dynamic Monitoring System (DMS)" on page 11-4)

2. Modify application components (see "Sources of Application Performance
Problems")

3. Measure performance again.

To identify the changes that improve your application performance, modify only one
or two components at a time. You should also tune your application in a
nonproduction environment before you deploy the application.

Sources of Application Performance Problems

11-2 Oracle TopLink Developer’s Guide

Sources of Application Performance Problems
For various parts of a TopLink enabled application, this section describes the
performance problems most commonly encountered and provides suggestions for
improving performance. Areas of an application where performance problems can
occur include:

■ General Performance Optimization

■ Schema Optimization

■ Mapping and Descriptor Optimization

■ Session Optimization

■ Cache Optimization

■ Data Access Optimization

■ Query Optimization

■ Unit of Work Optimization

■ Application Server and Database Optimization

Measuring TopLink Performance With the TopLink Profiler
The most important challenge to performance tuning is knowing what to optimize. To
improve the performance of your application, identify the areas of your application
that do not operate at peak efficiency. The TopLink performance profiler helps you
identify performance problems by logging performance statistics for every executed
query in a given session.

The TopLink performance Profiler logs the following information to the TopLink log
file (for general information about TopLink logging, see "Logging" on page 72-7):

■ Query class

■ Domain class

■ Total time, total execution time of the query (in milliseconds)

■ Local time, the amount of time spent on the user’s workstation (in milliseconds)

■ Number of objects, the total number of objects affected

■ Number of objects handled per second

■ Logging, the amount of time spent printing logging messages (in milliseconds)

■ SQL prepare, the amount of time spent preparing the SQL script (in milliseconds)

■ SQL execute, the amount of time spent executing the SQL script (in milliseconds)

■ Row fetch, the amount of time spent fetching rows from the database (in
milliseconds)

■ Cache, the amount of time spent searching or updating the object cache (in
milliseconds)

Note: You should also consider using general performance profilers
such as JDeveloper or JProbe to analyze performance problems. These
tools can provide more detail that may be required to properly
diagnose a problem.

Measuring TopLink Performance With the TopLink Profiler

Optimization 11-3

■ Object build, the amount of time spent building the domain object (in
milliseconds)

■ Query prepare, the amount of time spent to prepare the query prior to execution
(in milliseconds)

■ SQL generation, the amount of time spent to generate the SQL script before it is
sent to the database (in milliseconds)

This section includes information on the following topics:

■ Configuring the TopLink Performance Profiler

■ Accessing the TopLink Profiler Results

Configuring the TopLink Performance Profiler
To enable the TopLink performance profiler, select the TopLink profiler option when
configuring your session (see "Configuring a Performance Profiler" on page 74-10).

The TopLink performance profiler is an instance of
oracle.toplink.tools.profiler.PerformanceProfiler class. It provides
the following public API:

■ logProfile–enables the profiler

■ dontLogProfile–disables the profiler

■ logProfileSummary–organizes the profiler log into a summary of all the
individual operation profiles including operation statistics like the shortest time of
all the operations that were profiled, the total time of all the operations, the
number of objects returned by profiled queries, and the total time that was spent
in each kind of operation that was profiled.

■ logProfileSummaryByQuery–organizes the profiler log as query summaries.
This is the default profiler behavior.

■ logProfileSummaryByClass–organizes the profiler log as class summaries.
This is an alternative to the default behavior implemented by
logProfileSummaryByQuery method.

Accessing the TopLink Profiler Results
The simplest way to view TopLink profiler results is to read the TopLink log files with
a text editor. For general information about TopLink logging, such as logging file
location, see "Logging" on page 72-7.

Alternatively, you can use the graphical performance profiler that the TopLink Web
client provides. For more information, refer to the Web client online Help and
README files.

Example 11–1 shows an example of the TopLink profiler output.

Example 11–1 Performance Profiler Output

Begin Profile of{
ReadAllQuery(oracle.toplink.demos.employee.domain.Employee)
Profile(ReadAllQuery,# of obj=12, time=1399,sql execute=217, prepare=495, row
fetch=390, time/obj=116,obj/sec=8)
} End Profile

The second line of the profile contains the following information about a query:

Measuring TopLink Performance With the Oracle Dynamic Monitoring System (DMS)

11-4 Oracle TopLink Developer’s Guide

■ ReadAllQuery(oracle.toplink.demos.employee.domain.Employee):
specific query profiled, and its arguments.

■ Profile(ReadAllQuery: start of the profile and the type of query.

■ # of obj=12: number of objects involved in the query.

■ time=1399: total execution time of the query (in milliseconds).

■ sql execute=217: total time spent preparing the SQL script.

■ prepare=495: total time spent preparing the SQL script.

■ row fetch=390: total time spent fetching rows from the database.

■ time/obj=116: number of milliseconds spent on each object.

■ obj/sec=8) */: number of objects handled per second.

Measuring TopLink Performance With the Oracle
Dynamic Monitoring System (DMS)

Oracle DMS is a library that enables application and system developers to use a
variety of DMS sensors to measure and export customized performance metrics for
specific software components (called nouns).

TopLink includes DMS instrumentation in essential objects to provide efficient
monitoring of run-time data in TopLink-enabled applications, including both J2EE and
non-J2EE applications.

By enabling DMS profiling in a TopLink application (see "Configuring the Oracle DMS
Profiler" on page 11-6), you can collect and easily access run-time data that can help
you with application administration tasks and performance tuning.

Table 11–1 lists the many performance and status metrics TopLink provides through
DMS.

Table 11–2 lists the various profiling levels you can use to adjust the level of profiling
to the amount of monitoring information you require. Levels are listed in order of
increasing system overhead.

You can easily access DMS data at run time using a management application that
supports the Java Management Extensions (JMX) API (see "Accessing Oracle DMS
Profiler Data Using JMX" on page 11-7) or using any Web browser and the DMS Spy
servlet (see "Accessing Oracle DMS Profiler Data Using the DMS Spy Servlet" on
page 11-7).

Note: You should also consider using general performance profilers
such as JDeveloper or JProbe to analyze performance problems. These
tools can provide more detail that may be required to properly
diagnose a problem.

Measuring TopLink Performance With the Oracle Dynamic Monitoring System (DMS)

Optimization 11-5

Table 11–1 TopLink DMS Metrics

DMS Noun Name1 Sensor Name Level2 Description

Cache CacheHits HEAVY Number of times an object looked up in the cache
was found.

CacheMisses HEAVY Number of times an object looked up in the cache
was not found.

Caching ALL Time spent adding, looking up, and removing
objects in the cache.

RCM3 ChangesNotProcessed ALL Number of coordinated cache
ObjectChangeSets discarded because the object
was not found in the cache and was not merged.

ChangesProcessed ALL Number of coordinated cache
ObjectChangeSets for which an object was
found in the cache and merged.

MessagesReceived HEAVY Number of cache coordination messages received.

MessagesSent HEAVY Number of cache coordination messages sent.

RemoteChangeSets HEAVY Number of change sets received from remote
machines and processed.

RCMStatus HEAVY Cache coordination status: one of not
configured, started, or stopped.

Connection ConnectCalls HEAVY Total number of connect calls made.

ConnectionsInUse(POOL_NAME) HEAVY Number of connections in use for the given
connection pool.

DisconnectCalls HEAVY Total number of disconnect calls made.

ConnectionManagement ALL Time spent managing connections including
connecting, reconnecting, and disconnecting from
a data source.

Query DatabaseExecute ALL Time spent in calls to the JDBC Statement.
Includes time spent in calls to: close,
executeUpdate, and executeQuery.

DeleteQueries HEAVY Time spent executing delete queries, including
time spent in JDBC calls.

ObjectBuilding ALL Time spent building persistent objects from
database rows.

QueryPreparation ALL Time spent preparing a query. Does not include
time spent doing SQL prepare.

ReadQueries HEAVY Time spent executing read queries, including time
spent in JDBC calls.

RowFetch ALL Time spent fetching the JDBC result set from the
database and building DatabaseRecord objects
from the JDBC result set. Includes regular SQL
calls and stored procedure calls.

SqlGeneration ALL Time spent generating SQL. In the case of TopLink
expressions, includes time spent converting
Expression to SQL.

SqlPrepare ALL Time spent in JDBC preparing the Statement.
Includes the time spent in EIS creating an
Interaction associated with a connection, and
creating input and output Record objects.

UpdateQueries HEAVY Time spent executing update queries, including
time spent in JDBC calls.

Measuring TopLink Performance With the Oracle Dynamic Monitoring System (DMS)

11-6 Oracle TopLink Developer’s Guide

Configuring the Oracle DMS Profiler
You configure DMS support in your TopLink application differently depending on the
type of application it is:

■ OC4J Applications

WriteQueries HEAVY Time spent executing write queries, including time
spent in JDBC calls.

Session ClientSession HEAVY Number of ClientSessions currently logged in.

loginTime NORMAL Time at which the session was logged in. Once the
session is logged out, the sensor no longer appears.

SessionName NORMAL Name of the session.

UnitOfWork HEAVY Number of UnitOfWork objects acquired from
this session.

Transaction DistributedMerge ALL Time spent merging remote transaction changes
into the local shared cache.

JtsAfterCompletion ALL Time spent on JTS afterCompletion method.

JtsBeforeCompletion ALL Time spent on JTS beforeCompletion method.

MergeTime ALL Time spent merging changes into the shared cache.

OptimisticLocks HEAVY Number of optimistic lock exceptions thrown.

Sequencing ALL Time spent maintaining the sequence number
mechanism and setting the sequence number on
objects.

UnitOfWorkRegister ALL Time spent in registering objects with the
UnitOfWork.

UnitOfWorkCommits ALL Time spent in the UnitOfWork commit process.

UnitOfWorkRollBacks HEAVY Number of UnitOfWork commits that were rolled
back.

Miscellanous DescriptorEvents ALL Time spent by the DescriptorEventManager
executing a descriptor event.

Logging ALL Time spent logging TopLink activities.

SessionEvents ALL Time spent by the SessionEvent manager executing
a session event.

1 DMS noun names are followed by the name of the session to which they belong. For example, Cache(SESSION_NAME).
2 See Table 11–2 for a description of each level setting.
3 Cache Coordination

Table 11–2 DMS Metric Collection Levels

Level Description

NONE Disable collection of all DMS metrics.

NORMAL Enable collection of TopLink DMS metrics. Adds very low overhead. This is the
default setting.

HEAVY Enable collection of basic TopLink DMS metrics. Adds about 1 percent overhead.

ALL Enable all possible TopLink DMS metrics. Adds about 3 percent overhead.

Table 11–1 (Cont.) TopLink DMS Metrics

DMS Noun Name1 Sensor Name Level2 Description

Measuring TopLink Performance With the Oracle Dynamic Monitoring System (DMS)

Optimization 11-7

■ Non-OC4J Applications

OC4J Applications
By default, DMS metric collection is enabled for TopLink CMP applications deployed
to OC4J. For BMP or non-CMP applications deployed to OC4J, you must configure
DMS metric collection (see "Configuring a Performance Profiler" on page 74-10).

TopLink EJB deployed in OC4J are subject to the DMS configuration specified by the
OC4J command line-property -Doracle.dms.sensors=<level> where <level>
is one of the values listed in Table 11–2.

Non-OC4J Applications
To enable DMS metric collection for TopLink applications deployed to an application
sever other than OC4J do the following:

1. Ensure that the dms.jar file is in your application classpath.

By default, the dms.jar file is located in <ORACLE_HOME>\lib directory.

2. Set system property oracle.dms.sensors=<level> where <level> is one of
the values listed in Table 11–2.

3. To enable the DMS profiler, select the DMS profiler option when configuring your
TopLink session (see "Configuring a Performance Profiler" on page 74-10).

Accessing Oracle DMS Profiler Data Using JMX
Using the Java Management Extensions (JMX) API, you can publish DMS profiler
run-time data from a managed application (TopLink) to a JMX-compliant management
application, by way of EJB-like MBean components.

When you configure your TopLink application to enable run-time services (see
"Configuring a Performance Profiler" on page 74-10) and you deploy your application
to OC4J, the TopLink runtime will deploy a JMX MBean so that a JMX management
application can access the DMS profiler run-time data your application publishes.

For code examples that illustrates how to use DMS and JMX, see
http://www.oracle.com/technology/tech/java/oc4j/1003/how_
to/jmx-enabled-demo.html.

Accessing Oracle DMS Profiler Data Using the DMS Spy Servlet
Once your DMS enabled TopLink application is running, you can access the DMS data
it is collecting.

The DMS Spy servlet is available in all Java processes that use DMS. It lets you
monitor metrics for a single Java process from a Web browser.

To access DMS data directly using the DMS Spy servlet, do the following:

1. Ensure that the dms.jar file is in your application classpath.

By default, the dms.jar file is located in <ORACLE_HOME>\lib.

2. Set the following system properties for the DMS enabled Java process you want to
monitor:

oracle.dms.publisher.classes=oracle.dms.http.Httpd
oracle.dms.httpd.port.start=<port>

General Performance Optimization

11-8 Oracle TopLink Developer’s Guide

where <port> is the HTTP port on which DMS accepts requests (the default value
is 46080).

3. Apply the system property changes by restarting the Java process you want to
monitor.

4. Using a Web browser, connect to the Java process and access the Spy servlet by
entering the following URL:

http://<host>:<port>/dms0/Spy

where <host> is the host name of your Java process and <port> is the value
specified by the oracle.dms.httpd.port.start system property.

The Spy servlet displays all TopLink DMS-enabled objects appropriate for the
current DMS level setting. Figure 11–1 shows an example of the DMS Spy servlet
display.

Figure 11–1 DMS Spy Servlet Display

General Performance Optimization
Do not override TopLink default behavior unless your application absolutely requires
it. Because TopLink default behavior is set for optimum results with the most common
applications, the default is usually the most efficient choice for any given option. This
is especially important for query or cache behavior.

Use TopLink Workbench rather than manual coding. TopLink Workbench is not only
easy to use. The default configuration it exports to deployment XML (and the code it
generates, if required) represents best practices optimized for most applications.

Schema Optimization
Optimization is an important consideration when you design your database schema
and object model. Most performance issues occur when the object model or database
schema is too complex, which can make the database slow and difficult to query. This
is most likely to happen if you derive your database schema directly from a complex
object model.

To optimize performance, design the object model and database schema together.
However, allow each model to be designed optimally: do not require a direct
one-to-one correlation between the two.

This section includes the following schema optimization examples:

■ Schema Case 1: Aggregation of Two Tables into One

Schema Optimization

Optimization 11-9

■ Schema Case 2: Splitting One Table Into Many

■ Schema Case 3: Collapsed Hierarchy

■ Schema Case 4: Choosing One out of Many

Schema Case 1: Aggregation of Two Tables into One
A common schema optimization technique is to aggregate two tables into a single
table. This improves read and write performance by requiring only one database
operation instead of two.

Table 11–3 and Table 11–4 illustrate the table aggregation technique.

The nature of this application dictates that developers always look up employees and
addresses together. As a result, querying a member based on address information
requires a database join, and reading a member and its address requires two read
statements. Writing a member requires two write statements. This adds unnecessary
complexity to the system, and results in poor performance.

A better solution is to combine the MEMBER and ADDRESS tables into a single table,
and change the one-to-one relationship to an aggregate relationship. This lets you read
all information with a single operation, and doubles the update and insert speed,
because only a single row in one table requires modifications.

Schema Case 2: Splitting One Table Into Many
To improve overall performance of the system, split large tables into two or more
smaller tables. This significantly reduces the amount of data traffic required to query
the database.

For example, the system illustrated in Table 11–5 assigns employees to projects within
an organization. The most common operation reads a set of employees and projects,
assigns employees to projects, and update the employees. The employee’s address or
job classification is also occasionally used to determine the project on which the
employee is placed.

Table 11–3 Original Schema (Aggregation of Two Tables Case)

Elements Details

Title ACME Member Location Tracking System

Classes Member, Address

Tables MEMBER, ADDRESS

Relationships Source, Instance Variable, Mapping, Target, Member, address,
one-to-one, Address

Table 11–4 Optimized Schema (Aggregation of Two Tables Case)

Elements Details

Classes Member, Address

Tables MEMBER

Relationships Source, Instance Variable, Mapping, Target, Member, address,
aggregate, Address

Schema Optimization

11-10 Oracle TopLink Developer’s Guide

When you read a large volume of employee records from the database, you must also
read their aggregate parts. Because of this, the system suffers from general read
performance issues. To resolve this, break the EMPLOYEE table into the EMPLOYEE,
ADDRESS, PHONE, EMAIL, and JOB tables, as illustrated in Table 11–6.

Because you usually read only the employee information, splitting the table reduces
the amount of data transferred from the database to the client. This improves your
read performance by reducing the amount of data traffic by 25 percent.

Table 11–5 Original Schema (Splitting One Table into Many Case)

Elements Details
Instance
Variable Mapping Target

Title ACME Employee
Workflow System

Classes Employee,
Address,
PhoneNumber,
EmailAddress,
JobClassification,
Project

Tables EMPLOYEE,
PROJECT,
PROJ_EMP

Relationships Employee address aggregate Address

Employee phoneNumber aggregate EmailAddress

Employee emailAddress aggregate EmailAddress

Employee job aggregate JobClassification

Employee projects many-to-many Project

Table 11–6 Optimized Schema (Splitting One Table into Many Case)

Elements Details
Instance
Variable Mapping Target

Title ACME Employee
Workflow System

Classes Employee,
Address,
PhoneNumber,
EmailAddress,
JobClassification,
Project

Tables EMPLOYEE,
ADDRESS,
PHONE, EMAIL,
JOB, PROJECT,
PROJ_EMP

Schema Optimization

Optimization 11-11

Schema Case 3: Collapsed Hierarchy
A common mistake when you transform an object-oriented design into a relational
model, is to build a large hierarchy of tables on the database. This makes querying
difficult, because queries against this type of design can require a large number of
joins. It is usually a good idea to collapse some of the levels in your inheritance
hierarchy into a single table.

Table 11–7 represents a system that assigns clients to a company’s sales
representatives. The managers also track the sales representatives that report to them.

The system suffers from complexity issues that hinder system development and
performance. Nearly all queries against the database require large, resource-intensive
joins. If you collapse the three-level table hierarchy into a single table, as illustrated in
Table 11–8, you substantially reduce system complexity. You eliminate joins from the
system, and simplify queries.

Relationships Employee address one-to-one Address

Employee phoneNumber one-to-one EmailAddress

Employee emailAddress one-to-one EmailAddress

Employee job one-to-one JobClassification

Employee projects many-to-many Project

Table 11–7 Original Schema (Collapsed Hierarchy Case)

Elements Details

Title ACME Sales Force System

Classes Tables

Person PERSON

Employee PERSON, EMPLOYEE

SalesRep PERSON, EMPLOYEE, REP

Staff PERSON, EMPLOYEE, STAFF

Client PERSON, CLIENT

Contact PERSON, CONTACT

Table 11–8 Optimized Schema (Collapsed Hierarchy Case)

Elements Details

Classes Tables

Person none

Employee EMPLOYEE

SalesRep EMPLOYEE

Staff EMPLOYEE

Client CLIENT

Contact CLIENT

Table 11–6 (Cont.) Optimized Schema (Splitting One Table into Many Case)

Elements Details
Instance
Variable Mapping Target

Schema Optimization

11-12 Oracle TopLink Developer’s Guide

Schema Case 4: Choosing One out of Many
In a one-to-many relationship, a single source object has a collection of other objects. In
some cases, the source object frequently requires one particular object in the collection,
but requires the other objects only infrequently. You can reduce the size of the
returned result set in this type of case by adding an instance variable for the frequently
required object. This lets you access the object without instantiating the other objects in
the collection.

Table 11–9 represents a system by which an international shipping company tracks the
location of packages in transit. When a package moves from one location to another,
the system creates a new a location entry for the package in the database. The most
common query against any given package is for its current location.

A package in this system can accumulate several location values in its LOCATION
collection as it travels to its destination. Reading all locations from the database is
resource intensive, especially when the only location of interest is the current location.

To resolve this type of problem, add a specific instance variable that represents the
current location. You then add a one-to-one mapping for the instance variable, and use
the instance variable to query for the current location. As illustrated in Table 11–9,
because you can now query for the current location without reading all locations
associated with the package, this dramatically improves the performance of the
system.

Table 11–9 Original Schema (Choosing One out of Many Case)

Elements Details
Instance
Variable Mapping Target

Title ACME Shipping
Package Location
Tracking system

Classes Package, Location

Tables PACKAGE,
LOCATION

Relationships Package locations one-to-many Location

Table 11–10 Optimized Schema (Choosing One out of Many Case)

Elements Details
Instance
Variable Mapping Target

Classes Package, Location

Tables PACKAGE,
LOCATION

Relationships Package locations one-to-many Location

Package currentLocation one-to-many Location

Cache Optimization

Optimization 11-13

Mapping and Descriptor Optimization
Always use indirection. It is not only critical in optimizing database access, but also
allows TopLink to make several other optimizations including optimizing its cache
access and unit of work processing. See "Configuring Indirection" on page 32-3.

Avoid using the existence checking option checkCacheThenDatabase on
descriptors (see "Configuring Cache Existence Checking at the Descriptor Level" on
page 25-43), unless required by the application. The default existence checking
behavior offers better performance.

Avoid expensive initialization in the default constructor that TopLink uses to
instantiate objects. Instead, use lazy initialization or use a TopLink instantiation policy
(see "Configuring Instantiation Policy" on page 25-70) to configure the descriptor to
use a different constructor.

Avoid using method access in your TopLink mappings (see "Configuring Method
Accessing" on page 32-14), especially if you have expensive or potentially dangerous
side-effect code in your get or set methods; use the default direct attribute access
instead.

Session Optimization
Use a Server session in a server environment, not a DatabaseSession.

Use the TopLink client session instead of remote session. A client session is
appropriate for most multiuser J2EE application server environments.

Do not pool client sessions. Pooling sessions offers no performance gains.

For more information, see "Server and Client Sessions" on page 72-14 and "OC4J
Applications" on page 11-7.

Cache Optimization
Cache coordination (see "Understanding Cache Coordination" on page 87-10) is one
way to allow multiple, possibly distributed, instances of a session to broadcast object
changes among each other so that each session’s cache can be kept up-to-date.

However, cache coordination is best suited to applications with specific characteristics
(see "When to use Cache Coordination" on page 87-11). Before implementing cache
coordination, tune the TopLink cache for each class using alternatives such as object
identity type (see "Configuring Cache Type and Size at the Descriptor Level" on
page 25-35), cache invalidation (see "Cache Invalidation" on page 87-8), or cache
isolation (see "Cache Isolation" on page 87-9). Doing so lets you configure the optimal
cache configuration for each type of class (see Table 11–11) and may eliminate the need
for distributed cache coordination altogether.

Table 11–11 Identity Map and Cache Configuration by Class Type

Class Type Identity Map Options Cache Options

read-only soft, hard, or full1

1 If the number of instances is finite.

read-mostly soft or hard cache invalidation or cache coordination

write-mostly weak cache invalidation

Data Access Optimization

11-14 Oracle TopLink Developer’s Guide

If you do use cache coordination, use JMS for cache coordination rather than RMI. JMS
is more robust, easier to configure, and runs asynchronously. If you require
synchronous cache coordination, use RMI.

You can configure a descriptor to control when the TopLink runtime will refresh the
session cache when an instance of this object type is queried (see "Configuring Cache
Refreshing" on page 25-27). Oracle does not recommend the use of Always Refresh or
Disable Cache Hits.

Using Always Refresh may result in refreshing the cache on queries when not
required or desired. As an alternative, consider configuring cache refresh on a query
by query basis (see "Refreshing the Cache" on page 93-35).

Using Disable Cache Hits instructs TopLink to bypass the cache for object read
queries based on primary key. This results in a database round trip every time an
object read query based on primary key is executed on this object type, negating the
performance advantage of the cache. When used in conjunction with Always Refresh,
this option ensures that all queries go to the database. This can have a significant
impact on performance. These options should only be used in specialized
circumstances.

Data Access Optimization
Depending on the type of data source your application accesses, TopLink offers a
variety of Login options that you can use to tune the performance of low level data
reads and writes.

You can use several techniques to improve data access performance for your
application. This section discusses some of the more common approaches, including:

■ JDBC Driver Properties Optimization

■ Data Format Optimization

■ Batch Writing

■ Parameterized SQL (Binding) and Prepared Statement Caching

JDBC Driver Properties Optimization
Consider the default behavior of the JDBC driver you choose for your application.
Some JDBC driver options can affect data access performance.

Some important JDBC driver properties can be configured directly using TopLink
Workbench or TopLink API (for example, see "JDBC Fetch Size" on page 11-18).

JDBC driver properties that are not supported directly by TopLink Workbench or
TopLink API can still be configured as generic JDBC properties that TopLink passes to
the JDBC driver.

For example, some JDBC drivers, such as Sybase JConnect, perform a database round
trip to test whether or not a connection is closed: that is, calling the JDBC driver
method isClosed results in a stored procedure call or SQL select. This database
round-trip can cause a significant performance reduction. To avoid this, you can
disable this behavior: for Sybase JConnect, you can set property name CLOSED_TEST
to value INTERNAL.

For more information about configuring general JDBC driver properties from within
your TopLink application, see "Configuring Properties" on page 82-4.

Data Access Optimization

Optimization 11-15

Data Format Optimization
By default, TopLink optimizes data access by accessing the data from JDBC in the
format the application requires. For example, TopLink retrieves long data types from
JDBC instead of having the driver return a BigDecimal that TopLink would then
have to convert into a long.

Some older JDBC drivers do not perform data conversion correctly and conflict with
this optimization. In this case, you can disable this optimization (see "Configuring
Advanced Options" on page 83-11).

Batch Writing
Batch writing can improve database performance by sending groups of INSERT,
UPDATE, and DELETE statements to the database in a single transaction, rather than
individually.

 When used without parameterized SQL, this is known as dynamic batch writing.

When used with parameterized SQL (see "Parameterized SQL (Binding) and Prepared
Statement Caching" on page 11-15), this is known as parameterized batch writing. This
allows a repeatedly executed statement, such as a group of inserts of the same type, to
be executed as a single statement and a set of bind parameters. This can provide a
large performance benefit as the database does not have to parse the batch.

When using batch writing, you can tune the maximum batch writing size using
setMaxBatchWritingSize method of the Login interface. The meaning of this
value depends on whether or not you are using parameterized SQL:

■ If you are using parameterized SQL (default), the maximum batch writing size is
the number of statements to batch (default: 100).

■ If you are using dynamic SQL, the maximum batch writing size is the size of the
SQL string buffer in characters (default: 32000).

By default, TopLink does not enable batch writing, because not all databases and JDBC
drivers support it. Oracle recommends that you enable batch writing for selected
databases and JDBC drivers that support this option (see "Configuring JDBC Options"
on page 83-9).

For a more detailed example of using batch writing to optimize write queries, see
"Batch Writing and Parameterized SQL" on page 11-28.

Parameterized SQL (Binding) and Prepared Statement Caching
Using parameterized SQL, you can keep the overall length of an SQL query from
exceeding the statement length limit that your JDBC driver or database server
imposes.

Using parameterized SQL and prepared statement caching, you can improve
performance by reducing the number of times the database SQL engine parses and
prepares SQL for a frequently called query.

By default, TopLink does not enable parameterized SQL, because not all databases and
JDBC drivers support it. Oracle recommends that you enable parameterized SQL and
prepared statement caching for selected databases and JDBC drivers that support
these options.

Data Access Optimization

11-16 Oracle TopLink Developer’s Guide

Not all JDBC drivers support all JDBC binding options (see "Configuring JDBC
Options" on page 83-9). Selecting a combination of options may result in different
behavior from one driver to another. Before selecting JDBC options, consult your JDBC
driver documentation. When choosing binding options, consider the following
approach:

1. Try binding all parameters with all other binding options disabled.

2. If this fails to bind some large parameters, consider enabling one of the following
options, depending on the parameter’s data type and the binding options that
your JDBC driver supports:

a. To bind large String parameters, try enabling string binding.

If large String parameters still fail to bind, consider adjusting the maximum
String size. TopLink sets the maximum String size to 32000 characters by
default.

b. To bind large Byte array parameters, try enabling byte array binding.

3. If this fails to bind some large parameters, try enabling streams for binding.

Typically, configuring string or byte array binding will invoke streams for
binding. If not, explicitly configuring streams for binding may help.

For J2EE applications that use external connection pools, you must configure
parameterized SQL in TopLink, but you cannot configure prepared statement caching
in TopLink. In this case, you must configure prepared statement caching in the
application server connection pool. For example, in OC4J, if you configure your
data-source.xml file with a managed data-source (where
connection-driver is oracle.jdbc.OracleDriver and class is
oracle.j2ee.sql.DriverManagerDataSource), you can configure a non-zero
num-cached-statements that enables JDBC statement caching and defines the
maximum number of statements cached.

For applications that use TopLink internal connection pools, you can configure
parameterized SQL and prepared statement caching in TopLink.

You can configure parameterized SQL and prepared statement caching at the
following levels:

■ project level–applies to all named queries (see "Configuring Named Query
Parameterized SQL and Statement Caching at the Project Level" on page 20-7);

■ descriptor level–applies on a per-named-query basis (see "Configuring Named
Query Options" on page 25-22);

■ database login level–applies to all queries (see "Configuring JDBC Options" on
page 83-9) and provides additional parameter binding API to alleviate the limit
imposed by some drivers on SQL statement size;

■ query level–applies on a per-query basis (see "Using Parameterized SQL and
Statement Caching in a DatabaseQuery" on page 94-17).

Note: Parameterized SQL and statement caching are tied together.
Typically, enabling parameterized SQL alone would not provide any
performance benefits. If you choose to enable parameterized SQL,
you should also enable statement caching.

Query Optimization

Optimization 11-17

Query Optimization
TopLink provides an extensive query API for reading, writing, and updating data.
This section describes ways of optimizing query performance in various
circumstances.

Before optimizing queries, consider the optimization suggestions in "Data Access
Optimization" on page 11-14.

This section includes information on the following:

■ Parameterized SQL and Prepared Statement Caching

■ Named Queries

■ Batch and Join Reading

■ Partial Object Queries and Fetch Groups

■ JDBC Fetch Size

■ Cursored Streams and Scrollable Cursors

■ Read Optimization Examples

■ Write Optimization Examples

Parameterized SQL and Prepared Statement Caching
These features let you cache and reuse a query’s preparsed database statement when
the query is reexecuted.

For more information, see"Parameterized SQL (Binding) and Prepared Statement
Caching" on page 11-15.

Named Queries
Whenever possible, use named queries in your application. Named queries help you
avoid duplication, are easy to maintain and reuse, and easily add complex query
behavior to the application. Using named queries also allows for the query to be
prepared once, and for the SQL generation to be cached.

For more information, see "Named Queries" on page 93-16.

Batch and Join Reading
To optimize database read operations, TopLink supports both batch and join reading.
When you use these techniques, you dramatically decrease the number of times you
access the database during a read operation, especially when your result set contains a
large number of objects.

For more information, see the following:

■ "Using Batch Reading" on page 94-10

■ "Join Reading and Object-Level Read Queries" on page 93-12

■ "Batch Writing" on page 11-15

Partial Object Queries and Fetch Groups
Partial object queries lets you retrieve partially populated objects from the database
rather than complete objects.

Query Optimization

11-18 Oracle TopLink Developer’s Guide

For CMP applications, you can use fetch groups to accomplish the same performance
optimization.

For more information about partial object reading, see "Partial Object Queries" on
page 93-11.

For more information about fetch groups, see "Fetch Groups" on page 23-5.

JDBC Fetch Size
The JDBC fetch size gives the JDBC driver a hint as to the number of rows that should
be fetched from the database when more rows are needed.

For large queries that return a large number of objects you can configure the row fetch
size used in the query to improve performance by reducing the number database hits
required to satisfy the selection criteria.

Most JDBC drivers default to a fetch size of 10, so if you are reading 1000 objects,
increasing the fetch size to 256 can significantly reduce the time required to fetch the
query's results. The optimal fetch size is not always obvious. Usually, a fetch size of
one half or one quarter of the total expected result size is optimal. Note that if you are
unsure of the result set size, incorrectly setting a fetch size too large or too small can
decrease performance.

Set the query fetch size with ReadQuery method setFetchSize as Example 11–2
shows. Alternatively, you can use ReadQuery method setMaxRows to set the limit
for the maximum number of rows that any ResultSet can contain.

Example 11–2 JDBC Driver Fetch Size

// Create query and set Employee as its reference class
ReadAllQuery query = new ReadAllQuery(Employee.class);
ExpressionBuilder builder = query.getExpressionBuilder();
query.setSelectionCriteria(builder.get("id").greaterThan(100));

// Set the JDBC fetch size
query.setFetchSize(50);

// Configure the query to return results as a ScrollableCursor
query.useScrollableCursor();

// Execute the query
ScrollableCursor cursor = (ScrollableCursor) session.executeQuery(query);

// Iterate over the results
while (cursor.hasNext()) {

System.out.println(cursor.next().toString());
}
cursor.close();

In this example, when you execute the query, the JDBC driver retrieves the first 50
rows from the database (or all rows if less than 50 rows satisfy the selection criteria).
As you iterate over the first 50 rows, each time you call cursor.next(), the JDBC
driver returns a row from local memory–it does not need to retrieve the row from the
database. When you try to access the fifty first row (assuming there are more than 50
rows that satisfy the selection criteria), the JDBC driver again goes to the database and
retrieves another 50 rows. In this way, 100 rows are returned with only two database
hits.

Query Optimization

Optimization 11-19

If you specify a value of zero (default; means the fetch size is not set), then the hint is
ignored and the JDBC driver’s default is used.

For more information about configuring JDBC driver properties from within your
TopLink application, see "Configuring Properties" on page 82-4.

Cursored Streams and Scrollable Cursors
You can configure a query to retrieve data from the database using a cursored Java
stream or scrollable cursor. This lets you view a result set in manageable increments
rather than as a complete collection. This is useful when you have a large result set.
You can further tune performance by configuring the JDBC driver fetch size used (see
"JDBC Fetch Size" on page 11-18).

For more information about scrollable cursors, see "Handling Cursor and Stream
Query Results" on page 96-15.

Read Optimization Examples
TopLink provides the read optimization features listed in Table 11–12.

This section includes the following read optimization examples:

■ Reading Case 1: Displaying Names in a List

■ Reading Case 2: Batch Reading Objects

■ Reading Case 3: Using Complex Custom SQL Queries

■ Reading Case 4: Using View Objects

■ Reading Case 5: Inheritance Views

Table 11–12 Read Optimization Features

Feature Function Performance Technique

Unit of Work Tracks object changes within
the Unit of Work.

To minimize the amount of tracking
required, registers only those objects
that will change.

For more information, see Chapter 97,
"Understanding TopLink Transactions".

Indirection Uses indirection objects to
defer the loading and
processing of relationships.

Provides a major performance benefit.
It allows database access to be
optimized and allows TopLink to
internally make several optimizations
in caching and unit of work.

Soft cache, weak
identity map

Offers client-side caching for
objects read from database,
and drops objects from the
cache when memory
becomes low.

Reduces database calls and improves
memory performance.

For more information, see "Cache Type
and Object Identity" on page 87-3.

Weak identity map Offers client-side caching for
objects.

Reduces database access and maintains
a cache of all referenced objects.

For more information, see "Cache Type
and Object Identity" on page 87-3.

Query Optimization

11-20 Oracle TopLink Developer’s Guide

Reading Case 1: Displaying Names in a List
An application may ask the user to choose an element from a list. Because the list
displays only a subset of the information contained in the objects, it is not necessary to
query for all information for objects from the database.

TopLink features that optimize these types of operations include:

■ Partial Object Reading

■ Report Query

■ Fetch Groups (CMP projects only)

These features let you query only the information required to display the list. The user
can then select an object from the list.

Partial Object Reading Partial object reading is a query designed to extract only the
required information from a selected record in a database, rather than all the

Batch reading and
joining

Reduces database access by
batching many queries into a
single query that reads more
data.

Dramatically reduces the number of
database accesses required to perform a
read query.

For more information, see "Using Batch
Reading" on page 94-10 and "Using Join
Reading" on page 94-11.

Partial object
reading and fetch
groups.

Allows reading of a subset of
a result set of the object's
attributes.

Reduces the amount of data read from
the database.

For more information, see "Partial
Object Queries" on page 93-11.

For more information about fetch
groups, see "Fetch Groups" on
page 23-5.

Report query Similar to partial object
reading, but returns only the
data instead of the objects.

Supports complex reporting functions
such as aggregation and group-by
functions. Also lets you compute
complex results on the database,
instead of reading the objects into the
application and computing the results
locally.

For more information, see "Report
Query" on page 93-15.

JDBC fetch size and
ReadQuery
maximum rows

Reduces the number of
database hits required to
return all the rows that
satisfy selection criteria.

For more information, see "JDBC Fetch
Size" on page 11-18.

Cursors Lets you view a large result
set in manageable
increments rather than as a
complete collection

For more information, see "Cursored
Streams and Scrollable Cursors" on
page 11-19

Inheritance views Allows a view to be used for
queries against an
inheritance superclass that
can read all of its subclasses
in a single query, instead of
multiple queries

For more information, see "Reading
Case 5: Inheritance Views" on
page 11-26.

Table 11–12 (Cont.) Read Optimization Features

Feature Function Performance Technique

Query Optimization

Optimization 11-21

information the record contains. Because partial object reading does not fully populate
objects, you can neither cache nor edit partially read objects.

For more information about partial object queries, see "Partial Object Queries" on
page 93-11.

In Example 11–3, the query builds complete employee objects, even though the list
displays only employee last names. With no optimization, the query reads all the
employee data.

Example 11–3 No Optimization

/* Read all the employees from the database, ask the user to choose one and return
it. This must read in all the information for all the employees */
List list;

// Fetch data from database and add to list box
Vector employees = (Vector) session.readAllObjects(Employee.class);
list.addAll(employees);

// Display list box
....

// Get selected employee from list
Employee selectedEmployee = (Employee) list.getSelectedItem();

return selectedEmployee;

Example 11–4 demonstrates the use of partial object reading. It reads only the last
name and primary key for the employee data. This reduces the amount of data read
from the database.

Example 11–4 Optimization Through Partial Object Reading

/* Read all the employees from the database, ask the user to choose one and return
it. This uses partial object reading to read just the last names of the employees.
Since TopLink automatically includes the primary key of the object, the full
object can easily be read for editing */
List list;

// Fetch data from database and add to list box
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.addPartialAttribute("lastName");

// The next line avoids a query exception
query.dontMaintainCache();
Vector employees = (Vector) session.executeQuery(query);
list.addAll(employees);

// Display list box
....

// Get selected employee from list
Employee selectedEmployee = (Employee)session.readObject(list.getSelectedItem());
return selectedEmployee;

Report Query Report query lets you retrieve data from a set of objects and their related
objects. Report query supports database reporting functions and features.

For more information, see "Report Query Results" on page 93-8.

Query Optimization

11-22 Oracle TopLink Developer’s Guide

Example 11–5 demonstrates the use of report query to read only the last name of the
employees. This reduces the amount of data read from the database compared to the
code in Example 11–3, and avoids instantiating employee instances.

Example 11–5 Optimization Through Report Query

/* Read all the employees from the database, ask the user to choose one and return
it. The report query is used to read just the last name of the employees. Then the
primary key stored in the report query result to read the real object */
List list;

// Fetch data from database and add to list box
ExpressionBuilder builder = new ExpressionBuilder();
ReportQuery query = new ReportQuery (Employee.class, builder);
query.addAttribute("lastName");
query.retrievePrimaryKeys();
Vector reportRows = (Vector) session.executeQuery(query);
list.addAll(reportRows);

// Display list box
....

// Get selected employee from list
ReportQueryResult result = (ReportQueryResult) list.getSelectedItem();
Employee selectedEmployee =

(Employee)result.readobject(Employee.Class,session);

Although the differences between the unoptimized example (Example 11–3) and the
report query optimization in Example 11–5 appear to be minor, report queries offer a
substantial performance improvement.

Fetch Groups Fetch groups, applicable only to CMP projects, are similar to partial
object reading, but does allow caching of the objects read. For objects with many
attributes or reference attributes to complex graphs (or both), you can define a fetch
group that determines what attributes are returned when an object is read. Because
TopLink will automatically execute additional queries when the get method is called
for attributes not in the fetch group, ensure that the unfetched data is not required:
refetching data can become a performance issue.

For more information about querying with fetch groups, see "Using Queries With
Fetch Groups" on page 96-2.

Example 11–6 demonstrates the use of a static fetch group.

Example 11–6 Configuring a Query with a FetchGroup Using the FetchGroupManager

// Create static fetch group at the descriptor level
FetchGroup group = new FetchGroup("nameOnly");
group.addAttribute("firstName");
group.addAttribute("lastName");
descriptor.getFetchGroupManager().addFetchGroup(group);

// Use static fetch group at query level
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.setFetchGroupName("nameOnly");

// Only Employee attributes firstName and lastName are fetched.
// If you call the Employee get method for any other attribute, TopLink executes
// another query to retrieve all unfetched attribute values. Thereafter, calling that get
// method will return the value directly from the object

Query Optimization

Optimization 11-23

Reading Case 2: Batch Reading Objects
The way your application reads data from the database affects performance. For
example, reading a collection of rows from the database is significantly faster than
reading each row individually.

A common performance challenge is to read a collection of objects that have a
one-to-one reference to another object. This typically requires one read operation to
read in the source rows, and one call for each target row in the one-to-one relationship.

To reduce the number of read operations required, use join and batch reading.
Example 11–7 illustrates the unoptimized code required to retrieve a collection of
objects with a one-to-one reference to another object. Example 11–8 and Example 11–9
illustrate the use of joins and batch reading to improve efficiency.

Example 11–7 No Optimization

/* Read all the employees, and collect their address’ cities. This takes N + 1
 queries if not optimized */

// Read all the employees from the database. This requires 1 SQL call
Vector employees = session.readAllObjects(Employee.class,

new ExpressionBuilder().get("lastName").equal("Smith"));

//SQL: Select * from Employee where l_name = ‘Smith’

// Iterate over employees and get their addresses.
// This requires N SQL calls
Enumeration enum = employees.elements();
Vector cities = new Vector();
while(enum.hasMoreElements())

Employee employee = (Employee) enum.nextElement();
cities.addElement(employee.getAddress().getCity());

//SQL: Select * from Address where address_id = 123, etc
}

Example 11–8 Optimization Through Joining

/* Read all the employees, and collect their address’ cities. Although the code
 is almost identical because joining optimization is used it takes only 1
 query */

// Read all the employees from the database, using joining.
// This requires 1 SQL call
ReadAllQuery query = new ReadAllQuery(Employee.class);
ExpressionBuilder builder = query.getExpressionBuilder();
query.setSelectionCriteria(builder.get("lastName").equal("Smith"));
query.addJoinedAttribute("address");
Vector employees = session.executeQuery(query);

/* SQL: Select E.*, A.* from Employee E, Address A where E.l_name = ‘Smith’ and
 E.address_id = A.address_id Iterate over employees and get their addresses.
 The previous SQL already read all the addresses, so no SQL is required */
Enumeration enum = employees.elements();
Vector cities = new Vector();
while (enum.hasMoreElements()) {

Employee employee = (Employee) enum.nextElement();

Query Optimization

11-24 Oracle TopLink Developer’s Guide

cities.addElement(employee.getAddress().getCity());
}

Example 11–9 Optimization Through Batch Reading

/* Read all the employees, and collect their address’ cities. Although the code
 is almost identical because batch reading optimization is used it takes only
 2 queries */

// Read all the employees from the database, using batch reading.
// This requires 1 SQL call, note that only the employees are read
ReadAllQuery query = new ReadAllQuery(Employee.class);
ExpressionBuilder builder = query.getExpressionBuilder();
query.setSelectionCriteria(bulder.get("lastName").equal("Smith"));
query.addBatchReadAttribute("address");
Vector employees = (Vector)session.executeQuery(query);

// SQL: Select * from Employee where l_name = ‘Smith’

// Iterate over employees and get their addresses.
// The first address accessed will cause all the addresses
// to be read in a single SQL call
Enumeration enum = employees.elements();
Vector cities = new Vector();
while (enum.hasMoreElements()) {

Employee employee = (Employee) enum.nextElement();
cities.addElement(employee.getAddress().getCity());
// SQL: Select distinct A.* from Employee E, Address A
// where E.l_name = ‘Smith’ and E.address_id = A.address_i

}

Because the two-phase approach to the query (Example 11–8 and Example 11–9)
accesses the database only twice, it is significantly faster than the approach illustrated
in Example 11–7.

Joins offer a significant performance increase under most circumstances. Batch reading
offers a further performance advantage in that it allows for delayed loading through
value holders, and has much better performance where the target objects are shared.

For example, if employees in Example 11–7, Example 11–8, and Example 11–9 are at
the same address, batch reading reads much less data than joining, because batch
reading uses a SQL DISTINCT call to filter duplicate data.

Batch reading is available for one-to-one, one-to-many, many-to-many, direct
collection, direct map and aggregate collection mappings. Joining is only available for
one-to-one and one-to-many mappings. Note that one-to-many joining will return a
large amount of duplicate data and so is normally less efficient than batch reading.

Reading Case 3: Using Complex Custom SQL Queries
TopLink provides a high-level query mechanism. However, if your application
requires a complex query, a direct SQL or stored procedure call may be the best
solution.

WARNING: Allowing an unverified SQL string to be passed into
methods (for example: readAllObjects(Class class, String
sql) method) makes your application vulnerable to SQL injection
attacks.

Query Optimization

Optimization 11-25

For more information about executing SQL calls, see "SQLCall" on page 93-17.

Reading Case 4: Using View Objects
Some application operations require information from several objects rather than from
just one. This can be difficult to implement, and resource-intensive. Example 11–10
illustrates unoptimized code that reads information from several objects.

Example 11–10 No Optimization

/* Gather the information to report on an employee and return the summary of the
 information. In this situation, a hash table is used to hold the report
 information. Notice that this reads a lot of objects from the database, but
 uses very little of the information contained in the objects. This may take 5
 queries and read in a large number of objects */

public Hashtable reportOnEmployee(String employeeName) {
Vector projects, associations;
Hashtable report = new Hashtable();
// Retrieve employee from database
Employee employee = session.readObject(Employee.class,

new ExpressionBuilder.get("lastName").equal(employeeName));
// Get all the projects affiliated with the employee
projects = session.readAllObjects(Project.class,
"SELECT P.* FROM PROJECT P," +
"EMPLOYEE E WHERE P.MEMBER_ID = E.EMP_ID AND E.L_NAME = " +
employeeName);

// Get all the associations affiliated with the employee
associations = session.readAllObjects(Association.class, "SELECT A.* " +
"FROM ASSOC A, EMPLOYEE E WHERE A.MEMBER_ID = E.EMP_ID AND E.L_NAME = "
+ employeeName);

report.put("firstName", employee.getFirstName());
report.put("lastName", employee.getLastName());
report.put("manager", employee.getManager());
report.put("city", employee.getAddress().getCity());
report.put("projects", projects);
report.put("associations", associations);
return report;

}

To improve application performance in these situations, define a new read-only object
to encapsulate this information, and map it to a view on the database. To set the object
to be read-only, use the addDefaultReadOnlyClass API in the
oracle.toplink.sessions.Project class.

Example 11–11 Optimization Through View Object

CREATE VIEW NAMED EMPLOYEE_VIEW AS (SELECT F_NAME = E.F_NAME, L_NAME = E.L_
NAME,EMP_ID = E.EMP_ID, MANAGER_NAME = E.NAME, CITY = A.CITY, NAME = E.NAME
FROM EMPLOYEE E, EMPLOYEE M, ADDRESS A
WHERE E.MANAGER_ID = M.EMP_ID
AND E.ADDRESS_ID = A.ADDRESS_ID)

Define a descriptor for the EmployeeReport class as follows:

■ Define the descriptor as usual, but specify the tableName as EMPLOYEE_VIEW.

■ Map only the attributes required for the report. In the case of the
numberOfProjects and associations, use a transformation mapping to retrieve
the required data.

Query Optimization

11-26 Oracle TopLink Developer’s Guide

You can now query the report from the database in the same way as any other object
enabled by TopLink.

Example 11–12 View the Report from Example 11–11

/* Return the report for the employee */
public EmployeeReport reportOnEmployee(String employeeName) {

EmployeeReport report;
report = (EmployeeReport) session.readObject(EmployeeReport.class,
new ExpressionBuilder.get("lastName").equal(employeeName));

return report;
}

Reading Case 5: Inheritance Views
If you have an inheritance hierarchy that spans multiple tables and frequently query
for the root class, consider defining an inheritance all-subclasses view. This allows a
view to be used for queries against an inheritance superclass that can read all of its
subclasses in a single query instead of multiple queries.

For more information about inheritance, see "Descriptors and Inheritance" on
page 23-3.

For more information about querying on inheritance, see "Querying on an Inheritance
Hierarchy" on page 96-4.

Write Optimization Examples
TopLink provides the write optimization features listed in Table 11–13.

This section includes the following write optimization examples:

■ Writing Case: Batch Writes

WARNING: Allowing an unverified SQL string to be passed into
methods (for example: readAllObjects(Class class, String
sql) and readObject(Class class, String sql) method)
makes your application vulnerable to SQL injection attacks.

Table 11–13 Write Optimization Features

Feature Effect on Performance

Unit of Work Improves performance by updating only the changed fields and
objects.

Minimizes the amount of tracking required (which can be expensive)
by registering only those objects that will change.

For more information, see Chapter 97, "Understanding
TopLink Transactions").

Note: The Unit of Work supports marking classes as read-only (see
"Configuring Read-Only Descriptors" on page 25-5 and "Declaring
Read-Only Classes" on page 99-6). This avoids tracking of objects that
do not change.

Batch writing Lets you group all insert, update, and delete commands from a
transaction into a single database call. This dramatically reduces the
number of calls to the database (see "Cursors" on page 11-28 and "Batch
Writing and Parameterized SQL" on page 11-28).

Query Optimization

Optimization 11-27

Writing Case: Batch Writes
The most common write performance problem occurs when a batch job inserts a large
volume of data into the database. For example, consider a batch job that loads a large
amount of data from one database, and then migrates the data into another. The
objects involved:

■ Are simple individual objects with no relationships

■ Use generated sequence numbers as their primary key

■ Have an address that also uses a sequence number

The batch job loads 10,000 employee records from the first database and inserts them
into the target database. With no optimization, the batch job reads all the records from
the source database, acquires a Unit of Work from the target database, registers all
objects, and commits the Unit of Work.

Example 11–13 No Optimization

/* Read all the employees, acquire a Unit of Work, and register them */

// Read all the employees from the database. This requires 1 SQL call,
// but will be very memory intensive as 10,000 objects will be read
Vector employees = sourceSession.readAllObjects(Employee.class);

//SQL: Select * from Employee

// Acquire a Unit of Work and register the employees
UnitOfWork uow = targetSession.acquireUnitOfWork();
uow.registerAllObjects(employees);
uow.commit();

// SQL: Begin transaction
// SQL: Update Sequence set count = count + 1 where name = 'EMP'
// SQL: Select count from Sequence
// SQL: ... repeat this 10,000 times + 10,000 times for the addresses ...
// SQL: Commit transaction
// SQL: Begin transaction
// SQL: Insert into Address (...) values (...)
// SQL: ... repeat this 10,000 times

Parameterized
SQL

Improves performance for frequently executed SQL statements. Enable
prepared statement caching to achieve performance benefits (see
"Parameterized SQL and Prepared Statement Caching" on page 11-17).

Sequence number
preallocation

Dramatically improves insert performance. (see "Sequence Number
Preallocation" on page 11-29).

Multiprocessing Splitting a batch job across threads lets you synchronize reads from a
cursored stream and use parallel Units of Work for performance
improvements even on a single machine (see "Multiprocessing" on
page 11-29).

Does exist
alternatives

The does exist call on write object can be avoided in certain situations by
checking the cache for does exist, or assuming the existence of the object
(see "Configuring Existence Checking at the Project Level" on page 19-8
or "Configuring Cache Existence Checking at the Descriptor Level" on
page 25-43 and "Using Registration and Existence Checking" on
page 99-5).

Table 11–13 (Cont.) Write Optimization Features

Feature Effect on Performance

Query Optimization

11-28 Oracle TopLink Developer’s Guide

// SQL: Insert into Employee (...) values (...)
// SQL: ... repeat this 10,000 times
// SQL: Commit transaction

This batch job performs poorly, because it requires 60,000 SQL executions. It also reads
huge amounts of data into memory, which can raise memory performance issues.
TopLink offers several optimization features to improve the performance of this batch
job.

To improve this operation, do the following:

■ Use TopLink batch read operations and cursor support (see "Cursors" on
page 11-28).

■ Use batch writing or parameterized batch writing to write to the database (see
"Batch Writing and Parameterized SQL" on page 11-28).

If your database does not support batch writing, use parameterized SQL to
implement the write query. Note that TopLink enables the use of parameterized
SQL by default (see "Parameterized SQL (Binding) and Prepared Statement
Caching" on page 11-15).

■ Implement sequence number preallocation (see "Sequence Number Preallocation"
on page 11-29).

■ Implement multiprocessing (see "Multiprocessing" on page 11-29).

Cursors To optimize the query in Example 11–13, use a cursored stream to read the
Employees from the source database. You can also employ a weak identity map
instead of a hard or soft cache identity map in both the source and target databases.

To address the potential for memory problems, use the releasePrevious method
after each read to stream the cursor in groups of 100. Register each batch of 100
employees in a new Unit of Work and commit them.

Although this does not reduce the amount of executed SQL, it does address potential
out-of-memory issues. When your system runs out of memory, the result is
performance degradation that increases over time, and excessive disk activity caused
by memory swapping on disk.

For more information, see "Cursored Streams and Scrollable Cursors" on page 11-19.

Batch Writing and Parameterized SQL Batch writing lets you combine a group of SQL
statements into a single statement and send it to the database as a single database
execution. This feature reduces the communication time between the application and
the server, and substantially improves performance.

You can enable batch writing alone (dynamic batch writing) using Login method
useBatchWriting. If you add batch writing to Example 11–13, you execute each
batch of 100 employees as a single SQL execution. This reduces the number of SQL
executions from 20,200 to 300.

You can also enable batch writing and parameterized SQL (parameterized batch
writing) and prepared statement caching. Parameterized SQL avoids the prepare
component of SQL execution. This improves write performance, because it avoids the
prepare cost of an SQL execution. For parameterized batch writing you would get one

Note: To enable a stand-alone batch writing, you need to disable
parameterized SQL, which is enabled by default.

Query Optimization

Optimization 11-29

statement per Employee, and one for Address: this reduces the number of SQL
executions from 20,200 to 400. Although this is more than dynamic batch writing
alone, parameterized batch writing also avoids all parsing, so it is much more efficient
overall.

Although parameterized SQL avoids the prepare component of SQL execution, it does
not reduce the number of executions. Because of this, parameterized SQL alone may
not offer as big of a gain as batch writing. However, if your database does not support
batch writing, parameterized SQL and prepared statement caching will improve
performance. If you add parameterized SQL and prepared statement caching in
Example 11–13, you must still execute 20,200 SQL executions, but parameterized SQL
reduces the number of SQL PREPAREs to 4.

For more information, see "Batch Writing" on page 11-15.

Sequence Number Preallocation SQL select calls are more resource-intensive than SQL
modify calls, so you can realize large performance gains by reducing the number of
select calls you issue. The code in Example 11–13 uses the select calls to acquire
sequence numbers. You can substantially improve performance if you use sequence
number preallocation.

In TopLink, you can configure the sequence preallocation size on the login object (the
default size is 50). Example 11–13 uses a preallocation size of 1 to demonstrate this
point. If you stream the data in batches of 100 as suggested in "Cursors", set the
sequence preallocation size to 100. Because employees and addresses in the example
both use sequence numbering, you further improve performance by letting them share
the same sequence. If you set the preallocation size to 200, this reduces the number of
SQL execution from 60,000 to 20,200.

For more information about sequencing preallocation, see "Sequencing and
Preallocation Size" on page 17-20.

Multiprocessing You can use multiple processes or multiple machines to split the batch
job into several smaller jobs. In this example, splitting the batch job across threads
enables you to synchronize reads from the cursored stream, and use parallel Units of
Work on a single machine.

This leads to a performance increase, even if the machine has only a single processor,
because it takes advantage of the wait times inherent in SQL execution. While one
thread waits for a response from the server, another thread uses the waiting cycles to
process its own database operation.

Example 11–14 illustrates the optimized code for this example. Note that it does not
illustrate multiprocessing.

Example 11–14 Fully Optimized

/* Read each batch of employees, acquire a Unit of Work, and register them */
targetSession.getLogin().useBatchWriting();
targetSession.getLogin().setSequencePreallocationSize(200);
targetSession.getLogin().bindAllParameters();
targetSession.getLogin().cacheAllStatements();
targetSession.getLogin().setMaxBatchWritingSize(200);

// Read all the employees from the database into a stream.
// This requires 1 SQL call, but none of the rows will be fetched.
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.useCursoredStream();
CursoredStream stream;
stream = (CursoredStream) sourceSession.executeQuery(query);

Unit of Work Optimization

11-30 Oracle TopLink Developer’s Guide

//SQL: Select * from Employee. Process each batch
while (! stream.atEnd()) {

Vector employees = stream.read(100);
// Acquire a unit of work to register the employees
UnitOfWork uow = targetSession.acquireUnitOfWork();
uow.registerAllObjects(employees);
uow.commit();

}
//SQL: Begin transaction
//SQL: Update Sequence set count = count + 200 where name = 'SEQ'
//SQL: Select count from Sequence where name = 'SEQ'
//SQL: Commit transaction
//SQL: Begin transaction
//BEGIN BATCH SQL: Insert into Address (...) values (...)
//... repeat this 100 times
//Insert into Employee (...) values (...)
//... repeat this 100 times
//END BATCH SQL:
//SQL: Commit transactionJava optimization

Unit of Work Optimization
For best performance when using a unit of work, consider the following tips:

■ Register objects with a unit of work only if objects are eligible for change. If you
register objects that will not change, the unit of work needlessly clones and
processes those objects.

■ Avoid the cost of existence checking when you are registering a new or existing
object (see "Using Registration and Existence Checking" on page 99-5).

■ Avoid the cost of change set calculation on a class you know will not change by
telling the unit of work that the class is read-only (see "Declaring Read-Only
Classes" on page 99-6).

■ Avoid the cost of change set calculation on an object read by a ReadAllQuery in a
unit of work that you do not intend to change by unregistering the object (see
"Unregistering Working Clones" on page 99-6).

■ Before using conforming queries, be sure that it is necessary. For alternatives, see
"Using Conforming Queries and Descriptors" on page 99-8.

If your performance measurements show that you have a performance problem
during unit of work commit, consider using object level or attribute level change
tracking, depending on the type of objects involved and how they typically change.
For more information, see "Unit of Work and Change Policy" on page 97-6.

Application Server and Database Optimization
Configuring your application server and database correctly can have a big impact on
performance and scalabilty. Ensure that you correctly optimize these key components
of your application in addition to your TopLink application and persistence.

For your application or J2EE server, ensure your memory, thread pool and connection
pool sizes are sufficient for your server's expected load, and that your JVM has been
configured optimally.

Ensure that your database has been configured correctly for optimal performance and
its expected load.

Customization 12-1

12
Customization

This chapter includes the following sections:

■ Overview

■ Creating Custom Data Types

■ Using Public Source

Overview
By design, TopLink can adapt to a variety of relational and nonrelational data sources.

To integrate TopLink with a data source that is not directly supported by the TopLink
API, Oracle recommends that you use an EIS project (see "EIS Projects" on page 17-7)
or a XML project (see "XML Projects" on page 17-9).

Using an EIS project, you can integrate your TopLink-enabled application with any
nonrelational data source that supports a J2C) adapter and any supported EIS record
type, including indexed, mapped, or XML. If no J2C adapter exists for your target data
source, you can concentrate your integration efforts on creating an adapter.
Simultaneously, you can build your application according to J2C specifications.
Although this still requires custom development effort, it is more efficient than trying
to extend TopLink classes and provides you with a J2C adapter that you can leverage
in any other project (making it a better value).

Using an XML project, you can integrate your TopLink-enabled application with Web
services or other XML-message based designs.

The remainder of this chapter describes other customization options provided by the
TopLink API.

Creating Custom Data Types
TopLink provides support for all the most common Java data types. Table 12–1 lists the
TopLink mapping extensions that you can use to support custom data types. You can
also create your object converter to allow conversion between a data type and your
own Java type.

Table 12–1 Mapping Extensions for Custom Data Types

Extension Description

"Object Type Converter" on page 30-12 An extension of direct and direct collection mappings that lets
you match a fixed number of data values to Java objects. Use
this converter when the values in the schema differ from those
in Java

Using Public Source

12-2 Oracle TopLink Developer’s Guide

Using Public Source
The source code to most public classes is available in <TOPLINK_
HOME>\jlib\source.jar.

This is provided for debugging purposes.

"Serialized Object Converter" on
page 30-10

An extension of direct and direct collection mappings that lets
you map serializable objects, such as multimedia data, to a
binary format in a data source, such as a base64 element in an
XML document or Binary Large Object (BLOB) field in a
database

"Type Conversion Converter" on
page 30-11

An extension of direct and direct collection mappings that lets
you explicitly map a data source type to a Java type. For
example, a java.util.Date in Java can be mapped to a
java.sql.Date in the data source.

"Simple Type Translator" on page 30-12 An extension of direct and direct collection mappings that lets
you automatically translate an XML element value to an
appropriate Java type based on the element’s <type>
attribute as defined in your XML schema.

Table 12–1 (Cont.) Mapping Extensions for Custom Data Types

Extension Description

Part V
 Troubleshooting a TopLink Application

This part describes how to troubleshoot a TopLink application at time of deployment
and at run time. It contains the following chapters.

■ Chapter 13, "TopLink Exception Reference"

This chapter contains detailed information on each TopLink error code and
message.

■ Chapter 14, "TopLink Workbench Error Reference"

This chapter describes common problems and their solutions when using TopLink
Workbench.

■ Chapter 15, "Troubleshooting Application Deployment"

This chapter explains common problems and solutions when deploying TopLink
applications.

TopLink Exception Reference 13-1

13
TopLink Exception Reference

This chapter lists the TopLink exception error codes, information about the likely
cause of the problem and a possible corrective action. Each exception code
corresponds to an exception class and includes the following information:

■ The exception number in the format, EXCEPTION [TOPLINK-XXXX]

■ A description of the problem, taken from the raised exception

This chapter contains information on the following exceptions:

■ Descriptor Exceptions (1 – 201) on page 13-2

■ Concurrency Exceptions (2001 – 2009) on page 13-25

■ Conversion Exceptions (3001– 3008) on page 13-26

■ Database Exceptions (4002 – 4018) on page 13-27

■ Optimistic Lock Exceptions (5001 – 5009) on page 13-29

■ Query Exceptions (6001 – 6129) on page 13-31

■ Validation Exceptions (7001 – 7200), on page 13-43

■ EJB QL Exceptions (8001 – 8010) on page 13-63

■ Session Loader Exceptions (9000 - 9010) on page 13-64

■ Communication Exceptions (12000 - 12003) on page 13-65

■ EIS Exceptions (17007 – 17025), 90000, 91000 on page 13-66

■ JMS Processing Exceptions (18001 - 18004) on page 13-69

■ Default Mapping Exceptions (20001 - 20008) on page 13-69

■ Discovery Exceptions (22001 - 22004) on page 13-70

■ Remote Command Manager Exceptions (22101 - 22111) on page 13-71

■ Transaction Exceptions (23001 - 23015) on page 13-73

■ XML Marshal Exceptions (25001 – 25020) on page 13-81

■ XML Conversion Exceptions (25501) on page 13-74

■ Migration Utility Exceptions (26001 - 26020) on page 13-74

■ XML Platform Exceptions (27001 – 27006, 27101 – 27103, 27201 – 27202) on
page 13-83

■ Entity Manager Setup Exceptions (28001 – 28007) on page 13-80

■ EJB JAR XML Exceptions (72000 – 72023) on page 13-77

Descriptor Exceptions (1 – 201)

13-2 Oracle TopLink Developer’s Guide

Descriptor Exceptions (1 – 201)
DescriptorException is a development exception that is raised when insufficient
information is provided to the descriptor. The message that is returned includes the
name of the descriptor or mapping that caused the exception. If a mapping within the
descriptor caused the error, then the name and parameters of the mapping are part of
the returned message, as shown in Example 13–1.

Internal exception, mapping and descriptor appear only if TopLink has enough
information about the source of the problem to provide this information.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message
INTERNAL EXCEPTION: Message
MAPPING: Database mapping
DESCRIPTOR: Descriptor

Example 13–1 Descriptor Exception

EXCEPTION [TOPLINK – 75]: oracle.toplink.exceptions.DescriptorException
EXCEPTION DESCRIPTION: The reference class is not specified.

1: ATTRIBUTE_AND_MAPPING_WITH_INDIRECTION_ MISMATCH
Cause: attributeName is not declared as type ValueHolderInterface, but
the mapping uses indirection. The mapping is set to use indirection, but the
related attribute is not defined as type ValueHolderInterface. It is raised on
foreign reference mappings.

Action: If you want to use indirection on the mapping, change the attribute to
type ValueHolderInterface. Otherwise, change the mapping associated with
the attribute so that it does not use indirection.

2: ATTRIBUTE_AND_MAPPING_WITHOUT_INDIRECTION_ MISMATCH
Cause: attributeName is declared as type ValueHolderInterface, but
TopLink is unable to use indirection. The attribute is defined to be of type
ValueHolderInterface, but the mapping is not set to use indirection. It is
raised on foreign reference mappings.

Action: If you do not want to use indirection on the mapping, change the attribute
so it is not of type ValueHolderInterface. Otherwise, change the mapping
associated with the attribute to use indirection.

6: ATTRIBUTE_NAME_NOT_SPECIFIED
Cause: The attribute name is missing or not specified in the mapping definition.

Action: Specify the attribute name in the mapping by calling the method
setAttributeName(String attributeName).

7: ATTRIBUTE_TYPE_NOT_VALID
Cause: When using Java 2, the specified attributeName is not defined as type
vector, or a type that implements the Map or Collection interface. This
occurs in one-to-many mapping, many-to-many mapping, and collection mapping
when mapping is set not to use indirection, and the attribute type is not declared.

Action: Declare the attribute to be of type java.util.Vector.

8: CLASS_INDICATOR_FIELD_NOT_FOUND

Descriptor Exceptions (1 – 201)

TopLink Exception Reference 13-3

Cause: The class indicator field is defined, but the descriptor is set to use
inheritance. When using inheritance, a class indicator field or class extraction
method must be set. The class indicator field is used to create the right type of
domain object.

Action: Set either a class indicator field or class extraction method.

9: DIRECT_FIELD_NAME_NOT_SET
Cause: The direct field name from the target table is not set in the direct collection
mapping.

Action: Specify the direct field name by calling the method
setDirectFieldName(String fieldName).

10: FIELD_NAME_NOT_SET_IN_MAPPING
Cause: The field name is not set in the mapping. It is raised from direct to field
mapping, array mapping, and structure mapping.

Action: Specify the field name by calling the method setFieldName(String
fieldName).

11: FOREIGN_KEYS_DEFINED_INCORRECTLY
Cause: One-to-one mapping foreign key is defined incorrectly. Multiple foreign
key fields were set for one-to-one mapping by calling the method
setForeignKeyFieldName(String fieldName).

Action: Use the method addForeignKeyFieldName(String
sourceForeignKeyName, String targetPrimaryKeyFieldName) to add
multiple foreign key fields.

12: IDENTITY_MAP_NOT_SPECIFIED
Cause: The descriptor has been set not to use identity map, but the existence
checking is set to be performed on identity map: the descriptor must use an
identity map to use the Check cache does exist option.

Action: Either use identity map, or set the existence checking to some other
option.

13: ILLEGAL_ACCESS_WHILE_GETTING_VALUE_THRU_ INSTANCE_
VARIABLE_ACCESSOR
Cause: TopLink is unable to access the attributeName instance variable in
object objectName. The instance variable in the domain object is not accessible.
This exception is raised when TopLink tries to access the instance variable using
the java.lang.reflect Java package. The error is a purely Java exception, and
TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and refer to the Java documentation.

14: ILLEGAL_ACCESS_WHILE_CLONING
Cause: TopLink is unable to clone the object domainObject because the clone
method methodName is not accessible. The method name specified using
useCloneCopyPolicy(String cloneMethodName) or the clone() method
to create the clone on the domain object, is not accessible by TopLink using Java
reflection. The error is a purely Java exception, and TopLink wraps only the
reflection exception.

Action: Inspect the internal exception, and refer to the Java documentation.

15: ILLEGAL_ACCESS_WHILE_CONSTRUCTOR_INSTANTIATION

Descriptor Exceptions (1 – 201)

13-4 Oracle TopLink Developer’s Guide

Cause: The domain class does not define a public default constructor, which
TopLink needs to create new instances of the domain class.

Action: Define a public default constructor or use a different instantiation policy.

16: ILLEGAL_ACCESS_WHILE_EVENT_EXECUTION
Cause: The descriptor callback method eventMethodName with
DescriptorEvent as an argument is not accessible. This exception is raised
when TopLink tries to access the event method using Java reflection. The error is a
purely Java exception, and TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and refer to the Java documentation.

17: ILLEGAL_ACCESS_WHILE_GETTING_VALUE_THRU_ METHOD_
ACCESSOR
Cause: Attempt to invoke inaccessible methodName on the object objectName.
The underlying getter method to access an attribute in the domain object is not
accessible. This exception is raised when TopLink tries to access an attribute
through a method using the java.lang.reflect Java package. The error is a
purely Java exception, and TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and refer to the Java documentation.

18: ILLEGAL_ACCESS_WHILE_INSTANTIATING_METHOD_ BASED_PROXY
Cause: The method used by the transformation mapping using a value holder is
invalid. This exception is raised when TopLink tries to access the method using
Java reflection. The problem occurs when the method base valueholder is
instantiated.

Action: Inspect the internal exception, and refer to the Java documentation.

19: ILLEGAL_ACCESS_WHILE_INVOKING_ATTRIBUTE_METHOD
Cause: On transformation mapping, the underlying attribute method that is used
to retrieve values from the database row while reading the transformation
mapped attribute is not accessible.

Action: Inspect the internal exception, and refer to the Java documentation.

20: ILLEGAL_ACCESS_WHILE_INVOKING_FIELD_TO_METHOD
Cause: On transformation mapping, the method methodName that is used to
retrieve value from the object while writing the transformation mapped attribute
is not accessible. The error is a purely Java exception, and TopLink wraps only the
reflection exception.

Action: Inspect the internal exception, and refer to the Java documentation.

21: ILLEGAL_ACCESS_WHILE_INVOKING_ROW_EXTRACTION_ METHOD
Cause: TopLink is unable to extract data row, because TopLink cannot access the
row specified in the databaseRow argument of the method. The method to
extract class from row on the domain object is not accessible. The error is a purely
Java exception, and TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and refer to the Java documentation.

22: ILLEGAL_ACCESS_WHILE_METHOD_INSTANTIATION
Cause: TopLink is unable to create a new instance, because the method
methodName that creates instances on the domain class is not accessible. The error
is a purely Java exception, and TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and refer to the Java documentation.

Descriptor Exceptions (1 – 201)

TopLink Exception Reference 13-5

23: ILLEGAL_ACCESS_WHILE_OBSOLETE_EVENT_EXECUTION
Cause: The descriptor callback method eventMethodName with Session as an
argument is inaccessible. This exception is raised when TopLink tries to access the
event method using Java reflection. The error is a purely Java exception, and
TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and refer to the Java documentation.

24: ILLEGAL_ACCESS_WHILE_SETTING_VALUE_THRU_ INSTANCE_
VARIABLE_ACCESSOR
Cause: The attributeName instance variable in the object objectName is not
accessible through Java reflection. The error is raised by Java, and TopLink wraps
only the reflection exception.

Action: Inspect the internal exception, and refer to the Java documentation.

25: ILLEGAL_ACCESS_WHILE_SETTING_VALUE_THRU_ METHOD_
ACCESSOR
Cause: TopLink is unable to invoke a method setMethodName on the object with
parameter parameter. The attribute’s set accessor method is not accessible
through Java reflection. The error is raised by Java and TopLink wraps only the
reflection exception.

Action: Inspect the internal exception, and refer to the Java documentation.

26: ILLEGAL_ARGUMENT_WHILE_GETTING_VALUE_ THRU_INSTANCE_
VARIABLE_ACCESSOR
Cause: TopLink is unable to get a value for an instance variable attributeName
of type typeName from the object. The specified object is not an instance of the
class or interface declaring the underlying field. An object is accessed to get the
value of an instance variable that does not exist.

Action: Inspect the internal exception, and refer to the Java documentation.

27: ILLEGAL_ARGUMENT_WHILE_GETTING_VALUE_THRU_ METHOD_
ACCESSOR
Cause: TopLink is unable to invoke method methodName on the object
objectName. The get accessor method declaration on the domain object differs
from the one that is defined. The number of actual and formal parameters differ,
or an unwrapping conversion has failed.

Action: Inspect the internal exception, and refer to the Java documentation.

28: ILLEGAL_ARGUMENT_WHILE_INSTANTIATING_METHOD_ BASED_
PROXY
Cause: The method that the method-based proxy uses in a transformation
mapping is receiving invalid arguments when the valueholder is being
instantiated. This exception is raised when TopLink tries to access the method
using the java.lang.reflect Java package.

Action: Inspect the internal exception, and refer to the Java documentation.

29: ILLEGAL_ARGUMENT_WHILE_INVOKING_ATTRIBUTE_ METHOD
Cause: The number of actual and formal parameters differs, or an unwrapping
conversion has failed. On transformation mapping, the method used to retrieve
values from the database row while reading the transformation mapped attribute
is getting an invalid argument.

Action: Inspect the internal exception, and refer to the Java documentation.

Descriptor Exceptions (1 – 201)

13-6 Oracle TopLink Developer’s Guide

30: ILLEGAL_ARGUMENT_WHILE_INVOKING_FIELD_TO_ METHOD
Cause: The number of actual and formal parameters differs for method
methodName, or an unwrapping conversion has failed. On transformation
mapping, the method used to retrieve value from the object while writing the
transformation mapped attribute is getting an invalid argument. The error is a
purely Java exception, and TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and refer to the Java documentation.

31: ILLEGAL_ARGUMENT_WHILE_OBSOLETE_EVENT_ EXECUTION
Cause: The number of actual and formal parameters for the descriptor callback
method eventMethodName differs, or an unwrapping conversion has failed. The
callback event method is invoked with an invalid argument. This exception is
raised when TopLink tries to invoke the event method using Java reflection. The
error is a purely Java exception, and TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and refer to the Java documentation.

32: ILLEGAL_ARGUMENT_WHILE_SETTING_VALUE_THRU_ INSTANCE_
VARIABLE_ACCESSOR
Cause: An invalid value is being assigned to the attribute instance variable.
TopLink is unable to set a value for an instance variable attributeName of type
typeName in the object. The specified object is not an instance of the class or
interface that is declaring the underlying field, or an unwrapping conversion has
failed.

TopLink assigns value by using Java reflection. Java raises the error and TopLink
wraps only the reflection exception.

Action: Inspect the internal exception, and refer to the Java documentation.

33: ILLEGAL_ARGUMENT_WHILE_SETTING_VALUE_THRU _METHOD_
ACCESSOR
Cause: An illegal argument is being passed to the attribute’s set accessor method.
TopLink is unable to invoke method setMethodName on the object. The number
of actual and formal parameters differs, or an unwrapping conversion has failed.
Java raises the error and TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and refer to the Java documentation.

34: INSTANTIATION_WHILE_CONSTRUCTOR_INSTANTIATION
Cause: The class does not define a public default constructor, or the constructor
raised an exception. This error occurs when you invoke the default constructor for
the domain object to create a new instance of the object while building new
domain objects if:

■ The class represents an abstract class, an interface, an array class, a primitive
type, or void.

■ The instantiation fails for some other reason.

Java raises the error and TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and refer to the Java documentation.

35: INVALID_DATA_MODIFICATION_EVENT
Cause: Applications should never encounter this exception. This exception
usually occurs at the time of developing TopLink, although in cases, where you
write new mapping, it is possible to get this exception. In direct collection
mapping and many-to-many mapping, the target table and relational table are

Descriptor Exceptions (1 – 201)

TopLink Exception Reference 13-7

populated at the end of the commit process, and if a data modification event is
sent to any other mapping, then this exception is raised.

Action: Contact Oracle Support Services.

36: INVALID_DATA_MODIFICATION_EVENT_CODE
Cause: An application should never encounter this exception. This exception
usually occurs at the time of developing TopLink, although in cases, where you
write new mappings, it is possible to get this exception. In direct collection
mapping and many-to-many mapping, the target table and relational table are
populated at the end of the commit process, and if a data modification event is
sent to these two mappings with wrong event code, then this exception is raised.

Action: Contact Oracle Support Services.

37: INVALID_DESCRIPTOR_EVENT_CODE
Cause: An application should never encounter this exception. This exception
usually occurs at the time of developing TopLink. The exception means that the
descriptor event manager does not support the event code passed in the event.

Action: Contact Oracle Support Services.

38: INVALID_IDENTITY_MAP
Cause: The identity map constructor failed because an invalid identity map was
specified. The identity map class given in the descriptor cannot be instantiated.
The exception is a Java exception that is raised by a Java reflection when TopLink
instantiates the identity map class. TopLink wraps only the Java exception.

Action: Inspect the internal exception, and refer to the Java documentation.

39: JAVA_CLASS_NOT_SPECIFIED
Cause: The descriptor does not define a Java class. The Java class is not specified
in the descriptor.

Action: Specify the Java class.

40: DESCRIPTOR_FOR_INTERFACE_IS_MISSING
Cause: A descriptor for the referenced interface is not added to the session.

Action: Add that descriptor to the session.

41: MAPPING_FOR_SEQUENCE_NUMBER_FIELD
Cause: A non-read-only mapping is not defined for the sequence number field. A
mapping is required so that TopLink can put and extract values for the primary
key.

Action: Define a mapping.

43: MISSING_CLASS_FOR_INDICATOR_FIELD_VALUE
Cause: TopLink is missing the class for indicator field value classFieldValue
of type type. There was no class entry found in the inheritance policy for the
indicator field value that was read from the database. It is likely that the method
addClassIndicator(Class class, Object typeValue) was not called
for the field value. The class and typeValue are stored in a hash table, and later
the class is extracted from the hash table by passing typeValue as a key. Because
Integer(1) is not equivalent to Float(1), this exception occurs when the type
of typeValue is incorrectly specified.

Action: Verify the descriptor.

44: MISSING_CLASS_INDICATOR_FIELD

Descriptor Exceptions (1 – 201)

13-8 Oracle TopLink Developer’s Guide

Cause: The class indicator field is missing from the database row that was read
from the database. This is performed in the inheritance model where after reading
rows from the database, child domain objects are to be constructed depending
upon the type indicator values.

Action: Verify the printed row for correct spelling.

45: MISSING_MAPPING_FOR_FIELD
Cause: TopLink is missing a mapping for field; a mapping for the field is not
specified.

Action: Define a mapping for the field.

46: NO_MAPPING_FOR_PRIMARY_KEY
Cause: A mapping for the primary key is not specified. There should be one
non-read-only mapping defined for the primary key field.

Action: Define a mapping for the primary key.

47: MULTIPLE_TABLE_PRIMARY_KEY_NOT_SPECIFIED
Cause: The multiple table primary key mapping is not specified when a custom
multiple table join is used. If multiple tables are specified in the descriptor and the
join expression is customized, then the primary keys for all the tables must be
specified. If the primary keys are not specified, then the exception occurs.

Action: Call the method addMultipleTablePrimaryKeyFieldName(String
fieldNameInPrimaryTable, String fieldNameInSecondaryTable) on
the descriptor to set the primary keys.

48: MULTIPLE_WRITE_MAPPINGS_FOR_FIELD
Cause: Multiple writable mappings for the field fieldName are defined in the
descriptor. Exactly one must be defined as writable; the others must be specified
as read-only. When multiple write mappings are defined for the field, TopLink is
unable to choose the appropriate mapping for writing the value of the field in the
database row. Therefore, the exception is raised during the validation process of
descriptors.

The most common cause of this problem is when the field has direct-to-field
mapping, as well as one-to-one mapping. In this case, the one-to-one mapping
must either be read-only or a target foreign key reference.

Action: Make one of those mappings read-only.

49: NO_ATTRIBUTE_TRANSFORMATION_METHOD
Cause: The attribute transformation method name in the transformation mapping
is not specified. This method is invoked internally by TopLink to retrieve value to
store in the domain object.

Action: Define a method and set the method name on the mapping by calling the
method setAttributeTransformation(String methodName).

50: NO_FIELD_NAME_FOR_MAPPING
Cause: No field name is specified in direct-to-field mapping.

Action: Set the field by calling setFieldName(String fieldName).

51: NO_FOREIGN_KEYS_ARE_SPECIFIED
Cause: Neither the selection criteria nor the foreign keys were specified on
one-to-one mapping. If the selection criterion is not specified, then TopLink tries to
build one from the foreign keys specified in the mapping.

Descriptor Exceptions (1 – 201)

TopLink Exception Reference 13-9

Action: Specify the fields.

52: NO_REFERENCE_KEY_IS_SPECIFIED
Cause: No query key named queryKey is found in descriptor. No reference
key from the target table is specified on direct collection mapping.

Action: Specify the fields by calling the method
setReferenceKeyFieldName(String fieldName).

53: NO_RELATION_TABLE
Cause: The relation table name is not set in this many-to-many mapping.

Action: Set the relation table name by calling the method
setRelationTableName(String tableName).

54: NO_SOURCE_RELATION_KEYS_SPECIFIED
Cause: There are no source relation keys specified in this many-to-many
mapping.

Action: Add source relation keys to the mapping.

55: NO_SUCH_METHOD_ON_FIND_OBSOLETE_METHOD
Cause: TopLink cannot find the descriptor callback method on the domain class.
It must take a Session or a DescriptorEvent as its argument. TopLink tries
to invoke the method using Java reflection. It is a Java exception and TopLink is
wrapping only the main exception.

Action: Inspect the internal exception, and refer to the Java documentation.

56: NO_SUCH_METHOD_ON_INITIALIZING_ATTRIBUTE_METHOD
Cause: TopLink cannot find the method methodName(Record databaseRow)
or methodName(Record databaseRow, Session session). TopLink wraps the
Java reflection exception that is caused when the method is being created from the
method name. This method is set by calling
setAttributeMethodName(String aMethodName).

Action: Inspect the internal exception, and refer to the Java documentation.

57: NO_SUCH_METHOD_WHILE_CONSTRUCTOR_INSTANTIATION
Cause: The constructor is inaccessible to TopLink. TopLink wraps the Java
reflection exception that is caused when it is creating a new instance of the
domain.

Action: Inspect the internal exception, and refer to the Java documentation.

58: NO_SUCH_METHOD_WHILE_CONVERTING_TO_METHOD
Cause: TopLink failed to find a method with signature methodName() or
methodName(oracle.toplink.sessions.Session). TopLink wraps the
Java reflection exception that was raised by its attempt to create a Method type
(java.lang.reflect) from the method names in the transformation mapping.

Action: Ensure that the method methodName is defined on the domain class that
owns the attribute mapped by the transformation mapping.

59: NO_SUCH_FIELD_WHILE_INITIALIZING_ATTRIBUTES_ IN_INSTANCE_
VARIABLE_ACCESSOR
Cause: The instance variable attributeName is not defined in the domain class,
or it is not accessible. TopLink wraps the Java reflection exception that is caused
when it is creating a Field type (java.lang.reflect.Field) from the
attribute name.

Descriptor Exceptions (1 – 201)

13-10 Oracle TopLink Developer’s Guide

Action: Inspect the internal exception, and refer to the Java documentation.

60: NO_SUCH_METHOD_WHILE_INITIALIZING_ ATTRIBUTES_IN_METHOD_
ACCESSOR
Cause: The method setMethodName or getMethodName is not defined for the
attribute in the domain class javaClassName, or it is not accessible. TopLink
wraps the Java reflection exception that is caused when it is creating a Method
type from the method name.

Action: Inspect the internal exception, and refer to the Java documentation.

61: NO_SUCH_METHOD_WHILE_INITIALIZING_CLASS_EXTRACTION_
METHOD
Cause: The static class extraction method methodName(Record databaseRow)
does not exist, or is not accessible. A Java reflection exception wrapped in a
TopLink exception is raised when a class extraction method is being created from
the method name in the inheritance policy.

Action: Inspect the internal exception, and refer to the Java documentation.

62: NO_SUCH_METHOD_WHILE_INITIALIZING_COPY_POLICY
Cause: The clone method methodName() does not exist, or is not accessible. A
Java reflection exception wrapped in a TopLink exception is raised when a method
to create clones is being created from the method name in the copy policy.

Action: Inspect the internal exception, and refer to the Java documentation.

63: NO_SUCH_METHOD_WHILE_INITIALIZING_INSTANTIATION_POLICY
Cause: The instance creation method methodName() does not exist, or is not
accessible. A Java reflection exception wrapped in a TopLink exception is raised
when a method to create the new instance is being created from the method name
in the instantiation policy.

Action: Inspect the internal exception, and refer to the Java documentation.

64: NO_TARGET_FOREIGN_KEYS_SPECIFIED
Cause: The foreign keys in the target table are not specified in one-to-many
mappings. These fields are not required if a selection criterion is given in the
mapping, but otherwise they must be specified.

Action: Set target foreign keys or selection criteria.

65: NO_TARGET_RELATION_KEYS_SPECIFIED
Cause: There are no target relation keys specified in many-to-many mappings.

Action: Call method addTargetRelationKeyFieldName(String
targetRelationKeyFieldName, String targetPrimaryKeyFieldName)
to set the fields.

66: NOT_DESERIALIZABLE
Cause: Attempt to deserialize an object from the byte array that is read from the
database. The exception is raised when the serialized object mapping is converting
the byte array into an object.

Action: Inspect the internal exception, and refer to the Java documentation.

67: NOT_SERIALIZABLE
Cause: Attempt to serialize an object into a byte array. The exception is raised
when a serialized object mapping is converting the object into a byte array.

Action: Inspect the internal exception, and refer to the Java documentation.

Descriptor Exceptions (1 – 201)

TopLink Exception Reference 13-11

68: NULL_FOR_NON_NULL_AGGREGATE
Cause: The value of the aggregate in the source object object is null. Null
values are not allowed for aggregate mappings unless allow null is specified in
the aggregate mapping.

Action: Call the mapping method allowNull. Provide parameters only if you
are making a distinction between foo() and foo(integer).

69: NULL_POINTER_WHILE_GETTING_VALUE_THRU_INSTANCE_
VARIABLE_ACCESSOR
Cause: An object is accessed to get the value of an instance variable through Java
reflection. This exception is raised only on some JVMs.

Action: Inspect the internal exception, and refer to the Java documentation.

70: NULL_POINTER_WHILE_GETTING_VALUE_THRU_METHOD_ACCESSOR
Cause: The getter method is invoked to get the value of an attribute through Java
reflection. This exception is raised only on some JVM.

Action: Inspect the internal exception, and refer to the Java documentation.

71: NULL_POINTER_WHILE_SETTING_VALUE_THRU_INSTANCE_VARIABLE_
ACCESSOR
Cause: A NullPointerException has been raised while setting the value of
the attributeName instance variable in the object to value. An object is accessed
to set the value of an instance variable through Java reflection. This exception is
raised only on some JVMs.

Action: Inspect the internal exception, and refer to the Java documentation.

72: NULL_POINTER_WHILE_SETTING_VALUE_THRU_METHOD_ACCESSOR
Cause: A NullPointerException has been raised while setting the value through
setMethodName method in the object with an argument argument. The set
accessor method is invoked to set the value of an attribute through Java reflection.
This exception is raised only on some JVMs.

Action: Inspect the internal exception, and refer to the Java documentation.

73: PARENT_DESCRIPTOR_NOT_SPECIFIED
Cause: TopLink is unable to find the descriptor for the parent class. The
descriptor of a subclass has no parent descriptor.

Action: The method setParentClass(Class parentClass) must be called
on the subclass descriptor.

74: PRIMARY_KEY_FIELDS_NOT_SPECIFIED
Cause: The primary key fields are not set for this descriptor.

Action: Add primary key field names using method
setPrimaryKeyFieldName(String fieldName).

75: REFERENCE_CLASS_NOT_SPECIFIED
Cause: The reference class is not specified in the foreign reference mapping.

Action: Set the reference class by calling the method
setReferenceClass(Class aClass).

77: REFERENCE_DESCRIPTOR_IS_NOT_AGGREGATE

Descriptor Exceptions (1 – 201)

13-12 Oracle TopLink Developer’s Guide

Cause: The referenced descriptor for class className is not set to an aggregate
descriptor. An aggregate mapping should always reference a descriptor that is
aggregate.

Action: Call the method descriptorIsAggregate on the referenced
descriptor.

78: REFERENCE_KEY_FIELD_NOT_PROPERLY_SPECIFIED
Cause: The table for the reference field is not the reference table. If the reference
field name that is specified in the direct collection mapping is qualified with the
table name, then the table name should match the reference table name.

Action: Qualify the field with the proper name, or change the reference table
name.

79: REFERENCE_TABLE_NOT_SPECIFIED
Cause: The reference table name in the direct collection mapping is not specified.

Action: Use the method setReferenceTableName(String tableName) on
the mapping to set the table name.

80: RELATION_KEY_FIELD_NOT_PROPERLY_SPECIFIED
Cause: The table for the relation key field is not the relation table. If the source
and target relation fields names that are specified in the many-to-many mapping
are qualified with the table name, then the table name should match the relation
table name.

Action: Qualify the field with the proper name, or change the relation table name.

81: RETURN_TYPE_IN_GET_ATTRIBUTE_ACCESSOR
Cause: The method attributeMethodName that is specified in the
transformation mapping does not have a return type set in the attribute, as it
should because this method is used to extract value from the database row.

Action: Verify the method and make appropriate changes.

82: SECURITY_ON_FIND_METHOD
Cause: The descriptor callback method with DescriptorEvent as an argument
is not accessible. Java raises a security exception when a Method type is created
from the method name using Java reflection. The method is a descriptor event
callback on the domain object that takes DescriptorEvent as its parameter.

Action: Inspect the internal exception, and refer to the Java documentation.

83: SECURITY_ON_FIND_OBSOLETE_METHOD
Cause: The descriptor callback method with Session as an argument is not
accessible. Java raises a security exception when a Method type is created from the
method name using Java reflection. The method is a descriptor event callback on
the domain object, which takes class and session as its parameters.

Action: Inspect the internal exception, and refer to the Java documentation.

84: SECURITY_ON_INITIALIZING_ATTRIBUTE_METHOD
Cause: Access to the method methodName(Record databaseRow) or
methodName(Record databaseRow, Session session) has been denied. Java
raises a security exception when a Method type is created from the attribute
method name using Java reflection. The attribute method that is specified in the
transformation mapping is used to extract value from the database row and set by
calling setAttributeTransformation(String methodName).

Action: Inspect the internal exception, and refer to the Java documentation.

Descriptor Exceptions (1 – 201)

TopLink Exception Reference 13-13

85: SECURITY_WHILE_CONVERTING_TO_METHOD
Cause: TopLink failed to find a method with signature methodName() or
methodName(oracle.toplink.sessions.Session). Java raises a security
exception when a Method type is created from the method name using Java
reflection. These are the methods that extract the field value from the domain
object in the transformation mapping.

Action: Inspect the internal exception, and refer to the Java documentation.

86: SECURITY_WHILE_INITIALIZING_ATTRIBUTES_IN_INSTANCE_
VARIABLE_ACCESSOR
Cause: Access to the instance variable attributeName in the class
javaClassName is denied. Java raises a security exception when creating a
Field type from the given attribute name using Java reflection.

Action: Inspect the internal exception, and refer to the Java documentation.

87: SECURITY_WHILE_INITIALIZING_ATTRIBUTES_IN_METHOD_
ACCESSOR
Cause: The methods setMethodName and getMethodName in the object
javaClassName are inaccessible. Java raises a security exception when creating a
Method type from the given attribute accessor method name using Java reflection.

Action: Inspect the internal exception, and refer to the Java documentation.

88: SECURITY_WHILE_INITIALIZING_CLASS_ EXTRACTION_METHOD
Cause: The static class extraction method methodName(Record databaseRow)
is not accessible. Java raises a security exception when creating a Method type
from the given class extraction method name using Java reflection. The method is
used to extract the class from the database row in the inheritance policy.

Action: Inspect the internal exception, and refer to the Java documentation.

89: SECURITY_WHILE_INITIALIZING_COPY_POLICY
Cause: The clone method methodName() is inaccessible. Using
ClassDescriptor method useCloneCopyPolicy (java.lang.String
methodName), you can specify that the creation of clones within a unit of work is
done by sending the methodName method to the original object. If the clone
method methodName with no arguments is inaccessible (your application does
not have sufficient privileges to call the method), Java raises a security exception
when reflectively accessing the method with the given method name using the
java.lang.reflect Java package.

Action: Inspect the internal exception, and refer to the Java documentation.

90: SECURITY_WHILE_INITIALIZING_INSTANTIATION_POLICY
Cause: The instance creation method methodName() is inaccessible. Using any of
the ClassDescriptor methods useFactoryInstantiationPolicy
(java.lang.Class factoryClass, java.lang.String methodName),
useFactoryInstantiationPolicy (java.lang.Class factoryClass,
java.lang.String methodName, java.lang.String
factoryMethodName), useFactoryInstantiationPolicy
(java.lang.Object factory, java.lang.String methodName), or
useMethodInstantiationPolicy(java.lang.String
staticMethodName), you can specify how new instances are created. If any of
the methods or factory methods are inaccessible (your application does not have
sufficient privileges to call the method), Java raises a security exception when

Descriptor Exceptions (1 – 201)

13-14 Oracle TopLink Developer’s Guide

reflectively accessing the method with the given method name using the
java.lang.reflect Java package.

Action: Inspect the internal exception, and refer to the Java documentation.

91: SEQUENCE_NUMBER_PROPERTY_NOT_SPECIFIED
Cause: Either the sequenceNumberName or the sequenceNumberFieldName
property is not set. To use sequence-generated IDs, both the
sequenceNumberName and sequenceNumberFieldName properties must be set
for the descriptor.

Action: To use sequence-generated IDs, set both the sequence number name and
field name properties.

92: SIZE_MISMATCH_OF_FOREIGN_KEYS
Cause: The size of the primary keys on the target table does not match the size of
the foreign keys on the source in one-to-one mapping.

Action: Verify the mapping and the reference descriptor’s primary keys.

93: TABLE_NOT_PRESENT
Cause: The table tableName is not present in the descriptor.

Action: Verify the qualified field names that are specified in the mappings and
descriptor so that any fields that are qualified with the table name reference the
correct table.

94: TABLE_NOT_SPECIFIED
Cause: No table is specified in the descriptor. The descriptor must have a table
name defined.

Action: Call the method addTableName(String tableName) or
setTableName(String tableName) to set the tables on the descriptor.

96: TARGET_FOREIGN_KEYS_SIZE_MISMATCH
Cause: The size of the foreign keys on the target table does not match the size of
the source keys on the source table in the one-to-many mapping.

Action: Verify the mapping.

97: TARGET_INVOCATION_WHILE_CLONING
Cause: TopLink has encountered a problem in cloning the object domainObject
clone method. The methodName triggered an exception. Java raises this exception
when the cloned object is invoked while the object is being cloned. The clone
method is specified on the copy policy that is usually invoked to create clones in
unit of work.

Action: Inspect the internal exception, and refer to the Java documentation.

98: TARGET_INVOCATION_WHILE_EVENT_EXECUTION
Cause: A descriptor callback method eventMethodName(DescriptorEvent
event) is not accessible. The exception occurs when the descriptor event method
is invoked using Java reflection.

Action: Inspect the internal exception, and refer to the Java documentation.

99: TARGET_INVOCATION_WHILE_GETTING_VALUE_THRU_METHOD_
ACCESSOR
Cause: The method methodName on the object objectName is throwing an
exception. Java is throwing an exception while getting an attribute value from the
object through a method accessor.

Descriptor Exceptions (1 – 201)

TopLink Exception Reference 13-15

Action: Inspect the internal exception, and refer to the Java documentation.

100: TARGET_INVOCATION_WHILE_INSTANTIATING_METHOD_BASED_
PROXY
Cause: A method has raised an exception. Java raises this exception while
instantiating a method based proxy and instantiating transformation mapping.

Action: Inspect the internal exception, and refer to the Java documentation.

101: TARGET_INVOCATION_WHILE_INVOKING_ATTRIBUTE_METHOD
Cause: The underlying method raises an exception. Java is throwing an exception
while invoking an attribute transformation method on transformation mapping.
The method is invoked to extract value from the database row to set into the
domain object.

Action: Inspect the internal exception, and refer to the Java documentation.

102: TARGET_INVOCATION_WHILE_INVOKING_FIELD_TO_METHOD
Cause: The method methodName is throwing an exception. Java is throwing
exception while invoking field transformation method on transformation
mapping. The method is invoked to extract value from the domain object to set
into the database row.

Action: Inspect the internal exception, and refer to the Java documentation.

103: TARGET_INVOCATION_WHILE_INVOKING_ROW_EXTRACTION_
METHOD
Cause: TopLink encountered a problem extracting the class type from row
rowName while invoking a class extraction method.

Action: Inspect the internal exception, and refer to the Java documentation.

104: TARGET_INVOCATION_WHILE_METHOD_INSTANTIATION
Cause: TopLink is unable to create a new instance. The creation method
methodName caused an exception.

Action: Inspect the internal exception, and refer to the Java documentation.

105: TARGET_INVOCATION_WHILE_OBSOLETE_EVENT_EXECUTION
Cause: The underlying descriptor callback method
eventMethodName(Session session) raises an exception. Java is throwing an
exception while invoking a descriptor event method that takes a session as its
parameter.

Action: Inspect the internal exception, and refer to the Java documentation.

106: TARGET_INVOCATION_WHILE_SETTING_VALUE_THRU_METHOD_
ACESSOR
Cause: The method setMethodName on the object raises an exception. Java is
throwing an exception while invoking a set accessor method on the domain object
to set an attribute value into the domain object.

Action: Inspect the internal exception, and refer to the Java documentation.

108: VALUE_NOT_FOUND_IN_CLASS_INDICATOR_MAPPING
Cause: The indicator value is not found in the class indicator mapping in the
parent descriptor for the class.

Action: Verify the addClassIndicator(Class childClass, Object
typeValue) on the inheritance policy.

Descriptor Exceptions (1 – 201)

13-16 Oracle TopLink Developer’s Guide

109: WRITE_LOCK_FIELD_IN_CHILD_DESCRIPTOR
Cause: The child descriptor has a write-lock field defined. This is unnecessary,
because it inherits any required locking from the parent descriptor.

Action: Check your child descriptor, and remove the field.

110: DESCRIPTOR_IS_MISSING
Cause: The descriptor for the reference class className is missing from the
mapping.

Action: Verify the session to see if the descriptor for the reference class was
added.

111: MULTIPLE_TABLE_PRIMARY_KEY_MUST_BE_FULLY_QUALIFIED
Cause: Multiple table primary key field names are not fully qualified. These field
names are given on the descriptor if it has more than one table.

Action: Specify the field names with the table name.

112: ONLY_ONE_TABLE_CAN_BE_ADDED_WITH_THIS_METHOD
Cause: Attempt to enter more than one table through this method.

Action: Use the method addTableName(String tableName) to add multiple
tables to the descriptor.

113: NULL_POINTER_WHILE_CONSTRUCTOR_INSTANTIATION
Cause: The constructor is inaccessible. Java is throwing this exception while
invoking a default constructor to create new instances of the domain object.

Action: Inspect the internal exception, and refer to the Java documentation.

114: NULL_POINTER_WHILE_METHOD_INSTANTIATION
Cause: The new instance methodName creation method is inaccessible. Java is
throwing an exception while calling a method to a build new instance of the
domain object. This method is given by the user to override the default behavior of
creating new instances through a class constructor.

Action: Inspect the internal exception, and refer to the Java documentation.

115: NO_ATTRIBUTE_VALUE_CONVERSION_TO_FIELD_VALUE_PROVIDED
Cause: The field conversion value for the attribute value attributeValue was
not given in the object type mapping.

Action: Verify the attribute value, and provide a corresponding field value in the
mapping.

116: NO_FIELD_VALUE_CONVERSION_TO_ATTRIBUTE_VALUE_PROVIDED
Cause: The attribute conversion value for the fieldValue was not given in the
object type mapping.

Action: Verify the field value, and provide a corresponding attribute value in the
mapping.

118: LOCK_MAPPING_CANNOT_BE_READONLY
Cause: The domain object className cannot have a read-only mapping for the
write-lock fields when the version value is stored in the object.

Action: Verify the mappings on the write-lock fields.

119: LOCK_MAPPING_MUST_BE_READONLY

Descriptor Exceptions (1 – 201)

TopLink Exception Reference 13-17

Cause: The domain object className does not have a read-only mapping for the
write-lock fields when the version value is stored in the cache.

Action: Verify the mappings on write-lock fields.

120: CHILD_DOES_NOT_DEFINE_ABSTRACT_QUERY_KEY
Cause: The query key queryKeyName is defined in the parent descriptor, but not
in the child descriptor. The descriptor has not defined the abstract query key.

Action: Define any class that implements the interface descriptor by the abstract
query key in the interface descriptor.

122: SET_EXISTENCE_CHECKING_NOT_UNDERSTOOD
Cause: The interface descriptor parent does not have at least one abstract query
key defined. The string given to the method setExistenceChecking(String
token) is not understood.

Action: Contact Oracle Support Services.

125: VALUE_HOLDER_INSTANTIATION_MISMATCH
Cause: The mapping for the attribute getAttributeName() uses indirection
and must be initialized to a new value holder.

Action: Ensure that the mapping uses indirection and that the attribute is
initialized to a new value holder.

126: NO_SUB_CLASS_MATCH
Cause: No subclass matches this class theClass when inheritance is in aggregate
relationship mapping.

Action: Verify the subclass and the relationship mapping.

127: RETURN_AND_MAPPING_WITH_INDIRECTION_MISMATCH
Cause: The return type of the method used to get the attribute
getAttributeName() of a mapping is not declared as type
ValueHolderInterface, but the mapping is using indirection.

Action: Verify that the method used to get the attribute named
getAttributeName() of DatabaseMapping returns a value holder, or change
the mapping so it does not use indirection.

128: RETURN_AND_MAPPING_WITHOUT_INDIRECTION_MISMATCH
Cause: The return type of the method used to get the attribute
getAttributeName() of DatabaseMapping is declared as type
ValueHolderInterface, but the mapping is not using indirection.

Action: Ensure that the mapping is using indirection, or change the return type
from value holder.

129: PARAMETER_AND_MAPPING_WITH_INDIRECTION_MISMATCH
Cause: The return type of the method used to set the attribute
getAttributeName() of DatabaseMapping is not declared as type
ValueHolderInterface, but the mapping is using indirection.

Action: Ensure that the set method parameter is declared as a valueholder, or
change the mapping so it does not use indirection.

130: PARAMETER_AND_MAPPING_WITHOUT_INDIRECTION_MISMATCH
Cause: The return type of the method used to set the attribute
getAttributeName() of DatabaseMapping is declared as type
ValueHolderInterface, but the mapping is not using indirection.

Descriptor Exceptions (1 – 201)

13-18 Oracle TopLink Developer’s Guide

Action: Ensure that the mapping is changed to use indirection, or that the method
parameter is not declared as a value holder.

131: GET_METHOD_RETURN_TYPE_NOT_VALID
Cause: The return type of the method used to get the attribute
getAttributeName() of DatabaseMapping is not declared as type Vector (or a
type that implements the Map or Collection interface if using Java 2).

Action: Declare the return type of the method used to get the attribute
getAttributeName() of DatabaseMapping as type Vector (or a type that
implements the map or collection interface if using Java 2).

133: SET_METHOD_PARAMETER_TYPE_NOT_VALID
Cause: The parameter type of the method used to set the attribute
getAttributeName() of DatabaseMapping is not declared as type Vector (or a
type that implements the map or collection interface, if using Java 2).

Action: Declare the parameter type of the method used to set the attribute
getAttributeName() of DatabaseMapping as type Vector (or a type that
implements the Map or Collection interface, if using Java 2).

135: ILLEGAL_TABLE_NAME_IN_MULTIPLE_TABLE_FOREIGN_KEY
Cause: The table in the multiple table foreign key relationship refers to an
unknown table.

Action: Verify the table name.

138: ATTRIBUTE_AND_MAPPING_WITH_TRANSPARENT_INDIRECTION_
MISMATCH
Cause: The attribute getAttributeName() of DatabaseMapping is not declared
as a supertype of validTypeName, but the mapping is using transparent
indirection.

Action: Verify the attribute’s type and the mapping setup.

139: RETURN_AND_MAPPING_WITH_TRANSPARENT_INDIRECTION_
MISMATCH
Cause: The return type of the method used to get the attribute
getAttributeName() of DatabaseMapping is not declared as a super-type of
validTypeName, but the mapping is using transparent indirection.

Action: Verify the attribute’s type and the mapping setup.

140: PARAMETER_AND_MAPPING_WITH_TRANSPARENT_INDIRECTION_
MISMATCH
Cause: The parameter type of the method used to set the attribute
getAttributeName() of DatabaseMapping is not declared as a supertype of
validTypeName, but the mapping is using transparent indirection.

Action: Verify the attribute’s type and the mapping setup.

141: FIELD_IS_NOT_PRESENT_IN_DATABASE
Cause: The field fieldname is not present in the table tableName in the
database.

Action: Verify the field name for the attribute.

142: TABLE_IS_NOT_PRESENT_IN_DATABASE
Cause: The table whose name is provided by the Descriptor method
getTableName is not present in the database.

Descriptor Exceptions (1 – 201)

TopLink Exception Reference 13-19

Action: Verify the table name for the descriptor.

143: MULTIPLE_TABLE_INSERT_ORDER_MISMATCH
Cause: The multiple table insert order vector specified the Descriptor method
getMultipleTableInsertOrder has fewer or more tables than are specified in
the Descriptor method getTables. All the tables must be included in the
insert order vector.

Action: Ensure that all table names for the descriptor are present and that there
are no extra tables.

144: INVALID_USE_OF_TRANSPARENT_INDIRECTION
Cause: Transparent indirection is being used with a mapping other than a
CollectionMapping.

Action: Verify the mapping. It must be a collection mapping.

145: MISSING_INDIRECT_CONTAINER_CONSTRUCTOR
Cause: The indirect container class does not implement the constructor.

Action: Implement the constructor for the container.

146: COULD_NOT_INSTANTIATE_INDIRECT_CONTAINER_CLASS
Cause: TopLink is unable to instantiate the indirect container class using the
constructor.

Action: Validate the constructor for the indirect container class.

147: INVALID_CONTAINER_POLICY
Cause: You have used a container policy with an incompatible version of the JDK.
This container policy must only be used with JDK 1.3.1 or later.

Action: Validate the container policy being used.

148: INVALID_CONTAINER_POLICY_WITH_TRANSPARENT_ INDIRECTION
Cause: The container policy is incompatible with transparent indirection.

Action: Change the container policy to be compatible with transparent
indirection, or do not use transparent indirection.

149: INVALID_USE_OF_NO_INDIRECTION
Cause: NoIndirectionPolicy object calls this method.

Action: Contact Oracle Support Services.

150: INDIRECT_CONTAINER_INSTANTIATION_MISMATCH
Cause: The mapping for the attribute getAttributeName() of
DatabaseMapping uses transparent indirection and must be initialized to an
appropriate container.

Action: Initialize the mapping to an appropriate container.

151: INVALID_MAPPING_OPERATION
Cause: An invalid mapping operation has been used.

Action: See the documentation for valid mapping operations.

152: INVALID_INDIRECTION_POLICY_OPERATION
Cause: An invalid indirection policy operation has been used.

Action: See the documentation for valid indirection policy operations.

Descriptor Exceptions (1 – 201)

13-20 Oracle TopLink Developer’s Guide

153: REFERENCE_DESCRIPTOR_IS_NOT_AGGREGATECOLLECTION
Cause: The reference descriptor for className is not set to an aggregate
collection descriptor.

Action: Set the reference descriptor to an aggregate collection descriptor.

154: INVALID_INDIRECTION_CONTAINER_CLASS
Cause: An invalid indirection container class has been used.

Action: Verify the container class.

155: MISSING_FOREIGN_KEY_TRANSLATION
Cause: The mapping does not include a foreign key field linked to the primary
key field.

Action: Link the foreign key to the appropriate primary key.

156: STRUCTURE_NAME_NOT_SET_IN_MAPPING
Cause: The structure name is not set.

Action: Set the structure name appropriately.

157: NORMAL_DESCRIPTORS_DO_NOT_SUPPORT_ NON_RELATIONAL_
EXTENSIONS
Cause: Relational descriptors do not support nonrelational extensions.

Action: Contact Oracle Support Services.

158: PARENT_CLASS_IS_SELF
Cause: The descriptor’s parent class has been set to itself.

Action: Contact Oracle Support Services.

159: PROXY_INDIRECTION_NOT_AVAILABLE
Cause: An attempt to use proxy indirection has been made, but JDK 1.3.1 or later
is not being used.

Action: Use JDK 1.3.1 or later.

160: INVALID_ATTRIBUTE_TYPE_FOR_PROXY_INDIRECTION
Cause: The attribute was not specified in the list of interfaces given to use proxy
indirection.

Action: Verify the attribute.

161: INVALID_GET_RETURN_TYPE_FOR _PROXY_INDIRECTION
Cause: The return type for the indirection policy is invalid for the indirection
policy.

Action: Ensure that the parameter type of the getter method is correct for the
indirection policy.

162: INVALID_SET_PARAMETER_TYPE_FOR_PROXY_ INDIRECTION
Cause: The parameter for the setter method is incorrect for the indirection type.

Action: Ensure that the parameter type of the setter method is correct for the
indirection policy.

163: INCORRECT_COLLECTION_POLICY
Cause: The container policy is invalid for the collection type.

Action: Ensure that the container policy is correct for the collection type.

Descriptor Exceptions (1 – 201)

TopLink Exception Reference 13-21

164: INVALID_AMENDMENT_METHOD
Cause: The amendment method that is provided is invalid, not public, or cannot
be found.

Action: Ensure that the amendment method is public, static, returns void, and has
a single argument: Descriptor.

165: ERROR_OCCURRED_IN_AMENDMENT_METHOD
Cause: The specified amendment method threw an exception.

Action: Examine the returned exception for further information.

166: VARIABLE_ONE_TO_ONE_MAPPING_IS_NOT_DEFINED
Cause: There is no mapping for the attribute.

Action: Validate the mapping and attribute.

167: NO_CONSTRUCTOR_INDIRECT_COLLECTION_CLASS
Cause: A valid constructor was not found for the indirection container class.

Action: Add a default constructor or a constructor with a
ValueHolderInterface in the container class.

168: TARGET_INVOCATION_WHILE_CONSTRUCTOR_INSTANTIATION
Cause: The constructor is missing.

Action: Create the required constructor.

169: TARGET_INVOCATION_WHILE_CONSTRUCTOR_INSTANTIATION_OF_
FACTORY
Cause: The constructor is missing.

Action: Create the required constructor.

170: ILLEGAL_ACCESS_WHILE_CONSTRUCTOR_INSTANTIATION_OF_
FACTORY
Cause: Permissions do not allow access to the constructor.

Action: Adjust the Java security permissions to permit access to the constructor.

171: INSTANTIATION_WHILE_CONSTRUCTOR_INSTANTIATION_OF_
FACTORY
Cause: An instantiation failed inside the associated constructor.

Action: Determine which objects are being instantiated, and verify that all are
instantiated properly.

172: NO_SUCH_METHOD_WHILE_CONSTRUCTOR_INSTANTIATION_OF_
FACTORY
Cause: A method call from inside the constructor is invalid because this method
does not exist.

Action: Ensure that the factory has a default constructor for the called method.

173: NULL_POINTER_WHILE_CONSTRUCTOR_INSTANTIATION_OF_
FACTORY
Cause: A method on a null object was called from inside a constructor. The
factory constructor was inaccessible.

Action: Examine the internal exception and take the appropriate action.

174: ILLEGAL_ACCESS_WHILE_METHOD_INSTANTIATION_OF_FACTORY

Descriptor Exceptions (1 – 201)

13-22 Oracle TopLink Developer’s Guide

Cause: A method was called on an object from inside a factory instantiation, and
Java has determined this method to be invalid.

Action: Determine why the method is invalid, and replace the method with a
valid one.

175: TARGET_INVOCATION_WHILE_METHOD_INSTANTIATION_OF_
FACTORY
Cause: A problem was encountered creating factory using creation method. The
creation method triggered an exception.

Action: Examine the exception and take the corresponding action.

176: NULL_POINTER_WHILE_METHOD_INSTANTIATION_OF_FACTORY
Cause: A method called to instantiate a factory threw a
NullPointerException. The creation method is not accessible.

Action: Do not use that method to instantiate a factory.

177: NO_MAPPING_FOR_ATTRIBUTENAME
Cause: Mapping is missing for the attribute attributeName.

Action: The attribute must be mapped.

178: NO_MAPPING_FOR_ATTRIBUTENAME_IN_ENTITY_BEAN
Cause: Cannot find mapping for an attribute attributeName in an entity bean
beanName.

Action: Map the attribute.

179: UNSUPPORTED_TYPE_FOR_BIDIRECTIONAL_RELATIONSHIP_
MAINTENANCE
Cause: The attribute uses bidirectional relationship maintenance, but has
ContainerPolicy, which does not support it.

Action: The attribute must be mapped with a different collection type.

180: REFERENCE_DESCRIPTOR_CANNOT_BE_AGGREGATE
Cause: No string is defined in the DescriptorExceptionResource.java file.

Action: The reference descriptor for a relationship mapping (except
AggregateCollectionMapping) cannot be aggregate. You must change the
reference descriptor to non-aggregate.

181: ATTRIBUTE_TRANSFORMER_CLASS_NOT_FOUND
Cause: The AttributeTransformer class cannot be found.

Action: Ensure that the AttributeTransformer class exists and is on the
classpath.

182: FIELD_TRANSFORMER_CLASS_NOT_FOUND
Cause: The FieldTransformer class cannot be found.

Action: Ensure that the FieldTransformer class exists and is on the classpath.

183: ATTRIBUTE_TRANSFORMER_CLASS_INVALID
Cause: Invalid use of a class className as an AttributeTransformer.

Action: Examine the internal exception stack trace and make the appropriate
correction.

184: FIELD_TRANSFORMER_CLASS_INVALID

Descriptor Exceptions (1 – 201)

TopLink Exception Reference 13-23

Cause: Invalid use of a class className as a FieldTransformer.

Action: Do not use the class as a FieldTransformer.

185: RETURNING_POLICY_FIELD_TYPE_CONFLICT
Cause: ReturningPolicy contains field with two different types.

Action: The field was added to ReturningPolicy twice with different types.
The field must be added to ReturningPolicy once. You must remove excessive
addFieldForInsert and/or addInsertField calls.

186: RETURNING_POLICY_FIELD_INSERT_CONFLICT
Cause: ReturningPolicy contains field that has been added twice using
addInsertField and addInsertFieldReturnOnly.

Action: A field must be added to ReturningPolicy only once. You must
remove excessive addField calls.

187: RETURNING_POLICY_AND_DESCRIPTOR_FIELD_TYPE_CONFLICT
Cause: ReturningPolicy contains field with type Type, but the same field in
descriptor has type differentType.

Action: Specify field type in addField method only in the event that it cannot be
obtained from the descriptor.

188: RETURNING_POLICY_UNMAPPED_FIELD_TYPE_NOT_SET
Cause: ReturningPolicy contains unmapped field fieldName that requires
type.

Action: You must specify field type in the addField method.

189: RETURNING_POLICY_MAPPED_FIELD_TYPE_NOT_SET
Cause: ReturningPolicy contains mapped field fieldName that requires
type.

Action: You must specify field type in the addField method.

190: RETURNING_POLICY_MAPPING_NOT_SUPPORTED
Cause: ReturningPolicy contains a field that is mapped with unsupported
mapping.

Action: You cannot use ReturningPolicy with this field. Do not add it to
ReturningPolicy.

191: RETURNING_POLICY_FIELD_NOT_SUPPORTED
Cause: ReturningPolicy contains a field fieldName that is not supported.
Field is either sequence field, class type indicator, or used for locking.

Action: You cannot use ReturningPolicy with this field. Do not add it to
ReturningPolicy.

192: CUSTOM_QUERY_AND_RETURNING_POLICY_CONFLICT
Cause: ReturningPolicy contains a field fieldName, but custom query
queryName does not output it.

Action: Update the custom query so that it outputs a value for this field.

193: NO_CUSTOM_QUERY_FOR_RETURNING_POLICY
Cause: There is no custom query set, but ReturningPolicy contains one or
more fields to be returned and doesn't support generating call with return.

Descriptor Exceptions (1 – 201)

13-24 Oracle TopLink Developer’s Guide

Action: Specify a custom InsertObjectQuery or UpdateObjectQuery
through DescriptorQueryManager setInsertQuery, setInsertCall,
setUpdateQuery, or setUpdateCall methods that outputs values for fields
added to ReturningPolicy.

194: CLASS_EXTRACTION_METHOD_MUST_BE_STATIC
Cause: The class extraction method must be a static method on the descriptor's
class.

Action: Make the class extraction method a static method on the descriptor’s
class.

195: ISOLATED_DESCRIPTOR_REFERENCED_BY_SHARED_DESCRIPTOR
Cause: The shared class must not reference the isolated class.

Action: Ensure that the shared class does not reference the isolated class.

196: UPDATE_ALL_FIELDS_NOT_SET
Cause: updateAllFields flag has not been set or has been set to false. When
using setForceUpdate(true) method of CMPPolicy you must also call
setUpdateAllFields(true) method of CMPPolicy.

Action: Ensure that updateAllFields is set to true if forceUpdate is true.

197: INVALID_MAPPING_TYPE
Cause: A mapping of an inappropriate type has been set for this descriptor.

Action: The mapping type has to map the descriptor type, e.g. relational mapping
for relational descriptor, EIS mapping for EIS descriptor, and XML mapping for
XML descriptor.

198: NEED_TO_IMPLEMENT_CHANGETRACKER
Cause: The object does not implement the ChangeTracker interface.

Action: Ensure that the object implements ChangeTrackerInterface in order
to use ObjectChangeTrackingPolicy or
AttributeChangeTrackingPolicy.

199: NEED_TO_IMPLEMENT_FETCHGROUPTRACKER
Cause: The domain class does not implement the FetchGroupTracker
interface.

Action: Ensure that the domain class implements the FetchGroupTracker
interface in order to use the fetch group.

200: ATTEMPT_TO_REGISTER_DEAD_INDIRECTION
Cause: Attempt to register an object with dead indirection as a new object.
Possibly, the object was deleted or removed from the cache during a merge of a
serialized clone or did not exist in the cache at the time of the merge. This is a
concurrency violation.

Action: Ensure that the object exists in the cache before attempting to merge a
deserialized version into the cache. Consider a locking strategy. For more
information, see "Merging Changes in Working Copy Clones" on page 99-13 and
"Indirection, Serialization, and Detachment" on page 30-9.

201: UNIT_OF_WORK_ISOLATED_OBJECTS_ACCESSED_IN_SESSION
Cause: Attempt to built and object in the session cache, but the descriptor is
marked as isolated in the unit of work.

Action: Ensure that the descriptor is never accessed outside of a unit of work.

Concurrency Exceptions (2001 – 2009)

TopLink Exception Reference 13-25

For more information, see Part VIII, "Descriptors".

Concurrency Exceptions (2001 – 2009)
ConcurrencyException is a development exception that is raised when a Java
concurrency violation occurs. Only when a running thread is interrupted, causing the
JVM to throw an InterruptedException, is an internal exception information
displayed with the error message, as shown in Example 13–2.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message
INTERNAL EXCEPTION: Message

Example 13–2 Concurrency Exception

EXCEPTION [TOPLINK – 2004]: oracle.toplink.exceptions.ConcurrencyException
EXCEPTION DESCRIPTION: Signal attempted before wait on concurrency manager.
This usually means that an attempt was made to commit or roll back a transaction
before being started, or rolled back twice.

2001: WAIT_WAS_INTERRUPTED
Cause: In a multi threaded environment, one of the waiting threads was
interrupted.

Action: Such exceptions are application-dependent.

2002: WAIT_FAILURE_SERVER
Cause: A request for a connection from the connection pool has been forced to
wait, and that wait has been interrupted.

Action: Such exceptions are application-dependent.

2003: WAIT_FAILURE_CLIENT
Cause: A request for a connection from the connection pool has been forced to
wait, and that wait has been interrupted.

Action: Such exceptions are application-dependent.

2004: SIGNAL_ATTEMPTED_BEFORE_WAIT
Cause: A signal was attempted before a wait on concurrency manager. This
usually means that an attempt was made to commit or roll back a transaction
before it was started, or to rollback a transaction twice.

Action: Verify transactions in the application.

2005: WAIT_FAILURE_SEQ_DATABASE_SESSION
Cause: An InterruptedException was raised while DatabaseSession
sequencing waited for a separate connection to become available.

Action: Examine concurrency issues involving object creation with your
DatabaseSession.

2006: SEQUENCING_MULTITHREAD_THRU_CONNECTION
Cause: Several threads attempted to concurrently obtain sequence objects from
the same DatabaseSession or ClientSession.

Conversion Exceptions (3001– 3008)

13-26 Oracle TopLink Developer’s Guide

Action: Avoid concurrent writing through the same DatabaseSession or
ClientSession.

2007: MAX_TRIES_EXCEDED_FOR_LOCK_ON_CLONE
Cause: Maximum number of attempts to lock object was exceed resulting in a
failure to clone the object.

Action: Ensure that the number of attempts is within the limit.

2008: MAX_TRIES_EXCEDED_FOR_LOCK_ON_MERGE
Cause: Maximum number of attempts to lock object was exceed resulting in a
failure to merge the transaction.

Action: Ensure that the number of attempts is within the limit.

2009: MAX_TRIES_EXCEDED_FOR_LOCK_ON_BUILD_OBJECT
Cause: Maximum number of attempts to lock object was exceed resulting in a
failure to build the object: thread threadNumber has a lock on the object, but
thread anotherThreadNumber is building the object

Action: Ensure that the number of attempts is within the limit.

For more information, see "Concurrency" on page 2-18.

Conversion Exceptions (3001– 3008)
ConversionException is a development exception that is raised when a conversion
error occurs by an incompatible type conversion. The message that is returned
indicates which type cast caused the exception, as shown in Example 13–3.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message
INTERNAL EXCEPTION: Message

Example 13–3 Conversion Exception

EXCEPTION [TOPLINK – 3006]: oracle.toplink.exceptions.ConversionException
EXCEPTION DESCRIPTION: object must be of even length to be converted to a
ByteArray

3001: COULD_NOT_BE_CONVERTED
Cause: Attempt to convert an object object of class ObjectClass to
JavaClass. The object cannot be converted to a given type.

Action: Ensure that the object being converted is of the right type.

3002: COULD_NOT_BE_CONVERTED_EXTENDED
Cause: Attempt to convert an object object of class ObjectClass from
mapping mappingType to JavaClass. The object cannot be converted to a given
type.

Action: Ensure that the object being converted is of the right type.

3003: INCORRECT_DATE_FORMAT
Cause: The date in dateString is in an incorrect format. The expected format is
YYYY-MM-DD.

Database Exceptions (4002 – 4018)

TopLink Exception Reference 13-27

Action: Verify the date format.

3004: INCORRECT_TIME_FORMAT
Cause: The time in timeString is in an incorrect format. The expected format is
HH:MM:SS.

Action: Verify the time format.

3005: INCORRECT_TIMESTAMP_FORMAT
Cause: The timestamp timestampString is in an incorrect format. The expected
format is YYYY-MM-DD HH:MM:SS.NNNNNNNNN.

Action: Verify the timestamp format.

3006: COULD_NOT_CONVERT_TO_BYTE_ARRAY
Cause: Attempt to convert String object of uneven length to a ByteArray. This
object cannot be converted to a ByteArray.

Action: Verify the object being converted.

3007: COULD_NOT_BE_CONVERTED_TO_CLASS
Cause: Attempt to convert an object object of class ObjectClass to
JavaClass. The class JavaClass is not on the classpath.

Action: Ensure that the class JavaClass is on the classpath.

3008: INCORRECT_DATE_TIME_FORMAT
Cause: Incorrect date-time format object. The expected format is
YYYY-MM-DD'T'HH:MM:SS.

Action: Ensure that the date-time object is in the expected format of
YYYY-MM-DD’T’HH:MM:SS.

For more information, see the following:

■ Schema Manager Java and Database Type Conversion on page 5-3

■ Type Conversion Converter on page 30-11

Database Exceptions (4002 – 4018)
DatabaseException is a run-time exception that is raised when data read from the
database, or the data that is to be written to the database, is incorrect. The exception
may also act as a wrapper for SQLException. If this is the case, the message contains
a reference to the error code and error message, as shown in Example 13–4.

This exception can occur on any database operation. If an execution of a SQL script is
involved in a database operation causing DatabaseException, the exception’s message,
accessible through the getMessage method, contains the SQL that caused this
exception.

This exception includes internal exception and error code information when the
exception is wrapping a SQLException.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message
INTERNAL EXCEPTION: Message
ERROR CODE: Error code

Database Exceptions (4002 – 4018)

13-28 Oracle TopLink Developer’s Guide

Example 13–4 Database Exception

EXCEPTION [TOPLINK – 4002]: oracle.toplink.exceptions.DatabaseException
EXCEPTION DESCRIPTION: java.sql.SQLException: [INTERSOLV][ODBC dBase driver]
Incompatible datatypes in expression: >
INTERNAL EXCEPTION: java.sql.SQLException: [INTERSOLV][ODBC dBase driver]
Incompatible datatypes in expression: >
ERROR CODE: 3924

4002: SQL_EXCEPTION
Cause: A SQL exception was encountered, raised by the underlying JDBC bridge.
TopLink wraps only that exception.

Action: Inspect the internal exception that was raised.

4003: CONFIGURATION_ERROR_CLASS_NOT_FOUND
Cause: The driver class name was not found.

Action: Verify the class name given in JDBCLogin.

4005: DATABASE_ACCESSOR_NOT_CONNECTED
Cause: The session is not connected to the database while attempting to read or
write on the database.

Action: An application may have to log in again because the connection to the
database might have been lost.

4006: ERROR_READING_BLOB_DATA
Cause: An error occurred reading BLOB data from the database. There are two
possibilities for this exception: either the BLOB data was not read properly from
the result set or TopLink cannot process the BLOB data using
ByteArrayOutputStream.

Action: Verify whether the underlying driver supports BLOBs properly. If it does,
then report this problem to Oracle Support Services.

4007: COULD_NOT_CONVERT_OBJECT_TYPE
Cause: Attempt to convert an object type on internal error.java.sql.TYPES
= type. The object from the result set cannot be converted to the type that was
returned from the metadata information.

Action: Verify whether the underlying driver supports the conversion type
properly. If it does, then report this problem to Oracle Support Services.

4008: LOGOUT_WHILE_TRANSACTION_IN_PROGRESS
Cause: Attempt to log out while the transaction is still in progress. You cannot log
out while a transaction is in progress.

Action: Wait until the transaction is finished.

4009: SEQUENCE_TABLE_INFORMATION_NOT_COMPLETE
Cause: The sequence information given to TopLink is not sufficiently complete to
get the set of sequence numbers from the database. This usually happens on native
sequencing (see "Understanding Sequencing in Relational Projects" on page 17-14)
on an Oracle database.

Action: Verify the data provided, especially the sequence name provided in
TopLink.

4011: ERROR_PREALLOCATING_SEQUENCE_NUMBERS

Optimistic Lock Exceptions (5001 – 5009)

TopLink Exception Reference 13-29

Cause: An error occurred preallocating sequence numbers on the database; the
sequence table information is not complete.

Action: Ensure the sequence table was properly created on the database.

4014: CANNOT_REGISTER_SYNCHRONIZATIONLISTENER_FOR_
UNITOFWORK
Cause: TopLink cannot register the synchronization listener: underlying_exception_
string. When the TopLink session is configured with an
ExternalTransactionController, any unit of work requested by a client
must operate within the context of a JTS external global transaction. When a unit
of work is created and the external global transaction is not in existence, or if the
system cannot acquire a reference to it, this error is reported.

Action: Verify that a JTS transaction is in progress before acquiring the unit of
work.

4015 SYNCHRONIZED_UNITOFWORK_DOES_NOT_ SUPPORT_
COMMITANDRESUME
Cause: A synchronized UnitOfWork does not support the commitAndResume
operation. When the TopLink session is configured with an
ExternalTransactionController, any unit of work requested by a client
must operate within the context of a JTS external global transaction (see 4014:
CANNOT_REGISTER_SYNCHRONIZATIONLISTENER_FOR_UNITOFWORK).
The JTS specification does not support the concept of check pointing a
transaction—that is, committing the work performed and then continuing to work
within the same transaction context. JTS does not support nested transactions,
either. As a result, if a client code invokes commitAndResume on a synchronized
unit of work, this error is reported.

Action: None required.

4016: CONFIGURATION_ERROR_NEW_INSTANCE_ INSTANTIATION_
EXCEPTION
Cause: A configuration error occurred when TopLink attempted to instantiate the
given driver class. TopLink cannot instantiate the driver.

Action: Check the driver.

4017: CONFIGURATION_ERROR_NEW_INSTANCE_ILLEGAL_ACCESS_
EXCEPTION
Cause: A configuration error occurred when TopLink attempted to instantiate the
given driver class. TopLink cannot instantiate the driver.

Action: Check the driver.

4018: TRANSACTION_MANAGER_NOT_SET_FOR_JTS_DRIVER
Cause: The transaction manager has not been set for the
JTSSynchronizationListener.

Action: Set a transaction manager for the JTSSynchronizationListener.

Optimistic Lock Exceptions (5001 – 5009)
OptimisticLockException is a run-time exception that is raised when the row on
the database that matches the desired object is missing or when the value on the
database does not match the registered number. It is used in conjunction with the
optimistic locking feature. This applies only on an update or delete operation, as
shown in Example 13–5.

Optimistic Lock Exceptions (5001 – 5009)

13-30 Oracle TopLink Developer’s Guide

For more information about optimistic locking, see the section on Optimistic locking in
a stateless environment in Chapter 2, "Understanding TopLink
Application Development". These exceptions should be handled in a try-catch block.

Format
EXCEPTION [TOPLINK – error code]: Exception Name
EXCEPTION DESCRIPTION: Message

Example 13–5 Optimistic Lock Exception

EXCEPTION [TOPLINK – 5003]: oracle.toplink.exceptions.OptimisticLockException
EXCEPTION DESCRIPTION: The object, object.toString() cannot be deleted because it
has changed or been deleted since it was last read.

5001: NO_VERSION_NUMBER_WHEN_DELETING
Cause: Attempt to delete the object object that does not have a version number
in the identity map. This object either was never read or has already been deleted.

Action: Use SQL logging to determine the reason for the exception. The last delete
operation shows the object being deleted when the exception was raised.

5003: OBJECT_CHANGED_SINCE_LAST_READ_WHEN_DELETING
Cause: The object state has changed in the database. The object object cannot be
deleted because it has changed or been deleted since it was last read. This usually
means that the row in the table was changed by some other application.

Action: Refresh the object, which updates it with the new data from the database.

5004: NO_VERSION_NUMBER_WHEN_UPDATING
Cause: An attempt has been made to update the object object that does not have
a version number in the identity map. It may not have been read before being
updated, or it has been deleted.

Action: Use SQL logging to determine the reason for the exception. The last
update operation shows the object being updated when the exception was raised.

5006: OBJECT_CHANGED_SINCE_LAST_READ_WHEN_UPDATING
Cause: The object state has changed in the database. The object object cannot be
updated because it has changed or been deleted since it was last read. This usually
means that the row in the table was changed by some other application.

Action: Refresh the object, which updates it with the new data from the database.

5007: MUST_HAVE_MAPPING_WHEN_IN_OBJECT
Cause: The object object does not have a non-read-only mapping corresponding
to the version lock field. The mapping, which is needed when the lock value is
stored in the domain object rather than in a cache, was not defined for the locking
field.

Action: Define a mapping for the field.

5008: NEED_TO_MAP_JAVA_SQL_TIMESTAMP
Cause: A write lock value that is stored in a domain object is not an instance of
java.sql.Timestamp.

Action: Change the value of the attribute to be an instance of
java.sql.Timestamp.

5009: UNWRAPPING_OBJECT_DELETED_SINCE_LAST_READ

Query Exceptions (6001 – 6129)

TopLink Exception Reference 13-31

Cause: Attempt to unwrapped an object of class className with primary key
key–the object was deleted since it had been last read.

Action: Ensure the existence of the object being upwrapped.

Query Exceptions (6001 – 6129)
 QueryException is a development exception that is raised when insufficient
information has been provided to the query. If possible, the message indicates the
query that caused the exception. A query is optional and is displayed if TopLink is
able to determine the query that caused this exception, as shown in Example 13–6.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message
QUERY:

Example 13–6 Query Exception

EXCEPTION [TOPLINK – 6026]: oracle.toplink.exceptions.QueryException
EXCEPTION DESCRIPTION: The query is not defined. When executing a query on the
session, the parameter that takes the query is null.

6001: ADDITIONAL_SIZE_QUERY_NOT_SPECIFIED
Cause: Additional size-retrieving query was not specified: cursored SQL queries
must provide an additional query to retrieve the size of the result set. Failure to
include the additional query causes this exception.

Action: Specify a size query.

6002: AGGREGATE_OBJECT_CANNOT_BE_DELETED
Cause: An aggregated object was deleted independently of its owner: aggregate
objects cannot be written or deleted independent of their owners. No identity is
maintained on such objects.

Action: Do not try to delete aggregate objects directly.

6003: ARGUMENT_SIZE_MISMATCH_IN_QUERY_AND_ QUERY_DEFINITION
Cause: The number of arguments provided to the query for execution does not
match the number of arguments provided with the query definition.

Action: Check the query and the query execution.

6004: BACKUP_CLONE_IS_ORIGINAL_FROM_PARENT
Cause: The object clone of class clone.getClass() with identity hash code
(System.identityHashCode()) (System.identityHashCode(clone))
is not from this unit of work space, but from the parent session. The object was
never registered in this unit of work, but read from the parent session and related
to an object registered in the unit of work.

Action: Verify that you are correctly registering your objects. If you are still
having problems, use the validateObjectSpace method of the UnitOfWork to
help debug where the error occurred.

6005: BACKUP_CLONE_IS_ORIGINAL_FROM_SELF
Cause: The object clone of class clone.getClass() with identity hash code
(System.identityHashCode()) (System.identityHashCode(clone)) is
the original to a registered new object. Because the unit of work clones new objects

Query Exceptions (6001 – 6129)

13-32 Oracle TopLink Developer’s Guide

that are registered, ensure that an object is registered before it is referenced by
another object. If you do not want the new object to be cloned, use the
registerNewObject(Object) method of the UnitOfWork.

Action: Verify that you are correctly registering your objects. If you are still
having problems, use the validateObjectSpace method of the UnitOfWork to
help debug where the error occurred.

6006: BATCH_READING_NOT_SUPPORTED
Cause: The mapping that does not support batch reading was used. The
optimization of batch reading all the target rows is not supported for the mapping.

Action: The problem is a TopLink development problem, and you should never
encounter this error code unless the mapping is a new custom mapping. Contact
Oracle Support Services.

6007: DESCRIPTOR_IS_MISSING
Cause: The descriptor for the reference class is missing. The descriptor related to
the class or the object is not found in the session.

Action: Verify whether or not the related descriptor was added to the session, and
whether or not the query is performed on the right object or class.

6008: DESCRIPTOR_IS_MISSING_FOR_NAMED_QUERY
Cause: The descriptor DomainClassName for the query named queryName is
missing. The descriptor where named query is defined is not added to the session.

Action: Verify whether or not the related descriptor was added to the session, and
whether or not the query is performed on the right class.

6013: INCORRECT_SIZE_QUERY_FOR_CURSOR_STREAM
Cause: The size query given on the queries returning cursor streams is not correct.
The execution of the size query did not return any size.

Action: If the cursor stream query was a custom query, then check the size of the
query that was specified, or report this problem to Oracle Support Services.

6014: INVALID_QUERY
Cause: Attempt to write an object in a unit of work using modify queries. These
objects must be registered.

Action: Prior to modification, register objects in the unit of work, so during
commit the unit of work can perform the required changes to the database.

6015: INVALID_QUERY_KEY_IN_EXPRESSION
Cause: The query key key does not exist. Usually this happens because of a
misspelled query key.

Action: Check the query key that was specified in the expression and verify that a
query key was added to the descriptor.

6016: INVALID_QUERY_ON_SERVER_SESSION
Cause: Attempt to change an object or a database through the server session: all
changes must be performed through a client session's unit of work. The objects
cannot be changed on the server session by modifying queries. Objects are
changed in the client sessions that are acquired from this server session.

Action: Use the client session’s unit of work to change the object.

6020: NO_CONCRETE_CLASS_INDICATED

Query Exceptions (6001 – 6129)

TopLink Exception Reference 13-33

Cause: No concrete class is indicated for the type in this row. The type indicator
read from the database row has no entry in the type indicator hash table or if class
extraction method was used, it did not return any concrete class type. The
exception is raised when subclasses are being read.

Action: Check the class extraction method, if specified, or check the descriptor to
verify all the type indicator values were specified.

6021: NO_CURSOR_SUPPORT
Cause: No cursor support is provided for abstract class multiple table descriptors
using expressions.

Action: Consider using custom SQL or multiple queries.

6023: OBJECT_TO_INSERT_IS_EMPTY
Cause: There are no fields to be inserted into the table. The fields to insert into the
table table, are empty.

Action: Define at least one mapping for this table.

6024: OBJECT_TO_MODIFY_NOT_SPECIFIED
Cause: An object to modify has not been specified for a modify query.

Action: Verify that the query contains an object before executing.

6026: QUERY_NOT_DEFINED
Cause: The query is not defined. When executing a query on the session, the
parameter that takes the query is null.

Action: Verify that the query is passed properly.

6027: QUERY_SENT_TO_INACTIVE_UNIT_OF_WORK
Cause: The unit of work has been released and is now inactive.

Action: The unit of work, once released, cannot be reused unless the
commitAndResume method is called.

6028: READ_BEYOND_QUERY
Cause: Attempt to read from the cursor streams beyond its limits (beyond the end
of the stream).

Action: Ensure that the stream is checked for an end of stream condition before
attempting to retrieve more objects.

6029: REFERENCE_CLASS_MISSING
Cause: The reference class in the query is not specified: a reference class must be
provided.

Action: Ensure that the query is correct.

6030: REFRESH_NOT_POSSIBLE_WITHOUT_CACHE
Cause: Attempt to refresh while the caching is not set: the read queries that skip
the cache to read objects cannot be used to refresh the objects. Refreshing is not
possible without identity.

Action: Ensure that the query is correct.

6031: SIZE_ONLY_SUPPORTED_ON_EXPRESSION_QUERIES
Cause: TopLink did not find a size query. Size is supported only on expression
queries unless a size query is given.

Action: The cursor streams on a custom query should also define a size query.

Query Exceptions (6001 – 6129)

13-34 Oracle TopLink Developer’s Guide

6032: SQL_STATEMENT_NOT_SET_PROPERLY
Cause: The SQL statement has not been properly set. The user should never
encounter this error code unless queries have been customized.

Action: Contact Oracle Support Services.

6034: INVALID_QUERY_ITEM
Cause: TopLink is unable to validate a query item expression.

Action: Validate the expression being used.

6041: SELECTION_OBJECT_CANNOT_BE_NULL
Cause: The selection object that was passed to a ReadObjectQuery (or refresh)
was null.

Action: Check setSelectionObject method on read query.

6042: UNNAMED_QUERY_ON_SESSION_BROKER
Cause: Data read and data modify queries are being executed without the session
name. Only object-level queries can be directly executed by the session broker,
unless the query is named.

Action: Specify the session name.

6043: REPORT_RESULT_WITHOUT_PKS
Cause: Attempt to read the object by a ReportQuery without a primary key: the
report query result that was returned is without primary key values. An object
from the result can be created only if primary keys were also read.

Action: See the documentation about retrievePrimaryKeys method on report
query.

6044: NULL_PRIMARY_KEY_IN_BUILDING_OBJECT
Cause: The primary key that was read from the row databaseRow during the
execution of the query was detected to be null: primary keys must not contain
null.

Action: Check the query and the table on the database.

6045: NO_DESCRIPTOR_FOR_SUBCLASS
Cause: The subclass has no descriptor defined for it.

Action: Ensure the descriptor was added to the session, or check class extraction
method.

6046: CANNOT_DELETE_READ_ONLY_OBJECT
Cause: Attempt to delete a read-only class.

Action: Contact Oracle Support Services.

6047: INVALID_OPERATOR
Cause: The operator used in the expression is not valid.

Action: Check ExpressionOperator class to see a list of all the operators that
are supported.

6048: ILLEGAL_USE_OF_GETFIELD
Cause: Invalid use of getField method’s data in the expression. This is a
TopLink development exception that you should not encounter.

Action: Report this problem to Oracle Support Services.

Query Exceptions (6001 – 6129)

TopLink Exception Reference 13-35

6049: ILLEGAL_USE_OF_GETTABLE
Cause: Invalid use of getTable method’s data in the expression. This is a
TopLink development exception that you should not encounter.

Action: Report this problem to Oracle Support Services.

6050: REPORT_QUERY_RESULT_SIZE_MISMATCH
Cause: The number of attributes requested does not match the attributes returned
from the database in report query. This can happen as a result of a custom query
on the report query.

Action: Check the custom query to ensure it is specified, or report the problem to
Oracle Support Services.

6051: CANNOT_CACHE_PARTIAL_OBJECT
Cause: Attempt to cache a partial object: partial objects are never put in the cache.
Partial object queries are not allowed to maintain the cache or to be edited. Use the
dontMaintainCache method.

Action: Call the dontMaintainCache method before executing the query.

6052: OUTER_JOIN_ONLY_VALID_FOR_ONE_TO_ONE
Cause: Invalid use of an outer join: an outer join (getAllowingNull method) is
valid only for one-to-one mappings and cannot be used for the mapping.

Action: Do not attempt to use the getAllowingNull method for mappings
other than one-to-one.

6054: CANNOT_ADD_TO_CONTAINER
Cause: TopLink is unable to add an object to a container class using policy. This
is TopLink development exception, and you should never encounter this problem
unless a custom container policy has been written.

Action: Contact Oracle Support Services.

6055: METHOD_INVOCATION_FAILED
Cause: The invocation of a method on the object anObject threw a Java
reflection exception while accessing the method.

Action: Inspect the internal exception, and refer to the Java documentation.

6056: CANNOT_CREATE_CLONE
Cause: Attempt to create a clone of the object anObject using policy. This is a
TopLink development exception, and you should never encounter this problem
unless a custom container policy has been written.

Action: Report this problem to Oracle Support Services.

6057: METHOD_NOT_VALID
Cause: Invalid call of the method methodName on object aReceiver. This is a
TopLink development exception, and you should never encounter this problem
unless a custom container policy has been written.

Action: Contact Oracle Support Services.

6058: METHOD_DOES_NOT_EXIST_IN_CONTAINER_CLASS
Cause: The method named methodName was not found in the class aClass. This
exception is raised when looking for a clone method on the container class. The
clone is needed to create clones of the container in unit of work.

Action: Define a clone method on the container class.

Query Exceptions (6001 – 6129)

13-36 Oracle TopLink Developer’s Guide

6059: COULD_NOT_INSTANTIATE_CONTAINER_CLASS
Cause: Attempt to instantiate a class aClass as the container for the results of a
query–this class cannot be instantiated as a container. The exception is a Java
exception that is raised when a new interface container policy is being created
using Java reflection. TopLink wraps only the Java exception.

Action: Inspect the internal exception, and refer to the Java documentation.

6060: MAP_KEY_NOT_COMPARABLE
Cause: Attempt to use the object anObject of type ObjectClass as a key into
aContainer which is of type ContainerClass. The key cannot be compared
with the keys currently in the map. This raises a Java reflection exception while
accessing the method. TopLink wraps only the Java exception.

Action: Inspect the internal exception, and refer to the Java documentation.

6061: CANNOT_ACCESS_METHOD_ON_OBJECT
Cause: Attempt to reflectively access the method aMethod for object: anObject
of type ObjectClass. This raises a Java reflection exception while accessing the
method. TopLink wraps only the Java exception.

Action: Inspect the internal exception, and refer to the Java documentation.

6062: CALLED_METHOD_THREW_EXCEPTION
Cause: The method aMethod was called reflectively on objectClass and threw
an exception. The method aMethod raises a Java reflection exception while
accessing a method. TopLink wraps only the Java exception.

Action: Inspect the internal exception, and refer to the Java documentation.

6063: INVALID_OPERATION
Cause: Invalid operation operationName on the cursor. The operation is not
supported.

Action: Check the class documentation and look for the corresponding method to
use.

6064: CANNOT_REMOVE_FROM_CONTAINER
Cause: Attempt to remove anObject of type anObjectClass from
aContainerClass using policy. This is a TopLink development exception and
you should never encounter this problem unless a custom container policy has
been written.

Action: Contact Oracle Support Services.

6065: CANNOT_ADD_ELEMENT
Cause: Attempt to add an element to the collection container policy (cannot add
object anObject of type ObjectClass to a ContainerClass).

Action: Inspect the internal exception, and refer to the Java documentation.

6066: BACKUP_CLONE_DELETED
Cause: Object references remained after the deletion of the object: the object clone
of class clone.getClass with identity hash code
(System.identityHashCode()) (System.identityHashCode(clone))
has been deleted, but it still has references.

Action: Ensure that you are correctly registering your objects. If you are still
having problems, use the validateObjectSpace() method of the UnitOfWork
to help identify where the error occurred.

Query Exceptions (6001 – 6129)

TopLink Exception Reference 13-37

6068: CANNOT_COMPARE_TABLES_IN_EXPRESSION
Cause: Attempt to compare table reference to data in expression.

Action: Check the expression.

6069: INVALID_TABLE_FOR_FIELD_IN_EXPRESSION
Cause: Field has invalid table in this context for field fieldName in expression.

Action: Check the expression.

6070: INVALID_USE_OF_TO_MANY_QUERY_KEY_IN_EXPRESSION
Cause: Invalid use of a query key representing a one-to-many relationship in
expression.

Action: Use the anyOf operator instead of the get operator.

6071: INVALID_USE_OF_ANY_OF_IN_EXPRESSION
Cause: Invalid use of anyOf for a query key not representing a to-many
relationship in expression.

Action: Use the get operator instead of the anyOf operator.

6072: CANNOT_QUERY_ACROSS_VARIABLE_ONE_TO_ONE_MAPPING
Cause: Attempt to query across a variable one-to-one mapping. This is not
supported.

Action: Change the expression such that the query is not performed across a
variable one-to-one mapping.

6073: ILL_FORMED_EXPRESSION
Cause: Ill-formed expression in query that is attempting to print an object
reference into a SQL statement for queryKey.

Action: Contact Oracle Support Services.

6074: CANNOT_CONFORM_EXPRESSION
Cause: Expression cannot determine if the object conforms in memory.

Action: Set the query to check the database; change the query such that it does not
attempt to conform to the results of the query.

6075: INVALID_OPERATOR_FOR_OBJECT_EXPRESSION
Cause: Invalid operator was used for the object comparison: object comparisons
can use only the equal or notEqual operators; other comparisons must be
performed through query keys or direct attribute level comparisons.

Action: Ensure the query uses only equal and notEqual if object comparisons
are being used.

6076: UNSUPPORTED_MAPPING_FOR_OBJECT_COMPARISON
Cause: Unsupported type of mapping was used for the object comparison: object
comparisons can be used only with one-to-one mappings; other mapping
comparisons must be performed through query keys or direct attribute level
comparisons.

Action: Use a query key instead of attempting to compare objects across the
mapping.

6077: OBJECT_COMPARISON_CANNOT_BE_PARAMETERIZED
Cause: Object comparison was parameterized: object comparisons cannot be used
in parameter queries.

Query Exceptions (6001 – 6129)

13-38 Oracle TopLink Developer’s Guide

Action: Change the query so that it does not attempt to use objects when using
parameterized queries.

6078: INCORRECT_CLASS_FOR_OBJECT_COMPARISON
Cause: An incorrect class of the argument was used for the object comparison.

Action: Ensure the class for the query is correct.

6079: CANNOT_COMPARE_TARGET_FOREIGN_KEYS_ TO_NULL
Cause: Object comparison was used for target foreign key relationships: object
comparisons cannot be used for target foreign key relationships

Action: Query on the source primary key.

6080: INVALID_DATABASE_CALL
Cause: Invalid database call: the call must be an instance of DatabaseCall.

Action: Ensure the call being used is a DatabaseCall.

6081: INVALID_DATABASE_ACCESSOR
Cause: Invalid database accessor: the accessor must be an instance of
DatabaseAccessor.

Action: Ensure the accessor being used is a DatabaseAccessor.

6082: METHOD_DOES_NOT_EXIST_ON_EXPRESSION
Cause: The nonexisting method methodName with argument type argTypes
was invoked on an expression.

Action: Ensure the method being used is a supported method.

6083: IN_CANNOT_BE_PARAMETERIZED
Cause: The query that was using IN was parameterized: queries using IN cannot
be parameterized.

Action: Disable the query prepare or binding.

6084: REDIRECTION_CLASS_OR_METHOD_NOT_SET
Cause: The redirection query was not configured properly: the class or method
name was not set.

Action: Verify the configuration for the redirection class.

6085: REDIRECTION_METHOD_NOT_DEFINED_CORRECTLY
Cause: The redirection query's method is not defined or it is defined with the
wrong arguments. It must be public static and have the following arguments:
DatabaseQuery, DatabaseRow, or Session (the interface).

Action: Check the redirection query’s method.

6086: REDIRECTION_METHOD_ERROR
Cause: The static invoke method provided to MethodBaseQueryRedirector
threw an exception when invoked.

Action: Check the static invoke method for problems.

6087: EXAMPLE_AND_REFERENCE_OBJECT_CLASS_MISMATCH
Cause: There is a class mismatch between the example object and the reference
class specified for this query.

Action: Ensure that the example and reference classes are compatible.

Query Exceptions (6001 – 6129)

TopLink Exception Reference 13-39

6088: NO_ATTRIBUTES_FOR _REPORT_QUERY
Cause: A ReportQuery has been built with no attributes specified.

Action: Specify the attribute for the query.

6089: NO_EXPRESSION_BUILDER_CLASS_FOUND
Cause: The expression has not been initialized correctly. Only a single
ExpressionBuilder should be used for a query. For parallel expressions, the
query class must be provided to the ExpressionBuilder constructor, and the
query’s ExpressionBuilder must always be on the left side of the expression.

Action: Contact Oracle Support Services.

6090: CANNOT_SET_REPORT_QUERY_TO_CHECK_CACHE_ONLY
Cause: The checkCacheOnly method was invoked on a ReportQuery. You
cannot invoke the checkCacheOnly method on a ReportQuery, because a
ReportQuery returns data rather than objects and the TopLink cache is built with
objects.

Action: Do not use a ReportQuery in this case.

6091: TYPE_MISMATCH_BETWEEN_ATTRIBUTE_AND_CONSTANT_ON_
EXPRESSION
Cause: The type of the constant used for comparison in the expression does not
match the type of the attribute.

Action: Contact Oracle Support Services.

6092: MUST_INSTANTIATE_VALUEHOLDERS
Cause: Uninstantiated value holders have been detected.

Action: Instantiate the value holders for the collection on which you want to
query.

6093: MUST_BE_ONE_TO_ONE_OR_ONE_TO_MANY_MAPPING
Cause: The buildSelectionCriteria method was invoked on a mapping that
was neither one-to-one nor one-to-many. Only the one-to-one and one-to-many
mapping exposes this public API to build selection criteria. Using the
buildSelectionCriteria method with other mapping types will not return
correct results.

Action: Use the buildSelectionCriteria method only with one-to-one and
one-to-many mappings.

6094: PARAMETER_NAME_MISMATCH
Cause: An unmapped field was used in a parameterized expression.

Action: Map the field or define an alternate expression that does not rely on the
unmapped field.

6095: CLONE_METHOD_REQUIRED
Cause: A delegate class of an IndirectContainer implementation does not
implement Cloneable. If you implement IndirectContainer you must also
implement Cloneable. For example, see
oracle.toplink.indirection.IndirectSet. The clone method must
clone the delegate. For example, the IndirectSet implementation uses reflection
to invoke the clone method because it is not included in the common interface
shared by IndirectSet and its base delegate class, HashSet.

Query Exceptions (6001 – 6129)

13-40 Oracle TopLink Developer’s Guide

Action: Ensure that your IndirectContainer implementation or its delegate
class implements Cloneable.

6096: CLONE_METHOD_INACCESSIBLE
Cause: A delegate class of an IndirectContainer implementation implements
Cloneable but the IndirectContainer implementation does not have access
to the specified clone method. That is, a
java.lang.IllegalAccessException is raised when the delegate’s clone
method is invoked.

Action: Ensure that both the delegate clone method and the delegate class are
public. Ensure permission is set for Java reflection in your VM security settings.
See also the invoke method of java.lang.reflect.Method.

6097: CLONE_METHOD_THORW_EXCEPTION
Cause: A delegate class of an IndirectContainer implementation implements
Cloneable and the IndirectContainer implementation has access to the
specified clone method, but the specified clone method raises a
java.lang.reflect.InvocationTargetException when invoked.

Action: Verify the implementation of the delegate’s clone method.

6098: UNEXPECTED_INVOCATION
Cause: A proxy object method raises an unexpected exception when invoked
(that is, some exception other than InvocationTargetException and
ValidationException.)

Action: Review the proxy object to see where it is throwing the exception
described in the exception message. Ensure this exception is no longer raised.

6099: JOINING_ACROSS_INHERITANCE_WITH_MULTIPLE_TABLES
Cause: Joining with query across inheritance class with multiple table subclasses.
This is not supported: joining cannot be used on relationships with inheritance
classes that have subclasses that span multiple tables as this requires multiple
separate queries. The multiple queries cannot be joined into a single query.

Action: Use batch reading on the relationship instead, as this will provide
equivalent or better performance.

6100: MULTIPLE_ROWS_DETECTED_FROM_SINGLE_OBJECT_READ
Cause: Multiple values detected for single-object read query. This is a CMP
compliance option that ensures the finder methods for a single object only return a
single row.

Action: Set the system property toplink.cts.checkMultipleRows to false,
or ensure that the finder query only returns a single row from the database.

6101: HISTORICAL_QUERIES_MUST_PRESERVE_GLOBAL_CACHE
Cause: Executing this query could violate the integrity of the global session cache
which must contain only the latest versions of objects.

Action: To execute a query that returns objects of a historical nature, you must do
one of the following:

1. Use a HistoricalSession (acquireSessionAsOf). All objects read will
be cached and automatically read at that time. This applies also to triggering
object relationships.

Query Exceptions (6001 – 6129)

TopLink Exception Reference 13-41

2. Set shouldMaintainCache to false. You may make any object expression
as of a previous time, provided none of its fields are represented in the result
set (i.e. used in the where clause).

6102: HISTORICAL_QUERIES_ONLY_SUPPORTED_ON_ORACLE
Cause: Invalid database was used: historical queries only work with Oracle 9.2.0.4
or later databases, as it uses the Oracle database Flashback feature.

Action: Ensure that historical queries are only used with an Oracle 9.2.0.4 or later
database.

6103: INVALID_QUERY_ON_HISTORICAL_SESSION
Cause: Invalid query was executed on a historical session: you may not execute a
WriteQuery from inside a read-only HistoricalSession. To restore historical
objects, try the following: read the same object as it is now with a UnitOfWork
and commit the UnitOfWork.

Action: To restore historical objects, read the same object as it is now with a
UnitOfWork and commit the UnitOfWork.

6104: OBJECT_DOES_NOT_EXIST_IN_CACHE
Cause: The object does not exist in the cache.

Action: Ensure that the object exists in the cache.

6105: MUST_USE_CURSOR_STREAM_POLICY
Cause: The cursor stream policy was not used on the query instantiation.

Action: Reinitialize the query with a cursor stream policy.

6106: CLASS_PK_DOES_NOT_EXIST_IN_CACHE
Cause: The object with primary key does not exist in the cache.

Action: Ensure that the object exists in the cache.

6107: UPDATE_STATEMENTS_NOT_SPECIFIED
Cause: Missing update statements on UpdateAllQuery.

Action: Add update statements using the addUpdate method.

6108: INHERITANCE_WITH_MULTIPLE_TABLES_NOT_SUPPORTED
Cause: For UpdateAllQuery, inheritance was used with multiple tables:
UpdateAllQuery does not support inheritance with multiple tables.

Action: Do not use UpdateAllQuery in this situation.

6109: QUERY_FETCHGROUP_NOT_DEFINED_IN_DESCRIPTOR
Cause: The named fetch group is not defined at the descriptor level.

Action: Ensure the fetch group is defined in the descriptor.

6110: CANNOT_CONFORM_UNFETCHED_ATTRIBUTE
Cause: Read query cannot conform to the unfetched attribute of the partially
fetched object in the unit of work identity map.

Action: Do not use unfetched attribute conforming, or explicitly fetch the attribute
before conforming.

6111: FETCH_GROUP_ATTRIBUTE_NOT_MAPPED
Cause: The fetch group attribute is not defined or mapped.

Query Exceptions (6001 – 6129)

13-42 Oracle TopLink Developer’s Guide

Action: Ensure that any attribute defined in a fetch group is defined in the class
and mapped.

6112: FETCH_GROUP_NOT_SUPPORT_ON_REPORT_QUERY
Cause: A fetch group was set on report query: fetch groups cannot be set on
report queries.

Action: Remove the fetch group setting on ReportQuery, or use
ReadObjectQuery or ReadObjectQuery instead.

6113: FETCH_GROUP_NOT_SUPPORT_ON_PARTIAL_ATTRIBUTE_READING
Cause: Fetch group was used together with partial attribute reading: fetch groups
cannot be used together with partial attribute reading.

Action: Remove the partial attribute reading setting in the query.

6114: FETCHGROUP_VALID_ONLY_IF_FETCHGROUP_MANAGER_IN_
DESCRIPTOR
Cause: A fetch group manager is not defined at the descriptor while attempting to
set a fetch group on a query.

Action: You must define a fetch group manager at the descriptor in order to set a
fetch group on the query.

6115: ISOLATED_QUERY_EXECUTED_ON_SERVER_SESSION
Cause: An isolated query was executed on a server session: queries on isolated
classes, or queries set to use exclusive connections, must not be executed on a
ServerSession or in CMP outside of a transaction.

Action: Do not execute queries on isolated classes or queries set to use exclusive
connections on a ServerSession or in CMP outside of a transaction.

6116: NO_CALL_OR_INTERACTION_SPECIFIED
Cause: No call or interaction method was specified for the attempted operation.

Action: Specify a call or interaction method.

6117: CANNOT_CACHE_CURSOR_RESULTS_ON_QUERY
Cause: A query that uses a cursored result to cache query results was set.

Action: Do not cache query results or do not use a cursor policy.

6118: CANNOT_CACHE_ISOLATED_DATA_ON_QUERY
Cause: Query on an isolated class attempted to cache query results on the query.

Action: Do not cache query results for a query on an isolated class.

6119: MAPPING_FOR_EXPRESSION_DOES_NOT_SUPPORT_JOINING
Cause: The join expression is not valid, or is for a mapping type that does not
support joining.

Action: Joining is supported only for one-one and one-many mappings.

6120: SPECIFIED_PARTIAL_ATTRIBUTE_DOES_NOT_EXIST
Cause: The partial attribute attributeName is not a valid attribute of the class
className.

Action: Ensure that this attribute exists, and is mapped.

6121: INVALID_BUILDER_IN_QUERY

Validation Exceptions (7001 – 7200)

TopLink Exception Reference 13-43

Cause: The query has not been defined correctly: the expression builder is
missing.

Action: Ensure the queries builder is always on the left for sub queries and
parallel queries.

6122: INVALID_EXPRESSION
Cause: Attempt to use an invalid expression expression.

Action: Ensure the correctness of the expression.

6123: INVALID_CONTAINER_CLASS
Cause: Invalid container class specified: the container class className cannot be
used, because the container needs to implement interfaceName.

Action: Ensure that the class specified as a container implements the correct
interface.

6124: INCORRECT_QUERY_FOUND
Cause: TopLink was expecting to find the query queryName, but instead found
an incorrect query queryName.

Action: Provide the correct query.

6125: CLEAR_QUERY_RESULTS_NOT_SUPPORTED
Cause: The ReadQuery method clearQueryResults() was called: this
method cannot be called anymore. The call to the clearQueryResults method
now requires that the session be provided.

Action: Call the ReadQuery method clearQueryResults(session).

6126: CANNOT_CONFORM_AND_CACHE_QUERY_RESULTS
Cause: A query is being executed that uses both conforming and cached query
results. These two settings are incompatible.

Action: Ensure that the query uses either conforming or cached query results.

6127: REFLECTIVE_CALL_ON_TOPLINK_CLASS_FAILED
Cause: A reflective call failed on the TopLink class classNAME.

Action: Set up your environment to allow Java reflection

6128: BATCH_READING_NOT_SUPPORTED_WITH_CALL
Cause: Attempt to use batch reading on a query using a custom call: batch
reading is not supported on queries using custom calls.

Action: Do not use batch reading on queries using custom calls.

6129: REFRESH_NOT_POSSIBLE_WITH_CHECK_CACHE_ONLY
Cause: Attempt to refreshing the query that does not go to the database. This is
not possible.

Action: Avoid refreshing queries that do not go to the database.

For more information, see Part XVIII, "Queries".

Validation Exceptions (7001 – 7200)
 ValidationException is a development exception that is raised when an incorrect
state is detected or an API is used incorrectly.

Validation Exceptions (7001 – 7200)

13-44 Oracle TopLink Developer’s Guide

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example 13–7 Validation Exception

EXCEPTION [TOPLINK – 7008]: oracle.toplink.exceptions.ValidationException
EXCEPTION DESCRIPTION: The Java type javaClass is not a valid database type. The
Java type of the field to be written to the database has no corresponding type on
the database.

7001: LOGIN_BEFORE_ALLOCATING_CLIENT_SESSIONS
Cause: Attempt to allocate client sessions before logging in to the server.

Action: Ensure you have called login method on your server session or database
session. This error also appears in multi-threaded environments as a result of
concurrency issues. Check that all your threads are synchronized.

7002: POOL_NAME_DOES_NOT_EXIST
Cause: The pool name used while acquiring client session from the server session
does not exist.

Action: Verify the pool name given while acquiring client session and all the
existing pools on the server session.

7003: MAX_SIZE_LESS_THAN_MIN_SIZE
Cause: The maximum number of connections in a connection pool is less than the
minimum number of connections. The connection pool size must be greater than
the minimum number of connections.

Action: Check addConnectionPool(String poolName, JDBCLogin
login, int minNumberOfConnections, int maxNumberOfConnections)
method on the server session.

7004: POOLS_MUST_BE_CONFIGURED_BEFORE_LOGIN
Cause: Attempt to add connection pools after logging in to the server session:
pools must all be added before login on the server session has been done. Once
logged in, you cannot add pools.

Action: Check addConnectionPool(String poolName, JDBCLogin
login, int minNumberOfConnections, int
maxNumberOfConnections) on server session. This method should be called
before logging in on the server session.

7008: JAVA_TYPE_IS_NOT_A_VALID_DATABASE_TYPE
Cause: The Java type javaClass is not a valid database type. The Java type of
the field to be written to the database has no corresponding type on the database.

Action: Check the table or stored procedure definition.

7009: MISSING_DESCRIPTOR
Cause: The descriptor className is not found in the session.

Action: Ensure that the related descriptor to the class was properly registered
with the session.

7010: START_INDEX_OUT_OF_RANGE

Validation Exceptions (7001 – 7200)

TopLink Exception Reference 13-45

Cause: This is a TopLink development exception and you should never encounter
this problem. It happens when a copy of a vector is created with a start and end
index.

Action: Report this problem to Oracle Support Services.

7011: STOP_INDEX_OUT_OF_RANGE
Cause: This is a TopLink development exception and you should never encounter
this problem. It happens when a copy of a vector is created with a start and end
index.

Action: Report this problem to Oracle Support Services.

7012: FATAL_ERROR_OCCURRED
Cause: This is a TopLink development exception and you should never encounter
this problem. It happens when test cases are executed.

Action: Report this problem to Oracle Support Services. This error commonly
occurs if you attempt to call the commit method on an invalid (or previously
committed) unit of work.

If cannotCommitUOWAgain method of ValidationException appears in the
stack trace, verify that the commit method was called on valid UnitOfWork
instances.

7013: NO_PROPERTIES_FILE_FOUND
Cause: The toplink.properties file cannot be found on the system classpath.

Action: Ensure that there is a toplink.properties file located on the system
classpath.

7017: CHILD_DESCRIPTORS_DO_NOT_HAVE_IDENTITY_MAP
Cause: An identity map is added to the child descriptor. A child descriptor shares
its parent’s identity map.

Action: Check the child descriptor and remove the identity map from it.

7018: FILE_ERROR
Cause: You should never encounter this problem. It happens when test cases are
executed.

Action: Contact Oracle Support Services.

7023: INCORRECT_LOGIN_INSTANCE_PROVIDED
Cause: The login instance provided to the login method is incorrect. A
JDBCLogin must be provided.

Action: Use a JDBCLogin.

7024: INVALID_MERGE_POLICY
Cause: This is a TopLink development exception and you should never encounter
it.

Action: Contact Oracle Support Services.

7025: ONLY_FIELDS_ARE_VALID_KEYS_FOR_ DATABASE_ROWS
Cause: The key on the database row is not either of type String or of type
DatabaseField.

Action: Contact Oracle Support Services.

7027: SEQUENCE_SETUP_INCORRECTLY

Validation Exceptions (7001 – 7200)

13-46 Oracle TopLink Developer’s Guide

Cause: The sequence sequenceName is set up incorrectly: increment does not
match preallocation size.

Action: Contact Oracle Support Services.

7028: WRITE_OBJECT_NOT_ALLOWED_IN_UNIT_OF_WORK
Cause: Attempt to use writeObject() method in a UnitOfWork.

Action: Ensure that a writeObject() method is not in the UnitOfWork.

7030: CANNOT_SET_READ_POOL_SIZE_AFTER_LOGIN
Cause: Attempt to set read pool size after the server session has already been
logged in.

Action: Set the pool size before login.

7031: CANNOT_ADD_DESCRIPTORS_TO_SESSION_BROKER
Cause: Attempt to add a descriptor directly to a session broker.

Action: Descriptors are added to the sessions contained in the session broker.

7032: NO_SESSION_REGISTERED_FOR_CLASS
Cause: The descriptor related to the domain class domainClass was not found
in any of the sessions registered in the session broker.

Action: Check the sessions.

7033: NO_SESSION_REGISTERED_FOR_NAME
Cause: A session sessionName is not registered in the session broker.

Action: Check the session broker.

7038: LOG_IO_ERROR
Cause: Error while logging message to session's log.

Action: Check the internal exception.

7039: CANNOT_REMOVE_FROM_READ_ONLY_CLASSES_ IN_NESTED_UNIT_
OF_WORK
Cause: Attempt to remove from the set of read-only classes in a nested unit of
work. A nested unit of work's set of read-only classes must be equal to or be a
superset of its parent's set of read-only classes.

Action: Contact Oracle Support Services.

7040: CANNOT_MODIFY_READ_ONLY_CLASSES_SET_ AFTER_USING_UNIT_
OF_WORK
Cause: Attempt to change the set of read-only classes in a unit of work after that
unit of work has been used. Changes to the read-only set must be made when
acquiring the unit of work or immediately after.

Action: Contact Oracle Support Services.

7042: PLATFORM_CLASS_NOT_FOUND
Cause: The platform class className was not found and a reflection exception is
raised.

Action: Check the internal exception.

7043: NO_TABLES_TO_CREATE
Cause: A project project does not have any tables to create on the database.

Action: Validate the project and tables you are attempting to create.

Validation Exceptions (7001 – 7200)

TopLink Exception Reference 13-47

7044: ILLEGAL_CONTAINER_CLASS
Cause: Illegal attempt to use the class className as the container–this class does
not implement the Collection or Map interfaces.

Action: Implement either the Collection or Map interfaces in the container
class.

7047: CONTAINER_POLICY_DOES_NOT_USE_KEYS
Cause: Invalid Map class was specified for the container policy. The container
specified (of Class aPolicyContainerClass) does not require keys. You tried
to use the method methodName.

Action: Use map class that implements the Map interface.

7048: METHOD_NOT_DECLARED_IN_ITEM_CLASS
Cause: The key method on the map container policy is not defined. The instance
method methodName does not exist in the reference class className and
therefore cannot be used to create a key in a map. A map container policy
represents the way to handle an indexed collection of objects. Usually the key is
the primary key of the objects stored, so the policy needs to know the name of the
primary key getter method in order to extract it from each object using reflection.
For instance, a user might call policy.setKeyMethodName("getId").

Action: Check the second parameter of the useMapClass method of
DatabaseQuery.

7051: MISSING_MAPPING
Cause: Missing attribute attributeName for descriptor descriptor called
from methodName. This is a TopLink development exception, and you should
never encounter it.

Action: Contact Oracle Support Services.

7052: ILLEGAL_USE_OF_MAP_IN_DIRECTCOLLECTION
Cause: The method useMapClass was called on a
DirectCollectionMapping. It is invalid to call the useMapClass method on a
DirectCollectionMapping. TopLink cannot instantiate Java attributes
mapped using a DirectCollectionMapping with a map. The useMapClass
method is supported for OneToManyMapping and ManyToManyMapping. The
Java 2 Collection interface is supported using the useCollectionClass
method.

Action: Use the useCollectionClass method. Do not call the useMapClass
method on DirectCollectionMapping.

7053: CANNOT_RELEASE_NON_CLIENTSESSION
Cause: TopLink is unable to release a session that is not a client session. Only
client sessions can be released.

Action: Modify the code to ensure the client session is not released.

7054: CANNOT_ACQUIRE_CLIENTSESSION_FROM_SESSION
Cause: TopLink is unable to acquire a session that is not a client session. Client
sessions can be acquired only from server sessions.

Action: Modify the code to ensure an acquire session is attempted only from
server sessions.

7055: OPTIMISTIC_LOCKING_NOT_SUPPORTED

Validation Exceptions (7001 – 7200)

13-48 Oracle TopLink Developer’s Guide

Cause: Attempt to use optimistic locking with stored procedure generation. This
is not supported.

Action: Do not use optimistic locking with stored procedure generation.

7056: WRONG_OBJECT_REGISTERED
Cause: The wrong object was registered into the unit of work. It should be the
object from the parent cache.

Action: Ensure that the object is from the parent cache.

7058: INVALID_CONNECTOR
Cause: The connector selected is invalid and must be of type
DefaultConnector.

Action: Ensure that the connector is of type DefaultConnector.

7059: INVALID_DATA_SOURCE_NAME
Cause: Invalid data source name dsName.

Action: Verify the data source name.

7060: CANNOT_ACQUIRE_DATA_SOURCE
Cause: TopLink is unable to acquire the data source with the name dsName, or an
error has occurred in setting up the data source.

Action: Verify the data source name. Check the nested SQL exception to
determine the cause of the error. Typical problems include:

■ The connection pool was not configured in your config.xml file.

■ The driver is not on the classpath.

■ The user or password is incorrect.

■ The database server URL or driver name is not properly specified.

7061: JTS_EXCEPTION_RAISED
Cause: An exception occurred within the Java Transaction Service (JTS).

Action: Examine the JTS exception and see the JTS documentation.

7062: FIELD_LEVEL_LOCKING_NOTSUPPORTED_ OUTSIDE_A_UNIT_OF_
WORK
Cause: Attempt to use FieldLevelLocking outside a unit of work. This is not
supported. In order to use field-level locking, a unit of work must be used for all
write operations.

Action: Use a unit of work for writing.

7063: EJB_CONTAINER_EXCEPTION_RAISED
Cause: An exception occurred within the EJB container.

Action: Examine the EJB exception and see the JTS documentation.

7064: EJB_PRIMARY_KEY_REFLECTION_EXCEPTION
Cause: An exception occurred in the reflective enterprise bean primary key
extraction.

Action: Ensure that your primary key object is defined correctly.

7065: EJB_CANNOT_LOAD_REMOTE_CLASS
Cause: The remote class for the bean cannot be loaded or found.

Validation Exceptions (7001 – 7200)

TopLink Exception Reference 13-49

Action: Ensure that the correct class loader is set properly.

7066: EJB_MUST_BE_IN_TRANSACTION
Cause: Attempt to create or remove an enterprise bean outside of a transaction:
TopLink is unable to create or remove enterprise beans unless a JTS transaction is
present, bean=bean.

Action: Ensure that the JTS transaction is present.

7068: EJB_INVALID_PROJECT_CLASS
Cause: The platform class platformName was not found for the project
projectName using the default class loader.

Action: Validate the project and platform.

7069: PROJECT_AMENDMENT_EXCEPTION_OCCURED
Cause: An exception occurred while looking up or invoking the project
amendment method amendmentMethod on the class amendmentClass.

Action: Validate the amendment method and class.

7070: EJB_TOPLINK_PROPERTIES_NOT_FOUND
Cause: Attempt to load toplink.properties resource bundle outside the
classpath: the resource bundle must be located on the classpath in a TopLink
directory.

Action: Validate the classpath and the location of the TopLink resource bundle.

7071: CANT_HAVE_UNBOUND_IN_OUTPUT_ARGUMENTS
Cause: Attempt to use input or output parameters without using binding.

Action: Use binding on the StoredProcedureCall.

7072: EJB_INVALID_PLATFORM_CLASS
Cause: SessionManager failed to load the class identified by the value
associated with properties platform-class or
external-transaction-controller-class during initialization when it
loads the TopLink session common properties from the TopLink global properties
file (sessions.xml for non-EJB applications, or toplink-ejb-jar.xml for EJB
applications).

Action: Ensure that your TopLink global properties file is correctly configured.
Pay particular attention to the platform-class and
external-transaction-controller-class properties.

7073: ORACLE_OBJECT_TYPE_NOT_DEFINED
Cause: The Oracle object type with type name typeName is not defined.

Action: Ensure that the Oracle object type is defined.

7074: ORACLE_OBJECT_TYPE_NAME_NOT_DEFINED
Cause: The Oracle object type typeName is not defined.

Action: Ensure that the Oracle object type is defined.

7075: ORACLE_VARRAY_MAXIMIM_SIZE_NOT_DEFINED
Cause: The Oracle VARRAY type typeName maximum size is not defined.

Action: Verify the maximum size for the Oracle VARRAY.

7076: DESCRIPTOR_MUST_NOT_BE_INITIALIZED

Validation Exceptions (7001 – 7200)

13-50 Oracle TopLink Developer’s Guide

Cause: Attempt to generate a project class while descriptors have already been
initialized: when generating the project class, the descriptors must not be
initialized.

Action: Ensure that the descriptors are not initialized before generating the
project class.

7077: EJB_INVALID_FINDER_ON_HOME
Cause: The home interface toString method specified during creation of
BMPWrapperPolicy does not contain a correct findByPrimaryKey method. A
findByPrimaryKey method must exist that takes the PrimaryKey class for this
bean.

Action: Ensure that a findByPrimaryKey method exists and is correct.

7078: EJB_NO_SUCH_SESSION_SPECIFIED_IN_PROPERTIES
Cause: The sessionName specified on the deployment descriptor does not
match any session specified in the toplink.properties file.

Action: Contact Oracle Support Services.

7079: EJB_DESCRIPTOR_NOT_FOUND_IN_SESSION
Cause: The descriptor was not found in the session.

Action: Check the project being used for this session.

7080: EJB_FINDER_EXCEPTION
Cause: A FinderException is raised when attempting to load an object from
the class with the primary key.

Action: Contact Oracle Support Services.

7081: CANNOT_REGISTER_AGGREGATE_OBJECT_IN_ UNIT_OF_ WORK
Cause: Attempt to register an aggregate object directly in the unit of work. This is
not supported. The aggregate object must be associated with the source (owner)
object.

Action: Contact Oracle Support Services.

7082: MULTIPLE_PROJECTS_SPECIFIED_IN_PROPERTIES
Cause: The toplink.properties file specified multiple project files for the
server. Only one project file can be specified.

Action: Specify either projectClass, projectFile, or xmlProjectFile.

7083: NO_PROJECT_SPECIFIED_IN_PROPERTIES
Cause: The toplink.properties file does not include any information on the
TopLink project to use for the server. One project file must be specified.

Action: Specify either projectClass, projectFile, or xmlProjectFile.

7084: INVALID_FILE_TYPE
Cause: The specified file is not a valid type for reading. ProjectReader must be
given the deployed XML project file.

Action: Contact Oracle Support Services.

7085: SUB_SESSION_NOT_DEFINED_FOR_BROKER
Cause: TopLink is unable to create an instance of the external transaction
controller specified in the properties file.

Action: Contact Oracle Support Services.

Validation Exceptions (7001 – 7200)

TopLink Exception Reference 13-51

7086: EJB_INVALID_SESSION_TYPE_CLASS
Cause: The session manager cannot load the class corresponding to the session’s
type class name.

Action: Ensure that the class name of the session's type is fully qualified in the
sessions.xml file or toplink.properties file.

7087: EJB_SESSION_TYPE_CLASS_NOT_FOUND
Cause: The session manager cannot load the class corresponding to the session’s
type class name.

Action: Ensure that the class name of the session's type is fully qualified in the
sessions.xml file or toplink.properties file.

7088: CANNOT_CREATE_EXTERNAL_TRANSACTION_ CONTROLLER
Cause: The session manager cannot load the class corresponding to the external
transaction controller's class name.

Action: Ensure that the class name of the external transaction controller is valid
and fully qualified in the sessions.xml file or toplink.properties file.

7089: SESSION_AMENDMENT_EXCEPTION_OCCURED
Cause: The session manager cannot load the class corresponding to the
amendment class name, or it cannot load the method on the amendment class
corresponding to the amendment method name.

Action: Ensure that the class name of the amendment class is fully qualified, and
the amendment method exists in the amendment class in the sessions.xml file
or toplink.properties file.

7091: SET_LISTENER_CLASSES_EXCEPTION
Cause: TopLink is unable to create the listener class that implements
SessionEventListener for the internal use of SessionXMLProject.

Action: Contact Oracle Support Services.

7092: EXISTING_QUERY_TYPE_CONFLICT
Cause: TopLink has detected a conflict between a custom query with the same
name and arguments to a session.

Action: Ensure that no query is added to the session more than once or change
the query name so that the query can be distinguished from others.

7093: QUERY_ARGUMENT_TYPE_NOT_FOUND
Cause: TopLink is unable to create an instance of the query argument type.

Action: Ensure that the argument type is a fully qualified class name and the
argument class is included in the classpath environment.

7094: ERROR_IN_SESSION_XML
Cause: The sessions.xml or toplink.properties file cannot be loaded.

Action: Ensure that the path to either of the files exists on the classpath
environment.

7095: NO_SESSIONS_XML_FOUND
Cause: The sessions.xml or toplink.properties file cannot be loaded.

Action: Ensure that the path to either of the files exists on the classpath
environment. The sessions.xml should be included in the root of the deployed
JAR file. When using a WAR file, the sessions.xml file should be located in the

Validation Exceptions (7001 – 7200)

13-52 Oracle TopLink Developer’s Guide

WEB-INF\classes directory. When using EJB 3.0, TopLink automatically loads
the ejb3-toplink-sessions.xml file.

7096: CANNOT_COMMIT_UOW_AGAIN
Cause: TopLink cannot invoke commit method on an inactive unit of work that
was committed or released.

Action: Ensure you invoke commit method on a new unit of work or invoke
commitAndResume method so that the unit of work can be reused. For more
information about the commitAndResume method, see Oracle TopLink API
Reference.

7097: OPERATION_NOT_SUPPORTED
Cause: TopLink cannot invoke an unsupported operation on an object.

Action: Do not use the operation indicated in the stack trace.

7099: PROJECT_XML_NOT_FOUND
Cause: The file name specified for the XML-based project is incorrect.

Action: Verify the name and location of the file.

7101: NO_TOPLINK_EJB_JAR_XML_FOUND
Cause: The toplink-ejb-jar.xml file was not found.

Action: Ensure that the file is on your classpath.

7102: NULL_CACHE_KEY_FOUND_ON_REMOVAL
Cause: Encountered a null value for a cache key while attempting to remove an
object from the identity map. The most likely cause of this situation is that the
object has already been garbage-collected and therefore does not exist within the
identity map.

Action: Ignore. The removeFromIdentityMap method of the Session is
intended to allow garbage collection, which has already been done.

7103: NULL_UNDERLYING_VALUEHOLDER_VALUE
Cause: A null reference was encountered while attempting to invoke a method
on an object that uses proxy indirection.

Action: Check that this object is not null before invoking its methods.

7104: INVALID_SEQUENCING_LOGIN
Cause: A separate connection(s) for sequencing was requested, but the
sequencing login uses the external transaction controller.

Action: Either provide a sequencing login that does not use an external
transaction controller or do not use separate connection(s) for sequencing.

7105: INVALID_ENCRYPTION_CLASS
Cause: Error encountered while converting encryption class.

Action: Ensure the encryption class name is correctly specified in the
sessions.xml file and that the encryption class specified is available on the
classpath. A common reason for this exception is the usage of JDK 1.3 and earlier
versions. The TopLink JCE encryption mechanism requires JDK 1.4 and later (or
JDK 1.3 configured with the JCE plug-in) to function properly.

7106: ERROR_ENCRYPTING_PASSWORD
Cause: Error encountered during password string encryption.

Validation Exceptions (7001 – 7200)

TopLink Exception Reference 13-53

Action: An error is raised while trying to encrypt the password string. A common
reason for this exception is the usage of JDK 1.3 and earlier versions. The TopLink
JCE encryption mechanism requires JDK 1.4 and later (or JDK 1.3 configured with
the JCE plug-in) to function properly.

7107: ERROR_DECRYPTING_PASSWORD
Cause: Error encountered during password string decryption.

Action: An exception was raised while trying to decrypt the password string. A
common reason for this exception is the usage of JDK 1.3 and earlier versions. The
TopLink JCE encryption mechanism requires JDK 1.4 and later (or JDK 1.3
configured with the JCE plug-in) to function properly.

7108: NOT_SUPPORTED_FOR_DATASOURCE
Cause: Attempt to use an operation that is not supported for nonrelational
platforms.

Action: Do not use this operation on the current platform, or use a relational
database platform.

7109: PROJECT_LOGIN_IS_NULL
Cause: The login in the project used to create the session is null meaning no
login was specified for the TopLink project. The login used for the project must be
a valid login.

Action: Add login information using TopLink Workbench or using Java code.

7110: HISTORICAL_SESSION_ONLY_SUPPORTED_ON_ORACLE
Cause: Attempt to use a HistoricalSession with a non-Oracle database. At present,
HistoricalSession only works with Oracle databases that have a Flashback
feature (Oracle database 9.2.0.4 or later).

Generic history support (see oracle.toplink.history.HistoryPolicy)
works for any database. If a HistoryPolicy is incorrectly set, TopLink may be
defaulting to using flashback instead. An AsOfSCNClause is implicitly flashback
only.

Action: Ensure that the HistoryPolicy is set correctly.

7111: CANNOT_ACQUIRE_HISTORICAL_SESSION
Cause: Invalid attempt to acquire a HistoricalSession: you may not acquire a
HistoricalSession from a unit of work, another HistoricalSession, a
ServerSession, or a ServerSessionBroker. You may acquire a
HistoricalSession from a regular session, a ClientSession, or a
ClientSessionBroker.

Action: To recover objects, read the objects in both a HistoricalSession and
UnitOfWork, and call mergeCloneWithReferences(historicalObject)
method on the UnitOfWork.

7112: FEATURE_NOT_SUPPORTED_IN_JDK_VERSION
Cause: Attempt to use a TopLink feature that is not available in the current JDK
version.

Action: You must use the version of the JDK that supports this feature.

7113: PLATFORM_DOES_NOT_SUPPORT_CALL_WITH_RETURNING
Cause: Attempt to use an unsupported call with returning for a platform.

Validation Exceptions (7001 – 7200)

13-54 Oracle TopLink Developer’s Guide

Action: Set stored procedures with output parameters in setInsertQuery,
setInsertCall, setUpdateQuery, or setUpdateCall methods of the
DescriptorQueryManager.

7114: ISOLATED_DATA_NOT_SUPPORTED_IN_CLIENTSESSIONBROKER
Cause: Attempt to use isolated data within a ClientSessionBroker: isolated
data is not currently supported within a ClientSessionBroker. Session
contains descriptors representing isolated data.

Action: Ensure that isolated data is not used.

7115: CLIENT_SESSION_CANNOT_USE_EXCLUSIVE_CONNECTION
Cause: Attempt to use ExclusiveConnection for ClientSession reads
without isolated data. This is not supported.

Action: You must update the ConnectionPolicy used to remove
ExclusiveConnection configuration, or the project to set certain data to be
exclusive.

7116: INVALID_METHOD_ARGUMENTS
Cause: Invalid arguments are used in the method.

Action: Refer to the public API of the calling method and use valid values for the
arguments.

7117: MULTIPLE_CURSORS_NOT_SUPPORTED
Cause: Attempt to use more than one cursor in a SQLCall.

Action: TopLink currently supports only one cursor per call.

7118: WRONG_USAGE_OF_SET_CUSTOM_SQL_ARGUMENT_TYPE_METOD
Cause: The setCustomSQLArgumentType method was invoked on SQLCall,
but this method does not use custom SQL.

Action: Don't call this method on SQLCall that does not use custom SQL.

7119: CANNOT_TRANSLATE_UNPREPARED_CALL
Cause: Unprepared SQLCall attempted translation.

Action: SQLCall must be prepared before translation.

7120: CANNOT_SET_CURSOR_FOR_PARAMETER_TYPE_OTHER_THAN_OUT
Cause: Attempt to use parameter in SQLCall as a cursor, but this parameter is of
type other than OUT.

Action: Ensure that the parameter used as a cursor has parameter type OUT.

7121: PLATFORM_DOES_NOT_SUPPORT_STORED_FUNCTIONS
Cause: Attempt to use stored functions for a platform that does not support
stored functions.

Action: Do not define stored functions on this platform.

7122: EXCLUSIVE_CONNECTION_NO_LONGER_AVAILABLE
Cause: The exclusive connection associated with the session is unavailable for the
query on the object.

Isolated objects with indirection read through an
ExclusiveIsolatedClientSession must not have indirection triggered after
the ExclusiveIsolatedClientSession has been released.

Validation Exceptions (7001 – 7200)

TopLink Exception Reference 13-55

Action: Reread the objects through the current
ExclusiveIsolatedClientSession.

7123: UNIT_OF_WORK_IN_TRANSACTION_COMMIT_PENDING
Cause: Attempt to perform an operation that is not allowed at this time: a
successful writeChanges operation has been called on this UnitOfWork. As the
commit process has been started, but not yet finalized, the only supported
operations now are commit, commitAndResume, release, any nonobject level
query, or SQLCall execution.

Action: Execute one of the supported operations to continue.

7124: UNIT_OF_WORK_AFTER_WRITE_CHANGES_FAILED
Cause: Attempt to perform an operation that is not allowed at this time: an
unsuccessful writeChanges operation has been called on this UnitOfWork.
Given the possibility that partial changes have been written to the data store but
not rolled back (if inside external transaction), the only supported operations now
are release, global transaction rollback, any nonobject level query or SQLCall
execution.

Action: Determine the cause of the original failure and retry in a new
UnitOfWork.

7125: INACTIVE_UNIT_OF_WORK
Cause: Attempt to perform an operation on an inactive unit of work: once the
UnitOfWork has been committed and/or released, no further operation should
be performed on it.

Action: Acquire a new UnitOfWork, or use the commitAndResume method
instead of commit method in the future.

7126: CANNOT_WRITE_CHANGES_ON_NESTED_UNIT_OF_WORK
Cause: Attempt to call a writeChanges method on a NestedUnitOfWork. This
is not supported: a nested UnitOfWork never writes changes directly to the data
store, only the parent UnitOfWork does.

Action: Call the commit method instead, and then the writeChanges method
on the parent UnitOfWork.

7127: CANNOT_WRITE_CHANGES_TWICE
Cause: Attempt to write changes to the data store more than once: you can only
write changes to the data store once.

Action: You must either roll back the transaction, or call the commit method on
this UnitOfWork and start a new transaction.

7128: ALREADY_LOGGED_IN
Cause: Attempt to log in to a session more than once.

Action: Do not try to login again.

7129: INVALID_NULL_METHOD_ARGUMENTS
Cause: Attempt to use null values for arguments in a method that cannot have
null values.

Action: Ensure that the method’s arguments do not have a null value.

7130: NESTED_UOW_NOT_SUPPORTED_FOR_ATTRIBUTE_TRACKING
Cause: Attempt to use a nested UnitOfWork with attribute change tracking. This
is not supported.

Validation Exceptions (7001 – 7200)

13-56 Oracle TopLink Developer’s Guide

Action: Do not use a nested UnitOfWork with attribute change tracking.

7131: WRONG_COLLECTION_CHANGE_EVENT_TYPE
Cause: The collection change event is of the wrong type. The collection change
event type has to be added or removed.

Action: Ensure that the collection change event type used is defined in
CollectionChangeEvent.

7132: WRONG_CHANGE_EVENT
Cause: Wrong event class. Only PropertyChangeEvent and
CollectionChangeEvent classes are supported.

Action: Ensure that the event class is either PropertyChangeEvent or
CollectionChangeEvent.

7133: OLD_COMMIT_NOT_SUPPORTED_FOR_ATTRIBUTE_TRACKING
Cause: Attempt to use old commit for attribute change tracking. This is not
supported.

Action: Do not try to use attribute change tracking with an old commit.

7134: SERVER_PLATFORM_IS_READ_ONLY_AFTER_LOGIN
Cause: Attempt to make changes to the server platform after login: the server
platform is read-only after login.

Action: Changes to the server platform must be made before login. You must
either:

1. CMP application: define a class that implements
oracle.toplink.ejb.cmp.DeploymentCustomization, and customize
its public String beforeLoginCustomization(Session session)
method to change your server platform. Consult the documentation for
defining a customization class in your orion-ejb-jar.xml file.

2. Non-CMP/POJO application: define a subclass of
oracle.toplink.sessions.SessionEventAdapter, and override the
public void preLogin(SessionEvent event) method to change your
server platform. The session is contained in the event. Consult the
documentation for sessions.xml and using SessionEventAdapter.

7135: CANNOT_COMMIT_AND_RESUME_UOW_WITH_UPDATE_ALL_
QUERIES
Cause: Attempt to commit and resume a UnitOfWork containing an
UpdateAllQuery. This is not supported.

Action: You must either commit and continue in a new UnitOfWork, or do not
use UpdateAllQuery.

7136: NESTED_UOW_NOT_SUPPORTED_FOR_UPDATE_ALL_QUERY
Cause: Attempt to use a nested UnitOfWork for an UpdateAll query. This is not
supported.

Action: Do not use a nested UnitOfWork for an UpdateAllQuery.

7137: UNFETCHED_ATTRIBUTE_NOT_EDITABLE
Cause: Attempt to edit an unfetched attribute: the object is partially fetched
(using fetch group), the unfetched attribute is not editable.

Action: Do not edit the unfetched attribute, or explicitly fetch the attribute before
editing it.

Validation Exceptions (7001 – 7200)

TopLink Exception Reference 13-57

7138: OBJECT_NEED_IMPL_TRACKER_FOR_FETCH_GROUP_USAGE
Cause: Attempt to use a fetch group with the object that does not implement
FetchGroupTracker: the object must implement FetchGroupTracker in order to
use fetch group.

Action: The domain call must implement FetchGroupTracker in order to use
fetch group.

7139: UPDATE_ALL_QUERIES_NOT_SUPPORTED_WITH_OTHER_WRITES
Cause: Attempt to issue an UpdateAll query within a UnitOfWork containing
other write operations.

Action: Do not use UpdateAllQuery within a UnitOfWork containing other
write operations.

7140: WRONG_SEQUENCE_TYP
Cause: Sequence type does not have the method.

Action: Do not call this method on this type of sequence.

7144: PLATFORM_DOES_NOT_SUPPORT_SEQUENCE
Cause: Platform does not support sequence.

Action: Do not use this sequence type on this platform.

7145: SEQUENCE_CANNOT_BE_CONNECTED_TO_TWO_PLATFORMS
Cause: Two attempts have been made to connect to sequence, but the sequence is
already connected to a platform. Likely the two sessions share the
DatasourcePlatform object.

Action: Ensure that the sequence is used by a single session only.

7146: QUERY_SEQUENCE_DOES_NOT_HAVE_SELECT_QUERY
Cause: QuerySequence does not have select query.

Action: Ensure that the sequence has a select query.

7147: CREATE_PLATFORM_DEFAULT_SEQUENCE_UNDEFINED
Cause: Attempt to create platform default sequence by a platform that does not
override the createPlatformDefaultSequence method.

Action: You must either override the createPlatformDefaultSequence
method on the platform, or explicitly set default sequence by calling
setDefaultSequence on DatasourceLogin.

7148: CANNOT_RESUME_SYNCHRONIZED_UOW
Cause: Attempt to use commitAndResume() method with a JTA or a
synchronized unit of work.

Action: Do not use commitAndResume() with a JTA or a synchronized unit of
work.

7149: INVALID_COMPOSITE_PK_SPECIFICATION
Cause: Attempt to provide an invalid specification of the composite primary key:
the names of the primary key fields or properties in the primary key class
PKClassName and those of the entity bean class ClassName must correspond
and their types must be the same.

Action: Ensure that the names of the primary key fields or properties in the
primary key class PKClassName and those of the entity bean class ClassName
correspond, and their types are the same.

Validation Exceptions (7001 – 7200)

13-58 Oracle TopLink Developer’s Guide

7150: INVALID_FETCH_LAZY_TYPE
Cause: Attempt to specify an invalid LAZY fetch type on an attribute
attributeName within entity class ClassName.

Action: Provide the fetch type other than LAZY on an attribute attributeName
within entity class ClassName.

7151: INVALID_ANNOTATION_SPECIFIED
Cause: An invalid EJB 3.0 annotation annotation has been specified in the
entity class ClassName on accessor method methodName. It is not supported.

Action: Specify a valid annotation on this accessor method.

7152: TABLE_PER_CLASS_INHERITANCE_NOT_SUPPORTED
Cause: Table per class inheritance is not supported. Entity class ClassName.

Action: Use different approach.

7153: NAMED_QUERY_ALREADY_EXISTS
Cause: The descriptor named query query already exists. Named query names
must be unique.

Action: Provide a unique name for the query.

7154: ASSOCIATION_TABLE_ANNOTATION_NOT_FOUND
Cause: An annotation @AssociationTable was not found on either the owning
mapping class ClassName, or nonowning mapping class DifferentClassName
for the @ManyToMany annotation.

Action: Ensure that the annotation @AssociationTable exists.

7155: ATTRIBUTE_OVERRIDE_COLUMNS_NOT_SPECIFIED
Cause: An annotation @AttributeOverride columns was not specified on a
mapping mapping from entity class ClassName.

Action: Specify this annotation.

7156: UNABLE_TO_LOAD_CLASS
Cause: TopLink was unable to find the class ClassName. Ensure the class
name/path is correct and available to the class loader.

Action: Ensure the class name and/or path is correct and available to the class
loader.

7157: INVALID_COLUMN_ANNOTATION_ON_RELATIONSHIP
Cause: Attempt to use an invalid@Column annotation by the entity class
ClassName to map its relationship attribute attribute.

Action: Ensure the entity class ClassName uses a @JoinColumn attribute
instead of a @Column attribute to map its relationship attribute attributeName.

7158: ERROR_PROCESSING_NAMED_QUERY_ANNOTATION
Cause: Error encountered when building the @NamedQuery annotation from
entity class ClassName.

Action: Ensure the correctness of the annotation specification.

7159: INVALID_NAMED_QUERY_ANNOTATION_NAME
Cause: Invalid use of an unnamed @NamedQuery annotation with the query
string string by an entity class ClassName .

Action: Specify a name for @NamedQuery.

Validation Exceptions (7001 – 7200)

TopLink Exception Reference 13-59

7160: ONE_TO_MANY_HAS_BOTH_ASSOCIATIONTABLE_AND_
JOINCOLUMN_ANNOTATIONS
Cause: @OneToMany annotation for attribute attributeName in entity class
ClassName has both an @AssocationTable and @JoinColumn(s) annotations
specified.

Action: Specify one annotation only: @AssocationTable or @JoinColumn(s).

7161: NO_PK_ANNOTATIONS_FOUND
Cause: Primary key annotation is not specified for the entity class ClassName.

Action: Define either an @Id, @EmbeddedId or an @IdClass annotation.

7162: MULTIPLE_EMBEDDED_ID_ANNOTATIONS_FOUND
Cause: Multiple @EmbeddedId annotations are specified (on attributeName
and differentAttributeName) for entity class ClassName.

Action: Specify only one @EmbeddedId annotation for this entity.

7163: EMBEDDED_ID_AND_ID_ANNOTATIONS_FOUND
Cause: Entity class ClassName has both an @EmbdeddedId (on attribute
attributeName) and an @Id (on attribute differentAttributeName).

Action: Specify only one ID type on this entity: either @EmbdeddedId or @Id.

7164: INVALID_CLASS_TYPE_FOR_BLOB_ANNOTATION
Cause: Attribute attributeName in an entity class ClassName has an invalid
type for a @Lob annotation of type BLOB.

Action: Define this attribute as a java.sql.Blob, byte[], Byte[] or a
Serializable type.

7165: INVALID_CLASS_TYPE_FOR_CLOB_ANNOTATION
Cause: Attribute attributeName in entity class ClassName has an invalid type
for a @Lob annotation of type CLOB.

Action: Define this attribute as a java.sql.Clob, char[], Character[] or
String type.

7166: ANNOTATIONS_CONFLICT
Cause: Conflict between annotations @Annotation and
@DifferentAnnotation.

Action: Ensure that these two annotations are not conflicting.

7167: RESERVED_NAME
Cause: Attempt to use a reserved annotation name AnnotationName by an
entity class ClassName: cannot use this name, because it is reserved for name.

Action: Specify a different name for this annotation.

7168: ID_ANNOTATION_CANNOT_SPECIFY_GENERATOR
Cause: Attempt to specify a generator with type Type by an annotation
@Annotation.

Action: Ensure that this annotation specifies a generator of a different type.

7169: INVALID_ENTITY_LISTENER_CALLBACK_METHOD_ARGUMENTS
Cause: The callback method methodName on the entity listener
ListenerClassName has an incorrect signature.

Action: Provide only one parameter of type Object for this method.

Validation Exceptions (7001 – 7200)

13-60 Oracle TopLink Developer’s Guide

7170: INVALID_ENTITY_CALLBACK_METHOD_ARGUMENTS
Cause: The callback method methodName on the entity class ClassName has an
incorrect signature. It should not have any parameters.

Action: Do not provide any parameters for this method.

7171: INVALID_CALLBACK_METHOD
Cause: Attempt to use an invalid callback method methodName on the listener
class ListenerClassName.

Action: Ensure the validity of the method.

7172: ERROR_INSTANTIATING_ENTITY_LISTENER
Cause: TopLink was unable to instantiate the entity listener using the
@EntityListener annotation.

Action: Ensure that the annotation is correctly specified.

7173: WRONG_PROPERTY_NAME_IN_CHANGE_EVENT
Cause: Attempt to fire a property change event on a nonexisting property
propertyName in a change event EventClassName.

Action: Ensure that this property exists.

7174: NO_CORRESPONDING_SETTER_METHOD_DEFINED
Cause: The getter method methodName on an entity class ClassName does not
have a corresponding setter method defined.

Action: Define a corresponding setter method.

7175: UNSUPPORTED_CASCADE_LOCKING_MAPPING
Cause: Attempt to use the mapping MappingType that does not support
cascading version optimistic locking.

Action: Use a different mapping.

7176: UNSUPPORTED_CASCADE_LOCKING_MAPPING_WITH_CUSTOM_
QUERY
Cause: Attempt to use the mapping MappingType that does not support
cascading version optimistic locking. This mapping has a custom query.

Action: Use a different mapping.

7177: UNSUPPORTED_CASCADE_LOCKING_DESCRIPTOR
Cause: Attempt to use an aggregate descriptor DescriptorName that has
privately-owned mappings: aggregate descriptors do not support cascading
version optimistic locking.

Action: Use a different descriptor.

7178: ORACLEOCIPROXYCONNECTOR_REQUIRES_
ORACLEOCICONNECTIONPOOL
Cause: Attempt to use invalid arguments in an entity callback method
methodName on a OracleOCIProxyConnector: it requires the
OracleOCIConnectionPool data source.

Action: Provide OracleOCIProxyConnector with the
OracleOCIConnectionPool argument.

7179: ORACLEJDBC10_1_0_2PROXYCONNECTOR_REQUIRES_
ORACLECONNECTION

Validation Exceptions (7001 – 7200)

TopLink Exception Reference 13-61

Cause: Attempt to use invalid arguments in an entity callback method
methodName on a OracleJDBC10_1_0_2ProxyConnector.

Action: Provide OracleJDBC10_1_0_2ProxyConnector with data source
producing Oracle Connections.

7180: ORACLEJDBC10_1_0_2PROXYCONNECTOR_REQUIRES_
ORACLECONNECTION_VERSION
Cause: Attempt to use the OracleJDBC10_1_0_2ProxyConnector with
Oracle JDBC version 10.1.0.1 or earlier: OracleJDBC10_1_0_2ProxyConnector
requires Oracle JDBC version 10.1.0.2 or later.

Action: Provide OracleJDBC10_1_0_2ProxyConnector with Oracle JDBC
version 10.1.0.2 or later in order for the OracleConnection to declare the
openProxySession method.

7181: ORACLEJDBC10_1_0_2PROXYCONNECTOR_REQUIRES_INT_PROXYTYPE
Cause: Attempt to use an invalid type for the proxytype property on the
OracleJDBC10_1_0_2ProxyConnector: it requires the proxytype property
to be an int converted to a String.

Action: On the OracleJDBC10_1_0_2ProxyConnector, provide the
proxytype property of type int converted to a String. For example,
Integer.toString(OracleConnection.PROXYTYPE_USER_NAME).

7182: COULD_NOT_FIND_DRIVER_CLASS
Cause: TopLink could not find the driver class.

Action: Ensure that the driver class exists and is on the classpath.

7183: ERROR_CLOSING_PERSISTENCE_XML
Cause: TopLink cannot close persistence.xml file.

Action: If you modified the persistence.xml, ensure that this file is not
read-only.

7184: CONFIG_FACTORY_NAME_PROPERTY_NOT_SPECIFIED
Cause: The system property propertyName is not specified.

Action: Set this property to a class that defines a getContainerConfig()
method.

7185: CONFIG_FACTORY_NAME_PROPERTY_NOT_FOUND
Cause: TopLink cannot find class ClassName.

Action: Ensure that the class exists and is properly specified.

7186: CANNOT_INVOKE_METHOD_ON_CONFIG_CLASS
Cause: TopLink cannot invoke method methodName on configuration class
ClassName.

Action: Ensure that this method exists in this class.

7187: CONFIG_METHOD_NOT_DEFINED
Cause: Class ClassName does not define a public static method methodName.

Action: In the class ClassName, define a public static method methodName that
has no parameters and returns a Collection.

7188: CLASS_LIST_MUST_NOT_BE_NULL
Cause: Class list is null.

Validation Exceptions (7001 – 7200)

13-62 Oracle TopLink Developer’s Guide

Action: Provide a non-null class list.

7189: CURRENT_LOADER_NOT_VALID
Cause: TopLink cannot create a temporary class loader from the current loader
ClassLoaderName.

Action: Ensure the validity of the current class loader.

7190: METHOD_FAILED
Cause: Failure in the execution of the methodName method.

Action: Ensure the correctness of the method.

7191: ENTITY_CLASS_NOT_FOUND
Cause: An entity class ClassName was not found using class loader
ClassLoaderName.

Action: Ensure that the entity class exists and is on the classpath.

7192: CLASS_FILE_TRANSFORMER_THROWS_EXCEPTION
Cause: Class file transformer TransformerName threw an exception when
performing transform() method on class ClassName.

Action: Ensure the correctness of the transform() method. Check the internal
exception for details on the root cause of this exception

7193: JAR_FILES_IN_PERSISTENCE_XML_NOT_SUPPORTED
Cause: Attempt to use JAR files in the persistence.xml file: JAR files are not
supported in this version of TopLink.

Action: Do not use JAR files.

7194: FLUSH_MODE_NOT_SUPPORTED
Cause: Attempt to use an unsupported method setFlushMode().

Action: Do not use this method.

7195: COULD_NOT_BIND_JNDI
Cause: TopLink could not bind name to anotherName.

Action: Ensure the correct use of this binding.

7196: EXCEPTION_CONFIGURING_EM_FACTORY
Cause: Exception configuring EntityManagerFactory.

Action: Ensure the correct configuration of this factory class. Check the internal
exception for details on the root cause of this exception

7197: NULL_PK_IN_UOW_CLONE
Cause: TopLink could not calculate changes, because the primary key is set to
null.

Action: Set the primary key to a non-null value.

7198: CANNOT_CAST_TO_CLASS
Cause: Attempt to cast an instance of class ClassName to AnotherClassName.
This is an invalid cast.

Action: Provide a valid cast.

7199: NO_MAPPED_BY_ATTRIBUTE_FOUND

EJB QL Exceptions (8001 – 8010)

TopLink Exception Reference 13-63

Cause: An attribute attributeName in an entity class ClassName has a
mappedBy value of value. This value does not exist in its owning entity class
ClassName.

Action: If the owning entity class is an @EmbeddableSuperclass, this is
invalid. Make your attribute reference the correct subclass.

7200: NAME_AND_REF_NAME_MUST_BE_SPECIFIED
Cause: Either name or referencedColumnName element is not specified: if there is
more than one join column, both the name and the referencedColumnName
elements must be specified in each @JoinColumn annotation.

Action: Ensure that both the name and the referencedColumnName elements
are specified in each @JoinColumn annotation.

EJB QL Exceptions (8001 – 8010)
EJBQLException is a run-time exception that is raised when the EJB QL string does
not parse properly, or the contents cannot be resolved within the context of the
TopLink session. The associated message typically includes a reference to the EJB QL
string that caused the problem.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example 13–8 EJB QL Exception

EXCEPTION [TOPLINK – 8002]: oracle.toplink.exceptions.EJBQLException
EXCEPTION DESCRIPTION: TopLink has encountered a problem while parsing the EJB QL
string.

8001: recognitionException
Cause: The TopLink EJB QL parser does not recognize a clause in the EJB QL
string.

Action: Validate the EJB QL string.

8002: generalParsingException
Cause: TopLink has encountered a problem while parsing the EJB QL string.

Action: Check the internal exception for details on the root cause of this
exception.

8003: classNotFoundException
Cause: The class specified in the EJB QL string was not found.

Action: Ensure that the class is on the appropriate classpath.

8004: aliasResolutionException
Cause: TopLink was unable to resolve the alias used in the EJB QL string.

Action: Validate the identifiers used in the EJB QL string.

8005: resolutionClassNotFoundException
Cause: TopLink was unable to resolve the class for an alias. This means that the
class specified cannot be found.

Action: Ensure that the class is specified properly and is on the classpath.

Session Loader Exceptions (9000 - 9010)

13-64 Oracle TopLink Developer’s Guide

8006: missingDescriptorException
Cause: The class specified in the query does not have a TopLink descriptor.

Action: Ensure that the class has been mapped and is specified correctly in the
EJB QL string.

8009: expressionNotSupported
Cause: An unsupported expression was used in the EJB QL.

Action: Change the query to use only supported expressions.

8010: generalParsingException2
Cause: TopLink has encountered a problem while parsing the EJB QL string.

Action: Check the internal exception for details on the root cause of this
exception.

Session Loader Exceptions (9000 - 9010)
SessionLoaderException is a run-time exception that is raised if the session
manager encounters a problem loading session information from a sessions.xml
(for non-EJB applications) or toplink-ejb-jar.xml (for EJB applications)
properties file.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example 13–9 Session Loader Exception

EXCEPTION [TOPLINK – 9004]: oracle.toplink.exceptions.SessionLoaderException
EXCEPTION DESCRIPTION: The <project-xml> file MyProject was not found on the
classpath, nor on the filesystem.

9000: FINAL_EXCEPTION
Cause: The session loader caught one or more XML parsing exceptions while
loading session information. The specific XML exceptions follow.

Action: Verify your session configuration XML file.

9001: UNKNOWN_TAG
Cause: An unknown tag was encountered in the specified XML node.

Action: Examine the specified XML node in your session configuration XML file.
Ensure that you use only the tags defined for that node in the appropriate TopLink
XSD. See the directory where you installed TopLink (for example, <ORACLE_
HOME>/toplink/config/xsds)

9002: UNABLE_TO_LOAD_PROJECT_CLASS
Cause: The specified class loader could not load a class with the name given by
the project-name property.

Action: Verify the value of the project-name property and if correct, ensure
that a class with that name is in your classpath.

9003: UNABLE_TO_PROCESS_TAG
Cause: The session loader caught an exception while either parsing the value of
the specified tag or calling the setter method associated with the specified tag.

Communication Exceptions (12000 - 12003)

TopLink Exception Reference 13-65

Action: Verify the value shown for the specified tag.

9004: COULD_NOT_FIND_PROJECT_XML
Cause: The session loader could not find the file identified by the project-xml
tag on either the classpath or the file system.

Action: Verify the value of the project-xml tag and if correct, ensure that a
project.xml file with that name exists in your classpath or file system.

9005: FAILED_TO_LOAD_PROJECT_XML
Cause: The session loader caught an exception while trying to load the file
identified by the project-xml tag either because the file could not be found, or
because the file could not be parsed.

Action: Verify the configuration of the project XML file and ensure that a
project.xml file with that name specified by the project-xml tag exists in
your classpath or file system.

9006: UNABLE_TO_PARSE_XML
Cause: The session loader caught a SAX exception while trying to parse the XML
at the given line and column of the specified XML file. Oracle TopLink 10g
supports only UTF-8 encoding. The TopLink SAXParseException occurs if you
attempt to read a non-UTF-8 formatted XML file.

Action: Verify that the XML is correctly formatted at the given line and column.
Alternatively, ensure the Oracle parser is in your classpath and that it appears
before any other XML parser.

9007: NON_PARSE_EXCEPTION
Cause: The session loader caught an exception unrelated to XML parsing (for
example, a premature end-of-file exception) while trying to parse the specified
XML file.

Action: Verify the integrity of the XML file.

9008: UN_EXPECTED_VALUE_OF_TAG
Cause: The value of an XML tag does not correspond to any known TopLink
required values.

Action: Please verify the list of values for this tag.

9009: UNKNOWN_ATTRIBUTE_OF_TAG
Cause: There is an incorrect name value pair when processing transport
properties for the XSD tag.

Action: Please verify that all properties have both the name and the value filled
in, in the session configuration XML file.

9010: XML_SCHEMA_PARSING_ERROR
Cause: An exception was raised while parsing the XML file against the XML
schema.

Action: Examine the exception and take the appropriate action.

Communication Exceptions (12000 - 12003)
 CommunicationException is a run-time exception that wraps all RMI, CORBA, or
input and output exceptions that occur.

EIS Exceptions (17007 – 17025), 90000, 91000

13-66 Oracle TopLink Developer’s Guide

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example 13–10 Communication Exception

EXCEPTION [TOPLINK – 12000]: oracle.toplink.exceptions.CommunicationException
EXCEPTION DESCRIPTION: Error Sending connection service to myService.

12000: ERROR_SENDING_CONNECTION_SERVICE
Cause: Failed to add a connection to CacheSynchronizationManager or
RemoteCommandManager.

Action: See the generated exception for the root cause.

12001: UNABLE_TO_CONNECT
Cause: CacheSynronizationManager failed to connect to the specified service.

Action: See the generated exception for the root cause.

12002: UNABLE_TO_PROPAGATE_CHANGES
Cause: CacheSynronizationManager failed to propagate changes to the
specified service.

Action: See the generated exception for the root cause.

12003: ERROR_IN_INVOCATION
Cause: Error invoking a remote call.

Action: See the generated exception for the root cause.

EIS Exceptions (17007 – 17025), 90000, 91000
 EISException is a run-time exception that is raised when invoking EIS interactions.
For more information on EIS interactions, see "Enterprise Information System (EIS)
Interactions" on page 93-19.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example 13–11 JMS Processing Exception

EXCEPTION [TOPLINK – 17010]: oracle.toplink.eis.EISException
EXCEPTION DESCRIPTION: Output record contains an unsupported message type.

17007: PROP_NOT_SET
Cause: The specified property is not set.

Action: Verify your interaction and ensure that the specified property is set (see
"Configuring Custom EIS Interactions for Basic Persistence Operations" on
page 28-6 or "Creating an EIS Interaction for a Named Query" on page 25-20).

17008: INVALID_PROP
Cause: Invalid property encountered.

EIS Exceptions (17007 – 17025), 90000, 91000

TopLink Exception Reference 13-67

Action: Verify your interaction and remove the specified property (see
"Configuring Custom EIS Interactions for Basic Persistence Operations" on
page 28-6 or "Creating an EIS Interaction for a Named Query" on page 25-20).

17009: PROPS_NOT_SET
Cause: The specified properties are not set.

Action: Verify your interaction and ensure that the specified properties are set
(see "Configuring Custom EIS Interactions for Basic Persistence Operations" on
page 28-6 or "Creating an EIS Interaction for a Named Query" on page 25-20).

17010: OUTPUT_UNSUPPORTED_MSG_TYPE
Cause: The output record contains an unsupported message type.

Action: Verify your interaction and ensure that you specify a supported message
type. Ensure that the required connector JAR file is on your classpath (see "EIS
Projects" on page 17-7).

17011: NO_CONN_FACTORY
Cause: The connection factory is not specified.

Action: Verify your interaction and ensure that you specify a connection factory
(see "Configuring EIS Connection Specification Options at the Project Level" on
page 21-2 or "Configuring EIS Connection Specification Options at the Session
Level" on page 84-2).

17012: INVALID_INTERACTION_SPEC_TYPE
Cause: InteractionSpec is not a CciJMSInteractionSpec.

Action: Verify your interaction and ensure that you specify a valid interaction
specification type (CciJMSInteractionSpec). Ensure that the required
connector JAR file is on your classpath (see "EIS Projects" on page 17-7).

17013: INVALID_RECORD_TYPE
Cause: Record is not a CciJMSRecord.

Action: Verify your interaction and ensure that you specify a valid record type
(CciJMSRecord). Ensure that the required connector JAR file is on your classpath
(see "EIS Projects" on page 17-7).

17014: UNKNOWN_INTERACTION_SPEC_TYPE
Cause: Unknown interaction specification type.

Action: Verify your interaction and ensure that you specify a valid interaction
specification type. Ensure that the required connector JAR file is on your classpath
(see "EIS Projects" on page 17-7).

17015: INVALID_INPUT
Cause: Invalid input: input must contain a single text element.

Action: Verify your interaction and ensure that you specify valid input–a single
text element (see "Configuring Custom EIS Interactions for Basic Persistence
Operations" on page 28-6 or "Creating an EIS Interaction for a Named Query" on
page 25-20).

17016: TIMEOUT
Cause: A time-out occurred–no message was received.

Action: Verify your interaction and the EIS on which you invoked it.

17017: INPUT_UNSUPPORTED_MSG_TYPE

EIS Exceptions (17007 – 17025), 90000, 91000

13-68 Oracle TopLink Developer’s Guide

Cause: Input record contains an unsupported message type.

Action: Verify your interaction and ensure that you specify a valid message type.
Ensure that the required connector JAR file is on your classpath (see "EIS Projects"
on page 17-7).

17018: INVALID_METHOD_INVOCATION
Cause: TopLink cannot invoke begin method on a nontransacted session.

Action: To be determined.

17019: TX_SESSION_TEST_ERROR
Cause: Problem testing for transacted session.

Action: To be determined.

17020: INVALID_AQ_INTERACTION_SPEC_TYPE
Cause: InteractionSpec is not an AQInteractionSpec.

Action: Verify your interaction and ensure that you specify a valid Oracle AQ
interaction specification type (AQInteractionSpec). Ensure that the required
connector JAR file is on your classpath (see "EIS Projects" on page 17-7).

17021: INVALID_AQ_RECORD_TYPE
Cause: Record is not an AQRecord.

Action: Verify your interaction and ensure that you specify a valid Oracle AQ
record type (AQRecord). Ensure that the required connector JAR file is on your
classpath (see "EIS Projects" on page 17-7).

17022: INVALID_AQ_INPUT
Cause: Invalid input: input must contain a single raw element.

Action: Verify your Oracle AQ interaction and ensure that you specify valid
input–a single raw element (see "Configuring Custom EIS Interactions for Basic
Persistence Operations" on page 28-6 or "Creating an EIS Interaction for a Named
Query" on page 25-20).

17023: INVALID_FACTORY_ATTRIBUTES
Cause: An exception occurred setting MQQueueConnectionFactory attributes.

Action: Verify your interaction and ensure that you specify an appropriate IBM
MQSeries connection factory (see "Configuring EIS Connection Specification
Options at the Project Level" on page 21-2 or "Configuring EIS Connection
Specification Options at the Session Level" on page 84-2).

17024: COULD_NOT_DELETE_FILE
Cause: TopLink cannot delete the specified file.

Action: To be determined.

17025: GROUPING_ELEMENT_REQUIRED
Cause: No grouping element is specified: this mapping requires a foreign key
grouping element, as mulitple foreign keys exist.

Action: Verify your EIS mappings (see Chapter 53, "Understanding EIS
Mappings".

90000: RESOURCE_EXCEPTION
Cause: Unknown resource.

Action: See the generated exception for the root cause.

Default Mapping Exceptions (20001 - 20008)

TopLink Exception Reference 13-69

91000: EIS_EXCEPTION
Cause: General EIS-related failure.

Action: See the generated exception for the root cause.

JMS Processing Exceptions (18001 - 18004)
 JMSProcessingException is a run-time exception that is raised when processing
JMS messages.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example 13–12 JMS Processing Exception

EXCEPTION [TOPLINK – 18001]: oracle.toplink.exceptions.JMSProcessingException
EXCEPTION DESCRIPTION: Error while processing incomming JMS message.

18001: DEFAULT
Cause: Failed to process the incoming JMS message.

Action: See the generated exception for the root cause.

18002: NO_TOPIC_SET
Cause: JMSClusteringService failed to start because the Topic created in the
JMS service for the interconnection of sessions is null.

Action: Ensure that the Topic created in the JMS service for the interconnection
of sessions is set in the JMSClusteringService.

18003: MDB_ERROR_LOOKUP_SESSION_NAME_ENV
Cause: Failure in looking up the session's name defined it the env-entry
element of the message-driven bean.

Action: Verify the correctness of the env-entry element definition of the
Message Driven Bean.

18004: MDB_FOUND_NO_SESSION
Cause: The message-driven bean (MDB) cannot find the session.

Action: Ensure that the session that this MDB’s getSession() method returns
is not null session.

Default Mapping Exceptions (20001 - 20008)
 DefaultMappingException is a run-time exception that is raised when an error
occurs during OC4J CMP default mapping.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example 13–13 Default Mapping Exception

EXCEPTION [TOPLINK – 20002]: oracle.toplink.exceptions.DefaultMappingException
EXCEPTION DESCRIPTION: The finder method with the parameters as defined in the

Discovery Exceptions (22001 - 22004)

13-70 Oracle TopLink Developer’s Guide

ejb-jar.xml file, is not found in the home of bean.

20001: FINDER_PARAMETER_TYPE_NOT_FOUND
Cause: TopLink could not find the parameter type, defined in the ejb-jar.xml
file of the finder in the entity bean.

Action: Check the finder definition in the ejb-jar.xml file and the bean home
to ensure that the named finder has the specified method parameter type(s).

20002: FINDER_NOT_DEFINED_IN_HOME
Cause: The finder method with the parameters as defined in the ejb-jar.xml
file is not found in the home of bean.

Action: Check the ejb-jar.xml file and the bean home to ensure that the finder
with the specified name and method parameter type(s) are defined.

20003: EJB_SELECT_NOT_DEFINED_IN_BEAN
Cause: The ejbSelect method with the parameters, as defined in the
ejb-jar.xml file, is not found in the bean class.

Action: Check the ejb-jar.xml file and the bean class to ensure that the
ejbSelect method is defined with the specified name and method parameter
type(s).

20004: FINDER_NOT_START_WITH_FIND_OR_EJBSELECT
Cause: The finder method of bean in the ejb-jar.xml file is not well defined. It
should start with either find or ejbSelect.

Action: Check the ejb-jar.xml file to ensure that the query name starts with
find or ejbSelect, according to the EJB specification.

20005: GETTER_NOT_FOUND
Cause: The abstract get method is not defined in the bean.

Action: Check the ejb-jar.xml file and the bean class to ensure that the
abstract get method is well defined.

20006: FIELD_NOT_FOUND
Cause: The CMP field is not defined in the bean.

Action: Check the ejb-jar.xml file and the bean class to ensure that the CMP
field defined in the ejb-jar.xml file is also defined in the bean class.

For more information, see"Default Mapping in CMP Projects Using OC4J at Run Time"
on page 30-4.

Discovery Exceptions (22001 - 22004)
 DiscoveryException is a run-time exception that is raised when
DiscoveryManager is operating.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example 13–14 Discovery Exception

EXCEPTION [TOPLINK – 22001]: oracle.toplink.exception.DiscoveryException

Remote Command Manager Exceptions (22101 - 22111)

TopLink Exception Reference 13-71

EXCEPTION DESCRIPTION: Could not join multicast group.

22001: ERROR_JOINING_MULTICAST_GROUP
Cause: DiscoveryManager failed to join a multicast group due to a
java.io.IOException: either a MulticastSocket could not be created, or
the invocation of the joingGroup method of the MulticastSocket failed.

Action: See the generated exception for the root cause.

22002: ERROR_SENDING_ANNOUNCEMENT
Cause: DiscoveryManager failed to inform other services that its service had
started up.

Action: Consider increasing the announcement delay: the amount of time in
milliseconds that the service should wait between the time that this remote service
is available and a session announcement is sent out to other discovery managers.
This may be needed to give some systems more time to post their connections into
the naming service. See the setAnnouncementDelay method of the
DiscoveryManager.

22003: ERROR_LOOKING_UP_LOCAL_HOST
Cause: DiscoveryManager failed to do the lookup of a local host.

Action: See the generated exception for the root cause.

22004: ERROR_RECEIVING_ANNOUNCEMENT
Cause: DiscoveryManager caught a java.io.IOException while blocking
for announcements from other DiscoveryManagers.

Action: See the generated exception for the root cause.

Remote Command Manager Exceptions (22101 - 22111)
 RemoteCommandManagerException is a run-time exception that is raised when the
remote command module is used.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example 13–15 Remote Command Manager Exception

EXCEPTION [TOPLINK – 22104]:
oracle.toplink.exceptions.RemoteCommandManagerException
EXCEPTION DESCRIPTION: Could not look up host name.

22101: ERROR_OBTAINING_CONTEXT_FOR_JNDI
Cause: Failure to get a JNDI context with the specified properties due to a
javax.naming.NamingException.

Action: See the generated exception for root cause. Verify that the properties for
looking up the context are correct.

22102: ERROR_BINDING_CONNECTION
Cause: Failure to post a connection in the local naming service with the name
serviceName.

Action: See the generated exception for the root cause.

Remote Command Manager Exceptions (22101 - 22111)

13-72 Oracle TopLink Developer’s Guide

22103: ERROR_LOOKING_UP_REMOTE_CONNECTION
Cause: Failure to look up a remote connection with the specified name and URL.

Action: See the generated exception for the root cause. Verify that the remote
connection and URL are correct.

22104: ERROR_GETTING_HOST_NAME
Cause: The getLocalHost method of the java.net.InetAddress failed to
look up the specified host name.

Action: See the generated exception for the root cause. Verify that the host is
online and reachable.

22105: ERROR_PROPAGATING_COMMAND
Cause: Failure to propagate a command to the specified connection.

Action: See the generated exception for the root cause. Verify that the remote host
of the specified connection is online and reachable if the generated exception
included a CommunicationException.

22106: ERROR_CREATING_JMS_CONNECTION
Cause: Failure to create JMS connection with Topic, Topic Factory, and
Context properties.

Action: Verify that the JMS Topic is configured correctly with the application
server and the specified Topic. Topic Factory and Context properties info can be
used by a Java client to the JMS Topic.

22107: ERROR_UNBINDING_LOCAL_CONNECTION
Cause: Failure to establish a remove local connection in local naming service
under name.

Action: Restart the application server or use the application server tool to remove
name from its JNDI if this tool is available.

22108: ERROR_SERIALIZE_OR_DESERIALIZE_COMMAND
Cause: Failure to serialize or deserialize command.

Action: If the command is a user defined command, make sure it is serializable. If
it is a TopLink command, file a bug report including the stack trace.

22109: ERROR_RECEIVING_JMS_MESSAGE
Cause: Failure to receive JMS message from JMS provider.

Action: Make sure that TopLink sessions are the only publishers to the JMS Topic
and that the TopLink sessions use the same project.

22110: ERROR_DISCOVERING_IP_ADDRESS
Cause: Failure to discover local host IP address.

Action: Replace the $HOST string of the URL with the known host name or IP
address.

22111: ERROR_GETTING_SERVERPLATFORM
Cause: Failure to get server platform. The server platform must be set on
Session or RemoteCommandManager.

Action: Set the correct ServerPlatform on the RemoteCommandManager. This
exception is raised when the user does not use a TopLink Session and implements
the CommandProcessor.

Transaction Exceptions (23001 - 23015)

TopLink Exception Reference 13-73

Transaction Exceptions (23001 - 23015)
 TransactionException is a run-time exception that is raised when an error is
encountered during a transaction. When this occurs, the message contains a reference
to the error code and error message.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example 13–16 Transaction Exception

EXCEPTION [TOPLINK – 23001]: oracle.toplink.exceptions.TransactionException
EXCEPTION DESCRIPTION: Error looking up external Transaction resource under JNDI
name.

23001: ERROR_DOING_JNDI_LOOKUP
Cause: Error looking up external transaction resource under JNDI name name.

Action: Examine the internal exception and take the appropriate action.

23002: ERROR_GETTING_TRANSACTION_STATUS
Cause: Error obtaining the status of the current externally-managed transaction.

Action: Examine the internal exception and take the appropriate action.

23003: ERROR_GETTING_TRANSACTION
Cause: Error obtaining the current externally managed transaction.

Action: Examine the internal exception and take the appropriate action.

23004: ERROR_BINDING_TO_TRANSACTION
Cause: Error obtaining the transaction manager.

Action: Examine the internal exception and take the appropriate action.

23005: ERROR_BEGINNING_TRANSACTION
Cause: Error binding to the externally managed transaction.

Action: Examine the internal exception and take the appropriate action.

23006: ERROR_COMMITTING_TRANSACTION
Cause: Error beginning a new externally managed transaction.

Action: Examine the internal exception and take the appropriate action.

23007: ERROR_ROLLING_BACK_TRANSACTION
Cause: Error committing the externally managed transaction.

Action: Examine the internal exception and take the appropriate action.

23008: ERROR_MARKING_TRANSACTION_FOR_ROLLBACK
Cause: Error rolling back the externally managed transaction.

Action: Examine the internal exception and take the appropriate action.

23009: ERROR_NO_TRANSACTION_ACTIVE
Cause: Error marking the externally managed transaction for rollback.

Action: Examine the internal exception and take the appropriate action.

23010: ERROR_INACTIVE_UOW

XML Conversion Exceptions (25501)

13-74 Oracle TopLink Developer’s Guide

Cause: No externally managed transaction is currently active for this thread.

Action: Ensure that the transaction is still active.

23011: ERROR_OBTAINING_TRANSACTION_MANAGER
Cause: A UnitOfWork was rendered inactive before the associated externally
managed transaction was complete.

Action: Examine the internal exception and take the appropriate action.

23012: ENTITY_TRANSACTION_WITH_JTA_NOT_ALLOWED
Cause: Attempt to use an EntityTransaction while using JTA. This is an
invalid operation.

Action: Examine the internal exception and take the appropriate action.

23013: CANNOT_ENLIST_MULTIPLE_DATASOURCES
Cause: Attempt to enlist multiple data sources in the transaction.

Action: Enlist only one data source per transaction.

23014: EXCEPTION_IN_PROXY_EXECUTION
Cause: Exception occurred in Proxy execution.

Action: Examine the internal exception and take the appropriate action.

23015: ERROR_NO_ENTITY_TRANSACTION_ACTIVE
Cause: No entity transaction is currently active for this thread.

Action: Ensure that the transaction is active.

For more information, see Part XIX, "Transactions".

XML Conversion Exceptions (25501)
XMLConversionException is a run-time exception that is raised when a conversion
between TopLink instances and XML fails. This exception is used in cache
coordination that uses XML change sets.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example 13–17 XML Conversion Exception

EXCEPTION [TOPLINK – 25001]: oracle.toplink.exceptions.XMLConversionException
EXCEPTION DESCRIPTION: Cannot create URL for file [\\FILE_SERVER\command.xml].

25501: ERROR_CREATE_URL
Cause: Failure to create a URL for the specified file.

Action: Ensure that all specified XPath strings on mappings are valid and correct.

Migration Utility Exceptions (26001 - 26020)
 MigrationUtilityException is a run-time exception that is raised when an error
is encountered during the use of the TopLink migration utility.

Migration Utility Exceptions (26001 - 26020)

TopLink Exception Reference 13-75

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example 13–18 Migration Utility Exception

EXCEPTION [TOPLINK – 26002]: oracle.toplink.exceptions.MigrationUtilityException
EXCEPTION DESCRIPTION: The program security manager prevents the migration utility
from creating a JAR class loader for the JAR file.

26001: WLS_MULTIPLE_JARS_WITH_INPUT_ORION_NOT_SUPPORTED
Cause: WLS->OC4J TopLink migration exception: There are multiple migratable
JARs in the input EAR file, and the orion-ejb-jar.xml is also provided in the
input. The migration utility only supports a single migratable JAR file in an EAR
file if the orion-ejb-jar.xml file is also in the input.

Action: Remove the orion-ejb-jar.xml file from the input directory, or keep
only one migratable JAR file in the input EAR file.

26002: FAILED_TO_CREATE_JAR_CLASSLOADER
Cause: The program security manager prevents the migration utility from
creating a JAR class loader for the JAR file.

Action: Configure the program security manager to grant permission on the
program to create the JAR class loader.

26003: FAILED_TO_CREATE_DIRECTORY
Cause: The program security manager prevents the migration utility from
creating a directory.

Action: Configure the program security manager to grant permission on the
program to create a local directory.

26004: FILE_NOT_ACCESSIBLE
Cause: The file is not accessible by the migration utility.

Action: Check to ensure that the file is on the specified path and is readable.

26005: FILE_NOT_DELETABLE
Cause: The program security manager prevents the migration utility from
deleting a directory.

Action: Configure the program security manager to grant permission to the
program to delete files.

26006: FAILED_TO_READ_INPUTSTREAM
Cause: A java.io.IOException occurred when reading data from an input
stream.

Action: Check to ensure that the file is not locked and is accessible.

26007: FAILED_TO_CLOSE_STREAM
Cause: A java.io.IOException occurred when closing data from an input or
output stream.

Action: Check to ensure that the file is not locked and is accessible.

26008: FAILED_TO_CLOSE_ZIPFILE
Cause: A java.io.IOException occurred when closing data from a zip file.

Migration Utility Exceptions (26001 - 26020)

13-76 Oracle TopLink Developer’s Guide

Action: Check to ensure that the zip file is not locked and is accessible.

26009: JAR_FILE_NOT_ACCESSIBLE
Cause: The JAR file was not found or was not accessible on the specified path.

Action: Check to ensure that the JAR file is not locked and is accessible.

26010: QUERY_NOT_WELL_DEFINED
Cause: Query method with parameters of the entity defined in the ejb-jar.xml
file is not well defined as it does not start with find or ejbSelect.

Action: Check the ejb-jar.xml file to ensure that the finder name starts with
either find or ejbSelect according to the EJB spec.

26011: FAIL_TO_LOAD_CLASS_FOR_QUERY
Cause: The class defined as a parameter type of the query of the entity in
ejb-jar.xml could not be loaded.

Action: Ensure that the bean class is included on the classpath.

26012: FINDER_NOT_DEFINED_IN_ENTITY_HOME
Cause: The finder method with parameters defined in the ejb-jar.xml file is
not defined at the entity's local and/or remote home interface.

Action: Check the ejb-jar.xml file and the bean home to ensure that the
finder method parameter types are properly defined.

26013: EJB_SELECT_NOT_DEFINED_IN_ENTITY_BEAN_CLASS
Cause: The ejbSelect method with parameters defined in the ejb-jar.xml
file is not defined at the entity's bean class.

Action: Check the ejb-jar.xml file and the bean class to ensure that the
ejbSelect method parameter types are properly defined.

26014: ENTITY_IN_WLS_CMP_JAR_NOT_DEFINED_IN_WLS_EJB_JAR
Cause: The entity specified in the weblogic-cmp-jar.xml file is not defined in
the weblogic-ejb-jar.xml file.

Action: Ensure that the entity is consistently defined in the deployment descriptor
files.

26015: NO_ENTITY_DEFINED_IN_WLS_CMP_JAR
Cause: No entity element is defined in the weblogic-cmp-rdbms-jar.xml file.

Action: Ensure that all entities defined in the ejb-jar.xml file are mapped in
the WebLogic CMP descriptor file.

26016: WLS_CMP_DESCRIPTOR_FILE_NOT_FOUND
Cause: The WebLogic CMP descriptor file specified in the
weblogic-ejb-jar.xml file was not found in the directory.

Action: Ensure that the WebLogic CMP descriptor file, specified in the
weblogic-ejb-jar.xml file, is included in the input directory.

26017: CMP_DESCRIPTOR_NOT_FOUND_IN_JAR
Cause: The CMP descriptor file is not found in the JAR file to be migrated.

Action: Ensure that the WebLogic CMP descriptor file, specified in the
weblogic-ejb-jar.xml file, is included in the input archive JAR file.

26018: NOT_ALL_ENTITIES_IN_EJB_JAR_MAPPED_IN_ORION

EJB JAR XML Exceptions (72000 – 72023)

TopLink Exception Reference 13-77

Cause: Some of the entity beans EntityBeanClassName-s defined in the
ejb-jar.xml file in the jar jarName are not explicitly mapped in the
orion-ejb-jar.xml file.

Action: Provide the completely mapped orion-ejb-jar.xml file to the
migration tool. You can obtain the completely mapped orion-ejb-jar.xml file
from the /application-deployment directory after deploying the application.

26019: ENTITY_NOT_MAPPED_IN_ORION
Cause: The entity EntityName in the orion-ejb-jar.xml file is not mapped,
because no table is specified.

Action: Provide the completely mapped orion-ejb-jar.xml file to the
migration tool. You can obtain the completely mapped orion-ejb-jar.xml file
from the /application-deployment directory after deploying the application.

26020: ENTITY_IN_ORION_NOT_IN_EJB_JAR
Cause: The entity EntityName specified in the orion-ejb-jar.xml file is not
defined in the ejb-jar.xml file.

Action: Define this entity in the ejb-jar.xml file.

For more information, see Chapter 7, "Integrating TopLink With an Application
Server" on page 7-1.

EJB JAR XML Exceptions (72000 – 72023)
 EJBJARXMLException is a run-time exception that is raised at deployment time
when the ejb-jar.xml file is read and the required concrete EJB classes code is
generated.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example 13–19 EJB JAR XML Exception

EXCEPTION [TOPLINK – 72000]: oracle.toplink.exceptions.EJBJarXMLException
EXCEPTION DESCRIPTION: Error reading ejb-jar.xml file.

72000: READ_EXCEPTION
Cause: Failure to read an ejb-jar.xml file due to a java.io.IOException or
javax.xml.parsers.ParserConfigurationException.

Action: See the generated exception for the root cause.

72001: INVALID_DOC_TYPE
Cause: Failure to parse the specified file because it did not use the expected
doctype: -//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN

Action: Verify that your ejb-jar.xml file uses the correct documentation type.

72002: CONCRETE_INSTANCE_VARIALBE_EXISTS
Cause: There was a concrete instance variable variableName already defined on
the class ClassName.

EJB JAR XML Exceptions (72000 – 72023)

13-78 Oracle TopLink Developer’s Guide

Action: Either remove this instance variable from the class, refresh in the TopLink
Workbench, and update from the ejb-jar.xml file again, or remove the field
from the ejb-jar.xml file and update again.

72003: EJB_2_0_ATTRIBUTE_NOT_EXIST
Cause: A mapping for a field fieldName could not be created on the descriptor
DescriptorName.

Action: Check to ensure that there are abstract get and set methods accessible
for this field.

72004: NEITHER_HOME_NOR_REMOTE_INTERFACE_FOUND
Cause: Neither local home nor remote home interface for the class ClassName
was found on the classpath. The finders for this class were not updated

Action: Update the finders for this class; ensure that either local home or remote
home interface for the class is on the classpath.

72005: FINDER_NOT_EXIST_ON_REMOTE_HOME_AND_LOCAL_HOME
Cause: The finder method methodName was not defined on a home interface for
the entity EntityName. The finder was not updated

Action: Define the finder method.

72006: NO_PERSISTENCE_TYPE_SPECIFIED
Cause: TopLink Workbench could not determine a project persistence type from
the XML file.

Action: Specify the persistence type for your TopLink project.

72007: SELECT_NOT_DEFINED_IN_BEANCLASS
Cause: Failure to find a corresponding ejbSelect method in the bean class
ClassName. No information was updated for this query.

Action: Define ejbSelect method in your bean class.

72008: EJB_DESCRIPTOR_MUST_HAVE_EJB_NAME
Cause: The EJB descriptor DescriptorName does not have an EJB name
specified.

Action: In your EJB descriptor, specify an EJB name.

72009: EJB_DESCRIPTOR_MUST_HAVE_PRIMARYKEY_CLASS
Cause: The EJB descriptor DescriptorName does not have a primary key class
specified.

Action: In your EJB descriptor, specify a primary key class.

72010: EJB_NAME_MUST_BE_UNIQUE
Cause: The EJB name EJBName was used by more than one descriptor. EJB names
must be unique

Action: Ensure that the EJB name is specified in one and only one descriptor.

72011: EMPTY_TEXT_ATTRIBUTE
Cause: An element elementName has an empty text attribute attributeName.

Action: Use a non-empty text attribute for the subelement.

72012: MULTIPLE_ENTITIES_FOUND_FOR_EJB_NAME

EJB JAR XML Exceptions (72000 – 72023)

TopLink Exception Reference 13-79

Cause: There are multiple entities with the same EJB bean name BeanName in the
XML file.

Action: Use a unique EJB bean name for each entity.

72013: INVALID_CMP_VERSION
Cause: The entity EntityName does not have a valid cmp-version definition.
The cmp-version must be 1.x or 2.x.

Action: Use a cmp-version value of 1.x or 2.x only.

72014: INVALID_EJB_NAME_FOR_RELATIONSHIP_ROLE
Cause: The EJB bean name BeanName in the ejb-relationship-role element
is not found in the XML file.

Action: Use the EJB bean name of an existing entity for the
ejb-relationship-role.

72015: INVALID_MULTIPLICITY
Cause: There was an invalid multiplicity value defined for a relationship
involving the mapping Mapping Name in a descriptor DescriptorName. The
multiplicity must be either One or Many.

Action: Use a multiplicity value of One or Many only.

72016: INVALID_PERSISTENCE_TYPE
Cause: The entity EntityName does not have a valid persistence type. The type
must be either Bean or Container.

Action: Use a persistence-type value of Bean or Container only.

72017: INVALID_QUERY_METHOD_NAME
Cause: The query method methodName does not start with find or ejbSelect.
No information was updated for this query.

Action: Verify that the query method name starts with either find or
ejbSelect.

72018: NOT_SINGLE_PERSISTENCE_TYPE
Cause: Attempt to use a nonuniform persistence type for the TopLink Workbench
project: TopLink Workbench requires that all entities in the XML file for this
project have the same persistence-type and/or cmp-version. The project
will be set according to the persistence-type and/or cmp-version of the
first entity in the file.

Action: Provide all entities in the XML file for this project with the same
persistence-type and/or cmp-version.

72019: PROJECT_MUST_HAVE_AT_LEAST_ONE_EJB_DESCRIPTOR
Cause: The project ProjectName does not have an EJB descriptor: it must have
at least one EJB descriptor.

Action: Provide an EJB descriptor for the project.

72020: ATTRIBUTE_NOT_EXIST
Cause: The attribute attributeName is not found.

Action: Define this attribute.

72021: EJB_CLASS_NOT_FOUND

Entity Manager Setup Exceptions (28001 – 28007)

13-80 Oracle TopLink Developer’s Guide

Cause: The class ClassName could not be found on the classpath. A descriptor
could not be created for it.

Action: Ensure that the class ClassName is on the classpath.

72022: REQUIRED_ATTRIBUTE_NOT_EXIST
Cause: There is an element that does not have a required attribute.

Action: Add the subelement to the parent element.

72023: NO_CMR_FIELD_FOR_BEAN_ABSTRACT_SETTER
Cause: Entity bean BeanName has an abstract setter method with an
EntityBean attribute type for attribute attributeName, but does not have a
corresponding CMR field.

Action: Verify that all CMP entities have the same cmp-version value.

Entity Manager Setup Exceptions (28001 – 28007)
 EntityManagerSetupException is raised when an error is encountered during
the process of setting up an entity manager.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example 13–20 Entity Manager Setup Exception

EXCEPTION [TOPLINK – 28001]: oracle.toplink.exceptions.EntityManagerSetupException
EXCEPTION DESCRIPTION: Error while trying to create session.

28001: SESSIONS_XML_VALIDATION_EXCEPTION
Cause: A ValidationException was thrown while trying to create a session
sessionName.

Action: Ensure that your fileName file is on the classpath. If it is on the
classpath, ensure that this file contains the session sessionName.

28002: WRONG_SESSION_TYPE_EXCEPTION
Cause: Failure to load a ServerSession sessionName from sourceName.

Action: Ensure that the server session’s type is correct.

28003: MISSING_SERVER_PLATFORM_EXCEPTION
Cause: Server platform specification was not found: TopLink has loaded a session
sessionName from sourceName, but this session either does not have a server
platform specified, or specifies a server platform that does not use an external
transaction controller.

Action: If you plan to use JTA, specify an appropriate server platform.

28004: ERROR_IN_SETUP_OF_EM
Cause: Error while setting up an
oracle.toplink.sessions.entitymanager.EntityManagerFactory.

Action: Ensure the correct setup of the EntityManagerFactory:
initializeFromMain method of the EntityContainer should return true.

28005: EXCEPTION_IN_SETUP_OF_EM

XML Marshal Exceptions (25001 – 25020)

TopLink Exception Reference 13-81

Cause: Error during the setup of
oracle.toplink.sessions.entitymanager.EntityManagerFactory.

Action: See the generated exception for the root cause.

28006: CLASS_NOT_FOUND_FOR_PROPERTY
Cause: Failure to find the class ClassName specified in the property
propertyName.

Action: Ensure that the class exists and is on the classpath.

28007: FAILED_TO_INSTANTIATE_SERVER_PLATFORM
Cause: Failure to instantiate a server platform of type ServerPlatformType
specified in the property propertyName.

Action: See the generated exception for the root cause.

XML Marshal Exceptions (25001 – 25020)
 XMLMarshalException is raised when an error is encountered during the XML
marshalling process.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example 13–21 XML Marshal Exception

EXCEPTION [TOPLINK – 25001]: oracle.toplink.exceptions.XMLMarshalException
EXCEPTION DESCRIPTION: Error while trying to create session.

25001: INVALID_XPATH_STRING
Cause: Attempt to use an invalid XPath string.

Action: Ensure that the XPath is specified correctly.

25002: INVALID_XPATH_INDEX_STRING
Cause: Attempt to parse an integer index from the XPath string xpathString.

Action: Ensure that the XPath is specified correctly.

25003: MARSHAL_EXCEPTION
Cause: Error occurred during the object marshalling.

Action: See the generated exception for the root cause.

25004: UNMARSHAL_EXCEPTION
Cause: Error while setting up an
oracle.toplink.sessions.entitymanager.EntityManagerFactory.

Action: Ensure the correct setup of the EntityManagerFactory:
initializeFromMain method of the EntityContainer should return true.

25005: VALIDATE_EXCEPTION
Cause: Validation error.

Action: See the generated exception for the root cause.

25006: DEFAULT_ROOT_ELEMENT_NOT_SPECIFIED

XML Marshal Exceptions (25001 – 25020)

13-82 Oracle TopLink Developer’s Guide

Cause: A default root element is not specified for the XMLDescriptor mapped
to target.

Action: Specify the default root element for the descriptor.

25007: DESCRIPTOR_NOT_FOUND_IN_PROJECT
Cause: A descriptor for class ClassName was not found in the project.

Action: Ensure that the descriptor for this class exists.

25008: NO_DESCRIPTOR_WITH_MATCHING_ROOT_ELEMENT
Cause: A descriptor with the default root element element was not found in the
project.

Action: Ensure that the descriptor for this class exists and that its default root
element is specified.

25010: SCHEMA_REFERENCE_NOT_SET
Cause: A schema reference is not specified for the XMLDescriptor mapped to
target.

Action: Specify the schema reference for the descriptor.

25011: NULL_ARGUMENT
Cause: A null argument was encountered.

Action: Ensure that this argument is not null.

25012: ERROR_RESOLVING_XML_SCHEMA
Cause: Failure to resolve the XML schema.

Action: See the generated exception for the root cause.

25013: ERROR_SETTING_SCHEMAS
Cause: Failure to set schemas.

Action: See the generated exception for the root cause.

25014: ERROR_INSTANTIATING_SCHEMA_PLATFORM
Cause: Error during the schema platform instantiation.

Action: See the generated exception for the root cause.

25015: NAMESPACE_RESOLVER_NOT_SPECIFIED
Cause: Failure to resolve the namespace URI for target.

Action: Specify a namespace resolver on the descriptor

25016: NAMESPACE_NOT_FOUND
Cause: A namespace for the prefix prefix was not found in the namespace
resolver.

Action: Ensure that the namespace for this prefix exists in the namespace resolver.

25017: ENUM_CLASS_NOT_SPECIFIED
Cause: Enumeration class is not specified.

Action: Set either enumClass or enumClassName on the
JAXBTypesafeEnumConverter.

25018: FROMSTRING_METHOD_ERROR
Cause: Error during the invocation of the fromString method on the
enumeration class ClassName: the method does not exist or could not be invoked.

XML Platform Exceptions (27001 – 27006, 27101 – 27103, 27201 – 27202)

TopLink Exception Reference 13-83

Action: See the generated exception for the root cause.

25019: INVALID_ENUM_CLASS_SPECIFIED
Cause: The specified enumeration class ClassName was not found.

Action: Ensure the correct specification of the enumeration class.

25020: ILLEGAL_STATE_XML_UNMARSHALLER_HANDLER
Cause: Attempt to call the method getResult before the call to the
endDocument event.

Action: Call the getResult method after the endDocument event has been
called.

For more information, see "Understanding XML Mappings" on page 62-1.

XML Platform Exceptions (27001 – 27006, 27101 – 27103, 27201 – 27202)
 XMLPlatformException is raised when an error related to XML platform is
encountered.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example 13–22 EJB JAR XML Exception

EXCEPTION [TOPLINK – 27001]: oracle.toplink.platform.xml.XMLPlatformException
EXCEPTION DESCRIPTION: The XML platform class ClassName was not found.

27001: XML_PLATFORM_CLASS_NOT_FOUND
Cause: The XML platform class ClassName was not found.

Action: Ensure that this class is on the classpath.

27002: XML_PLATFORM_COULD_NOT_INSTANTIATE
Cause: Failure to instantiate the XML platform ClassName.

Action: See the generated exception for the root cause.

27003: XML_PLATFORM_COULD_NOT_CREATE_DOCUMENT
Cause: The XML platform failed to create a new XML document.

Action: See the generated exception for the root cause.

27004: XML_PLATFORM_INVALID_XPATH
Cause: The XPath is invalid.

Action: See the generated exception for the root cause.

27005: XML_PLATFORM_VALIDATION_EXCEPTION
Cause: Error during the document validation.

Action: See the generated exception for the root cause.

27006: XML_PLATFORM_PARSER_ERROR_RESOLVING_XML_SCHEMA
Cause: Failure to resolve an XML Schema schema: XML platform parser error
occurred.

Action: See the generated exception for the root cause.

XML Platform Exceptions (27001 – 27006, 27101 – 27103, 27201 – 27202)

13-84 Oracle TopLink Developer’s Guide

27101: XML_PLATFORM_PARSE_EXCEPTION
Cause: Failure to parse the document.

Action: See the generated exception for the root cause.

27102: XML_PLATFORM_PARSER_FILE_NOT_FOUND_EXCEPTION
Cause: Failure to find the XML platform parser file.

Action: Ensure that the parser file exists and is accessible (on the classpath).

27103 XML_PLATFORM_PARSER_SAX_PARSE_EXCEPTION
Cause: SAX parser error at line lineNumber, URI uri.

Action: See the generated exception for the root cause.

27201: XML_PLATFORM_TRANSFORM_EXCEPTION
Cause: Error during the transforming of the document.

Action: See the generated exception for the root cause.

27202: XML_PLATFORM_INVALID_TYPE
Cause: Unknown type type encountered.

Action: See the generated exception for the root cause.

TopLink Workbench Error Reference 14-1

14
TopLink Workbench Error Reference

TopLink checks each project, descriptor, and mapping to ensure that you have
properly defined the required settings. Errors and warnings are displayed in the
Problems window (see "Using the Problems Window" on page 4-11).

You can also create a project status report (see "Generating the Project Status Report"
on page 18-12) that contains all errors in a specific project.

This chapter contains information on the following:

■ Oracle TopLink Workbench Error Messages:

– Miscellaneous Errors (1 – 89, 106 – 133), on page 14-1

– Project Errors (100 – 102), on page 14-3

– Descriptor Errors (200 – 399), on page 14-3

– Mapping Errors (400 – 483), on page 14-13

– Table Errors (500 – 610), on page 14-17

– XML Schema Errors (700 – 706), on page 14-23

– Session Errors (800 – 812), on page 14-23

■ Common Classpath Problems, on page 14-25

■ Data Source Problems, on page 14-25

Miscellaneous Errors (1 – 89, 106 – 133)
This section lists TopLink Workbench error codes, information about the likely Cause
of the problem, and a possible corrective Action.

13: No class indicator field should be defined for the abstract class [class].
Cause: Abstract classes should not be included or contain an Indicator Value on a
descriptor’s Inheritance tab.

Action: You must either remove the Include option for the class on the
Inheritance tab, or remove the abstract modifier option on the descriptor’s Class
Info – Class tab. See "Descriptors and Inheritance" on page 23-3 and Chapter 25,
"Configuring a Descriptor" on page 25-1.

54: No class indicator field is selected for this root class.
Cause: You selected the Use Class Indicator Field option for the root descriptor
in the inheritance hierarchy, but did not specify an indicator field for the root and
its children.

Miscellaneous Errors (1 – 89, 106 – 133)

14-2 Oracle TopLink Developer’s Guide

Action: Use the Field Selection list on the Inheritance tab for the root class. See
"Descriptors and Inheritance" on page 23-3 and Chapter 25, "Configuring a
Descriptor" on page 25-1.

55: No class indicator value is defined for this included descriptor [class]
Cause: You selected the Use Class Indicator Dictionary option for the root
descriptor in the inheritance hierarchy, but did not specify an indicator value for
the root and its children.

Action: Use the Indicator Type list on the Inheritance tab for the root class. See
"Descriptors and Inheritance" on page 23-3 and Chapter 25, "Configuring a
Descriptor" on page 25-1.

89: Root class does not include an indicator mapping for this descriptor.
Cause: The root class in the inheritance hierarchy is set to the Use Class Indicator
Dictionary option. The dictionary does not contain an indicator value for this
child class.

Action: Select an Indicator Type on the Inheritance tab of the root class that
includes the child types. See "Descriptors and Inheritance" on page 23-3 and
Chapter 25, "Configuring a Descriptor" on page 25-1.

106: Mulitple mapping [mappings] write to the database field [db field] .
Cause: One database field is populated by more than one mapping

Action: Ensure the "one mapping per field" ratio for write operations.

118: The selected parent descriptor for this descriptor's inheritance policy does not
have an associated inheritance policy.
Cause: Missing descriptor’s inheritance policy.

Action: Ensure that the descriptor you are using has a valid associated inheritance
policy (InheritancePolicy). See "Descriptors and Inheritance" on page 23-3
and "Configuring Inheritance for a Parent (Root) Descriptor" on page 25-52.

123: This root class has no class indicator mappings for its hierarchy.
Cause: You created an inheritance policy with the Use Class Indicator Dictionary
option but did not specify the indicator values for all subclasses.

Action: Specify the indicator values for all subclasses on the descriptor’s
Inheritance tab. See "Descriptors and Inheritance" on page 23-3 and "Configuring
Inheritance for a Child (Branch or Leaf) Class Descriptor" on page 25-51.

126: Writable mappings defined for the class indicator field [field name].
Cause: You selected the Use Class Indicator Field option for the root descriptor
in the inheritance hierarchy, but the mappings for this field are writable.

Action: Select a Use Class Indicator Field on the descriptor’s Inheritance tab that
does not contain any writable mappings. See the following:

■ "Descriptors and Inheritance" on page 23-3

■ Chapter 25, "Configuring a Descriptor" on page 25-1

■ "Configuring Inheritance for a Child (Branch or Leaf) Class Descriptor" on
page 25-51

Note: TopLink displays a list of each subclass and indicator value
if you have identified the subclasses’ parent descriptor.

Descriptor Errors (200 – 399)

TopLink Workbench Error Reference 14-3

■ "Configuring Inherited Attribute Mapping in a Subclass" on page 25-58

132: The implemented interface [interface] is not an interface.
Cause: You selected a noninterface (a class) as an implemented interface.

Action: Ensure that you select an interface. See "Descriptors and Inheritance" on
page 23-3 and Chapter 25, "Configuring a Descriptor" on page 25-1.

133: The superclass for [class] is an interface, classes cannot extend interfaces.
Cause: You selected an interface instead of a class as a parent for your child class.

Action: Use the Inheritance tab for the root class. See "Descriptors and
Inheritance" on page 23-3 and Chapter 25, "Configuring a Descriptor" on
page 25-1.

Project Errors (100 – 102)
This section lists TopLink Workbench project errors.

100: The project caches all statments by default for queries, but does not bind all
parameters.
Cause: A named query that caches statements must also bind parameters.

Action: On the Named Queries – Options tab, change the Cache Statement field
to False, or change the Bind Parameters field to True. See "Configuring Named
Query Options" on page 25-22.

101: The project uses a custom sequence table, but the counter field is not specified.
Cause: On the project’s Sequencing tab, you selected Use Custom Sequence
Table, but did not complete the Counter Field field.

Action: Select the field to use as the Counter Field for this sequence table. See
"Configuring Sequencing at the Project Level" on page 20-3 for details.

102: The project uses a custom sequence table, but the name field is not specified.
Cause: On the project’s Sequencing tab, you selected Use Custom Sequence
Table, but did not complete the Name Field field.

Action: Select the field to use as the Name Field for this sequence table. See
"Configuring Sequencing at the Project Level" on page 20-3 for details.

Descriptor Errors (200 – 399)
This section lists TopLink Workbench descriptor errors.

200: The descriptor’s class is not public.
Cause: The descriptor must use a public access modifier.

Action: On the descriptor’s Class Info – Class tab, change the Access Modifier
option to Public. See "Configuring Classes" on page 4-41 and "Configuring Class
Modifiers" on page 4-42.

201: This class is a subclass of a final class.
Cause: If you select the Final option on the descriptor’s Class Info – Class tab for
a class, then the class cannot contain subclasses.

Action: See "Configuring Classes" on page 4-41 and "Configuring Class
Information" on page 4-41.

210: Two methods [method name1] [method name2] cannot have the same signature.

Descriptor Errors (200 – 399)

14-4 Oracle TopLink Developer’s Guide

Cause: You created methods with identical signatures.

Action: On the Class Info – Methods tab, change the information for one of the
methods. See "Configuring Classes" on page 4-41 and "Adding Methods" on
page 4-47.

211: The format for [date] must be in the format HH-MM-SS or HH:MM:SS. Literal
argument of expression [line number] on query [query name] is invalid.
Cause: You attempted to use an invalid argument on a query.

Action: Use HH-MM-SS or HH:MM:SS format. See "Type Conversion Converter"
on page 30-11 and "Configuring a Type Conversion Converter" on page 32-20.

212: The format for [date] must be in the format YYYY/MM/DD HH:MM:SS or
YYYY-MM-DD HH:MM:SS. Literal argument of expression [line number] on
query [query name] is invalid.
Cause: You attempted to use an invalid argument on a query.

Action: Use YYYY/MM/DD HH:MM:SS or YYYY-MM-DD HH:MM:SS format.
See "Type Conversion Converter" on page 30-11 and "Configuring a Type
Conversion Converter" on page 32-20.

213: The format for [date] must be in the format YYYY/MM/DD or YYYY-MM-DD.
Literal argument of expression [line number] on query [query name] is invalid.
Cause: You attempted to use an invalid argument on a query.

Action: Use YYYY/MM/DD or YYYY-MM-DD format. See "Type Conversion
Converter" on page 30-11 and "Configuring a Type Conversion Converter" on
page 32-20.

214: The format for [date] must be in the format YYYY/MM/DD HH:MM:SS,
YYYY/MM/DD, or YYYY-MM-DD. Literal argument of expression [line number]
on query [query name] is invalid.
Cause: You attempted to use an invalid argument on a query.

Action: Use YYYY/MM/DD HH:MM:SS, YYYY/MM/DD, or YYYY-MM-DD
format. See "Type Conversion Converter" on page 30-11 and "Configuring a Type
Conversion Converter" on page 32-20.

215: The format for [argument] must be an even length HEX string. Literal argument
of expression [line number] on query [query name] is invalid.
Cause: You attempted to use an invalid argument on a query.

Action: Use HEX format. See "Type Conversion Converter" on page 30-11.

216: The format for [argument] must be a string. Literal argument of expression [line
number] on query [query name] is invalid.
Cause: You attempted to use an invalid argument on a query.

Action: Use a String. See "Type Conversion Converter" on page 30-11.

217: Literal argument of expression [line number] on query [query name] is invalid.
The format is illegal.
Cause: You attempted to use an invalid argument on a query.

Action: Use a valid format.

220: An aggregate shared by multiple source descriptors cannot have one-to-many or
many-to-many mappings.
Cause: You attempted to create multiple one-to-many and many-to-many, or
one-to-one mappings in which the target is the aggregate. Aggregate descriptors

Descriptor Errors (200 – 399)

TopLink Workbench Error Reference 14-5

that are shared by multiple source descriptors cannot have mappings that contain
a target object that references the descriptor.

Action: For aggregate descriptors that are shared by multiple source descriptors,
remove mappings that contain a target object that references the descriptor. See
Part VIII, "Descriptors" and "Relational Aggregate Descriptors" on page 24-2.

221: Classes cannot reference an aggregate target with one-to-one, one-to-many, or
many-to-many mappings.
Cause: You tried to select an aggregate descriptor as a reference.

Action: Do not select an aggregate descriptor as the Reference Descriptor for a
one-to-one, one-to-many, or many-to-many mapping. See Part VIII, "Descriptors"
and "Relational Aggregate Descriptors" on page 24-2.

225: The implementor [implementor name] no longer implements this interface.
Cause: One descriptor listed as an implementation method for this interface
descriptor no longer implements this descriptor’s interface.

Action: Either remove the descriptor from the list of implementation methods or
alter the descriptor’s class so that it implements this descriptor’s interface. See
Part VIII, "Descriptors" and "Relational Interface Descriptors" on page 24-2.

230: No primary table is specified.
Cause: The descriptor is not associated with a database table.

Action: On the descriptor’s Descriptor Info tab, use the Associated Table field to
select a primary table. See "Configuring Associated Tables" on page 26-2.

231: No primary key(s) specified in [table name] table.
Cause: You did not specify a primary key for each database table. When
importing tables from a database into TopLink Workbench, the primary key
information will be retained only if the JDBC driver supports the
getPrimaryKeys method.

Action: Ensure that a primary key is specified for each descriptor on the
Descriptor Info tab. See "Configuring Associated Tables" on page 26-2.

232: The following primary key field is unmapped [field name].
Cause: The primary key field does not have a writable mapping.

Action: Ensure that the primary key(s) are mapped. See "Configuring Associated
Tables" on page 26-2.

233: The number of primary keys does not match the number of primary keys on the
parent.
Cause: In an inheritance hierarchy, the child class does not have the same number
of primary keys as the parent class.

Action: Ensure that the parent and child class have the same number of primary
keys on the descriptor’s Descriptor Info tab. See "Configuring Associated Tables"
on page 26-2.

234: The primary keys do not match parent’s primary keys.
Cause: In an inheritance hierarchy, the child’s primary key(s) does not match the
root’s primary key(s).

Action: Ensure that each child’s Primary Key on the Descriptor Info tab matches
the parent’s primary key. Ensure that the parent and child class have the same
primary keys on the descriptor’s Descriptor Info tab. See "Configuring Associated
Tables" on page 26-2.

Descriptor Errors (200 – 399)

14-6 Oracle TopLink Developer’s Guide

235: The following primary field field does not have writable mappings: [field
name].
Cause: You attempted to have multiple mappings write to the same database
field.

Action: Ensure that each database field has a single, writable mapping. See
Chapter 26, "Configuring a Relational Descriptor".

236: No sequence field is selected.
Cause: You selected Use Sequencing on a descriptor’s Descriptor Info tab, but
did not specify the sequence information.

Action: Specify a Name, Table, and Field. See "Configuring Sequencing at the
Descriptor Level" on page 26-3.

237: No sequence name is selected.
Cause: You selected Use Sequencing on a descriptor’s Descriptor Info tab but
did not specify the sequence information.

Action: Specify a Name, Table, and Field. See "Configuring Sequencing at the
Descriptor Level" on page 26-3.

238: No sequence table is selected.
Cause: You selected Use Sequencing on a descriptor’s Descriptor Info tab but
did not specify the sequence information.

Action: Specify a Name, Table, and Field. See "Configuring Sequencing at the
Descriptor Level" on page 26-3.

239: The selected sequence table is not one of the descriptor’s associated tables.
Cause: The tabled used for sequencing is not associated with the descriptor.

Action: You must either associate the sequencing table with the descriptor, or
select a table that is already associated with the descriptor. See"Configuring
Sequencing at the Descriptor Level" on page 26-3 and "Configuring Associated
Tables" on page 26-2.

240: Two queries [query name1] [query name2] cannot have the same signature.
Cause: Two queries for this descriptor share the same signature (query name +
parameter names). This is not allowed.

Action: You must either remove one of the queries, rename one of the queries, or
change the parameters so that the signatures no longer match.

241: The query [query name] has Cache Statement set to true, but does not bind
parameters.
Cause: A named query that caches statements does not bind parameters. It must
do so.

Action: On the Named Queries – Options tab, either change the Cache
Statements field to False, or change the Bind Parameters field to True. See
"Configuring Named Query Options" on page 25-22.

242: The query [query name] does not maintain cache but does refresh the remote
identity map results.
Cause: The query has Refresh Remote Identity Map selected, but does not have
Maintain Cache selected.

Descriptor Errors (200 – 399)

TopLink Workbench Error Reference 14-7

Action: You must either select Maintain Cache for the descriptor, or deselect
Refresh Remote Identity Map. See "Configuring Named Query Options" on
page 25-22.

243: The query [query name] does not maintain cache but does refresh the identity
map results.
Cause: The query has Refresh Identity Map selected but does not have Maintain
Cache selected.

Action: You must either select Maintain Cache for the descriptor, or deselect
Refresh Identity Map. See "Configuring Named Query Options" on page 25-22.

245: The query [query name] refreshes identity map results but does not refresh
remote identity map results.
Cause: Refresh Identity Map Results is selected for the query, but Refresh
Remote Identity Map Results is not.

Action: You must either select Refresh Remote Identity Maps or deselect
Refresh Identity Maps. See "Configuring Named Query Options" on page 25-22.

246: The query key [query key] does not have an associated database field.
Cause: The query key is missing an associated database field. Each query key
must be associated with a database field.

Action: On the Query Keys tab, use the Field option to select a database field for
the query key. See "Configuring Query Keys" on page 25-30.

247: The database field selected for query key [query key] does not exist on this
descriptor's associated tables.
Cause: The database field selected for this query key does not exist on this
descriptor’s associated tables. Each database field associated with a query key
must exist on database table associated with the query key’s descriptor.

Action: You must either change the database field associated with the query key,
or associate the descriptor with a database table that includes the database field
associated with the query key. See "Configuring Query Keys" on page 25-30.

248: The expression [line number] on query [query name] is invalid because a
parameter has not been specified.
Cause: One of the arguments in the query expression is missing or invalid.

Action: Edit the query and ensure that all query keys and parameters have been
specified. See "Configuring Query Keys" on page 25-30.

249: The expression [line number] on query [query name] is invalid because a query
key has not been specified.
Cause: One of the arguments in the query expression is missing or invalid.

Action: Edit the query and ensure that all query keys and parameters have been
specified. See "Configuring Query Keys" on page 25-30.

250: The expression [line number] on query [query name] is invalid because the
chosen query key is not a valid mapping type in an expression.
Cause: One of the arguments in the query expression is invalid.

Action: Edit the query and ensure that all query keys and parameters have been
specified. See "Configuring Query Keys" on page 25-30.

251: The expression [line number] on query [query name] is invalid. When querying
on a reference mapping, only unary operators (Is Null, Not Null) are supported.

Descriptor Errors (200 – 399)

14-8 Oracle TopLink Developer’s Guide

Cause: You created an expression node that includes a reference mapping with an
invalid operator.

Action: On the Expression Builder dialog box, select the node and change the
Operator field to IS NULL or NOT NULL.

252: The query [query name] has no attribute chosen for the ordering attribute at
index [index].
Cause: To be determined.

Action: To be determined.

253: The ordering attribute {0} for query {1} is not valid. ReadAllQuery ordering
items must be either query keys or direct mappings.
Cause: To be determined.

Action: To be determined.

254: The query {0} has no attribute chosen for the joined attribute at index {1}.
Cause: To be determined.

Action: To be determined.

255: The joined attribute {0} for query {1} is not valid. Joined attributes must be 1-1
or 1-many mappings.
Cause: To be determined.

Action: To be determined.

256: The query {0} has no attribute chosen for the batch read attribute at index {1}
Cause: To be determined.

Action: To be determined.

257: The batch read attribute {0} for query {1} is not valid. Batch read attributes must
be 1-1, 1-m, m-m, direct collection, or direct map mappings.
Cause: To be determined.

Action: To be determined.

258: The query {0} has no attribute chosen for the grouping attribute at index {1}.
Cause: To be determined.

Action: To be determined.

259: The query {0} has no attribute chosen for the report attribute {1}.
Cause: To be determined.

Action: To be determined.

260: The report attribute {0} for query {1} is not valid. Report query attributes must
be either query keys or direct mappings.
Cause: To be determined.

Action: To be determined.

261: The expression [line number] on query [query name] is invalid. When querying
on a reference mapping, only unary operators (Is Null, Not Null) are supported.
Cause: To be determined.

Action: To be determined.

Descriptor Errors (200 – 399)

TopLink Workbench Error Reference 14-9

263: The format for {2} must be either 'true' or 'false'. Literal argument of expression
(line {0}) on query {1} is invalid.
Cause: To be determined.

Action: To be determined.

264: The format for {2} must be a single character. Literal argument of expression
(line {0}) on query {1} is invalid.
Cause: To be determined.

Action: To be determined.

265: The format for {2} must be between {3} and {4}. Literal argument of expression
(line {0}) on query {1} is invalid.
Cause: To be determined.

Action: To be determined.

266: The format for {2} must be a string. Literal argument of expression (line {0}) on
query {1} is invalid.
Cause: To be determined.

Action: To be determined.

267: The format for {2} must contain only digits, '-', and '.'. Literal argument of
expression (line {0}) on query {1} is invalid.
Cause: To be determined.

Action: To be determined.

268: The format for {2} must contain only digits, '-', and '.'. Literal argument of
expression (line {0}) on query {1} is invalid.
Cause: To be determined.

Action: To be determined.

269: The format for {2} must be in the format YYYY/MM/DD or YYYY-MM-DD.
Literal argument of expression (line {0}) on query {1} is invalid.
Cause: To be determined.

Action: To be determined.

270: No schema context is specified.
Cause: Each descriptor in an XML or EIS project must be associated with an XML
schema context.

Action: Select the EIS or XML descriptor in the Navigator and complete the
Schema Context field on the Descriptor Info tab.

271: The descriptor represents a document root object, but no default root element is
chosen.
Cause: Each root descriptor must have a default root element.

Action: On the descriptor’s Descriptor Info tab, complete the Default Root
Element field.

280: A descriptor that represents \"anyType\" cannot support inheritance.
Cause: To be determined.

Action: To be determined.

Descriptor Errors (200 – 399)

14-10 Oracle TopLink Developer’s Guide

281: A descriptor that represents \"anyType\" may contain only a single Any
(Object or Collection) mapping.
Cause: To be determined.

Action: To be determined.

290: No primary keys specified.
Cause: Although you have associated the descriptor with a database table, you
have not identified the primary keys.

Action: Use the Primary Keys area of the descriptor’s Descriptor Info tab to
select the primary keys for the descriptor.

291–304: The event policy’s [method type] method is no longer a visible member of
this descriptor’s associated class.
Cause: You changed the class hierarchy within the project, causing the method to
no longer be visible to the class.

Action: Ensure that the selected method is visible to the class.

305: The write-lock field is stored in an object, but there is not a writable mapping
to the field.
Cause: If the write lock field is stored in object, there must be a non-read-only
mapping to it.

Action: On the mapping’s General tab, ensure that Read-Only is not selected.

306: Database fields specified for Selected Fields type Locking Policy must be
mapped: [field name]
Cause: You selected an unmapped database field for a descriptor’s locking policy.

Action: On the descriptor’s Locking tab, ensure that you have selected a mapped
database field as the Selected Field. See "Configuring Locking Policy" on
page 25-64.

307: Database fields specified for Selected Fields type Locking Policy must not be
primary key fields: [field name]
Cause: The database fields you selected for the optimistic locking policy (by
fields) contains the primary keys for the database table.

Action: In the By Fields area of the descriptor’s Locking tab, select different
fields. See "Configuring Locking Policy" on page 25-64.

308: Version locking is chosen as the Locking Policy, but the field is not specified.
Cause: If you select to use version locking with an optimistic locking policy, you
must identify which database field to use for version control.

Action: Use the Database Field field on the descriptor’s Locking tab to select a
field to use for version control. See "Configuring Locking Policy" on page 25-64.

309: The Version Locking database field selected does not exist on this descriptor’s
associated tables.
Cause: The database field you selected for optimistic version locking does not
exist on the descriptor’s associated table.

Action: You must either select a different database field on the descriptor’s
Locking tab, or associate the descriptor with a different database table. See
"Configuring Locking Policy" on page 25-64.

 310: Database fields specified for Selected Fields type Locking Policy do not exist
on this descriptor's associated tables: [field name]

Descriptor Errors (200 – 399)

TopLink Workbench Error Reference 14-11

Cause: The database fields you selected for the optimistic locking policy (by
fields) do not exist on the descriptor’s associated table.

Action: You must either select a different database field on the descriptor’s
Locking tab, or associate the descriptor with a different database table. See
"Configuring Locking Policy" on page 25-64.

311: The method you have specified for the instantiation policy's method on this
descriptor is no longer a visible member of this class.
Cause: The method selected as the instantiation method has either been removed,
or its visibility has been reduced so that it is no longer publicly visible.

Action: Deselect this method as the instantiation method. See "Configuring
Locking Policy" on page 25-64.

312: The method you have specified for the instantiation policy’s factory
instantiation method on this descriptor is no longer a visible member of this
class.
Cause: The method selected as the factory instantiation method has either been
removed, or its visibility reduced so that it is no longer publicly visible.

Action: Deselect this method as the factory instantiation method. See
"Configuring Instantiation Policy" on page 25-70.

313: The method you have specified for the instantiation policy's factory method on
this descriptor is no longer a visible member of this class.
Cause: The method selected as the factory method has either been removed, or its
visibility reduced so that it is no longer publicly visible.

Action: Deselect this method as the factory method. See "Configuring
Instantiation Policy" on page 25-70.

314: "Use factory" is specified for the Instantiation policy, but all required
information is not specified.
Cause: You selected the Use Factory option on the descriptor’s Instantiation
Policy tab, but did not specify the Factory Class, Factory Method, or Instantiation
Method fields.

Action: Complete the Factory Class, Factory Method, or Instantiation Method
fields on the descriptor’s Instantiation tab. See "Configuring Instantiation Policy"
on page 25-70.

315: "Use method" is selected for the Instantiation policy, but no method is selected.
Cause: You selected the Use Method option on the descriptor’s Instantiation
Policy tab, but did not specify the field.

Action: Select the Method on the descriptor’s Instantiation tab. See "Configuring
Instantiation Policy" on page 25-70.

 316: The class does not have an accessible zero argument constructor.
Cause: No accessible zero argument constructor exists for the class associated
with this descriptor.

Action: Make the zero argument constructor accessible if it exists, or create a
accessible zero argument constructor if it doesn't exist.

317: No method was specified for the copying policy.
Cause: You specified that the descriptor should use a specific clone method for
copying, but you did not select a method.

Descriptor Errors (200 – 399)

14-12 Oracle TopLink Developer’s Guide

Action: Complete the Use Clone Method field on the descriptor’s Copying tab to
select a method.

318: The method specified for the copy policy on this descriptor is no longer a
visible member of this class.
Cause: You changed the class hierarchy within the project, causing the copy
policy to no longer be visible to the class.

Action: Ensure that the copy policy is visible to the class.

319: Primary keys do not match across associated tables and no reference(s)
specified in multiple table policy information.
Cause: You attempted to associate multiple tables using a primary key.

Action: Primary key field names must match across associated tables, or
references must be defined from the base table to each derived table.

320: The multiple table reference should be defined from the base table [table
name] to the derived table.
Cause: This descriptor has Inheritance and Multitable advanced properties
defined on it.

Action: The multiple table relationship that is defined between the base class'
table and this derived class' table must be defined from base to derived.

321: The multiple table reference should not be defined on the database.
Cause: When using multitables with differently named primary keys, you must
set a reference from the TOP table to the BOTTOM table. This reference must not
be an actual constraint on the database.

Action: Select the table in which this is defined, and deselect the On Database
option.

 322: A class containing the desired after loading method should be specified.
Cause: You added an after-load method to a descriptor, but you did not specify a
class.

Action: Complete the After Load tab. See "Configuring Amendment Methods" on
page 25-81.

 323: An after-load method must be specified.
Cause: You added an after-load method to a descriptor, but did not select an
amendment method.

Action: Complete the After Load tab. See "Configuring Amendment Methods" on
page 25-81.

324: An interface class must be specified for the interface alias.
Cause: You added an interface alias to a descriptor, but did not select an
amendment method.

Action: Complete the Interface Alias tab.

325: The inheritance hierarchy originating in this descriptor cannot contain both
aggregate and nonaggregate child descriptors.
Cause: Aggregate and class descriptors cannot be in the same inheritance
hierarchy.

Action: Ensure that the inheritance hierarchy contains either aggregate or
nonaggregate children, but not both.

Mapping Errors (400 – 483)

TopLink Workbench Error Reference 14-13

 326: The inheritance hierarchy originating in this descriptor cannot contain both
root and composite child descriptors.
Cause: There is a mixture of root and composite descriptors among the
descendents of this descriptor.

Action: Make all descendents of this descriptor the same type by either making
them all root, or making them all composite. You can do this by removing the
differing descriptor from the hierarchy, or changing their type to be consistent
with the other descriptors in the hierarchy.

330: The returning policy insert fields do not exist on this descriptor's associated
tables: [field name]
Cause: The field you selected on the descriptor’s Returning tab does not exist on
the database table associated with the descriptor.

Action: Select a different database table in the Insert area of the descriptor’s
Returning tab.

 331: The returning policy update field [field name] does not exist on this
descriptor's associated tables.
Cause: The field you selected on the descriptor’s Returning tab does not exist on
the database table associated with the descriptor.

Action: Select a different database table in the Update area of the descriptor’s
Returning tab.

 350: Descriptors with Unknown Primary Keys must use sequencing.
Cause: Unknown Primary Key Class is selected for this descriptor, but the
descriptor does not use sequencing.

Action: Change the descriptor so that it uses sequencing, or so that it no longer
uses an unknown primary key class.

Mapping Errors (400 – 483)
This section lists TopLink Workbench mapping errors.

400: Method accessors have not been selected.
Cause: You selected Use Method Accessing for a mapping, but you did not select
a method.

Action: You must select a Get and Set method on the mapping’s General tab. See
"Configuring Method Accessing" on page 32-14.

401, 402: The [get/set access method] method for this mapping’s method accessing
field is no longer visible to this descriptor.
Cause: You changed the class hierarchy within the project, causing the method
access type (get or set) to no longer be visible to the class.

Action: Ensure that the selected method is visible to the class.

403: Mappings for EJB 2.0 CMP descriptors that use Value Holder Indirection must
not use method accessing.
Cause: You cannot use method accessing on mappings for EJB 2.0 CMP
descriptors that use ValueHolder Indirection.

Action: Because EJB attributes are code-generated, reference mappings should not
be set to use method access. The attributes are code-generated to be of type
ValueHolder but the abstract methods are defined to return the local interface
type of the related bean.

Mapping Errors (400 – 483)

14-14 Oracle TopLink Developer’s Guide

404: Mapping references a write-lock field, but it is not read-only.
Cause: You specified a locking policy for a descriptor, but one of the attribute
mappings is not read-only.

Action: Select the Read Only option on the mapping’s General tab.

410: No direct field is specified.
Cause: For direct collection mappings, you must specify the direct collection
information.

Action: Select a Target Table and Direct Field that the direct collection specifies.

 415: No direct key field is specified.
Cause: For direct map mappings, you must specify a direct key field in the
reference table that stores the primitive data value of the map key.

Action: On the direct map mapping’s General tab, select a Direct Key Field. See
"Configuring Direct Key Field" on page 44-2.

420: No database field is selected.
Cause: You created a direct-to-field or type conversion mapping without selecting
a database field.

Action: For attributes with direct-to-field mappings, you must specify a Database
Field on the mapping’s General tab. For attributes with type conversion
mappings, you must specify a Database Field on the mapping’s General tab.

 421: The selected database field does not exist on this descriptor's associated tables.
Cause: The database field mapped to an attribute is not included in the table
associated with the attribute’s descriptor.

Action: Ensure that the Database Field field on a mappings General tab is
included in the table that you associated with the attribute’s descriptor. See
"Configuring Associated Tables" on page 26-2 and "Configuring a Database Field"
on page 34-2.

430, 431: No null value type has been selected.
Cause: You selected to Use Default Value When Database Field is Null for a
mapping, but did not specify the value.

Action: Specify a default Type or Value, or both on the mapping’s General tab.
See "Configuring a Default Null Value at the Mapping Level" on page 32-12.

This message may also appear after using the Package Rename tool when
upgrading an older TopLink Workbench project.

 440: XML type mappings are supported only on the Oracle9i Platform.
Cause: You created a Direct to XML Type mapping in relational project that uses
a non-Oracle9i database.

Action: Select an Oracle9i platform as the database platform for the data source.
See "Configuring Relational Database Platform at the Project Level" on page 20-2.

450: No reference descriptor is selected.
Cause: You created a mapping, but did not specify the reference descriptor

Action: You must select a Reference Descriptor for each relationship mapping on
the mapping’s General tab.

451: [descriptor name]references [descriptor name], which is not active.

Mapping Errors (400 – 483)

TopLink Workbench Error Reference 14-15

Cause: You tried to select an inactive descriptor as a Reference Descriptor on the
mapping’s General tab.

Action: You must either select a new Reference Descriptor, or make the
descriptor active.

460: No table reference is selected.
Cause: You created a relationship mapping, but did not specify a reference table.

Action: Select (or create) a table reference for each relationship mapping on the
mapping’s Table Reference tab.

 461: Table reference is invalid.
Cause: The table reference selected for this mapping is invalid.

Action: Select a different table reference for this mapping.

462: The reference [table reference] does not have any field associations.
Cause: You selected a table reference for a mapping, but did not add a key pair.

Action: You must specify source and target key pairs for the reference.

463: A key pair has not been completely specified for a reference.
Cause: You created a table reference without a key pair.

Action: You must specify a foreign key reference for the database table. Use the
database table’s Reference tab to add a key pair.

 464: No relationship partner is specified.
Cause: You selected the Maintains Bidirectional Relationship option for a
relationship mapping, but did not select a mapping to use as the relationship
partner.

Action: Select a mapped attribute (from the reference descriptor) for this
relationship. See "Configuring Bidirectional Relationship" on page 32-34.

 465: The relationship partner must be a one-to-one, one-to-many, or many-to-many
mapping.
Cause: You selected an invalid attribute as the Relationship Partner in a
bidirectional relationship.

Action: In the Relationship Partner field, select a one-to-one, one-to-many, or
many-to-many mapping. See "Configuring Bidirectional Relationship" on
page 32-34.

 466: The specified relationship partner mapping does not specify this mapping as
its own relationship partner.
Cause: Maintains Bidirectional Relationship is selected for this mapping, but the
mapping selected as the relationship partner does not have this mapping selected
as its relationship partner.

Action: You must either select a different mapping for this mappings relationship
partner, which has this mapping selected as it bidirectional relationship partner, or
select this mapping as the bidirectional relationship partner of the mapping
selected as the bidirectional relationship partner for this mapping.

 467: The chosen reference descriptor is not a valid reference descriptor for this
mapping.
Cause: The descriptor selected as the reference descriptor for this mapping is not
a valid reference descriptor.

Mapping Errors (400 – 483)

14-16 Oracle TopLink Developer’s Guide

Action: Select a valid reference descriptor for this mapping.

 470: No container class is selected.
Cause: No container class has been selected for this collection mapping.

Action: Select a Container class for this Collection mapping.

 471: The container policy uses a Collection class, but the container class is not a
Collection.
Cause: The selected container class for this collection mapping is not a Collection,
but Use Collection Class is selected.

Action: Select a Container class that is a Collection for this mapping.

 472: The container policy uses a Map class, but the container class is not a Map.
Cause: The selected Container class for this Collection mapping is not a Map
class, but Use Map Class is selected.

Action: Select a Container class that is a Map class.

 473: The container class must be instantiable.
Cause: The selected Container class for this Collection mapping is not
instantiable.

Action: Select a Container class this is instantiable, (not an Interface,
Abstract class, or Primitive class).

 474: The container class does not agree with the instance variable.
Cause: The selected Container class for this Collection mapping, does not
agree with the instance variable that is associated with the mapping. Either the
variable is a Map class and the selected Container class is a Collection or vice
versa.

Action: You must either select a Container class that agrees with the type of
instance variable with which it is associated, or change the instance variable to
agree with the selected Container class.

 475: The container class is a Map, but the key method is not selected.
Cause: Use Map Class is selected for the Container policy for this Collection
mapping, but a key method has not been selected.

Action: You must either select a key method for this Container policy, or
change the Container policy to not use a map class.

4 76: The key method specified for this mapping is no longer visible to the owning
descriptor's class.
Cause: The selected key method for the Container policy for this Collection
mapping policy is not visible to the descriptor’s class.

Action: You must either select a different method that is visible to the descriptor's
class, or change the selected method so that it is visible.

 477: The key method specified for this mapping is not valid.
Cause: The selected key method for the Container policy for this Collection
mapping is invalid because it does not have the correct return type, or it does not
accept more than zero parameters.

Action: You must either select a different method that is valid, or change the
selected method so that it will return the correct type and accept more than zero
parameters.

Table Errors (500 – 610)

TopLink Workbench Error Reference 14-17

 478: One-to-Many and Many-to-Many mappings in EJB 2.0 CMP descriptors may
not use ValueHolder indirection.
Cause: A one-to-many or many-to-many mapping in an EJB 2.0 CMP descriptor is
using ValueHolder indirection.

Action: You must either change the mapping to use no indirection or
non-ValueHolder indirection.

480: No relation table is selected.
Cause: You created a many-to-many mapping, but did not specify a relation table.
The relation table represents the relationship between the primary keys of the
source table and target table.

Action: Select or create a Relation Table on the mapping’s General tab.

 481: The relation table is not dedicated to single, writable many-to-many mapping.
Cause: More than one many-to-many mapping in the project are using the same
relation table.

Action: Each relation table should be used in one and only one many-to-many
mapping.

482: No source reference is selected.
Cause: You created a many-to-many mapping, but did not select (or create) a
source table reference on the mapping’s Source Reference tab.

Action: The source table reference must contain a Source field (from the
mapping’s relation table) and a Target field (from one of the descriptor’s
associated tables).

483: No target reference is selected.
Cause: You created a many-to-many mapping, but did not select (or create) a
target table reference on the mapping’s Source Reference tab.

Action: The target table reference must contain a Source field (from the
mapping’s relation table) and a Target field (from one of the descriptor’s
associated tables).

Table Errors (500 – 610)
This section lists TopLink Workbench table errors.

500: You cannot use joining because the source and target (reference) descriptors are
the same type.
Cause: You selected the Use Joining option on a one-to-one mapping in which
the source and reference descriptors are the same.

Action: You must either deselect the Use Joining option or select a difference
Reference Descriptor on the One-to-One Mapping General tab.

510: No query key associations have been defined.
Cause: You created a variable one-to-one mapping, but did not define a key pair.

Action: Create or select a key pair on the mapping’s Query Key Association tab.

511: Not all query key associations have foreign key fields specified.
Cause: You created a query key association without a foreign key.

Action: You must specify a foreign key field for each query key association on the
Query Key Association tab for variable one-to-one mapping.

Table Errors (500 – 610)

14-18 Oracle TopLink Developer’s Guide

 512: The following specified query key names are no longer valid: [query key]
Cause: The query keys listed for this mapping no longer refer to the reference
descriptor for this mapping. The query keys are now invalid.

Action: You must either remove the invalid query keys, or change the reference
descriptor so that it corresponds with the query keys.

513: No indicator field is selected.
Cause: You created a variable one-to-one mapping, but did not specify a database
field in which to store indicator values.

Action: Select the Class Indicator Field on the Class Indicator Info tab.

514: No indicator values are specified.
Cause: You created a variable one-to-one mapping, but did not specify indicator
values for each object type.

Action: Select the Indicator Type on the Class Indicator Info tab.

515: [descriptor name] is not an implementor of the [descriptor name] interface, so it
cannot have an indicator value.
Cause: You included a descriptor on the Variable One-to-One Class Indicator
Info tab that is an implementor.

Action: Unselect the descriptor on the Variable One-to-One Class Indicator Info
tab or add the descriptor to the Implementor tab.

 516: The chosen reference descriptor is not an interface descriptor.
Cause: This variable one-to-one mapping has a reference descriptor selected
which is not an interface descriptor. The reference descriptor for a variable
one-to-one mapping must be an interface descriptor for the mapping to be valid.

Action: You must either choose a reference descriptor that is an interface
descriptor, or change the mapping to no longer be variable.

 520: No attribute transformer is specified.
Cause: No attribute transformer is specified for this transformation mapping.

Action: Select an attribute transformer for this transformation mapping.

 521: The attribute transformer class is missing.
Cause: No class has been specified for the attribute transformer for this
transformation mapping.

Action: Select a class for the attribute transformer.

 522: The attribute transformer class [class name] is not a valid transformer class.
Cause: The attribute transformer class that is selected is not a valid attribute
transformer class.

Action: Select a valid attribute transformer class for the transformation mapping.

 523: The attribute transformer method is missing.
Cause: No method has been selected for the attribute transformer for the
transformation mapping.

Action: Select a method for the attribute transformer.

 524: The attribute transformer method [method name] is not visible to the parent
descriptor’s class.

Table Errors (500 – 610)

TopLink Workbench Error Reference 14-19

Cause: The selected attribute transformer method is not visible to the descriptor
class for this mapping.

Action: You must either select a different method that is visible, or change the
method in the class to make it visible.

 525: The attribute transformer method [method name] is not a valid transformer
method.
Cause: The selected attribute transformer method either has the wrong return
type or accepts the wrong parameters to be a valid transformer method for this
transformation mapping.

Action: You must either select a method with the correct return type and
parameters, or change the selected method so that it meets these criteria.

 526: No field transformer associations are specified.
Cause: No field transformer association has been specified for this transformation
mapping.

Action: Specify at least one field transformer association.

 527: No transformer is specified for the field [field name].
Cause: No transformer specified for the given field.

Action: Specify a transformer for this field.

 528: There is a missing field in the field transformer association.
Cause: There is no field specified for a field transformer association for this
transformation mapping.

Action: Specify a field for all the field transformer associations for this
transformation mapping.

 529: There is a missing transformer class for the field [field name].
Cause: The Transformer class is specified for this field transformer association,
but the Transformer class is unspecified.

Action: Specify a Transformer class for the field transformer association for this
field.

 530: The transformer class [class name] for the field [field name] is not a valid
transformer class.
Cause: The specified Transformer class for the field of this field transformer
association is invalid.

Action: Specify a valid Transformer class for the field transformer association
for this transformation mapping.

 531: There is a missing transformer method for the field [field name].
Cause: A transformer method is specified for this field transformer association,
but the transformer method is unspecified.

Action: Specify a transformer method for the field transformer association for this
field.

 532: The transformer method [method name] for the field [field name] is not visible
to the parent descriptor’s class.
Cause: The specified transformer method for the field transformer association for
this field is not visible to the descriptor or the class of this mapping.

Table Errors (500 – 610)

14-20 Oracle TopLink Developer’s Guide

Action: You must either choose a method that is visible to the class, or change the
method so that it is visible.

 533: The field transformer method [method name] for the field [field name] is not a
valid transformer method.
Cause: The specified method for the field transformer association for this field
either has the incorrect return type, or accepts the wrong parameters.

Action: You must either select a method that has the correct return type and
parameters, or change the currently selected method so that is has the correct
return type and parameters.

540: No object type is selected.
Cause: You created an object type mapping, but did not select the type.

Action: You must select the Object Type and Database Type on the General tab
of the mapping.

542: No object-type mappings have been specified.
Cause: You created an object type mapping, but did not create n
object-to-database mapping.

Action: You must specify at least one mapping (Database Value and Object
Value) on the General tab of the mapping.

545: NCharacter, NString, and NClob database types are currently supported only
on the Oracle9i platform.
Cause: You attempted to map a database type that is not supported by your
database.

Action: The database type for a type conversion mapping or direct-to-field
mapping can be NCharacter, NString, or NCLOB only if you are using an
Oracle9i database.

550: Attribute is typed as a ValueHolderInterface, but the mapping does not use
Value Holder Indirection.
Cause: You did not specify indirection or transparent indirection for the mapping.

Action: If the class attribute is of type ValueHolderInterface, you must use
ValueHolder indirection for the mapping.

551: Mapping uses ValueHolder Indirection, but its associated attribute is not a
ValueHolderInterface.
Cause: You selected indirection without a ValueHolderInterface.

Action: If you select the Use Indirection (ValueHolder) option for a one-to-many,
many-to-many, or direct collection mapping, the associated class attribute must be
ValueHolderInterface.

 560: The container class for this mapping must implement
oracle.toplink.indirection.IndirectContainer.
Cause: This mapping uses transparent indirection, but the Container class
selected for its container policy is not an IndirectContainer.

Action: You must either select a Container class that is an
IndirectContainer, or remove transparent indirection from the mapping.

 570: The chosen reference descriptor is not an aggregate descriptor.
Cause: This is an aggregate mapping, but the selected reference descriptor is not
an aggregate descriptor.

Table Errors (500 – 610)

TopLink Workbench Error Reference 14-21

Action: You must either select a reference descriptor for this mapping that is an
aggregate descriptor, or change this mapping to no longer be an aggregate
mapping.

571: Aggregate fields are not specified.
Cause: You created an aggregate mapping without specifying specific fields.

Action: Every Field Description on the Fields tab must contain a unique Field for
aggregate mappings.

572: Aggregate mapping fields must be unique.
Cause: You created an aggregate mapping without specifying unique fields.

Action: Every Field Description on the Fields tab must contain a unique Field for
aggregate mappings.

 573: The selected field does not exist on this descriptor's associated tables.
Cause: The field selected for one of the aggregate-path-to-fields for this aggregate
mapping does not exist on any of the descriptor's associated tables.

Action: You must either select a different field for the path-to-field, or add the
field to the appropriate table.

 580: No XML field specified.
Cause: You mapped an attribute in an XML or EIS descriptor, but did not select
an XML field.

Action: You must complete the XML Field field on the General tab of the
mapping.

 581: The specified XPath is not valid within the current schema.
Cause: The XPath specified for this mapping does not resolve in the schema.

Action: You must either select a different XPath, or alter the schema so that this
XPath will resolve.

 582: The specified XPath does not represent text data.
Cause: The XPath specified for this direct mapping does not resolve to a direct
field in the schema.

Action: You must either select a different XPath, alter the schema so that this
XPath will resolve to a direct field, or change the mapping type.

 583: The specified XPath does not represent a single xml field.
Cause: The XPath specified for this mapping resolves to a field which is a
collection, but this is not a collection mapping.

Action: You must either select a different XPath, alter the schema so that this
XPath will resolve to a singular field, or change the mapping type.

 590: The chosen reference descriptor is not a root eis descriptor.
Cause: The reference descriptor selected for this EIS reference mapping is not a
root descriptor. Reference mappings in EIS descriptors must be root descriptors.

Action: You must either select a different reference descriptor for this mapping
which is a root descriptor, or change the mapping type.

 591: No relationship partner is specified.
Cause: This mapping has Maintains Bidirectional Relationship selected, but no
relationship partner is specified.

Table Errors (500 – 610)

14-22 Oracle TopLink Developer’s Guide

Action: You must either deselect Maintains Bidirectional Relationship, or select
a relationship partner.

 592: The relationship partner must be an EIS One-to-One or EIS One-to-Many
mapping.
Cause: The relationship partner selected for this mapping is not of the type EIS
one-to-one or EIS one-to-many.

Action: You must select an EIS one-to-one or EIS one-to-many mapping as the
relationship partner for this mapping, or deselect Maintains Bidirectional
Relationship.

 593: The specified relationship partner mapping does not specify this mapping as
its own relationship partner.
Cause: The mapping selected as the relationship partner for this mapping does
not have this mapping selected as its relationship partner. For these relationships
to be bidirectional, you must select the relationship partner for both mappings.

Action: You must either go to the mapping selected as the relationship partner for
this mapping and select this mapping as its relationship partner, or select a
different relationship partner mapping for this mapping to maintain this mapping
as its relationship partner.

 594: There is a missing source XML field.
Cause: No field has been specified as the source XML field for this mapping.

Action: You must specify a source XML field.

 595: There is a missing target XML field.
Cause: No field has been specified as the target XML field for this mapping.

Action: You must specify a target XML field.

 600: A foreign key grouping element is required if there are multiple field pairs.
Cause: No foreign key grouping element is specified for this mapping and
multiple field pairs.

Action: You must specify a foreign key grouping element.

 601: The foreign key grouping element does not contain all foreign keys fields.
Cause: The specified foreign key grouping element does not contain all the
foreign key fields.

Action: You must either remove the foreign key fields not contained in this
foreign key grouping element, or pick a foreign key grouping element that
contains all the foreign key fields.

 602: A delete all interaction is specified, but the mapping is not private owned.
Cause: A deleteall interaction is specified for this mapping, but the mapping
is not private owned.

Action: You must either make the mapping private owned, or remove the
deleteall interaction.

610: At least one field pair must be specified, unless the mapping has no selection
interaction and is read-only.
Cause: No field pairs are specified, and this mapping has a selection
interaction specified and/or is not read-only.

Action: You must either specify a field pair for the mapping, or make the
mapping read-only and remove the selection interaction.

Session Errors (800 – 812)

TopLink Workbench Error Reference 14-23

XML Schema Errors (700 – 706)
This section lists TopLink Workbench XML schema errors.

701: A database table can only have one IDENTITY column defined.
Cause: You defined more than one identity column for this table.

Action: On the database table’s Columns tab, leave only one identity (Identity)
column. See "Working With Column Properties" on page 4-25.

702: A size is required for the column [column].
Cause: You did not specify any size for this column. The default size is 0.

Action: On the database table’s Columns tab, specify the size (Size) for the
column (field). See "Working With Column Properties" on page 4-25.

703: The reference [table reference] does not have any field pairs.
Cause: You added a reference for a table, but the reference does not include a key
pair.

Action: On the database table’s References tab, specify source and target field
pairs for the table reference. See "Creating Table References" on page 4-26.

704: A key pair has not been completely specified for a reference.
Cause: A reference table is missing a complete key pair (source and target fields).

Action: You must specify a foreign key reference for the database table. On the
database table’s References tab, add a complete key pair. "Creating Table
References" on page 4-26.

705: A development login has not been specified.
Cause: You created a relational TopLink Workbench project, but did not specify a
development login.

Action: On the Database property sheet, select a Development Login from the
available defined logins, or add a new login. See "Configuring Development and
Deployment Logins" on page 20-6.

706: A deployment login has not been specified.
Cause: You created a relational TopLink Workbench project, but did not specify a
deployment login.

Action: On the Database property sheet, select a Deployment Login from the
available defined logins, or add a new login. See "Configuring Development and
Deployment Logins" on page 20-6.

Session Errors (800 – 812)
This section lists the TopLink sessions XML errors.

801: [session name] Login - The connection URL has to be specified.
Cause: You have not specified a connection URL for the session (when using a
database driver manager). Each session must have at least one login connection.

Action: On the session’s Login – Connection tab, complete the Driver URL field.
See "Configuring a Session Login" on page 74-4.

802: [session name] Login - The driver class has to be specified.
Cause: You have not specified a driver class for the session (when using a data
source database driver).

Session Errors (800 – 812)

14-24 Oracle TopLink Developer’s Guide

Action: On the session’s Login – Connection tab, complete the Driver Class field.
See "Configuring a Session Login" on page 74-4.

803: [session or connection pool name]Login - Login - The data source name has to
be specified.
Cause: You have not specified a driver class for the session login (when using a
J2EE data source database driver).

Action: On the session’s or connection pool’s Login – Connection tab, complete
the Data Source field. See "Configuring a Session Login" on page 74-4.

804: Login - Session Broker - It has to have at least one session, either a server or a
database session.
Cause: You created a session broker but did not add any sessions. Each session
broker must contain a session.

Action: On the session broker’s General – Sessions tab, select a session to add to
this broker. See Chapter 79, "Configuring Session Broker and Client Sessions".

805: [session name] Database Session - It has to have at least one XML file or a class
specified.
Cause: Your database session does not have a primary project (an associated
deployment XML file or Java class file).

Action: On the session’s Project – General tab, complete the Primary Project
field. See "Configuring a Primary Mapping Project" on page 74-2.

806: Login - The transport class has to be specified.
Cause: You selected a custom (user-defined) cache coordination type, but did not
specify the transport class for cache coordination.

Action: On the session’s Cache Coordination tab, complete the Transport Class
field, or select a different cache coordination type. See Chapter 88, "Configuring a
Coordinated Cache".

807: [session name] Login - The location of the log file has to be specified.
Cause: You are using standard logging and selected to have the log saved to a file,
but did not select a file name and location.

Action: On the session’s Logging tab, complete the Log Location field. See
"Configuring Logging" on page 74-4.

811: [session or broker name] - An external transaction controller (JTA) has to be
specified.
Cause: You selected a custom server platform, but did not specify the JTA for the
platform.

Action: On the session or session broker’s General – Server Platform tab,
complete the External Transaction Controller (JTA) field. See "Configuring the
Server Platform" on page 74-14.

812: [session or broker name] - A server class has to be specified.
Cause: You selected a custom server platform, but did not specify the server class
for the platform.

Action: On the session or session broker’s General – Server Platform tab,
complete the Server Class field. See "Configuring the Server Platform" on
page 74-14.

Data Source Problems

TopLink Workbench Error Reference 14-25

Common Classpath Problems
The following are some common TopLink Workbench error messages that may result
from invalid classpath information. See "Configuring Project Classpath" on page 19-3
for more information.

The TopLink Workbench does not display the class(es) to import.
Cause: Your classes are not available for import on the Select Classes dialog box.

Action: Ensure that the class is in your project’s classpath (on the project’s
General properties tab). Ensure that the class is in the .zip or .jar file. You
cannot import compressed classes.

The TopLink Workbench generates an exception error when importing classes.
Cause: TopLink class import utility did not start correctly. One of the classes
includes a static initialization method, which may cause the import utility to fail.

Action: Ensure that your project’s classpath points to the root directory of your
package hierarchy. For example, to import the com.company.class package in
the C:\classes\com\company directory, your project classpath should be
C:\classes\.

The TopLink Workbench fails to import the class, but does not generate an
exception error.
Cause: The classpath containing your JDBC drivers should still be on your system
CLASSPATH. TopLink Workbench classpath is for domain classes only.

Action: Ensure that you have properly indicated the directories that contain your
domain class(es) to map on the project’s General tab.

Data Source Problems
This section includes common problems that you may encounter when connecting
TopLink to your data source. This section includes the following topics:

■ Database Connection Problems

Database Connection Problems
This section describes common errors and problems you may encounter when
communicating with or logging in to the database.

The class [class] was not found.
Cause: You attempted to log in to the database, but TopLink could not find the
JDBC driver for the database.

Action: Ensure that the JDBC_CLASSPATH in the setenv.cmd file points to your
JDBC driver JAR files. Verify that your PATH includes all files (for example,
native .dll files) required by the driver. If the path to your JDBC driver JAR files
contains spaces, then the path must be enclosed in double-quotes in the
setenv.cmd file. For example:

set JDBC_CLASSPATH="C:\Program Files\some directory\driver.jar\"

For more information, see "Configuring the TopLink Workbench Environment" on
page 4-2.

Username or password could be invalid.
Cause: TopLink was unable to log in to the database.

Data Source Problems

14-26 Oracle TopLink Developer’s Guide

Action: Ensure that the Username and Password for the database are
correct.Verify with your DBA that the database is set up and operating correctly.

You must define a development login.
Cause: You attempted to log in to the database from TopLink Workbench, but you
did not define a development login.

Action: On the database property sheet, select a Development Login, or create a
new Defined Login. See "Configuring Login Information" on page 20-5.

No database driver has been specified.
Cause: You attempted to log in to the database from TopLink Workbench, but you
did not complete the login information.

Action: Complete all the required fields on the database property sheet for the
selected development login. See "Configuring Login Information" on page 20-5.

Invalid URL specified.
Cause: You attempted to log in to the database from TopLink Workbench, but the
URL is incorrect.

Action: Complete the URL field on the database property sheet for the selected
development login. See "Configuring Login Information" on page 20-5.

Troubleshooting Application Deployment 15-1

15
Troubleshooting Application Deployment

This chapter discusses some of the general troubleshooting issues surrounding entity
bean configuration and deployment. It lists many of the common exceptions and
exception messages that you may encounter when you try to deploy persistent entity
beans, using TopLink.

If you have any problems installing TopLink, using TopLink Workbench, or require
more information on any run-time exceptions that are generated by TopLink, consult
the appropriate documentation.

This chapter contains information on:

■ Generating Deployment JAR Files

■ Common J2SE Deployment Exceptions

■ Common BEA WebLogic Server Deployment Exceptions

■ Common BEA WebLogic Server 6.1 Exceptions

■ Common BEA WebLogic 7.0 Exceptions

■ Common BEA WebLogic 8.1 Exceptions

■ Common IBM WebSphere Application Server Exceptions

Generating Deployment JAR Files
If you experience trouble generating the JAR files for deployment:

■ Ensure all environment entries (such as classpath) are configured properly.

■ Identify which step of the build is failing (copying, compiling, running EJB
compiler, and so on.)

Running the EJB compiler utility involves several processes, such as compiling,
code-generation, EJB compliance verification, compiling RMI stubs by running rmic,
and so on. If an error occurs during execution of the EJB compile utility, try to
determine which stage may be causing the failure.

For more information about the EJB compile utility, see the server documentation.

Common J2SE Deployment Exceptions
The following are some of the most common exceptions that may be encountered
when you try to deploy a J2SE (non-J2EE) application using TopLink.

Common J2SE Deployment Exceptions

15-2 Oracle TopLink Developer’s Guide

Classpath Exceptions
 An exception may occur while setting up the connection pool. You must check the
nested SQL exception to determine the cause of the exception. Typical reasons for this
include the following:

■ The location of JDBC driver is not specified on the classpath.

■ The user name or password provided by the user is incorrect.

■ The server URL or driver name is not properly specified.

You should consult the application server documentation and the JDBC driver
documentation for help with this exception.

If the required TopLink JAR files have not been copied into the application extensions
classpath, a classpath exception will be raised. You must ensure that the
toplink.jar and antlr.jar files are copied into the <Application Server
install>\lib\app directory.

If TopLink encounters problems finding the deployment project.xml or
sessions.xml files, a classpath exception will be raised. Refer to Chapter 10,
"Deploying a TopLink Application".

JDeveloper places the sessions.xml file in the META-INF directory. To load the
sessions.xml file in a non-J2EE application, you must explicitly provide the
location of the sessions.xml file as shown in Example 15–1.

Example 15–1 Location of the sessions.xml file

XMLSessionConfigLoader loader = new
 XMLSessionConfigLoader("META-INF/sessions.xml");
session = (DatabaseSession)SessionManager.getManager().getSession(
 loader, "MySession", Thread.currentThread().getContextClassLoader());

If the J2SE application is a single-user application, a DatabaseSession can be used
instead of a ServerSession. This provides improved performance and reduces the
number of database connections and login time.

Communication Exceptions
In situations where cache coordination is used, a communication exception may occur.
A communication exception is a run-time exception that wraps all RMI, CORBA, or
input and output exceptions that occur.

Refer to the Communication Exceptions (12000 - 12003) section on page 13-65 in the
TopLink Exception Reference chapter for detailed information on communication
exceptions that may occur.

Descriptor Validation Exceptions
A descriptor exception is a development exception that is raised when insufficient
information is provided to the descriptor. The message that is returned includes the
name of the descriptor or mapping that caused the exception. If a mapping within the
descriptor caused the error, then the name and parameters of the mapping are part of
the returned message.

The internal exception, mapping and descriptor appear only if TopLink has enough
information about the source of the problem to provide this information.

Common BEA WebLogic Server Deployment Exceptions

Troubleshooting Application Deployment 15-3

Refer to the Descriptor Exceptions (1 – 201) section on page 13-2 in the TopLink
Exception Reference chapter for detailed information on descriptor validation
exceptions that may occur.

Common BEA WebLogic Server Deployment Exceptions
The following are some of the most common exceptions that are encountered when
you deploy entity beans to a BEA WebLogic Server.

For more information about specific versions, see the following:

■ Common BEA WebLogic Server 6.1 Exceptions, on page 15-5

■ Common BEA WebLogic 7.0 Exceptions, on page 15-8

■ Common BEA WebLogic 8.1 Exceptions, on page 15-10

Assertion Error
Cause: This exception occurs if the toplink.jar file is not properly set on your
classpath. The following exception message is returned:

weblogic.utils.AssertionError: ***** ASSERTION FAILED
*****[Could not load class
'oracle.toplink.internal.ejb.cmp.wls.WlsCMPDeployer':
java.lang.ClassNotFoundException:
oracle.toplink.internal.ejb.cmp.wls.WlsCMPDeployerERROR: ejbc
found errors

Action: Ensure the <ORACLE_HOME>/toplink/jlib/toplink.jar file is
specified on your system classpath.

Error Deploying Application
Cause: A DeploymentException has occurred.

Action: Refer to the specific error code. The error code appears in the square
brackets in the exception message, such as [TopLink-8001]). These errors may
refer to errors in the specification of the project location reading in the properties
file or validation errors due to improper mappings.

Exception 8001
Cause: This error occurs if the TopLink project file is not specified in the
toplink-ejb-jar.xml file. The following exception message is returned:

<Error> <J2EE> <Error deploying application Account:Unable to
deploy EJB: AccountBean from Account.jar:LOCAL EXCEPTION
STACK:EXCEPTION [TOPLINK-8001] (TopLink (WLS CMP) - X.X.X):
oracle.toplink.ejb.DeploymentExceptionEXCEPTION DESCRIPTION:
No TopLink project was specified for this bean.
atoracle.toplink.ejb.DeploymentException.noPro
jectSpecified(DeploymentException.java:132) at
oracle.toplink.internal.ejb.cmp.ProjectDeployment.readProject
(ProjectDeployment.java:378)

Action: Ensure there is an entry in the toplink-ejb-jar.xml file for either the
project-xml or project-class.

Exception 8016
Cause: This exception can occur if the location of the TopLink project file for the
bean is not properly specified. The following exception message is returned:

Common BEA WebLogic Server Deployment Exceptions

15-4 Oracle TopLink Developer’s Guide

<Error> <J2EE> <Error deploying application Account:Unable to
deploy EJB: AccountBean from Account.jar:LOCAL EXCEPTION
STACK:EXCEPTION [TOPLINK-8016] (TopLink (WLS CMP) - X.X.X):
oracle.toplink.ejb.DeploymentExceptionEXCEPTION DESCRIPTION:
An error occurred while setting up the project:
[java.io.FileNotFoundException: Account.xml]INTERNAL
EXCEPTION: java.io.FileNotFoundException:
Account.xmlatoracle.toplink.ejb.DeploymentException.errorCrea
tingProject(Unknown Source)

Action: Check the file name as it is specified in the toplink-ejb-jar.xml file,
and the location of the project file on the file system.

Cannot Start Up Connection Pool
Cause: An exception has occurred while setting up the connection pool. The
following exception message is returned:

<Error> <JDBC> <Cannot startup connection pool "ejbPool"
weblogic.common.ResourceException: Cannot load driver class:
org.hsqldb.jdbcDriver>...

Action: Check the nested SQL exception to determine the cause of the exception.
Typical reasons for this include the following:

■ The JDBC driver is not on the classpath.

■ The user name or password provided by the user is incorrect.

■ The server URL or driver name is not properly specified.

You should consult the BEA WebLogic Server documentation and your JDBC
driver documentation for help on the specific exception raised by BEA WebLogic.

Error Message
Cause: This problem occurs if you are using the GA version of BEA WebLogic
Server 6.0. The following exception message is returned:

weblogic.utils.AssertionError: ***** ASSERTION FAILED
*****[Could not create an instance of class 'null':
java.lang.NullPointerException at
java.lang.Class.forName0(Native Method) at
java.lang.Class.forName(Class.java:120) at
weblogic.ejb20.persistence.PersistenceType. loadClass
(PersistenceType.java:309)

Action: Upgrade to WebLogic Server 6.0 (Service Pack 1) or a higher release.

EJBC Found Errors
Cause: This error occurs if the toplink.jar file is not properly set on your
classpath. The following exception message is returned:

ERROR: ejbc found errors Error from ejbc: Error while loading
persistence resource TopLink_CMP_Descriptor.xml Make sure
that the persistence type is in your classpath.

Action: Ensure the <ORACLE_HOME>/toplink/jlib/toplink.jar file is
specified on your system classpath.

EJB Deployment Exception
Cause: This exception occurs if the location of the TopLink project file for the bean
is not properly specified. The following exception message is returned:

Common BEA WebLogic Server 6.1 Exceptions

Troubleshooting Application Deployment 15-5

weblogic.ejb20.EJBDeploymentException: Error Deploying CMP
EJB:; nested exception is:
weblogic.ejb20.cmp.rdbms.RDBMSException: An error occurred
setting up the project: EXCEPTION [TOPLINK-13000] (vX.X
[TopLink for WebLogic X.X] JDK1.2):
oracle.toplink.xml.XMLDataStoreException EXCEPTION
DESCRIPTION: File not found...

Action: Check the file name as it is specified in the toplink-ejb-jar.xml file,
and the location of the TopLink project file on the file system.

Deploying EJB Component
Cause: A typical cause of this exception is that the toplink-ejb-jar.xml file
is referring to a local DTD file using a file name or location that is incorrect. The
following exception message is returned:

Error deploying EJB Component:...
weblogic.ejb20.EJBDeploymentException: Exception in EJB
Deployment; nested exception is: Error while deploying
bean..., File... Not Found at
weblogic.ejb20.persistence.PersistenceType.setup
Deployer(PersistenceType.java:273)

Action: Ensure that all XML files refer to valid DTD files and locations.

Cannot Start Up Connection Pool ejbPool
Cause: This exception is raised to indicate that an error has occurred while setting
up the connection pool. The following exception message is returned:

Cannot startup connection pool "ejbPool"
weblogic.common.ResourceException: Could not create pool
connection. The DBMS driver exception was:...

Action: Check the nested SQL exception to determine the cause of the error.
Typical problems include the following:

■ The driver is not on the classpath.

■ The user name or password is incorrect.

■ The server URL or driver name is not properly specified.

You should consult the BEA WebLogic Server documentation and your JDBC
driver documentation for help on the specific exception raised by BEA WebLogic.

Other Exceptions
Occasionally, changes made to the server’s configuration file (config.xml) do not
appear to be applied when the server is restarted. If this occurs, try removing the
temporary directories created by BEA WebLogic Server. You can find them under the
wlserver6.1 directory, at the same level as the config directory.

Common BEA WebLogic Server 6.1 Exceptions
The following are a few of the most common exceptions you may encounter when
deploying JAR files with TopLink and BEA WebLogic Server 6.1:

■ Development Exceptions

■ Deployment and Run-Time Exceptions

Common BEA WebLogic Server 6.1 Exceptions

15-6 Oracle TopLink Developer’s Guide

Development Exceptions
 Missing Persistence Type

Cause: There is no entry in the persistence.install file for TopLink CMP.
This may occur if the TopLink installation was interrupted or a BEA WebLogic
Server Service Pack was applied. The following exception message is returned:

ERROR: Error from ejbc: Persistence type 'TopLink_CMP_2_0'
with version 'X.X which is referenced in bean 'Account' is
not installed. The installed persistence types are:
(WebLogic_CMP_RDBMS, 6.0), (WebLogic_CMP_RDBMS, 5.1.0).ERROR:
ejbc found errors

Action: In the <WebLogic InstallDir>/wlserver6.1/lib/persistence
directory, edit the persistence.install file to add a new line TopLink_CMP_
Descriptor.xml, or replace your existing persistence.install file with
the version of the file in the <ORACLE_HOME>/toplink/config directory.

 Error Loading Persistence Resource
Cause: The toplink.jar file is not properly set in your classpath. The following
exception message is returned:

Error while loading persistence resource TopLink_CMP_
Descriptor.xml Make sure that the persistence type is in your
classpath.

Action: Ensure that the classpath includes the <ORACLE_
HOME>/toplink/jlib/toplink.jar file.

Wrong BEA WebLogic Version
Cause: You are trying to compile your code using BEA WebLogic Server 6.0. The
following exception message is returned:

C:\<ORACLE_HOME>\toplink\examples\weblogic\wls61\
examples\ejb\cmp20\singlebean\Account.java:10: cannot resolve
symbolsymbol : class EJBLocalObjectlocation: interface
examples.ejb.cmp20.singlebean.Accountpublic interface Account
extends EJBLocalObject {

Action: Compile using BEA WebLogic Server 6.1.

Deployment and Run-Time Exceptions
 Missing Persistence Type

Cause: There is no entry in the persistence.install file for TopLink CMP.
This may occur if the TopLink installation was interrupted, or a BEA WebLogic
Server Service Pack was applied. The following exception message is returned:

Persistence type 'TopLink_CMP_2_0' with version 'X.X which is
referenced in bean 'Account' is not installed. The installed
persistence types are: (WebLogic_CMP_RDBMS, 6.0), (WebLogic_
CMP_RDBMS, 5.1.0).

Action: In the <WebLogic InstallDir>/wlserver6.1/lib/persistence
directory, edit the persistence.install file to add a new line: TopLink_
CMP_Descriptor.xml. You can also replace your existing
persistence.install file with the version of the file in the <ORACLE_
HOME>/toplink/config directory.

Error Loading Persistence Resource

Common BEA WebLogic Server 6.1 Exceptions

Troubleshooting Application Deployment 15-7

Cause: The toplink.jar file is not properly set in your classpath. The following
exception message is returned:

<DATE and TIME> <Error> <J2EE> <Error deploying application
ejb20_cmp_order:Unable to deploy EJB: C:\<ORACLE_
HOME>\toplink\examples\weblogic\wls61\server\config\TopLink_
Domain\applications\wlnotdelete\wlap64280\ejb20_cmp_order.jar
from ejb20_cmp_order.jar:Error while loading persistence
resource TopLink_CMP_Descriptor.xml Make sure that the
persistence type is in your
classpath.atweblogic.ejb20.persistence.InstalledPersistence.i
nitialize(InstalledPersistence.java:214)atweblogic.ejb20.pers
istence.InstalledPersistence.getInstalledType(InstalledPersis
tence.java:113)

Action: Ensure that the classpath includes the <ORACLE_
HOME>/toplink/jlib/toplink.jar file.

Wrong Persistence Version
Cause: You may be using a persistence-version meant for BEA WebLogic
Server 7.0. The following exception message is returned:

DATE and TIME> <Error> <J2EE> <Error deploying application
ejb20_cmp_account:Unable to deploy EJB: Account from ejb20_
cmp_
account.jar:java.lang.AbstractMethodErroratweblogic.ejb20.dep
loyer.ClientDrivenBeanInfoImpl.deploy(ClientDrivenBeanInfoImp
l.java:807)atweblogic.ejb20.deployer.Deployer.deployDescripto
r(Deployer.java:1234)atweblogic.ejb20.deployer.Deployer.deplo
y(Deployer.java:947)atweblogic.j2ee.EJBComponent.deploy(EJBCo
mponent.java:30)

Action: Use a persistence-version of 4.0.

Cannot Start Up Data Source
Cause: An exception has occurred while setting up the data source. The following
exception message is returned:

EXCEPTION [TOPLINK-7060] (TopLink (WLS
CMP)-X.X):oracle.toplink.exceptions.ValidationExceptionEXCEPT
ION DESCRIPTION: Cannot acquire datasource
[jdbc/ejbNonJTSDataSource].INTERNAL EXCEPTION:
javax.naming.NameNotFoundException: Unable to resolve
jdbc.ejbNonJTSDataSource Resolved: '' Unresolved:'jdbc' ;
remaining name 'ejbNonJTSDataSource'

Action: Check the nested SQL exception to determine the cause of the exception.
For more information, see "7060: CANNOT_ACQUIRE_DATA_SOURCE" on
page 13-48. For more information on a specific exception raised by WebLogic, see
the BEA WebLogic Server documentation and your JDBC driver documentation.

Wrong WebLogic Version
Cause: You are trying to compile your code using BEA WebLogic Server 6.0. The
following exception message is returned:

<DATE and TIME> <Error> <Management> <Error parsing XML
descriptor for application TopLink_Domain:Name=ejb20_cmp_
account,
Type=Applicationweblogic.xml.process.ProcessorFactoryExceptio

Common BEA WebLogic 7.0 Exceptions

15-8 Oracle TopLink Developer’s Guide

n: Could not locate processor for public id = "-//Sun
Microsystems, Inc.//DTD J2EE Application
1.3//EN"atweblogic.xml.process.ProcessorFactory.getProcessor(
ProcessorFactory.java:181)atweblogic.xml.process.ProcessorFac
tory.getProcessor(ProcessorFactory.java:164)

Action: Compile using BEA WebLogic Server 6.1.

Common BEA WebLogic 7.0 Exceptions
The following are a few of the most common exceptions you may encounter when
deploying JAR files with TopLink and BEA WebLogic Server 7.0:

■ Development Exceptions

■ Deployment Exceptions

Development Exceptions
Missing Persistence Type

Cause: There is no entry in the persistence.install file for TopLink CMP.
This may occur if the TopLink installation was interrupted, or a BEA WebLogic
Server Service Pack was applied. The following exception message is returned:

Persistence type 'TopLink_CMP_2_0' with version 'X.0 which is
referenced in bean 'Account' is not installed. The installed
persistence types are: (WebLogic_CMP_RDBMS, 6.0), (WebLogic_
CMP_RDBMS, 5.1.0), (WebLogic_CMP_RDBMS, 7.0)ERROR: ejbc found
errors

Action: In the <WebLogic InstallDir>/weblogic700/lib/persistence
directory, edit the persistence.install file to add a new line: TopLink_
CMP_Descriptor.xml. You can also replace your existing
persistence.install file with the version of the file in the <ORACLE_
HOME>/toplink/config directory.

Missing Persistence Type
Cause: There is no entry in the persistence.install file for TopLink CMP.
This may occur if the TopLink installation was interrupted, or a BEA WebLogic
Server Service Pack was applied. The following exception message is returned:

ERROR:
atweblogic.ejb20.persistence.InstalledPersistence.initialize(
InstalledPersistence.java:214)atweblogic.ejb20.persistence.In
stalledPersistence.getInstalledType(InstalledPersistence.java
:113)atweblogic.ejb20.deployer.MBeanDeploymentInfoImpl.getPer
sistenceType(MBeanDeploymentInfoImpl.java:584

Action: In the <WebLogic InstallDir>/weblogic700/lib/persistence
directory, edit the persistence.install file to add a new line: TopLink_
CMP_Descriptor.xml. You can also replace your existing
persistence.install file with the version of the file in the <ORACLE_
HOME>/toplink/config directory.

Wrong WebLogic Version
Cause: You are trying to compile your JAR file using BEA WebLogic Server 6.1.
The following exception message is returned:

Common BEA WebLogic 7.0 Exceptions

Troubleshooting Application Deployment 15-9

ERROR: Error processing 'META-INF/weblogic-ejb-jar.xml': The
public id, "-//BEA Systems, Inc.//DTD WebLogic 7.0.0
EJB//EN", specified in the XML document is invalid. Use one
of the following valid public ids:"-//BEA Systems, Inc.//DTD
WebLogic 5.1.0 EJB//EN""-//BEA Systems, Inc.//DTD WebLogic
6.0.0 EJB//EN"ERROR: ejbc found errors

Action: Compile using BEA WebLogic Server 7.0.

Deployment Exceptions
Missing Persistence Type

Cause: There is no entry in the persistence.install file for TopLink CMP.
This may occur if the TopLink installation was interrupted or a BEA WebLogic
Server Service Pack was applied. The following exception message is returned:

Error from ejbc: Persistence type 'TopLink_CMP_2_0' with
version 'X.0 which is referenced in bean 'Account' is not
installed. The installed persistence types are: (WebLogic_
CMP_RDBMS, 6.0), (WebLogic_CMP_RDBMS, 5.1.0), (WebLogic_CMP_
RDBMS, 7.0).Persistence type 'TopLink_CMP_2_0' with version
'X.0 which is referenced in bean 'Account' is not installed.
The installed persistence types are: (WebLogic_CMP_RDBMS,
6.0), (WebLogic_CMP_RDBMS, 5.1.0), (WebLogic_CMP_RDBMS, 7.0)

Action: In the <WebLogic InstallDir>/weblogic7.0/lib/persistence
directory, edit the persistence.install file to add a new line: TopLink_
CMP_Descriptor.xml. You can also replace your existing
persistence.install file with the version of the file in the <ORACLE_
HOME>/toplink/config directory.

Error Loading Persistence Resource
Cause: The toplink.jar file is not properly set in your classpath. The following
exception message is returned:

java.lang.NullPointerExceptionatweblogic.ejb20.deployer.EJBDe
ployer.deactivate(EJBDeployer.java:1513)atweblogic.ejb20.depl
oyer.EJBDeployer.undeploy(EJBDeployer.java:301)atweblogic.ejb
20.deployer.Deployer.deploy(Deployer.java:875)atweblogic.j2ee
.EJBComponent.deploy(EJBComponent.java:70)

Action: Ensure that the classpath includes the <ORACLE_
HOME>/toplink/jlib/toplink.jar file.

Cannot Start Up Data Source
Cause: An exception has occurred while setting up the data source. The following
exception message is returned:

EXCEPTION [TOPLINK-7060] (TopLink (WLS CMP) -
X.X.X): oracle.toplink.exceptions.ValidationExceptionEXCEPTIO
N DESCRIPTION: Cannot acquire datasource
[jdbc/ejbNonJTSDataSource].INTERNAL EXCEPTION:
javax.naming.NameNotFoundException: Unable to resolve
jdbc.ejbNonJTSDataSource Resolved: '' Unresolved:'jdbc' ;
remaining name 'ejbNonJTSDataSource'

Action: Check the nested SQL exception to determine the cause of the exception.
For more information, see "7060: CANNOT_ACQUIRE_DATA_SOURCE" on

Common BEA WebLogic 8.1 Exceptions

15-10 Oracle TopLink Developer’s Guide

page 13-48. For more information on a specific exception raised by WebLogic, see
the BEA WebLogic Server documentation and your JDBC driver documentation.

Common BEA WebLogic 8.1 Exceptions
The following are a few of the most common exceptions you may encounter when
deploying JAR files with TopLink and BEA WebLogic Server 8.1:

■ Development Exceptions

■ Deployment Exceptions

Development Exceptions
Missing Persistence Type

Cause: There is no entry in the persistence.install file for TopLink CMP.
This may occur if the TopLink installation was interrupted, or a BEA WebLogic
Server Service Pack was applied. The following exception message is returned:

Persistence type 'TopLink_CMP_2_0' with version 'X.0 which is
referenced in bean 'Account' is not installed. The installed
persistence types are: (WebLogic_CMP_RDBMS, 7.0), (WebLogic_
CMP_RDBMS, 6.0), (WebLogic_CMP_RDBMS, 5.1.0).

Action: In the <WebLogic InstallDir>/weblogic81/lib/persistence
directory, edit the persistence.install file to add a new line: TopLink_
CMP_Descriptor.xml. You can also replace your existing
persistence.install file with the version of the file in the <ORACLE_
HOME>/toplink/config directory.

Missing CMP entry in Persistence File
Cause: There is no entry in the persistence.install file for TopLink CMP.
This may occur if the TopLink installation was interrupted, or a BEA WebLogic
Server Service Pack was applied. The following exception message is returned:

ERROR: ejbc couldn’t invoke compiler

Action: In the <WebLogic InstallDir>/weblogic81/lib/persistence
directory, edit the persistence.install file to add a new line: TopLink_
CMP_Descriptor.xml. You can also replace your existing
persistence.install file with the version of the file in the <ORACLE_
HOME>/toplink/config directory.

Error Loading Persistence Resource
Cause: The toplink.jar file is not properly set in your classpath. The following
exception message is returned:

Error occurred while loading persistence resource TopLink_
CMP_Descriptor.xml. Make sure that the persistence type is in
your classpath.

ERROR: ejbc couldn’t invoke compiler

Action: Ensure that the classpath includes the <ORACLE_
HOME>/toplink/jlib/toplink.jar file.

Wrong WebLogic Version
Cause: You are trying to compile your EJB JAR file using BEA WebLogic Server
7.0. The following exception message is returned:

Common BEA WebLogic 8.1 Exceptions

Troubleshooting Application Deployment 15-11

ERROR: ejbc found errors while processing the descriptor for
std_cmp20-singlebean.jar:ERROR: ejbc found errors while
processing 'META-INF/weblogic-ejb-jar.xml': The public id,
"-//BEA Systems, Inc.//DTD WebLogic 8.1.0 EJB//EN", specified
in the XML document is invalid. Use one of the following
valid public ids:"-//BEA Systems, Inc.//DTD WebLogic 5.1.0
EJB//EN""-//BEA Systems, Inc.//DTD WebLogic 6.0.0
EJB//EN""-//BEA Systems, Inc.//DTD WebLogic 7.0.0
EJB//EN"ERRORejbc found errors

Action: Compile using BEA WebLogic Server 8.1.

Deployment Exceptions
Missing Persistence Type

Cause: There is no entry in the persistence.install file for TopLink CMP.
This may occur if the TopLink installation was interrupted or a BEA WebLogic
Server Service Pack was applied. The following exception message is returned:

Error Deployer BEA-149201 Failed to complete the deployment
task with ID 0 for the application _appsdir_cmp20-singlebean_
ear. weblogic.management.ApplicationException:
Exception:weblogic.management.ApplicationException: prepare
failed for cmp20-singlebean.jarModule: cmp20-singlebean.jar
Error: Exception preparing module:
EJBModule(cmp20-singlebean.jar,status=NEW)Persistence type
'TopLink_CMP_2_0' with version 'X.0 which is referenced in
bean 'Account' is not installed. The installed persistence
types are: (WebLogic_CMP_RDBMS, 7.0), (WebLogic_CMP_RDBMS,
6.0), (WebLogic_CMP_RDBMS, 5.1.0)

Action: In the <WebLogic InstallDir>/weblogic81/lib/persistence
directory, edit the persistence.install file to add a new line: TopLink_
CMP_Descriptor.xml. You can also replace your existing
persistence.install file with the version of the file in the <ORACLE_
HOME>/toplink/config directory.

Error Loading Persistence Resource
Cause: The toplink.jar file is not properly set in your classpath. The following
exception message is returned:

Error Deployer BEA-149201 Failed to complete the deployment
task with ID 2 for the application _appsdir_
cmp20-relationships_
ear.weblogic.management.ApplicationException:
Exception:weblogic.management.ApplicationException: prepare
failed for cmp20-relationships.jarModule:
cmp20-relationships.jar Error: Exception preparing module:
EJBModule(cmp20-relationships.jar,status=NEW) Unable to
deploy EJB:.\TopLink_Demos\stage_appsdir_
cmp20-relationships_ear\cmp20-relationships.jar from
cmp20-relationships.jar: [EJB:011004]Error occurred while
loading persistence resource TopLink_CMP_Descriptor.xml. Make
sure that the persistence type is in your classpath.at
weblogic.ejb20.persistence.InstalledPersistence.initialize(In
stalledPersistence.java:212)at

Common IBM WebSphere Application Server Exceptions

15-12 Oracle TopLink Developer’s Guide

weblogic.ejb20.persistence.InstalledPersistence.getInstalledT
ype(InstalledPersistence.java:114)

Action: Ensure that the classpath includes the <ORACLE_
HOME>/toplink/jlib/toplink.jar file.

Common IBM WebSphere Application Server Exceptions
When the IBM WebSphere application server is started, it attempts to deploy the JAR
files that are specified for deployment within the application server.

Exceptions that occur when the server is started are usually configuration problems
that involve classpath issues, environment variable configuration, and database login
configuration. Review the IBM WebSphere application server documentation after
starting the server.

This section contains some of the exceptions that can be encountered when running
the IBM WebSphere application server, along with their possible causes and
recommended solutions.

Class Not Found Exception
Cause: The class is not included on the WebSphere application extensions
classpath or in the EJB or WAR module.

Action: Ensure that all required classes are included in the correct location. For
more information about classpath locations, see the IBM WebSphere InfoCenter.

Class Not Found Exception
Cause: The required TopLink JAR files have not been copied into the application
extensions classpath.

Action: Ensure that the toplink.jar and antlr.jar files are copied into the
<WebSphere install>\lib\app directory.

oracle.toplink.exceptions.DatabaseException
Cause: A TopLink exception has occurred.

Action: Refer to the specific exception code. The exception code appears in the
square brackets in the exception message, such as [TopLink-1016]). Exceptions
observed here may be exceptions in reading in the properties file, or validation
errors due to improper mappings.

Refer to the Database Exceptions (4002 – 4018) section on page 13-27 in the
TopLink Exception Reference chapter for detailed information on database
exceptions that may occur; refer to the Communication Exceptions (12000 - 12003)
section on page 13-65 in the TopLink Exception Reference chapter for detailed
information on communication exceptions that may occur.

Exception [6066]
Cause: A bean was created outside of a transaction and then a second bean was
created either in or out of a transaction. The following exception message is
returned:

oracle.toplink.exceptions.QueryException: The object <Object>
of class <class> with identity hashcode <hashcode> is not
from this Unit of Work object space but the parent session's.
The object was never registered in this Unit of Work, but
read from the parent session and related to an object
registered in the Unit of Work. Ensure that you are correctly
registering your objects. If you are still having problems,

Common IBM WebSphere Application Server Exceptions

Troubleshooting Application Deployment 15-13

you can use the UnitOfWork.validateObjectSpace() method to
help debug where the error occurred. Please see the manual
and FAQ for more information.

Action: Ensure that all bean creation is performed within the context of a
transaction.

Cause: The bean was not removed during ejbPassivate method.

Action: Ensure that the ejbPassivate method removes the bean.

Cause: A bean-to-object relationship is not privately owned.

Action: Ensure that all bean-to-object relationships are privately owned.

Exception [7064]
Cause: An incorrect primary key object is being used with a bean. The following
exception message is returned:

oracle.toplink.exceptions.ValidationException: Exception
occurred in reflective EJB bean primary key extraction,
please ensure your primary key object is defined correctly:
key = 301, bean = <beanName>

Action: Ensure that you are using the correct primary key object for a bean.

Exception [7066]
Cause: An attempt was made to create or remove a bean outside of a transaction.
The following exception message is returned:

oracle.toplink.exceptions.ValidationException: Cannot create
or remove beans unless a JTS transaction is present,
bean=<bean>

Action: Ensure that all removal and creation of beans is performed within a
transaction.

Exception [7068]
Cause: The project class that is specified in the toplink.properties file for the
session specified on the toplink_session_name environment variable
cannot be found. The following exception message is returned:

oracle.toplink.exceptions.ValidationException: The project
class <projectclass> was not found for the <toplink_session_
name> using default class loader.

Action: Ensure that the project class provided in the exception is on the IBM
WebSphere application server dependent classpath.

Exception [7069]
Cause: An amendment method was called, but cannot be found. The following
exception message is returned:

oracle.toplink.exceptions.ValidationException: An exception
occurred looking up or invoking the project amendment method,
<amendmentMethod> on the class <amendmentClass>;

Action: Ensure that the required amendment method exists on the class that is
specified.

Exception [7070]

Common IBM WebSphere Application Server Exceptions

15-14 Oracle TopLink Developer’s Guide

Cause: The toplink.properties file cannot be found. The following exception
message is returned:

oracle.toplink.exceptions.ValidationException: A
toplink.properties resource bundle must be located on the
classpath in a TopLink directory.

Action: Ensure that the location of the toplink.properties file is on the
classpath.

Exception [7079]
Cause: The descriptor that is listed was not found in the session that is specified
on the deployment descriptor. The following exception message is returned:

EXCEPTION DESCRIPTION: The descriptor for [<bean class>] was
not found in the session [<session name>]. Check the project
being used for this session.

Action: Ensure that the project that is specified in the toplink-ejb-jar.xml
file is the desired project. Also check that the project includes a descriptor for the
missing bean class.

Exception [7101]
Cause: The toplink-ejb-jar.xml file was not found. The following exception
message is returned:

No "meta-inf/toplink-ejb-jar.xml" could be found in your
classpath. The CMP session could not be read in from file.

Action: Ensure that the toplink-ejb-jar.xml file is located in the deployed
ejb-jar file under the meta-inf directory.

 Exception [9002]
Cause: The project class that is specified for the session in the
toplink-ejb-jar.xml file cannot be found. The following exception message
is returned:

EXCEPTION [TOPLINK-9002] (TopLink - X.X.X):
oracle.toplink.exceptions.SessionLoaderExceptionEXCEPTION
DESCRIPTION: Unable to load Project class [<project class>].

Action: Ensure that the project class has been included in the deployed JAR file
with the entity beans.

Problems at Run Time
This section lists some of the common exceptions that can occur at run time when
using the TopLink CMP for IBM WebSphere application server.

Exception [6026]
Cause: A required named query does not exist. The following exception message
is returned:

oracle.toplink.exceptions: Query is not defined

Action: Implement the named query. The stack trace of the exception contains the
finder method that failed.

Common IBM WebSphere Application Server Exceptions

Troubleshooting Application Deployment 15-15

Common TopLink for IBM WebSphere Deploy Tool Exceptions
This section lists common exceptions that may occur when running the TopLink for
IBM WebSphere application server Deploy Tool.

Class Not Found Exceptions
Cause: The class that is specified was not found; it is not included on the deploy
tool classpath or the system classpath.

Action: Ensure that all required classes are included on the correct classpath. For
more information about classpath setup, see the IBM WebSphere Getting Started
document.

Note: The Deploy Tool calls external IBM classes to generate
deployed code. Any exceptions that are thrown from these classes
are written to System.out. Check Tracing to view the most
detailed information.

Common IBM WebSphere Application Server Exceptions

15-16 Oracle TopLink Developer’s Guide

Part VI
 Mapping and Configuration Overview

This part describes how to use TopLink to map persistent objects to a data source and
how to capture that information for use with the TopLink run-time component. It
contains the following chapters.

■ Chapter 16, "Understanding TopLink Mapping and Configuration Concepts"

This chapter introduces the metadata, contained in the descriptor, used by
TopLink to generate SQL statements that create, read, modify, and delete objects.

Understanding TopLink Mapping and Configuration Concepts 16-1

16
Understanding TopLink Mapping and

Configuration Concepts

TopLink uses metadata (see "Understanding TopLink Metadata" on page 2-19) to
describe how objects relate to a data source representation. Your mapping and
configuration activities construct this metadata.

After creating the metadata, you can use it in any number of applications by
referencing the metadata from a session (see Chapter 72, "Understanding TopLink
Sessions"). The TopLink runtime uses this metadata in all persistence and data
transformation operations.

This chapter includes information on the following:

■ Mapping and Configuration Concepts

Mapping and Configuration Concepts
This section describes concepts unique to TopLink mapping and configuration,
including the following:

■ Projects

■ Descriptors

■ Mappings

Projects
The Project class is the primary container in which TopLink stores its mapping and
configuration metadata. A project relates a set of object classes to a data source at the
data model level.

A project contains a descriptor (see "Descriptors" on page 16-2) for each class and each
descriptor contains a mapping (see "Mappings" on page 16-2) for each data member
that TopLink should persist or transform.

Using TopLink Workbench, you can export mapping and configuration metadata into
a deployment XML file called project. For more information, see "Exporting Project
Information" on page 18-13.

After creating the project XML file, you must associate it with a session so that
TopLink can use it at run time. For more information, see "Configuring a Primary
Mapping Project" on page 74-2.

Mapping and Configuration Concepts

16-2 Oracle TopLink Developer’s Guide

For Enterprise JavaBeans (EJB) applications where there is no session, deploy the
project XML file to the target application server. In this context, the project XML file is
also known as the deployment XML file.

For more information, see the following:

■ "sessions.xml File" on page 8-4

■ "project.xml File" on page 8-2

■ "Understanding Projects" on page 17-1.

Descriptors
Descriptors describe how a Java class relates to a data source representation. They
relate object classes to the data source at the data model level. For example, persistent
class attributes may map to database columns.

TopLink uses descriptors to store the information that describes how an instance of a
particular class can be represented in a data source (see "Mappings" on page 16-2).
Most descriptor information can be defined by TopLink Workbench, then read from
the project XML file at run time.

See "Understanding Descriptors" on page 23-1 for more information.

Mappings
Mappings describe how individual object attributes relate to a data source
representation. Mappings can involve a complex transformation or a direct entry.

TopLink uses mappings to determine how to transform data between object and data
source representation. Most mapping information can be defined by TopLink
Workbench, then read from the project XML file at run time. Mappings are owned by
descriptors (see "Descriptors" on page 16-2).

See "Understanding Mappings" on page 30-1 for more information.

Part VII
 Projects

This part describes the TopLink artifact used to contain mapping and data
source-specific information. It contains the following chapters.

■ Chapter 17, "Understanding Projects"

This chapter describes each of the different TopLink project types and important
project concepts.

■ Chapter 18, "Creating a Project"

This chapter contains procedures for creating TopLink projects.

■ Chapter 19, "Configuring a Project"

This chapter explains how to configure TopLink project options common to two or
more project types.

■ Chapter 20, "Configuring a Relational Project"

This chapter explains how to configure project options specific to a relational
project.

■ Chapter 21, "Configuring an EIS Project"

This chapter explains how to configure project options specific to an enterprise
information system (EIS) project.

■ Chapter 22, "Configuring an XML Project"

This chapter explains how to configure project options specific to an XML project.

Understanding Projects 17-1

17
Understanding Projects

A TopLink project encapsulates both mapping metadata and, where relevant, data
source access information. The project is the primary object used by TopLink at run
time. Each session (excluding the session broker) in a deployed application references
a single project.

This chapter explains the following:

■ TopLink Project Types

■ Project Concepts

■ Understanding the Project API

■ Understanding Sequencing in Relational Projects

■ Understanding XML Namespaces

TopLink Project Types
Table 17–1 lists the project types available in TopLink, classifies each as basic or
advanced, and indicates how to create each.

For more information, see the following:

■ Chapter 18, "Creating a Project"

■ Chapter 19, "Configuring a Project"

Table 17–1 TopLink Project Types

Project Type Description Type
TopLink
Workbench Java

"Relational Projects" on page 17-6 A project for transactional persistence of Java
objects to a relational database or an
object-relational database accessed using Java
Database Connectivity (JDBC). Supports TopLink
queries and expressions.

Basic

"EIS Projects" on page 17-7 A project for transactional persistence of Java
objects to a nonrelational data source accessed
using a J2EE Connector Architecture (J2C) adapter
and any supported EIS record type, including
indexed, mapped, or XML. Supports TopLink
queries and expressions.

Advanced

"XML Projects" on page 17-9 A project for nontransactional, nonpersistent
(in-memory) conversion between Java objects and
XML schema (XSD)-based documents using Java
Architecture for XML Binding (JAXB). Does not
support TopLink queries and expressions.

Advanced

Project Concepts

17-2 Oracle TopLink Developer’s Guide

■ Chapter 72, "Understanding TopLink Sessions"

Project Concepts
This section describes concepts unique to TopLink projects, including the following:

■ Project Architecture

■ Relational and Nonrelational Projects

■ Persistent and Nonpersistent Projects

■ Projects and Login

■ Projects and Platforms

■ Projects and Sequencing

■ XML Namespaces

Project Architecture
The project type you choose determines the type of descriptors and mappings you can
use. There is a project type for each data source type that TopLink supports.

Table 17–2 summarizes the relationship between project, descriptor, and mappings.

Relational and Nonrelational Projects
TopLink supports both relational and nonrelational projects.

Relational projects persist Java objects to a relational database.

Nonrelational projects persist Java objects to another (nonrelational) type of data
source, or perform nonpersistent (see "Persistent and Nonpersistent Projects" on
page 17-2) data conversion. For example, to persist Java objects to an EIS data source
by using a J2C adapter, use an EIS project. To perform nonpersistent (in-memory)
conversions between Java objects and XML elements, use an XML project.

Persistent and Nonpersistent Projects
TopLink supports projects you use for applications that require persistent storage of
Java objects. For example, use a relational project to persist Java objects to a relational
database, or an EIS project to persist Java objects to an EIS data source by way of a J2C
adapter.

TopLink also supports projects you use for applications that require only
nonpersistent (in-memory) data conversion. For example, use an XML project to
perform nonpersistent (in-memory) conversion between Java objects and XML
elements.

Table 17–2 Project, Descriptor, and Mapping Support

Project Descriptor Mapping

Relational Projects Relational Descriptors

Object-Relational Descriptors

Relational Mappings

Object-Relational Mappings

EIS Projects EIS Descriptors EIS Mappings

XML Projects XML Descriptors XML Mappings

Project Concepts

Understanding Projects 17-3

Projects and Login
The login (if any) associated with a project determines how the TopLink runtime
connects to the project’s data source.

A login includes details of data source access, such as authentication, use of
connection pools, and use of external transaction controllers. A login owns a platform.

A platform includes options specific to a particular data source, such as binding, use of
native SQL, use of batch writing, and sequencing. For more information about
platforms, see "Projects and Platforms" on page 17-4.

For projects that do not persist to a data source, a login is not required. For projects
that do persist to a data source, a login is always required.

In TopLink Workbench, the project type determines the type of login that the project
uses, if applicable.

You can use a login in a variety of roles. A login’s role determines where and how you
create it. The login role you choose depends on the type of project you are creating and
how you intend to use the login:

■ Non-CMP Session Role: Session Login

■ CMP Deployment Role: Deployment Login

■ Development Role: Development Login

Non-CMP Session Role: Session Login
You create a session login in the sessions.xml file for TopLink applications that do
not use container-managed persistence (CMP).

Typically, the TopLink runtime instantiates a project when you load a session from the
sessions.xml file (see Chapter 75, "Acquiring and Using Sessions at Run Time").
The runtime also instantiates a login and its platform based on the information in the
sessions.xml file.

The TopLink runtime uses the information in the session login whenever you perform
a persistence operation using the session in your non-CMP TopLink application.

In this case, you do not configure a deployment login (see "CMP Deployment Role:
Deployment Login" on page 17-3).

If you are using TopLink Workbench and your login is based on a relational database
platform, you must also configure a development login (see "Development Role:
Development Login" on page 17-4).

If a sessions.xml file contains a login, this login overrides any other login
definition.

There is a session login type for each project type that persists to a data source. For a
complete list of login types available, see "Data Source Login Types" on page 81-2.

For information on configuring a session login, see "Configuring a Session Login" on
page 74-4.

CMP Deployment Role: Deployment Login
You create a deployment login in the project.xml file (also known as the
toplink-ejb-jar.xml file) for a TopLink-enabled CMP application.

When you deploy your TopLink-enabled CMP application with its
toplink-ejb-jar.xml file, the application server or EJB container uses the

Project Concepts

17-4 Oracle TopLink Developer’s Guide

information in the deployment login whenever your business logic performs a
persistence operation from within an entity bean with container-managed persistence.

In this case, you do not configure a session login (see "Non-CMP Session Role: Session
Login" on page 17-3). In fact, there is no session.xml file at all (see "CMP
Applications and Session Metadata" on page 8-4).

If you are using TopLink Workbench and your login is based on a relational database
platform, you must also configure a development login (see "Development Role:
Development Login" on page 17-4).

For information on creating a deployment login, see "Configuring Development and
Deployment Logins" on page 20-6.

Development Role: Development Login
Using TopLink Workbench, you create a development login in the TopLink
Workbench project file when your project is based on a relational database platform.

TopLink Workbench uses the information in the development login whenever you
perform a data source operation from within TopLink Workbench, for example,
whenever you read or write schema information from or to a data store during
application development. The development login information is never written to a
sessions.xml or project.xml file.

The development login is never used when you deploy your application: it is
overridden by either the sessions.xml file (see "Non-CMP Session Role: Session
Login" on page 17-3) or the project.xml file (see "CMP Deployment Role:
Deployment Login" on page 17-3).

For more information on creating a development login, see "Configuring Development
and Deployment Logins" on page 20-6.

Projects and Platforms
The platform (if any) associated with a project tells the TopLink runtime what specific
type of data source a project uses.

A platform includes options specific to a particular data source, such as binding, use of
native SQL, use of batch writing, and sequencing.

A login includes details of data source access, such as authentication, use of
connection pools, and use of external transaction controllers. A login owns a platform.
For more information about logins, see "Projects and Login" on page 17-3.

For projects that do not persist to a data source, a platform is not required. For projects
that do persist to a data source, a platform is always required.

In TopLink Workbench, the project type determines the type of platform that the
project uses, if applicable.

There is a platform type for each project type that persists to a data source. For a
complete list of platform types available, see "Data Source Platform Types" on
page 81-3.

Projects and Sequencing
An essential part of maintaining object identity (see "Cache Type and Object Identity"
on page 87-3) is sequencing: managing the assignment of unique values to distinguish
one instance from another.

Projects have different sequencing requirements, depending on their types:

Project Concepts

Understanding Projects 17-5

■ For relational projects, you typically obtain object identifier values from a separate
sequence table (or database object) dedicated to managing object identifier values
(see "Understanding Sequencing in Relational Projects" on page 17-14).

■ For EIS projects, you typically use a returning policy (see "Configuring Returning
Policy" on page 25-67) to obtain object identifier values managed by the EIS data
source.

■ For XML projects, because you are simply performing transformations between
objects and XML documents, sequencing is not an issue.

To configure sequencing, you must configure:

■ How to obtain sequence values (see "Configuring how to Obtain Sequence Values"
on page 17-5), and

■ Where to write sequence values when an instance of a descriptor’s reference class
is created (see "Configuring Where to Write Sequence Values" on page 17-5)

Depending on the type of sequencing you use and the architecture of your application,
you may consider using a sequence connection pool. For more information, see
"Sequence Connection Pools" on page 81-8.

Configuring how to Obtain Sequence Values
To determine how TopLink obtains sequence values, you configure TopLink
sequencing at the project or session level, depending on the type of project you are
building:

■ In a CMP project, you do not configure a session directly: in this case, you must
configure sequences at the project level (see "Configuring Sequencing at the Project
Level" on page 20-3).

■ In a non-CMP project, you can configure a session directly: in this case, you can
use session-level sequence configuration instead of project-level sequence
configuration or to override project level sequence configuration on a
session-by-session basis, if required (see "Configuring Sequencing at the Session
Level" on page 83-4).

Configuring Where to Write Sequence Values
To tell TopLink into which table and column to write the sequence value when an
instance of a descriptor’s reference class is created, you configure TopLink sequencing
at the descriptor level (see "Configuring Sequencing at the Descriptor Level" on
page 26-3).

XML Namespaces
As defined in http://www.w3.org/TR/REC-xml-names/, an XML namespace is a
collection of names, identified by a URI reference, which are used in XML documents
as element types and attribute names. To promote reusability and modularity, XML
document constructs should have universal names, whose scope extends beyond their
containing document. XML namespaces are the mechanism which accomplishes this.

XML namespaces are applicable in projects that reference an XML schema: EIS projects
that use XML records (see "EIS Projects" on page 17-7) and XML projects (see "XML
Projects" on page 17-9).

For more information, see "Understanding XML Namespaces" on page 17-22.

Relational Projects

17-6 Oracle TopLink Developer’s Guide

Relational Projects
Use a relational project for transactional persistence of Java objects to a conventional
relational database (see "Building Relational Projects for a Relational Database" on
page 17-6) or to an object-relational database that supports data types specialized for
object storage (see "Building Relational Projects for an Object-Relational Database" on
page 17-6), both accessed using JDBC.

In a relational project, you can make full use of TopLink queries and expressions (see
Chapter 93, "Understanding TopLink Queries").

Building Relational Projects for a Relational Database
TopLink Workbench provides complete support for creating relational projects that
map Java objects to a conventional relational database accessed using JDBC.

Table 17–3 describes the components of a relational project for a relational database.

Building Relational Projects for an Object-Relational Database
TopLink Workbench does not currently support relational projects for an
object-relational database. You must create such a relational project in Java.

Using Java, you can create a relational project for transactional persistence of Java
objects to an object-relational database that supports data types specialized for object
storage (such as Oracle Database) accessed using JDBC.

When using TopLink to build a relational project for an object-relational database,
consider the following:

■ You must create a Java class and a TopLink ObjectRelationalDescriptor for
each structured type (Struct/object-type)

■ TopLink supports only arrays (Varrays) of basic types or arrays on structured
types (Struct/object-type).

Note: If you are using TopLink Workbench, you must add your
JDBC driver to the TopLink Workbench classpath. If you are using
TopLink Workbench and direct to XML type mappings (see
"Direct-to-XMLType Mapping" on page 33-4), you must add the
Oracle Database xdb.jar file to the TopLink Workbench classpath.

For more information, see "Configuring the TopLink Workbench
Environment" on page 4-2.

Table 17–3 Components of a Relational Project for a Relational Database

Component Supported Types

Data Source For more information, see the following:

■ "DatabaseLogin" on page 81-2

■ "Database Platforms" on page 81-3

Descriptors For more information, see "Relational Descriptors" on
page 23-11.

Mappings For more information, see the following:

■ Part IX, "Mappings"

■ Part X, "Relational Mappings"

EIS Projects

Understanding Projects 17-7

TopLink does not support arrays of Refs or arrays of nested tables.

■ TopLink supports only nested tables of Refs.

TopLink does not support nested tables of basic types, structured types, or array
types.

The general development process for building a relational project for an
object-relational database is as follows:

1. Define structured object-types in the database.

2. Define tables of the structured object-types in the database.

3. Define the Java classes that will map to the structured object-types.

4. Create a relational project (see "Creating a Project" on page 18-1).

5. Create an object-relational descriptor for each Java class (see "Creating an
Object-Relational Descriptor" on page 24-3).

6. Create object-relational mappings from each persistent field of each Java class to
the corresponding object-types and object-type tables (see Chapter 47,
"Configuring an Object-Relational Mapping").

Table 17–4 describes the components of a relational project for an object-relational
database.

EIS Projects
Use an EIS project for transactional persistence of Java objects to a nonrelational data
source accessed using a J2EE Connector Architecture (J2C) adapter and EIS records.

J2C provides a Common Client Interface (CCI) API to access nonrelational EIS. This
provides a similar interface to nonrelational data sources as JDBC provides for
relational data sources. This API defines several types of nonrelational record types
including mapped and indexed. XML has emerged as the standard format to exchange
data, and most leading J2C adapter providers have extended the CCI API to define
XML data records.

To use a JCA adapter with TopLink EIS, the JCA adapter must support the JCA CCI
interface. At run time, your JCA adapter and the Java connector.jar file (that
contains the javax.resource.cci and javax.resource.spi interfaces that
TopLink EIS uses) must be on your application or application server classpath.

If you are using TopLink Workbench, you must add your JCA adapter to the TopLink
Workbench classpath. By default, TopLink Workbench updates its classpath to include
the Java 1.5 connector.jar file from <TOPLINK_HOME>/j2ee/home/lib. If this

Table 17–4 Components of a Relational Project for an Object-Relational Database

Component Supported Types

Data Source For more information, see the following:

■ "DatabaseLogin" on page 81-2

■ "Database Platforms" on page 81-3

Descriptors For more information, see "Object-Relational Descriptors" on
page 23-11.

Mappings For more information, see the following:

■ Part IX, "Mappings"

■ Part XI, "Object-Relational Mappings"

EIS Projects

17-8 Oracle TopLink Developer’s Guide

version of the connector.jar file is incompatible with your environment, edit the
workbench.cmd or workbench.sh file in <TOPLINK_HOME>/bin to change the
path to this file. For more information, see "Configuring the TopLink Workbench
Environment" on page 4-2.

EIS includes legacy data sources, enterprise applications, legacy applications, and
other information systems. These systems include such sources as Custormer
Information Control System (CICS), Virtual Storage Access Method (VSAM),
Information Management System (IMS), ADABASE database, and flat files.

Oracle recommends using EIS projects to integrate TopLink with a legacy or
nonrelational data source. Other methods of accessing EIS data sources include:

■ Using a specialized JDBC driver that allows connecting to an EIS system as if it
were a relational database. You could use a TopLink relational project with these
drivers (see "Relational Projects" on page 17-6).

■ Linking to or integrating with the EIS data from a relational database, such as
Oracle Database.

■ Using a proprietary API to access the EIS system. In this case it may be possible to
wrap the API with a J2C CCI interface to allow usage with a TopLink EIS project.

TopLink provides support for mapping Java objects to EIS mapped, indexed, and XML
records, through J2C, using the TopLink mappings described in Part XII, "EIS
Mappings".

You configure a TopLink EIS descriptor to use a particular EIS record format (see
"Configuring Record Format" on page 28-5). TopLink EIS mappings use their EIS
descriptor’s record format configuration to determine how to map their Java objects to
EIS records.

If you use XML records, the TopLink runtime performs XML data conversion based on
one or more XML schemas. In an EIS project that uses XML records, TopLink
Workbench directly references schemas in the deployment XML, and exports
mappings configured with respect to the schemas you specify. For information on how
to use TopLink Workbench with XML schemas, see "Working With XML Schemas" on
page 4-33. For information on how TopLink supports XML namespaces, see "XML
Namespaces" on page 17-5.

Table 17–5 describes the components of an EIS project.

You can create an EIS project with TopLink Workbench for use with EIS XML records
(see "Building EIS Projects With XML Records" on page 17-9) or you can build an EIS
project in Java for use with any supported EIS record type (see "Building EIS Projects
With Indexed or Mapped Records" on page 17-9).

Table 17–5 EIS Project Components

Component Supported Types

Data Source For more information, see the following:

■ "EISLogin" on page 81-3

■ "EIS Platforms" on page 81-4

Descriptors For more information, see "EIS Descriptors" on page 23-12.

Mappings For more information, see the following:

■ Part IX, "Mappings"

■ Part XII, "EIS Mappings"

XML Projects

Understanding Projects 17-9

In an EIS project, your EIS interactions (see "Enterprise Information System (EIS)
Interactions" on page 93-19) can make full use of TopLink queries (see Chapter 93,
"Understanding TopLink Queries"). However, you cannot use TopLink expressions
with EIS: in an EIS project, interactions replace expressions.

Building EIS Projects With XML Records
TopLink Workbench provides complete support for creating EIS projects that map
Java objects to EIS XML records.

Using TopLink Workbench, you can create an EIS project for transactional persistence
of Java objects to a non-relational data source accessed using a J2C adapter and EIS
XML records.

The TopLink runtime performs XML data conversions based on one or more XML
schemas. In an EIS project, TopLink Workbench does not directly reference schemas in
the deployment XML, but instead exports mappings configured in accordance to
specific schemas.

EIS queries use XMLInteraction. For more information, see "Using EIS Interactions"
on page 94-24.

Building EIS Projects With Indexed or Mapped Records
TopLink Workbench does not currently support non-XML EIS projects. You must
create such an EIS project in Java.

Using Java, you can create an EIS project for transactional persistence of Java objects to
a nonrelational data source accessed using a J2C adapter and any supported EIS
record type including indexed, mapped, or XML records.

If you use XML records, the TopLink runtime performs XML data conversion based on
one or more XML schemas. When you create an EIS project in Java, you configure
mappings with respect to these schemas, but the TopLink runtime does not directly
reference them.

You can base queries on any supported EIS interaction: IndexedInteraction,
MappedInteraction (including QueryStringInteraction), or
XMLInteraction (including XQueryInteraction). For more information, see
"Using EIS Interactions" on page 94-24.

XML Projects
Use an XML project for nontransactional, nonpersistent (in-memory) conversions
between Java objects and XML documents using JAXB (see "TopLink Support for Java
Architecture for XML Binding (JAXB)" on page 17-10 and "JAXB Validation" on
page 17-14). TopLink Workbench provides complete support for creating XML
projects.

The TopLink runtime performs XML data conversion based on one or more XML
schemas. In an XML project, TopLink Workbench directly references schemas in the
deployment XML, and exports mappings configured with respect to the schemas you
specify. For information on how to use TopLink Workbench with XML schemas, see
"Working With XML Schemas" on page 4-33. For information on how TopLink
supports XML namespaces, see "XML Namespaces" on page 17-5.

Table 17–6 describes the components of an XML project.

XML Projects

17-10 Oracle TopLink Developer’s Guide

In an XML project, you do not use TopLink queries and expressions.

TopLink Support for Java Architecture for XML Binding (JAXB)
JAXB provides a standard Java object-to-XML API. For more information, see
http://java.sun.com/xml/jaxb/index.html.

TopLink provides an extra layer of functions on top of JAXB. It allows for the creation
and subsequent manipulation of mappings (in the form of a TopLink Workbench
project) from an existing object model, without requiring the recompilation of the
JAXB object model.

An essential component of this function is the TopLink JAXB compiler. Using the
TopLink JAXB compiler, you can generate both a TopLink XML project and
JAXB-compliant object model classes from your XML schema.

The TopLink JAXB compiler simplifies JAXB application development with TopLink
by automatically generating (see "Creating an XML Project From an XML Schema" on
page 18-6) both the required JAXB files (see "Understanding JAXB-Specific Generated
Files" on page 17-10) and the TopLink files ("Understanding TopLink-Specific
Generated Files" on page 17-11) from your XML schema (XSD) document.

For more information on using the JAXB and TopLink-specific files that the TopLink
JAXB compiler generates, see "Using TopLink JAXB Compiler Generated Files at Run
Time" on page 17-12.

Understanding JAXB-Specific Generated Files
The TopLink JAXB compiler generates the following JAXB-specific files from your
XSD:

■ Content and Element Interfaces

■ Implementation Classes

■ Object Factory Class

■ JAXB Properties File

The JAXB runtime uses these files as specified by the JAXB specification.

All JAXB-specific files are generated in the output directory you define, and in the
subdirectories implied by the target package name you define. For more information
about TopLink JAXB binding compiler options, see "Creating an XML Project From an
XML Schema" on page 18-6.

Before you compile your generated classes, be sure to configure your integrated
development environment (IDE) classpath to include <ORACLE_
HOME>\lib\xml.jar. For example, see Chapter 6, "Using an Integrated
Development Environment".

Table 17–6 XML Project Components

Component Supported Types

Data Source None

Descriptors For more information, see "XML Descriptors" on page 23-12.

Mappings For more information, see the following:

■ Part IX, "Mappings"

■ Part XIII, "XML Mappings"

XML Projects

Understanding Projects 17-11

Content and Element Interfaces All interfaces are named according to the content,
element, or implementation name attribute defined in the XSD.

Implementation Classes All implementation classes are named according to the content,
element, or implementation name attribute defined in the XSD and a suffix of Impl.

The generated implementation classes are simple domain classes, with private
attributes for each JAXB property, and public get and set methods that return or set
attribute values.

Object Factory Class The ObjectFactory class provides an instance factory method
for each content and element interface. For example, given an element interface
ItemsImpl, there would be an instance factory method in the ObjectFactory class
with the following signature:

public ItemsImpl createItemsImpl() throws javax.xml.bind.JAXBException

The ObjectFactory class also provides a dynamic instance factory allocator with the
following signature:

public static Object newInstance(Class javaContentInterface)
throws javax.xml.bind.JAXBException

JAXB Properties File The JAXB properties file is named jaxb.properties and it
contains a single entry that defines the javax.xml.bind.context.factory
property with a value equal to the fully qualified class name of the TopLink
implementation of JAXBContext:

javax.xml.bind.context.factory=oracle.toplink.ox.jaxb.JAXBContextFactory

Understanding TopLink-Specific Generated Files
The TopLink JAXB compiler generates the following TopLink-specific files from your
XSD:

■ TopLink Sessions XML File

■ TopLink Project XML File

■ TopLink Workbench Project

■ Typesafe Enumeration Converter Amendment Method DescriptorAfterLoads
Class

You use these files to customize the TopLink metadata that corresponds to the
generated JAXB-specific objects.

All TopLink-specific files are generated in a subdirectory, named toplink, of the
output directory you specify (see "Creating an XML Project From an XML Schema" on
page 18-6).

The toplink subdirectory is organized as Figure 17–1 illustrates.

Figure 17–1 JAXB Binding Compiler Generated Files and Directories

XML Projects

17-12 Oracle TopLink Developer’s Guide

TopLink Sessions XML File In the generated sessions.xml file, the name element is the
name of the context path and the project-xml element is the name of the generated
project XML file.

Example 17–1 shows a typical sessions.xml file where the context path is
examples.ox.model.

Example 17–1 Typical Generated sessions.xml File

<?xml version="1.0" encoding="US-ASCII"?>
<toplink-sessions xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file://xsd/sessions_10_0_3.xsd" version="0">

<session xsi:type="database-session">
<name>customer_example</name>

<primary-project xsi:type="xml">purchaseOrder.xml</primary-project>
<login xsi:type="xml-login">

<platform-class>oracle.toplink.ox.platform.SAXPlatform</platform-class>
</login>

</session>
</toplink-sessions>

As in any TopLink project, the TopLink session is your primary facade to the TopLink
XML API (see "Using TopLink JAXB Compiler Generated Files at Run Time" on
page 17-12).

TopLink Project XML File The project XML file is named the same as the XSD, but with a
file extension of xml. In Figure 17–1, the name of the generated project XML file is
purchaseOrder.xml.

The project XML file contains a descriptor and associated mappings for each content,
element, and implementation class.

TopLink Workbench Project The TopLink Workbench project is written to a subdirectory
as Figure 17–1 illustrates. This subdirectory contains a TopLink Workbench project file
named with the same name as the XSD, but with a file extension of mwp and the
required descriptor and class subdirectories. In Figure 17–1, the TopLink
Workbench project is named purchaseOrder.mwp.

Optionally, you can use this TopLink Workbench project to customize the generated
descriptors and mappings and reexport the project XML file.

Typesafe Enumeration Converter Amendment Method DescriptorAfterLoads Class The TopLink
JAXB compiler will generate a single class called DescriptorAfterLoads if any
implementation class contains a mapping to a type safe enumeration (see "Mappings
and JAXB Typesafe Enumerations" on page 30-24).

The TopLink JAXB compiler will update this DescriptorAfterLoads class with a
descriptor amendment method called amend<ImplementationClassName> for
each implementation class that contains a mapping to a typesafe enumeration. The
amendment method sets an instance of JAXBTypesafeEnumConverter on each
mapping that maps to a typesafe enumeration in that implementation class.

The TopLink Workbench project that the TopLink JAXB compiler creates (see "TopLink
Workbench Project" on page 17-12) configures the implementation class descriptor
with this amendment method. You can open the generated TopLink Workbench project
and regenerate deployment XML without losing support for this feature.

Using TopLink JAXB Compiler Generated Files at Run Time
At run time, you can access the TopLink JAXB compiler-generated files:

XML Projects

Understanding Projects 17-13

■ Using the TopLink XML Context

■ Using the JAXB Context

Using the TopLink XML Context TopLink provides an XMLContext class with which you
can create instances of TopLink XMLMarshaller, XMLUnmarshaller, and
XMLValidator.

The XMLContext is thread-safe. For example, if multiple threads accessing the same
XMLContext object request an XMLMarshaller, each will receive their own instance
of XMLMarshaller, so any state that the XMLMarshaller maintains will be unique
to that process. The same is true of instances of XMLUnmarshaller and
XMLValidator.

By using the XMLContext, you can use TopLink XML in multithreaded architectures,
such as the binding layer for Web services.

To use the TopLink XMLContext, do the following:

1. Configure your application classpath to include your domain object class files (see
"Understanding JAXB-Specific Generated Files" on page 17-10) and the TopLink
runtime.

2. Acquire the session manager (see "Acquiring the Session Manager" on page 75-2).

3. Use the session manager to acquire your XML session using the sessions.xml
file you generated with the TopLink JAXB compiler (see "Acquiring a Session
From the Session Manager" on page 75-3).

4. Get the XML project instance from the session:

Project myProject = session.getProject();

5. Create a TopLink XML context instance with the project:

XMLContext context = new XMLContext(myProject);

6. Use the XMLContext to create a TopLink XMLMarshaller, XMLUnmarshaller,
and XMLValidator:

XMLMarshaller marshaller = context.createMarshaller();
marshaller.marshal(myObject, outputStream);
marshaller.setFormattedOutput(true);

XMLUnmarshaller unmarshaller = context.createUnmarshaller();
Employee emp = (Employee)unmarshaller.unmarshal(new File("employee.xml"));

XMLValidator validator = context.createValidator();
boolean isValid = validator.validate(emp);

Using the JAXB Context You can create an instance of JAXBContext using the target
package name you selected for your generated files (see "Understanding JAXB-Specific
Generated Files" on page 17-10) as the context path, as Example 17–2 shows. This
example assumes that you configure your application classpath to include your
domain object class files.

The JAXBContext is thread-safe.

Example 17–2 Using the Context Path

JAXBContext jaxbContext = JAXBContext.newInstance("examples.ox.model");
Unmarshaller unmarshaller = jaxbContext.createUnmarshaller();

Understanding the Project API

17-14 Oracle TopLink Developer’s Guide

PurchaseOrder purchaseOrder = (PurchaseOrder)
unmarshaller.unmarshal(new File("purchaseOrder.xml"));

JAXB Validation
TopLink can validate both complete object trees and subtrees against the XML schema
that was used to generate the implementation classes. In addition, TopLink will
validate both root objects (objects that correspond to the root element of the XML
document) and nonroot objects against the schema used to generate the object’s
implementation class.

When validating an object tree, TopLink performs the following checks (in order):

1. Check that element appears in the document at the specified location.

2. If maxOccurs or minOccurs is specified, check number of elements.

3. If type is specified, check that element value satisfies the type constraints.

4. If a fixed value is specified, check that the element value matches it.

5. If restrictions (length, patterns, enumerations, and so on) are specified, check that
the element value satisfies it.

6. If an ID type is specified during a validateRoot operation, check that the ID
value is unique in the document.

7. If an IDREF type is specified during a validateRoot operation, check that the
ID referenced exists in the document.

If validation errors are encountered, TopLink stops validating the object tree and
creates a ValidationEvent object, according to the JAXB specification. If an error
occurs in a subobject, TopLink will not validate further down that object’s subtree.

For more information on using TopLink XML to perform validation, see "Using
TopLink JAXB Compiler Generated Files at Run Time" on page 17-12.

For additional information on JAXB and validation, refer to the JAXB specification at
http://java.sun.com/xml/jaxb/.

Understanding the Project API
This section describes the following:

■ Project Inheritance Hierarchy

Project Inheritance Hierarchy
There is only one type of project: oracle.toplink.sessions.Project.

Understanding Sequencing in Relational Projects
In an relational project, you store persistent objects for your application in database
tables that represent the class of instantiated object. As Figure 17–2 shows, each row of
the VEHICLE_POOL table represents an instantiated object from that class, and the
VEH_ID column holds the primary key for each object.

Understanding Sequencing in Relational Projects

Understanding Projects 17-15

Figure 17–2 Sequencing Elements in a Class Database Table

You configure TopLink sequencing at the project or session level (see "Configuring
Sequencing at the Project Level" on page 20-3 or "Configuring Sequencing at the
Session Level" on page 83-4) to tell TopLink how to obtain values for the primary key
column: that is, what type of sequencing to use (see "Sequencing Types" on
page 17-16).

You configure TopLink sequencing at the descriptor level (see "Configuring
Sequencing at the Descriptor Level" on page 26-3) to tell TopLink into which table and
column to write the sequence value when an instance of a descriptor’s reference class
is created.

This section describes the following:

■ Sequencing Configuration Options

■ Sequencing Types

■ Sequencing and Preallocation Size

■ Sequencing With Entity Beans WIth Container-Managed Persistence

Sequencing Configuration Options
You can configure sequencing using either TopLink Workbench or Java (but not both).

Using TopLink Workbench, create one sequence with a single preallocation size that
applies to all descriptors that require sequencing. You can configure table sequencing
(see "Table Sequencing" on page 17-16) or native sequencing (see "Native Sequencing
With an Oracle Database Platform" on page 17-18). If you choose table sequencing, you
can either use default table and column names or specify your own (see "Default
Versus Custom Sequence Table" on page 17-17). Oracle recommends using TopLink
Workbench to configure sequencing. Using TopLink Workbench, you can easily
configure the sequencing options applicable to most applications. For more
information, see "Configuring Sequencing at the Project Level" on page 20-3 or
"Configuring Sequencing at the Session Level" on page 83-4.

Using Java, you can configure any sequence type that TopLink supports (see
"Sequencing Types" on page 17-16). You can create any number and combination of
sequences per project. You can create a sequence object explicitly or use the platform
default sequence (see "Default Sequencing" on page 17-18). You can associate the same
sequence with more than one descriptor or associate different sequences (and different
sequence types) to various descriptors. You can configure a separate preallocation size
for each descriptor’s sequence. For more information, see "Using Java" on page 83-5.

Note: When choosing a column type for a primary key value, ensure
that the type provides a suitable precision. For example, if you use a
TIMESTAMP type but your database platform’s TIMESTAMP is defined
only to the second, then identical values may be returned for objects
created within the same second.

Understanding Sequencing in Relational Projects

17-16 Oracle TopLink Developer’s Guide

Sequencing Types
TopLink supports the following sequence types:

■ Table Sequencing

■ Unary Table Sequencing

■ Query Sequencing

■ Default Sequencing

■ Native Sequencing With an Oracle Database Platform

■ Native Sequencing With a Non-Oracle Database Platform

Table Sequencing
With table sequencing, you create a single database table that includes sequencing
information for one or more sequenced objects in the project. TopLink maintains this
table to track sequence numbers for these object types.

As Figure 17–3 shows, the table may contain sequencing information for more than
one class that uses sequencing. The default table is called SEQUENCE and contains two
columns:

■ SEQ_NAME, which specifies the class type to which the selected row refers

■ SEQ_COUNT, which specifies the highest sequence number currently allocated for
the object represented in the selected row

Figure 17–3 TopLink Table Sequence Table

The rows of the SEQUENCE table represent each sequence object: one for each class that
participates in sequencing or a single sequence object across several classes so that
they can benefit from the same preallocation pool. When you configure sequencing at
the descriptor level (see "Configuring Sequencing at the Descriptor Level" on
page 26-3), you specify the SEQ_NAME for the class. Add a row with that name to the
SEQUENCE table and initialize the SEQ_COUNT column to the value 0.

Each time a new instance of a class is created, TopLink obtains the required sequence
value. For efficiency, TopLink uses preallocation to reduce the number of table
accesses required to obtain sequence values (see "Sequencing and Preallocation Size"
on page 17-20).

You can create the SEQUENCE table on the database in one of two ways:

■ Use TopLink Workbench to create the table. See "Generating Tables on the
Database" on page 4-32 for more information.

■ Use the TopLink table creator to create and update the table manually. See
"Generating SQL Creation Scripts" on page 4-29 for more information.

You can configure table sequencing using TopLink Workbench or Java. Oracle
recommends that you use TopLink Workbench. For more information about

Understanding Sequencing in Relational Projects

Understanding Projects 17-17

configuring table sequencing, see "Configuring Sequencing at the Project Level" on
page 20-3 or "Configuring Sequencing at the Session Level" on page 83-4.

Default Versus Custom Sequence Table In most cases, you implement table sequencing
using the default table and column names. However, you may want to specify your
own table and column names if:

■ You want to use an existing sequence table for sequencing.

■ You do not want to use the default naming convention for the table and its
columns.

Unary Table Sequencing
Although similar to table sequencing (see "Table Sequencing" on page 17-16), with
unary table sequencing, you create a separate sequence table for each sequenced object
in the project.

As Figure 17–4 shows, sequencing information appears in the table for a single class
that uses sequencing. You can name the table anything you want but it must contain
only one column named (by default) SEQUENCE.

Figure 17–4 TopLink Unary Table Sequence Table

When you configure sequencing at the descriptor level, you specify the sequence name
for the class: this is the name of the unary table sequence table. Figure 17–4 shows a
unary table sequence for the Employee class. The Employee class descriptor is
configured (see "Configuring Sequencing at the Descriptor Level" on page 26-3) with a
sequence name of EMP_SEQ to match the unary table sequence table name. TopLink
adds a row to this table and initializes the SEQUENCE column to the value 1.

Each time a new class is created, TopLink obtains the required sequence value from
the single row of the unary sequence table corresponding to the class. For efficiency,
TopLink uses preallocation to reduce the number of table accesses required to obtain
sequence values (see "Sequencing and Preallocation Size" on page 17-20).

You can create the unary table sequence table on the database in one of two ways:

■ Use TopLink Workbench to create the table. See "Generating Tables on the
Database" on page 4-32 for more information.

■ Use the TopLink table creator to create and update the table manually. See
"Generating SQL Creation Scripts" on page 4-29 for more information.

If you are migrating a BEA WebLogic CMP application to OC4J and TopLink
persistence (see "Migrating BEA WebLogic Persistence to OC4J TopLink Persistence"
on page 7-16), the TopLink migration tool does not migrate BEA WebLogic single
column sequence tables to TopLink unary sequence tables (see "Unary Table
Sequencing" on page 17-17). After migration, you must manually configure your
project to use TopLink unary sequence tables if your application originally used single
column sequence tables in BEA WebLogic.

Currently, you can only configure unary table sequencing in Java using the
UnaryTableSequence class (for more information, see "Using Java" on page 83-5).

Understanding Sequencing in Relational Projects

17-18 Oracle TopLink Developer’s Guide

Query Sequencing
With query sequencing, you can access a sequence resource using custom read
(ValueReadQuery) and update (DataModifyQuery) queries and a preallocation
size that you specify. This allows you to perform sequencing using stored procedures
and allows you to access sequence resources that are not supported by the other
sequencing types that TopLink provides.

Currently, you can only configure query sequencing in Java using the
QuerySequence class (for more information, see "Configuring Query Sequencing" on
page 83-7).

Default Sequencing
The platform owned by a login is responsible for providing a default sequence
instance appropriate for the platform type. For example, by default, a
DatabasePlatform provides a table sequence using the default table and column
names (see "Table Sequencing" on page 17-16).

You can access this default sequence directly using DatasourceLogin method
getDefaultSequence, or indirectly by using the DefaultSequence class, a
wrapper for the platform default sequence.

If you associate a descriptor with a nonexistent sequence, the TopLink runtime will
create an instance of DefaultSequence to provide sequencing for that descriptor.
For more information, see "Configuring the Platform Default Sequence" on page 26-6.

The main purpose of the DefaultSequence is to allow a sequence to use a different
pre-allocation size than the project default.

Currently, you can only make use of default sequencing in Java (for more information,
see "Using the Platform Default Sequence" on page 83-6).

Native Sequencing With an Oracle Database Platform
TopLink support for native sequencing with Oracle databases is similar to table
sequencing (see "Table Sequencing" on page 17-16), except that TopLink does not
maintain a table in the database. Instead, the database contains a sequence object that
stores the current maximum number and preallocation size for sequenced objects. The
sequence name configured at the descriptor level identifies the sequence object
responsible for providing sequencing values for the descriptor’s reference class.

You can configure native sequencing using TopLink Workbenchor Java. Oracle
recommends that you use TopLink Workbench. For more information about
configuring table sequencing, see "Configuring Sequencing at the Project Level" on
page 20-3 or "Configuring Sequencing at the Session Level" on page 83-4.

Understanding the Oracle SEQUENCE Object The Oracle SEQUENCE object implements a
strategy that closely resembles TopLink sequencing: it implements an INCREMENT
construct that parallels the TopLink preallocation size, and a sequence.nextval
construct that parallels the SEQ_COUNT field in the TopLink SEQUENCE table in table
sequencing. This implementation enables TopLink to use the Oracle SEQUENCE object
as if it were a TopLink SEQUENCE table, but eliminates the need for TopLink to create
and maintain the table.

As with table sequencing, TopLink creates a pool of available numbers by requesting
that the Oracle SEQUENCE object increment the sequence.nextval and return the
result. Oracle adds the value, INCREMENT, to the sequence.nextval, and TopLink
uses the result to build the sequencing pool.

Understanding Sequencing in Relational Projects

Understanding Projects 17-19

The key difference between this process and the process involved in table sequencing
is that TopLink is unaware of the INCREMENT construct on the SEQUENCE object.
TopLink sequencing and the Oracle SEQUENCE object operate in isolation. To avoid
sequencing errors in the application, set the TopLink preallocation size and the Oracle
SEQUENCE object INCREMENT to the same value. Note that the Oracle sequence object
must have a starting value equal to the preallocation size because when TopLink gets
the next sequence value, it assume it has the previous preallocation size of values.

Using SEQUENCE Objects Your database administrator (DBA) must create a SEQUENCE
object on the database for every sequencing series your application requires. If every
class in your application requires its own sequence, the DBA creates a SEQUENCE
object for every class; if you design several classes to share a sequence, the DBA need
create only one SEQUENCE object for those classes.

For example, in Figure 17–5, consider the case of a sporting goods manufacturer that
manufactures three styles of tennis racquet. The data for these styles of racquet are
stored in the database as follows:

■ Each style of racquet has its own class table.

■ Each manufactured racquet is an object represented by a line in the class table.

■ The system assigns serial numbers to the racquets that use sequencing.

Figure 17–5 Example of Database Tables–Racquet Information

The manufacturer can do either of the following:

■ Use separate sequencing for each racquet style. The DBA builds three separate
SEQUENCE objects, perhaps called ATTACK_SEQ, VOLLEY_SEQ, and PROX_SEQ.
Each different racquet line has its own serial number series, and there may be
duplication of serial numbers between the lines (for example: all three styles may
include a racquet with serial number 1234).

■ Use a single sequencing series for all racquets. The DBA builds a single SEQUENCE
object (perhaps called RACQUET_SEQ). The manufacturer assigns serial numbers
to racquets as they are produced, without regard for the style of racquet.

Native Sequencing With a Non-Oracle Database Platform
Several databases support a type of native sequencing in which the database
management system generates the sequence numbers.

Understanding Sequencing in Relational Projects

17-20 Oracle TopLink Developer’s Guide

When you create a database table for a class that uses native sequencing, include a
primary key column, and set the column type as follows:

■ For Sybase and Microsoft SQL Server databases, set the primary key field to the
type IDENTITY.

■ For IBM Informix databases, set the primary key field to the type SERIAL.

When you insert a new object into the table, TopLink populates the object before
insertion into the table, but does not include the sequence number. As the database
inserts the object into its table, the database automatically populates the primary key
field with a value equal to the primary key of the previous object plus 1.

At this point, and before the transaction closes, TopLink reads back the primary key
for the new object so that the object has an identity in the TopLink cache.

If your database provides native sequencing, but TopLink does not directly support it,
you may be able to access the native sequence object using a query sequence and
stored procedures. For more information, see "Query Sequencing" on page 17-18.

You can configure native sequencing using TopLink Workbenchor Java. Oracle
recommends that you use TopLink Workbench. For more information about
configuring table sequencing, see "Configuring Sequencing at the Project Level" on
page 20-3 or "Configuring Sequencing at the Session Level" on page 83-4.

Sequencing and Preallocation Size
To improve sequencing efficiency, TopLink lets you preallocate sequence numbers.
Preallocation enables TopLink to build a pool of available sequence numbers that are
assigned to new objects as they are created and inserted into the database. TopLink
assigns numbers from the sequence pool until the pool is empty.

The preallocation size specifies the size of the pool of available numbers. Preallocation
improves sequencing efficiency by substantially reducing the number of database
accesses required by sequencing. By default, TopLink sets preallocation size to 50.
You can specify preallocation size either in TopLink Workbench or as part of the
session login.

Preallocation size configuration applies to table sequencing and Oracle native
sequencing. In Oracle native sequencing, the sequence preallocation size must match
the Oracle sequence object increment size. Preallocation is not available for native
sequencing in other databases as they use an auto-assigned sequence column. Oracle
recommends that you use table sequencing in non-Oracle databases to allow
preallocation.

For table sequencing, TopLink maintains a pool of preallocated values for each
sequenced class. When TopLink exhausts this pool of values, it acquires a new pool of
values, as follows:

Note: TopLink does not support native sequencing in IBM DB2
databases.

Note: This type of sequencing does not support preallocation, so the
preallocation size must be set to 1. To take advantage of sequence
preallocation, Oracle recommends that you use table sequencing on
these databases instead of native sequencing.

Understanding Sequencing in Relational Projects

Understanding Projects 17-21

1. TopLink accesses the database, requesting that the SEQ_COUNT for the given class
(identified by the SEQ_NAME) be incremented by the preallocation size and the
result returned.

For example, consider the SEQUENCE table in Figure 17–3. If you create a new
purchase order and TopLink has exhausted its pool of sequence numbers, then
TopLink executes a SQL statement to increment SEQ_COUNT for SEQ_PURCH_
ORDER by the preallocation size (in this case, the TopLink default of 50). The
database increments SEQ_COUNT for SEQ_PURCH_ORDER to 1600 and returns this
number to TopLink.

2. TopLink calculates a maximum and a minimum value for the new sequence
number pool, and creates the pool of values.

3. TopLink populates the object sequence attribute with the first number in the pool
and writes the object to the class table.

As you add new objects to the class table, TopLink continues to assign values from the
pool until it exhausts the pool. When the pool is exhausted, TopLink again requests
new values from the table.

Using TopLink Workbench, you specify a preallocation size when you choose a
sequencing type at the project or session level. That preallocation size applies to all
descriptors.

Using Java, you can specify a different preallocation size for each sequence that you
create.

For more information about configuring preallocation size, see "Configuring
Sequencing at the Project Level" on page 20-3 or "Configuring Sequencing at the
Session Level" on page 83-4.

Sequencing With Entity Beans WIth Container-Managed Persistence
To implement sequencing for entity beans with container-managed persistence, use a
sequencing strategy that implements preallocation, such as table sequencing or Oracle
native sequencing. Preallocation ensures that the entity bean primary key is available
at the ejbPostCreate method. If you use non-Oracle native sequencing (for
example, Sybase, Microsoft SQL Server, or Informix database native sequencing), be
aware that:

■ Non-Oracle native sequencing does not strictly conform to any EJB specification,
because it does not initialize the primary key for a created object until you commit
the transaction that creates the object. EJB specifications prior to 3.0 expect that the
primary key is available at ejbPostCreate method.

■ TopLink CMP integration for IBM WebSphere application server does not support
native sequencing other than Oracle native sequencing.

■ OC4J and BEA WebLogic Server supports native sequencing; however, this type of
native sequencing does not assign or return a primary key for a created object
until you commit the transaction in which the object is created. Because of this, if
you use native sequencing, commit a transaction immediately after calling the
ejbCreate method to avoid problems with object identity in the TopLink cache
and the container.

TopLink CMP Integration With IBM WebSphere Application Server
The TopLink CMP integration with IBM WebSphere application server does not
automatically provide the primary key after calling the ejbCreate method. If you

Understanding XML Namespaces

17-22 Oracle TopLink Developer’s Guide

deploy to a IBM WebSphere application server, explicitly set the primary key in the
ejbCreate method. Example 17–3 illustrates this call in a WebSphere integration.

Example 17–3 Setting Primary Key in IBM WebSphere

public Integer ejbCreate() throws CreateException {
oracle.toplink.ejb.cmp.was.SessionLookupHelper.getHelper().getSession(this)
.getActiveUnitofWork().assignSequenceNumber(this);

return null
}

This example uses the TopLink SessionLookupHelper to look up the correct
session and uses the session to assign a sequence number to the bean.

TopLink CMP Integration With OC4J and BEA WebLogic Server
In the TopLink CMP integration with OC4J and BEA WebLogic Server, TopLink
automatically sets the primary key field on the bean. You do not pass the key value as
a parameter to the create method, nor set them in the create method.
Example 17–4 illustrates this call in a WebLogic integration.

Example 17–4 Setting Primary Key in OC4J and BEA WebLogic

public Integer ejbCreate() throws CreateException {
return null;

}

If you are migrating a BEA WebLogic CMP application to OC4J and TopLink
persistence (see "Migrating BEA WebLogic Persistence to OC4J TopLink Persistence"
on page 7-16), the TopLink migration tool automatically configures your project to use
unary table sequencing (see "Unary Table Sequencing" on page 17-17) if your
application originally used single-column sequence tables in BEA WebLogic.

Understanding XML Namespaces
As defined in http://www.w3.org/TR/REC-xml-names/, an XML namespace is a
collection of names, identified by a URI reference, which are used in XML documents
as element types and attribute names. To promote reusability and modularity, XML
document constructs should have universal names, whose scope extends beyond their
containing document. XML namespaces are the mechanism which accomplishes this.

XML namespaces are applicable in projects that reference an XML schema: EIS projects
that use XML records (see "EIS Projects" on page 17-7) and XML projects (see "XML
Projects" on page 17-9).

This section describes the following:

■ TopLink Workbench Namespace Resolution

■ Element and Attribute Form Options

■ TopLink Runtime Namespace Resolution

TopLink Workbench Namespace Resolution
Using TopLink Workbench, you can configure the XML schema namespace for your
project. For more information, see "Configuring XML Schema Namespace" on
page 4-37.

Understanding XML Namespaces

Understanding Projects 17-23

Element and Attribute Form Options
The xsd:schema element provides attributes that you can use to specify how
elements and attributes should be qualified by namespace.

This section describes the consequences of the following combinations of element and
attribute form configuration:

■ Element Form Default Qualified and Attribute Form Default Unqualified

■ Element and Attribute Form Default Unqualified

■ Element and Attribute Form Default Qualified

Element Form Default Qualified and Attribute Form Default Unqualified
Example 17–5 shows an XML schema in which a target namespace is set. It is coded
with elementFormDefault set to qualified and attributeFormDefault set to
unqualified. This means all elements must be namespace qualified and globally
declared attributes must be namespace qualified and locally defined attributes must
not be namespace qualified.

Example 17–5 XML Schema with Element Form Default Qualified and Attribute Form
Default Unqualified

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
attributeFormDefault="unqualified"
xmlns="urn:namespace-example"
targetNamespace="urn:namespace-example">
<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element ref="date-of-birth"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:integer"/>

</xsd:complexType>
<xsd:element name="date-of-birth" type="xsd:date"/>

</xsd:schema>

Example 17–6 shows an XML document that conforms to this XML schema.

Example 17–6 XML Document

<?xml version="1.0" encoding="UTF-8"?>
<ns:customer xmlns:ns="urn:namespace-example" id="1">

<ns:name>Jane Doe</ns:name>
<ns:date-of-birth>1975-02-21</ns:date-of-birth>

</ns:customer>

Example 17–7 shows the Java code for a Customer class XMLDescriptor and XML
mappings for its attributes to illustrate how this schema configuration affects the
XPaths you specify for default root element and mappings (for more information, see
"Configuring an XML Descriptor" on page 29-1 and Chapter 63, "Configuring an XML
Mapping").

Example 17–7 XML Descriptors and Mappings

NamespaceResolver namespaceResolver = new NamespaceResolver();
namespaceResolver.put("ns", "urn:namespace-example");

XMLDescriptor customerDescriptor = new XMLDescriptor();

Understanding XML Namespaces

17-24 Oracle TopLink Developer’s Guide

customerDescriptor.setJavaClass(Customer.class);
customerDescriptor.setDefaultRootElement("ns:customer");
customerDescriptor.setNamespaceResolver(namespaceResolver);

XMLDirectMapping idMapping = new XMLDirectMapping();
idMapping.setAttributeName("id");
idMapping.setXPath("@id");
customerDescriptor.addMapping(idMapping);

XMLDirectMapping nameMapping = new XMLDirectMapping();
nameMapping.setAttributeName("name");
nameMapping.setXPath("ns:name/text()");
customerDescriptor.addMapping(nameMapping);

XMLDirectMapping birthDateMapping = new XMLDirectMapping();
birthDateMapping.setAttributeName("birthDate");
birthDateMapping.setXPath("ns:date-of-birth/text()");
customerDescriptor.addMapping(birthDateMapping);

Element and Attribute Form Default Unqualified
Example 17–8 shows an XML schema in which a target namespace is set. It is coded
with elementFormDefault and attributeFormDefault set to unqualified.
This means that globally defined nodes must be namespace qualified and locally
defined nodes must not be namespace qualified.

Example 17–8 XML Schema with Element and Attribute Form Default Unqualified

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="unqualified"
attributeFormDefault="unqualified"
xmlns="urn:namespace-example"
targetNamespace="urn:namespace-example">
<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element ref="date-of-birth"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:integer"/>

</xsd:complexType>
<xsd:element name="date-of-birth" type="xsd:date"/>

</xsd:schema>

Example 17–9 shows an XML document that conforms to this XML schema.

Example 17–9 XML Document

<?xml version="1.0" encoding="UTF-8"?>
<ns:customer xmlns:ns="urn:namespace-example" id="1">

<name>Jane Doe</name>
<ns:date-of-birth>1975-02-21</ns:date-of-birth>

</ns:customer>

Example 17–10 shows the Java code for a Customer class XMLDescriptor and XML
mappings for its attributes to illustrate how this schema configuration affects the
XPaths you specify for default root element and mappings (for more information, see
"Configuring an XML Descriptor" on page 29-1 and Chapter 63, "Configuring an XML
Mapping").

Understanding XML Namespaces

Understanding Projects 17-25

Example 17–10 XML Descriptors and Mappings

NamespaceResolver namespaceResolver = new NamespaceResolver();
namespaceResolver.put("ns", "urn:namespace-example");

XMLDescriptor customerDescriptor = new XMLDescriptor();
customerDescriptor.setJavaClass(Customer.class);
customerDescriptor.setDefaultRootElement("ns:customer");
customerDescriptor.setNamespaceResolver(namespaceResolver);

XMLDirectMapping idMapping = new XMLDirectMapping();
idMapping.setAttributeName("id");
idMapping.setXPath("@id");
customerDescriptor.addMapping(idMapping);

XMLDirectMapping nameMapping = new XMLDirectMapping();
nameMapping.setAttributeName("name");
nameMapping.setXPath("name/text()");
customerDescriptor.addMapping(nameMapping);

XMLDirectMapping birthDateMapping = new XMLDirectMapping();
birthDateMapping.setAttributeName("birthDate");
birthDateMapping.setXPath("ns:date-of-birth/text()");
customerDescriptor.addMapping(birthDateMapping);

Element and Attribute Form Default Qualified
Example 17–11 shows an XML schema in which a target namespace is set. It is coded
with elementFormDefault and attributeFormDefault set to qualified. This
means that all nodes must be namespace qualified.

Example 17–11 XML Schema with Element and Attribute Form Default Qualified

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
attributeFormDefault="qualified"
xmlns="urn:namespace-example"
targetNamespace="urn:namespace-example">
<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element ref="date-of-birth"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:integer"/>

</xsd:complexType>
<xsd:element name="date-of-birth" type="xsd:date"/>

</xsd:schema>

Example 17–12 shows an XML document that conforms to this XML schema.

Example 17–12 XML Document

<?xml version="1.0" encoding="UTF-8"?>
<ns:customer xmlns:ns="urn:namespace-example" ns:id="1">

<ns:name>Jane Doe</ns:name>
<ns:date-of-birth>1975-02-21</ns:date-of-birth>

</ns:customer>

Example 17–13 shows the Java code for a Customer class XMLDescriptor and XML
mappings for its attributes to illustrate how this schema configuration affects the
XPaths you specify for default root element and mappings (for more information, see

Understanding XML Namespaces

17-26 Oracle TopLink Developer’s Guide

"Configuring an XML Descriptor" on page 29-1 and Chapter 63, "Configuring an XML
Mapping").

Example 17–13 XML Descriptors and Mappings

NamespaceResolver namespaceResolver = new NamespaceResolver();
namespaceResolver.put("ns", "urn:namespace-example");

XMLDescriptor customerDescriptor = new XMLDescriptor();
customerDescriptor.setJavaClass(Customer.class);
customerDescriptor.setDefaultRootElement("ns:customer");
customerDescriptor.setNamespaceResolver(namespaceResolver);

XMLDirectMapping idMapping = new XMLDirectMapping();
idMapping.setAttributeName("id");
idMapping.setXPath("@ns:id");
customerDescriptor.addMapping(idMapping);

XMLDirectMapping nameMapping = new XMLDirectMapping();
nameMapping.setAttributeName("name");
nameMapping.setXPath("ns:name/text()");
customerDescriptor.addMapping(nameMapping);

XMLDirectMapping birthDateMapping = new XMLDirectMapping();
birthDateMapping.setAttributeName("birthDate");
birthDateMapping.setXPath("ns:date-of-birth/text()");
customerDescriptor.addMapping(birthDateMapping);

TopLink Runtime Namespace Resolution
It is common for an XML document to include one or more namespaces. TopLink
supports this using its NamespaceResolver. The namespace resolver maintains
pairs of namespace prefixes and Uniform Resource Identifiers (URIs). TopLink uses
these prefixes in conjunction with the XPath statements you specify on EIS mappings
to XML records and XML mappings.

Although TopLink captures namespace prefixes in the XPath statements for mappings
(if applicable), the input document is not required to use the same namespace prefixes.
As Example 17–6 shows, TopLink will use the namespace prefixes specified in the
mapping when creating new documents.

Understanding XML Namespaces

Understanding Projects 17-27

Figure 17–6 Namespaces in TopLink

Understanding XML Namespaces

17-28 Oracle TopLink Developer’s Guide

Creating a Project 18-1

18
Creating a Project

This chapter contains the following information:

■ Project Creation Overview

■ Working With Projects

■ Exporting Project Information

■ Working With the ejb-jar.xml File

For information on the various types of projects available, see "TopLink Project Types"
on page 17-1.

Project Creation Overview
You can create a project using TopLink Workbench or Java code.

Oracle recommends using TopLink Workbench to create projects and generate
deployment XML or Java source versions of the project for use at run time. For more
information, see "Using TopLink Workbench" on page 18-2.

Alternatively, you can create projects in Java code. For an EIS project that uses a record
type other than XML, you must use Java code. For more information, see "Using Java"
on page 18-3 and Oracle TopLink API Reference.

You can use TopLink to create a project, if any of the following conditions are met:

■ You have both an object and data model: see "Creating a Project for an Existing
Object and Data Model" on page 18-5.

■ You have an object model, but no data model yet: see "Creating a Project From an
Existing Object Model" on page 18-5.

■ You have a data model, but no object model yet: "Creating a Project From an
Existing Data Model" on page 18-5.

■ You have an XML schema (XSD) document, but no object model yet: see "Creating
an XML Project From an XML Schema" on page 18-6.

If you have both XSD and object model classes, you can create an XML project
using the procedure described in "Using TopLink Workbench" on page 18-2.

■ You have a non-OC4J CMP project, you can create a project by migrating your
application to OC4J and TopLink persistence: see "Creating a Project by Migrating
an EAR to OC4J" on page 18-9.

■ You are deploying an EJB CMP application to OC4J, you can create a project
(including all mappings and data model) automatically at deployment time: see

Project Creation Overview

18-2 Oracle TopLink Developer’s Guide

"Creating a Project From an OC4J EJB CMP EAR at Deployment Time" on
page 18-10.

Using TopLink Workbench
When you create a project using TopLink Workbench, all project information is stored
in the project file (.mwp file). This file references additional XML data files that contain
the information about how the Java classes map to database tables or XML elements.

Using TopLink Workbench, you can export this information as a TopLink project XML
file (that is, the deployment XML file) that is read in by the TopLink runtime. You can
also export this information as a Java class. For more information, see "Exporting
Project Information" on page 18-13.

TopLink Workbench displays projects and their contents in the Navigator window.
When you select a project, its attributes are displayed in the Editor window. See "Using
the Navigator" on page 4-9 for more information. TopLink Workbench supports the
following project types:

■ Relational project

■ XML project

■ EIS project

Creating New TopLink Workbench Projects
This section includes information on creating a new TopLink Workbench project. To
create a new project from an existing persistence application (such as OC4J), see
Chapter 7, "Integrating TopLink With an Application Server". To create a new project
from JAXB, see "TopLink Support for Java Architecture for XML Binding (JAXB)" on
page 17-10.

To create a new TopLink Workbench project, use this procedure:

1. Click New on the toolbar and select Project. The Create New TopLink Workbench
Project dialog box appears.

You can also create a new project by choosing File > New > Project from the
menu.

Figure 18–1 Create New TopLink Workbench Project Dialog Box

Use the following information to enter data in each field of this dialog box:

Project Creation Overview

Creating a Project 18-3

For more project information, continue with the following:

■ Configure the project (see Chapter 19, "Configuring a Project").

■ Add mappings and descriptors (see Chapter 23, "Understanding Descriptors" and
Chapter 30, "Understanding Mappings").

■ Export the project for use with the TopLink runtime (see "Exporting Project
Information" on page 18-13).

Using Java
To create a project using Java code, use this procedure:

1. Implement a project class that extends the
oracle.toplink.sessions.Project class (see Example 18–1).

2. Compile the project class.

Example 18–1 Specifying a TopLink Project in Code

/**
* The class EmployeeProject is an example of an Oracle TopLink project defined in
Java code. The individual parts of the project - the Login and the descriptors,
are built inside of methods that are called by the constructor. Note that
EmployeeProject extends the class oracle.toplink.sessions.Project
*/
public class EmployeeProject extends oracle.toplink.sessions.Project {

/**
* Supply a zero-argument constructor that initializes all aspects of the project.
Make sure that the login and all the descriptors are initialized and added to the
project. Project-level properties, such as the name of the project, should be
specified here
*/
public EmployeeProject() {

Field Description

Name Enter the name of the TopLink Workbench project. This project
name will also become the name of the .mwp file.

Data Source Use these options to specify the type of project to create, and its
data source.

Database Select Database to create an relational project to a relational
database.

Use the Platform list to select the specific database platform.

See "Relational Projects" on page 17-6 for more information.

EIS Select EIS to create an EIS project to a nonrelational data source
using XML records.

Use the Platform list to specify the J2C adapter to use.

See "EIS Projects" on page 17-7 for more information.

XML Select XML to create a nontransactional, nonpersistent XML project
to an XML schema.

Alternatively, you can generate both an XML project and object
model classes (see "Creating an XML Project From an XML Schema"
on page 18-6).

See "XML Projects" on page 17-9 for more information.

Project Creation Overview

18-4 Oracle TopLink Developer’s Guide

setName("EmployeeProject");
applyLogin();

addDescriptor(buildAddressDescriptor());
addDescriptor(buildEmployeeDescriptor());
addDescriptor(buildPhoneNumberDescriptor());

}

// Data source information
public void applyLogin() {
DatabaseLogin login = new DatabaseLogin();

// use platform appropriate for underlying database
login.usePlatform(
new oracle.toplink.platform.database.oracle.Oracle9Platform());

login.setDriverClassName("oracle.jdbc.OracleDriver");
login.setConnectionString("jdbc:oracle:thin:@HOST:PORT:SID");
login.setUserName("USER NAME");
login.setEncryptedPassword("PASSWORD, ENCRYPTED");

// Configuration Properties
setDatasourceLogin(login);

}

/**
* Descriptors are built by defining table info, setting properties (caching, etc.)
and by adding mappings to the descriptor
*/

// SECTION: DESCRIPTOR
public ClassDescriptor buildAddressDescriptor() {
RelationalDescriptor descriptor = new RelationalDescriptor();

// specify the class to be made persistent
descriptor.setJavaClass(examples.servletjsp.model.Address.class);

// specify the tables to be used and primary key
descriptor.addTableName("ADDRESS");
descriptor.addPrimaryKeyFieldName("ADDRESS.ADDRESS_ID");

// Descriptor Properties
descriptor.useSoftCacheWeakIdentityMap();
descriptor.setIdentityMapSize(100)
descriptor.useRemoteSoftCacheWeakIdentityMap()
descriptor.setRemoteIdentityMapSize(100)
descriptor.setSequenceNumberFieldName("ADDRESS.ADDRESS_ID")
descriptor.setSequenceNumberName("ADD_SEQ");
descriptor.setAlias("Address");

// Mappings
DirectToFieldMapping cityMapping = new DirectToFieldMapping();
cityMapping.setAttributeName("city");
cityMapping.setFieldName("ADDRESS.CITY");
descriptor.addMapping(cityMapping);

// … Additional mappings are added to the descriptor using the addMapping()
method

return descriptor;
}

Creating a Project From an Existing Data Model

Creating a Project 18-5

Creating a Project for an Existing Object and Data Model
If you have both an existing object model (Java classes for your domain objects) and
data model (such as an existing database schema), use this procedure to create your
TopLink project.

This procedure applies to relational project types.

Using TopLink Workbench
1. Create the project (see "Using TopLink Workbench" on page 18-2).

2. Configure the project classpath (see "Configuring Project Classpath" on page 19-3).

3. Import classes (see "Importing and Updating Classes" on page 4-50).

4. Import database tables (see "Importing Tables From a Database" on page 4-22).

5. Configure project options (see Chapter 19, "Configuring a Project").

Creating a Project From an Existing Object Model
If you have an existing object model (Java classes for your domain objects), but you do
not have a corresponding data model, use this procedure to create your TopLink
project and automatically generate the corresponding data model.

This procedure applies to relational projects.

Using TopLink Workbench
1. Create the project (see "Using TopLink Workbench" on page 18-2).

2. Configure the project classpath (see "Configuring Project Classpath" on page 19-3).

3. Import classes (see "Importing and Updating Classes" on page 4-50).

4. Generate database tables. For more information, see the following:

■ "Creating New Tables" on page 4-22

■ "Generating Tables on the Database" on page 4-32

5. Configure project options (see Chapter 19, "Configuring a Project").

Creating a Project From an Existing Data Model
If you have an existing data model (such as a database schema), but you do not have a
corresponding data model (Java classes for domain objects), use this procedure to
create your TopLink project and automatically generate the corresponding object
model.

This procedure applies to relational projects.

Note: Use TopLink Workbench to create a Java project class from an
existing project. This provides a starting point for a custom project class.
For more information, see "Exporting Project Java Source" on page 18-14.

Creating an XML Project From an XML Schema

18-6 Oracle TopLink Developer’s Guide

Using TopLink Workbench
1. Create the project (see "Using TopLink Workbench" on page 18-2).

2. Import database tables (see "Importing Tables From a Database" on page 4-22).

3. Generate classes. For more information, see either of the following:

■ "Generating Classes and Descriptors From Database Tables" on page 4-30

■ "Generating EJB Entity Beans and Descriptors From Database Tables" on
page 4-31

4. Configure project options (see Chapter 19, "Configuring a Project").

Creating an XML Project From an XML Schema
If you have an existing data model (XML schema document), but you do not have a
corresponding object model (Java classes for domain objects), use this procedure to
create your TopLink project and automatically generate the corresponding object
model.

Using the TopLink JAXB compiler simplifies JAXB application development with
TopLink by automatically generating both the required JAXB files and the TopLink
files from your XML schema (XSD) document. Once generated, you can open the
TopLink Workbench project to fine-tune XML mappings without having to recompile
your JAXB object model.

You can use the TopLink JAXB compiler from TopLink Workbench (see "Using
TopLink Workbench" on page 18-6) or from the command line (see "Using the
Command Line" on page 18-8). Oracle recommends that you use TopLink Workbench.

For more information, see the following:

■ "TopLink Support for Java Architecture for XML Binding (JAXB)" on page 17-10

■ "Using TopLink JAXB Compiler Generated Files at Run Time" on page 17-12

Using TopLink Workbench
To create a new, mapped TopLink Workbench project from an XML schema using
JAXB, use this procedure:

1. From TopLink Workbench, select File > New > Project > From XML Schema
(JAXB).

Note: If you have both XSD and object model classes, you can create
an XML project using the procedure described in "Using TopLink
Workbench" on page 18-2.

Note: Before you compile your generated classes, be sure to
configure your IDE classpath to include <ORACLE_
HOME>\lib\xml.jar. For example, see Chapter 6, "Using an
Integrated Development Environment".

Creating an XML Project From an XML Schema

Creating a Project 18-7

Figure 18–2 Create TopLink Workbench Project using JAXB Dialog Box

Use the following information to enter data in each field of this dialog box:

Field Description

From Use these fields to specify your existing JAXB information.

Schema File Click Browse and select the fully qualified path to your XSD file.

JAXB Customization File This in an optional setting. It can be used if you have a standard
JAXB configuration file that you wish to use to override the
default JAXB compiler behavior. The JAXB customization file
contains binding declarations for customizing the default binding
between an XSD component and its Java representation.

To Use these fields to specify the location and options of the TopLink
Workbench project.

Output Directory Click Browse and select the path to the directory into which
generated files are written. All paths used in the project are
relative to this directory.

Output Source Directory Click Browse and select the path to the directory (relative to the
Output Directory) into which generated interfaces,
implementation classes, and deployment files are written. Default:
directory named source in the specified output directory.

Output Workbench Project Directory Click Browse and select the path to the directory (relative to the
Output Directory) into which the TopLink Workbench project
files are written. Default: directory named mw in the specified
output directory.

Package Name for Generated Interfaces The optional name of the package to which generated interfaces
belong. This defines your context path. If it is not specified, a
package name of jaxbderived.<schema name> is used where
<schema name> is the name of the schema specified by the
Schema File field.

Creating an XML Project From an XML Schema

18-8 Oracle TopLink Developer’s Guide

The TopLink JAXB compiler generates JAXB-specific files (see "Understanding
JAXB-Specific Generated Files" on page 17-10) and TopLink-specific files (see
"Understanding TopLink-Specific Generated Files" on page 17-11).

Optionally, open the generated TopLink Workbench project (see "TopLink Workbench
Project" on page 17-12), customize the generated mappings and descriptors, and
reexport the TopLink project XML.

Using the Command Line
To create a new, mapped Oracle TopLink Workbench project from an XML schema
using JAXB from the command line, use the tljaxb.cmd or tljaxb.sh file (located
in the <ORACLE_HOME>/toplink/bin directory) as follows:

1. Using a text editor, edit the tljaxb.cmd or tljaxb.sh file to set proxy settings
(if required).

If you are using a schema that imports another schema by URL and you are
operating behind a proxy, then you must uncomment the lines shown in
Example 18–2 or Example 18–3 and edit them to set your proxy host (name or IP
address) and port:

Example 18–2 Proxy Settings in tljaxb.cmd

@REM set JVM_ARGS=%JVM_ARGS% -DproxySet=true -Dhttp.proxyHost= -Dhttp.proxyPort=

Example 18–3 Proxy Settings in tljaxb.sh

JVM_ARGS="${JVM_ARGS} -DproxySet=true -Dhttp.proxyHost= -Dhttp.proxyPort="

2. Execute the tljaxb.cmd or tljaxb.sh file (located in the <ORACLE_
HOME>/toplink/bin directory).

The TopLink JAXB compiler generates JAXB-specific files (see "Understanding
JAXB-Specific Generated Files" on page 17-10) and TopLink-specific files (see
"Understanding TopLink-Specific Generated Files" on page 17-11).

Example 18–4 illustrates how to generate an object model from a schema using the
Toplink JAXB compiler. Table 18–1 lists the compiler arguments.

Example 18–4 Generating an Object Model from a Schema with tljaxb.cmd

tljaxb.cmd -sourceDir ./app/src -generateWorkbench -workbenchDir ./app/mw -schema
purchaseOrder.xsd -targetPkg examples.ox.model.if -implClassPkg
examples.ox.model.impl

Package Name for Generated
Implementation Classes

The optional name of the package to which generated
implementation classes belong. This defines your context path. If
it is not specified, a package name of jaxbderived.<schema
name> is used where <schema name> is the name of the schema
specified by the Schema File field.

Note: Before you compile your generated classes, be sure to
configure your IDE classpath to include <ORACLE_
HOME>\lib\xml.jar. For example, see Chapter 6, "Using an
Integrated Development Environment".

Field Description

Creating a Project by Migrating an EAR to OC4J

Creating a Project 18-9

3. Optionally, open the generated TopLink Workbench project (see "TopLink
Workbench Project" on page 17-12) in TopLink Workbench, customize the
generated mappings and descriptors, and reexport the TopLink project XML.

Creating a Project by Migrating an EAR to OC4J
If you configure TopLink to be the default persistence for your application server,
TopLink provides automated support for migrating your existing J2EE CMP
application server-specific ejb-jar.xml file to the required
toplink-ejb-jar.xml file, including providing an appropriate TopLink
Workbench project.

This procedure applies to CMP relational projects only.

For more information, see "Persistence Manager Migration" on page 7-4.

Table 18–1 TopLink JAXB Binding Compiler Arguments

Argument Description Optional?

-help Prints this usage information. Yes

-version Prints the release version of the TopLink JAXB compiler. Yes

-sourceDir The path to the directory into which generated interfaces,
implementation classes, and deployment files are written.

Default: directory named source in the specified output directory.

Yes

-generateWorkbench Generate a TopLink Workbench project and necessary project files.
If omitted, only runtime information is generated.

Yes

-workbenchDir The path to the directory into which the TopLink Workbench
project files are written. This argument requires the
-generateWorkbench argument.

Default: directory named mw in the specified output directory.

Yes

-schema The fully qualified path to your XSD file. No

-targetPkg The name of the package to which both generated interfaces and
classes belong. This defines your context path. To specify a
different package for implementation classes, set the
-implClassPkg argument.

Default: a package name of jaxbderived.<schema name>
where <schema name> is the name of the schema specified by the
-schema argument.

Yes

-implClassPkg The name of the package to which generated implementation
classes belong. If this option is set, interfaces belong to the package
specified by the -targetPkg argument. This defines your context
path.

Yes

-interface Generate only interfaces. This argument is optional.

Default: generate both interfaces and implementation classes.

Yes

-verbose The interfaces and classes generated. This argument is optional.

Default: not verbose.

Yes

-customize The fully qualified path and file name of a standard JAXB
customization file that you can use to override default JAXB
compiler behavior.

Yes

Note: Before you compile your generated classes, be sure to
configure your IDE classpath to include <ORACLE_
HOME>\lib\xml.jar. For example, see Chapter 6, "Using an
Integrated Development Environment".

Creating a Project From an OC4J EJB CMP EAR at Deployment Time

18-10 Oracle TopLink Developer’s Guide

Creating a Project From an OC4J EJB CMP EAR at Deployment Time
For a CMP application deployed to OC4J configured to use TopLink as the persistence
manager, you can use the TopLink default mapping feature to automatically generate a
TopLink project, including descriptors and mappings for all persistent objects, at
deployment time.

This procedure applies only to CMP relational projects deployed to OC4J configured to
use TopLink as the default persistence manager.

For more information, see "Default Mapping in CMP Projects Using OC4J at Run
Time" on page 30-4.

Working With Projects
Using TopLink Workbench, you can perform the following project functions:

■ Opening Existing Projects

■ Saving Projects

■ Generating the Project Status Report

See Chapter 19, "Configuring a Project" for additional information on working with
TopLink Workbench projects.

Opening Existing Projects
Use this procedure to open an existing project:

1. Click Open Project on the toolbar. The Choose a File dialog box appears. You can
also open a project by choosing File > Open from the menu.

2. Select the TopLink Workbench project file (.mwp) to open, and click Open.
TopLink Workbench displays the project information.

If you open a TopLink Workbench version 3.n project that contains EJB
information, the Potential EJB Descriptors dialog box appears.

Caution: For most prior release projects, simply opening the
project in TopLink Workbench will upgrade your project.
However, to upgrade release 9.0.3 (and earlier) projects, you must
follow specific upgrade procedures and use the Package Rename
tool.

Refer to Oracle TopLink Release Notes and Oracle TopLink Getting
Started Guide for more information.

Note: The File menu option contains a list of recently opened
projects. You can select one of these projects to open. See "General
Preferences" on page 4-13 for information on customizing this list.

Working With Projects

Creating a Project 18-11

Figure 18–3 Potential EJB Descriptors Dialog Box

3. Select which of the descriptors should be imported as EJB descriptors, the project
persistence type, and click OK.

You can also specify whether or not TopLink Workbench generates methods and
attributes that comply with the EJB specification, if they are not found within the
current class descriptor(s).

If you open a TopLink Workbench version 9.0.3 (or later) project, the Create New
TopLink Workbench Project from Previous Version dialog box appears.

Figure 18–4 Create New TopLink Workbench Project From Previous Version Dialog Box

To convert the old project to the current format and view the project immediately, click
Save Later.

To convert the old project to the current format and save it to a new location and then
view the project, click Save Now.

Saving Projects
TopLink Workbench does not automatically save your project. Be sure to save your
project often to avoid losing data.

To save your project(s), use this procedure:

1. Click Save or Save All to save your project(s).

You can also save a project by choosing File > Save or File > Save All from the
menu.

2. If you close TopLink Workbench while there are currently unsaved changes, the
Save Project dialog box appears.

Working With Projects

18-12 Oracle TopLink Developer’s Guide

Figure 18–5 Save Projects Dialog Box

3. Select the project(s) to save and click OK.

Click Select All to select all the available projects.

Saving Projects With a New Name or Location
To save your project with a different name or location, use this procedure:

1. Choose File > Save As. The Save As dialog box appears.

Figure 18–6 Save As Dialog Box

2. Select a name and location, then click Save.

Generating the Project Status Report
Use the project status report to display a list of all warnings and errors in the TopLink
Workbench project. This report is similar to the Problems window (see "Working With

Caution: Do not rename the .mwp file outside of TopLink
Workbench. To rename a project, use the Save As option.

Exporting Project Information

Creating a Project 18-13

TopLink Workbench" on page 4-3), but lets you easily copy and paste the errors into
documents or messages. To generate the project status report, use this procedure:

1. Right-click the Problems label above the Problems window and select Problem
Report. The Project Status Report dialog box appears, displaying the status of each
TopLink Workbench project.

You can also generate the project status report by selecting Tools > Problem
Report from the menu.

Figure 18–7 Problem Report Dialog Box

See Chapter 14, "TopLink Workbench Error Reference" for information on each
reported error.

To copy the report to another application, click Copy.

Exporting Project Information
To use your project with the TopLink Foundation Library at run time, you must either
generate deployment XML or export the project to Java source code.

For all project types, TopLink Workbench can generate and export the following
project information:

■ Exporting Deployment XML Information (project.xml file)

■ Exporting Model Java Source

For relational projects only, TopLink Workbench can also generate and export the
following project information:

■ Exporting Project Java Source

■ Exporting Table Creator Files

Note: When exporting Java source and deployment XML,
TopLink Workbench writes the database password (if applicable)
using Java Cryptography Extension (JCE) encryption (when using
JDK 1.4). For information on how to specify password encryption
options, see "Configuring Password Encryption" on page 82-2.

Refer to Oracle TopLink Getting Started Guide for information on
using password encryption with JDK 1.3 and earlier.

Exporting Project Information

18-14 Oracle TopLink Developer’s Guide

Exporting Deployment XML Information
To export your deployment XML file (project.xml), use this procedure (see
Chapter 8, "Creating TopLink Files for Deployment" for detailed information):

1. Select the project and click Export Deployment XML.

You can also right-click the project in the Navigator and choose Export > Project
Deployment XML from the context menu or choose Selected > Export > Project
Deployment XML from the menu.

If you have not defined deployment and source code generation defaults (see
Chapter 19, "Configuring a Project") TopLink Workbench prompts for a file name
and directory.

To generate the deployment XML file that is compatible with projects prior to 10g
(10.1.3.1.0), see "Configuring Deprecated Direct Mappings" on page 19-12.

Exporting Model Java Source
To generate the project model’s Java source code, use this procedure:

1. Right-click the project, package, or specific descriptor in the Navigator and choose
Export > Export Model Java Source from the context menu. TopLink Workbench
creates a .java file for each selected descriptor.

You can also choose Workbench > Export > Export Model Java Source or Selected
> Export > Model Java Source from the menu or click Generate Source Code on
the Class tab. See "Configuring Class Information" on page 4-41 for more
information.

If you have not defined deployment and source code generation defaults (see
"Configuring a Project" on page 19-1) TopLink Workbench prompts for a root directory.

Exporting Project Java Source
For relational projects only, you can convert the project to Java source code. Generally,
the generated code executes faster and deploys easier than XML files. See "Generating
Java Code for Descriptors" on page 24-6 to export the model source for a specific
descriptor in a project. To convert your relational project to Java source, use this
procedure:

1. Right-click the project in the Navigator and choose Export > Project Java Source
from the context menu.

You can also choose Workbench > Export > Export Java Source or Selected >
Export > Project Java Source from the menu.

Note: If your project contains errors, the project.xml may not be
valid. See Chapter 14, "TopLink Workbench Error Reference" for
information on each reported error.

Note: If your TopLink Workbench project uses UTF-8 character
set, you must use a compatible JDK when compiling the exported
Java source.

Working With the ejb-jar.xml File

Creating a Project 18-15

If you have not defined deployment and source code generation defaults (see
"Configuring a Project" on page 19-1) TopLink Workbench prompts for a project
class name and directory.

To generate Java source that is compatible with projects prior to 10g (10.1.3.1.0), see
"Configuring Deprecated Direct Mappings" on page 19-12.

Exporting Table Creator Files
For relational projects only, you can create Java source code to generate database tables
defined in the project using this procedure:

1. Right-click the project in the Navigator and choose Export > Table Creator Java
Source from the context menu.

You can also choose Workbench > Export > Table Creator Java Source or Selected
> Export > Table Creator Java Source from the menu.

If you have not defined deployment and source code generation defaults (see
Chapter 19, "Configuring a Project") TopLink Workbench prompts for a class name and
root directory.

Working With the ejb-jar.xml File
For TopLink Workbench relational projects that use EJB 2.0 CMP, use the
ejb-jar.xml file to store persistence information for the application server. With
TopLink Workbench, you can import information from an existing ejb-jar.xml file
into your project, or you can create and update the ejb-jar.xml file from your
project.

Each TopLink Workbench project uses a single ejb-jar.xml file. For each entity bean
in the file, you should have an EJB descriptor in the project. All entity beans must use
the same persistence type.

As you make changes in your project, you can update the ejb-jar.xml file to reflect
your project. Additionally, if you edit the ejb-jar.xml file outside TopLink
Workbench, you can update your project to reflect the current file.

Table 18–2 describes how fields in the ejb-jar.xml file correspond to specific
functions in TopLink Workbench.

Note: If your TopLink Workbench project uses the UTF-8
character set, you must use a compatible JDK when compiling the
exported Java source.

If your project contains errors, the project.xml file may not be
valid. See Chapter 14, "TopLink Workbench Error Reference" for
information on each reported error.

Table 18–2 ejb-jar.xml Fields and TopLink Workbench

ejb-jar.xml Fields TopLink Workbench

primkey Bean attribute mapped to the primary key in the database table
(see "Configuring Primary Keys" on page 25-3).

Working With the ejb-jar.xml File

18-16 Oracle TopLink Developer’s Guide

Writing to the ejb-jar.xml File
To update the ejb-jar.xml file based on the current TopLink Workbench
information, use this procedure:

1. Choose Selected > Write Project to ejb-jar.xml from the menu.

You can also right-click the project in the Navigator and choose Write Project to
ejb-jar.xml from the context menu.

■ If the project does not currently contain an ejb-jar.xml file, the system
prompts you to create a new file.

■ If the system detects that changes were made to the ejb-jar.xml file but not
yet read into TopLink Workbench (for example, you changed the file outside
TopLink Workbench), then the system prompts you to read the file before
writing the changes.

Reading From the ejb-jar.xml File
To read the ejb-jar.xml information and update your TopLink Workbench project,
use this procedure.

ejb-name,
prim-key-class, local,
local-home, remote,
home, and ejb-class

EJB descriptor information on the EJB Info tab (see
"Configuring a Descriptor With EJB Information" on
page 25-45).

abstract-schema-name Descriptor Alias field (see "Configuring Descriptor Alias" on
page 25-7).

cmp-field Direct (non-relationship) attributes on the Descriptor Info tab
(see "Configuring Common Descriptor Options" on page 25-1).

cmp-version Persistence Type field on the General tab (see "Configuring
Persistence Type" on page 19-5). The persistence-type is
set to container.

query Queries listed in Queries tab (see "Configuring Named Queries
at the Descriptor Level" on page 25-10).

Note: The findByPrimaryKey query is not in the
ejb-jar.xml file as per the EJB 2.0 specification.

relationships One-to-one, one-to-many, and many-to-many mappings (see
Part X, "Relational Mappings").

Note: Use the EJB preferences to specify whether or not TopLink
Workbench automatically updates the ejb-jar.xml file when you
save the project.

Note: You can also write the information to a .jar file. TopLink
Workbench automatically places the ejb-jar.xml file in the
proper location (META-INF/ejb-jar.xml).

Table 18–2 (Cont.) ejb-jar.xml Fields and TopLink Workbench

ejb-jar.xml Fields TopLink Workbench

Working With the ejb-jar.xml File

Creating a Project 18-17

1. Choose Selected > Update Project from ejb-jar.xml from the menu.

You can also right-click the project in the Navigator window and choose Update
Project from ejb-jar.xml from the context menu.

Tip: To automatically create EJB descriptors in TopLink
Workbench for all entities, read the ejb-jar.xml file before
adding any classes in TopLink Workbench.

Note: If you are using TopLink Workbench behind a firewall, before
reading from the ejb-jar.xml file, you may need to configure
TopLink Workbench with a proxy (see "Help Preferences" on
page 4-14). If TopLink Workbench fails to read the ejb-jar.xml file
due to connection timeout or no route to host, proxy configuration is
required.

Working With the ejb-jar.xml File

18-18 Oracle TopLink Developer’s Guide

Configuring a Project 19-1

19
Configuring a Project

This chapter describes how to configure TopLink projects.

Table 19–1 lists the types of TopLink projects that you can configure and provides a
cross-reference to the type-specific chapter that lists the configurable options
supported by that type.

Table 19–2 lists the configurable options shared by two or more TopLink project types.

For more information, see the following:

■ "Project Creation Overview" on page 18-1

■ "Understanding Projects" on page 17-1

Configuring Common Project Options
Table 19–2 lists the configurable options shared by two or more TopLink project types.
In addition to the configurable options described here, you must also configure the
options described for the specific TopLink Project Types, as shown in Table 19–1.

Table 19–1 Configuring TopLink Projects

If you are creating... See also...

Relational Projects Chapter 20, "Configuring a Relational Project"

EIS Projects Chapter 21, "Configuring an EIS Project"

XML Projects Chapter 22, "Configuring an XML Project"

Table 19–2 Common Project Options

Option Type
TopLink
Workbench Java

"Configuring Project Save Location" on page 19-2 Basic

"Configuring Project Classpath" on page 19-3 Basic

"Configuring Mapped Field Access at the Project Level" on
page 19-4

Basic

"Configuring Persistence Type" on page 19-5 Basic

"Configuring Default Descriptor Advanced Properties" on
page 19-7

Advanced

"Configuring Existence Checking at the Project Level" on
page 19-8

Advanced

"Configuring Project Deployment XML Options" on page 19-10 Advanced

"Configuring Model Java Source Code Options" on page 19-11 Advanced

Configuring Project Save Location

19-2 Oracle TopLink Developer’s Guide

Configuring Project Save Location
You can configure a project save location only when using TopLink Workbench.

Table 19–3 summarizes which projects support a project save location.

Using TopLink Workbench
The Project Save Location field on the project’s General tab is for display only. This
field shows the full directory path for the project. All relative locations used in the
project are based on this location.

Figure 19–1 General Tab, Project Save Location

"Configuring Deprecated Direct Mappings" on page 19-12 Advanced

"Configuring Cache Type and Size at the Project Level" on
page 19-13

Advanced

"Configuring Cache Isolation at the Project Level" on page 19-16 Advanced

"Configuring Cache Coordination Change Propagation at the
Project Level" on page 19-17

Advanced

"Configuring Cache Expiration at the Project Level" on page 19-19 Advanced

"Configuring Project Comments" on page 19-20 Advanced

Table 19–3 Project Support for Project Save Location

Descriptor
Using TopLink
Workbench Using Java

Relational Projects

EIS Projects

XML Projects

Table 19–2 (Cont.) Common Project Options

Option Type
TopLink
Workbench Java

Configuring Project Classpath

Configuring a Project 19-3

To select a new location, right-click on the project in the Navigator and select Save As
from the context menu. See "Saving Projects" on page 18-11 for more information.

Configuring Project Classpath
The TopLink project uses a classpath–a set of directories, JAR files, and ZIP files–when
importing Java classes and defining object types.

Table 19–4 summarizes which projects support project classpath configuration.

Do not include JDBC drivers or other elements required to access the data source in
the project classpath. Use the setenv file to specify these application-level settings
(see "Configuring the TopLink Workbench Environment" on page 4-2).

After you configure the project classpath, you can use TopLink Workbench to import
classes into your project (see "Importing and Updating Classes" on page 4-50).

Using TopLink Workbench
To specify the project classpath information, use this procedure:

1. Select the project object in the Navigator.

2. Click the General tab in the Editor. The General tab appears.

Figure 19–2 General Tab, Classpath Options

Table 19–4 Project Support for Project Classpath

Descriptor
Using TopLink
Workbench Using Java

Relational Projects

EIS Projects

XML Projects

Configuring Mapped Field Access at the Project Level

19-4 Oracle TopLink Developer’s Guide

To add a new classpath entry, click Add Entry or Browse and select the
directory, .jar file, or .zip file for this project. To create a relative classpath, select
an entry and edit the path, as necessary. The path will be relative to the Project Save
Location.

To remove a classpath entry, select the entry and click Remove.

To change the order of the entries, select the entry and click Up or Down.

Configuring Mapped Field Access at the Project Level
By default, when TopLink performs a persistence operation, it accesses the persistent
attributes of an object directly: this is known as direct field access. Alternatively, you
can configure TopLink to access persistent attributes using accessor methods of the
object: this is known as method access.

Oracle recommends using field access for mappings. Not only is it more efficient, but
using method access may cause issues if the method produces unexpected side-effects.

Table 19–5 summarizes which projects support mapped field access configuration.

This section describes configuring mapped field access at the project level: by default,
this configuration applies to all descriptors and their mappings.

You can also configure mapped field access at the mapping level to override this
project-level configuration on a mapping-by-mapping basis. For more information, see
"Configuring Method Accessing" on page 32-14.

Using TopLink Workbench
To specify the field access method information, use this procedure:

1. Select the project object in the Navigator.

2. Select the Defaults tab in the Editor. The Defaults tab appears.

Table 19–5 Project Support for Mapped Field Access

Descriptor
Using TopLink
Workbench Using Java

Relational Projects

EIS Projects

XML Projects

Note: If you change the access default, existing mappings retain
their current access settings, but new mappings will be created with
the new default.

Configuring Persistence Type

Configuring a Project 19-5

Figure 19–3 Defaults Tab, Field Accessing Options

Use this table to enter data in the following fields of the tab to specify the default field
access method for newly created descriptors:

Configuring Persistence Type
You can configure your project persistence type only when using TopLink
Workbench.

Using TopLink Workbench, you can specify the persistence type to use with the
project. For example, your TopLink project may use plain Java objects, entity beans
with container-managed persistence, or entity beans with bean-managed persistence
(BMP).

Table 19–6 summarizes which projects support a persistence type configuration.

To create a TopLink descriptor for a persistent class, TopLink Workbench reads a
compiled Java .class file to read its attributes and relationships. See "Descriptors" on
page 16-2 for more information on TopLink descriptors.

Field Description

Method Accessing Use Method Accessing as the default field access method.

Direct Field Accessing Use Direct Field Accessing as the default field access method.

Table 19–6 Project Support for Persistence Type

Descriptor
Using TopLink
Workbench Using Java

Relational Projects

EIS Projects

XML Projects

Configuring Persistence Type

19-6 Oracle TopLink Developer’s Guide

For EJB projects, you can specify an ejb-jar.xml file from which TopLink will read
and to which it will write the necessary persistence information. You use the
ejb-jar.xml file to map the virtual fields of the entity beans with
container-managed persistence (called container-managed fields, defined by
<cmp-field> tag) or relationships (called container-managed relationship, defined
by <cmr-field> tag) to a data source.

TopLink Workbench defines all descriptors for entity classes (as defined in the
ejb-jar.xml file) as EJB descriptors. TopLink Workbench does not create (or
remove) descriptors for the interfaces and primary key class for the entity when
refreshing from the ejb-jar.xml file.

To update your project from the XML file, right-click an EJB descriptor and select
Update Descriptors from ejb-jar.xml. You can also update the project by choosing
Selected > Update Descriptors from ebj-jar.xml from the menu.

For more information on creating and using deployment files such as the
ejb-jar.xml file, see the following:

■ "Understanding TopLink Deployment File Creation" on page 8-1

■ Chapter 7, "Integrating TopLink With an Application Server"

■ Chapter 9, "Packaging a TopLink Application"

■ Chapter 10, "Deploying a TopLink Application"

Using TopLink Workbench
To specify the persistence information, use this procedure:

1. Select the project object in the Navigator.

2. Select the General tab in the Editor. The General tab appears.

Note: TopLink Workbench creates class descriptors for entity classes
not defined in the ejb-jar.xml file. You must manually change the
descriptor type (see "Configuring a Descriptor With EJB Information"
on page 25-45).

Configuring Default Descriptor Advanced Properties

Configuring a Project 19-7

Figure 19–4 General Tab, Persistence Type Options

Use this table to enter data in the following fields on the project’s General tab to
configure the persistence options:

Configuring Default Descriptor Advanced Properties
You can configure default descriptor advanced properties only when using TopLink
Workbench.

 By default, TopLink Workbench displays a subset of features for each descriptor type.
You can modify this subset so that descriptors include additional advanced properties
by default.

You can also select specific advanced properties for individual descriptors (see
Chapter 25, "Configuring a Descriptor").

Table 19–7 summarizes which projects support default descriptor advanced property
configuration.

Field Description

Persistence Type Specify the persistence type of the project: Java Objects, CMP 1.1,
CMP 2.x, or BMP. For EJB projects, specify the location of the
ejb-jar.xml file.

Note: This field does not apply to XML projects.

Location of ejb-jar.xml Specify the location of the ejb-jar.xml file for this project.
"Working With the ejb-jar.xml File" on page 18-15 for more
information.

Note: This field applies to EJB projects only.

Table 19–7 Project Support for Default Descriptor Advanced Properties

Descriptor
Using TopLink
Workbench Using Java

Relational Projects

EIS Projects

Configuring Existence Checking at the Project Level

19-8 Oracle TopLink Developer’s Guide

Using TopLink Workbench
To specify the default advanced properties for newly created descriptors in your
project, use this procedure:

1. Select the project object in the Navigator.

2. Select the Defaults tab in the Editor. The Defaults tab appears.

Figure 19–5 Defaults Tab, Descriptor Advanced Properties

Select which Descriptor Advanced Properties to add to newly created descriptors.
The list of advanced properties will vary, depending on the project type.

See Chapter 25, "Configuring a Descriptor" for detailed information on each advanced
property.

Configuring Existence Checking at the Project Level
When TopLink writes an object to the database, it runs an existence check to determine
whether to perform an insert or an update operation.

By default, TopLink checks against the cache. Oracle recommends that you use this
default existence check option for most applications. Checking the database for
existence can cause a performance bottleneck in your application.

Table 19–8 summarizes which projects support existence checking configuration.

XML Projects

Table 19–7 (Cont.) Project Support for Default Descriptor Advanced Properties

Descriptor
Using TopLink
Workbench Using Java

Configuring Existence Checking at the Project Level

Configuring a Project 19-9

By default, this configuration applies to all descriptors in a project. You can also
configure existence checking at the descriptor level to override this project-level
configuration on a descriptor-by-descriptor basis. For more information, see
"Configuring Cache Existence Checking at the Descriptor Level" on page 25-43.

For more information see the following:

■ "Cache Type and Object Identity" on page 87-3

■ "Queries and the Cache" on page 93-29

■ "Using Registration and Existence Checking" on page 99-5

Using TopLink Workbench
To specify the existence checking information, use this procedure:

1. Select the project object in the Navigator.

2. Select the Defaults tab in the Editor. The Defaults tab appears.

Figure 19–6 Defaults Tab, Existence Checking Options

Use this table to enter data in following fields to specify the existence checking options
for newly created descriptors:

Table 19–8 Project Support for Existence Checking

Descriptor
Using TopLink
Workbench Using Java

Relational Projects

EIS Projects

XML Projects

Configuring Project Deployment XML Options

19-10 Oracle TopLink Developer’s Guide

Configuring Project Deployment XML Options
You can configure project deployment XML options only when using TopLink
Workbench.

Using TopLink Workbench, you can specify the default file names, class names, and
directories, when exporting or generating deployment XML. Directories are relative to
the project save location (see "Configuring Project Save Location" on page 19-2), and
will contain folders for each generated package.

Table 19–9 summarizes which projects support deployment XML options.

Using TopLink Workbench
To specify the default export options, use this procedure:

1. Select the project object in the Navigator.

2. Select the Options tab in the Editor. The Options tab appears.

Field Description

Check Cache Check the session cache. If the object is not in the cache, assume that
the object does not exist (do an insert). If the object is in the cache,
assume that the object exists (do an update).

Oracle recommends using this option for most applications.

Check Database If an object is not in the cache, query the database to determine if the
object exists. If the object exists, do an update. Otherwise, do an
insert.

Selecting this option may negatively impact performance. For more
information, see "Check Database" on page 99-5.

Assume Existence Always assume objects exist: always do an update (never do an
insert).

For more information, see "Assume Existence" on page 99-5.

Assume Nonexistence Always assume objects do not exist: always do an insert (never do an
update).

For more information, see "Assume Nonexistence" on page 99-5.

Table 19–9 Project Support for Project Deployment XML Options

Descriptor
Using TopLink
Workbench Using Java

Relational Projects

EIS Projects

XML Projects

Configuring Model Java Source Code Options

Configuring a Project 19-11

Figure 19–7 Options Tab, Project Deployment XML Options

Use this table to enter data in following fields to specify the default Project
Deployment XML options:

Configuring Model Java Source Code Options
You can configure model java source code options only when using TopLink
Workbench.

Using TopLink Workbench, you can specify the default file names, class names, and
directories, when exporting or generating Java source code for your domain objects.
Directories are relative to the project save location (see "Configuring Project Save
Location" on page 19-2), and will contain folders for each generated package.

Table 19–10 summarizes which projects support model Java source code options.

Using TopLink Workbench
To specify the default export options, use this procedure:

Field Description

File Name File name (such as project.xml) to use when generating
project deployment XML.

Directory Directory in which to save the generated deployment XML file.

Table 19–10 Project Support for Model Java Source Options

Descriptor
Using TopLink
Workbench Using Java

Relational Projects

EIS Projects

XML Projects

Configuring Deprecated Direct Mappings

19-12 Oracle TopLink Developer’s Guide

1. Select the project object in the Navigator.

2. Select the Options tab in the Editor. The Options tab appears.

Figure 19–8 Options Tab, Model Java Source options

Specify the project root directory to which TopLink Workbench generates model Java
source files. For more information, see "Generating Java Code for Descriptors" on
page 24-6.

Configuring Deprecated Direct Mappings
You can configure deprecated direct mapping options only when using TopLink
Workbench.

Starting with this release, TopLink no longer uses the following direct mapping types:

■ Type conversion

■ Object type

■ Serialized object

Instead, TopLink uses a direct-to-field mapping with a specialized converter.

To generate backward-compatible deployment XML and Java source code files, use
the Generate Deprecated Direct Mappings option.

Table 19–11 summarizes which projects support deprecated direct mapping options.

Table 19–11 Project Support for Deprecated Direct Mapping Options

Descriptor
Using TopLink
Workbench Using Java

Relational Projects

EIS Projects

Configuring Cache Type and Size at the Project Level

Configuring a Project 19-13

Using TopLink Workbench
To specify if TopLink Workbench should generate the deprecated direct mappings
(instead of using the converter) when exporting projects, use this procedure:

1. Select the project object in the Navigator.

2. Select the Options tab in the Editor. The Options tab appears.

Figure 19–9 Options Tab, Generate Deprecated Direct Mappings Option

Select the Generate Deprecated Direct Mappings option on the tab to specify that
TopLink Workbench should generate backward-compatible code (using the deprecated
direct mappings, instead of the converter).

Configuring Cache Type and Size at the Project Level
The TopLink cache is an in-memory repository that stores recently read or written
objects based on class and primary key values. TopLink uses the cache to:

■ improve performance by holding recently read or written objects and accessing
them in-memory to minimize database access

■ manage locking and isolation level

■ manage object identity

Table 19–12 summarizes which projects support identity map configuration.

XML Projects

Table 19–11 (Cont.) Project Support for Deprecated Direct Mapping Options

Descriptor
Using TopLink
Workbench Using Java

Configuring Cache Type and Size at the Project Level

19-14 Oracle TopLink Developer’s Guide

The cache options you configure at the project level apply globally to all descriptors.
Use this section to define global cache options for a TopLink project.

You can override the project-level identity map configuration by defining identity
map configuration at the descriptor level. For information on caching and defining
identity map configuration for a specific descriptor, see "Configuring Cache Type and
Size at the Descriptor Level" on page 25-35.

For detailed information on caching and object identity, and the recommended
settings to maximize TopLink performance, see to "Cache Type and Object Identity" on
page 87-3.

For more information about the cache, see Chapter 87, "Understanding the Cache".

Using TopLink Workbench
To specify the cache identity map, use this procedure:

1. Select the project object in the Navigator.

2. Select the Defaults tab in the Editor. The Defaults tab appears.

Table 19–12 Project Support for Identity Map Configuration

Descriptor
Using TopLink
Workbench Using Java

Relational Projects

EIS Projects

XML Projects

Note: When using TopLink Workbench, changing the project’s
default identity map does not affect descriptors that already exist in
the project; only newly added descriptors ar affected.

Configuring Cache Type and Size at the Project Level

Configuring a Project 19-15

Figure 19–10 Defaults Tab, Cache Identity Map Options

Use this table to enter data in each of the following fields to specify the caching
options:

Field Description

Type Use the Type list to choose the identity map:

■ Weak with Soft Subcache
(SoftCacheWeakIdentityMap)–cache first n elements in soft
space, anything after that in weak space (see "Soft and Hard
Cache Weak Identity Maps" on page 87-4).

■ Weak with Hard Subcache
(HardCacheWeakIdentityMap)–cache first n elements in soft
space, anything after that in hard space (see "Soft and Hard
Cache Weak Identity Maps" on page 87-4).

■ Weak (WeakIdentityMap)–cache everything in weak space
(see "Weak Identity Map" on page 87-3).

■ Full (FullIdentityMap)–cache everything permanently (see
"Full Identity Map" on page 87-3).

■ None (NoIdentityMap)–cache nothing (see "No Identity Map"
on page 87-4).

For more information, see "Cache Type and Object Identity" on
page 87-3.

Changing the project’s default identity map does not affect
descriptors that already exist in the project.

Size Specify the size of the cache:

■ When using Weak with Soft Subcache or Weak with Hard
Subcache, the size is the maximum number of objects stored in
the identity map.

■ When using Full or Weak, the size indicates the starting size of
the identity map.

Configuring Cache Isolation at the Project Level

19-16 Oracle TopLink Developer’s Guide

Configuring Cache Isolation at the Project Level
If you plan to use isolated sessions (see "Cache Isolation" on page 87-9), you must
configure descriptors as isolated for any object that you want confined to an isolated
session cache.

Configuring a descriptor to be isolated means that TopLink will not store the object in
the shared session cache and the object will not be shared across client sessions. This
means that each client will have their own object read directly from the database.
Objects in an isolated client session cache can reference objects in their parent server
session’s shared session cache, but no objects in the shared session cache can reference
objects in an isolated client session cache. Isolation is required when using Oracle
Database Virtual Private Database (VPD) support or database user-based read
security. Isolation can also be used if caching is not desired across client sessions.

Table 19–12 summarizes which projects support cache isolation configuration.

The cache isolation options you configure at the project level apply globally to all
descriptors. Use this section to define global options for a TopLink project.

You can override the project-level configuration by defining cache isolation options at
the descriptor level. For information, see "Configuring Cache Isolation at the
Descriptor Level" on page 25-37.

Using TopLink Workbench
To specify the cache isolation options, use this procedure:

1. Select the project object in the Navigator.

2. Select the Defaults tab in the Editor. The Defaults tab appears.

Table 19–13 Project Support for Cache Isolation Configuration

Descriptor
Using TopLink
Workbench Using Java

Relational Projects

EIS Projects

XML Projects

Note: When using TopLink Workbench, changing the project’s
default cache isolation option does not affect descriptors that already
exist in the project; only newly added descriptors ar affected.

Configuring Cache Coordination Change Propagation at the Project Level

Configuring a Project 19-17

Figure 19–11 Defaults Tab, Cache Isolation Options

Use the Isolation list to choose one of the following:

■ Isolated–if you want all objects confined to an isolated client session cache. For
more information, see "Cache Isolation" on page 87-9.

■ Shared–if you want all objects visible in the shared session cache (default).

Configuring Cache Coordination Change Propagation at the Project Level
If you plan to use a coordinated cache (see "Understanding Cache Coordination" on
page 87-10), you can configure how and under what conditions a coordinated cache
propagates changes.

Table 19–12 summarizes which projects support cache coordination change
propagation configuration.

The cache coordination change propagation options you configure at the project level
apply globally to all descriptors. Use this section to define global options for a
TopLink project.

You can override the project-level configuration by defining cache coordination
change propagation options at the descriptor level. For information, see "Configuring
Cache Coordination Change Propagation at the Descriptor Level" on page 25-40.

Table 19–14 Project Support for Cache Coordination Change Propagation Configuration

Descriptor
Using TopLink
Workbench Using Java

Relational Projects

EIS Projects

XML Projects

Configuring Cache Coordination Change Propagation at the Project Level

19-18 Oracle TopLink Developer’s Guide

To complete your coordinated cache configuration, see Chapter 88, "Configuring a
Coordinated Cache".

Using TopLink Workbench
To specify the coordinated cache change propagation options, use this procedure:

1. Select the project object in the Navigator.

2. Select the Defaults tab in the Editor. The Defaults tab appears.

Figure 19–12 Defaults Tab, Coordination Options

Use the following information to enter data in the Coordination field:

Note: When using TopLink Workbench, changing the project’s
default cache coordination change propagation option does not affect
descriptors that already exist in the project; only newly added
descriptors ar affected.

Coordination Option Description When to Use

None For both existing and new instances, do
not propagate a change notification.

Infrequently read or changed
objects.

Synchronize Changes For an existing instance, propagate a
change notification that contains each
changed attribute.

For a new instance, propagate an object
creation (along with all the new
instance’s attributes) only if the new
instance is related to other existing
objects that are also configured with this
change propagation option.

Frequently read or changed
objects that contain few attributes
or in cases where only a few
attributes are frequently changed.

Objects that have many or
complex relationships.

Configuring Cache Expiration at the Project Level

Configuring a Project 19-19

Configuring Cache Expiration at the Project Level
By default, objects remain in the cache until they are explicitly deleted (see "Deleting
Objects" on page 98-7) or garbage-collected when using a weak identity map (see
"Configuring Cache Type and Size at the Project Level" on page 19-13). Alternatively,
you can configure an object with a CacheInvalidationPolicy that lets you specify,
either automatically or manually, that an object is invalid: when any query attempts to
read an invalid object, TopLink will go to the data source for the most up-to-date
version of that object and update the cache with this information.

Using cache invalidation ensures that your application does not use stale data. It
provides a better performing alternative to refreshing (see "Configuring Cache
Refreshing" on page 25-27).

Table 19–15 summarizes which projects support cache invalidation configuration.

The cache invalidation options you configure at the project level apply globally to all
descriptors. Use this section to define global cache invalidation options for a TopLink
project.

You can override the project-level cache invalidation configuration by defining cache
invalidation at the descriptor (see "Configuring Cache Expiration at the Descriptor
Level" on page 25-42) or query level (see "Configuring Cache Expiration at the Query
Level" on page 96-21).

You can customize how TopLink communicates the fact that an object has been
declared invalid to improve efficiency if you are using a coordinated cache. For more
information, see "Configuring Cache Coordination Change Propagation at the
Descriptor Level" on page 25-40.

Synchronize Changes
and New Objects

For an existing instance, propagate a
change notification that contains each
changed attribute.

For a new instance, propagate an object
creation (along with all the new
instance’s attributes).

Frequently read or changed
objects that contain few attributes
or in cases where only a few
attributes are frequently changed.

Objects that have few or simple
relationships.

Invalidate Changed
Objects

For an existing instance, propagate an
object invalidation that marks the object
as invalid in all other sessions. This tells
other sessions that they must update
their cache from the data source the next
time this object is read.

For a new instance, no change
notification is propagated.

Frequently read or changed
objects that contain many
attributes in cases where many of
the attributes are frequently
changed.

Table 19–15 Project Support for Cache Invalidation Configuration

Descriptor
Using TopLink
Workbench Using Java

Relational Projects

EIS Projects

XML Projects

Note: When using TopLink Workbench, changing the project’s
default cache invalidation does not affect descriptors that already exist
in the project; only newly added descriptors are affected.

Coordination Option Description When to Use

Configuring Project Comments

19-20 Oracle TopLink Developer’s Guide

For more information, see "Cache Invalidation" on page 87-8.

Using TopLink Workbench
To specify the cache invalidation options for the project, use this procedure:

1. Select the project object in the Navigator.

2. Select the Defaults tab in the Editor. The Defaults tab appears.

Figure 19–13 Defaults Tab, Cache Expiry Options

Use this table to enter data in the following fields on this tab:

Configuring Project Comments
You can define a free-form textual comment for each project. You can use these
comments however you whish: for example, to record important project
implementation details such as the purpose or importance of a project.

Field Description

No Expiry Specify that objects in the cache do not expire.

Time to Live Expiry Specify that objects in the cache will expire after a specified amount
of time. Use the Expire After field to indicate the time (in
milliseconds) after which the objects will expire.

Daily Expiry Specify that objects in the cache will expire at a specific time each
day. Use the Expire At field to indicate the exact time to the second
(using a 24-hour clock) at which the objects will expire.

Update Read Time on
Update

Specify if the expiry time should be reset after updating an object.

Configuring Project Comments

Configuring a Project 19-21

Comments are stored in the TopLink Workbench project, in the TopLink deployment
XML file. There is no Java API for this feature.

Table 19–16 summarizes which projects support this option.

Using TopLink Workbench
To specify a comment for the project, use this procedure:

1. Select the project object in the Navigator.

2. Select the General tab in the Editor. The General tab appears.

Figure 19–14 General Tab, Comments Options

3. Enter descriptive text information in the Comment field.

Table 19–16 Project Support for Project Comments

Project Type
Using TopLink
Workbench Using Java

Relational Projects

EIS Projects

XML Projects

Configuring Project Comments

19-22 Oracle TopLink Developer’s Guide

Configuring a Relational Project 20-1

20
Configuring a Relational Project

This chapter describes the various components that you must configure in order to use
a relational project.

For more information, see the following:

■ "Project Creation Overview" on page 18-1

■ "Relational Projects" on page 17-6

Relational Project Configuration Overview
In addition to the configurable options described here, you must also configure the
base class options described in Table 19–2 on page 19-1.

Table 20–1 lists the configurable options for relational projects.

Table 20–1 Configurable Options for Relational Projects

Option Type
TopLink
Workbench Java

"Configuring Project Save Location" on page 19-2 Basic

"Configuring Persistence Type" on page 19-5 Basic

"Configuring Project Classpath" on page 19-3 Basic

"Configuring Project Comments" on page 19-20 Basic

"Configuring Mapped Field Access at the Project Level" on
page 19-4

Basic

"Configuring Default Descriptor Advanced Properties" on
page 19-7

Basic

"Configuring Existence Checking at the Project Level" on
page 19-8

Basic

"Configuring Project Deployment XML Options" on page 19-10 Basic

"Configuring Model Java Source Code Options" on page 19-11 Basic

"Configuring Deprecated Direct Mappings" on page 19-12 Basic

"Configuring Relational Database Platform at the Project Level"
on page 20-2

Basic

"Configuring Sequencing at the Project Level" on page 20-3 Basic

"Configuring Login Information" on page 20-5 Basic

"Configuring Development and Deployment Logins" on
page 20-6

Basic

"Configuring Cache Type and Size at the Project Level" on
page 19-13

Advanced

"Configuring Cache Isolation at the Project Level" on page 19-16 Advanced

Configuring Relational Database Platform at the Project Level

20-2 Oracle TopLink Developer’s Guide

This chapter also describes logging into a database during development when using
TopLink Workbench. For more information, see "Logging in to the Database" on
page 20-7.

Configuring Relational Database Platform at the Project Level
For each relational project, you must specify the database platform (such as Oracle
Database 10g). This platform configuration is overridden by the session login, if
configured.

For more information, see the following:

■ "Configuring a Relational Database Platform at the Session Level" on page 83-1

■ "Data Source Platform Types" on page 81-3

Using TopLink Workbench
To specify the database platform of a relational project, use this procedure:

1. Select the database object in the Navigator. The Database property sheet appears.

Figure 20–1 Database Property Sheet, Database Platform Options

Click Change to select a new database platform for the project. For more information,
see "Data Source Platform Types" on page 81-3.

"Configuring Cache Coordination Change Propagation at the
Project Level" on page 19-17

Advanced

"Configuring Cache Expiration at the Project Level" on
page 19-19

Advanced

"Configuring Named Query Parameterized SQL and Statement
Caching at the Project Level" on page 20-7

Advanced

"Configuring Table Generation Options" on page 20-9 Advanced

"Configuring Table Creator Java Source Options" on page 20-10 Advanced

"Configuring Project Java Source Code Options" on page 20-11 Advanced

Table 20–1 (Cont.) Configurable Options for Relational Projects

Option Type
TopLink
Workbench Java

Configuring Sequencing at the Project Level

Configuring a Relational Project 20-3

Configuring Sequencing at the Project Level
Sequencing allows TopLink to automatically assign the primary key or ID of an object
when the object is inserted.

You configure TopLink sequencing at the project or session level to tell TopLink how
to obtain sequence values: that is, what type of sequences to use.

In a CMP project, you do not configure a session directly: in this case, you must
configure sequences at the project level. In a non-CMP project, you can configure a
session directly: in this case, you can use a session-level sequence configuration to
override project-level sequence configuration, on a session-by-session basis, if required
(see "Configuring Sequencing at the Session Level" on page 83-4).

Using TopLink Workbench (see "Using TopLink Workbench" on page 20-3), you can
configure table sequencing (see "Table Sequencing" on page 17-16) and native
sequencing ("Native Sequencing With an Oracle Database Platform" on page 17-18 and
"Native Sequencing With a Non-Oracle Database Platform" on page 17-19) and you
can configure a preallocation size that applies to all sequences (see "Sequencing and
Preallocation Size" on page 17-20).

Using Java (see "Using Java" on page 20-4), you can configure any sequence type that
TopLink supports ("Sequencing Types" on page 17-16). You can create any number and
combination of sequences. You can create a sequence object explicitly or use the
default sequence that the platform creates. You can associate the same sequence with
more than one descriptor and you can configure a separate preallocation size for each
descriptor’s sequence.

If you are migrating a BEA WebLogic CMP application to OC4J and TopLink
persistence (see "Migrating BEA WebLogic Persistence to OC4J TopLink Persistence"
on page 7-16), the TopLink migration tool does not migrate BEA WebLogic single
column sequence tables to TopLink unary sequence tables (see "Unary Table
Sequencing" on page 17-17). After migration, you must manually configure your
project to use TopLink unary sequence tables if your application originally used single
column sequence tables in BEA WebLogic.

After configuring the sequence type at the project (or session) level, to enable
sequencing, you must configure a descriptor with a sequence field and a sequence
name (see "Configuring Sequencing at the Descriptor Level" on page 26-3).

For more information about sequencing, see "Understanding Sequencing in Relational
Projects" on page 17-14.

Using TopLink Workbench
To specify the sequencing information for the project, use this procedure:

1. Select the project object in the Navigator.

2. Select the Sequencing tab in the Editor. The Sequencing tab appears.

Note: Changing the project’s default sequencing options does not
affect descriptors that already exist in the project; only newly added
descriptors are affected.

Configuring Sequencing at the Project Level

20-4 Oracle TopLink Developer’s Guide

Figure 20–2 Sequencing Tab

Use this table to enter data in the following fields to configure the sequencing
information:

Using Java
Using Java, you can configure a project to use multiple, different sequences as
Example 20–1 shows.

Example 20–1 Configuring Sequencing at the Project Level in Java

// Enable native sequencing for the project as the default. Configured the default
preallocation size
project.getLogin().useNativeSequencing();
project.getLogin().setSequencePreallocationSize(50);

// Configure the EMP_SEQ to not use preallocation
DefaultSequence empSequence = new DefaultSequence("EMP_SEQ", 1);
project.getLogin().addSequence(empSequence);

// Configure the PROJ_SEQ to use a seperate sequence table
UnarySequence projSequence = new UnarySequence("PROJ_SEQ_TAB", "COUNTER");
project.getLogin().addSequence(projSequence);

Field Description

Preallocation Size Specify the default preallocation size (see "Sequencing and
Preallocation Size" on page 17-20). Default is 50. The preallocation
size you configure applies to all sequences.

Default Sequence
Table

Select this option to use table sequencing (see "Table Sequencing" on
page 17-16) with default sequence table name SEQUENCE, default
sequence name field SEQ_NAME, and default sequence counter field
SEQ_COUNT.

Native Sequencing Select this option to use a sequencing object (see "Native Sequencing
With an Oracle Database Platform" on page 17-18 or "Native
Sequencing With a Non-Oracle Database Platform" on page 17-19)
created by the database platform. This option applies only to Oracle,
Sybase, Microsoft SQL, and IBM Informix database platforms.

Custom Sequence
Table

Select this option to use table sequencing (see "Table Sequencing" on
page 17-16) with a sequence table name, sequence name field, and
sequence counter field name that you specify.

Name Specify the name of the sequence table.

Name Field Specify the name of the column used to store the sequence name.

Counter Field Specify the name of the column used to store the sequence count.

Configuring Login Information

Configuring a Relational Project 20-5

Configuring Login Information
This section describes how to define a login to a relational database. After you define a
login, you must designate its role (see "Configuring Development and Deployment
Logins" on page 20-2).

After you create a login (see "Configuring Login Information" on page 20-5) and
specify it as a development login (see "Configuring Development and Deployment
Logins" on page 20-6), you can log in to a database instance (see "Logging in to the
Database" on page 20-7).

Using TopLink Workbench
To create or edit a database login, use this procedure:

1. Select the database object in the Navigator. The Database property sheet appears.

Figure 20–3 Database Property Sheet, Database Login Fields

2. Click Add to create a new Defined Login.

Use this table to enter data in the following fields on the Database property sheet to
configure the database login:

Field Description

Defined Logins Login used to access the database. Click Add to add a new login, or
Remove to delete an existing login.

Driver Class The JDBC driver to use to connect to the database.

URL The URL used to connect to the appropriate database.

User Name The name required to log in to the database.

Password The password required to log in to the database.

Note: When exporting Java source and deployment XML (see
"Exporting Project Information" on page 18-13), TopLink Workbench
writes the database password (if applicable) using JCE encryption
(when using JDK 1.4). Refer to Oracle TopLink Getting Started Guide
for information on using password encryption with JDK 1.3 and
earlier. For information on how to specify password encryption
options, see "Configuring Password Encryption" on page 82-2.

Configuring Development and Deployment Logins

20-6 Oracle TopLink Developer’s Guide

Configuring Development and Deployment Logins
This section describes how to designate a defined login’s role. For information on how
to define a login, see "Configuring Login Information" on page 20-5. TopLink
recognizes the following login roles:

■ Development Role

■ CMP Deployment Role

■ Non-CMP Session Role

Development Role
While using TopLink Workbench to develop a project (see "Development Role:
Development Login" on page 17-4), you must define a login (see "Configuring Login
Information" on page 20-5) and designate it as the development login. The
development login is stored in the TopLink project file. TopLink Workbench uses the
information in the development login whenever you perform a data source operation
from within TopLink Workbench. For example, when you read or write schema
information from or to a data source during application development, the
development login information is never written to a sessions.xml or
project.xml file and is overridden by the deployment login (or the session login) at
run time.

For more information on how to use a development login to connect to a database, see
"Logging in to the Database" on page 20-7.

CMP Deployment Role
If you are creating a CMP project (see "CMP Deployment Role: Deployment Login" on
page 17-3), you may define a run-time login (see "Configuring Login Information" on
page 20-5) and designate it as the deployment login. This is the login that the
application will use at run time, unless overridden in the sessions.xml file, CMP
deployment file, or through Java code.

Non-CMP Session Role
If you are creating a non-CMP project (see "Non-CMP Session Role: Session Login" on
page 17-3), Oracle recommends that you use the sessions.xml file to store the
sessions your project uses at run time (see "Data Source Login Types" on page 81-2).

Using TopLink Workbench
To specify different development and deployment database logins, use this procedure:

1. Select the database object in the Navigator. The Database property sheet appears.

Save Password Whether or not to save the Password for this Defined Login.

Field Description

Configuring Named Query Parameterized SQL and Statement Caching at the Project Level

Configuring a Relational Project 20-7

Figure 20–4 Database Property Sheet, Development and Deployment Login Options

Use this table to enter data in the following fields on the Database property sheet to
configure the login:

Logging in to the Database
Using TopLink Workbench, after you create a login (see "Configuring Login
Information" on page 20-5) and specify it as a development login (see "Configuring
Development and Deployment Logins" on page 20-6), you can log in to a database
instance.

You must log in to the database before importing or exporting table information.

To log in to the database, use one of the following procedures:

■ Select the database object in the Navigator and click Login. TopLink Workbench
logs in to the database.

■ Right-click on the database object in the Navigator and choose Log In to Database
from the context menu, or choose Selected > Log In to Database from the menu.

The database icon in the Navigator window changes to indicate you are now logged in
to the database.

Configuring Named Query Parameterized SQL and Statement Caching at
the Project Level

TopLink uses parameterized SQL by default. You can configure TopLink to use
prepared statement caching for all named queries and finders.

Field Description

Development Login The Defined Login to be used by TopLink Workbench during
development to connect with the database, and to read or write table
information.

For more information on how to use a development login to connect
to a database, see "Logging in to the Database" on page 20-7.

Deployment Login The Defined Login to be used by your TopLink-enabled application
during deployment.

Configuring Named Query Parameterized SQL and Statement Caching at the Project Level

20-8 Oracle TopLink Developer’s Guide

These setting apply only to named queries (see "Named Queries" on page 93-16)–not
to all queries in general or write operations.

Generally, to manipulate these settings you should configure them on the session’s
login (see "Configuring JDBC Options" on page 83-9). Configuring at the session level
ensures that all queries will use or not use parameterized SQL.

Table 20–2 summarizes which projects support query statement caching and binding
configuration.

This section describes configuring statement caching and binding options at the
project level. This configuration applies to all named queries you create on the
descriptors in this project.

You can also configure named query statement caching and binding options at the
query level to override this project-level configuration on a query-by-query basis (see
"Configuring Named Query Options" on page 25-22).

Using parameterized SQL, you can create and store queries that are complete except
for one or more bound parameters. The TopLink runtime binds the current parameter
values when executing the query. This approach avoids the preparation of SQL
execution and, thus, improves the performance of frequently executed SQL
statements.

By default, Oracle TopLink uses parameterized SQL. For more information, see
"Parameterized SQL (Binding) and Prepared Statement Caching" on page 11-15.

Using TopLink Workbench
To specify the named query options, use this procedure:

1. Select the project object in the Navigator.

2. Select the Defaults tab in the Editor. The Defaults tab appears.

Note: For applications using a J2EE data source or external
connection pool, you must configure statement caching in the J2EE
server’s data source–not in TopLink.

Table 20–2 Project Support for Default Named Query Caching and Binding

Descriptor
Using TopLink
Workbench Using Java

Relational Projects

EIS Projects

XML Projects

Configuring Table Generation Options

Configuring a Relational Project 20-9

Figure 20–5 Defaults Tab, Named Queries Options

Use this table to enter data in following fields on the Defaults tab to specify the named
query options for newly created descriptors.:

Configuring Table Generation Options
Using TopLink Workbench, you can configure options that apply when you generate
database tables from the descriptors you define in your TopLink Workbench project.
The resulting tables and columns will conform to the naming restrictions of the
project’s target database.

Using TopLink Workbench
To specify the default table generation options, use this procedure:

1. Select the project object in the Navigator.

2. Select the Options tab in the Editor. The Options tab appears.

Field Description

Cache All Statements Caches the query’s prepared statement in the TopLink statement
cache.

Bind All Parameters Binds all of the query’s parameters.

Configuring Table Creator Java Source Options

20-10 Oracle TopLink Developer’s Guide

Figure 20–6 Options Tab, Table Generation Options

Use this table to enter data in the following fields to specify the default export and
generation options.

Configuring Table Creator Java Source Options
Using TopLink Workbench, you can configure options that apply when you export
Java source code that you can use to create database tables.

Using TopLink Workbench
To specify the default Java code generation options, use this procedure:

1. Select the project object in the Navigator.

2. Select the Options tab in the Editor. The Options tab appears.

Field Description

Default Primary Key Enter the default name to use when generating primary keys.

Primary Key Search Pattern Enter the default search pattern to use when generating
primary keys.

Configuring Project Java Source Code Options

Configuring a Relational Project 20-11

Figure 20–7 Options Tab, Table Creator Java Source Options

Use this table to enter data in the following fields to specify the default table creator
options.

Configuring Project Java Source Code Options
Using TopLink Workbench, you can export a project as Java source. You can configure
the class name and root directory that TopLink Workbench uses when exporting the
project to Java source code.

For more information on exporting a project as Java source, see "Exporting Project Java
Source" on page 18-14.

Using TopLink Workbench
To specify the default Java code generation options, use this procedure:

1. Select the project object in the Navigator.

2. Select the Options tab in the Editor. The Options tab appears.

Field Description

Class Name Base class name to use when generating table’s Java source
code from the project.

Root Directory Directory for storing the generated source code.

Configuring Project Java Source Code Options

20-12 Oracle TopLink Developer’s Guide

Figure 20–8 Options Tab, Project Java Source Options

Use this table to enter data in the following fields to specify the default export and
generation options:

Field Description

Class Name Base class name to use when generating Java source code
from the project.

Root Directory Directory for storing the generated source code.

Configuring an EIS Project 21-1

21
Configuring an EIS Project

This chapter describes the various components that you must configure in order to use
an enterprise information system (EIS) project.

For more information, see the following:

■ "Project Creation Overview" on page 18-1

■ "EIS Projects" on page 17-7

EIS Project Configuration Overview
 lists the configurable options for EIS projects.

Table 21–1 Configurable Options for EIS Projects

Option Type
TopLink
Workbench Java

"Configuring Project Save Location" on page 19-2 Basic

"Configuring Persistence Type" on page 19-5 Basic

"Configuring Project Classpath" on page 19-3 Basic

"Configuring Project Comments" on page 19-20 Advanced

"Configuring Mapped Field Access at the Project Level" on
page 19-4

Basic

"Configuring Default Descriptor Advanced Properties" on
page 19-7

Advanced

"Configuring Existence Checking at the Project Level" on
page 19-8

Advanced

"Configuring Project Deployment XML Options" on
page 19-10

Advanced

"Configuring Model Java Source Code Options" on page 19-11 Advanced

"Configuring EIS Data Source Platform at the Project Level"
on page 21-2

Basic

"Configuring EIS Connection Specification Options at the
Project Level" on page 21-2

Basic

"Configuring Model Java Source Code Options" on page 19-11 Basic

"Configuring XML Parser Platform" on page 7-3 Advanced

"Importing an XML Schema" on page 4-34 Basic

"Configuring XML Schema Namespace" on page 4-37 Advanced

"Configuring Cache Type and Size at the Project Level" on
page 19-13

Advanced

Configuring EIS Data Source Platform at the Project Level

21-2 Oracle TopLink Developer’s Guide

Configuring EIS Data Source Platform at the Project Level
For each EIS project, you must specify one of the following J2C data source platforms
that you will be using:

■ Oracle AQ

■ Attunity Connect

■ IBM MQSeries

This platform configuration is overridden by the session login, if configured.

For more information, see the following:

■ "Configuring an EIS Data Source Platform at the Session Level" on page 84-1

■ "Data Source Platform Types" on page 81-3

Using TopLink Workbench
To specify the data source platform of an EIS project, use this procedure:

1. Select an EIS project object in the Navigator.

2. Select the Connection Specifications tab in the Editor. The Connection
Specifications tab appears.

3. Select the Connection tab. The Connection tab appears.

Figure 21–1 Connection Tab, Platform Option

Select the EIS platform for this project from the list of options. For more information,
see "Data Source Platform Types" on page 81-3.

Configuring EIS Connection Specification Options at the Project Level
You can configure connection information at the project level for an EIS application.
This information is stored in the project.xml file. The Oracle TopLink runtime uses

"Configuring Cache Isolation at the Project Level" on
page 19-16

Advanced

"Configuring Cache Coordination Change Propagation at the
Project Level" on page 19-17

Advanced

"Configuring Cache Expiration at the Project Level" on
page 19-19

Advanced

Table 21–1 (Cont.) Configurable Options for EIS Projects

Option Type
TopLink
Workbench Java

Configuring EIS Connection Specification Options at the Project Level

Configuring an EIS Project 21-3

this information as its deployment login: whenever your EIS application performs a
persistence operation when deployed in a J2EE application server.

This connection configuration is overridden by the connection information at the
session level, if configured. For more information about session level configuration,
see "Configuring EIS Connection Specification Options at the Session Level" on
page 84-2.

Using TopLink Workbench
To specify the connection information for an EIS project, use this procedure.

1. Select an EIS project object in the Navigator.

2. Select the Connection Specifications tab in the Editor. The Connection
Specifications tab appears.

3. Select the Connection tab. The Connection tab appears.

Figure 21–2 Connection Tab, Connection Specification Options

Use this table to enter data in the following fields to configure the connection
specification options:

Field Description

Connection Specification Class Specify the appropriate connection specification class for the
selected Platform. Click Browse to choose from all the
classes in the TopLink class path. (example: if Platform is
oracle.toplink.eis.aq.AQPlatform, use
oracle.toplink.eis.aq.AQEISConnectionSpec).

For more information on platform configuration, see
"Configuring an EIS Data Source Platform at the Session
Level" on page 84-1.

Connection Factory URL Specify the appropriate connection factory URL (as a J2EE
JNDI name) for the selected Connection Specification Class
(example: java:comp/env/eis/attuntiy).

Username Specify the name required to log in to the data source.

Password Specify the password required to log in to the data source.

Note: When exporting Java source and deployment XML
(see "Exporting Project Information" on page 18-13), TopLink
Workbench writes the database password (if applicable)
using JCE encryption (when using JDK 1.4). Refer to Oracle
TopLink Getting Started Guide for information on using
password encryption with JDK 1.3 and earlier. For
information on how to specify password encryption options,
see "Configuring Password Encryption" on page 82-2.

Configuring EIS Connection Specification Options at the Project Level

21-4 Oracle TopLink Developer’s Guide

Configuring an XML Project 22-1

22
Configuring an XML Project

This chapter describes the various components that you must configure to use an XML
project.

For more information, see the following:

■ "Project Creation Overview" on page 18-1

■ "XML Projects" on page 17-9

XML Project Configuration Overview
Table 22–1 lists the configurable options for XML projects.

Table 22–1 Configurable Options for XML Projects

Option Type
TopLink
Workbench Java

"Configuring Project Save Location" on page 19-2 Basic

"Configuring Project Classpath" on page 19-3 Basic

"Configuring Project Comments" on page 19-20 Advanced

"Configuring Mapped Field Access at the Project Level" on
page 19-4

"Configuring Project Deployment XML Options" on
page 19-10

Basic

"Configuring XML Parser Platform" on page 7-3 Advanced

"Importing an XML Schema" on page 4-34 Basic

"Configuring XML Schema Namespace" on page 4-37 Advanced

"Configuring Model Java Source Code Options" on page 19-11 Advanced

"Configuring Default Descriptor Advanced Properties" on
page 19-7

Advanced

"Configuring Mapped Field Access at the Project Level" on
page 19-4

Advanced

XML Project Configuration Overview

22-2 Oracle TopLink Developer’s Guide

Part VIII
 Descriptors

This part describes the TopLink artifact used to describe persistent objects. It contains
the following chapters.

■ Chapter 23, "Understanding Descriptors"

This chapter describes each of the different TopLink descriptor types and
important descriptor concepts.

■ Chapter 24, "Creating a Descriptor"

This chapter contains procedures for creating TopLink descriptors.

■ Chapter 25, "Configuring a Descriptor"

This chapter explains how to configure TopLink descriptor options common to
two or more descriptor types.

■ Chapter 26, "Configuring a Relational Descriptor"

This chapter explains how to configure descriptor options specific to a relational
descriptor.

■ Chapter 27, "Configuring an Object-Relational Descriptor"

This chapter explains how to configure descriptor options specific to an
object-relational descriptor.

■ Chapter 28, "Configuring an EIS Descriptor"

This chapter explains how to configure descriptor options specific to an EIS
descriptor.

■ Chapter 29, "Configuring an XML Descriptor"

This chapter explains how to configure descriptor options specific to an XML
descriptor.

Understanding Descriptors 23-1

23
Understanding Descriptors

TopLink uses descriptors to store the information that describes how an instance of a
particular class can be represented by a data source. Descriptors own mappings that
associate class instance variables with a data source and transformation routines that
are used to store and retrieve values. As such, the descriptor acts as the connection
between a Java object and its data source representation.

This chapter includes information on the following:

■ Descriptor Types

■ Descriptor Concepts

■ Understanding the Descriptor API

Descriptor Types
Table 23–1 lists the descriptor types you use to describe the classes in your object
model and classifies them as basic or advanced.

For more information, see the following:

■ Chapter 24, "Creating a Descriptor"

■ Chapter 25, "Configuring a Descriptor"

Table 23–1 TopLink Descriptor Types

Descriptor Type Description Type
TopLink
Workbench Java

"Relational Descriptors" on
page 23-11

Describes Java objects that you map to tables in a
relational database. Applicable to all relational
databases that TopLink supports.

Basic

"Object-Relational
Descriptors" on page 23-11

Describes Java objects that you map to tables in a
relational database that provides special database
data types that correspond more closely to object
types. Applicable only to the relational databases that
TopLink supports that provide these special data
types.

Advanced

"EIS Descriptors" on
page 23-12

Describes Java objects that you map to an EIS data
source by way of a J2C adapter.

Basic

"XML Descriptors" on
page 23-12

Describes Java objects that you map, in memory, to
complex types in XML documents defined by an
XML schema document (XSD).

Basic

Descriptor Concepts

23-2 Oracle TopLink Developer’s Guide

Descriptor Concepts
This section introduces descriptor concepts unique to TopLink, including the
following:

■ Descriptor Architecture

■ Descriptors and Inheritance

■ Descriptors and EJB

■ Fetch Groups

■ Amendment and After-Load Methods

■ Descriptors and Aggregation

■ Descriptor Event Manager

■ Descriptor Query Manager

■ Descriptors and Sequencing

■ Descriptors and Locking

■ Default Root Element

Descriptor Architecture
A descriptor stores all the information describing how an instance of a particular
object class can be represented in a data source.

TopLink descriptors contain the following information:

■ The persistent Java class it describes and the corresponding data source (database
tables, XML complex type, or EIS interaction)

■ A collection of mappings, which describe how the attributes and relationships for
that class are stored in the database

■ The primary key information (or equivalent) of the data source

■ A list of query keys (or aliases) for field names

■ Information for sequence numbers

■ A set of optional properties for tailoring the behavior of the descriptor, including
support for caching refresh options, identity maps, optimistic locking, the event
manager, and the query manager

There is a descriptor type for each data source type that TopLink supports. In some
cases, multiple descriptor types are valid for the same data source type. The type of
descriptor you use determines the type of mappings that you can define.

Table 23–2 summarizes the relationship between project, descriptor, and mappings.

Table 23–2 Project, Descriptor, and Mapping Support

Project Descriptor Mapping

Relational Projects Relational Descriptors

Object-Relational Descriptors

Relational Mappings

Object-Relational Mappings

EIS Projects EIS Descriptors EIS Mappings

XML Projects XML Descriptors XML Mappings

Descriptor Concepts

Understanding Descriptors 23-3

Descriptors and Inheritance
Inheritance describes how a derived (child) class inherits the characteristics of its
superclass (parent). You can use descriptors to describe the inheritance relationships
between classes in relational, EIS, and XML projects.

In the descriptor for a child class, you can override mappings that have been specified
in the descriptor for a parent class, or map attributes that have not been mapped at all
in the parent class descriptor.

For more information, see "Understanding Descriptors and Inheritance" on page 23-12.

Descriptors and EJB
You can use descriptors to describe the characteristics of entity beans with
container-managed or bean-managed persistence.

When mapping enterprise beans, you create a descriptor for the bean class: you do not
create a descriptor for the local interface, remote interface, home class, or primary key
class.

When using TopLink Workbench, you must define the project with the correct entity
bean type (such as entity beans with container-managed or bean-managed persistence)
and import the ejb-jar.xml file for the beans into the TopLink Workbench project.

For CMP projects, you use the ejb-jar.xml file to define the bean’s mapped
attributes. A descriptor of a bean with container-managed persistence contains a CMP
policy used to configure CMP-specific options.

This section describes the following:

■ Nondeferred Changes

■ Creating a New Entity Bean and ejbCreate / ejbPostCreate Methods

■ Inheritance

Nondeferred Changes
By default, TopLink defers all changes until commit time: this is the most efficient
approach that produces the least number of data source interactions.

Alternatively, you can configure an entity bean’s descriptor for nondeferred changes.
This means that as you change the persistent fields of the entity bean, TopLink CMP
modifies the relational schema immediately.

Using nondeferred changes, you can achieve backward compatibility with the native
behavior of some EJB containers (such as OC4J). You can also accommodate advanced
applications that rely on the database and entity changes being synchronized for such
things as triggers or stored procedures based on transient state within the transaction,
deletion and creation of rows with the same primary key, or other complex queries
that depend on transient transaction state.

Nondeferred changes have the disadvantage of being the least efficient approach: they
produce the greatest number of data source interactions.

When you configure TopLink CMP to support nondeferred changes, TopLink will
continue to handle constraints for mapped relationships among entity beans with the

Note: For EJB 3.0 projects, you can use annotations to define the
bean’s mapped attributes.

Descriptor Concepts

23-4 Oracle TopLink Developer’s Guide

same deferral setting. However, you are responsible for handling any errors that result
from making changes to a class that is not deferred, but related to a class that is
deferred when a constraint exists between these two classes.

For more information, see "Configuring a Descriptor With EJB Information" on
page 25-45.

Creating a New Entity Bean and ejbCreate / ejbPostCreate Methods
When you create a new entity bean, by default, the bean’s life cycle can be thought of
as follows:

1. ejbCreate method:

After the insert, the EJB container retrieves the primary key allocated by the
database for the created instance.

For a relational project:

a. INSERT INTO ...

b. SELECT FROM ...

For an EIS project:

a. Write object ...

b. Find object ...

2. ejbPostCreate method:

The EJB container updates container-managed relationship (CMR) fields. The EJB
container needs the primary key obtained in the ejbCreate method.

For a relational project:

a. UPDATE SET ...

For an EIS project:

a. Write object ...

However, if you have non-null foreign key constraints in your database, doing a data
source modification after the ejbCreate method executes can cause problems. To get
around this, some application servers (such as OC4J) allow you to create new objects
after the ejbPostCreate method executes, and rely on the container to resolve the
foreign key constraint.

For more information, see "Configuring a Descriptor With EJB Information" on
page 25-45.

Inheritance
TopLink allows you to configure inheritance for CMP descriptors, with some
reservations.

For more information, see "Inheritance and EJB" on page 23-17.

Note: When you configure a descriptor for nondeferred changes,
TopLink CMP does not apply nondeferred changes to dependent
objects. Dependent objects are subject to default deferred changes: the
relational schema is not modified until commit.

Descriptor Concepts

Understanding Descriptors 23-5

Fetch Groups
By default, when you execute an object-level read query for a particular object class,
TopLink returns all the persistent attributes mapped in the object’s descriptor. With
this single query, all the object’s persistent attributes are defined, and calling their get
methods returns the value directly from the object.

When you are interested in only some of the attributes of an object, it may be more
efficient to return only a subset of the object’s attributes using a fetch group with
which you can define a subset of an object’s attributes and associate the fetch group
with either a ReadObjectQuery or ReadAllQuery query.

For more information, see the following:

■ "Configuring Fetch Groups" on page 25-79

■ "Fetch Groups and Object-Level Read Queries" on page 93-13

Amendment and After-Load Methods
Using TopLink Workbench, you can associate a static Java method that is called when
a descriptor is loaded at run time. This method can amend the run-time descriptor
instance through the descriptor Java code API. Use this method to make some
advanced configuration options that may not be currently supported by TopLink
Workbench.

Descriptors can only be modified before the session has been connected; descriptors
should not be modified after the session has been connected.

For more information, see "Configuring Amendment Methods" on page 25-81.

Descriptors and Aggregation
Two objects–a source (parent or owning) object and a target (child or owned)
object–are related by aggregation if there is a strict one-to-one relationship between
them, and all the attributes of the target object can be retrieved from the same data
source representation as the source object. This means that if the source object exists,
then the target object must also exist, and if the source object is destroyed, then the
target object is also destroyed.

In this case, the descriptors for the source and target objects must be designated to
reflect this relationship as follows:

■ Aggregate and Composite Descriptors in Relational Projects

■ Root and Composite Descriptors in EIS Projects

■ Composite Descriptors in XML Projects

Aggregate and Composite Descriptors in Relational Projects
In a relational project, you can designate the descriptor as an aggregate (see "Relational
Aggregate Descriptors" on page 24-2).

This lets you configure an aggregate mapping (see Chapter 43, "Configuring a
Relational Aggregate Object Mapping") to associate data members in the target object
with fields in the source object’s underlying database tables.

When you designate a relational descriptor as an aggregate, TopLink lets you specify a
mapping type for each field in the target class, but defers associating the field with a
database table until you configure the aggregate object mapping in the source
descriptor. In other words, the target class descriptor defines how each target class

Descriptor Concepts

23-6 Oracle TopLink Developer’s Guide

field is mapped, but the source class descriptor defines where each target class field is
mapped. This lets you share an aggregate object among many parent descriptors
mapped to different tables.

When you designate a relational descriptor as an aggregate, you tell TopLink that the
class will be a target of an aggregate object mapping, and this ensures that the
TopLink runtime handles the target class as follows:

■ It inserts, updates, and deletes the target class in parallel with its source class.

■ It does not cache the target class on its own; instead, it caches the target class as
part of its source class.

■ It does not allow the target class to be read, written, deleted, or registered in a unit
of work.

When working with aggregate relational descriptors, consider the following:

■ Relational Aggregates and Nesting

■ Relational Aggregates and Inheritance

■ Relational Aggregates and EJB

For more information, see "Configuring a Relational Descriptor as a Class or
Aggregate Type" on page 26-11.

Relational Aggregates and Nesting TopLink supports nested aggregates. In Figure 23–1
source class HockeyPlayer is a normal nonaggregate class descriptor. It owns target
class Info which is designated as an aggregate. The Info class itself owns target
classes PersonalInfo and TeamInfo which are each designated as aggregates.

Figure 23–1 Nested Aggregates

In EJB 3.0, an aggregate is known as an embeddable. In the EJB 3.0 specification, an
embeddable may not contain another embeddable (that is, the EJB 3.0 specification
does not support nested aggregates).

However, if you deploy a TopLink-enabled EJB 3.0 application with persistence to
OC4J, you can take advantage of a TopLink extension of the EJB 3.0 specification to
configure nested embeddables. Note that if you do so, your application will not be
strictly EJB 3.0-compliant. Example 23–1 shows the classes from Figure 23–1 using EJB
3.0 annotations to take advantage of the TopLink extension of the EJB 3.0 specification
to allow Info (an embeddable) to own embeddables TeamInfo and PersonalInfo.

Descriptor Concepts

Understanding Descriptors 23-7

Example 23–1 Nested Embeddables

public class HockeyPlayer implements Serializable {
private int playerId;
private Info Info;
private String lastName;
private String firstName;
...
@Embedded
public Info getInfo() {

return Info;
}

}

@Embeddable
public class Info implements Serializable {

TeamInfo teamInfo; // TopLink extension of EJB 3.0 allows Embeddable with Embeddable
PersonalInfo personalInfo;

public Info() {}

@Embedded
public PersonalInfo getPersonalInfo() {

return personalInfo;
}

public void setPersonalInfo(PersonalInfo personalInfo) {
this.personalInfo = personalInfo;

}

@Embedded
public TeamInfo getTeamInfo() {

return teamInfo;
}

public void setTeamInfo(TeamInfo teamInfo) {
this.teamInfo = teamInfo;

}
}

@Embeddable
public class PersonalInfo implements Serializable {

private int age;
private double weight;
private double height;
...

}

@Embeddable
public class TeamInfo implements Serializable {

private String position;
private int jerseyNumber;
private HockeyTeam hockeyTeam;
...

}

Relational Aggregates and Inheritance You can configure inheritance for a relational
descriptor designated as an aggregate (see "Descriptors and Inheritance" on page 23-3),
however, in this case, all the descriptors in the inheritance tree must be aggregates.
Aggregate and class descriptors cannot exist in the same inheritance tree.

Relational Aggregates and EJB You can use relational aggregate descriptors in an EJB
project, but you cannot configure EJB information for a relational descriptor
designated as an aggregate (see "Descriptors and EJB" on page 23-3).

Descriptor Concepts

23-8 Oracle TopLink Developer’s Guide

For more information on using relational aggregates and EJB 3.0, see "Relational
Aggregates and Nesting" on page 23-6.

Root and Composite Descriptors in EIS Projects
In an EIS project, you can designate the descriptor as a composites (see "EIS Composite
Descriptors" on page 24-5).

The type of EIS mapping you whish to create will determine whether you configure an
EIS descriptor as a composite or root (see "Composite and Reference EIS Mappings" on
page 53-4).

For more information, see "Configuring an EIS Descriptor as a Root or Composite
Type" on page 28-8.

You cannot configure EJB information for an EIS descriptor designated as an
composite (see "Descriptors and EJB" on page 23-3).

You can configure inheritance for an EIS descriptor designated as a composite (see
"Descriptors and Inheritance" on page 23-3), however, in this case, all the descriptors in
the inheritance tree must be composites. Composite and root descriptors cannot exist
in the same inheritance tree.

Composite Descriptors in XML Projects
In an XML project, descriptors are always composites.

Because XML descriptors are always composites, you can configure inheritance for an
XML descriptor without considering its type (see "Descriptors and Inheritance" on
page 23-3).

Descriptor Event Manager
In relational and EIS projects, TopLink raises various instances of DescriptorEvent
(see Table 25–26 and Table 25–28) during the persistence life cycle. Each descriptor
owns an instance of DescriptorEventManager that is responsible for receiving
these events and dispatching them to the descriptor event handlers registered with it.

Using a descriptor event handler, you can execute your own application specific logic
whenever descriptor events occur, allowing you to take customized action at various
points in the persistence life-cycle. For example, using a descriptor event handler, you
can do the following:

■ Synchronize persistent objects with other systems, services, and frameworks.

■ Maintain nonpersistent attributes of which TopLink is not aware.

■ Notify other objects in the application when the persistent state of an object
changes.

■ Implement complex mappings or optimizations not directly supported by
TopLink mappings.

For more information, see the following:

■ "Configuring a Domain Object Method as an Event Handler" on page 25-59

■ "Configuring a Descriptor Event Listener as an Event Handler" on page 25-62

Descriptor Query Manager
Each relational and EIS descriptor provides an instance of
DescriptorQueryManager that you can use to configure the following:

Descriptor Concepts

Understanding Descriptors 23-9

■ named queries (see "Configuring Named Queries at the Descriptor Level" on
page 25-10)

■ custom default queries for basic persistence operations (see "Configuring Default
Query Implementations" on page 93-23)

■ additional join expressions (see "Configuring Additional Join Expressions" on
page 93-24)

For more information on using the query manager, see "Descriptor Query Manager
Queries" on page 93-23.

Descriptors and Sequencing
An essential part of maintaining object identity is managing the assignment of unique
values (that is, a specific sequence) to distinguish one object instance from another. For
more information, see "Projects and Sequencing" on page 17-4.

Sequencing options you configure at the project (or session) level determine the type
of sequencing that TopLink uses. In a CMP project, you typically configure the
sequence type at the project level (see "Configuring Sequencing at the Project Level" on
page 20-3). In a non-CMP project, you can use session-level sequence configuration to
override project-level sequence configuration, on a session-by-session basis, if required
(see "Configuring Sequencing at the Session Level" on page 83-4).

After configuring the sequence type, for each descriptor’s reference class, you must
associate one attribute, typically the attribute used as the primary key (see
"Configuring Primary Keys" on page 25-3), with its own sequence (see "Configuring
Sequencing at the Descriptor Level" on page 26-3).

Descriptors and Locking
You can configure a descriptor with any of the following locking policies to control
concurrent access to a domain object:

■ Optimistic–All users have read access to the data. When a user attempts to make a
change, the application checks to ensure the data has not changed since the user
read the data (see "Optimistic Version Locking Policies" on page 23-18 and
"Optimistic Field Locking Policies" on page 23-20).

■ Pessimistic–The first user who accesses the data with the purpose of updating it
locks the data until completing the update (see "Pessimistic Locking Policy" on
page 23-22).

■ No locking–The application does not prevent users overwriting each other’s
changes.

Oracle recommends using optimistic locking for most types of applications to ensure
that users do not overwrite each other's changes.

For more information, see the following:

■ "Understanding Descriptors and Locking" on page 23-18

■ "Configuring Locking Policy" on page 25-64

Default Root Element
You configure EIS root descriptors ("Configuring Default Root Element" on page 28-3)
and XML descriptors ("Configuring Default Root Element" on page 29-5) with a

Descriptor Concepts

23-10 Oracle TopLink Developer’s Guide

default root element so that the TopLink runtime knows the data source data type
associated with the class the descriptor describes.

This section describes what a default root element is and how TopLink uses it.

Consider the Customer and Address classes and their mappings shown in
Example 23–2.

Example 23–2 Customer and Address Classes

Class: Customer
Default Root: customer
Attributes and Mappings:

name:String Drect Mapping to name/text()
billingAddress:Address Composite Object Mapping to billing-address
shippingAddress:Address Composite Object Mapping to shipping-address

Class: Address
Default Root: address
Attributes and Mappings:

street:String Direct Mapping to street/text()
city:String Direct Mapping to city/text()

These classes correspond to the XML schema shown in Example 23–3.

Example 23–3 Customer and Address Schema

<xsd:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xsd:complexType name="address-type">

<xsd:sequence>
<element name="street" type="xsd:string"/>
<element name="city" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="billing-address" type="address-type"/>
<xsd:element name="shipping-address" type="address-type"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

When an instance of the Customer class is persisted to XML, the TopLink runtime
performs the following:

1. Gets the default root element.

The Customer class instance corresponds to the root of the XML document. The
TopLink runtime uses the default root element specified on the descriptor
(customer) to start the XML document. TopLink then uses the mappings on the
descriptor to marshal the object’s attributes:

<customer>
<name>…</name>

</customer>

Note: The undefined document root element of a referenced object is
ignored during marshalling with an any collection mapping and
object mapping.

Object-Relational Descriptors

Understanding Descriptors 23-11

2. When the TopLink runtime encounters an object attribute such as
billingAddress, it checks the mapping associated with it to determine with
what element (billing-address) to continue:

<customer>
<name>…</name>
<billing-address/>

</customer>

The TopLink runtime checks the mapping's reference descriptor (Address) to
determine what attributes to persist:

<customer>
<name>…</name>
<billing-address>

<street>…</street>
<city>…</city>

</billing-address>
</customer>

Relational Descriptors
Relational descriptors describe Java objects that you map to tables in a relational
database. You use them in relational projects (see "Relational Projects" on page 17-6).

Using relational descriptors in a relational project, you can configure relational
mappings (see "Relational Mapping Types" on page 33-1).

For more information, see the following:

■ "Creating a Relational Descriptor" on page 24-1

■ "Configuring a Relational Descriptor" on page 26-1

Object-Relational Descriptors
The object-relational paradigm extends traditional relational databases to include
object-oriented functions. Oracle, IBM DB2, Informix, and other DBMS databases
allow users to store, access, and use complex data in more sophisticated ways.

The object-relational standard is an evolving standard concerned mainly with
extending the database data structures and SQL (SQL 3).

Object-relational descriptors describe Java objects that you map to special relational
database types that correspond more closely to object types. Using these special
object-relational database types can simplify mapping objects to relational database
tables. Not all relational databases support these special object-relational database
types.

Using object-relational descriptors in a relational project, you can configure
object-relational mappings to these special object-relational database data types (see
"Object-Relational Mapping Types" on page 46-1).

For more information, see the following:

■ "Creating an Object-Relational Descriptor" on page 24-3

■ Chapter 27, "Configuring an Object-Relational Descriptor"

EIS Descriptors

23-12 Oracle TopLink Developer’s Guide

EIS Descriptors
EIS descriptors describe Java objects that you map to an EIS data source by way of a
J2C adapter.

Using EIS descriptors in an EIS project created with TopLink Workbench, you can
configure EIS mappings (see "EIS Mapping Types" on page 53-1) to XML records.

Using EIS descriptors in an EIS project that you create in Java, you can configure EIS
mappings to any supported EIS record type: XML, mapped, or indexed.

For more information, see the following:

■ "Creating an EIS Descriptor" on page 24-4

■ Chapter 28, "Configuring an EIS Descriptor"

XML Descriptors
XML descriptors describe Java objects that you map to simple and complex types
defined by an XML schema document (XSD).

Using XML descriptors in an XML project, you can configure XML mappings (see
"XML Mapping Types" on page 62-1), in memory, to XML elements defined by an XSD.

For more information, see the following:

■ "Creating an XML Descriptor" on page 24-5

■ Chapter 29, "Configuring an XML Descriptor"

Understanding Descriptors and Inheritance
Inheritance describes how a derived class inherits the characteristics of its superclass.
You can use descriptors to describe the inheritance relationships between classes in
relational, EIS, and XML projects.

Figure 23–2 illustrates the Vehicle object model–a typical Java inheritance hierarchy.
The root class Vehicle contains two branch classes: FueledVehicle and
NonFueledVehicle. Each branch class contains a leaf class: Car and Bicycle,
respectively.

Understanding Descriptors and Inheritance

Understanding Descriptors 23-13

Figure 23–2 Example Inheritance Hierarchy

TopLink recognizes the following three types of classes in an inheritance hierarchy:

1. The root class stores information about all instantiable classes in its subclass
hierarchy. By default, queries performed on the root class return instances of the
root class and its instantiable subclasses. However, the root class can be
configured so queries on it return only instances of itself, without instances of its
subclasses.

For example, the Vehicle class in Figure 23–2 is a root class.

2. Branch classes have a persistent superclass and also have subclasses. By default,
queries performed on the branch class return instances of the branch class and any
of its subclasses. However, as with the root class, the branch class can be
configured so queries on it return only instances of itself without instances of its
subclasses.

For example, the FueledVehicle class in Figure 23–2 is a branch class.

3. Leaf classes have a persistent superclass in the hierarchy but do not have
subclasses. Queries performed on the leaf class can only return instances of the
leaf class.

For example, the Car class in Figure 23–2 is a leaf class.

In the descriptor for a child class, you can override mappings that have been specified
in the descriptor for a parent class, or map attributes that have not been mapped at all
in the parent class descriptor.

This section includes information on the following topics:

■ Specifying a Class Indicator

■ Inheritance and Primary Keys (Relational and EIS Only)

■ Single and Multi-Table Inheritance (Relational Only)

■ Aggregate and Composite Descriptors and Inheritance

■ Inheritance and EJB

For more information about configuring inheritance for a parent (root) class
descriptor, see "Configuring Inheritance for a Parent (Root) Descriptor" on page 25-52.

Understanding Descriptors and Inheritance

23-14 Oracle TopLink Developer’s Guide

For more information about configuring inheritance for a child (branch or leaf) class
descriptor, see "Configuring Inheritance for a Child (Branch or Leaf) Class Descriptor"
on page 25-51.

Specifying a Class Indicator
When configuring inheritance, you configure the root class descriptor with the means
of determining which subclasses it should instantiate.

You can do this in one of the following ways:

■ Using Class Indicator Fields

■ Using Class Extraction Methods

Using Class Indicator Fields
You can use a persistent attribute of a class to indicate which subclass should be
instantiated. For example, in a relational descriptor, you can use a class indicator field
in the root class table. The indicator field should not have an associated direct
mapping unless it is set to read-only.

You can use strings or numbers as values in the class indicator field.

The root class descriptor must specify how the value in the class indicator field
translates into the class to be instantiated.

One approach is to configure the root class descriptor with a class indicator dictionary:
a collection of key-values that associates a simple key, stored in the class indicator
field, with a class to instantiate. Table 23–3 illustrates the class indicator dictionary for
the Vehicle class’s subclasses as shown in Figure 23–2.

Another approach is to simply use the class name itself as the value stored in the class
indicator field. This avoids having to define unique indicators for each class at the
expense of a slightly larger key value (depending on the length of your class names).

Note: All leaf classes in the hierarchy must have a class indicator
and they must have the same type of class indicator (field or class
extraction method).

Note: If the indicator field is part of the primary key, define a
write-only transformation mapping for the indicator field (see
Chapter 45, "Configuring a Relational Transformation Mapping").

Table 23–3 Class Indicator Dictionary for the Vehicle Class

Key Value

F FueledVehicle

N NonFueledVehicle

C Car

B Bicycle

Understanding Descriptors and Inheritance

Understanding Descriptors 23-15

Using Class Extraction Methods
You can define a Java method to compute the class indicator based on any available
information in the object's data source record. Such a method is called a class
extraction method.

Using a class extraction method, you do not need to include an explicit class indicator
field in your data model and you can handle relationships that are too complex to
describe using class indicator fields.

A class extraction method must have the following characteristics:

■ it must be defined on the root descriptor’s class

■ it must be static

■ it must take a Record as an argument

■ it must return the java.lang.Class object to use for the Record passed in

You may also need to define only-instances and with-all-subclasses expressions (see
"Specifying Expressions for Only-Instances and With-All-Subclasses" on page 23-16).

For example, Table 23–4 lists the rows in the EMPLOYEE table. The Employee class is
the base class. Director, Manager, Programmer, and TechWriter classes each
derive from the Employee class. However, in your application, instances of Manager,
Programmer, and TechWriter classes must be represented as Employee instances
and instances of Director must be represented as Director instances. Because
there is no a one-to-one correspondence between class and JOB_TYPE field value, the
JOB_TYPE field alone cannot serve as a class indicator field (see "Using Class Indicator
Fields" on page 23-14). To resolve this issue, you could use the class extraction method
shown in Example 23–4.

Example 23–4 Class Extraction Method

...

// If the JOB_TYPE field value in record equals 2, return the Director class.
// Return the Employee class for all other JOB_TYPE field values

public static Class getClassFromRecord(Record record)
{

if (record.get("JOB_TYPE").equals(new Integer(2))
{

return Director.class;
}
else
{

return Employee.class;
}

}

When configuring inheritance using a class extraction method, Oracle TopLink does
not generate SQL for queries on the root class.

Table 23–4 EMPLOYEE Table

ID NAME JOB_TYPE JOB_TITLE

732 Bob Jones 1 Manager

733 Sarah Smith 3 Technical Writer

734 Ben Ng 2 Director

735 Sally Johnson 3 Programmer

Understanding Descriptors and Inheritance

23-16 Oracle TopLink Developer’s Guide

Specifying Expressions for Only-Instances and With-All-Subclasses If you use a class
extraction method (see "Using Class Extraction Methods" on page 23-15), you must
provide TopLink with expressions to correctly filter sibling instances for all classes that
share a common table (see "Configuring Inheritance Expressions for a Parent (Root)
Class Descriptor" on page 25-55).

Inheritance and Primary Keys (Relational and EIS Only)
For relational and EIS projects, TopLink assumes that all of the classes in an
inheritance hierarchy have the same primary key, as set in the root descriptor. Child
descriptors associated with data source representations that have different primary
keys must define the mapping between the root primary key and the local one.

Single and Multi-Table Inheritance (Relational Only)
In a relational project, you can map your inheritance hierarchy to a single table ("Single
Table Inheritance" on page 23-16) or to multiple tables ("Multitable Inheritance" on
page 23-16). Use these options to achieve the balance between storage efficiency and
access efficiency that is appropriate for your application.

Single Table Inheritance
In this example, you store classes with multiple levels of inheritance in a single table to
optimize database access speeds.

The entire inheritance hierarchy shown in Figure 23–2 can share the same table, as in
Figure 23–3. The FueledVehicle and NonFueledVehicle subclasses can share the
same table even though FueledVehicle has some attributes that
NonFueledVehicle does not. The NonFueledVehicle instances waste database
resources because the database must still allocate space for the unused portion of its
row. However, this approach saves on accessing time because there is no need to join
to another table to get the additional FueledVehicle information.

As Figure 23–3 shows, this approach uses a class indicator field. For more information,
see "Specifying a Class Indicator" on page 23-14.

Figure 23–3 Inheritance Using a Superclass Table with Optional Fields

Multitable Inheritance
In this example, you store classes with multiple levels of inheritance in multiple tables
to optimize database storage space.

In the inheritance hierarchy shown in Figure 23–2, for subclasses that require
additional attributes, you use multiple tables instead of a single superclass table. This
optimizes storage space because there are no unused fields in the database. However,
this may affect performance because TopLink must read from more than one table

Understanding Descriptors and Inheritance

Understanding Descriptors 23-17

before it can instantiate the object. TopLink first looks at the class indicator field (see
"Specifying a Class Indicator" on page 23-14) to determine the class of object to create,
then uses the descriptor for that class to read from the subclass tables.

Figure 23–4 illustrates the TopLink implementation of the FUELEDVHCL, CAR, and
BICYCLE tables. All objects are stored in the VEHICLE table. FueledVehicle, Car,
and Bicycle information are also stored in secondary tables. Note that because the
NonFueledVehicle class does not hold any attributes or relationships, it does not
need a secondary table.

Figure 23–4 Inheritance Using Separate Tables for Each Subclass

Inheritance View If a root or branch inheritance descriptor has subclasses that span
multiple tables, you can configure a database view to optimize the performance of
queries against the parent descriptor by outer-joining all of the subclass tables. This
allows TopLink to fetch all of the subclass instances in one query, instead of multiple
queries. It also allows queries for the parent class that use cursors or ordering.

You must define the view on the database as a database view that outer-joins all of the
subclass tables. For more information, see "Configuring Reading Subclasses on
Queries" on page 25-49.

Aggregate and Composite Descriptors and Inheritance
You can designate relational descriptors as aggregates, and EIS descriptors as
composites. XML descriptors are always composites (see "Descriptors and
Aggregation" on page 23-5).

When configuring inheritance for a relational aggregate descriptor, all the descriptors
in the inheritance tree must be aggregates. The descriptors for aggregate and
non-aggregate classes cannot exist in the same inheritance tree.

Similarly, when configuring inheritance for an EIS composite descriptor, all the
descriptors in the inheritance tree must be composites. The descriptors for composite
and noncomposite classes cannot exist in the same inheritance tree.

When configuring inheritance for an XML descriptor, because all XML descriptors are
composites, descriptor type does not restrict inheritance.

Inheritance and EJB
Although inheritance is a standard tool in object-oriented modeling, the EJB
specifications prior to 3.0 contain only general information regarding inheritance. You

Note: . In general, using multitable inheritance is inefficient
because it can require excessive joins and multiple table fetching.

Understanding Descriptors and Locking

23-18 Oracle TopLink Developer’s Guide

should fully understand this information before implementing EJB inheritance. Be
aware of the fact that future EJB specifications may dictate inheritance guidelines not
supported by all application servers.

Understanding Descriptors and Locking
This section describes the various types of locking policy that TopLink supports,
including the following:

■ Optimistic Version Locking Policies

■ Optimistic Version Locking Policies and Cascading

■ Optimistic Field Locking Policies

■ Pessimistic Locking Policy

■ Locking in a Three-Tier Application

For more information, see "Configuring Locking Policy" on page 25-64.

Optimistic Version Locking Policies
With optimistic locking, all users have read access to the data. When a user attempts to
make a change, the application checks to ensure the data has not changed since the
user read the data.

Optimistic version locking policies enforce optimistic locking by using a version field
(also known as a write-lock field) that you provide in the reference class that TopLink
updates each time an object change is committed.

TopLink caches the value of this version field as it reads an object from the data
source. When the client attempts to write the object, TopLink compares the cached
version value with the current version value in the data source in the following way:

■ If the values are the same, TopLink updates the version field in the object and
commits the changes to the data source.

■ If the values are different, the write operation is disallowed because another client
must have updated the object since this client initially read it.

 TopLink provides the following version-based optimistic locking policies:

■ VersionLockingPolicy: requires a numeric version field; TopLink updates the
version field by incrementing its value by one.

■ TimestampLockingPolicy: requires a timestamp version field; TopLink updates
the version field by inserting a new timestamp (this policy can be configured to
get the time from the data source or locally; by default, the policy gets the time
from the data source).

Note: In general, Oracle recommends numeric version locking,
because:

■ accessing the timestamp from the data source can cause a
performance issue

■ time stamp locking is limited to the precision that the database
stores for timestamps

Understanding Descriptors and Locking

Understanding Descriptors 23-19

Whenever any update fails because optimistic locking has been violated, TopLink
throws an OptimisticLockException. This should be handled by the application
when performing any database modification. The application must notify the client of
the locking contention, refresh the object, and have the client reapply its changes.

You can choose to store the version value in the object as a mapped attribute, or in the
cache. In three-tier applications, you typically store the version value in the object to
ensure it is passed to the client when updated (see "Locking in a Three-Tier
Application" on page 23-22).

If you store the version value in the cache, you do not need to map it. If you do map
the version field, you must configure the mapping as read-only (see "Configuring
Read-Only Mappings" on page 32-2).

To ensure that the parent object’s version field is updated whenever a privately owned
child object is modified, consider "Optimistic Version Locking Policies and Cascading"
on page 23-19.

When using optimistic version locking with the unit of work, consider "Using
Optimistic Read Locking With forceUpdateToVersionField" on page 99-18.

Optimistic Version Locking Policies and Cascading
If your database schema is such that both a parent object and its privately owned child
object are stored in the same table, then if you update the child object, the parent
object’s version field will be updated.

However, if the parent and its privately owned child are stored in separate tables, then
changing the child will not, by default, update the parent’s version field.

To ensure that the parent object’s version field is updated in this case, you can either
manually update the parent object’s version field (see "Using Optimistic Read Locking
With forceUpdateToVersionField" on page 99-18) or, if you are using a
TimestampLockingPolicy, you can configure TopLink to automatically cascade the
child object’s version field update to the parent (see "Configuring Optimistic Locking
Policy Cascading" on page 25-67).

After you enable optimistic version locking cascading, when a privately owned child
object is modfied, TopLink will traverse the privately owned foreign reference
mappings, updating all the parent objects back to the root.

Optimistic version locking cascading is only applied if the child object is registered in
a unit of work.

TopLink supports optimistic version locking cascading for:

■ object changes in privately owned one-to-one and one-to-many mappings

■ relationship changes (adding or removing) in the following collection mappings
(privately owned or not):

– direct collection

– one-to-many

– many-to-many

– aggregate collection

Consider the example object graph shown in Figure 23–5

Understanding Descriptors and Locking

23-20 Oracle TopLink Developer’s Guide

Figure 23–5 Optimistic Version Locking Policies and Cascading Example

In this example, ObjectA privately owns ObjectB, and ObjectB privately owns
ObjectC, and ObjectC privately owns ObjectD.

Suppose you register ObjectB in a unit of work, modify an ObjectB field, and
commit the unit of work. In this case, ObjectB checks the cache for ObjectA and, if
not present, queries the database for ObjectA. ObjectB then notifies ObjectA of its
change. ObjectA forces an update on its version optimistic locking field even though
it has no changes to its corresponding table.

Suppose you register ObjectA in a unit of work, access its ObjectB to access its
ObjectC to access its ObjectD, modify an ObjectD field, and commit the unit of
work. In this case, ObjectD notifies ObjectC of its changes. ObjectC forces an
update on its version optimistic locking field even though it has no changes to its
corresponding table. ObjectC then notifies ObjectB of the ObjectD change.
ObjectB then notifies ObjectA of the ObjectD change. ObjectA forces an update
on its version optimistic locking field even though it has no changes to its
corresponding table.

Optimistic Locking and Rollbacks
With optimistic locking, use the UnitOfWork method
commitAndResumeOnFailure (see "Resuming a Unit of Work After Commit" on
page 99-14) to rollback a locked object’s value, if you store the optimistic lock versions
in the cache.

If you store the locked versions in an object, you must refresh the objects (or their
versions) on a failure. Alternatively, you can acquire a new unit of work on the failure
and reapply any changes into the new unit of work.

Optimistic Field Locking Policies
Optimistic field locking policies enforce optimistic locking by using one or more of the
fields that currently exist in the table to determine if the object has changed since the
client read the object.

The unit of work caches the original state of the object when you first read the object or
register it with the unit of work. At commit time, the unit of work compares the
original values of the lock fields with their current values on the data source during
the update. If any of the lock field's values have changed, an optimistic lock exception
is thrown.

TopLink provides the following optimistic field locking policies:

■ AllFieldsLockingPolicy: For update and delete operations, TopLink
compares all the fields of the object with all the fields in the data source. If the
original value of any fields differ from that in the data source, the write operation
is disallowed.

Understanding Descriptors and Locking

Understanding Descriptors 23-21

For example, if you changed a customer’s last name, TopLink might produce SQL
like:

UPDATE CUSTOMER SET LNAME='new last name' WHERE ID=7 AND LNAME='old last name'
AND FNAME='Donald' AND B_DAY='1972’ AND CREDIT_RATING='A+' AND EYE_COLOR='Blue'

The main disadvantage of this field locking policy is that it is not the most
efficient, especially if the changed object has many attributes.

■ ChangedFieldsLockingPolicy: For update operations, TopLink compares
only the fields of the object that have changed with the corresponding fields in the
data source. If the original value of any such field differs from that in the data
source, the write operation is disallowed. TopLink does not make any field
comparisons for deletes.

The main advantage of this field locking policy is that it allows concurrent updates
of different fields. For example, if one thread updates a customer’s last name and
another thread updates the same customer’s credit rating, and you configure the
Customer descriptor with ChangedFieldsLockingPolicy, then TopLink
might produce SQL like:

// Unit of Work 1
UPDATE CUSTOMER SET LNAME='new name' WHERE ID=7 AND LNAME='old name'
// Unit of Work 2
UPDATE CUSTOMER SET CREDIT_RATING='B' WHERE ID=7 AND CREDIT_RATING='A+'

■ SelectedFieldsLockingPolicy: For update and delete operations, TopLink
compares only the selected fields of the object with the corresponding fields in the
data source. If the cached value of any such field differs from that in the data
source, the write operation is disallowed.

For example, if you select Customer attributes LNAME and CREDIT_RATING, then
at run time, TopLink might produce SQL like:

UPDATE CUSTOMER SET LNAME='new name' WHERE ID=7 AND LNAME='old name’ AND
CREDIT_RATING='A+'

Whenever any update fails because optimistic locking has been violated, TopLink
throws an OptimisticLockException. This should be handled by the application
when performing any database modification. The application must notify the client of
the locking contention, refresh the object, and have the client reapply its changes.

When using field locking policies, a unit of work must be employed for updating the
data source.

Note: This comparison is only on a per table basis. If an update
operation is performed on an object that is mapped to multiple
tables (multiple table inheritance), then only the changed fields for
each table changed appear in the where clause.

Note: You cannot use an instance of FieldsLockingPolicy if you
are using AttributeChangeTrackingPolicy (see "Attribute
Change Tracking Policy" on page 97-8).

Understanding Descriptors and Locking

23-22 Oracle TopLink Developer’s Guide

Pessimistic Locking Policy
With pessimistic locking, the first user who accesses the data with the purpose of
updating it locks the data until completing the update.

When using a pessimistic locking policy, you can configure the policy to either fail
immediately or to wait until the read lock is acquired.

You can use a pessimistic locking policy only in a project with a container-managed
persistence type (see "Configuring Persistence Type" on page 19-5) and with
descriptors that have EJB information (see "Configuring a Descriptor With EJB
Information" on page 25-45).

You can also use pessimistic locking (but not a pessimistic locking policy) at the query
level (see "Configuring Named Query Options" on page 25-22).

TopLink provides an optimization for pessimistic locking when this locking is used
with entity beans with container-managed persistence: if you set your query to
pessimistic locking and run the query in its own new transaction (which will end after
the execution of the finder), then TopLink overrides the locking setting and does not
append FOR UPDATE to the SQL. However, the use of this optimization may produce
an undesirable result if the pessimistic lock query has been customized by the user
with a SQL string that includes FOR UPDATE. In this case, if the conditions for the
optimization are present, the query will be reset to nonpessimistic locking, but the
SQL will remain the same resulting in the locking setting of the query conflicting with
the query’s SQL string. To avoid this problem, you can take one of the following two
approaches:

■ Use EJB QL or a TopLink’s expression (see Chapter 95, "Understanding TopLink
Expressions") for the selection criteria. This will give TopLink control over the SQL
generation.

■ Place the finder in a transaction to eliminate conditions for the optimization.

Locking in a Three-Tier Application
If you are building a three-tier application, in order to correctly lock an object, you
must obtain the lock before the object is sent to client for editing.

Optimistic Locking in a Three-Tier Application
If you are using optimistic locking, you have the following two choices for locking
objects correctly:

1. Map the optimistic lock field in your object as not read-only and pass the version
to the client on the read and back to the server on the update.

You must define a non-read-only mapping for the version field and make the
optimistic locking policy store the version value in the object, not the cache (in
TopLink Workbench, this is done on the Locking tab by unchecking Store Version
in Cache: see "Using TopLink Workbench" on page 25-65).

Ensure that the original version value is sent to the client when it reads the object
for the update. The client must then pass the original version value back with the
update information, and this version must be set into the object to be updated
after it is registered/read in the new unit of work on the server.

2. Hold the unit of work for the duration of the interaction with the client.

Either through a stateful session bean, or in an HTTP session, store the unit of
work used to read the object for the update for the duration of the client
interaction.

Understanding the Descriptor API

Understanding Descriptors 23-23

Your must read the object through this unit of work before passing it to the client
for the update. This ensures that the version value stored in the unit of work cache
or in the unit of work clone will be the original value.

This same unit of work must be used for the update.

The first option is more commonly used, and is required if developing a stateless
application.

Pessimistic Locking in a Three-Tier Application
If you are using pessimistic locking, you must use the unit of work to start a database
transaction before the object is read. You must hold this unit of work and database
transaction while the client is editing the object and until the client updates the object.
You must use this same unit of work to update the object. If you are building a
three-tier Web application (where it is not normally desirable to hold a database
transaction open across client interactions), optimistic locking is normally more
desirable than pessimistic locking (see "Optimistic Locking in a Three-Tier
Application" on page 23-22).

Understanding the Descriptor API
The descriptor API can be used to define, or amend TopLink descriptors through Java
code. The descriptor API classes are mainly in the oracle.toplink.descriptors
package. These include the following classes:

■ ClassDescriptor (abstract generic descriptor API)

■ RelationalDescriptor (relational project-specific API)

■ DescriptorEventManager (event API)

■ DescriptorQueryManager (query API)

■ InheritancePolicy

■ InterfacePolicy

■ ReturningPolicy

■ Locking policies (various optimistic locking policies)

For object-relational, EIS, and XML projects, descriptor classes are in the
oracle.toplink.objectrelational, oracle.toplink.eis, and
oracle.toplink.ox packages, respectively.

This section describes the important descriptor classes in the Oracle TopLink
Foundation Library, including:

■ Descriptor Inheritance Hierarchy

Descriptor Inheritance Hierarchy
Example 23–5 illustrates the descriptor types that derive from class
oracle.toplink.descriptors.ClassDescriptor.

Example 23–5 Descriptor Inheritance Hierarchy

class oracle.toplink.descriptors.ClassDescriptor
class oracle.toplink.descriptors.RelationalDescriptor

class oracle.toplink.objectrelational.ObjectRelationalDescriptor
class oracle.toplink.eis.EISDescriptor
class oracle.toplink.ox.XMLDescriptor

Understanding the Descriptor API

23-24 Oracle TopLink Developer’s Guide

Creating a Descriptor 24-1

24
Creating a Descriptor

This chapter includes the following information:

■ Descriptor Creation Overview

■ Creating a Relational Descriptor

■ Creating an Object-Relational Descriptor

■ Creating an EIS Descriptor

■ Creating an XML Descriptor

■ Validating Descriptors

■ Generating Java Code for Descriptors

Descriptor Creation Overview
For information on creating descriptors, see the following:

■ "Creating a Relational Descriptor" on page 24-1

■ "Creating an Object-Relational Descriptor" on page 24-3

■ "Creating an EIS Descriptor" on page 24-4

■ "Creating an XML Descriptor" on page 24-5

After you create a descriptor, you must configure its various options (see Chapter 25,
"Configuring a Descriptor") and use it to define mappings.

For complete information on the various types of mapping that TopLink supports, see
Chapter 30, "Understanding Mappings" and Chapter 31, "Creating a Mapping".

For complete information on the various types of descriptor that TopLink supports,
see "Descriptor Types" on page 23-23.

Creating a Relational Descriptor
You can create a relational descriptor using TopLink Workbench (see "Using TopLink
Workbench" on page 24-2) or Java code (see "Using Java" on page 24-2). Oracle
recommends that you use TopLink Workbench to create and manage your relational
descriptors.

For more information, see "Relational Descriptors" on page 23-11.

Creating a Relational Descriptor

24-2 Oracle TopLink Developer’s Guide

Using TopLink Workbench
Using TopLink Workbench, you can create the following types of descriptor in a
relational project:

■ Relational Class Descriptors

■ Relational Aggregate Descriptors

■ Relational Interface Descriptors

Relational Class Descriptors
By default, when you add a Java class to a relational project (see "Configuring Project
Classpath" on page 19-3), TopLink Workbench creates a relational class descriptor for
it. A class descriptor is applicable to any persistent object except an object that is
owned by another in an aggregate relationship. In this case, you must describe the
owned object with an aggregate descriptor (see "Relational Aggregate Descriptors" on
page 24-2). Using a class descriptor, you can configure any relational mapping except
aggregate collection and aggregate object mappings.

Relational Aggregate Descriptors
An aggregate object is an object that is strictly dependent on its owning object.
Aggregate descriptors do not define a table, primary key, or many of the standard
descriptor options as they obtain these from their owning descriptor. If you want to
configure an aggregate mapping to associate data members in a target object with
fields in a source object’s underlying database tables (see Chapter 41, "Configuring a
Relational Aggregate Collection Mapping" and Chapter 43, "Configuring a Relational
Aggregate Object Mapping"), you must designate the target object’s descriptor as an
aggregate (see "Configuring a Relational Descriptor as a Class or Aggregate Type" on
page 26-11).

Relational Interface Descriptors
If you add an interface to a relational project (see "Configuring Project Classpath" on
page 19-3), TopLink Workbench creates an interface descriptor for it.

An interface is a collection of abstract behavior that other classes can use. It is a purely
Java concept and has no representation on the relational database. Therefore, a
descriptor defined for the interfaces does not map any relational entities on the
database.

The interface descriptor includes the following elements:

■ The Java interface it describes.

■ The parent interface(s) it implements.

■ A list of abstract query keys.

An interface descriptor does not define any mappings, because there is no concrete
data or table associated with it. A list of abstract query keys is defined so that you can
issue queries on the interfaces (see "Configuring Interface Query Keys" on page 25-33).
A read query on the interface results in reading one or more of its implementors.

Using Java
Example 24–1 shows how to create a relational descriptor using Java code.

Creating an Object-Relational Descriptor

Creating a Descriptor 24-3

Example 24–1 Creating a Relational Descriptor in Java

RelationalDescriptor descriptor = new RelationalDescriptor();
descriptor.setJavaClass(YourClass.class);

To designate a relational descriptor as an aggregate, use ClassDescriptor method
descriptorIsAggregate. For a RelationalDescriptor configured as an
aggregate, you do not define a primary key, but when using Java, you must configure
the associated table (see "Configuring Associated Tables" on page 26-2) and field
mappings (see "Understanding Mappings" on page 30-1).

To allow a relational descriptor to participate in an aggregate collection mapping (see
"Aggregate Collection Mapping" on page 33-10), use ClassDescriptor method
descriptorIsAggregateCollection. For a RelationalDescriptor
configured for use with an aggregate collection mapping, you do define primary keys
(see "Configuring Primary Keys" on page 25-3) and an associated table (see
"Configuring Associated Tables" on page 26-2), but you do not have to map the
primary keys if they are shared from their parent.

To configure a relational descriptor for an interface, use ClassDescriptor method
setJavaInterface, passing in the java.lang.Class of the interface. You should
only use an interface descriptor for an interface that has multiple implementors. If an
interface has only a single implementor, then rather than creating an interface
descriptor, just set the implementor descriptor's interface alias (see "Configuring
Interface Alias" on page 26-10).

Creating an Object-Relational Descriptor
You cannot create an object-relational descriptor using TopLink Workbench: you must
use Java code. For more information on creating descriptors in Java code, see the
Oracle TopLink API Reference.

For more information, see "Object-Relational Descriptors" on page 23-11.

Using Java
Use the ObjectRelationalDescriptor class to define an object-relational
descriptor. This class extends RelationalDescriptor to add the following
methods:

■ setStructureName: call this method to set the name of the object-relational
structure that represents the object class in the data source.

■ addFieldOrdering: call this method repeatedly to define the order in which
object attributes are persisted to the data source. This defines a field index that
TopLink uses if your object-relational data source driver uses JDBC indexed
arrays.

Example 24–2 shows an Employee object that is mapped to an Oracle Database using
its object-relational features.

Example 24–2 Employee Class

public class Employee {
Long id;
String firstName;
String lastName;

...
}

Creating an EIS Descriptor

24-4 Oracle TopLink Developer’s Guide

Example 24–3 shows the object-relational database type (Employee_t) created to
model the Employee object within the database. Such an object-relational database
type is also known as a structure. This example also shows how to create and populate
a database table (called department) that stores instances of the Employee_t audio
tape.

Example 24–3 Employee Object-Relational Data Model

CREATE TYPE EMPLOYEE_T AS OBJECT(
ID NUMBER(10),
F_NAME VARCHAR2(100),
L_NAME VARCHAR2(100),

) NOT FINAL;

CREATE TABLE EMPLOYEES OF TYPE EMPLOYEE_T;

Example 24–4 shows how to code an object-relational descriptor in Java to describe the
object-relational database type Employee_t.

Example 24–4 Creating an Object-Relational Descriptor in Java

import oracle.toplink.objectrelational.*;

ObjectRelationalDescriptor descriptor = new ObjectRelationalDescriptor();
descriptor.setJavaClass(Employee.class);
descriptor.setTableName("EMPLOYEES");
descriptor.setStructureName("EMPLOYEE_T");
descriptor.setPrimaryKeyFieldName("ID");
descriptor.addFieldOrdering("ID");
descriptor.addFieldOrdering("F_NAME");
descriptor.addFieldOrdering("L_NAME");
descriptor.addDirectMapping("id", "OBJECT_ID");
descriptor.addDirectMapping("firstName", "F_NAME");
descriptor.addDirectMapping("lastName", "L_NAME");

For more information on configuring object-relational descriptors, see "Configuring an
Object-Relational Descriptor" on page 27-1.

For more information on the object-relational mappings that TopLink supports, see
Chapter 46, "Understanding Object-Relational Mappings".

Creating an EIS Descriptor
You can create an EIS descriptor using TopLink Workbench (see "Using TopLink
Workbench" on page 24-4) or Java code (see "Using Java" on page 24-5). Oracle
recommends that you use TopLink Workbench to create and manage your EIS
descriptors.

For more information, see "EIS Descriptors" on page 23-12.

Using TopLink Workbench
Using TopLink Workbench, you can create the following types of EIS descriptor in an
EIS project:

■ EIS Root Descriptors

■ EIS Composite Descriptors

Creating an XML Descriptor

Creating a Descriptor 24-5

EIS Root Descriptors
You can modify an EIS descriptor’s behavior by configuring it as a root EIS descriptor
(see "Configuring an EIS Descriptor as a Root or Composite Type" on page 28-8). When
you designate an EIS descriptor as a root, you tell the TopLink runtime that the EIS
descriptor’s reference class is a parent class: no other class will reference it by way of a
composite object mapping or composite collection mapping. Using an EIS root
descriptor, you can configure all supported mappings. You can also configure an EIS
root descriptor with EIS interactions (see "Using EIS Interactions" on page 94-24).
However, if you configure the EIS root descriptor with a composite object mapping or
composite collection mapping, the reference descriptor you define must be an EIS
composite descriptor; it cannot be another EIS root descriptor.

EIS Composite Descriptors
By default, when you add a class to an EIS project (see "Configuring Project Classpath"
on page 19-3), TopLink Workbench creates an EIS descriptor for the class, and
designates the EIS descriptor as a composite. When you designate an EIS descriptor as
a composite, you tell the TopLink runtime that the EIS descriptor’s reference class may
be referenced by a composite object mapping or composite collection mapping. Using
an EIS composite descriptor, you can configure all supported mappings. However, you
cannot configure an EIS composite descriptor with EIS interactions: for this, you need
an EIS root descriptor (see "EIS Root Descriptors" on page 24-5).

Using Java
Example 24–5 shows how to create a relational descriptor using Java code.

Example 24–5 Creating an EIS Descriptor in Java

EISDescriptor descriptor = new EISDescriptor();
descriptor.setJavaClass(YourClass.class);

To designate an EIS descriptor as a composite, use ClassDescriptor method
descriptorIsAggregate.

Creating an XML Descriptor
You can create an XML descriptor using TopLink Workbench (see "Using TopLink
Workbench" on page 24-5) or Java code (see "Using Java" on page 24-5). Oracle
recommends that you use TopLink Workbench to create and manage your XML
descriptors.

For more information, see "XML Descriptors" on page 23-12.

Using TopLink Workbench
When you add a class to an XML project (see "Configuring Project Classpath" on
page 19-3), TopLink Workbench creates an XML descriptor for the class.

An XML descriptor is always a composite type.

Using Java
Example 24–6 shows how to create a relational descriptor using Java code.

Validating Descriptors

24-6 Oracle TopLink Developer’s Guide

Example 24–6 Creating an XML Descriptor in Java

XMLDescriptor descriptor = new XMLDescriptor();
descriptor.setJavaClass(YourClass.class);

Validating Descriptors
You can validate descriptors in the following ways:

■ Run the project in a test environment and watch for and interpret any exceptions
that occur. For more information, see Chapter 13, "TopLink Exception Reference".

■ Run the TopLink integrity checker. For more information, see "Integrity Checker"
on page 72-12.

■ Review the project status report. For more information, see "Generating the Project
Status Report" on page 18-12.

Generating Java Code for Descriptors
Typically, you capture descriptor configuration in the project.xml file and the
TopLink runtime reads this information, and then creates and configures all necessary
descriptor objects.

Alternatively, for relational projects only, you can export a TopLink project as a Java
class (oracle.toplink.sessions.Project) that contains all descriptor
configuration in Java. This lets you use TopLink Workbench to quickly create and
configure descriptors, and then, manually code features that TopLink Workbench does
not support. This gives you the best of both TopLink Workbench and Java access to
your descriptors. After configuring your Java project class, compile it and include it in
your application's JAR file.

For more information, see "Exporting Project Java Source" on page 18-14.

Note: Use the oracle.toplink.ox.XMLDescriptor class. Do
not use the deprecated oracle.toplink.xml.XMLDescriptor
class.

Configuring a Descriptor 25-1

25
Configuring a Descriptor

This chapter describes how to configure TopLink descriptors.

Table 25–1 lists the types of TopLink descriptors that you can configure and provides a
cross-reference to the type-specific chapter that lists the configurable options
supported by that type.

Table 25–2 lists the configurable options shared by two or more TopLink descriptor
types.

For more information, see the following:

■ "Descriptor Creation Overview" on page 24-1

■ "Understanding Descriptors" on page 23-1

Configuring Common Descriptor Options
Table 25–2 lists the configurable options shared by two or more TopLink descriptor
types. In addition to the configurable options described here, you must also configure
the options described for the specific Descriptor Types, as shown in Table 25–1.

Table 25–1 Configuring TopLink Descriptor

If you are creating... See...

Relational Descriptors Chapter 26, "Configuring a Relational Descriptor"

Object-Relational
Descriptors

Chapter 27, "Configuring an Object-Relational Descriptor"

EIS Descriptors Chapter 28, "Configuring an EIS Descriptor"

XML Descriptors Chapter 29, "Configuring an XML Descriptor"

Table 25–2 Common Descriptor Options

Option Type
TopLink
Workbench Java

"Configuring Primary Keys" on page 25-3 Basic

"Configuring Read-Only Descriptors" on page 25-5 Basic

"Configuring Unit of Work Conforming at the Descriptor
Level" on page 25-6

Advanced

"Configuring Descriptor Alias" on page 25-7 Advanced

"Configuring Descriptor Comments" on page 25-79 Advanced

"Configuring Classes" on page 4-41 Basic

Configuring Common Descriptor Options

25-2 Oracle TopLink Developer’s Guide

"Configuring Named Queries at the Descriptor Level" on
page 25-10

Advanced

"Configuring Query Timeout at the Descriptor Level" on
page 25-26

Advanced

"Configuring Cache Refreshing" on page 25-27 Advanced

"Configuring Query Keys" on page 25-30 Advanced

"Configuring Interface Query Keys" on page 25-33 Advanced

"Configuring Cache Type and Size at the Descriptor Level" on
page 25-35

Advanced

"Configuring Cache Isolation at the Descriptor Level" on
page 25-37

Advanced

"Configuring Unit of Work Cache Isolation at the Descriptor
Level" on page 25-38

Advanced

"Configuring Cache Coordination Change Propagation at the
Descriptor Level" on page 25-40

Advanced

"Configuring Cache Expiration at the Descriptor Level" on
page 25-42

Advanced

"Configuring Cache Existence Checking at the Descriptor
Level" on page 25-43

Advanced

"Configuring a Descriptor With EJB Information" on
page 25-45

Advanced

"Configuring Reading Subclasses on Queries" on page 25-49 Advanced

"Configuring Inheritance for a Child (Branch or Leaf) Class
Descriptor" on page 25-51

Advanced

"Configuring Inheritance for a Parent (Root) Descriptor" on
page 25-52

Advanced

"Configuring Inheritance Expressions for a Parent (Root) Class
Descriptor" on page 25-55

Advanced

"Configuring Inherited Attribute Mapping in a Subclass" on
page 25-58

Advanced

"Configuring a Domain Object Method as an Event Handler"
on page 25-59

Advanced

"Configuring a Descriptor Event Listener as an Event Handler"
on page 25-62

Advanced

"Configuring Locking Policy" on page 25-64 Advanced

"Configuring Returning Policy" on page 25-67 Advanced

"Configuring Instantiation Policy" on page 25-70 Advanced

"Configuring Copy Policy" on page 25-71 Advanced

"Configuring Change Policy" on page 25-73 Advanced

"Configuring a History Policy" on page 25-76 Advanced

"Configuring Wrapper Policy" on page 25-78 Advanced

"Configuring Fetch Groups" on page 25-79 Advanced

"Configuring Amendment Methods" on page 25-81 Advanced

"Configuring a Mapping" on page 32-1 Basic

Table 25–2 (Cont.) Common Descriptor Options

Option Type
TopLink
Workbench Java

Configuring Primary Keys

Configuring a Descriptor 25-3

Configuring Primary Keys
A primary key is a unique identifier (made up of one or more persistent attributes)
that distinguishes one instance of a class from all other instances of the same type. You
use primary keys to define relationships and to define queries.

For the descriptors shown in Table 25–3, you must configure a primary key and you
must ensure that your class contains one or more persistent fields suitable for this
purpose.

Table 25–3 summarizes which descriptors support primary keys.

For a relational class (non-aggregate) descriptor, choose any unique database field or
set of unique database fields from the descriptor’s associated table (see "Configuring
Associated Tables" on page 26-2).

For an EIS root descriptor (see "Configuring an EIS Descriptor as a Root or Composite
Type" on page 28-8), choose any unique attribute or text node or set of unique
attributes or text nodes from the descriptor’s schema context (see "Configuring
Schema Context for an EIS Descriptor" on page 28-2).

Using TopLink Workbench
To associate a descriptor with one or more primary keys, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Table 25–3 Descriptor Support for Primary Keys

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors1

1 Relational class descriptors only (see "Relational Class Descriptors" on page 24-2).

Object-Relational Descriptors

EIS Descriptors2

2 EIS root descriptors only (see "EIS Root Descriptors" on page 24-5).

XML Descriptors

Configuring Primary Keys

25-4 Oracle TopLink Developer’s Guide

Figure 25–1 Descriptor Info Tab, Primary Key Options

Use this table to enter data in Primary Keys field on the descriptor’s Descriptor Info
tab to specify the primary key(s):

Using Java
You can use Java to configure primary keys for:

■ Relational Projects

■ EIS Projects

Relational Projects
Use ClassDescriptor method addPrimaryKeyFieldName to specify the primary
key field of the descriptor’s table. This should be called for each field that makes up
the primary key of the table.

If the descriptor has more than one table, and all other tables have the same primary
key, use the ClassDescriptor method addPrimaryKeyFieldName to specify the
the primary key in the first table.

If the descriptor has more than one table, and each table has a different primary key,
use ClassDescriptor method addMultipleTablePrimaryKeyFieldName to
map the primary key field names in each table.

Field Description

Primary Keys To specify the primary keys for the table, click Add in order to do
the following:

■ For a relational class descriptor, select a database field from the
descriptor’s associated table (see "Configuring Associated
Tables" on page 26-2).

■ For an EIS root descriptor, select an attribute or text node from
the descriptor’s schema context (see "Configuring Schema
Context for an EIS Descriptor" on page 28-2). For more
information on choosing an element or attribute, see "Choosing
a Schema Context" on page 28-3.

To remove a primary key, select the key and click Remove.

Configuring Read-Only Descriptors

Configuring a Descriptor 25-5

EIS Projects
Use EISDescriptor method addPrimaryKeyFieldName to specify the primary
key field of the descriptor’s class. Call this method for each field that makes up the
primary key.

Configuring Read-Only Descriptors
You can configure a relational class or EIS root descriptor as read-only. This indicates
that instances of the reference class will never be modified.

Read-only descriptors are usually used within a unit of work as a performance gain,
because there is no need to register, clone, and merge the read-only classes. For more
information, see Chapter 97, "Understanding TopLink Transactions".

In a CMP project, you can declare an entity bean as read-only within the TopLink
deployment XML file. For more information, see "Using Read-Only Entity Beans" on
page 25-5.

Table 25–4 summarizes which descriptors support read-only configuration.

Using Read-Only Entity Beans
TopLink can declare an entity bean with container-managed persistence as read-only.
This ensures that the entity bean cannot be modified and allows TopLink to optimize
unit of work performance.

If an attempt is made to modify a read-only entity bean (create, update, or remove),
TopLink immediately throws a javax.ejb.EJBException: TopLink does not wait
until the transaction commits.

If an attempt is made to change a CMR field on a read-only entity bean, TopLink
throws a javax.ejb.EJBException.

When TopLink is configured as the OC4J persistence manager, the TopLink read-only
bean configuration replaces the OC4J READ-ONLY CMP concurrency mode.

Using TopLink Workbench
To configure a descriptor as read-only use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

Table 25–4 Descriptor Support for Read Only

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors1

1 Relational class descriptors only (see "Relational Class Descriptors" on page 24-2).

Object-Relational Descriptors

EIS Descriptor2

2 EIS root descriptors only (see "EIS Root Descriptors" on page 24-5)

XML Descriptors

Note: Relational aggregate and EIS composite descriptors get their
read-only setting from their owner.

Configuring Unit of Work Conforming at the Descriptor Level

25-6 Oracle TopLink Developer’s Guide

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Figure 25–2 Descriptor Info Tab, Read Only Option

Specify whether this descriptor is read-only or not.

Using Java
Use ClassDescriptor method setReadOnly.

Configuring Unit of Work Conforming at the Descriptor Level
Conforming is a query feature that lets you include new, changed, or deleted objects in
queries within a unit of work prior to committing the transaction. This feature enables
you to query against your relative logical or transaction view of a data source.

Table 25–5 summarizes which descriptors support descriptor level unit of work
conforming.

When you configure a descriptor to conform results in a unit of work, when you
execute a query in the unit of work, TopLink filters the data source result set to the
changes currently made in the unit of work. TopLink adds new or changed objects that
correspond to the query's selection criteria and removes changed objects that no
longer correspond to the query's selection criteria.

Table 25–5 Descriptor Support for Unit of Work Conforming

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors1

1 Relational class descriptors only (see "Relational Class Descriptors" on page 24-2).

Object-Relational Descriptors

EIS Descriptors2

2 EIS root descriptors only (see "EIS Root Descriptors" on page 24-5)

XML Descriptors

Configuring Descriptor Alias

Configuring a Descriptor 25-7

Conforming can reduce performance. Before you enable a descriptor for conforming,
be aware of its limitations (see "Guidelines for Using Conforming" on page 99-8) and
make sure that conforming is actually necessary.

For examples, see the following:

■ "Using Conforming Queries and Descriptors" on page 99-8

■ "Conforming Query Alternatives" on page 99-12

Using TopLink Workbench
To conform a descriptor’s results in a unit of work, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Figure 25–3 Descriptor Info Tab, Conform Results in Unit of Work Option

Enable or disable conforming: when enabled, this feature ensures that any queries for
this descriptor will conform the data source result with the current changes in the unit
of work. For more information, see "Guidelines for Using Conforming" on page 99-8.

Using Java
Use ClassDescriptor method
setShouldAlwaysConformResultsInUnitOfWork(true).

Configuring Descriptor Alias
Use the descriptor alias to specify the value of the ejb-jar.xml attribute
abstract-schema-name. This is the logical name that is referenced in EJB QL

Note: For EIS root descriptors, only deleted objects would be
filtered, not new or changed objects.

Configuring Descriptor Alias

25-8 Oracle TopLink Developer’s Guide

queries. You should configure a descriptor alias for each entity bean with
container-managed persistence. The descriptor alias defaults to the class name.

Descriptor alias only applies in projects where you configure the persistence type (see
"Configuring Persistence Type" on page 19-5) to use EJB.

Table 25–6 summarizes which descriptors support descriptor alias configuration.

For more information, see the following:

■ "ejb-jar.xml File" on page 8-5

■ "EJB Finders" on page 93-24

Using TopLink Workbench
To specify a descriptor alias, use this procedure:

1. In the Navigator, select a descriptor.

2. Click the Descriptor Info tab in the Property window.

Figure 25–4 Descriptor Info Tab, Descriptor Alias Field

In the Descriptor Alias field, enter an alias for this descriptor. This is the value of the
ejb-jar.xml attribute abstract-schema-name. It is the logical name that is
referenced in EJB QL queries. The default is the class name.

Table 25–6 Descriptor Support for Descriptor Alias Configuration

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Object-Relational Descriptors

EIS Descriptors1

1 EIS root descriptors only (see "EIS Root Descriptors" on page 24-5).

XML Descriptors

Configuring Descriptor Comments

Configuring a Descriptor 25-9

Using Java
Use ClassDescriptor method setAlias passing in the descriptor alias as a
String.

Configuring Descriptor Comments
You can define a free-form textual comment for each descriptor. You can use these
comments however you whish: for example, to record important project
implementation details such as the purpose or importance of a descriptor.

Comments are stored in the TopLink Workbench project, in the TopLink deployment
XML file. There is no Java API for this feature.

Table 25–7 summarizes which descriptors support descriptor comment configuration.

Using TopLink Workbench
To create a comment for a descriptor, use this procedure:

1. In the Navigator, select a descriptor.

2. Click the Descriptor Info tab in the Property window.

Figure 25–5 Descriptor Info Tab, Comment Field

In the Comment field, enter a description of this descriptor.

Table 25–7 Descriptor Support for Descriptor Comment Configuration

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Object-Relational Descriptors

EIS Descriptors

XML Descriptors

Configuring Named Queries at the Descriptor Level

25-10 Oracle TopLink Developer’s Guide

Configuring Named Queries at the Descriptor Level
A named query is a TopLink query that you create and store, by name, in a
descriptor’s DescriptorQueryManager for later retrieval and execution. Named
queries improve application performance because they are prepared once and they
(and all their associated supporting objects) can be efficiently reused thereafter making
them well suited for frequently executed operations.

If a named query is global to a Class, configure it at the descriptor level.
Alternatively, you can configure a named query at the session level (see "Configuring
Named Queries at the Session Level" on page 74-21).

Use named queries to specify SQL, EJB QL, or TopLink Expression queries to access
your data source.

For entity bean descriptors, you must define a named query for every finder defined
for the corresponding entity bean.

Using TopLink Workbench, you can configure named queries for a subset of query
types and store them in a descriptor’s DescriptorQueryManager (see "Using
TopLink Workbench" on page 25-10).

Using Java, you can create named queries for all query types and store them in a
descriptor’s DescriptorQueryManager (see "Using Java" on page 25-25).

Table 25–4 summarizes which descriptors support named query configuration.

For CMP projects, the ejb-jar.xml file stores query lists. You can define the queries
in the file, and then read them into TopLink Workbench, or define them on the
Queries tab and write them to the file. See "Working With the ejb-jar.xml File" on
page 18-15 for more information.

After you create a named query, you can execute it by name and class on the TopLink
session (see "Using Named Queries" on page 94-18).

For more information about named queries, see "Named Queries" on page 93-16.

Using TopLink Workbench
To create a named query, use this procedure

1. In the Navigator, select a descriptor. Its properties appear in the Editor.

2. Click the Queries tab in the Editor. The Queries tab appear with three additional
tabs.

3. Click the Named Queries tab in the Queries tab. The Named Queries tab appears.

Table 25–8 Descriptor Support for Named Queries

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors1

1 Relational class descriptors only (see "Relational Class Descriptors" on page 24-2).

Object-Relational Descriptors

EIS Descriptor2

2 EIS root descriptors only (see "EIS Root Descriptors" on page 24-5).

XML Descriptors

Configuring Named Queries at the Descriptor Level

Configuring a Descriptor 25-11

Figure 25–6 Queries Tab–Named Queries Subtab

Use the following information to complete each field on this tab:

The Named Queries tab includes the following subtabs:

■ General–See "Configuring Named Query Type and Parameters" on page 25-13.

■ Selection Criteria–See "Configuring Named Query Selection Criteria" on
page 25-14.

■ Order–This tab appears for ReadAllQuery queries only. See "Configuring Read
All Query Order" on page 25-15.

■ Optimization–See "Configuring Named Query Optimization" on page 25-16.

■ Attributes–This tab appears for ReportQuery queries only. See "Configuring
Named Query Attributes" on page 25-17.

■ Group/Order–This tab appears for ReportQuery queries only. "Configuring
Named Query Group/Order Options" on page 25-19.

■ Calls–This tab appears for EIS root descriptors only (for ReadAllQuery and
ReadObjectQuery queries). See "Creating an EIS Interaction for a Named Query"
on page 25-20.

Field Description

Queries Lists the existing queries for this descriptor.

■ To create a new query, click Add (see "Adding Named
Queries" on page 25-12).

■ To delete an existing query, select the query and click
Delete. TopLink Workbench prompts for confirmation.

■ To rename an existing query, select the query and click
Rename. The Rename dialog box appears. Type a new
name for the query and click OK.

Query Variety Displays the variety of the currently selected query (see
"Adding Named Queries" on page 25-12).

Quick View Lists the parameters and joined attributes defined for the query.

Clicking on a heading in the Quick View area selects the
corresponding subtab. You can also remove parameters or
attributes from the Quick View area by selecting the item and
clicking Remove.

Configuring Named Queries at the Descriptor Level

25-12 Oracle TopLink Developer’s Guide

■ Options–See "Configuring Named Query Options" on page 25-22.

Adding Named Queries
Use this dialog box to create a new named query.

Figure 25–7 Add Named Query Dialog Box

Use the following information to complete the dialog box and create the named query:

Field Description

Variety For EJB descriptors only, select the variety of query:

TopLink Named Query Select to create a general purpose TopLink query of
the type given by the Type area. You can execute this
query by name on the TopLink session passing in the
class and arguments (see "Using Named Queries" on
page 94-18).

EJB Finder Select to create a TopLink query of the type given by
the Type area for use as the implementation of the EJB
finder method of the name you specify. The TopLink
runtime executes this query when you call the EJB
finder method of the given name.

TopLink Reserved Finder Select to create a TopLink query of the type given by
the Type area for use as the implementation of the
TopLink reserved finder method name you select. The
TopLink runtime executes this query when you call
the EJB finder method of the given name.

For more information, see "Predefined Finders" on
page 93-24.

EJB Select Select to create a TopLink query of the type given by
the Type area for use as the implementation of the EJB
life cycle method ejbSelect. The TopLink runtime
executes this query whenever the ejbSelect method
is called.

Configuring Named Queries at the Descriptor Level

Configuring a Descriptor 25-13

Enter the necessary information and click OK. TopLink Workbench adds the query to
the list of queries in the Named Query tab.

Configuring Named Query Type and Parameters
Use this tab to select the query type and add or remove parameters.

Figure 25–8 Named Queries, General Tab

Use the following information to complete each field on this tab:

Type Select the type of query:

■ ReadObject (ReadObjectQuery)

■ ReadAll (ReadAllQuery)

■ Report1 (ReportQuery)

Note: If Variety is set to TopLink Reserved Finder,
you cannot select a query Type .

Name The name of this query.

■ If Variety is set to TopLink Named Query, you
can specify any name.

■ If Variety is set to EJB Finder, the name must be
prefixed by find.

■ If Variety is set to TopLink Reserved Finder,
select from the list of available names that
TopLink reserves. For more information, see
"Predefined Finders" on page 93-24.

■ If Variety is set to EJB Select, the name must be
ejbSelect.

1 Relational descriptors only.

Field Description

Configuring Named Queries at the Descriptor Level

25-14 Oracle TopLink Developer’s Guide

Configuring Named Query Selection Criteria
Use this tab to specify the format of the named query and enter the query string.

Figure 25–9 Named Queries, Selection Criteria Tab

Use the following information to complete each field on this tab:

Field Description

Type Select the type of query from the list. You can create any of the
following query types:

■ ReadAllQuery

■ ReadObjectQuery

■ ReportQuery1

To create other types of query, you must use Java (see "Using
Java" on page 25-25).

When you change the type of an existing query, TopLink
Workbench preserves any configuration that is common
between the old and new type and warns you if changing the
type will result in the loss of configuration that is not shared by
the new type.

1 Relational descriptors only.

Parameters For queries that take parameters, specify the parameters:

■ To add a new parameter, click Add. The Add Query
Parameter dialog box appears. Click Browse to select the
type, specify a name, and click OK.

■ To delete an existing parameter, select the parameter and
click Remove. TopLink Workbench prompts for
confirmation.

■ To modify an existing parameter, select the parameter and
click Edit. The Edit Query Parameter dialog box appears.
Modify the name and type of the parameter and click OK.

■ To change the order of the parameters, select an existing
parameter and click Up or Down.

Type Select the class of the parameter’s type.

Name Enter the name of the parameter.

Configuring Named Queries at the Descriptor Level

Configuring a Descriptor 25-15

Configuring Read All Query Order
Use this tab to specify how the results of a read all query should be ordered by
attribute name.

Figure 25–10 Named Queries, Order Tab

Field Description

Type Specify if query uses a TopLink Expression, SQL, or EJB QL.

Expression or Query String If the Type is SQL or EJB QL, enter the query string (either
SQL or EJB QL).

TopLink Workbench does not validate the query string.

See a note that follows this table for information on query
syntax.

Note: Use a combination of an escape character and a
double-quote (\") instead of just a double-quote (") when
defining your query using SQL or EJB QL. For example:

SELECT OBJECT(employee) FROM Employee employee WHERE
employee.name = \"Bob\"

If you fail to do so, the generated Java code would look as follows:

query.setEJBQLString("SELECT OBJECT(employee) FROM Employee
employee WHERE employee.name = "Bob"");

The preceding code produces an error at compile time.

If you define your query using the correct syntax, the generated
Java code will contain no errors and be similar to the following:

query.setEJBQLString("SELECT OBJECT(employee) FROM Employee
employee WHERE employee.name = \"Bob\"");

Configuring Named Queries at the Descriptor Level

25-16 Oracle TopLink Developer’s Guide

Select one of the following actions:

■ To add a new attribute by which to order query results, click Add. The Add
Ordering Attribute dialog box appears. Select the mapped attribute to order by,
specify ascending or descending order, and then click OK.

■ To change the order of the order attributes, select an existing attribute and click
Up or Down.

■ To modify an existing order attribute’s ordering options, select an existing
attribute and click Edit.

■ To remove an order attribute, select an existing attribute and click Remove.

Configuring Named Query Optimization
You can optimize a named query by configuring batch (ReadAllQuery only) or
joining (ReadAllQuery and ReadObjectyQuery) attributes.

For more information on using batch reading, see Query Optimization on page 11-17,
"Reading Case 2: Batch Reading Objects" on page 11-23, and "Using Batch Reading" on
page 94-10.

For more information on joining, see "Join Reading and Object-Level Read Queries" on
page 93-12 and "Using Join Reading" on page 94-11.

Use this tab to specify batch reading and joining attributes.

Figure 25–11 Named Queries, Optimization Tab

Select one of the following actions for Batch Read Attributes (ReadAllQuery only):

■ To add a new batch read attribute, click Add. The Add Batch Read Attribute
dialog box appears. Select the mapped attribute and click OK.

■ To change the order of the batch read attributes, select an existing attribute and
click Up or Down.

■ To modify an existing batch read attribute’s options, select an existing attribute
and click Edit.

■ To remove a batch read attribute, select an existing attribute and click Remove.

Select one of the following actions for Joined Attributes (ReadAllQuery and
ReadObjectQuery):

Configuring Named Queries at the Descriptor Level

Configuring a Descriptor 25-17

■ To add a new joined attribute, click Add. The Add Joined Attribute dialog box
appears.

Figure 25–12 Add Joined Attribute Dialog Box

Select the mapped attribute. Optionally, enable or disable Allows Null or, for a
Collection attribute, Allows None. Click OK.

■ To change the order of the joined attributes, select an existing attribute and click
Up or Down.

■ To modify an existing joined attribute’s options, select an existing attribute and
click Edit.

■ To remove a joined attribute, select an existing attribute and click Remove.

Configuring Named Query Attributes
For ReportQuery queries only, you can configure report query functions to apply to
one or more attributes.

For more information about report queries, see "Report Query" on page 93-15.

Use this tab to configure report query attributes.

Figure 25–13 Named Queries, Attributes Tab

Select one of the following actions for Attributes (ReportQuery only):

Configuring Named Queries at the Descriptor Level

25-18 Oracle TopLink Developer’s Guide

■ To add a new report query attribute, click Add. The Add Joined Attribute dialog
box appears. Continue with "Adding Report Query Attributes" on page 25-18.

■ To change the order of the report query attribute attributes, select an existing
attribute and click Up or Down.

■ To modify an existing report query attribute’s options, select an existing attribute
and click Edit.

■ To remove a report query attribute, select an existing attribute and click Remove.

Adding Report Query Attributes Use this dialog box to add a report query attribute.

Figure 25–14 Add Report Query Attribute Dialog Box

Select the attribute you want in this report query and use the following table to
complete the dialog box and add the report query attribute:

Note: You can only choose attributes that are configured with a
direct mapping (converters included) or a user-defined query key.

Option ‘Description

Allows None or Allows Null Use the Allows Null and Allows None options to define an
expression with an outer join.

Check the Allows Null option to use the
ExpressionBuilder method getAllowingNull.

Check the Allows None option for Collection attributes to
use the ExpressionBuilder method anyOfAllowingNone.

For more information, see "Using TopLink Expression API For
Joins" on page 95-7.

Configuring Named Queries at the Descriptor Level

Configuring a Descriptor 25-19

Enter the necessary information and click OK. TopLink Workbench adds the report
query attribute to the list of attributes in the Attribute tab.

Configuring Named Query Group/Order Options
For ReportQuery queries only, you can configure grouping and ordering attributes.

For more information about report queries, see "Report Query" on page 93-15.

Use this tab to specify grouping and ordering attributes.

Figure 25–15 Named Queries, Group/Order Tab

Select one of the following actions for Grouping Attributes (ReportQuery only):

■ To add a new grouping attribute, click Add. The Add Grouping Attribute dialog
appears. Select the desired mapped attribute and click OK.

■ To change the order of the grouping attributes, select an existing attribute and
click Up or Down.

■ To modify an existing grouping attribute’s options, select an existing attribute and
click Edit.

■ To remove a grouping attribute, select an existing attribute and click Remove.

Select one of the four following actions for Ordering Attributes (ReportQuery only):

Function Select from the list of report query functions that TopLink
provides. This function will be applied to the specified
attribute. You must select an attribute for all functions, except
Count.

Alternatively, you can enter the name of a custom function that
you implement in your database. For more information, see
Expression method getFunction in the API reference.

Name The name associated with the calculated value. By default, the
name is <AttributeName><FunctionName>.

Option ‘Description

Configuring Named Queries at the Descriptor Level

25-20 Oracle TopLink Developer’s Guide

■ To add a new ordering attribute, click Add. The Add Ordering Attribute dialog
box appears. Continue with "Adding Ordering Attributes" on page 25-20.

■ To change the order of the ordering attributes, select an existing attribute and click
Up or Down.

■ To modify an existing ordering attribute’s options, select an existing attribute and
click Edit.

■ To remove an ordering attribute, select an existing attribute and click Remove.

Adding Ordering Attributes Use this dialog box to add a report query ordering attribute.

Figure 25–16 Add Ordering Attribute Dialog Box

Use the following information to complete the fields on the dialog box and add an
ordering attribute:

Enter the necessary information and click OK. TopLink Workbench adds the report
query attribute to the list of attributes in the Attribute tab.

Creating an EIS Interaction for a Named Query
For an EIS root descriptor, you can define EIS interactions to invoke methods on an
EIS.

You can use TopLink to define an interaction as a named query for read object and
read all object queries, as described here. These queries are not called for basic
persistence operations ("Configuring Custom EIS Interactions for Basic Persistence
Operations" on page 28-6); you can call these additional queries by name in your
application for special purposes.

Option ‘Description

Selected Attribute Select this option to view a list of the report query attributes you added
(see "Configuring Named Query Attributes" on page 25-17).

Select an attribute and choose its ordering option in the Order field.

New Attribute Select this option to view a list of all class attributes.

Select an attribute and choose its ordering option in the Order field.

Order Select ascending or descending.

Configuring Named Queries at the Descriptor Level

Configuring a Descriptor 25-21

Call Tab
Use this tab to define an interaction as a named query for read object and read all
object queries.

Figure 25–17 Call Tab

Use the following information to complete each field on the tab:

Field Description

Interaction Type Using TopLink Workbench, you can only use XML Interactions.
You cannot change this field.

Function Name Specify the name of the EIS function that this call type (Read
Object or Read All) invokes on the EIS.

Input Record Name Specify the name passed to the J2C adapter when creating the
input record.

Input Root Element Specify the root element name to use for the input DOM.

Input Arguments Specify the query argument name to map to the interaction field or
XPath nodes in the argument record.

For example, if you are using XML records, use this option to map
input argument name to the XPath name/first-name.

Output Arguments Specify the result record field or XPath nodes to map the correct
nodes in the record used by the descriptor's mappings.

For example, if you are using XML records, use this option to map
the output fname to name/first-name.

Output arguments are not required if the interaction returns an
XML result that matches the descriptor's mappings.

Input Result Path Use this option if the EIS interaction expects the interaction
arguments to be nested in the XML record.

For example, specify arguments, if the arguments were to be
nested under the root element exec-find-order, then under an
arguments element.

Configuring Named Queries at the Descriptor Level

25-22 Oracle TopLink Developer’s Guide

Configuring Named Query Options
Use this tab to configure additional options for the query.

Figure 25–18 Named Queries, Options Tab

Use the following information to complete each field on the tab:

Output Result Path Use this option if the EIS interaction result record contains the
XML data that maps to the objects in a nested structure.

For example, specify order, if the results were return under a root
element results, then under an order element.

Properties Specify any properties required by your EIS platform. For
example, property name operation (from AQPlatform.QUEUE_
OPERATION) and property value enqueue (from
AQPlatform.ENQUEUE).

Field Description

Refresh Identity Map Results2 Refreshes the attributes of the object(s) resulting from the
query. If cascading is used, the private parts of the objects
will also be refreshed.

Cache Statement1 Caches the prepared statements. This requires full parameter
binding as well (see Bind Parameters).

Bind Parameters1 Binds all of the query’s parameters.

Cache Usage2 Selects how TopLink should use the session cache when a
query is executed:

■ Use descriptor settings

■ Do not check cache

■ Check cache by exact primary key

■ Check cache by primary key

■ Check cache then database

■ Check cache only

■ Conform results in unit of work

For more information, see the following:

■ "Configuring Cache Usage for In-Memory Queries" on
page 93-30.

■ "Configuring Unit of Work Conforming at the Descriptor
Level" on page 25-6

Field Description

Configuring Named Queries at the Descriptor Level

Configuring a Descriptor 25-23

Click Advanced to configure additional options. See "Configuring Named Query
Advanced Options" on page 25-24.

In Memory Query Indirection2 Selects how TopLink should handle indirection when an
in-memory or conforming query is executed:

■ Throw indirection exception–if this object uses
indirection and indirection has not been triggered,
TopLink will throw an exception.

■ Trigger indirection–if this object uses indirection and
indirection has not been triggered, TopLink will trigger
indirection.

■ Ignore exception return conformed–returns conforming
if an untriggered value holder is encountered. That is,
you expect results from the database to conform, and an
untriggered value holder is taken to mean that the
underlying attribute has not changed.

■ Ignore exception return not conformed–returns not
conforming if an untriggered value holder is
encountered.

For more information, see the following:

■ "Handling Exceptions Resulting From In-Memory
Queries" on page 93-33.

■ "Indirection" on page 30-5.

Return Choice3 Selects how TopLink should handle ReportQuery results:

■ Result collection–return ReportQuery results as a
Collection of ReportQueryResult objects.

■ Single result–return only the first ReportQueryResult
object (not wrapped in a Collection or Map). Use this
option if you know that the ReportQuery returns only
one row.

■ Single value–return only a single value. Use this option if
you know that the ReportQuery returns only one row
that contains only one attribute.

■ Single attribute–return only a single Collection of
values. If the query returns multiple rows, but each row
only has a single attribute, this option will return a
Collection of values, instead of a Collection of
ReportQueryResults.

For more information, see "Collection Query Results" on
page 93-8.

Retrieve Primary Keys3 Selects whether or not TopLink retrieves the primary key
values within each result. You can use the primary keys to
retrieve the real objects.

■ None–do not retrieve primary keys

■ All–retrieve primary keys for each object read;

■ First–return only the first primary key value (in the case
of a composite primary key). This can be used if you just
want to know if something exists or not, but do not
really care about the value.

1 For more information, see "Parameterized SQL (Binding) and Prepared Statement Caching" on
page 11-15.

2 For ReadObjectQuery and ReadAllQuery queries only.
3 For ReportQuery queries only.

Field Description

Configuring Named Queries at the Descriptor Level

25-24 Oracle TopLink Developer’s Guide

Configuring Named Query Advanced Options
To configure additional advanced query options, use this procedure.

1. From the Named Queries – Options tab, click Advanced. The Advanced Query
Options dialog box appears.

Figure 25–19 Advanced Query Options Dialog Box

Use the following information to enter data in each field and click OK:

Field Description

Maintain Cache Specify whether to use the cache for the query or to build objects
directly from the database result. You should only use this option
if you are executing a partial object query (see "Partial Object
Queries" on page 93-11), whose results cannot be cached.

For more information, see "Disabling the Identity Map Cache
Update During a Read Query" on page 93-34.

Use Wrapper Policy Specify whether or not the named query will use the wrapper
policy configured for this descriptor.

For more information, see "Configuring Wrapper Policy" on
page 25-78.

Prepare SQL Once Specify the setShouldPrepare() for the named query. By
default, TopLink optimizes queries to generate their SQL only
once. You may need to disable this option for certain types of
queries that require dynamic SQL based on their arguments, such
as:

■ Expressions that use equal where the argument value could
be null. This may cause problems on databases that require
IS NULL, instead of = NULL.

■ Expressions that use in and use parameter binding. This will
cause problems as the in values must be bound individually.

Configuring Named Queries at the Descriptor Level

Configuring a Descriptor 25-25

Using Java
To configure named queries in Java, use a descriptor amendment method (see
"Configuring Amendment Methods" on page 25-81). Example 25–1 illustrates an
amendment method that creates a named query and adds it to the
DescriptorQueryManager.

Example 25–1 Creating a Named Query with an Amendment Method

public class EmployeeAmmendmentMethodClass {
....

// Create named query with Employee as its reference class
public static void createEmployeeQuery(ClassDescriptor descriptor) {

ReadObjectQuery query = new ReadObjectQuery(Employee.class);
ExpressionBuilder emp = query.getExpressionBuilder();
Expression firstNameExpression =

emp.get("firstName").equal(emp.getParameter("firstName"));
query.setSelectionCriteria(firstNameExpression);
query.addArgument("firstName");

descriptor.getQueryManager().addQuery(
"employeeReadByFirstName", query);

}
}

Cache Query Results Specify the cacheQueryResults method for the query. The
query will only access the database the first time it is executed.
Subsequent execution will return exactly the original result.

For more information, see "Caching Results in a ReadQuery" on
page 96-20.

Refresh Remote Identity
Map Results

Specify the refreshRemoteIdentityMapResult method for
the query. TopLink can refresh the attributes of the object(s)
resulting from the query. With cascading, TopLink will also
refresh the private parts of the object(s).

Exclusive Connection Specify whether or not the named query will use an exclusive
connection. You can also configure exclusive connection
acquisition at the session level (see "Configuring Connection
Policy" on page 74-19.

Pessimistic Locking Specify the specific pessimistic locking policy for the query or use
the locking policy from the descriptor.

Distinct State Specify if TopLink prints the DISTINCT clause, if a distinct has
been set.

Query Timeout Specify if the query will time out (or abort) after a specified
number of seconds.

Maximum Rows Specify if the query will limit the results to a specified number of
rows. Use this to option for queries that could return an excessive
number of objects.

Field Description

Configuring Query Timeout at the Descriptor Level

25-26 Oracle TopLink Developer’s Guide

Configuring Query Timeout at the Descriptor Level
You can specify how the TopLink runtime handles the duration of queries on a
descriptor’s reference class. Specifying a query timeout at the descriptor level applies
to all queries on the descriptor’s reference class. A query timeout ensures that your
application does not block forever over a hung or lengthy query that does not return
in a timely fashion.

Table 25–4 summarizes which descriptors support query timeout configuration.

You can also configure a timeout on a per-query basis. For more information, see the
following:

■ "Configuring Named Query Advanced Options" on page 25-24

■ "Configuring Query Timeout at the Query Level" on page 94-10

Using TopLink Workbench
To configure how TopLink handles the duration of queries to this descriptor, use this
procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Queries tab. The Queries tab appears.

3. Click the Settings tab. The Settings tab appears.

Figure 25–20 Descriptor Queries Settings Tab, Query Timeout Options

Use the following table to enter data in the fields on the descriptor’s Settings tab to
specify how TopLink handles query duration:

Table 25–9 Descriptor Support for Cache Refresh

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors1

1 Relational class descriptors only (see "Relational Class Descriptors" on page 24-2).

Object-Relational Descriptors

EIS Descriptor

XML Descriptors

Configuring Cache Refreshing

Configuring a Descriptor 25-27

Using Java
Use DescriptorQueryManager method setQueryTimeout passing in the timeout
value as a number of milliseconds.

Configuring Cache Refreshing
By default, TopLink caches objects read from a data source (see Chapter 87,
"Understanding the Cache"). Subsequent queries for these objects will access the cache
and thus improve performance by reducing data source access and avoiding the cost
of rebuilding object's and their relationships. Even if a query, such as a read-all query,
accesses the data source, if the objects corresponding to the records returned are in the
cache, TopLink will use the cache objects.

This can lead to stale data in the application. Although using an appropriate locking
policy (see "Configuring Locking Policy" on page 25-64) is the only way to ensure that
stale or conflicting data does not get committed to the data source, sometimes certain
data in the application changes so frequently that it is desirable to always refresh the
data, instead of only refreshing the data when a conflict is detected.

You can specify how the TopLink runtime handles cache refreshing for all queries on a
descriptor’s reference class.

Table 25–4 summarizes which descriptors support query cache refresh configuration.

Configuring descriptor-level cache refresh may affect performance. As an alternative,
consider configuring the following:

■ cache refresh on a query-by-query basis (see "Refreshing the Cache" on page 93-35)

■ cache expiration (see "Configuring Cache Expiration at the Descriptor Level" on
page 25-42)

■ isolated caching (see "Cache Isolation" on page 87-9)

Field Description

Default Timeout TopLink throws a DatabaseException if a query on this
descriptor does not return within the timeout period you configure
on the parent descriptor. If there is no parent descriptor, the query
timeout defaults to No Timeout.

No Timeout TopLink blocks until a query on this descriptor returns.

Timeout Enter the timeout period in seconds. TopLink throws a
DatabaseException if a query on this descriptor does not return
within this time.

Table 25–10 Descriptor Support for Query Cache Refresh

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors1

1 Relational class descriptors only (see "Relational Class Descriptors" on page 24-2).

Object-Relational Descriptors

EIS Descriptor2

2 EIS root descriptors only (see "EIS Root Descriptors" on page 24-5).

XML Descriptors

Configuring Cache Refreshing

25-28 Oracle TopLink Developer’s Guide

For more information, see "Cache Optimization" on page 11-13.

Using TopLink Workbench
To configure how TopLink refreshes the cache for queries to this descriptor, use this
procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Queries tab. The Queries tab appears.

3. Click the Settings tab. The Settings tab appears.

Figure 25–21 Descriptor Queries Settings Tab, Cache Refreshing Options

Use the following table to enter data in the fields on the descriptor’s Settings tab to
specify how TopLink will refresh the cache for queries:

Field Description

Always Refresh Refreshes the cache on all queries.

Avoids stale data by ensuring that any query that accesses the data
source will refresh the resulting objects in the cache. This has no
effect on queries that get a cache hit and never access the data
source, such as read-object primary key queries or in-memory
queries.

Configuring descriptor level cache refresh may affect performance.
As an alternative, consider configuring:

■ cache refresh on a query-by-query basis (see "Refreshing the
Cache" on page 93-35)

■ cache expiration (see "Configuring Cache Expiration at the
Descriptor Level" on page 25-42)

■ isolated caching (see "Cache Isolation" on page 87-9)

Configuring Cache Refreshing

Configuring a Descriptor 25-29

Using Java
Configure cache refresh options using the following ClassDescriptor methods:

■ setShouldAlwaysRefreshCache

■ setShouldAlwaysRefreshCacheOnRemote

■ setShouldDisableCacheHits

■ setShouldDisableCacheHitsOnRemote

■ setShouldOnlyRefreshCacheIfNewerVersion

Use these methods in a descriptor amendment method (see "Configuring Amendment
Methods" on page 25-81) as Example 25–2 illustrates.

Example 25–2 Configuring Remote Refreshing

public void addToDescriptor(ClassDescriptor descriptor) {
descriptor.setShouldRefreshCacheOnRemote(true);
descriptor.setShouldDisableCacheHitsOnRemote(true);

}

Only Refresh If Newer
Version

Refreshes the cache only if the object in the database is newer than
the object in the cache (as determined by the Optimistic Locking
field). See "Configuring Locking Policy" on page 25-64 for more
information.

Improves performance by avoiding unnecessary refreshing of an
object if its version matches the data source version. This option
does not cause refreshing on its own: you must use it in
combination with Always Refresh, query refreshing (see
"Refreshing the Cache" on page 93-35), or cache expiration (see
"Configuring Cache Expiration at the Descriptor Level" on
page 25-42).

Disable Cache Hits When selected, TopLink bypasses the cache and goes to the
database for read object queries based on primary key. Using this
option in conjunction with Always Refresh ensures that TopLink
always goes to the database.

This option ensures that all queries including read-object primary
key queries will always access the data source. This option does not
cause refreshing on its own: you must use it in combination with
Always Refresh.

This option can cause a serious performance issue: avoid whenever
possible.

Caution: Use the Always Refresh and Disable Cache Hits
properties with caution as they may lead to poor performance. As an
alternative, consider configuring cache refresh on a query-by-query
basis (see "Refreshing the Cache" on page 93-35) or configuring cache
expiration (see "Configuring Cache Expiration at the Descriptor Level"
on page 25-42). For more information about cache performance, see
"Cache Optimization" on page 11-13.

Field Description

Configuring Query Keys

25-30 Oracle TopLink Developer’s Guide

Configuring Query Keys
A query key is a schema-independent alias for a database field name. For example,
consider a class Employee with attribute firstName mapped directly to a database
field F_NAME in database table EMPLOYEE. Without a query key, when you create a
query or expression that involves Employee attribute firstName, you must use the
database management system-specific field name F_NAME. This makes it more difficult
to build a query and ties the query to the schema. With a query key, you can refer to
this field using a schema-independent alias, such as firstName.

Table 25–11 summarizes which descriptors support query keys.

Using query keys offers the following advantages:

■ Enhances code readability in TopLink expressions and simplifies expression
development. You can compose expressions entirely within the context of your
object model.

■ Increases portability by making code independent of the database schema. If you
rename a field in your schema, you can redefine the query key without changing
any code that uses it.

■ Query keys used with interface descriptors allow the implementor descriptor’s
tables to have different field names.

Query keys are automatically generated for all mapped attributes. The name of the
query key is the name of the class attribute specified in your object model.

For information on how to use query keys in queries and expressions, see "Query
Keys" on page 93-4.

When query keys are generated and how you can add or modify query keys depends
on the type of mapping or descriptor involved:

■ Direct Mappings

■ Relationship Mappings

■ Interface Descriptors

Direct Mappings
TopLink Workbench automatically generates query keys for all direct mappings at the
time you create the mapping.

TopLink Workbench provides support for adding or modifying query keys for simple
unmapped attributes that could be mapped by a direct mapping: for example, the
version field used for optimistic locking or the type field used for inheritance. You
cannot modify or remove automatically generated query keys.

Table 25–11 Descriptor Support for Query Keys

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Object-Relational Descriptors

EIS Descriptors

XML Descriptors

Configuring Query Keys

Configuring a Descriptor 25-31

Relationship Mappings
TopLink automatically generates query keys for all relationship mappings at run time.

For example, if you have a class Customer with attribute orders mapped in a
one-to-many relationship to class PurchaseOrders, then the TopLink runtime will
generate a query key named orders for this Customer attribute.

TopLink Workbench does not currently support adding or modifying the query keys
for relationship mappings. If you must add or modify such a query key, you must do
so in Java code, using a descriptor amendment method.

Interface Descriptors
Interface descriptors (see "Relational Interface Descriptors" on page 24-2) define only
the query keys that are shared among their implementors. In the descriptor for an
interface, only the name of the query key is specified.

TopLink Workbench provides support for choosing the implementors of an interface
that share at least one common automatically generated query key (see "Configuring
Interface Query Keys" on page 25-33).

Using TopLink Workbench
To add query keys to simple unmapped fields and to view the query keys
automatically generated for directly mapped attributes, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Query Keys tab in the Editor.

Figure 25–22 Queries, Query Keys Tab

To add a new query key, click Add.

To delete an existing query key, select the query key and click Remove.

To rename an existing query key, select the query key and click Rename.

Use the Field list to select the field in the table associated with the query key.

Using Java
To manually create a relationship query key, implement a descriptor amendment
method (see "Configuring Amendment Methods" on page 25-81) that uses one of the
following ClassDescriptor methods to register the query keys:

Configuring Query Keys

25-32 Oracle TopLink Developer’s Guide

■ addQueryKey–specify a query key using an instance of QueryKey such as
DirectQueryKey, DirectCollectionQueryKey, ManyToManyQueryKey,
OneToManyQueryKey, or OneToOneQueryKey.

■ addDirectQueryKey–add a query key that maps directly to the given database
field.

■ addAbstractQueryKey–add an abstract query key to an interface descriptor.
Any implementors of that interface must define the query key defined by this
abstract query key.

Examples 25–3, 25–4, and 25–5 illustrate how to define a query key in Java code.

Example 25–3 Defining a Query Key

// Add a query key for the foreign key field using the direct method
descriptor.addDirectQueryKey("managerId", "MANAGER_ID");

// The same query key can also be added through the addQueryKey method
DirectQueryKey directQueryKey = new DirectQueryKey();
directQueryKey.setName("managerId");
directQueryKey.setFieldName("MANAGER_ID");
descriptor.addQueryKey(directQueryKey);

/* Add a one-to-one query key for the large project of which the employee is a
leader (this assumes only one project) */
OneToOneQueryKey projectQueryKey = new OneToOneQueryKey();
projectQueryKey.setName("managedLargeProject");
projectQueryKey.setReferenceClass(LargeProject.class);
ExpressionBuilder builder = new ExpressionBuilder();
projectQueryKey.setJoinCriteria(builder.getField(

"PROJECT.LEADER_ID").equal(builder.getParameter("EMPLOYEE.EMP_ID")));
descriptor.addQueryKey(projectQueryKey);

Example 25–4 Defining a One-to-Many Query Key

/* Add a one-to-many query key for the projects where the employee manages
multiple projects */
OneToManyQueryKey projectsQueryKey = new OneToManyQueryKey();
projectsQueryKey.setName("managedProjects");
projectsQueryKey.setReferenceClass(Project.class);
ExpressionBuilder builder = new ExpressionBuilder();
projectsQueryKey.setJoinCriteria(builder.getField(

"PROJECT.LEADER_ID").equal(builder.getParameter("EMPLOYEE.EMP_ID")));
descriptor.addQueryKey(projectsQueryKey);

Example 25–5 Defining a Many-to-Many Query Key

/* Add a many-to-many query key to an employee project that uses a join table*/
ManyToManyQueryKey projectsQueryKey = new ManyToManyQueryKey();
projectsQueryKey.setName("projects");
projectsQueryKey.setReferenceClass(Project.class);
ExpressionBuilder builder = new ExpressionBuilder();
projectsQueryKey.setJoinCriteria(

builder.getTable("EMP_PROJ").getField("EMP_ID").equal(
builder.getParameter("EMPLOYEE.EMP_ID").and(
builder.getTable("EMP_PROJ").getField("PROJ_ID").equal(
builder.getField("PROJECT.PROJ_ID")));

descriptor.addQueryKey(projectsQueryKey);

Configuring Interface Query Keys

Configuring a Descriptor 25-33

Example 25–6 illustrates how to implement a Descriptor amendment method to
define a one-to-one query key. In this example, the object model for the Address class
does not include a reference to its owner, an Employee object. You can amend the
Address class descriptor to add a query key named owner to make up for this
deficiency. At run time, you can compose expressions that select Address objects
based on this owner query key.

Example 25–6 Defining a One-to-One Query Key with an Amendment Method

/* Static amendment method in Address class, addresses do not know their owners in
the object model, however you can still query on their owner if a user-defined
query key is defined */
public static void addToDescriptor(Descriptor descriptor) {

OneToOneQueryKey ownerQueryKey = new OneToOneQueryKey();
ownerQueryKey.setName("owner");
ownerQueryKey.setReferenceClass(Employee.class);
ExpressionBuilder builder = new ExpressionBuilder();
ownerQueryKey.setJoinCriteria(

builder.getField("EMPLOYEE.ADDRESS_ID").equal(
builder.getParameter("ADDRESS.ADDRESS_ID")));

descriptor.addQueryKey(ownerQueryKey);
}

Configuring Interface Query Keys
A query key is a schema independent alias for a database field name. For more
information about query keys, see "Configuring Query Keys" on page 25-30.

Interface descriptors (see "Relational Interface Descriptors" on page 24-2) are defined
only with query keys that are shared among their implementors. In the descriptor for
an interface, only the name of the query key is specified.

In each implementor descriptor, the key must be defined with the appropriate field
from one of the implementor descriptor’s tables.

This allows queries and relationship mappings to be defined on the interface using the
query key names.

Interface query keys are supported in relational database projects only.

Table 25–11 summarizes which descriptors support interface query keys.

Consider an Employee that contains a contact of type Contact. The Contact class is
an interface with two implementors: Phone and Email. The Phone class has
attributes id and number. The Email class has attributes id and address.
Figure 25–23 illustrates the generated keys:

Table 25–12 Descriptor Support for Interface Query Keys

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Object-Relational Descriptors

EIS Descriptors

XML Descriptors

Configuring Interface Query Keys

25-34 Oracle TopLink Developer’s Guide

Figure 25–23 Automatically Generated Query Keys for Phone and Email

Both classes have an attribute, id, that is directly mapped to fields that have different
names. However, a query key is generated for this attribute. For the Contact interface
descriptor, you must indicate that the id query key must be defined for each of the
implementors.

If either of the implementor classes did not have the id query key defined, TopLink
Workbench flags that descriptor as deficient.

Now that a descriptor with a commonly shared query key has been defined for
Contact, you can use it as the reference class for a variable one-to-one mapping (see
"Using Queries on Variable One-to-One Mappings" on page 96-5).

For example, you can now create a variable one-to-one mapping for the contact
attribute of Employee. When you edit the foreign key field information for the
mapping, you must match the Employee descriptor’s tables to query keys from the
Contact interface descriptor.

Using TopLink Workbench
To choose the implementors of an interface that share at least one common
automatically generated query key, use this procedure.

1. Select an interface descriptor in the Navigator. Its properties appear in the Editor.

Figure 25–24 Interface Descriptor Editor Window

To choose an implementor of the selected interface that shares at least one common
query key, click Add.

To remove an implementor of the selected interface, select the implementor and click
Remove.

Using Java
Example 25–7 shows how to define the Contact interface and Email and Phone
implementors in Java.

Configuring Cache Type and Size at the Descriptor Level

Configuring a Descriptor 25-35

Example 25–7 Defining Interface Query Keys

Descriptor contactInterfaceDescriptor = new Descriptor();
 contactInterfaceDescriptor.setJavaInterface(Contact.class);
 contactInterfaceDescriptor.addAbstractQueryKey("id");
Descriptor emailClassDescriptor = new Descriptor();
 emailClassDescriptor.setJavaClass(Email.class);
 emailClassDescriptor.addDirectQueryKey("id", "E_ID");
 emailClassDescriptor.getInterfacePolicy().addParentInterface(Contact.class);
 emailClassDescriptor.setTableName("INT_EML");
 emailClassDescriptor.setPrimaryKeyFieldName("E_ID");
 emailClassDescriptor.setSequenceNumberName("SEQ");
 emailClassDescriptor.setSequenceNumberFieldName("E_ID");
 emailClassDescriptor.addDirectMapping("emailID", "E_ID");
 emailClassDescriptor.addDirectMapping("address", "ADDR");
Descriptor phoneClassDescriptor = new Descriptor();
 phoneClassDescriptor.setJavaClass(Phone.class);
 phoneClassDescriptor.getInterfacePolicy().addParentInterface(Contact.class);
 phoneClassDescriptor.addDirectQueryKey("id", "P_ID");
 phoneClassDescriptor.setTableName("INT_PHN");
 phoneClassDescriptor.setPrimaryKeyFieldName("P_ID");
 phoneClassDescriptor.setSequenceNumberName("SEQ");
 phoneClassDescriptor.setSequenceNumberFieldName("P_ID");
 phoneClassDescriptor.addDirectMapping("phoneID", "P_ID");
 phoneClassDescriptor.addDirectMapping("number", "P_NUM");

Configuring Cache Type and Size at the Descriptor Level
The TopLink cache is an in-memory repository that stores recently read or written
objects based on class and primary key values. TopLink uses the cache to do the
following:

■ improve performance by holding recently read or written objects and accessing
them in-memory to minimize database access

■ manage locking and isolation level

■ manage object identity

Table 25–13 summarizes which descriptors support identity map configuration.

This configuration overrides the default identity map configuration defined at the
project level (see "Configuring Cache Type and Size at the Project Level" on
page 19-13).

For detailed information on caching and object identity, and the recommended settings
to maximize TopLink performance, see to "Cache Type and Object Identity" on
page 87-3.

Table 25–13 Descriptor Support for Identity Map

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors1

1 Relational class descriptors only (see "Relational Class Descriptors" on page 24-2).

Object-Relational Descriptors

EIS Descriptors2

2 EIS root descriptors only (see "EIS Root Descriptors" on page 24-5).

XML Descriptors

Configuring Cache Type and Size at the Descriptor Level

25-36 Oracle TopLink Developer’s Guide

For more information about the cache, see Chapter 87, "Understanding the Cache".

Using TopLink Workbench
To specify the identity map information for a descriptor, use this procedure:

1. Select the descriptor in the Navigator.

2. Select the Caching tab in the Editor. The Caching tab appears.

Figure 25–25 Caching Tab, Identity Map Options

Use the following table to enter data in following fields on the Caching tab:

Field Description

Type1 Use the Type list to choose the identity map as follows:

■ Weak with Soft Subcache
(SoftCacheWeakIdentityMap)–cache first n elements in soft
space, anything after that in weak space (see "Soft and Hard
Cache Weak Identity Maps" on page 87-4)

■ Weak with Hard Subcache
(HardCacheWeakIdentityMap)–cache first n elements in hard
space, anything after that in weak space (see "Soft and Hard
Cache Weak Identity Maps" on page 87-4)

■ Weak (WeakIdentityMap)–cache everything in weak space
(see "Weak Identity Map" on page 87-3)

■ Full (FullIdentityMap)–cache everything permanently (see
"Full Identity Map" on page 87-3)

■ None (NoIdentityMap)–cache nothing (see "No Identity Map"
on page 87-4)

For more information, see "Cache Type and Object Identity" on
page 87-3.

Changing the project’s default identity map does not affect
descriptors that already exist in the project.

Configuring Cache Isolation at the Descriptor Level

Configuring a Descriptor 25-37

Using Java
Use one of the following ClassDescriptor methods to configure the descriptor to
use the appropriate type of identity map:

■ useFullIdentitMap

■ useWeakIdentityMap

■ useSoftCacheWeakIdentityMap

■ useHardCacheWeakIdentityMap

■ useNoIdentityMap

Use the ClassDescriptor method setIdentityMapSize to configure the size of
the identity map.

Configuring Cache Isolation at the Descriptor Level
If you plan to use isolated sessions (see "Cache Isolation" on page 87-9), you must
configure descriptors as isolated for any object that you want confined to an isolated
session cache.

Configuring a descriptor to be isolated means that TopLink will not store the object in
the shared session cache and the object will not be shared across client sessions. Each
client will have their own object read directly from the database. Objects in an isolated
client session cache can reference objects in their parent server session’s shared session
cache, but no objects in the shared session cache can reference objects in an isolated
client session cache. Isolation is required when using Oracle Database Virtual Private
Database (VPD) support or database user-based read security. Isolation can also be
used if caching is not desired across client sessions.

Table 25–13 summarizes which descriptors support cache isolation configuration.

Size1 Specify the size of the cache as follows:

■ When using Weak with Soft Subcache or Weak with Hard
Subcache, the size is the size of the subcache.

■ When using Full or Weak, the size indicates the starting size of
the identity map.

Default When you enter a cache size, the Default check box is cleared. To
reset the size to the default for the selected cache type, check the
Default check box.

1 If a descriptor is a child in an inheritance hierarchy, TopLink makes this field read only and displays the
options from the parent root descriptor. For more information, see "Inheritance" on page 23-4.

Table 25–14 Descriptor Support for Cache Isolation Map

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors1

1 Relational class descriptors only (see "Relational Class Descriptors" on page 24-2).

Object-Relational Descriptors

EIS Descriptors2

XML Descriptors

Field Description

Configuring Unit of Work Cache Isolation at the Descriptor Level

25-38 Oracle TopLink Developer’s Guide

This configuration overrides the default cache isolation configuration defined at the
project level (see "Configuring Cache Isolation at the Project Level" on page 19-16).

Using TopLink Workbench
To specify the cache isolation options, use this procedure:

1. Select the descriptor in the Navigator.

2. Select the Caching tab in the Editor. The Caching tab appears.

Figure 25–26 Caching Tab, Isolation Options

Use the Isolation list to choose one of the following:

■ Isolated–if you want all objects confined to an isolated client session cache. For
more information, see "Cache Isolation" on page 87-9.

■ Shared–if you want all objects visible in the shared session cache (default).

Using Java
To specify that a class is isolated, use a descriptor amendment method (see
"Configuring Amendment Methods" on page 25-81) to call ClassDescriptor
method setIsIsolated, passing in a boolean of true.

Configuring Unit of Work Cache Isolation at the Descriptor Level
Use this policy to determine how a unit of work uses a session cache for a specific
class. Table 25–15 lists the unit of work cache isolation options.

2 EIS root descriptors only (see "EIS Root Descriptors" on page 24-5).

Note: If you configure a descriptor as isolated, it cannot participate
in a coordinated cache (see "Configuring Cache Coordination Change
Propagation at the Descriptor Level" on page 25-40).

Configuring Unit of Work Cache Isolation at the Descriptor Level

Configuring a Descriptor 25-39

Most of these options apply only to a Unit of Work in an early transaction, such as:

■ A Unit of Work that was flushed (write changes)

■ Issued a modify query

■ Acquired a pessimistic lock

Using Java
To specify that a class is isolated, use a descriptor amendment method (see
"Configuring Amendment Methods" on page 25-81) to call ClassDescriptor
method setUnitOfWorkCacheIsolationLevel:

public void setUnitOfWorkCacheIsolationLevel(int unitOfWorkCacheIsolationLevel) {
this.unitOfWorkCacheIsolationLevel = unitOfWorkCacheIsolationLevel;

}

Table 25–15 Unit of Work Cache Isolation Options

Option Description

Using the Session Cache
After the Transaction

USE_SESSION_CACHE_AFTER_TRANSACTION
Objects built from new data accessed after a unit of work early
transaction are stored in the session cache.

This options is the most efficient as it allows the cache to be used
after an early transaction.

This option only applies to descriptors that are read-only. If the
descriptor is not read-only, this setting is reverted to ISOLATE_
CACHE_ALWAYS (see Always Isolating the Cache option).

Isolating New Data After
the Transaction

ISOLATE_NEW_DATA_AFTER_TRANSACTION (default)
Objects built from new data accessed after a unit of work early
transaction are only stored in the unit of work.

This still allows previously cached objects to be accessed in the
unit of work after an early transaction, while ensuring that
uncommitted data will never be put in the session cache by
storing any object built from new data only in the unit of work

Isolating the Cache after the
Transaction

ISOLATE_CACHE_AFTER_TRANSACTION
After a unit of work early transaction the session cache is no
longer used for this class. Objects are directly built from the
database data and only stored in the unit of work, even if
previously cached.

Note: This option my affect performance because you are
bypassing the session cache after an early transaction.

Always Isolating the Cache ISOLATE_CACHE_ALWAYS
The session cache will never be used for the class. Objects are
directly built from the database data and only stored in the unit
of work. New objects and changes will never be merged into the
session cache.

Note: This option my affect performance because you are
bypassing the session cache. However if this class is isolated or
pessimistic locked and always accessed in a transaction, this can
avoid having to build two copies of the object.

Configuring Cache Coordination Change Propagation at the Descriptor Level

25-40 Oracle TopLink Developer’s Guide

Configuring Cache Coordination Change Propagation at the Descriptor
Level

If you plan to use a coordinated cache (see "Understanding Cache Coordination" on
page 87-10), you can configure how, and under what conditions, a coordinated cache
propagates changes for a given descriptor.

Table 25–13 summarizes which descriptors support cache isolation configuration.

This configuration overrides the default cache coordination change propagation
configuration defined at the project level (see "Configuring Cache Coordination
Change Propagation at the Project Level" on page 19-17).

To complete your coordinated cache configuration, see Chapter 88, "Configuring a
Coordinated Cache".

Using TopLink Workbench
To specify the coordinated cache change propagation options, use this procedure:

1. Select the descriptor in the Navigator.

2. Select the Caching tab in the Editor. The Caching tab appears.

Table 25–16 Descriptor Support for Cache Coordination Change Propagation
Configuration

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors1

1 Relational class descriptors only (see "Relational Class Descriptors" on page 24-2).

Object-Relational Descriptors

EIS Descriptors2

2 EIS root descriptors only (see "EIS Root Descriptors" on page 24-5).

XML Descriptors

Note: If you configure a descriptor as isolated (see "Configuring
Cache Isolation at the Descriptor Level" on page 25-37), it cannot
participate in a coordinated cache.

Configuring Cache Coordination Change Propagation at the Descriptor Level

Configuring a Descriptor 25-41

Figure 25–27 Caching Tab, Coordination Options

Use the following information to enter data in the Coordination field:

Using Java
Use a descriptor amendment method (see "Configuring Amendment Methods" on
page 25-81) to invoke ClassDescriptor method
setCacheSynchronizationType passing in one of the following parameters:

■ ClassDescriptor.DO_NOT_SEND_CHANGES

■ ClassDescriptor.SEND_OBJECT_CHANGES

■ ClassDescriptor.SEND_NEW_OBJECTS_WITH_CHANGES

Coordination Option Description When to Use

None For both existing and new instances, do
not propagate a change notification.

Infrequently read or changed
objects.

Synchronize Changes For an existing instance, propagate a
change notification that contains each
changed attribute.

For a new instance, propagate an object
creation (along with all the new
instance’s attributes) only if the new
instance is related to other existing
objects that are also configured with this
change propagation option.

Frequently read or changed objects
that contain few attributes or in
cases where only a few attributes
are frequently changed.

Objects that have many or complex
relationships.

Synchronize Changes and
New Objects

For an existing instance, propagate a
change notification that contains each
changed attribute.

For a new instance, propagate an object
creation (along with all the new
instance’s attributes).

Frequently read or changed objects
that contain few attributes or in
cases where only a few attributes
are frequently changed.

Objects that have few or simple
relationships.

Invalidate Changed
Objects

For an existing instance, propagate an
object invalidation that marks the object
as invalid in all other sessions. This tells
other sessions that they must update
their cache from the data source the next
time this object is read.

For a new instance, no change
notification is propagated.

Frequently read or changed objects
that contain many attributes in
cases where many of the attributes
are frequently changed.

Configuring Cache Expiration at the Descriptor Level

25-42 Oracle TopLink Developer’s Guide

■ ClassDescriptor.INVALIDATE_CHANGED_OBJECTS

Configuring Cache Expiration at the Descriptor Level
By default, objects remain in the cache until they are explicitly deleted (see "Deleting
Objects" on page 98-7) or garbage-collected when using a weak identity map (see
"Configuring Cache Isolation at the Project Level" on page 19-16). Alternatively, you
can configure an object with a CacheInvalidationPolicy that allows you to
specify, either automatically or manually, that an object is invalid: when any query
attempts to read an invalid object, TopLink will go to the data source for the most
up-to-date version of that object and update the cache with this information.

Using cache invalidation ensures that your application does not use stale data. It
provides a better performing alternative to always refreshing (see "Configuring Cache
Refreshing" on page 25-27).

Table 25–17 summarizes which descriptors support a cache invalidation policy.

You can override the project-level cache invalidation configuration (see "Configuring
Cache Expiration at the Project Level" on page 19-19) by defining cache invalidation at
the descriptor or query level (see "Configuring Cache Expiration at the Query Level"
on page 96-21).

You can customize how TopLink communicates the fact that an object has been
declared invalid to improve efficiency, if you are using a coordinated cache. For more
information, see "Configuring Cache Coordination Change Propagation at the
Descriptor Level" on page 25-40.

For more information, see "Cache Invalidation" on page 87-8.

Using TopLink Workbench
To specify the cache invalidation information for a descriptor, use this procedure:

1. Select the descriptor in the Navigator.

2. Select the Caching tab in the Editor. The Caching tab appears.

Table 25–17 Descriptor Support for Cache Invalidation Policy

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors1

1 Relational class descriptors only (see "Relational Class Descriptors" on page 24-2).

Object-Relational Descriptors

EIS Descriptors2

2 EIS root descriptors only (see "EIS Root Descriptors" on page 24-5).

XML Descriptors

Configuring Cache Existence Checking at the Descriptor Level

Configuring a Descriptor 25-43

Figure 25–28 Caching Tab, Expiration Options

Use this table to enter data in the following fields on the Caching tab to specify the
cache invalidation policy for the descriptors.

Using Java
Use ClassDescriptor method setCacheInvalidationPolicy to set an
appropriate instance of CacheInvalidationPolicy.

Configuring Cache Existence Checking at the Descriptor Level
When TopLink writes an object to the database, TopLink runs an existence check to
determine whether to perform an insert or an update.

By default, TopLink checks against the cache. Oracle recommends that you use this
default existence check option for most applications. Checking the database for
existence can cause a performance bottleneck in your application.

Table 25–18 summarizes which descriptors support existence checking.

Field Description

Project Default Use the project’s cache expiration options for this descriptor. See
"Configuring Cache Expiration at the Project Level" on page 19-19 for
more information.

No Expiry Specify that objects in the cache do not expire.

Time to Live Expiry Specify that objects in the cache will expire after a specified amount
of time. Use the Expire After field to indicate the time (in
milliseconds) after which the objects will expire.

Daily Expiry Specify that objects in the cache will expire at a specific time each
day. Use the Expire At field to indicate the exact time to the second
(using a 24-hour clock) at which the objects will expire.

Update Read Time
on Update

Specify if TopLink should reset the cached object's expiry time after
the TopLink successfully updates the object.

Configuring Cache Existence Checking at the Descriptor Level

25-44 Oracle TopLink Developer’s Guide

You can configure existence checking at the descriptor level to override the project
level configuration (see "Configuring Existence Checking at the Project Level" on
page 19-8).

For more information see:

■ "Cache Type and Object Identity" on page 87-3

■ "Queries and the Cache" on page 93-29

■ "Using Registration and Existence Checking" on page 99-5

Using TopLink Workbench
To specify the existence checking information for a descriptor, use this procedure:

1. Select the descriptor in the Navigator.

2. Select the Caching tab in the Editor. The Caching tab appears.

Figure 25–29 Caching Tab, Existence Checking Options

Use this table to enter data in the following fields of the tab to specify the existence
checking options for newly created descriptors:

Table 25–18 Descriptor Support for Existence Checking

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors1

1 Relational class descriptors only (see "Relational Class Descriptors" on page 24-2).

Object-Relational Descriptors

EIS Descriptors2

2 EIS root descriptors only (see "EIS Root Descriptors" on page 24-5).

XML Descriptors

Configuring a Descriptor With EJB Information

Configuring a Descriptor 25-45

Using Java
To configure existence checking at the descriptor level using Java, use
ClassDescriptor method getQueryManager to acquire the
DescriptorQueryManager from the descriptor and then use one of the following
DescriptorQueryManager methods (see Example 25–8):

■ checkCacheForDoesExist–check the session cache. If the object is not in the
cache, assume that the object does not exist (do an insert). If the object is in the
cache, assume that the object exists (do an update). Oracle recommends using this
option for most applications.

■ checkDatabaseForDoesExist–if an object is not in the cache, query the
database to determine if the object exists. If the object exists, do an update.
Otherwise, do an insert. Selecting this option may negatively impact performance.
For more information, see "Check Database" on page 99-5.

■ assumeExistenceForDoesExist–always assume objects exist: always do an
update (never do an insert). For more information, see "Assume Existence" on
page 99-5.

■ assumeNonExistenceForDoesExist–always assume objects do not exist:
always do an insert (never do an update). For more information, see "Assume
Nonexistence" on page 99-5.

Example 25–8 Configuring Existence Checking Using Java

descriptor.getQueryManager().checkCacehForDoesExist();

Configuring a Descriptor With EJB Information
If your project uses EJB (see "Configuring Persistence Type" on page 19-5), you can use
descriptors to describe the characteristics of entity beans with container-managed or
bean-managed persistence.

Table 25–19 summarizes which descriptors support EJB information.

Field Description

Check Cache Check the session cache. If the object is not in the cache, assume that
the object does not exist (do an insert). If the object is in the cache,
assume that the object exists (do an update). Oracle recommends
using this option for most applications.

Check Cache then
Database

If an object is not in the cache, query the database to determine if the
object exists. If the object exists, do an update. Otherwise, do an
insert. Selecting this option may negatively impact performance. For
more information, see "Check Database" on page 99-5.

Assume Existence Always assume objects exist: always do an update (never do an
insert). For more information, see "Assume Existence" on page 99-5.

Assume Non-Existence Always assume objects do not exist: always do an insert (never do an
update). For more information, see "Assume Nonexistence" on
page 99-5.

Configuring a Descriptor With EJB Information

25-46 Oracle TopLink Developer’s Guide

When mapping enterprise beans, you create a descriptor for the bean class; you do not
create a descriptor for the local interface, remote interface, home class, or primary key
class.

When using TopLink Workbench, you must define the project with the correct entity
bean type (such as container-managed or bean-managed persistence) and import the
ejb-jar.xml file for the beans into the TopLink Workbench project.

For CMP projects, the ejb-jar.xml file defines the bean’s attributes to be mapped. A
descriptor for an entity bean container-managed persistence contains a CMP policy
used to configure CMP-specific options.

For more information, see "Descriptors and EJB" on page 23-3.

Using TopLink Workbench
To configure a descriptor with EJB information, use this procedure:

1. In the Navigator, select a relational descriptor.

2. Click EJB Descriptor on the mapping toolbar.

An EJB Info tab is added to the descriptor.

To remove the EJB information for the selected descriptor, click EJB Descriptor
again.

The EJB Info tab is removed from the descriptor.

3. Click the EJB Info tab in the Editor

Table 25–19 Descriptor Support for EJB Information

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors1

1 Relational class descriptors only (see "Relational Class Descriptors" on page 24-2).

Object-Relational Descriptors

EIS Descriptors2

2 EIS root descriptors only (see "EIS Root Descriptors" on page 24-5).

XML Descriptors

Configuring a Descriptor With EJB Information

Configuring a Descriptor 25-47

Figure 25–30 EJB Info Tab

Use the following information to enter data in each field on the tab:

Field Description

EJB Name Enter the bean’s base name. This is specified in the
<ejb-name> element of the ejb-jar.xml file and is for
display only.

Primary Key Class Enter the primary key. This is specified in the
<prim-key-class> element of the ejb-jar.xml file and is
for display only.

Unknown Primary Key
Class

Check this option if you choose not to specify the primary key
class or the primary key fields for an entity bean with container
managed persistence.

For example, select this field if the entity bean does not have a
natural primary key or you want the deployer to select the
primary key fields at deployment time. For more information,
see "Unknown Primary Key Class Support" on page 7-25.

Local Interface Enter the local interface. This is specified in the <local>
element of the ejb-jar.xml file and is for display only.

Local Home Interface Enter the local home interface. This is specified in the
<local-home> element of the ejb-jar.xml file and is for
display only.

Remote Interface Enter the remote interface. This is specified in the <remote>
element of the ejb-jar.xml file and is for display only.

Remote Home Interface Enter the remote interface. This is specified in the <home>
element of the ejb-jar.xml file and is for display only.

Change Deferral Use these options to specify how TopLink updates the database
for this EJB descriptor.

Defer All Changes Specify not to send changes to the database until the JTA
transaction is committed. This is the default TopLink behavior.
This is the most efficient option that results in the least amount
of data source interaction.

Configuring a Descriptor With EJB Information

25-48 Oracle TopLink Developer’s Guide

Using Java
Using Java code, you can use descriptors to describe the characteristics of entity beans
with container-managed (see "Configuring CMP Information" on page 25-48) or
bean-managed (see "Configuring BMP Information" on page 25-49) persistence.

Configuring CMP Information
To configure CMP-specific information on a descriptor, define a CMPPolicy:

descriptor.setCMPPolicy(new CMPPolicy());

You can use the following CMPPolicy API to configure optional behavior of
enterprise beans:

■ setDeferModificationsUntilCommit–By default TopLink defers all changes
to the database until the transaction is committed. Use this method to configure
TopLink to update the database after each EJB operation for the specified deferral
level:

– CMPPolicy.NONE–default behavior

– CMPPolicy.UPDATE_MODIFICATIONS–update the database after each EJB
operation for update modifications only

Defer Updates Only Specify to send changes to the database immediately after any
insert or delete operation, but do not send changes to the data
source for update operations until the JTA transaction is
committed.

Select this option for backwards compatibility with some EJB
containers, such as OC4J. For more information, see
"Nondeferred Changes" on page 23-3).

Use this option with caution as it will require the data source
transaction and locks to be held longer and may cause
referential integrity issues.

Defer None Specify to send all changes to the database immediately. This is
the least efficient option that generates the greatest amount of
data source interaction.

Select this option for backwards compatibility with some EJB
containers, such as OC4J. For more information, see
"Nondeferred Changes" on page 23-3).

Insert New Objects After Specify to send new object insert changes to the database after
bean life cycle method ejbCreate (default) or
ejbPostCreate. This is only relevant when not deferring
changes (see "Configuring Change Policy" on page 25-73).

If non-null foreign key constraints cannot be satisfied when the
insert is performed after ejbCreate, you may consider
configuring TopLink CMP to do the insert after
ejbPostCreate, if supported by your container. For more
information, see "Creating a New Entity Bean and ejbCreate /
ejbPostCreate Methods" on page 23-4.

Note: Most of these options are provided for compatibility with
other CMP implementations. Use caution when using them as they
will affect application performance.

Field Description

Configuring Reading Subclasses on Queries

Configuring a Descriptor 25-49

– CMPPolicy.ALL_MODIFICATIONS–update the database after each EJB
operation for all modifications

■ setNonDeferredCreateTime–when using nondeferred writes (see
setDeferModificationsUntilCommit), use this method to configure TopLink to
insert a new enterprise bean before (CMPPolicy.AFTER_EJBCREATE) or after
(CMPPolicy.AFTER_EJBPOSTCREATE) the ejbPostCreate method.

■ setForceUpdate–use this method to make TopLink write all enterprise beans
that have been accessed to the database regardless of whether they changed or not.

■ setUpdateAllFields–use this method to configure TopLink to force all the
fields of the bean to be updated instead of only the changed fields.

■ setPessimisticLockingPolicy–use this method to configure EJB-level
pessimistic locking.

Configuring BMP Information
BMP descriptors must be configured with a BMPWrapperPolicy. TopLink
Workbench does not currently support defining the BMPWrapperPolicy so you must
define this through Java code.

For more information, see "Configuring Wrapper Policy" on page 25-78.

Configuring Reading Subclasses on Queries
If you are mapping an inheritance hierarchy, by default, queries on root or branch
classes return instances of the root class only.

Alternatively, you can configure a root or branch class descriptor to include subclasses
when the root or branch class is queried.

You can also specify a database view to optimize the reading of subclasses. The view
can be used to optimize queries for root or branch classes that have subclasses
spanning multiple tables. The view must apply an outer-join or union all of the
subclass tables.

Do not configure this option for leaf classes.

Table 25–20 summarizes which descriptors support inherited attribute mapping
configuration.

For more information, see "Descriptors and Inheritance" on page 23-3.

Using TopLink Workbench
To configure reading classes on subqueries, use this procedure:

1. In the Navigator, select a root or branch descriptor.

Table 25–20 Descriptor Support for Inherited Attribute Mapping Configuration

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Object-Relational Descriptors

EIS Descriptors

XML Descriptors

Configuring Reading Subclasses on Queries

25-50 Oracle TopLink Developer’s Guide

If the Inheritance advanced property is not visible for the descriptor, right-click
the descriptor and choose Select Advanced Properties > Inheritance from context
menu or from the Selected menu.

2. Click the Inheritance tab.

Figure 25–31 Inheritance Tab, Read Subclasses on Query Option

Use the following information to enter data in Read Subclasses on Query and Read
Subclasses View fields of the tab:

Using Java
Create a descriptor amendment method ("Configuring Amendment Methods" on
page 25-81) to customize the root or branch class descriptor’s InheritancePolicy
using InheritancePolicy method dontReadSubclassesOnQueries to
configure a root or branch descriptor to not read subclasses. Optionally, you can use
InheritancePolicy method setReadAllSubclassesViewName to optimize
multiple table inheritance queries.

Example 25–9 shows an amendment method for the Person class. In this example,
subclasses are not read on queries.

Field Description

Read Subclasses on Query Select this option to configure the root class descriptor to
instantiate a subclass when the root class is queried.

Read Subclasses View Optionally select a database view to use for reading
subclasses.

Configuring Inheritance for a Child (Branch or Leaf) Class Descriptor

Configuring a Descriptor 25-51

Example 25–9 Configuring Reading Subclasses on Queries

...
public static void addToPersonDescriptor(Descriptor descriptor) {

descriptor.getInheritancePolicy().dontReadSubclassesOnQueries();
}
...

Configuring Inheritance for a Child (Branch or Leaf) Class Descriptor
Inheritance describes how a derived (child) class inherits the characteristics of its
superclass (parent). When you designate a class as a child, you must also specify the
descriptor that represents the child’s parent in your inheritance hierarchy.

Table 25–39 summarizes which descriptors support child inheritance configuration.

For more information about inheritance, see "Descriptors and Inheritance" on
page 23-3.

For more information about configuring inheritance for a parent (root) class
descriptor, see "Configuring Inheritance for a Parent (Root) Descriptor" on page 25-52.

Using TopLink Workbench
To create a child (branch or leaf class) for an inheritance, use this procedure.

1. In the Navigator, select the descriptor you wish to specify as a child.

2. Choose the Inheritance tab in the Property window.

If the Inheritance tab is not visible, right-click the descriptor and choose Select
Advanced Properties > Inheritance.

3. Select the Is Child Descriptor option to specify this descriptor is a child class. The
Parent Descriptor list is now enabled and the class indicator information is
disabled.

Table 25–21 Descriptor Support for Child Inheritance Configuration

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Object-Relational Descriptors

EIS Descriptors

XML Descriptors

Configuring Inheritance for a Parent (Root) Descriptor

25-52 Oracle TopLink Developer’s Guide

Figure 25–32 Inheritance Tab, Child Descriptor Option

Use the following information to enter data in each child descriptor field on the tab:

Using Java
Using Java, you can configure an inheritance child descriptor using
InheritancePolicy method setParentClass as Example Example 25–10 shows.

Example 25–10 Configuring an Inheritance Child Descriptor

descriptor.getInheritancePolicy().setParentClass(ChildClass.class);

Configuring Inheritance for a Parent (Root) Descriptor
Inheritance describes how a derived (child) class inherits the characteristics of its
superclass (parent). When you designate a class as a parent, you can configure how
TopLink handles the class’s inheritance hierarchy.

Table 25–24 summarizes which descriptors support parent inheritance configuration.

Field Description

Is Child Descriptor Specify that this descriptor is a child class to be used in a
branch or leaf.

Parent Descriptor Use the list to select the parent of this descriptor. See
"Descriptors and Inheritance" on page 23-3 for more
information.

Configuring Inheritance for a Parent (Root) Descriptor

Configuring a Descriptor 25-53

For more information about configuring inheritance for a child (branch or leaf) class
descriptor, see "Configuring Inheritance for a Child (Branch or Leaf) Class Descriptor"
on page 25-51.

For more information, see "Descriptors and Inheritance" on page 23-3.

Using TopLink Workbench
To create a root class for an inheritance, use this procedure.

1. In the Navigator, select the descriptor you wish to specify as the root.

2. Choose the Inheritance tab in the Property window.

If the Inheritance tab is not visible, right-click the descriptor and choose Select
Advanced Properties > Inheritance.

3. Select the Is Root Parent Descriptor option to specify this descriptor is a root class.

Figure 25–33 Inheritance Tab, Configuring Inheritance for a Root Descriptor

Use this table to complete the following root descriptor field on the Inheritance tab:

Table 25–22 Descriptor Support for Parent Inheritance Configuration

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Object-Relational Descriptors

EIS Descriptors

XML Descriptors

Configuring Inheritance for a Parent (Root) Descriptor

25-54 Oracle TopLink Developer’s Guide

Using Java
Create a descriptor amendment method ("Configuring Amendment Methods" on
page 25-81) to customize the root class descriptor’s InheritancePolicy using
InheritancePolicy methods setParentClass,
setClassIndicatorFieldName, addClassIndicator,

Field Description

Is Root Parent Descriptor Select this option to specify this descriptor as
the root (parent) of the inheritance
hierarchy.

Use Class Extraction Method Choose this option to specify a class
indicator using a class extraction method,
and select your static class extraction
method from the list.

For more information, see "Using Class
Extraction Methods" on page 23-15.

Use Class Indicator Field Choose this option to specify a class
indicator using a class indicator field.

For more information, see "Using Class
Indicator Fields" on page 23-14.

Field Selection Choose the field to use as the class indicator
field.

Use XML Schema "Type" Attribute1

1 EIS root (see "EIS Root Descriptors" on page 24-5) or XML descriptors (see "XML Descriptors" on
page 23-12) only.

Select this option to use the type attribute
specified in the XML schema for this
descriptor’s reference class.

Specify Field For a relational descriptor, select the field of
the database table associated with this
descriptor (see "Configuring Associated
Tables" on page 26-2).

For an EIS root descriptor (using XML
records) or an XML descriptor, click Browse
to select an element attribute or text node.

Indicator Selection Choose between using a class name as the
class indicator field value or specifying
specific class indicator field values for each
(nonabstract) child class.

Use Class Name as Indicator Choose this option to use class names as the
class indicator field value.

Use Class Indicator Dictionary Choose this option to specify specific class
indicator field values for each (nonabstract)
child class.

When you choose this option, you must
specify the data type of the class indicator
field and the specific class indicator field
values for each (nonabstract) child class.

Indicator Type Select the data type from the list to specify
the data type of the class indicator field.

To specify the specific class indicator field
values for each (nonabstract) child class,
click Edit and enter the appropriate value
for each child class.

Configuring Inheritance Expressions for a Parent (Root) Class Descriptor

Configuring a Descriptor 25-55

useClassNameAsIndicator and setClassExtractionMethodName, as
required.

Example 25–13 shows amendment methods for the Person and Student classes
where Student extends Person in a relational project. In this example, a class
indicator field is used (see "Using Class Indicator Fields" on page 23-14).

Example 25–11 Configuring Inheritance for a Relational Root Class

...
public static void addToPersonDescriptor(Descriptor descriptor) {

descriptor.getInheritancePolicy().setClassIndicatorFieldName("CLIENT_TYPE");
descriptor.getInheritancePolicy().addClassIndicator("P");

}

public static void addToStudentDescriptor(Descriptor descriptor) {
descriptor.getInheritancePolicy().setParentClass(Person.class);
descriptor.getInheritancePolicy().setClassIndicatorFieldName("CLIENT_TYPE");
descriptor.getInheritancePolicy().addClassIndicator("S");

}
...

If you are using a class-extraction method (see "Using Class Extraction Methods" on
page 23-15), you may also need to use InheritancePolicy methods
setOnlyInstancesExpression and setWithAllSubclassesExpression (see
"Configuring Inheritance Expressions for a Parent (Root) Class Descriptor" on
page 25-55).

Example 25–13 shows amendment methods for the Person and Student classes
where Student extends Person in an EIS project using XML records. In this example,
a class indicator field is used (see "Using Class Indicator Fields" on page 23-14).

Example 25–12 Configuring Inheritance for an EIS Root Class

...
public static void addToPersonDescriptor(Descriptor descriptor) {

descriptor.getInheritancePolicy().setClassIndicatorField(
new XMLField("@CLIENT_TYPE")

);
descriptor.getInheritancePolicy().addClassIndicator("P");

}

public static void addToStudentDescriptor(Descriptor descriptor) {
descriptor.getInheritancePolicy().setParentClass(Person.class);
descriptor.getInheritancePolicy().setClassIndicatorField(

new XMLField("@CLIENT_TYPE")
);
descriptor.getInheritancePolicy().addClassIndicator("S");

}
...

Configuring Inheritance Expressions for a Parent (Root) Class Descriptor
If your class uses inheritance (see "Understanding Descriptors and Inheritance" on
page 23-12) with a class extraction method (see "Using Class Extraction Methods" on
page 23-15) you must provide TopLink with expressions to correctly filter sibling
instances for all classes that share a common table.

Configuring Inheritance Expressions for a Parent (Root) Class Descriptor

25-56 Oracle TopLink Developer’s Guide

Table 25–24 summarizes which descriptors support inheritance expression
configuration.

Figure 25–34 shows a typical inheritance hierarchy. In this example, instances of both
Person and Student are stored in the same PERSON table as Figure 25–35 shows: an
instance of Person has a null value for STUDENT_NUMBER. Instances of Company are
stored in a separate COMPANY table.

Figure 25–34 Example Inheritance Hierarchy

Figure 25–35 PERSON Table

Queries on inheritance classes that share a common table, such as Person and
Student, must filter out their sibling instances. TopLink performs this filtering using
the Expression instances returned by the descriptor’s InheritancePolicy
methods getOnlyInstancesExpression and
getWithAllSubclassesExpression.

Queries on a class that has its own table for its specific data, such as Company, and
does not share this table with any sibling classes, do not require these expressions.

Table 25–23 Descriptor Support for Inheritance Expression Configuration

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Object-Relational Descriptors

EIS Descriptors

XML Descriptors

Configuring Inheritance Expressions for a Parent (Root) Class Descriptor

Configuring a Descriptor 25-57

If you use a class indicator type field (see "Using Class Indicator Fields" on
page 23-14), TopLink automatically generates the required expressions.

If you use a class extraction method (see "Using Class Extraction Methods" on
page 23-15), you must provide TopLink with an expressions to correctly filter sibling
instances for all classes that share a common table.

For concrete classes, you must define an only- instances expression.

For branch classes, you must define a with-all-subclasses expression.

When TopLink queries for a leaf class, it uses the only- instances expression to filter
out any sibling classes.

When TopLink queries for a root or branch class whose subclasses do not define their
own tables, it uses the with-all-subclasses expression. This is also the case when a
subclass view is used (see "Configuring Reading Subclasses on Queries" on
page 25-49).

When querying for a root or branch class that has subclasses that span multiple tables,
a query is performed for each concrete class in the inheritance hierarchy using the
only- instances expression to filter sibling classes.

When a class extraction method is used the only-instances expression is used to
determine if a class is concrete. If a class does not require an only instances expression,
do not enable reading subclasses on queries (see "Configuring Reading Subclasses on
Queries" on page 25-49), otherwise TopLink will assume that the class has no instances
and it will skip that class on queries.

For more information about inheritance expressions, see "Specifying Expressions for
Only-Instances and With-All-Subclasses" on page 23-16.

Using Java
Create a descriptor amendment method ("Configuring Amendment Methods" on
page 25-81) to customize the root class descriptor’s InheritancePolicy using
InheritancePolicy methods setOnlyInstancesExpression and
setWithAllSubclassesExpression, as required.

Example 25–13 shows amendment methods for the Person and Student descriptors
based on the class hierarchy shown in Figure 25–34 and the database table shown in
Figure 25–35.

Example 25–13 Configuring Only-Instances Expressions

...
// Only-instances expression for Person
public static void addToPersonDescriptor(Descriptor descriptor) {

ExpressionBuilder builder = new ExpressionBuilder();
descriptor.getInheritancePolicy().setOnlyInstancesExpression(

builder.getField("STUDENT_NUMBER").isNull()
);

}
// Only-instances expression for Student
public static void addToStudentDescriptor(Descriptor descriptor) {

ExpressionBuilder builder = new ExpressionBuilder();
descriptor.getInheritancePolicy().setOnlyInstancesExpression(

builder.getField("STUDENT_NUMBER").notNull()
);

}
...

Configuring Inherited Attribute Mapping in a Subclass

25-58 Oracle TopLink Developer’s Guide

Example 25–14 shows amendment methods for the Bicycle and
NonFueledVehicle descriptors based on the class hierarchy shown in Figure 23–2 if
the vehicle hierarchy stored all of the classes in a single vehicle table, and there was
not a class indicator, but a class extraction method instead.

Example 25–14 Configuring Only-Instances and With-All-Subclasses Expressions

// Bicycle amemndment
public static void addToBicycleDescriptor(Descriptor descriptor) {

ExpressionBuilder builder = new ExpressionBuilder();
descriptor.getInheritancePolicy().setOnlyInstancesExpression(

builder.getField("BICYCLE_DESCR").notNull()
);

}

// NonFueldVehicle ammendment
public static void addToNonFueledVehicleDescriptor(Descriptor descriptor) {

ExpressionBuilder builder = new ExpressionBuilder();
descriptor.getInheritancePolicy().setWithAllSubclassesExpression(

builder.getField("FUEL_TYPE").isNull()
);

}

Configuring Inherited Attribute Mapping in a Subclass
If you are defining the descriptor for a class that inherits attributes from another class,
then you can create mappings for those attributes. If you remap an attribute that was
already mapped in the superclass, then the new mapping applies to the subclass only.
Any other siblings that inherit the attribute are unaffected.

If you leave inherited attributes unmapped, TopLink uses the mapping (if any) from
the superclass if the superclass’s descriptor has been designated as the parent
descriptor.

Table 25–24 summarizes which descriptors support inherited attribute mapping
configuration.

For more information, see "Descriptors and Inheritance" on page 23-3.

Using TopLink Workbench
To map inherited attributes, use this procedure:

1. In the Navigator, right-click a descriptor and choose Map Inherited Attributes >
selected class from the context menu or choose Selected > Map Inherited
Attributes from the menu.

Table 25–24 Descriptor Support for Inherited Attribute Mapping Configuration

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Object-Relational Descriptors

EIS Descriptors

XML Descriptors

Configuring a Domain Object Method as an Event Handler

Configuring a Descriptor 25-59

The mappings list now includes all the attributes from the superclass of this class.

2. Map any desired attributes. See Chapter 31, "Creating a Mapping" for more
information.

Using Java
Using Java, attributes inherited by a subclass from a superclass will be visible and you
can always create a mapping to these inherited attributes.

Configuring a Domain Object Method as an Event Handler
You can associate a domain object method with any of the descriptor events shown in
Table 25–26. You can register any domain object method that:

■ Is public.

■ Returns void.

■ Takes a single parameter of type DescriptorEvent

Table 25–25 summarizes which descriptors support domain object method event
handler configuration.

For example, you can add a method handlePostDelete (that is public, returns void,
and takes a single parameter of type DescriptorEvent) to your Employee object to
handle PostDeleteEvent descriptor events. After you register that method with the
DescriptorEventManager owned by the Employee object’s descriptor as the
handler for PostDeleteEvent descriptor events, whenever the Oracle TopLink
runtime performs a post-delete operation on an instance of the Employee object, the
runtime dispatches a PostDeleteEvent to the handlePostDelete method on the
instance of the Employee object associated with that PostDeleteEvent.

The Descriptor Event ID column in Table 25–26 lists the DescriptorEventManager
field name used to identify a particular event. The DescriptorEvent method
getEventCode returns this value. For example:

if (descriptorEvent.getEventCode() == DescriptorEventManager.PreUpdateEvent) {
// descriptorEvent represents a pre-update event

}

Table 25–25 Descriptor Support for Domain Object Method Event Handler Configuration

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Object-Relational Descriptors

EIS Descriptors

XML Descriptors

Table 25–26 Descriptor Events

Category Descriptor Event ID Description

Delete PreDeleteEvent Occurs before an object is deleted from the data source.

AboutToDeleteEvent Occurs when an object is deleted from the data source.

PostDeleteEvent Occurs after an object is deleted from the data source.

Configuring a Domain Object Method as an Event Handler

25-60 Oracle TopLink Developer’s Guide

Alternatively, you can configure a descriptor event listener as an event handler (see
"Configuring a Descriptor Event Listener as an Event Handler" on page 25-62).

Using TopLink Workbench
To select event methods, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

If the Events advanced property is not visible for the descriptor, then right-click
the descriptor and choose Select Advanced Properties > Events from context
menu or from the Selected menu.

2. Click the Event tab in the Editor.

Figure 25–36 Events Tab

3. Select the appropriate method category from the list on the left.

Use this table to enter data in the following fields to select the appropriate domain
object method:

Insert PreInsertEvent Occurs before an object is inserted in the data source.

AboutToInsertEvent Occurs when an object is inserted in the data source.

PostInsertEvent Occurs after an object is inserted into the data source.

Post-X PostBuildEvent Occurs after an object is built from the data source.

PostCloneEvent Occurs after an object has been cloned into a unit of work.

PostMergeEvent Occurs after an object has been merged from a unit of work.

PostRefreshEvent Occurs after an object is refreshed from the data source.

Update PreUpdateEvent Occurs before an object is updated in the data source. This may be
called in a unit of work even if the object has no changes and does
not require updating.

AboutToUpdateEvent Occurs when an object is updated in the data source. This method is
called only if the object has changes in the unit of work.

PostUpdateEvent Occurs after an object is updated in the data source.

Write PreWriteEvent Occurs before an object is inserted or updated in the data source.
This occurs before PreInsertEvent and PreUpdateEvent.

PostWriteEvent Occurs after an object is inserted or updated in the data source. This
occurs after PostInsertEvent and PostUpdateEvent.

Table 25–26 (Cont.) Descriptor Events

Category Descriptor Event ID Description

Configuring a Domain Object Method as an Event Handler

Configuring a Descriptor 25-61

Category Option Description

Deleting Methods Pre Select the domain object method that is invoked
on an instance of its reference class before the
instance is deleted from the data source.

Post Select the domain object method that is invoked
on an instance of its reference class after the
instance is deleted from the data source.

Inserting Methods Pre Select the domain object method that is invoked
on an instance of its reference class before the
instance is inserted in the data source.

About To Select the domain object method that is invoked
on an instance of its reference class when the
instance is inserted in the data source.

Post Select the domain object method that is invoked
on an instance of its reference class after the
instance is inserted into the data source.

Post-X Methods Build Select the domain object method that is invoked
on an instance of its reference class after the
instance is built from the data source.

Clone Select the domain object method that is invoked
on an instance of its reference class after the
instance is cloned into a unit of work.

Merge Select the domain object method that is invoked
on an instance of its reference class after the
instance is merged from a unit of work.

Refresh Select the domain object method that is invoked
on an instance of its reference class after the
instance is refreshed from the data source.

Updating Methods Pre Select the domain object method that is invoked
on an instance of its reference class before the
instance is updated in the data source. This may
be called in a unit of work even if the object has no
changes and does not require updating.

About to Select the domain object method that is invoked
on an instance of its reference class when the
instance is updated in the data source. This
method is called only if the object has changes in
the unit of work.

Post Select the domain object method that is invoked
on an instance of its reference class after the
instance is updated in the data source.

Writing Methods Pre Select the domain object method that is invoked
on an instance of its reference class before the
instance is inserted or updated in the data source.

Note: This occurs before Pre-Insert and
Pre-Update event methods are invoked.

Configuring a Descriptor Event Listener as an Event Handler

25-62 Oracle TopLink Developer’s Guide

Using Java
Example 25–15 shows a domain object class with method handlePostDelete
defined to handle PostDeleteEvent descriptor events. Example 25–16shows how to
register this method as the PostDeleteEvent event handler. Whenever the TopLink
runtime performs a post-delete operation on an instance of Employee, the runtime
will dispatch a PostDeleteEvent to the DescriptorEventManager owned by the
Employee object’s descriptor. The DescriptorEventManager will then invoke the
handlePostDelete method on the instance of Employee associated with that
PostDeleteEvent.

Example 25–15 Domain Object Method as a Descriptor Event Handler

public class Employee {
// domain object methods
...
public void handlePostDelete(DescriptorEvent event) {

// handler implementation
}

}

Example 25–16 Registering a Domain Object Method as a Descriptor Event Handler

employeeDescriptor.getEventManager().setPostDeleteSelector("handlePostDelete");

Configuring a Descriptor Event Listener as an Event Handler
You can create your own DescriptorEventListner and register it with a
DescriptorEventManger in a descriptor amendment method. You can also
configure a DescriptorEventListner to be notified of events through the Java
event model.

You can register any object that implements the DescriptorEventListener
interface with the DescriptorEventManager owned by a domain object’s
descriptor to handle any descriptor event type (see Table 25–28). To quickly implement
this interface, you can extend abstract class DescriptorEventAdapter and override
only the methods for the events you are interested in.

Table 25–27 summarizes which descriptors support descriptor event listener
configuration.

Post Select the domain object method that is invoked
on an instance of its reference class after the
instance is inserted or updated in the data source.

Note: This occurs after Post-Insert or Post-Update
event methods are invoked.

Table 25–27 Descriptor Support for Descriptor Event Listener Configuration

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Object-Relational Descriptors

Category Option Description

Configuring a Descriptor Event Listener as an Event Handler

Configuring a Descriptor 25-63

For example, you create a DescriptorEventListener to handle
PostBuildEvent descriptor events for Employee objects. After you register this
DescriptorEventListener with the DescriptorEventManager owned by the
Employee object’s descriptor, whenever the TopLink runtime performs a post-build
operation on an instance of Employee, the runtime dispatches a PostBuilEvent to
the event listener's postBuild method.

Table 25–28 lists the DescriptorEventListener methods associated with each
descriptor event. The Descriptor Event Listener Method column lists the
DescriptorEventListener methods associated with each DescriptorEvent.

Alternatively, you can configure a domain object method as an event handler (see
"Configuring a Domain Object Method as an Event Handler" on page 25-59).

EIS Descriptors

XML Descriptors

Table 25–28 Descriptor Events

Categor
y

Descriptor Event
Listener Method Description

Delete preDelete Occurs before an object is deleted from the data source.

aboutToDelete Occurs when an object is deleted from the data source.

postDelete Occurs after an object is deleted from the data source.

Insert preInsert Occurs before an object is inserted in the data source.

aboutToInsert Occurs when an object is inserted in the data source.

postInsert Occurs after an object is inserted into the data source.

Post-X postBuild Occurs after an object is built from the data source.

postClone Occurs after an object has been cloned into a unit of work.

postMerge Occurs after an object has been merged from a unit of work.

postRefresh Occurs after an object is refreshed from the data source.

Update preUpdate Occurs before an object is updated in the data source. This may be called
in a unit of work even if the object has no changes and does not require
updating.

aboutToUpdate Occurs when an object is updated in the data source. This method is
called only if the object has changes in the unit of work.

postUpdate Occurs after an object is updated in the data source.

Write preWrite Occurs before an object is inserted or updated in the data source. This
occurs before PreInsertEvent and PreUpdateEvent.

postWrite Occurs after an object is inserted or updated in the data source. This
occurs after PostInsertEvent and PostUpdateEvent.

Table 25–27 (Cont.) Descriptor Support for Descriptor Event Listener Configuration

Descriptor
Using TopLink
Workbench Using Java

Configuring Locking Policy

25-64 Oracle TopLink Developer’s Guide

Using Java
Example 25–17 shows a DescriptorEventListener that handles
PostBuildEvent descriptor events. Example 25–18 shows how to register this
DescriptorEventListener with the Employee object’s descriptor. Whenever the
TopLink runtime performs a post-build operation on an instance of Employee, the
runtime will dispatch a post build event to the corresponding
DescriptorEventListener method on each registered event listener (in this case,
it calls the postBuild method).

Example 25–17 DescriptorEventListener

public class MyDescriptorEventListener extends DescriptorEventAdapter {
public void postBuild(DescriptorEvent event) {

// handler implementation
}

}

Example 25–18 Registering a DescriptorEventListener with the DescriptorEventManager

descriptor.getEventManager().addListener(new MyDescriptorEventListener());

Configuring Locking Policy
You can configure a descriptor with a locking policy that prevents one user writing
over another user’s work.

Table 25–29 summarizes which descriptors support locking policies.

Oracle recommends that you use a locking policy. You should use a locking policy in
any multiuser environment to prevent one user writing over another user's changes.
Although locking can be particularly important if multiple servers or multiple
applications access the same data, even in a single server application, the same locking
issue still exists. In a multiple-server environment, locking is still relevant even if your
application uses cache refreshing or cache coordination.

If you are building a three-tier application, in order to correctly lock an object, you
must obtain the lock before the object is sent to client to be edited. The type of locking
you choose has an influence on how you can achieve this (see "Locking in a Three-Tier
Application" on page 23-22).

Table 25–29 Descriptor Support for Locking Policy

Descriptor

Optimistic
Version
Locking
Policies

Optimistic
Field
Locking
Policies

Pessimistic
Locking
Policy

Using
TopLink
Workbench Using Java

Relational Descriptors1

1 Relational class descriptors only (see "Relational Class Descriptors" on page 24-2).

Object-Relational
Descriptors

EIS Descriptors2

2 EIS root descriptors only (see "EIS Root Descriptors" on page 24-5).

XML Descriptors

Configuring Locking Policy

Configuring a Descriptor 25-65

Using TopLink Workbench
To specify a descriptor’s locking policy, use this procedure:

1. In the Navigator, select a relational or EIS root descriptor.

If the Locking advanced property is not visible for the descriptor, right-click the
descriptor and choose Select Advanced Properties > Locking from the context
menu or from the Selected menu.

2. Click the Locking tab.

Figure 25–37 Locking Tab for a Descriptor

Figure 25–38 Locking Tab for an EIS Root Descriptor

Use this table to enter data in the following fields on the tab of the appropriate type:

Field Description

Optimistic Locking Specify that the descriptor uses optimistic locking.

By Version Specify to use optimistic locking, based on versioning.

Database Field Select the database field that contains the version value
used for optimistic locking.

This field appears for relational descriptors only.

Configuring Locking Policy

25-66 Oracle TopLink Developer’s Guide

XPath Click Browse to define the path to the element or
attribute that stores the version value.

This field appears for EIS root descriptors only.

Ensure that the attribute’s type corresponds to the type of
locking policy you choose (numeric for Version Locking
and timestamp for Timestamp Locking).

Version Locking Specify that the descriptor uses numeric version locking.
The version field (defined by the Database Field, for
relational descriptors, or the XPath, for EIS root
descriptors) must be a numeric type

Timestamp Locking Specify that the descriptor uses time stamp version
locking, based on time stamp. The version field (defined
by the Database Field, for relational descriptors, or the
XPath, for EIS root descriptors) must be a timestamp
type.

Store Version in Cache Specify whether or not you want to store the version
information in the cache.

If you choose not to define a mapping for the version
field, then you must enable this option to configure the
descriptor to store the version value in the Oracle
TopLink cache.

If you choose to define a mapping for the version field,
then you must disable this option in order to store the
version value in the object.

For more information, see "Optimistic Locking in a
Three-Tier Application" on page 23-22.

By Fields1 Specify to use optimistic locking, based on database
fields.

These fields appear for relational descriptors only.

All Fields Select all fields for optimistic locking.

Changed Fields Select only the changed fields for optimistic locking.

Selected Fields Click Add to select specific database fields for optimistic
locking.

Pessimistic Locking Specify to use pessimistic locking for this descriptor.

This applies only to descriptors that have had EJB
information configured for them (see "Configuring a
Descriptor With EJB Information" on page 25-45).

Wait for Lock Specify whether or not TopLink should wait for a data
source lock. When not selected, the thread of execution
will immediately throw a DatabaseException if it
cannot acquire a read lock on the object.

When selected, the thread of execution will wait
indefinitely until the read lock is released, at which time,
it will attempt to acquire it. Use this option with care as it
can lead to application deadlocks.

1 You cannot use field locking with the AttributeChangeTrackingPolicy (see "Attribute Change
Tracking Policy" on page 97-8).

Field Description

Configuring Returning Policy

Configuring a Descriptor 25-67

Using Java
This section describes the following:

■ Configuring an Optimistic Locking Policy

■ Configuring Optimistic Locking Policy Cascading

■ Configuring a Pessimistic Locking Policy

Configuring an Optimistic Locking Policy
Use the ClassDescriptor method setOptimisticLockingPolicy to set an
instance of the appropriate optimistic field locking policy:

■ FieldsLockingPolicy

■ AllFieldsLockingPolicy

■ ChangedFieldsLockingPolicy

■ SelectedFieldsLockingPolicy

■ VersionLockingPolicy

■ TimestampLockingPolicy

Use the ClassDescriptor method getOptimisticLockingPolicy to get the
selected locking policy type and configure it.

Configuring Optimistic Locking Policy Cascading
If you are using a VersionLockingPolicy, you can enable cascading to configure
TopLink to automatically force a version field update on a parent object when its
privately owned child object’s version field changes. Use VersionLockingPolicy
method setIsCascaded passing in a boolean of true to enable cascading, or
false to disable cascading.

For more information, see "Optimistic Version Locking Policies and Cascading" on
page 23-19.

Configuring a Pessimistic Locking Policy
You can configure a descriptor with a PessimisticLockingPolicy only when
using a CMPPolicy. That is, you only can configure a PessimisticLockingPolicy
for descriptors that support EJB information (see "Configuring a Descriptor With EJB
Information" on page 25-45) in a CMP project.

Instantiate a CMPPolicy and use CMPPolicy method
setPessimisticLockingPolicy to set an instance of
PessimisticLockingPolicy. Then use the ClassDescriptor method
setCMPPolicy to set the CMPPolicy.

Configuring Returning Policy
Using a ReturningPolicy, you can obtain field values from the data source when
inserting or updating an object. TopLink uses the values that the data source returns to
update the object attributes that map to these fields. You can specify which fields to
return for inserts and updates. For insert fields, you can also specify whether or not to
include the field value in the insert operation.

A ReturningPolicy is useful when the data source provides default or initial field
values through defaults, triggers, or stored procedures. You can also use a

Configuring Returning Policy

25-68 Oracle TopLink Developer’s Guide

ReturningPolicy to allow the data source to assign a sequence or primary key
value.

Any object attribute that you do not configure in a descriptor’s ReturningPolicy
receives the default behavior: in the context of a unit of work, if the attribute has
changed, its value is written to the database. If the SQL statement invokes a trigger or
stored procedure that modifies the database field, the database generated value is not
reflected by the object.

Use caution when deciding on whether or not to use a ReturningPolicy, as doing
so may effect insert or update performance and is not compatible with batch writing
(see "Batch Writing" on page 11-15).

By default, you can use a ReturningPolicy with an Oracle Database, in which case,
TopLink uses the Oracle RETURNING clause (see "Using TopLink Workbench" on
page 25-68).

You can use a ReturningPolicy with a non-Oracle database if you configure your
descriptor's insert or update query to use a stored procedure that returns the desired
returned values as output parameters (see "Using Java" on page 25-69).

Table 25–39 summarizes which descriptors support returning policy configuration.

Using TopLink Workbench
To specify the return policy for a descriptor, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

If the Returning advanced property is not visible for the descriptor, right-click the
descriptor and choose Select Advanced Properties > Returning from the context
menu or from the Selected menu.

2. Click the Returning tab in the Editor.

Table 25–30 Descriptor Support for Fetch Group Configuration

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Object-Relational Descriptors

EIS Descriptors1

1 EIS root descriptors only (see "EIS Root Descriptors" on page 24-5).

XML Descriptors

Configuring Returning Policy

Configuring a Descriptor 25-69

Figure 25–39 Returning Tab

Use the following information to enter data in each field on the tab:

To remove a database field from the descriptor’s ReturningPolicy, select the field
in the Insert or Update window and click Remove.

Using Java
You use a ReturningPolicy to configure how TopLink handles returning with the
attributes of an object on a field-by-field basis. Table 25–31 describes the
ReturnPolicy methods you use to tell TopLink how to handle a particular database
field. Each method takes a String or a DatabaseField type parameter as field
name.

Field Description

Insert These options apply to insert operations:

Name Click Add to add a database field to this ReturningPolicy for
insert operations.

Return-only When selected, TopLink only returns a value for this field; it will
not include the field in the insert.

When not selected, TopLink returns a value for this field and
includes the value in the insert.

Update These options apply to update operations:

Name Click Add to add a database field to this ReturningPolicy for
update operations

Note: If you are using TopLink Workbench, you cannot configure a
returning policy for an attribute mapped with a transformation
mapping (see "Transformation Mapping" on page 33-15).

Table 25–31 Return Policy Methods

Method
Applies to SQL
Statements of Type...

Writes Current Value of
Field to Database?

Returns
Database-
Generated
Result?

addFieldForInsert INSERT Yes Yes

addFieldForInsertReturnOnly INSERT No Yes

Configuring Instantiation Policy

25-70 Oracle TopLink Developer’s Guide

You configure a descriptor with a ReturningPolicy using ClassDescriptor
method setReturningPolicy.

Configuring Instantiation Policy
The TopLink runtime instantiates new instances of a class according to the
instantiation policy you configure on the class’s descriptor.

Table 25–32 summarizes which descriptors support an instantiation policy.

You can specify one of the following types of instantiation policy:

■ Default: TopLink creates a new instance of a class by calling the class’s default
constructor.

■ Method: TopLink creates a new instance of a class by calling a public static
method that you define on the class descriptor.

■ Factory: TopLink creates a new instance of a class by calling the appropriate
methods on a separate class that you implement according to the Factory design
pattern.

Using TopLink Workbench
To set the instantiation policy for a descriptor, use this procedure:

1. In the Navigator, select a descriptor.

If the Instantiation advanced property is not visible for the descriptor, right-click
the descriptor and choose Select Advanced Properties > Instantiation from the
context menu or from the Selected menu.

2. Click the Instantiation tab.

addFieldForUpdate UPDATE Yes Yes

Table 25–32 Descriptor Support for Instantiation Policy

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Object-Relational Descriptors

EIS Descriptors

XML Descriptors

Table 25–31 (Cont.) Return Policy Methods

Method
Applies to SQL
Statements of Type...

Writes Current Value of
Field to Database?

Returns
Database-
Generated
Result?

Configuring Copy Policy

Configuring a Descriptor 25-71

Figure 25–40 Instantiation Tab

Use the following information to enter data in each field on the tab:

Using Java
Use one of the following ClassDescriptor methods to set the appropriate type of
instantiation policy:

■ useDefaultConstructorInstantiationPolicy

■ useMethodInstantiationPolicy

■ useFactoryInstantiationPolicy

Configuring Copy Policy
The TopLink unit of work feature must be able to produce an exact copy (clone)
persistent objects. Table 25–33 summarizes which descriptors support a copy policy.

Field Description

Use Default Constructor Specify if the default constructor of the class instantiates a
new instance.

Use Method Specify a method to execute to create objects from the
database.

Method Select the name of a method to be executed to create
objects from the database. The method must be a public,
static method on the descriptor’s class and must return a
new instance of the object.

Use Factory Specify an object factory method.

Factory Class Select the class of the factory object that creates the new
instances.

Factory Method Select the method to be used to obtain a factory object.
Choose <nothing> to use the default constructor.

Instantiation Method Select the method to be called on the factory object to
obtain a new instance that will be populated with data
from the data source.

Table 25–33 Configuring Descriptors with a Copy Policy

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Configuring Copy Policy

25-72 Oracle TopLink Developer’s Guide

TopLink supports the following two ways of copying objects:

■ Instantiation policy: By default, TopLink creates a new copy of an object by using
the currently configured instantiation policy (see "Configuring Instantiation
Policy" on page 25-70).

■ Method: TopLink creates a new copy of an object by calling a method on the object
that you specify. For example, you can specify the object’s clone method (or any
other appropriate method on the object).

Using TopLink Workbench
To specify the copy policy for a descriptor, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

If the Copying advanced property is not visible for the descriptor, right-click the
descriptor and choose Select Advanced Properties > Copying from the context
menu or from the Selected menu.

2. Click the Copying tab in the Editor.

Figure 25–41 Copying Tab

Use the following information to enter data in each field on the tab:

Using Java
Use one of the following ClassDescriptor methods to set the appropriate type of
copy policy:

■ useCloneCopyPolicy(): the object must provide a clone method

■ useCloneCopyPolicy(java.lang.String cloneMethodName)

■ useInstantiationCopyPolicy()

Object-Relational Descriptors

EIS Descriptors

XML Descriptors

Field Description

Use Instantiation Policy Creates a new instance of the object using the descriptor’s
instantiation policy (see "Configuring Instantiation Policy" on
page 25-70).

Use Clone Method Specifies whether or not to call the clone method of the object.
Select a method from the list.

Table 25–33 (Cont.) Configuring Descriptors with a Copy Policy

Descriptor
Using TopLink
Workbench Using Java

Configuring Change Policy

Configuring a Descriptor 25-73

Configuring Change Policy
Use a change policy to specify how TopLink should track changes made to objects
after you register them with a unit of work. Table 25–34 summarizes which descriptors
support a change policy.

By default, TopLink uses the deferred change detection policy.

TopLink supports alternative change policies (policies other than
DeferredChangeDetectionPolicy) for attributes that use a subset of the
mappings that TopLink supports (see "Change Policy Mapping Support" on
page 97-9).

For CMP applications and EJB 3.0 persistent applications deployed to OC4J TopLink
automatically uses the attribute change tracking policy.

For more information, see "Unit of Work and Change Policy" on page 97-6.

Using Java
This section describes how to configure a descriptor with a change policy using Java,
and how to implement persistent classes for those change policies that are intrusive. It
includes information on configuring the following:

■ Configuring Deferred Change Detection Policy

■ Configuring Object Change Tracking Policy

■ Configuring Attribute Change Tracking Policy

Configuring Deferred Change Detection Policy
The DeferredChangeDetectionPolicy provides good unit of work commit
performance for a wide range of object change characteristics. It is the default change
policy. For more information, see "Deferred Change Detection Policy" on page 97-7).

Because it is the default, you do not need to explicitly configure this policy.

To configure TopLink to use a DeferredChangeDetectionPolicy, create a
descriptor amendment method (see "Configuring Amendment Methods" on
page 25-81) that sets the change policy, as Example 25–19 illustrates.

Configuring Object Change Tracking Policy
The ObjectChangeTrackingPolicy provides improved unit of work commit
performance for objects with few attributes, or with many attributes and many

Table 25–34 Descriptor Support for Change Policy

Descriptor

Deferred
Change
Detection
Policy

Object-L
evel
Change
Tracking
Policy

Attribute
Change
Tracking
Policy

Using
TopLink
Workbench Using Java

Relational Descriptors1

1 Relational class descriptors only (see "Relational Class Descriptors" on page 24-2).

Object-Relational Descriptors

EIS Descriptors2

2 EIS root descriptors only (see "EIS Root Descriptors" on page 24-5).

XML Descriptors

Configuring Change Policy

25-74 Oracle TopLink Developer’s Guide

changed attributes. For more information, see "Object-Level Change Tracking Policy"
on page 97-7).

For CMP applications and EJB 3.0 persistent applications deployed to an application
server, for which TopLink provides CMP integration (see "Application Server Support"
on page 7-1), when you configure a entity bean’s descriptor with an
ObjectLevelChangeTrackingPolicy, TopLink automatically generates code of a
concrete subclass to implement the TopLink ChangeTracker interface at deploy time.
Configuring an ObjectLevelChangeTrackingPolicy prevents TopLink from
automatically applying an AttributeChangeTrackingPolicy (see "Configuring
Attribute Change Tracking Policy" on page 25-75).

To configure TopLink to use an ObjectChangeTrackingPolicy, use this
procedure:

1. Create a descriptor amendment method (see "Configuring Amendment Methods"
on page 25-81) that sets the change policy, as Example 25–19 illustrates.

Example 25–19 Setting the ObjectChangeTrackingPolicy

descriptor.setObjectChangePolicy(new ObjectChangeTrackingPolicy());

2. For plain Java objects, code each of your persistent classes to implement the
ChangeTracker interface as Example 25–20 illustrates.

Example 25–20 Implementing the ChangeTracker Interface for the
ObjectChangeTrackingPolicy

public class Employee implements ChangeTracker {

PropertyChangeListener listener;

public PropertyChangeListener getTopLinkPropertyChangeListener() {
 return listener;
}

public void setTopLinkPropertyChangeListener(PropertyChangeListener listener)
{
 this.listener = listener;
}

...
public void setFirstName(String firstName) {
 propertyChange("firstName", getFirstName(), firstName);
 this.firstName = firstName;
}

...
public void propertyChange(String propertyName, Object oldValue, Object newValue) {

if (listener != null) {
if (oldValue != newValue) {

listener.propertyChange(
new PropertyChangeEvent(

this, propertyName, oldValue, newValue
)

);
}

}
}

}

Configuring Change Policy

Configuring a Descriptor 25-75

Configuring Attribute Change Tracking Policy
The AttributeChangeTrackingPolicy provides improved unit of work commit
performance for objects with many attributes and few changed attributes. In general,
this is the most efficient change policy. It is the default change policy for EJB 3.0
persistent applications and EJB 2.n CMP applications deployed to OC4J. For more
information, see "Attribute Change Tracking Policy" on page 97-8).

When you deploy a TopLink-enabled EJB 3.0 persistent application or EJB 2.n CMP
application to OC4J, TopLink automatically configures your persistent classes to use
the AttributeChangeTrackingPolicy and, using bytecode weaving (EJB 3.0) or
code generation (EJB 2.n), configures your persistence classes to implement the
TopLink ChangeTracker interface. In this case, you do not need to explicitly
configure this change policy.

To configure TopLink to use an AttributeChangeTrackingPolicy for plain Java
objects or other application servers, use this procedure:

1. Create a descriptor amendment method (see "Configuring Amendment Methods"
on page 25-81) that sets the change policy as Example 25–21 illustrates.

Example 25–21 Setting the DeferredChangeDetectionPolicy

descriptor.setObjectChangePolicy(new AttributeChangeTrackingPolicy());

2. Code each of your persistent classes to implement the ChangeTracker interface
as Example 25–22 illustrates.

Example 25–22 Implementing the ChangeTracker Interface for the
AttributeChangeTrackingPolicy

public class Employee implements ChangeTracker {

PropertyChangeListener listener;

public PropertyChangeListener getTopLinkPropertyChangeListener() {
 return listener;
}

public void setTopLinkPropertyChangeListener(PropertyChangeListener listener) {
 this.listener = listener;
}

...
public void setId(long id) {

_id_change(id);
}

protected void id_change(long id) {
 if (listener != null && this.id != id) { // throttle unnecessary events
listener.propertyChange(

new PropertyChangeEvent(
this,
"id",
new Long(getId()), // primitives must be wrapped
new Long(id)

)
);

Note: You cannot use the AttributeChangeTrackingPolicy if
you are using any instance of FieldsLockingPolicy (see
"Optimistic Field Locking Policies" on page 23-20).

Configuring a History Policy

25-76 Oracle TopLink Developer’s Guide

}
this.id = id;

}
...
}

Configuring a History Policy
If you want to use historical sessions (see "Historical Sessions" on page 72-25) to
execute historical queries (see "Historical Queries" on page 93-21) against a historical
schema of your own design, configure your descriptors with a TopLink
HistoryPolicy that describes your historical schema.

If you are using an Oracle database platform for Oracle9i Database Server (or later),
you can query the historical versions of objects automatically maintained by the Oracle
database without the need for a history policy. For more information, see "Configuring
Historical Sessions Using an Oracle Platform" on page 78-1.

Table 25–35 summarizes which descriptors support history policy configuration.

There are many ways to configure a historical database schema. TopLink supports
several historical schema configurations that you can describe with a
HistoryPolicy (see "Historical Session Limitations" on page 72-25).

Example Historical Schema
As shown in Table 25–36 and Table 25–37, a common approach is to define a special
history table to store past versions of an object: one history table for each regular table
that requires historical persistence. The history table typically has the same fields as
the corresponding regular table plus fields (such as row start and end) used to define
an interval that represents the life time of a particular version.

TopLink will include the history tables described by a HistoryPolicy when you
execute a historical query.

Table 25–36 shows the schema for an EMPLOYEE table. The table currently contains one
EMPLOYEE instance.

Table 25–35 Descriptor Support for History Policy Configuration

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Object-Relational Descriptors

EIS Descriptors

XML Descriptors

Note: TopLink assumes that the current version of an object
corresponds to the historical table row whose row end field is NULL.

Table 25–36 Example Table for EMPLOYEE

EMP_ID F_NAME L_NAME SALARY

1 Jane Doe 55000

Configuring a History Policy

Configuring a Descriptor 25-77

Table 25–37 shows one possible history table EMPLOYEE_HIST that stores historical
versions of employees. The table contains the current EMPLOYEE (the version with a
ROW_END value of NULL) and one historical version.

Because every record has a start and end interval, the history table can store multiple
versions of the same object (with the same primary key). The unique identifier of a
particular version is given by the existing primary key, plus the value of the start field.
For example, in Table 25–37, the unique identifier of the current version is given by
(EMP_ID, START) = (1, 31/08/2004).

Using Java
Example 25–23 shows how to describe the schema shown in Table 25–36 and
Table 25–37 using the TopLink HistoryPolicy:

Example 25–23 HistoryPolicy for One Table

HistoryPolicy policy = new HistoryPolicy();
policy.addStartFieldName("ROW_START");
policy.addEndFieldName("ROW_END");
policy.addHistoryTableName("EMPLOYEE", "EMPLOYEE_HIST");
// Assuming database triggers or stored procedures update history tables
policy.setShouldHandleWrites(false);

employeeDescriptor.setHistoryPolicy(policy);

You can specify more than one table with a HistoryPolicy as shown in
Example 25–24. In this example, all history tables have a start field named ROW_START
but the EMPLOYEE_HIST and SALARY_HIST tables have different end fields. To avoid
ambiguity, the end field names are prefixed with their respective history table names.

Example 25–24 HistoryPolicy for Multiple Tables

HistoryPolicy policy = new HistoryPolicy();
policy.addStartFieldName("ROW_START");
policy.addEndFieldName("EMPLOYEE_HIST.ROW_END");
policy.addEndFieldName("SALARY_HIST.VALID_UNTIL");
policy.addHistoryTableName("EMPLOYEE", "EMPLOYEE_HIST");
policy.addHistoryTableName("SALARY", "SALARY_HIST");
// Assuming database triggers or stored procedures update history tables
policy.setShouldHandleWrites(false);

employeeDescriptor.setHistoryPolicy(policy);

Configuring Write Responsibility
Use HistoryPolicy method setShouldHandleWrites to specify whether or not
TopLink is responsible for writing data to history tables. By default,
setShouldHandleWrites is set to true.

Either the database or TopLink can be responsible for writing data to the history tables.

Table 25–37 Example History Table EMPLOYEE_HIST

EMP_ID F_NAME L_NAME SALARY ROW_START ROW_END

1 Jane Doe 50000 29/08/2004 31/08/2004

1 Jane Doe 55000 31/08/2004 NULL

Configuring Wrapper Policy

25-78 Oracle TopLink Developer’s Guide

Typically, the database is responsible for writing data to history tables by way of
triggers or stored procedures that customize create, insert, and delete operations to
modify both the regular table and the history table appropriately.

Alternatively, you can make TopLink responsible by customizing insert, update, and
delete queries using the DescriptorQueryManager (see "Configuring Default
Query Implementations" on page 93-23).

Configuring Wrapper Policy
TopLink lets you use wrappers (or proxies) in cases where the persistent class is not
the same class that is to be presented to users.

For example, in the EJB specification prior to 3.0, the entity bean class (the class that
implements javax.ejb.EntityBean) is persistent, but is hidden from users who
interact with a class that implements javax.ejb.EJBObject (local or remote
interface class). In this example, the EJBObject acts as a proxy (or wrapper) for the
EntityBean.

In cases where such a wrapper is used, TopLink continues to make the class specified
in the descriptor persistent, but returns the appropriate instance of the wrapper
whenever a persistent object is requested.

Table 25–38 summarizes which descriptors support a wrapper policy.

Use a wrapper policy to tell TopLink how to create wrappers for a particular persistent
class, and how to obtain the underlying persistent object from a given wrapper
instance.

If you specify a wrapper policy, TopLink uses the policy to wrap and unwrap persistent
objects as required:

■ Wrapper policies implement the interface
oracle.toplink.descriptors.WrapperPolicy.

■ A wrapper policy is specified by setting the wrapper policy for the TopLink
descriptor.

■ By default, no wrapper policy is used (the wrapper policy for a descriptor is null
by default).

Table 25–38 Descriptor Support for Wrapper Policy

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Object-Relational Descriptors

EIS Descriptors

XML Descriptors

Note: Wrapper policies are advanced TopLink options. Using a
wrapper policy may not be compatible with some TopLink
Workbench features.

Configuring Fetch Groups

Configuring a Descriptor 25-79

For CMP descriptors, the EJB wrapper policy is automatically configured during
deployment, so does not need to be set in the descriptor (see "Configuring a Descriptor
With EJB Information" on page 25-45).

For BMP descriptors, you must set a BMPWrapperPolicy on the descriptor. The
BMPWrapperPolicy includes the bean's information including the bean-name,
primary-key-class, home-interface, and remote-interface.

Wrapper policies cannot be set using TopLink Workbench and can be set only using
Java code (see "Using Java" on page 25-79).

Using Java
Use the ClassDescriptor method setWrapperPolicy to set the appropriate
instance of WrapperPolicy.

Example 25–25 shows how to amend a BMP descriptor with the required BMP
information.

Example 25–25 Configuring a BMP Wrapper Policy

public static void addToDescriptor(ClassDescriptor descriptor) {
BMPWrapperPolicy policy = new BMPWrapperPolicy(

"employee",
EmployeeHome.class,
EmployeePK.class,
Employee.class,
new Hashtable());

descriptor.setWrapperPolicy(policy);

Configuring Fetch Groups
By default, when you execute an object-level read query for a particular object class,
TopLink returns all the persistent attributes mapped in the object’s descriptor. With
this single query, all the object’s persistent attributes are defined, and calling their get
methods returns the value directly from the object.

When you are interested in only some of the attributes of an object, it may be more
efficient to return only a subset of the object’s attributes using a fetch group.

Using a fetch group, you can define a subset of an object’s attributes and associate the
fetch group with either a ReadObjectQuery or ReadAllQuery query. When you
execute the query, TopLink retrieves only the attributes in the fetch group. TopLink
automatically executes a query to fetch all the attributes excluded from this subset
when and if you call a get method on any one of the excluded attributes.

You can define more than one fetch group for a class. You can optionally designate at
most one such fetch group as the default fetch group. If you execute either a
ReadObjectQuery or ReadAllQuery query without specifying a fetch group,
TopLink will use the default fetch group, unless you configure the query otherwise
(see "Configuring Default Fetch Group Behavior" on page 96-3).

Currently, you can use fetch groups only in CMP projects for EJB objects. For non-CMP
classes, use partial object querying (see "Partial Object Queries" on page 93-11).

Before using fetch groups, Oracle recommends that you perform a careful analysis of
system use. In many cases, the extra queries required to load attributes not in the fetch
group could well offset the gain from the partial attribute loading. For more

Configuring Fetch Groups

25-80 Oracle TopLink Developer’s Guide

information about optimizing read performance, see "Read Optimization Examples"
on page 11-19.

Table 25–39 summarizes which descriptors support fetch group configuration.

This section describes how to create a fetch group, store it in a descriptor, and
optionally designate a fetch group as the default fetch group for its descriptor
reference class.

For more information, see the following:

■ "Fetch Groups" on page 23-5

■ "Fetch Groups and Object-Level Read Queries" on page 93-13

■ "Configuring Default Fetch Group Behavior" on page 96-3

Using Java
To configure a fetch group, use a descriptor amendment method (see "Configuring
Amendment Methods" on page 25-81) as Example 25–26 shows.

Example 25–26 Configuring a Fetch Group

//Create a FetchGroupManager for the descriptor
descriptor.setFetchGroupManager(new FetchGroupManager());
// Create a FetchGroup
FetchGroup group = new FetchGroup("nameOnly");
// Add attributes to FetchGroup. Alternatively, use
// FetchGroup method addAttributes, passing in a Set of String attribute names
group.addAttribute("firstName");
group.addAttribute("lastName");
// Add the FetchGroup to the FetchGroupManager
descriptor.getFetchGroupManager().addFetchGroup(group);
//Set the default fetch group
descriptor.getFetchGroupManager().setDefaultFetchGroup(group);

Each instance of FetchGroup that you store in a descriptor must be configured with a
fetch group name that is unique for that descriptor (that is, each descriptor owns a set
of named fetch groups).

When configuring fetch groups, note that the primary key fields and other required
fields (such as inheritance type and optimistic lock version) are always included in all
fetch groups.

Fetch groups can include direct and relationship attributes. Including a relationship
attribute in a fetch group does not cause the relationship to be joined or instantiated:
joining and indirection are set independently of fetch groups.

Table 25–39 Descriptor Support for Fetch Group Configuration

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Object-Relational Descriptors

EIS Descriptors

XML Descriptors

Configuring Amendment Methods

Configuring a Descriptor 25-81

After you add a fetch group to a descriptor, you can configure a ReadObjectQuery
or ReadAllQuery query with this fetch group by name (nameOnly) or rely on
TopLink to use this fetch group by default. For more information, see "Using Queries
With Fetch Groups" on page 96-2.

Configuring Amendment Methods
Some TopLink descriptor features cannot be configured from TopLink Workbench. To
use these features, you must write a Java method to amend the descriptor after it is
loaded as part of the project. This method must have the following characteristics:

■ Be public static.

■ Take a single parameter of type
oracle.toplink.descriptors.ClassDescriptor.

In the implementation of this method, you can configure advanced features of the
descriptor using any of the public descriptor and mapping API.

Table 25–40 summarizes which descriptors support amendment methods.

This section describes how to associate an amendment method with a descriptor.

For more information about how to implement an amendment method, see
"Amendment and After-Load Methods" on page 23-5.

To customize a session, use a session customizer class (see "Configuring Customizer
Class" on page 74-13).

Using TopLink Workbench
To use an amendment method with a descriptor (after it is loaded as part of the
project) use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

If the After load advanced property is not visible for the descriptor, right-click the
descriptor and choose Select Advanced Properties > After Load from context
menu or from the Selected menu.

2. Click the After Load tab in the Editor.

Table 25–40 Descriptor Support for Amendment Methods

Descriptor
Using TopLink
Workbench Using Java

Relational Descriptors

Object-Relational Descriptors

EIS Descriptors

XML Descriptors

Configuring Amendment Methods

25-82 Oracle TopLink Developer’s Guide

Figure 25–42 After Load Tab

Field Description

Class Click Browse and choose the class of the method to execute.

Static Method Use the Static Method list to choose the static method to execute at
run time, after loading the descriptor. The method must be public
static and take a single attribute of type
oracle.toplink.descriptors.ClassDescriptor.

Configuring a Relational Descriptor 26-1

26
Configuring a Relational Descriptor

This chapter describes how to configure a relational descriptor.

For more information, see the following:

■ "Descriptor Creation Overview" on page 24-1

■ "Relational Descriptors" on page 23-11

Relational Descriptor Configuration Overview
Table 26–1 lists the default configurable options for a relational descriptor.

Table 26–1 Configurable Options for Relational Descriptor

Option Type
TopLink
Workbench Java

"Configuring Associated Tables" on page 26-2 Basic

"Configuring Primary Keys" on page 25-3 Basic

"Configuring Sequencing at the Descriptor Level" on page 26-3 Basic

"Configuring Read-Only Descriptors" on page 25-5 Advanced

"Configuring Unit of Work Conforming at the Descriptor Level"
on page 25-6

Advanced

"Configuring Descriptor Alias" on page 25-7 Advanced

"Configuring Descriptor Comments" on page 25-9 Advanced

 "Configuring Classes" on page 4-41 Basic

"Configuring Named Queries at the Descriptor Level" on
page 25-10

Advanced

"Configuring Custom SQL Queries for Basic Persistence
Operations" on page 26-6

Advanced

"Configuring Query Timeout at the Descriptor Level" on
page 25-26

Advanced

"Configuring Cache Refreshing" on page 25-27 Advanced

"Configuring Query Keys" on page 25-30 Advanced

"Configuring Interface Query Keys" on page 25-33 Advanced

"Configuring Interface Alias" on page 26-10 Advanced

"Configuring Cache Type and Size at the Descriptor Level" on
page 25-35

Advanced

"Configuring Cache Isolation at the Descriptor Level" on
page 25-37

Advanced

"Configuring Cache Coordination Change Propagation at the
Descriptor Level" on page 25-40

Advanced

Configuring Associated Tables

26-2 Oracle TopLink Developer’s Guide

Configuring Associated Tables
Each relational class descriptor (see "Relational Class Descriptors" on page 24-2) must
be associated with a database table for storing instances of that class. This does not
apply to relational aggregate descriptors (see "Relational Aggregate Descriptors" on
page 24-2).

Using TopLink Workbench
To associate a descriptor with a database table, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

"Configuring Cache Expiration at the Descriptor Level" on
page 25-42

Advanced

"Configuring Cache Existence Checking at the Descriptor Level"
on page 25-43

Advanced

"Configuring a Descriptor With EJB Information" on page 25-45 Advanced

"Configuring a Relational Descriptor as a Class or Aggregate
Type" on page 26-11

Advanced

"Configuring Reading Subclasses on Queries" on page 25-49 Advanced

"Configuring Inheritance for a Child (Branch or Leaf) Class
Descriptor" on page 25-51

Advanced

"Configuring Inheritance for a Parent (Root) Descriptor" on
page 25-52

Advanced

"Configuring Inheritance Expressions for a Parent (Root) Class
Descriptor" on page 25-55

Advanced

"Configuring Inherited Attribute Mapping in a Subclass" on
page 25-58

Advanced

"Configuring Multitable Information" on page 26-13 Advanced

"Configuring a Domain Object Method as an Event Handler" on
page 25-59

Advanced

"Configuring a Descriptor Event Listener as an Event Handler"
on page 25-62

Advanced

"Configuring Locking Policy" on page 25-64 Advanced

"Configuring Returning Policy" on page 25-67 Advanced

"Configuring Instantiation Policy" on page 25-70 Advanced

"Configuring Copy Policy" on page 25-71 Advanced

"Configuring Change Policy" on page 25-73 Advanced

"Configuring a History Policy" on page 25-76 Advanced

"Configuring Wrapper Policy" on page 25-78 Advanced

"Configuring Fetch Groups" on page 25-79 Advanced

"Configuring Amendment Methods" on page 25-81 Advanced

"Configuring a Mapping" on page 32-1 Basic

Table 26–1 (Cont.) Configurable Options for Relational Descriptor

Option Type
TopLink
Workbench Java

Configuring Sequencing at the Descriptor Level

Configuring a Relational Descriptor 26-3

Figure 26–1 Descriptor Info Tab, Associated Table Options

Use the Associated Table list to select a database table for the descriptor. You must
associate a descriptor with a database table before specifying primary keys.

Using Java
To configure a descriptor’s associated table(s) using Java, use
RelationalDescriptor methods setTableName or addTableName.

Configuring Sequencing at the Descriptor Level
Sequencing allows TopLink to automatically assign the primary key or ID of an object
when the object is inserted.

You configure TopLink sequencing at the project level ("Configuring Sequencing at the
Project Level" on page 20-3) or session level (see "Configuring Sequencing at the
Session Level" on page 83-4) to tell TopLink how to obtain sequence values: that is,
what type of sequences to use.

To enable sequencing, you must then configure TopLink sequencing at the descriptor
level to tell TopLink into which table and column to write the sequence value when an
instance of a descriptor’s reference class is created.

Only descriptors that have been configured with a sequence field and a sequence
name will be assigned sequence numbers.

The sequence field is the database field that the sequence number will be assigned to:
this is almost always the primary key field (see "Configuring Primary Keys" on
page 25-3). The sequence name is the name of the sequence to be used for this
descriptor. The purpose of the sequence name depends on the type of sequencing you
are using:

When using table sequencing, the sequence name refers to the row's SEQ_NAME
value used to store this sequence.

When using Oracle native sequencing, the sequence name refers to the Oracle
sequence object that has been created in the database. When using native sequencing
on other databases, the sequence name does not have any direct meaning, but should
still be set for compatibility.

Configuring Sequencing at the Descriptor Level

26-4 Oracle TopLink Developer’s Guide

The sequence name can also refer to a custom sequence defined in the project.

For more information, see "Understanding Sequencing in Relational Projects" on
page 17-14.

Using TopLink Workbench
To configure sequencing for a descriptor, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Figure 26–2 Descriptor Info Tab, Sequencing Options

Use the following information to specify sequencing options:

Field Description

Use Sequencing Specify if this descriptor uses sequencing. If selected, specify the
Name, Table, and Field for sequencing.

Name Enter the name of the sequence.

■ For table sequencing: Enter the name of the value in the
sequence name column (for default table sequencing, the
column named SEQ_NAME) of the sequence table (for default
table sequencing, the table named SEQUENCE) that TopLink
uses to look up the corresponding sequence count value (for
default table sequencing, the corresponding value in the SEQ_
COUNT column) for this descriptor’s reference class. For more
information, see "Table Sequencing" on page 17-16.

■ For native sequencing (Oracle platform): Enter the name of
the sequence object that Oracle Database creates to manage
sequencing for this descriptor’s reference class. For more
information, see "Native Sequencing With an Oracle Database
Platform" on page 17-18

■ For native sequencing (non-Oracle platform): For database
compatibility, enter a generic name for the sequence, such as
SEQ. For more information, see "Native Sequencing With a
Non-Oracle Database Platform" on page 17-19.

Configuring Sequencing at the Descriptor Level

Configuring a Relational Descriptor 26-5

Using Java
Using Java, you can configure sequencing to use multiple different types of sequence
for different descriptors. You configure the sequence objects on the session's login and
reference them from the descriptor by their name. The descriptor's sequence name
refers to the sequence object's name you register in the session's login.

The following examples assume the session sequence configuration shown in
Example 26–1.

Example 26–1 Example Sequences

dbLogin.addSequence(new TableSequence("EMP_SEQ", 25));
dbLogin.addSequence(new DefaultSequence("PHONE_SEQ", 30));
dbLogin.addSequence(new UnaryTableSequence("ADD_SEQ", 55));
dbLogin.addSequence(new NativeSequence("NAT_SEQ", 10));

Using Java code, you can perform the following sequence configurations:

■ Configuring a Sequence by Name

■ Configuring the Same Sequence for Multiple Descriptors

■ Configuring the Platform Default Sequence

Configuring a Sequence by Name
As Example 26–2 shows, you associate a sequence with a descriptor by sequence
name. The sequence EMP_SEQ was added to the login for this project in Example 26–1.
When a new instance of the Employee class is created, the TopLink runtime will use
the sequence named EMP_SEQ (in this example, a TableSequence) to obtain a value
for the EMP_ID field.

Example 26–2 Associating a Sequence with a Descriptor

empDescriptor.setSequenceNumberFieldName("EMP_ID"); // primary key field
empDescriptor.setSequenceNumberName("EMP_SEQ");

Configuring the Same Sequence for Multiple Descriptors
As Example 26–3 shows, you can associate the same sequence with more than one
descriptor. In this example, both the Employee descriptor and Phone descriptor use
the same NativeSequence. Having descriptors share the same sequence can

Table Specify the name of the database table that contains the field (see
Field) into which TopLink is to write the sequence value when a
new instance of this descriptor’s reference class is created. This is
almost always this descriptor’s primary table.

Field Specify the name of the field in the specified table (see Table) into
which TopLink is to write the sequence value when a new instance
of this descriptor’s reference class is created. This field is almost
always the class’s primary key (see "Configuring Primary Keys" on
page 25-3).

■ For native sequencing (non-Oracle platform): Ensure that
your database schema specifies the correct type for this field
(see "Native Sequencing With a Non-Oracle Database Platform"
on page 17-19).

Field Description

Configuring Custom SQL Queries for Basic Persistence Operations

26-6 Oracle TopLink Developer’s Guide

improve pre-allocation performance. For more information on pre-allocation, see
"Sequencing and Preallocation Size" on page 17-20.

Example 26–3 Configuring a Sequence for Multiple Descriptors

empDescriptor.setSequenceNumberFieldName("EMP_ID"); // primary key field
empDescriptor.setSequenceNumberName("NAT_SEQ");
phoneDescriptor.setSequenceNumberFieldName("PHONE_ID"); // primary key field
phoneDescriptor.setSequenceNumberName("NAT_SEQ");

Configuring the Platform Default Sequence
In Example 26–4, you associate a nonexistent sequence (NEW_SEQ) with a descriptor.
Because you did not add a sequence named NEW_SEQ to the login for this project in
Example 26–1, the TopLink runtime will create a DefaultSequence named NEW_SEQ
for this descriptor. For more information about DefaultSequence, see "Default
Sequencing" on page 17-18.

Example 26–4 Configuring a Default Sequence

descriptor.setSequenceNumberFieldName("EMP_ID"); // primary key field
descriptor.setSequenceNumberName("NEW_SEQ");

Configuring Custom SQL Queries for Basic Persistence Operations
You can use TopLink to define an SQL query for each basic persistence operation
(insert, update, delete, read-object, read-all, or does-exist) so that when you query and
modify your relational-mapped objects, the TopLink runtime will use the appropriate
SQL query instead of the default SQL query.

SQL strings can include any fields that the descriptor maps, as well as arguments. You
specify arguments in the SQL string using #<arg-name>, such as:

select * from EMP where EMP_ID = #EMP_ID

The insert and update SQL strings can take any field that the descriptor maps as an
argument.

The read-object, delete and does-exist SQL strings can only take the primary key fields
as arguments.

The read-all SQL string must return all instances of the class and thus can take no
arguments.

You can define a custom SQL string for insert, update, delete, read-object, and read-all
using TopLink Workbench (see "Using TopLink Workbench" on page 26-7).

You can define a custom SQL string or Call object for insert, update, delete,
read-object, read-all, and does-exist using Java (see "Using Java" on page 26-8). Using a
Call, you can define more complex SQL strings and invoke custom stored
procedures.

For CMP projects, the ejb-jar.xml file stores query lists. You can define the queries
in the file and then read them into TopLink Workbench (see "Reading From the
ejb-jar.xml File" on page 18-16), or define them on the Queries tab and write them to
the file (see "Writing to the ejb-jar.xml File" on page 18-16).

Configuring Custom SQL Queries for Basic Persistence Operations

Configuring a Relational Descriptor 26-7

Using TopLink Workbench
To configure custom SQL queries for basic persistence operations:

1. In the Navigator, select a descriptor in a relational database project.

2. Click the Queries tab in the Editor.

3. Click the Custom SQL tab.

Figure 26–3 Queries, Custom SQL Tab

Click the appropriate SQL function tab and type your own SQL string to control these
actions for a descriptor. Use the following information to complete the tab:

Note: When you customize the update persistence operation for
an application that uses optimistic locking (see "Configuring
Locking Policy" on page 25-64), the custom update string must not
write the object if the row version field has changed since the initial
object was read. In addition, it must increment the version field if it
writes the object successfully.

For example:

update Employee set F_NAME = #F_NAME, VERSION = VERSION + 1
where (EMP_ID = #EMP_ID) AND (VERSION = #VERSION)

The update string must also maintain the row count of the
database.

Note: TopLink does not validate the SQL code that you enter.
Enter the SQL code appropriate for your database platform (see
"Data Source Platform Types" on page 81-3).

Tab Description

Insert Defines the insert SQL that TopLink uses to insert a new object’s data into
the database.

Configuring Custom SQL Queries for Basic Persistence Operations

26-8 Oracle TopLink Developer’s Guide

Using Java
The DescriptorQueryManager generates default SQL for the following persistence
operations:

■ Insert

■ Update

■ Delete

■ Read-object

■ Read-all

■ Does-exist

Using Java code, you can use the descriptor query manager to provide custom SQL
strings to perform these functions on a class-by-class basis.

Use ClassDescriptor method getQueryManager to acquire the
DescriptorQueryManager, and then use the DescriptorQueryManager
methods that Table 26–2 lists.

Update Defines the update SQL that TopLink uses to update any changed existing
object’s data in the database.

When you define a descriptor’s update query, you must conform to the
following:

■ If the application uses optimistic locking, you must ensure that the row
is not written if the version field has changed since the object was read.

■ The update query must increment the version field if the row is
written.

■ The update string must maintain the row count of the database.

Delete Defines the delete SQL that TopLink uses to delete an object.

Read Object Defines the read SQL that TopLink uses in any ReadObjectQuery, whose
selection criteria is based on the object’s primary key.

When you define a descriptor’s read-object query, your implementation
overrides any ReadObjectQuery, whose selection criteria is based on the
object’s primary key. TopLink generates dynamic SQL for all other
Session readObject method signatures.

To customize other Session readObject method signatures, define
additional named queries and use them in your application instead of the
Session methods.

Read All Defines the read-all SQL that TopLink uses when you call Session
method readAllObjects(java.lang.Class) passing in the
java.lang.Class that this descriptor represents.

When you define a descriptor’s read-all query, your implementation
overrides only the Session method readAll(java.lang.Class), not
the version that takes a Class and Expression. As a result, this query
reads every single instance. TopLink generates dynamic SQL for all other
Session readAll method signatures.

To customize other Session readAll method signatures, define
additional named queries and use them in your application instead of the
Session methods.

Tab Description

Configuring Custom SQL Queries for Basic Persistence Operations

Configuring a Relational Descriptor 26-9

Example 26–5 shows how to implement an amendment method to configure a
descriptor query manager to use custom SQL strings. Alternatively, using an
SQLCall, you can specify more complex SQL strings using features such as in, out,
and in-out parameters and parameter types (see "Using SQL Calls" on page 94-19).

Example 26–5 Configuring a Descriptor Query Manager with Custom SQL Strings

public static void addToDescriptor(ClassDescriptor descriptor) {

// Read-object by primary key procedure
descriptor.getQueryManager().setReadObjectSQLString(

"select * from EMP where EMP_ID = #EMP_ID"
);

// Read-all instances procedure
descriptor.getQueryManager().setReadAllSQLString(

"select * from EMP"
);

// Insert procedure
descriptor.getQueryManager().setInsertSQLString(

Table 26–2 Descriptor Query Manager Methods for Configuring Custom SQL

To Change the Default SQL for ... Use Descriptor Query Manager Method ...

Insert setInsertQuery (InsertObjectQuery query)

setInsertSQLString (String sqlString)

setInsertCall(Call call)

Update setUpdateQuery (UpdateObjectQuery query)

setUpdateSQLString (String sqlString)

setUpdateCall(Call call)

Delete setDeleteQuery (DeleteObjectQuery query)

setDeleteSQLString (String sqlString)

setDeleteCall(Call call)

Read setReadObjectQuery (ReadObjectQuery query)

setReadObjectSQLString (String sqlString)

setReadObjectCall(Call call)

Read all setReadAllQuery (ReadAllQuery query)

setReadAllSQLString (String sqlString)

setReadAllCall(Call call)

Does exist setDoesExistQuery(DoesExistQuery query)

setDoesExistSQLString(String sqlString)

setDoesExistCall(Call call)

Configuring Interface Alias

26-10 Oracle TopLink Developer’s Guide

"insert into EMP (EMP_ID, F_NAME, L_NAME, MGR_ID) values (#EMP_ID, #F_
NAME, #L_NAME, #MGR_ID)"

);

// Update procedure
descriptor.getQueryManager().setUpdateSQLString(

"update EMP set (F_NAME, L_NAME, MGR_ID) values (#F_NAME, #L_NAME, #MGR_
ID) where EMP_ID = #EMP_ID"

);
}

Example 26–6 shows how to implement an amendment method to configure a
descriptor query manager to use Oracle stored procedures using a
StoredProcedureCall (see "Using a StoredProcedureCall" on page 94-21). This
example uses output cursors to return the result set (see "Handling Cursor and Stream
Query Results" on page 96-15).

Example 26–6 Configuring a Descriptor Query Manager with Custom Stored Procedure
Calls

public static void addToDescriptor(ClassDescriptor descriptor) {

// Read-object by primary key procedure
StoredProcedureCall readCall = new StoredProcedureCall();
readCall.setProcedureName("READ_EMP");
readCall.addNamedArgument("P_EMP_ID", "EMP_ID");
readCall.useNamedCursorOutputAsResultSet("RESULT_CURSOR");
descriptor.getQueryManager().setReadObjectCall(readCall);

// Read-all instances procedure
StoredProcedureCall readAllCall = new StoredProcedureCall();
readAllCall.setProcedureName("READ_ALL_EMP");
readAllCall.useNamedCursorOutputAsResultSet("RESULT_CURSOR");
descriptor.getQueryManager().setReadAllCall(readAllCall);

// Insert procedure
StoredProcedureCall insertCall = new StoredProcedureCall();
insertCall.setProcedureName("INSERT_EMP");
insertCall.addNamedArgument("P_EMP_ID", "EMP_ID");
insertCall.addNamedArgument("P_F_NAME", "F_NAME");
insertCall.addNamedArgument("P_L_NAME", "L_NAME");
insertCall.addNamedArgument("P_MGR_ID", "MGR_ID");
descriptor.getQueryManager().setInsertCall(insertCall);

// Update procedure
StoredProcedureCall updateCall = new StoredProcedureCall();
updateCall.setProcedureName("UPDATE_EMP");
updateCall.addNamedArgument("P_EMP_ID", "EMP_ID");
updateCall.addNamedArgument("P_F_NAME", "F_NAME");
updateCall.addNamedArgument("P_L_NAME", "L_NAME");
updateCall.addNamedArgument("P_MGR_ID", "MGR_ID");
descriptor.getQueryManager().setUpdateCall(updateCall);

}

Configuring Interface Alias
An interface alias allows an interface to be used to refer to a descriptor instead of the
implementation class. This can be useful for classes that have public interface and the
applications desire to refer to the class using the public interface. Specifying the

Configuring a Relational Descriptor as a Class or Aggregate Type

Configuring a Relational Descriptor 26-11

interface alias allows any queries executed on a TopLink session to use the interface as
the reference class instead of the implementation class.

This section includes information on configuring an interface alias. Interfaces cannot
be created in TopLink Workbench, you must add the Java package or class to your
TopLink Workbench project before configuring it.

Using TopLink Workbench
Use the Interface Alias tab to specify a descriptor’s alias. Each descriptor can have one
interface alias. Use the interface in queries and relationship mappings.

To specify an interface alias, use this procedure:

1. In the Navigator, select a descriptor.

If the Interface Alias advanced property is not visible for the descriptor, right-click
the descriptor and choose Select Advanced Properties > Interface Alias from
context menu or from the Selected menu.

2. Click the Interface Alias tab.

Figure 26–4 Interface Alias Tab

In the Interface Alias field, click Browse and select an interface.

Using Java
To configure a descriptor with an interface alias using Java, create an amendment
method (see "Configuring Amendment Methods" on page 25-81) and use
InterfacePolicy method addParentInterface as Example 26–7 shows.

Example 26–7 Configuring an Interface Alias

public static void addToDescriptor(Descriptor descriptor) {
descriptor.getInterfacePolicy().addParentInterface(MyInterface.class);

}

Configuring a Relational Descriptor as a Class or Aggregate Type
By default, when you add a Java class to a relational project (see "Configuring Project
Classpath" on page 19-3), TopLink Workbench creates a relational class descriptor for
it. A class descriptor is applicable to any persistent object except an object that is
owned by another in an aggregate relationship. In this case, you must describe the
owned object with an aggregate descriptor. Using a class descriptor, you can configure
any relational mapping except aggregate collection and aggregate object mappings.

Note: If you use an interface alias, do not associate an interface
descriptor with the interface.

Configuring a Relational Descriptor as a Class or Aggregate Type

26-12 Oracle TopLink Developer’s Guide

An aggregate object is an object that is strictly dependent on its owning object.
Aggregate descriptors do not define a table, primary key, or many of the standard
descriptor options as they obtain these from their owning descriptor. If you want to
configure an aggregate mapping to associate data members in a target object with
fields in a source object’s underlying database tables (see Chapter 41, "Configuring a
Relational Aggregate Collection Mapping" and Chapter 43, "Configuring a Relational
Aggregate Object Mapping"), you must designate the target object’s descriptor as an
aggregate.

Alternatively, you can remove the aggregate designation from a relational descriptor
and return it to its default type.

You can configure inheritance for a descriptor designated as an aggregate (see
"Configuring Inheritance for a Child (Branch or Leaf) Class Descriptor" on page 25-51),
however, in this case, all the descriptors in the inheritance tree must be aggregates.
Aggregate and class descriptors cannot exist in the same inheritance tree. For more
information, see "Aggregate and Composite Descriptors and Inheritance" on
page 23-17.

If you configure a descriptor as an aggregate, you cannot configure the descriptor with
EJB information (see "Configuring a Descriptor With EJB Information" on page 25-45).

For more information, see "Descriptors and Aggregation" on page 23-5.

Using TopLink Workbench
To configure a relational descriptor as class or aggregate, use this procedure.

1. In the Navigator, select a relational descriptor.

2. Click the Class or Aggregate descriptor button on the mapping toolbar.

You can also select the descriptor and choose Selected > Descriptor Type > Class
or Aggregate from the menu or by right-clicking on the descriptor in the
Navigator window and selecting Descriptor Type > Class or Aggregate from the
context menu.

3. If you select Aggregate, specify each of the aggregate descriptor’s attributes as a
direct to field mapping. See Chapter 35, "Configuring a Relational Direct-to-Field
Mapping" for more information.

Although the attributes of a target class are not mapped directly to a data source until
you configure an aggregate object mapping, you must still specify their mapping type
in the target class’s descriptor. This tells TopLink what type of mapping to use when
you do configure the aggregate mapping in the source object’s descriptor. For more
information, see "Aggregate and Composite Descriptors in Relational Projects" on
page 23-5.

Using Java
Using Java, to configure a relational descriptor as an aggregate, use
ClassDescriptor method descriptorIsAggregate.

To configure a relational descriptor for use in an aggregate collection mapping, use
ClassDescriptor method descriptorIsAggregateCollection.

To configure a relational descriptor as a nonaggregate, use ClassDescriptor
method descriptorIsNormal.

Configuring Multitable Information

Configuring a Relational Descriptor 26-13

Configuring Multitable Information
Descriptors can use multiple tables in mappings. Use multiple tables when either of
the following occurs:

■ A subclass is involved in inheritance, and its superclass is mapped to one table,
while the subclass has additional attributes that are mapped to a second table.

■ A class is not involved in inheritance and its data is spread out across multiple
tables.

When a descriptor has multiple tables, you must be able to join a row from the
primary table to all the additional tables. By default, TopLink assumes that the
primary key of the first, or primary, table is included in the additional tables, thereby
joining the tables. TopLink also supports custom methods for joining tables. If the
primary key field names of the multiple tables do not match, a foreign key can be used
to join the tables. The foreign key can either be from the primary table to the secondary
table, or from the secondary table to the primary table, or between two of the
secondary tables (see "Using TopLink Workbench" on page 26-13).

For complex multitable situations, a more complex join expression may be required.
These include requiring the join to also check a type code, or using an outer-join.
TopLink provides support for a multiple-table-join-expression for these cases (see
"Using Java" on page 26-14).

Using TopLink Workbench
Use the Multitable Info tab to define multiple tables for a descriptor in TopLink
Workbench.

To associate multiple tables with a descriptor, use this procedure.

1. In the Navigator, select a descriptor.

If the Multitable Info advanced property is not visible for the descriptor,
right-click the descriptor and choose Select Advanced Properties > Multitable
Info from the context menu or from the Selected menu.

2. Click the Multitable Info tab.

Figure 26–5 Multitable Info Tab

Use the following information to enter data in each field of the tab:

Field Description

Primary Table The primary table for this descriptor. This field is for display only.

Configuring Multitable Information

26-14 Oracle TopLink Developer’s Guide

Associating Tables With References
When associating a table using Reference, additional options appear. You must choose
a reference that relates the correct fields in the primary table to the primary keys in the
selected table.

Figure 26–6 Multitable Info Tab, Associated by Reference

Choose a Table Reference that defines how the primary keys of the primary table
relate to the primary keys of the selected table. Click Add to add a primary key
association.

Using Java
Using Java, configure a descriptor with multitable information using the following
ClassDescriptor methods:

■ addTableName

■ addMultipleTableForeignKeyFieldName

To specify a complex multiple-table-join-expression, create a descriptor amendment
method (see "Configuring Amendment Methods" on page 25-81) and add the join
expression using DescriptorQueryManager method
setMultipleTableJoinExpression. For more information, see "Appending
Additional Join Expressions" on page 96-4.

Additional Tables Use Add and Remove to add or remove additional tables.

Association to
Primary Table

Specify how each Additional Table is associated to the Primary
Table:

■ Primary Keys Have Same Names–when associating tables by
identically named primary keys, TopLink requires no
additional configuration.

■ Reference–when associating an additional table to the
primary table with a Reference (that is, a foreign key), you
can specify the Table Reference, as well as the Source and
Target fields. Continue with "Associating Tables With
References" on page 26-14.

Field Description

Configuring an Object-Relational Descriptor 27-1

27
Configuring an Object-Relational Descriptor

This chapter describes the various components that you must configure to be able to
use an object-relational descriptor.

For more information, see the following:

■ "Descriptor Creation Overview" on page 24-1

■ "Object-Relational Descriptors" on page 23-11

Object-Relational Descriptor Configuration Overview
Table 27–1 lists the configurable options for an object-relational descriptor.

Table 27–1 Configurable Options for Object-Relational Descriptor

Option Type
TopLink
Workbench Java

"Configuring Field Ordering" on page 27-2 Basic

"Configuring Primary Keys" on page 25-3 Basic

"Configuring Read-Only Descriptors" on page 25-5 Advanced

"Configuring Unit of Work Conforming at the Descriptor Level" on
page 25-6

Advanced

"Configuring Query Keys" on page 25-30 Advanced

"Configuring Cache Expiration at the Descriptor Level" on
page 25-42

Advanced

"Configuring Amendment Methods" on page 25-81 Advanced

"Configuring Reading Subclasses on Queries" on page 25-49 Advanced

"Configuring Inheritance for a Child (Branch or Leaf) Class
Descriptor" on page 25-51

Advanced

"Configuring Inheritance for a Parent (Root) Descriptor" on
page 25-52

Advanced

"Configuring Inheritance Expressions for a Parent (Root) Class
Descriptor" on page 25-55

Advanced

"Configuring Inherited Attribute Mapping in a Subclass" on
page 25-58

Advanced

"Configuring Cache Type and Size at the Descriptor Level" on
page 25-35

Advanced

"Configuring a Domain Object Method as an Event Handler" on
page 25-59

Advanced

"Configuring a Descriptor Event Listener as an Event Handler" on
page 25-62

Advanced

"Configuring Locking Policy" on page 25-64 Advanced

Configuring Field Ordering

27-2 Oracle TopLink Developer’s Guide

Configuring Field Ordering
If your object-relational data source driver uses JDBC indexed arrays, you can specify
the order in which TopLink persists object attributes to define the field index.

Using Java
Use ObjectRelationalDescriptor method addFieldOrdering to specify the
field ordering. Example 27–1 shows how to specify the order of the object-relational
database fields OBJECT_ID, F_NAME, and L_NAME for the Employee descriptor.

Example 27–1 Field Ordering

descriptor.addFieldOrdering("ID");
descriptor.addFieldOrdering("F_NAME");
descriptor.addFieldOrdering("L_NAME");

"Configuring Copy Policy" on page 25-71 Advanced

"Configuring Instantiation Policy" on page 25-70 Advanced

"Configuring Wrapper Policy" on page 25-78 Advanced

"Configuring a History Policy" on page 25-76 Advanced

"Configuring Returning Policy" on page 25-67 Advanced

Table 27–1 (Cont.) Configurable Options for Object-Relational Descriptor

Option Type
TopLink
Workbench Java

Configuring an EIS Descriptor 28-1

28
Configuring an EIS Descriptor

This chapter describes the various components that you must configure in order to use
an enterprise information system (EIS) descriptor.

For more information, see the following:

■ "Descriptor Creation Overview" on page 24-1

■ "EIS Descriptors" on page 23-12

EIS Descriptor Configuration Overview
Table 28–1 lists the default configurable options for an EIS descriptor.

Table 28–1 Configurable Options for EIS Descriptor

Option Type
TopLink
Workbench Java

"Configuring XML Schema Namespace" on page 4-37 Basic

"Configuring XML Schema Reference" on page 4-36 Basic

"Configuring Schema Context for an EIS Descriptor" on page 28-2 Basic

"Configuring Default Root Element" on page 28-3 Basic

"Configuring Primary Keys" on page 25-31 Basic

"Configuring Read-Only Descriptors" on page 25-51 Basic

"Configuring Unit of Work Conforming at the Descriptor Level"
on page 25-61

Advanced

"Configuring Descriptor Alias" on page 25-7 Advanced

"Configuring Descriptor Comments" on page 25-9 Advanced

"Configuring Record Format" on page 28-5 Basic

"Creating Classes" on page 4-40 Basic

"Configuring Named Queries at the Descriptor Level" on
page 25-101

Advanced

"Configuring Custom EIS Interactions for Basic Persistence
Operations" on page 28-61

Advanced

"Configuring Cache Refreshing" on page 25-271 Advanced

"Configuring Cache Type and Size at the Descriptor Level" on
page 25-351

Advanced

"Configuring Cache Isolation at the Descriptor Level" on
page 25-37

Advanced

"Configuring Cache Coordination Change Propagation at the
Descriptor Level" on page 25-40

Advanced

Configuring Schema Context for an EIS Descriptor

28-2 Oracle TopLink Developer’s Guide

Configuring Schema Context for an EIS Descriptor
TopLink Workbench uses the schema context to associate the class that the EIS
descriptor describes with a simple or complex type in one of the schemas associated
with the EIS project (see "Configuring XML Schema Reference" on page 4-36). This
allows TopLink Workbench to display the appropriate attributes available for mapping
in that context.

You must configure the schema context for an EIS root descriptor (see "Configuring an
EIS Descriptor as a Root or Composite Type" on page 28-8) only if you are using
TopLink Workbench.

Using TopLink Workbench
To associate an EIS descriptor with a simple or complex type in this project’s schema,
use this procedure:

1. Select an EIS descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

"Configuring Cache Expiration at the Descriptor Level" on
page 25-42

Advanced

"Configuring Cache Existence Checking at the Descriptor Level"
on page 25-43

Advanced

"Configuring a Descriptor With EJB Information" on page 25-45 Advanced

"Configuring an EIS Descriptor as a Root or Composite Type" on
page 28-8

Basic

"Configuring Inheritance for a Child (Branch or Leaf) Class
Descriptor" on page 25-51

Advanced

"Configuring Inheritance for a Parent (Root) Descriptor" on
page 25-52

Advanced

"Configuring Inherited Attribute Mapping in a Subclass" on
page 25-58

Advanced

"Configuring a Domain Object Method as an Event Handler" on
page 25-59

Advanced

"Configuring a Descriptor Event Listener as an Event Handler" on
page 25-62

Advanced

"Configuring Locking Policy" on page 25-641 Advanced

"Configuring Returning Policy" on page 25-67 Advanced

"Configuring Instantiation Policy" on page 25-70 Advanced

"Configuring Copy Policy" on page 25-71 Advanced

"Configuring Change Policy" on page 25-73 Advanced

"Configuring Wrapper Policy" on page 25-78 Advanced

"Configuring Amendment Methods" on page 25-81 Advanced

"Configuring a Mapping" on page 32-1 Basic

1 EIS root descriptors only (see "Configuring an EIS Descriptor as a Root or Composite Type" on
page 28-8).

Table 28–1 (Cont.) Configurable Options for EIS Descriptor

Option Type
TopLink
Workbench Java

Configuring Default Root Element

Configuring an EIS Descriptor 28-3

Figure 28–1 Descriptor Info Tab, Schema Context Option

Click Browse to select the schema element to associate with this descriptor. For more
information, see "Choosing a Schema Context" on page 28-3.

Choosing a Schema Context
Use the Choose Schema Context dialog box to select a specific schema element (such
as when mapping an element).

Figure 28–2 Choose Schema Context Dialog Box

Select the schema element and click OK.

Using Java
For an EIS descriptor, the TopLink runtime does not need the schema context: the
runtime can determine the schema context based on the mappings you configure on
the descriptor. No further configuration is required.

Configuring Default Root Element
You must configure the default root element for an EIS root descriptor (see "EIS Root
Descriptors" on page 24-5) so that the TopLink runtime knows the data source data
type associated with the class the descriptor describes. Descriptors used only in
composite relationship mappings do not require a default root element.

Configuring Default Root Element

28-4 Oracle TopLink Developer’s Guide

For more information, see "Default Root Element" on page 23-9.

Using TopLink Workbench
When you create an EIS project using TopLink Workbench, you must use XML records.
Consequently, you must configure a default root element so that TopLink Workbench
knows what element to start with when persisting an instance of the class that the EIS
descriptor describes.

To specify a schema element as the default root element for the descriptor, use this
procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Figure 28–3 Descriptor Info Tab, Default Root Element Option

Use the Default Root Element option to select the root element for this descriptor.

 Click Browse to select the schema element to identify as the root element. See
"Choosing a Root Element" on page 28-4 for more information.

Choosing a Root Element
Use the Choose Root Element dialog box to select a specific root element.

Note: Although you select an element from your project’s schema to
configure this attribute, you are choosing the element’s simple or
complex type.

Configuring Record Format

Configuring an EIS Descriptor 28-5

Figure 28–4 Choose Root Element Dialog Box

Select the root element and click OK.

Using Java
When you create an EIS project using Java code, use the EISDescriptor method
setDataTypeName to specify the XML schema complex type name (if you are using
XML records) or the J2C record name (if you are using indexed or mapped records)
corresponding to the class that the EIS descriptor describes. For more information, see
Oracle TopLink API Reference.

Configuring Record Format
The EIS descriptor record format determines the EIS record type to which the
descriptor’s EIS mappings map.

When you create an EIS project using TopLink Workbench, TopLink configures all EIS
descriptors with a record format of XML.

When you create an EIS project in Java, you can configure the EIS descriptor record
type to any of the supported types, as Table 28–2 shows.

For more information, see "EIS Record Type" on page 53-2.

Table 28–2 EIS Record Formats

EISDescriptor Method EIS Record Type

useMappedRecordFormat All EIS mappings owned by this descriptor map to EIS mapped
records.

useIndexedRecordFormat All EIS mappings owned by this descriptor map to EIS indexed
records.

useXMLRecordFormat All EIS mappings owned by this descriptor map to EIS XML
records.

If you use the XML record format, you must specify one or
more XML schemas in your EIS project (see "Importing an XML
Schema" on page 4-34). The TopLink runtime performs XML
data conversion based on one or more XML schemas. In an EIS
XML project, TopLink Workbench does not directly reference
schemas in the deployment XML, but instead

 exports mappings configured with respect to the schemas you
specify.

For information on TopLink support for XML namespaces, see
"XML Namespaces" on page 17-5.

Configuring Custom EIS Interactions for Basic Persistence Operations

28-6 Oracle TopLink Developer’s Guide

Using Java
To configure the EIS record format for an EIS descriptor, use one of the
EISDescriptor methods listed in Table 28–2 as shown in Example 28–1.

Example 28–1 Configuring EISDescriptor Record Format

EISDescriptor descriptor = new EISDescriptor();
descriptor.useIndexedRecordFormat();

Configuring Custom EIS Interactions for Basic Persistence Operations
You can use TopLink to define an interaction for each basic persistence operation
(insert, update, delete, read object, read all, or does exist) so that when you query
and modify your EIS-mapped objects, the TopLink runtime will use the appropriate
EIS interaction instead of the default EIS interaction.

You can configure custom EIS interactions for basic persistence operations only for EIS
descriptors designated as root descriptors ("Configuring an EIS Descriptor as a Root or
Composite Type" on page 28-8).

For CMP projects, the ejb-jar.xml file stores query lists. You can define the queries
in the file and then read them into TopLink Workbench, or define them on the Queries
tab and write them to the file. For more information, see "Writing to the ejb-jar.xml
File" on page 18-16 and "Reading From the ejb-jar.xml File" on page 18-16.

Using TopLink Workbench, you can create XMLInteraction objects, in which there
is a single query per interaction (see "Using TopLink Workbench" on page 28-6).

Using Java, you can create any EISInteraction type. For some EIS projects, it is
common for multiple interactions to be used in a single query. For example, one
interaction–to enqueue a request, and another–to dequeue the response. Because
TopLink Workbench does not support setting multiple interactions on a single query,
you must use an amendment method to create and configure the interaction in Java
(see "Using Java" on page 28-8).

Using TopLink Workbench
To configure custom EIS interactions for basic persistence operations, use the
following procedure:

1. In the Navigator, select an EIS root descriptor in a EIS project.

2. Click the Queries tab in the Editor. The Queries tab appears.

3. Click the Custom Calls tab. The Custom Calls tab appears.

Note: In a one-to-one or one-to-many EIS mapping, you must also
specify a selection interaction that TopLink uses to acquire target
objects. You can use either the target object’s read interaction (the
default) or specify a separate selection interaction, if necessary. For
more information, see "Configuring Selection Interaction" on
page 54-3).

Configuring Custom EIS Interactions for Basic Persistence Operations

Configuring an EIS Descriptor 28-7

Figure 28–5 Queries, Custom Calls Tab for EIS Calls

Click the appropriate interaction type from the list (Insert, Update, Delete, Read
Object, Read All, or Does Exist) and use the following table to enter data in each field

Field Description

Interaction Type Using TopLink Workbench, you can only use XML Interactions.
You cannot change this field.

Function Name The name of the EIS function that this call type (Read Object or
Read All) invokes on the EIS.

Input Record Name The name passed to the J2C adapter when creating the input
record.

Input Root Element The root element name to use for the input DOM.

Input Arguments The query argument name to map to the interaction field or XPath
nodes in the argument record.

For example, if you are using XML records, use this option to map
input argument name to the XPath name/first-name.

Output Arguments The result record field or XPath nodes to map to the correct nodes
in the record used by the descriptor's mappings.

For example, if you are using XML records, use this option to map
the output fname to name/first-name.

Output arguments are not required if the interaction returns an
XML result that matches the descriptor's mappings.

Input Result Path Use this option if the EIS interaction expects the interaction
arguments to be nested in the XML record.

For example, specify arguments, if the arguments were to be
nested under the root element exec-find-order, then under an
arguments element.

Configuring an EIS Descriptor as a Root or Composite Type

28-8 Oracle TopLink Developer’s Guide

Using Java
Using Java, you can create any type of EIS interaction that TopLink supports (see
"Using EIS Interactions" on page 94-24).

For some EIS projects, it is common for multiple interactions to be used in a single
query: for example, one interaction to enqueue a request and another to dequeue the
response. Because TopLink Workbench does not support setting multiple interactions
on a single query, you must use an amendment method to create and configure the
interaction in Java as Example Example 28–2 shows.

Example 28–2 Creating an XML Interaction for an AQ Platform

public static void addXMLInteractions(ClassDescriptor descriptor) {
 // find order interaction
 XMLInteraction request = new XMLInteraction();
 request.setProperty(AQPlatform.QUEUE_OPERATION, AQPlatform.ENQUEUE);
 request.setProperty(AQPlatform.QUEUE, "ORDER_INBOUND_QUEUE");
 request.setProperty(AQPlatform.SCHEMA, "AQUSER");
 request.setInputRootElementName("READ_ORDER");
 request.addArgument("@id");

 XMLInteraction response = new XMLInteraction();
 response.setProperty(AQPlatform.QUEUE_OPERATION, AQPlatform.DEQUEUE);
 response.setProperty(AQPlatform.QUEUE, "ORDER_OUTBOUND_QUEUE");
 response.setProperty(AQPlatform.SCHEMA, "AQUSER");

 ReadObjectQuery query = new ReadObjectQuery();
 query.addCall(request);
 query.addCall(response);
 descriptor.getQueryManager().setReadObjectQuery(query);

 // place order interaction
 XMLInteraction insert = new XMLInteraction();
 insert.setProperty(AQPlatform.QUEUE_OPERATION, AQPlatform.ENQUEUE);
 insert.setProperty(AQPlatform.QUEUE, "ORDER_INBOUND_QUEUE");
 insert.setProperty(AQPlatform.SCHEMA, "AQUSER");
 insert.setInputRootElementName("INSERT_ORDER");

 descriptor.getQueryManager().setInsertCall(insert);
}

Configuring an EIS Descriptor as a Root or Composite Type
You can designate an EIS descriptor as root (see "EIS Root Descriptors" on page 24-5)
or composite (see "EIS Composite Descriptors" on page 24-5).

Output Result Path Use this option if the EIS interaction result record contains the
XML data that maps to the objects in a nested structure.

For example, specify order, if the results were return under a root
element results, then under an order element.

Properties Any properties required by your EIS platform. For example,
property name operation (from AQPlatform.QUEUE_
OPERATION) and property value enqueue (from
AQPlatform.ENQUEUE).

Field Description

Configuring an EIS Descriptor as a Root or Composite Type

Configuring an EIS Descriptor 28-9

When you designate an EIS descriptor as a root, you tell the TopLink runtime that the
EIS descriptor’s reference class is a parent classš–no other class will reference it by way
of a composite object mapping or composite collection mapping. Using an EIS root
descriptor, you can configure all supported mappings and you can configure the
descriptor with EIS interactions (see "Using EIS Interactions" on page 94-24). However,
if you configure the EIS root descriptor with a composite object mapping or composite
collection mapping, the reference descriptor you define must be an EIS composite
descriptor; it cannot be another EIS root descriptor.

When you designate an EIS descriptor as a composite (the default), you tell the
TopLink runtime that the EIS descriptor’s reference class may be referenced by a
composite object or composite collection mapping (see Chapter 57, "Configuring an
EIS Composite Object Mapping" and Chapter 58, "Configuring an EIS Composite
Collection Mapping"). Using an EIS composite descriptor, you can configure all
supported mappings, but you cannot configure it with EIS interactions.

You can configure inheritance for a descriptor designated as a composite (see
"Configuring Inheritance for a Child (Branch or Leaf) Class Descriptor" on page 25-51),
however, in this case, all the descriptors in the inheritance tree must be aggregates.
Aggregate and class descriptors cannot exist in the same inheritance tree. For more
information, see "Aggregate and Composite Descriptors and Inheritance" on
page 23-17.

If you configure a descriptor as a composite using TopLink Workbench, you cannot
configure the descriptor with EJB information (see "Configuring a Descriptor With EJB
Information" on page 25-45).

For more information, see the following:

■ "Descriptors and Aggregation" on page 23-5

■ "Composite and Reference EIS Mappings" on page 53-4

Using TopLink Workbench

Configuring a Descriptor as a Root or Composite
To configure an EIS descriptor as a root or composite EIS descriptor, use this
procedure:

1. In the Navigator, select an EIS composite descriptor.

2. Click the Root or Composite descriptor button on the mapping toolbar.

You can also select the descriptor and choose Selected > Descriptor Type > Root
or Composite from the menu or by right-clicking on the descriptor in the
Navigator and selecting Descriptor Type > Root or Composite from the context
menu.

Using Java
To configure an EIS descriptor as root or composite using Java, create a descriptor
amendment method (see "Configuring Amendment Methods" on page 25-81) and use
the following EISDescriptor methods:

■ To designate an EIS descriptor as a root descriptor, use EISDescriptor method
descriptorIsNormal.

■ To designate an EIS descriptor as a composite (nonroot) descriptor, use
EISDescriptor method descriptorIsAggregate.

Configuring an EIS Descriptor as a Root or Composite Type

28-10 Oracle TopLink Developer’s Guide

Configuring an XML Descriptor 29-1

29
Configuring an XML Descriptor

This chapter describes the various components that you must configure in order to use
an XML descriptor.

For more information, see the following:

■ "Descriptor Creation Overview" on page 24-1

■ "XML Descriptors" on page 23-12

XML Descriptor Configuration Overview
Table 29–1 lists the default configurable options for an XML descriptor.

Configuring Schema Context for an XML Descriptor
TopLink Workbench uses the schema context to associate the XML descriptor
reference class with a simple or complex type in one of the schemas associated with

Table 29–1 Configuration Options for XML Descriptors

Option Type
TopLink
Workbench Java

"Configuring XML Schema Namespace" on page 4-37 Basic

"Configuring XML Schema Reference" on page 4-36 Basic

"Configuring Schema Context for an XML Descriptor" on
page 29-1

Basic

"Configuring for Complex Type of anyType" on page 29-3 Advanced

"Configuring Default Root Element" on page 29-5 Basic

"Configuring Document Preservation" on page 29-6 Basic

"Configuring Descriptor Comments" on page 25-9 Advanced

"Configuring Classes" on page 4-41 Basic

"Configuring Inheritance for a Child (Branch or Leaf) Class
Descriptor" on page 25-51

Advanced

"Configuring Inheritance for a Parent (Root) Descriptor" on
page 25-52

Advanced

"Configuring Inherited Attribute Mapping in a Subclass" on
page 25-58

Advanced

"Configuring Instantiation Policy" on page 25-70 Advanced

"Configuring Copy Policy" on page 25-71 Advanced

"Configuring Amendment Methods" on page 25-81 Advanced

"Configuring a Mapping" on page 32-1 Basic

Configuring Schema Context for an XML Descriptor

29-2 Oracle TopLink Developer’s Guide

the XML project (see "Configuring XML Schema Reference" on page 4-36). This allows
TopLink Workbench to display the appropriate attributes available for mapping in that
context.

You must configure the schema context for an XML descriptor regardless of whether
or not you are using TopLink Workbench.

The TopLink runtime uses the schema context to validate XML fragments.

Using TopLink Workbench
To associate an XML descriptor with a specific schema complex type, use this
procedure:

1. Select an XML descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Figure 29–1 Descriptor Info Tab, Schema Context Option

Click Browse to select the schema element to associate with this descriptor. For more
information, see "Choosing a Schema Context" on page 29-2.

Choosing a Schema Context
Use the Choose Schema Context dialog box to select a specific schema element (such
as when mapping an element).

Figure 29–2 Choose Schema Context Dialog Box

Select a schema element and click OK.

Configuring for Complex Type of anyType

Configuring an XML Descriptor 29-3

Using Java
To configure an XML descriptor with a schema context using Java, create a descriptor
amendment method (see "Configuring Amendment Methods" on page 25-81) that uses
XMLSchemaReference method setSchemaContext, as Example 29–1 shows.

Example 29–1 Configuring Schema Context

public void addToDescriptor(ClassDescriptor descriptor) {
descriptor.getSchemaReference().setSchemaContext(xPath);

}

Configuring for Complex Type of anyType
This attribute applies only to TopLink Workbench. Use this option to solve "No
schema context is specified" problems (see "Using the Problems Window" on
page 4-11) for an XML descriptor that does not represent an element in your XML
schema.

In general, TopLink Workbench assumes that every XML descriptor must have a
schema context (see "Configuring Schema Context for an XML Descriptor" on
page 29-1). However, if a class in your project does not relate to an element in your
schema, then it does not have a schema context.

For example, consider the schema that Example 29–2 shows.

Example 29–2 Schema Using xsd:anyType

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="contact-method" type="xsd:anyType"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="address">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="phone-number" type="xsd:string"/>

</xsd:schema>

Because element contact-method is of type xsd:anyType, your project requires a
class to represent that type, such as class AnyTypeImpl shown in Figure 29–3.
Because this class does not relate to any complex type in your schema, it has no
schema context. In this example, you would select this option for the AnyTypeImpl
class.

Configuring for Complex Type of anyType

29-4 Oracle TopLink Developer’s Guide

Figure 29–3 Class Representing xsd:anyType

For more information, see "xs:any and xs:anyType Support" on page 62-4.

Using TopLink Workbench

Complex Type of anyType Option
To specify that the descriptor represents a complex type of anyType, use this
procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Figure 29–4 Descriptor Info Tab, Complex Type "anyType" Option

Select the Descriptor Represents Complex Type "anyType" option to specify this
descriptor as the root element.

Note: See also "Configuring Maps to Wildcard" on page 63-3.

Configuring Default Root Element

Configuring an XML Descriptor 29-5

Configuring Default Root Element
The default root element is the name that TopLink uses for the root element when
marshalling objects for this descriptor to, and unmarshalling from, an XML document.
Descriptors used only in composite relationship mappings do not require a default
root element.

For more information, see "Default Root Element" on page 23-9.

Using TopLink Workbench
To specify a schema element as the default root element for the descriptor, use this
procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Figure 29–5 Descriptor Info Tab, Default Root Option

Select the Default Root Element option to specify this descriptor as the root element.

Click Browse to select the schema element to identify as the root element for this
descriptor. See "Choosing a Root Element" on page 29-5 for more information.

Choosing a Root Element
Use the Choose Root Element dialog box to select a specific root element.

Figure 29–6 Choose Root Element Dialog Box

Select the root element and click OK.

Configuring Document Preservation

29-6 Oracle TopLink Developer’s Guide

Configuring Document Preservation
TopLink lets you preserve any "extra" data in your XML source that is not required to
map to an object model (such as comments, processing instructions, or unmapped
elements).

This permits round-tripping from XML to objects and back to XML without losing any
data.

Using TopLink Workbench
To preserve the entire XML source document, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Figure 29–7 Descriptor Info Tab, Preserve Document Option

Select the Preserve Document option to maintain any extra information from the
source XML document that TopLink does not require (such as comments).

Using Java
To configure an XML descriptor to maintain any extra information from the source
XML document that TopLink does not require (such as comments) using Java, create a
descriptor amendment method (see "Configuring Amendment Methods" on
page 25-81) that configures the descriptor using XMLDescriptor method
setShouldPreserveDocument.

Part IX
 Mappings

This part describes general mapping information. It contains the following chapters:

■ Chapter 30, "Understanding Mappings"

This chapter describes each of the different TopLink mapping types and important
mapping concepts.

■ Chapter 31, "Creating a Mapping"

This chapter contains procedures for creating TopLink mappings.

■ Chapter 32, "Configuring a Mapping"

This chapter explains how to configure TopLink mapping options common to two
or more mapping types.

For information on specific mapping types, see the following parts:

■ Part X, "Relational Mappings"

■ Part XI, "Object-Relational Mappings"

■ Part XII, "EIS Mappings"

■ Part XIII, "XML Mappings"

Understanding Mappings 30-1

30
Understanding Mappings

One of the greatest strengths of TopLink is its ability to transform data between an
object representation and a representation specific to a data source. This
transformation is called mapping and it is the core of a TopLink project.

A mapping corresponds to a single data member of a domain object. It associates the
object data member with its data source representation and defines the means of
performing the two-way conversion between object and data source.

This chapter includes information on the following

■ Mapping Types

■ Mapping Concepts

■ Understanding the Mapping API

Mapping Types
Table 30–1 describes the mapping types that TopLink supports.

For more information, see the following:

■ "Creating a Mapping" on page 31-1

■ "Configuring a Mapping" on page 32-1

Table 30–1 TopLink Mapping Types

Type Description Type
TopLink
Workbench Java

"Relational Mappings" on
page 30-25

Mappings that transform any object data member type
to a corresponding relational database (SQL) data
source representation in any supported relational
database. Relational mappings allow you to map an
object model into a relational data model.

Basic

"Object-Relational Mappings"
on page 30-26

Mappings that transform certain object data member
types to structured data source representations
optimized for storage in specialized object-relational
databases such as Oracle Database. Object-relational
mappings let you map an object model into an
object-relational data model.

Advanced

"EIS Mappings" on page 30-27 Mappings that transform object data members to the
EIS record format defined by the object’s descriptor.

Advanced

"XML Mappings" on
page 30-27

Mappings that transform object data members to the
XML elements of an XML document whose structure is
defined by an XML schema document (XSD).

Advanced

Mapping Concepts

30-2 Oracle TopLink Developer’s Guide

Mapping Concepts
This section describes concepts unique to TopLink mappings, including the following:

■ Mapping Architecture (applicable to relational and nonrelational mappings)

■ Example Mapping (applicable to relational and nonrelational mappings)

■ Automatic Mappings

– Automapping With TopLink Workbench at Development Time (applicable to
relational and nonrelational mappings)

– Default Mapping in CMP Projects Using OC4J at Run Time (applicable to
relational mappings)

– JAXB Project Generation at Development Time (applicable to XML mappings)

■ Indirection (applicable to object-relational mappings)

■ Method Accessors and Attribute Accessors (applicable to relational and
nonrelational mappings)

■ Mapping Converters and Transformers

– Serialized Object Converter (applicable to relational and nonrelational
mappings)

– Type Conversion Converter (applicable to relational and nonrelational
mappings)

– Object Type Converter (applicable to XML mappings)

– Simple Type Translator (applicable to XML mappings)

– Transformation Mappings (applicable to relational and nonrelational
mappings)

■ Mappings and XPath (applicable to XML mappings)

■ Mappings and xsd:list and xsd:union Types (applicable to XML mappings)

■ Mappings and the jaxb:class Customization (applicable to XML mappings)

■ Mappings and JAXB Typesafe Enumerations (applicable to XML mappings)

Mapping Architecture
To define a mapping, you draw upon the following components:

■ The data representation specific to the data source (such as a relational database
table or schema-defined XML element) in which you store the object’s data

■ A descriptor for a particular object class

■ An object class to map

For an example of a typical TopLink mapping, see "Example Mapping" on page 30-3.

The type of data source you define in your TopLink project determines the type of
mappings you can use and how you configure them. In a persistent project, you use
mappings to persist to a data source. In a nonpersistent project, you use mappings

Note: A mapping is the same regardless of whether your project is
persistent or nonpersistent.

Mapping Concepts

Understanding Mappings 30-3

simply to transform between the object format and some other data representation
(such as XML). For more information about data source and project types, see
"TopLink Project Types" on page 17-1.

A descriptor represents a particular domain object: it describes the object’s class. It
owns mappings: one mapping for each of the class data members that you intend to
persist or transform in memory.

For more information about descriptors, see "Understanding Descriptors" on
page 23-1.

TopLink provides mappings to handle a wide variety of data types and data
representations. For more information, see "Mapping Types" on page 30-1.

All mappings are subclasses of the
oracle.toplink.mappings.DatabaseMapping class. For more information
about the mapping API, see "Understanding the Mapping API" on page 30-25.

Example Mapping
Although TopLink supports more complex mappings, most TopLink classes map to a
single database table or XML element that defines the type of information available in
the class. Each object instance of a given class maps to a single row comprising the
object’s attributes, plus an identifier (the primary key) that uniquely identifies the
object.

Figure 30–1 illustrates the simplest database mapping case in which:

■ Table_X in the database represents Class_X.

■ Object_X1 and Object_X2 are instances of Class_X.

■ Individual rows in Table_X represent Object_X1 and Object_X2, as well as any
other instances of Class_X.

Figure 30–1 How Classes and Objects Map to a Database Table

TopLink provides you with the tools to build these mappings, from the simple
mappings illustrated in Figure 30–1, to complex mappings.

Note: Persistence is applicable at the descriptor level.

Mapping Concepts

30-4 Oracle TopLink Developer’s Guide

For an additional example of a relational mapping, see Figure 33–1, "Direct-to-Field
Mapping" on page 33-4.

For an example of a nonrelational mapping, see Figure 62–34, "XML Transformation
Mappings" on page 62-31.

Automatic Mappings
Typically, you use TopLink Workbench to define mappings on a class-by-class and
data member-by-data-member basis manually (see "Creating Mappings Manually
During Development" on page 31-1).

Alternatively, you can take advantage of the following:

■ Automapping With TopLink Workbench at Development Time

■ Default Mapping in CMP Projects Using OC4J at Run Time

■ JAXB Project Generation at Development Time

Automapping With TopLink Workbench at Development Time
You can use TopLink Workbench Automap feature to automatically define default
mappings for every class and data member in your project (see "Creating Mappings
Automatically During Development" on page 31-2).

TopLink Workbench automapping is available for all project types and assumes that
both the object model and database schema are already defined.

Default Mapping in CMP Projects Using OC4J at Run Time
Default mapping is a relational persistence framework term that refers to making the
framework automatically generate the object descriptor metadata (including such
things as mappings, login data, database platform, locking, and foreign keys).

TopLink can also optionally create or drop-and-create the tables associated with the
entities during the deployment. This means that TopLink can handle the whole
deployment process with the minimum requirements: a compliant EAR file and a
valid data source. This frees you from creating tables and specifying mappings before
you deploy your application.

TopLink default mapping supports the following features:

■ Direct-to-field mapping support for standard CMP (that is, not dependent object)
fields.

■ Serialized object mapping support for dependent objects.

■ One-to-one, one-to-many, and many-to-many mappings support for CMR fields.

■ Self-referencing, unidirectional and bidirectional relationship mappings (see
"Directionality" on page 33-2).

■ Optimistic version locking for each entity.

■ Automatic table drop and create, platform-specified supported types, default size
and subsize, and database-reserved keywords.

■ EJB QL (EJB query language) queries, such as finder and ejbSelect.

Note: You can apply default mapping to relational projects only.

Mapping Concepts

Understanding Mappings 30-5

■ Unknown primary key class case (primary key-class type
java.lang.Object.class).

Default mapping is available for CMP relational projects deployed to OC4J configured
to use TopLink as the default persistence manager. In this configuration, the EJB
container provides the entity bean descriptor data (from ejb-jar.xml) required by
the persistence manager to generate the persistence descriptor file.

If a toplink-ejb-jar.xml descriptor file is not present, TopLink, working as the
OC4J default persistence manager, generates a default persistence descriptor file for
any CMP project during deployment. In this case, TopLink applies default mappings
and, optionally, automatic table generation. The generated descriptor file includes the
following:

■ Mapping for each entity CMP and CMR field

■ Optimistic locking, foreign keys, target foreign key, and relation table

■ Transparent indirection for relationships

■ Database login and platform metadata

If a toplink-ejb-jar.xml descriptor file is present and specified in the
orion-ejb-jar.xml file, TopLink does not apply default mapping: it honours the
mappings specified in the toplink-ejb-jar.xml file. In this case, you can still
configure automatic table generation.

For more information, see "Configuring default-mapping Properties" on page 8-12.

JAXB Project Generation at Development Time
JAXB provides an API and a tool that allow automatic two-way mapping between
XML documents and Java objects. The JAXB compiler generates all the Java classes
and mappings based on the provided Document Type Definition (DTD) and a schema
definition.

For more information on JAXB, see Architecture for XML Binding (JAXB): A Primer at
http://java.sun.com/developer/technicalArticles/xml/jaxb/index.h
tml

For more information on XML mappings, see Chapter 62, "Understanding XML
Mappings".

Indirection
By default, when TopLink retrieves a persistent object, it retrieves all of the dependent
objects to which it refers. When you configure indirection (also known as lazy reading,
lazy loading, and just-in-time reading) for an attribute mapped with a relationship
mapping, TopLink uses an indirection object as a place holder for the referenced
object: TopLink defers reading the dependent object until you access that specific
attribute. This can result in a significant performance improvement, especially if the
application is interested only in the contents of the retrieved object, rather than the
objects to which it is related.

Note: The preceding information is also applicable to EJB 3.0
persistent relational projects.

EJB 3.0 annotations often replace descriptor files. For example,
TopLink does not apply default mapping if annotations that are
equivalent to toplink-ejb-jar.xml descriptor file are specified.

Mapping Concepts

30-6 Oracle TopLink Developer’s Guide

Oracle strongly recommends using indirection for all relationship mappings. Not only
does this lets you optimize data source access, but it also allows TopLink to optimize
the unit of work processing, cache access, and concurrency.

Figure 30–2 shows an indirection example. Without indirection, reading the Order
object also reads the dependent collection of LineItem objects. With indirection,
reading the Order object does not read the dependent collection of LineItem objects:
the lineItems attribute refers to an indirection object. You can access other attributes
(such as customerId), but TopLink reads the dependent LineItem objects only if
and when you access the lineItems attribute.

Figure 30–2 TopLink Indirection

TopLink supports the following types of indirection:

■ Value Holder Indirection

■ Transparent Indirect Container Indirection

■ Proxy Indirection

When using indirection with EJB, the version of EJB and application server you use
affects how indirection is configured and what types of indirection are applicable (see
"Indirection and EJB" on page 30-9).

When using indirection with an object that your application serializes, you must
consider the effect of any untriggered indirection objects at deserialization time (see
"Indirection, Serialization, and Detachment" on page 30-9).

For information on configuring indirection, see "Configuring Indirection" on
page 32-3.

Note: The use of indirection is especially important for providing a
proper maintenance of bidirectional relationships (see "Maintaining
Bidirectional Relationships" on page 2-29). In this case, you must use
indirection. If you are operating with collections, you must use
transparent indirection (see "Transparent Indirect Container
Indirection" on page 30-8).

Mapping Concepts

Understanding Mappings 30-7

Value Holder Indirection
Persistent classes that use indirection must replace relationship attributes with value
holder attributes. A value holder is an instance of a class that implements the
ValueHolderInterface interface, such as ValueHolder. This object stores the
information necessary to retrieve the object it is replacing from the database. If the
application does not access the value holder, the replaced object is never read from the
database.

To obtain the object that the value holder replaces, use the getValue and setValue
methods of the ValueHolderInterface. A convenient way of using these methods
is to hide the getValue and setValue methods of the ValueHolderInterface
inside get and set methods, as shown in the following illustrations.

Figure 30–3 shows the Employee object being read from the database. The Address
object is not read and will not be created unless it is accessed.

Figure 30–3 Address Object Not Read

The first time the address is accessed, as in Figure 30–4, the ValueHolder reads and
returns the Address object.

Figure 30–4 Initial Request

Subsequent requests for the address do not access the database, as shown in
Figure 30–5.

Figure 30–5 Subsequent Requests

If you are using method access ("Configuring Method Accessing" on page 32-14), the
get and set methods specified in the mapping must access the instance of
ValueHolderInterface, rather than the object referenced by the value holder. The

Mapping Concepts

30-8 Oracle TopLink Developer’s Guide

application should not use these getter and setter, but use the getter and setter that
hide the usage of value holders. For more information, see "Configuring ValueHolder
Indirection With Method Accessing" on page 32-7.

Transparent Indirect Container Indirection
Transparent indirect container (see "Configuring Container Policy" on page 32-26)
indirection lets you declare any relationship attribute of a persistent class that holds a
collection of related objects as any of the following:

■ java.util.Collection

■ java.util.Hastable

■ java.util.List

■ java.util.Map

■ java.util.Set

■ java.util.Vector

TopLink will use an indirection object that implements the appropriate interface and
also performs just-in-time reading of the related objects. When using transparent
indirection, you do not have to declare the attributes as ValueHolderInterface.

Newly created collection mappings use transparent indirection by default if their
attribute is not a ValueHolderInterface.

Proxy Indirection
Introduced in JDK 1.3, the Java class Proxy lets you to use dynamic proxy objects as
place-holders for a defined interface. Certain TopLink mappings (see Table 32–4) can
be configured to use proxy indirection, which gives you the benefits of TopLink
indirection without the need to include TopLink classes in your domain model. Proxy
indirection is to one-to-one relationship mappings as indirect containers are to
collection mappings.

To use proxy indirection, your domain model must satisfy all of the following criteria:

■ The target class of the one-to-one relationship must implement a public interface.

■ The one-to-one attribute on the source class must be of the interface type.

■ If you employ method accessing ("Configuring Method Accessing" on page 32-14),
then the getter and setter methods must use the interface.

Before using proxy indirection, be aware of the restrictions it places on how you use
the unit of work (see "Proxy Indirection Restrictions" on page 30-8).

To configure proxy indirection, you can use TopLink Workbench (see "Using TopLink
Workbench" on page 32-15) or Java in an amendment method (see "Configuring Proxy
Indirection" on page 32-9).

Proxy Indirection Restrictions Proxy objects in Java are only able to intercept messages
sent. If a primitive operation such as ==, instanceof, or getClass is used on a
proxy, it will not be intercepted. This limitation can require the application to be
somewhat aware of the usage of proxy objects.

You cannot register the target of a proxy indirection implementation with a unit of
work. Instead, first register the source object with the unit of work. This lets you
retrieve a target object clone with a call to a getter on the source object clone.

For example:

Mapping Concepts

Understanding Mappings 30-9

UnitOfWork uow = session.acquireUnitOfWork();
Employee emp = (Employee)session.readObject(Employee.class);

// Register the source object
Employee empClone = (Employee)uow.registerObject(emp);

// All of source object's relationships are cloned when source object is cloned
Address addressClone = empClone.getAddress();
addressClone.setCity("Toronto");

For more information about clones and the unit of work, see Chapter 97,
"Understanding TopLink Transactions".

Indirection and EJB
When using indirection with EJB, how TopLink handles indirection depends on the
EJB version and application server you are using.

In addition, you cannot use proxy indirection (see "Proxy Indirection" on page 30-8) for
relationships to an enterprise bean, because EJB do not directly implement their
remote or local interfaces.

When using indirection with an enterprise bean that your application serializes, you
must consider the effect of any untriggered indirection objects at deserialization time
(see "Indirection, Serialization, and Detachment" on page 30-9).

CMP When using CMP with any of the application servers for which TopLink
provides CMP integration (see "Application Server Support" on page 7-1), TopLink
uses code generation to automatically configure the usage of value holder indirection
("Value Holder Indirection" on page 30-7) for all CMR.

Indirection, Serialization, and Detachment
When using indirection, it is likely that a graph of persistent objects will contain
untriggered indirection objects. Because indirection objects are transient and do not
survive serialization between one JVM and another, untriggered indirection objects
may appear as null values at deserialization time. This section describes how to
address this depending on the EJB version and application server you are using.

For more information on serialization and TopLink, see "Merging Changes in Working
Copy Clones" on page 99-13.

CMP When using CMP with any of the application servers for which TopLink
provides CMP integration (see "Application Server Support" on page 7-1), indirection
does not affect enterprise beans’ passivation and activation within the same JVM.

However, when you serialize an indirection-enabled enterprise bean from one JVM to
another (for example, from server to client), untriggered indirection objects appear as
null values at deserialization time. You must code your client to handle this scenario
and to distinguish between an attribute that is null because it was null in the data
source, and an attribute that is null because of an untriggered indireciton object.

Note: When using EJB 3.0 persistence with OC4J, if you specify the
@Bean annotation attribute fetch=lazy, TopLink uses bytecode
weaving to automatically configure the usage of value holder
indirection (see "Value Holder Indirection" on page 30-7) for all
container-managed relationships.

Mapping Concepts

30-10 Oracle TopLink Developer’s Guide

Method Accessors and Attribute Accessors
By default, TopLink uses direct access to access public attributes. Using TopLink, you
can configure field access at the project level (see "Configuring Mapped Field Access at
the Project Level" on page 19-4) and at the method level ("Configuring Method
Accessing" on page 32-14).

Mapping Converters and Transformers
If existing TopLink mappings do not meet your needs, you can create custom
mappings using mapping extensions. These extensions include the following:

■ Serialized Object Converter

■ Type Conversion Converter

■ Object Type Converter

■ Simple Type Translator

■ Transformation Mappings

Serialized Object Converter
The serialized object converter is an extension of direct and direct collection mappings
that lets you map complex objects into binary fields through Java object serialization.
Serialized objects are normally stored in RAW or Binary Large Object (BLOB) fields in
the database, or HEX or BASE64 elements in an XML document.

Figure 30–6 shows an example of a direct-to-field mappings that uses a serialized
object converter. The attribute jobDescription contains a formatted text document
that is stored in the JOB_DESC field of the database.

Figure 30–6 Serialized Object Converter (relational)

Note: When using EJB 3.0 persistence with OC4J, indirection does
not affect enterprise beans’ passivation and activation, nor does it
affect detachment from and attachment to a persistence manager
within the same JVM.

However, when you serialize an indirection-enabled EJB 3.0 beans
from one JVM to another, (for example, from server to client),
untriggered indirection objects appear as null values at deserialization
time. To avoid this, configure your client to use the same Java agent
that OC4J uses (see "Configuring ValueHolder Indirection With EJB
3.0 on OC4J" on page 32-8).

Note: You can use the mapping converters and transformers
regardless of whether your data source is relational or nonrelational.

Mapping Concepts

Understanding Mappings 30-11

Figure 30–8 demonstrates an example of a nonrelational mapping that uses a serialized
object converter. The attribute jobDescription contains a formatted text document
that TopLink stores in the JOB DESCRIPTION element of an XML schema.

Figure 30–7 Serialized Object Converter (nonrelational)

The serialized object converter relies on the Java serializer. Before you map a domain
object with the serialized object converter, ensure that the domain object implements
the java.io.Serializable interface (or inherits that implementation) and marks
all nonserializable fields transient.

For more information, see "Configuring a Serialized Object Converter" on page 32-18.

Type Conversion Converter
The type conversion converter is an extension of direct and direct collection mappings
that lets you explicitly map a data source type to a Java type. For example, a Number
in the data source can be mapped to a String in Java, or a java.util.Date in Java
can be mapped to a java.sql.Date in the data source.

Figure 30–8 illustrates a type conversion mapping (relational). Because the
java.util.Date class is stored by default as a Timestamp in the database, it must
first be converted to an explicit database type such as java.sql.Date (required only
for DB2–most other databases have a single date data type that can store any date or
time).

Figure 30–8 Type Conversion Mapping (relational)

Figure 30–9 illustrates a type conversion mapping (nonrelational). java.util.Date
object is mapped to a String in a XML schema.

Figure 30–9 Type Conversion Mapping (nonrelational)

You can use a type conversion converter to specify the specific database type when
that type must be handled specially for the database. This includes support for the

Mapping Concepts

30-12 Oracle TopLink Developer’s Guide

special Oracle JDBC binding options required for NCHAR, NVARCHAR2, and NCLOB
fields as well as the special Oracle Thin JDBC insert and update requirements for
handling BLOB and CLOB fields greater than 5K.

TopLink uses the NCharacter, NClob and NString types in the
oracle.toplink.platform.database.oracle package as the converter data
type to support the NCHAR, NCLOB and NVARCHAR2 types. TopLink uses the
java.sql.Blob and Clob types as the converter data type to support BLOB and
CLOB values greater than 5K.

You can configure a type conversion converter to map a data source time type (such as
TIMESTAMP) to a java.lang.String provided that the String value conforms to the
following formats:

■ YYYY/MM/DD HH:MM:SS

■ YY/MM/DD HH:MM:SS

■ YYYY-MM-DD HH:MM:SS

■ YY-MM-DD HH:MM:SS

For more complex String to TIMESTAMP type conversion, consider a transformation
mapping (see "Transformation Mappings" on page 30-14).

For more information, see "Configuring a Type Conversion Converter" on page 32-20.

Object Type Converter
The object type converter is an extension of direct and direct collection mappings that
lets you match a fixed number of XML values to Java objects. Use this converter when
the values in the schema differ from those in Java.

Figure 30–10 illustrates an object type conversion between the Employee attribute
gender and the XML element gender. If the value of the Java object attribute is
Female, TopLink stores it in the XML element as F.

Figure 30–10 Object Type XML Converter

For more information, see "Configuring an Object Type Converter" on page 32-22.

Simple Type Translator
The simple type translator is an extension of direct and direct collection mappings that
lets you automatically translate an XML element value to an appropriate Java type
based on the element’s <type> attribute as defined in your XML schema.

You can use a simple type translator only when the mapping’s XPath goes to a text
node. You cannot use a simple type translator if the mapping’s XPath goes to an
attribute.

Using a simple type translator, you can make the XML document preserve type
information. This is useful when your object model specifies generic object attributes

Mapping Concepts

Understanding Mappings 30-13

such as java.lang.Object and java.io.Serializable, since they do not
trigger specific type conversions in TopLink as do specific object attributes such as
java.lang.Integer or java.util.Calendar.

Figure 30–11 illustrates a type translation XML mapping for the number attribute of
the PhoneNumber class. Notice that the Java attribute is not specific enough to
preserve the typing. The simple type translator adds the type information to the
resulting document to preserve the typing.

Figure 30–11 Simple Type Translator

By default, TopLink uses built-in read and write conversion pairs (see "Default Read
Conversions" on page 30-13 and "Default Write Conversions" on page 30-14).

You can override this behavior by specifying and configuring your own simple type
translator, for example, to write XML binary data as Base64.

For more information, see "Configuring a Simple Type Translator" on page 32-23.

Default Read Conversions Table 30–2 lists the built-in conversion pairs for reading XML
elements. When the schema <type> attribute is specified and the simple type
translator is enabled, the value read is converted to the corresponding Java type.

Table 30–2 Simple Type Translator Read Conversions

Schema Type Java Type

base64Binary Byte[]

boolean Boolean

byte Byte

date Calendar

dateTime Calendar

double Double

float Float

hexBinary Byte[]

int int

integer BigInteger

Mapping Concepts

30-14 Oracle TopLink Developer’s Guide

Default Write Conversions Table 30–3 lists the built-in conversion pairs for writing XML.
When a Java class attribute is of a type in Table 30–3 and the simple type translator is
enabled, the corresponding schema type is specified on the element written.

Transformation Mappings
In some special circumstances, existing mapping types and their default Java to data
source type handling may be insufficient. In these special cases, you can consider
using a transformation mapping to perform specialized translations between how a
value is represented in Java and in the data source.

A transformation mapping is made up of the following two components:

■ attribute transformer (see "Configuring Attribute Transformer" on page 32-29):
performs the object attribute transformation at read (unmarshall) time

■ field transformer (see "Configuring Field Transformer Associations" on
page 32-31): performs the object attribute-to-field transformation at write
(marshal) time

You can implement a transformer as either a separate class or as a method on your
domain object.

long Long

short Short

string String

time Calendar

unsignedByte Short

unsignedInt Long

unsignedShort Integer

Table 30–3 Simple Type Translator Write Conversions

Java Type Schema Type

Byte[] hexBinary

BigInteger integer

Boolean boolean

Byte byte

Calendar dateTime

Gregorian_Calendar dateTime

Double double

Float float

Integer int

Long long

int int

short short

String string

Table 30–2 (Cont.) Simple Type Translator Read Conversions

Schema Type Java Type

Mapping Concepts

Understanding Mappings 30-15

Within your implementation of the attribute and field transformer, you can take
whatever actions are necessary to transform your application data to suit your data
source, and vise versa.

For more information, see the following:

■ "Transformation Mapping" on page 33-15

■ "EIS Transformation Mapping" on page 53-17

■ "XML Transformation Mapping" on page 62-31

Mappings and XPath
TopLink uses XPath statements to efficiently map the attributes of a Java object in EIS
mappings to XML records and in XML mappings to XML documents. When you
create such a mapping, you can specify the following:

■ XPath by Position

■ XPath by Path and Name

■ XPath by Name

■ Self XPath

XPath by Position
In a relational database table, columns are uniquely identified by name. In an XML
document, elements are uniquely identified by name and position. Figure 30–12
illustrates mapping to an XML document in which the first instance of the street
element stores apartment information and the second instance of the street element
stores street information. Figure 30–12 shows that TopLink XML mappings preserve
the order in which mappings are persisted and allow you to map Java object attributes
to XML elements by position using an XPath like street[2]/text().

Other XML technologies only recognize the name of XML elements (not their position)
and force you to store the simple values from elements with the same name in a
collection.

Figure 30–12 Mapping to an XML Document by Position

XPath by Path and Name
In an XML document, attributes and elements are uniquely identified by a
combination of name and path. Figure 30–13 illustrates that TopLink XML mappings
can uniquely identify an XML element by name and path using an XPath such as
item/name/text(). TopLink does not require a formal object relationship between
XML elements lines and item.

Other XML technologies force you to provide an object relationship for every level of
nesting, resulting in the inclusion of many XML elements and classes simply to
organize the data to satisfy this restriction. This produces an unnecessarily large object
model that does not properly reflect the domain space.

Mapping Concepts

30-16 Oracle TopLink Developer’s Guide

Figure 30–13 Mapping to an XML Document by Path and Name

XPath by Name
For simple XML documents, TopLink XML mappings can correctly place data in an
XML document given an XPath of only an attribute or element name.

Figure 30–14 illustrates mapping to a simple XML document by name. You can map
Java object attribute name to XML attribute name by specifying an XPath of only
@NAME. Similarly, you can map Java object attribute age to XML text node AGE by
specifying an XPath of only AGE.

Figure 30–14 Mapping to a Simple XML Document by Name

Specifying an XPath by name provides the worst performance of the XPath mapping
options. Oracle recommends that you use XPath by position (see "XPath by Position"
on page 30-15) or XPath by path and name (see "XPath by Path and Name" on
page 30-15) instead.

Self XPath
For composite relationships, TopLink XML mappings can place data in the parent’s
element rather than an element nested within it given the self XPath (".").

Figure 30–15 illustrates mapping to an XML document using the self XPath.

Figure 30–15 Mapping to a XML Document Using Self XPath

Note that in the preceding example represented by Figure 30–15, name attribute of the
Employee class is mapped using the @name annotation.

Mapping Concepts

Understanding Mappings 30-17

Using the self XPath, you can make TopLink perform all read and write operations in
the parent’s element and not an element nested within it (see "Mappings and the
jaxb:class Customization" on page 30-20).

Mappings and xsd:list and xsd:union Types
TopLink supports mapping to xsd:list and xsd:union types in EIS mappings to
XML records and XML mappings to XML documents as Table 30–4 shows.

Mapping an xsd:union Type
Use an EISDirectMapping (with XML records) or an XMLDirectMapping to map a
Java attribute to an xsd:union type, such as:

<xsd:simpleType name="size-type">
<xsd:union memberTypes="xsd:decimal xsd:string"/>

</xsd:simpleType>

When TopLink marshalls (writes) an object to XML, it uses its default conversion pairs
to convert from the Java type to the appropriate xsd type.

In the case where the memberTypes map to the same Java type, TopLink marshalls
using the first memberType in the union which allows a successful conversion. For
example, if you map a Java type of byte[] to an xsd:union with memberTypes of
hexBinary and base64Binary, then TopLink marshalls using the first
memberType: hexBinary.

You can customize the default conversion pairs to control the Java type to xsd type
conversion using XMLField method addConversion and configuring your mapping
with that XMLField using EISDirectMapping or XMLDirectMapping method
setField. For example, if the memberTypes were xsd:date and xsd:time and
the Java attribute was of type java.util.Date instead of the JAXB 1.0 standard
java.util.Calendar, you can modify the conversion pair for xsd:date to be
java.util.Date.

When TopLink unmarshalls (reads) XML into an object, it tries each memberType in
the order specified in the XSD until the first successful conversion is made.

If your XML document specifies the xsi:type attribute on an element, then TopLink
converts according to the xsi:type instead of trying the memberTypes.

For more information, see "Mapping to a Union Field With an XML Direct Mapping"
on page 62-10. The same applies to an EISDirectMapping with XML records (see
"EIS Direct Mapping" on page 53-5).

Table 30–4 TopLink Support for xsd:list and xsd:union Types

XSD

EIS Direct
Mapping
XML Direct
Mapping

EIS Composite Direct Collection
Mapping
XML Composite Direct Collection
Mapping

Mapping an xsd:union Type

Mapping an xsd:list Type

Mapping a List of Unions

Mapping a Union of Lists

Mapping a Union of Unions

Mapping Concepts

30-18 Oracle TopLink Developer’s Guide

Mapping an xsd:list Type
You can map a Java attribute to an xsd:list type, such as:

<xsd:simpleType name="sizes">
<xsd:list itemType="xsd:int"/>

</xsd:simpleType>

If you represent the xsd:list in your object model as a Java List type, use an
EISCompositeDirectCollectionMapping (with XML records) or an
XMLCompositeDirectCollectionMapping and use mapping method
useCollectionClass to specify the List type of the Java attribute.

If you represent the list in your object model as a String of white space delimited
tokens (for example, "aaa bbb ccc"), use an EISDirectMapping (with XML
records) or an XMLDirectMappng to map this Java attribute to an xsd:list (for
example, <item>aaa bbb ccc</item>).

In either case, you can configure whether or not the mapping unmarshalls (writes) the
list to a single node, like <item>aaa bbb ccc</item>, or to multiple nodes, such
as the following:

<item>aaa</item>
<item>bbb</item>
<item>ccc</item>

For more information on mapping to an xsd:list type using an
XMLCompositeDirectCollectionMapping, see:

■ "Mapping to a Single Text Node With an XML Composite Direct Collection
Mapping" on page 62-17

■ "Mapping to a Single Attribute With an XML Composite Direct Collection
Mapping" on page 62-18

■ "Specifying the Content Type of a Collection With an XML Composite Direct
Collection Mapping" on page 62-20

The same applies to an EISCompositeDirectCollectionMapping (with XML
records).

For more information about mapping to an xsd:list type using an
XMLDirectMapping, see "Mapping to a List Field With an XML Direct Mapping" on
page 62-10. The same applies to an EISDirectMapping with XML records (see "EIS
Direct Mapping" on page 53-5).

Mapping a List of Unions
Use an EISCompositeDirectCollectionMapping (with XML records) or an
XMLCompositeDirectCollectionMapping to map a Java attribute to an
xsd:list that contains xsd:union types, such as:

<xsd:element name="listOfUnions" type="listOfUnions"/>
<xsd:simpleType name="listOfUnions">

<xsd:list>
<xsd:simpleType>

<xsd:union memberTypes="xsd:date xsd:integer"/>
</xsd:simpleType>

</xsd:list>
</xsd:simpleType>

Mapping Concepts

Understanding Mappings 30-19

When TopLink marshalls (writes) an object to XML, it does not rely on a single
xsd:list itemType. Instead, for each item in the list, TopLink tries each
memberType until the first successful conversion.

For more information, see "Mapping to a List of Unions With an XML Composite
Direct Collection Mapping" on page 62-18. The same applies to an
EISCompositeDirectCollectionMapping with XML records (see "EIS Composite
Direct Collection Mapping" on page 53-6).

Mapping a Union of Lists
You can map a Java attribute to an xsd:union type whose memberTypes are
xsd:list types where each xsd:list contains items of a single type, such as:

<xsd:element name="listOfUnions" type="UnionOfLists"/>
<xsd:simpleType name="UnionOfLists">

<xsd:union memberTypes="xsd:double">
<xsd:simpleType>

<xsd:list itemType="xsd:date"/>
</xsd:simpleType>
<xsd:simpleType>

<xsd:list itemType="xsd:integer"/>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

Note that in this example, valid XML documents contain either all xsd:double, all
xsd:date, or all xsd:integer values.

If you represent the list in your object model as a String of white space delimited
tokens (for example, "aaa bbb ccc"), use an EISDirectMapping (with XML
records) or an XMLDirectMappng to map this Java attribute to an xsd:list (for
example, <item>aaa bbb ccc</item>).

If you represent the list in your object model as a Java List type, use an
EISCompositeDirectCollectionMapping (with XML records) or an
XMLCompositeDirectCollectionMapping.

For more information, see the following:

■ "Mapping to a Union of Lists With an XML Direct Mapping" on page 62-12. The
same applies to an EISDirectMapping with XML records (see "EIS Direct
Mapping" on page 53-5).

■ "Mapping to a Union of Lists With an XML Composite Direct Collection Mapping"
on page 62-19. The same applies to an EISCompositeDirectCollectionMapping
with XML records (see "EIS Composite Direct Collection Mapping" on page 53-6).

Mapping a Union of Unions
Use an EISDirectMapping (with XML records) or an XMLDirectMapping to map a
Java attribute to an xsd:union that contains xsd:union types, such as:

<xsd:simpleType name="UnionOfUnions">
<xsd:union>

<xsd:simpleType>
<xsd:union>
<xsd:simpleType>
<xsd:list itemType="xsd:date"/>

</xsd:simpleType>
<xsd:simpleType>
<xsd:list itemType="xsd:integer"/>

</xsd:simpleType>
</xsd:union>

Mapping Concepts

30-20 Oracle TopLink Developer’s Guide

</xsd:simpleType>
<xsd:simpleType>

<xsd:union>
<xsd:simpleType>
<xsd:list itemType="xsd:string"/>

</xsd:simpleType>
<xsd:simpleType>
<xsd:list itemType="xsd:float"/>

</xsd:simpleType>
</xsd:union>

</xsd:simpleType>
</xsd:union>

</xsd:simpleType>

Note that in this example, valid XML documents may contain any of xsd:date,
xsd:integer, xsd:string, or xsd:float.

For more information, see "Mapping to a Union of Unions With an XML Direct
Mapping" on page 62-12. The same applies to an EISDirectMapping with XML
records (see "EIS Direct Mapping" on page 53-5).

Mappings and the jaxb:class Customization
Using the jaxb:class customization, you can declaratively specify an
application-specific subclass of a schema-derived implementation class. This lets you
write your own classes that extend JAXB's generated implementation classes. The
JAXB runtime binding framework can then access your subclasses.

When you create an EIS composite object mapping to XML records or an XML
composite object mapping to XML documents, you can configure the mapping’s XPath
("Configuring XPath" on page 32-10) to accommodate jaxb:class customizations
with the following XSD structures:

■ all, choice, or sequence Structure

■ group Structure

■ sequence or choice Structure Containing a group

■ group Structure Containing a sequence or choice

■ group Structure Containing a group

When mapping to jaxb:class customized structures, consider the limitations of
TopLink support for this customization (see "Limitations of jaxb:class Customization
Support" on page 30-23).

all, choice, or sequence Structure
You can use the jaxb:class customization with an all, choice, or sequence
structure. Example 30–1 shows a jaxb:class customization of an all structure.

Example 30–1 jaxb:class Customization of an all Structure

<xsd:element name="employee">
<xsd:complexType>

<xsd:all>
<xsd:annotation>

<xsd:appinfo>
<jaxb:class name="period"/>

</xsd:appinfo>
</xsd:annotation>
<xsd:element name="startDate" type="xsd:date"/>
<xsd:element name="endDate" type="xsd:date"/>

Mapping Concepts

Understanding Mappings 30-21

</xsd:all>
</xsd:complexType>

</xsd:element>

This directs the JAXB compiler to create an inner class named Period in the owning
element’s class for the all structure. Use an EISCompositeObjectMapping (with
XML records) or an XMLCompositeObjectMapping to map a Java attribute to this
inner class.

For more information, see "XML Composite Object Mapping" on page 62-21. The same
applies to an EISCompositeObjectMapping with XML records (see "EIS Composite
Object Mapping" on page 53-7).

group Structure
You can use the jaxb:class customization with a group structure as Example 30–2
shows.

Example 30–2 jaxb:class Customization of a group Structure

<xsd:group name="G1">
<xsd:annotation>

<xsd:appinfo>
<jaxb:class name="period"/>

</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="startDate" type="xsd:date"/>
<xsd:element name="endDate" type="xsd:date"/>

</xsd:sequence>
</xsd:group>

<xsd:element name="employee">
<xsd:complexType>

<xsd:group ref="G1"/>
</xsd:complexType>

</xsd:element>

This directs the JAXB compiler to create an external wrapper class named Period for
the group structure. Use an EISCompositeObjectMapping (with XML records) or
an XMLCompositeObjectMapping to map a Java attribute to this external wrapper
class.

For more information, see "XML Composite Object Mapping" on page 62-21. The same
applies to an EISCompositeObjectMapping with XML records (see "EIS Composite
Object Mapping" on page 53-7).

sequence or choice Structure Containing a group
You can use the jaxb:class customization with a sequence or choice structure
that contains a group. Example 30–3 shows a jaxb:class customization of a
sequence structure containing a group structure.

Example 30–3 jaxb:class Customization of a sequence Structure Containing a group

<xsd:element name="employee">
<xsd:complexType>

<xsd:sequence>
<xsd:annotation>

<xsd:appinfo>
<jaxb:class name="EmploymentInfo"/>

</xsd:appinfo>
</xsd:annotation>

Mapping Concepts

30-22 Oracle TopLink Developer’s Guide

<xsd:element name="id" type="xsd:int"/>
<xsd:group ref="G1"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:group name="G1">
<xsd:annotation>

<xsd:appinfo>
<jaxb:class name="Period"/>

</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="startDate" type="xsd:date"/>
<xsd:element name="endDate" type="xsd:date"/>

</xsd:sequence>
</xsd:group>

This directs the JAXB compiler to create an inner class named EmploymentInfo in
the owning element’s class for the sequence structure and an external wrapper class
named Period for the group structure. The inner class references the external
wrapper class. Use an EISCompositeObjectMapping (with XML records) or an
XMLCompositeObjectMapping to map a Java attribute to this inner class.

For more information, see "XML Composite Object Mapping" on page 62-21. The same
applies to an EISCompositeObjectMapping with XML records (see "EIS Composite
Object Mapping" on page 53-7.

group Structure Containing a sequence or choice
You can use the jaxb:class customization with a group structure that contains a
sequence or choice. Example 30–4 shows a jaxb:class customization of a group
structure containing a sequence structure.

Example 30–4 jaxb:class Customization of a group Structure Containing a sequence

<xsd:group name="G1">
<xsd:annotation>

<xsd:appinfo>
<jaxb:class name="EmploymentInfo"/>

</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>

<xsd:annotation>
<xsd:appinfo>

<jaxb:class name="Period"/>
</xsd:appinfo>

</xsd:annotation>
<xsd:element name="startDate" type="xsd:date"/>
<xsd:element name="endDate" type="xsd:date"/>

</xsd:sequence>
</xsd:group>

<xsd:element name="employee">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="id" type="xsd:int"/>
<xsd:group ref="G1"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

This directs the JAXB compiler to create an external wrapper class named
EmploymentInfo for the group structure and an inner class named Period in the

Mapping Concepts

Understanding Mappings 30-23

external wrapper class for the sequence structure. The owning element references the
external wrapper class. Use an EISCompositeObjectMapping (with XML records)
or an XMLCompositeObjectMapping to map a Java attribute to this external
wrapper class.

For more information, see "XML Composite Object Mapping" on page 62-21. The same
applies to an EISCompositeObjectMapping with XML records (see "EIS Composite
Object Mapping" on page 53-7).

group Structure Containing a group
You can use the jaxb:class customization with a group structure that contains
another group structure as Example 30–5 shows.

Example 30–5 jaxb:class Customization of a group Structure Containing a group

<xsd:group name="G1">
<xsd:annotation>

<xsd:appinfo>
<jaxb:class name="EmploymentInfo"/>

</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="id" type="xsd:int"/>
<xsd:group ref="G2"/>

</xsd:sequence>
</xsd:group>

<xsd:group name="G2">
<xsd:annotation>

<xsd:appinfo>
<jaxb:class name="Period"/>

</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="startDate" type="xsd:date"/>
<xsd:element name="endDate" type="xsd:date"/>

</xsd:sequence>
</xsd:group>

<xsd:element name="employee">
<xsd:complexType>

<xsd:group ref="G1"/>
</xsd:complexType>

</xsd:element>

This directs the JAXB compiler to create a wrapper class named EmploymentInfo for
the group structure that the owning element’s class references and another wrapper
class named Period for the group structure that the EmploymentInfo class
references. Use an EISCompositeObjectMapping (with XML records) or an
XMLCompositeObjectMapping to map a Java attribute to these wrapper classes.

For more information, see "XML Composite Object Mapping" on page 62-21. The same
applies to an EISCompositeObjectMapping with XML records (see "EIS Composite
Object Mapping" on page 53-7).

Limitations of jaxb:class Customization Support
When mapping to jaxb:class customized structures, consider the following limitations:

■ Unbounded structures are not supported.

■ Partial validation is not supported.

Mapping Concepts

30-24 Oracle TopLink Developer’s Guide

■ When mapping sequence elements to a composite object, the XML schema must
order the elements so that the elements you map to the composite object are kept
together.

The sequence structure forces all elements to occur in the order in which they are
specified in the XML schema. Consider the XML schema shown in Example 30–6.
A valid XML instance must contain the sequence elements in the specified order:

street, customerName, city

In this example, you want to map the customerName attribute with a direct
mapping and you want to map the street and city attributes to a composite
Address object. Depending on the order in which you define the mappings,
TopLink will marshall invalid XML document instances in the order

customerName, street, city

or

street, city, customerName.

Example 30–6 XML Schema With Unsupported Sequence Element Order

<xs:element name="customer">
<xs:complexType>

<xs:sequence>
<xs:element name="street" type="xs:string"/>
<xs:element name="customerName" type="xs:string" />
<xs:element name="city" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>

To correct this problem, modify the XML schema to keep the elements you want to
map to the composite object together (see Example 30–7) and define the mappings
in the order specified by the XML schema.

Example 30–7 XML Schema With Supported Sequence Element Order

<xs:element name="customer">
<xs:complexType>

<xs:sequence>
<xs:element name="customerName" type="xs:string" />
<xs:element name="street" type="xs:string"/>
<xs:element name="city" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Mappings and JAXB Typesafe Enumerations
JAXB binds a typesafe enumeration class to a named simple type definition with a
basetype that derives from xsd:NCName and has enumeration facets (see
Example 30–8).

Example 30–8 Schema Fragment with Typesafe Enumeration Declaration

<simpleType name="NISTSchema-NCName-enumeration-1-Type">
 <restriction base="NCName">
 <enumeration value="qbandwidth-and.software-use.too"/>

Relational Mappings

Understanding Mappings 30-25

 <enumeration value="_effort-disseminate_and-devices.com"/>
 </restriction>
</simpleType>

You can map a Java attribute to such an enumeration using the
JAXBTypesafeEnumConverter with an EISDirectMapping or
EISCompositeDirectCollectionMapping with XML records or with an
XMLDirectMapping or XMLCompositeDirectCollectionMapping with XML
documents.

TopLink Workbench does not support the JAXBTypesafeEnumConverter directly:
to configure a mapping with this converter, you must use a descriptor amendment
method (see "Configuring a JAXB Typesafe Enumeration Converter" on page 32-25).

If you create a project and object model using the TopLink JAXB compiler (see
"Creating an XML Project From an XML Schema" on page 18-6), the compiler will
create the type safe enumeration class and a class with descriptor amendment
methods and register the required amendment methods automatically (see "Typesafe
Enumeration Converter Amendment Method DescriptorAfterLoads Class" on
page 17-12).

Understanding the Mapping API
All the mapping classes are derived from the DatabaseMapping class.

Relational Mappings
A relational mapping transforms any object data member type to a corresponding
relational database (SQL) data source representation in any supported relational
database. Relational mappings allow you to map an object model into a relational
data-model.

Relational mappings can also transform object data members that reference other
domain objects that are stored in other tables in the database and are related through
foreign keys.

Use relational mappings in relational projects. For more information, see "Relational
Projects" on page 17-6.

For more information about relational mappings, see Chapter 33, "Understanding
Relational Mappings" and Chapter 34, "Configuring a Relational Mapping".

Table 30–5 Platform and Mapping Package Compatibility

Platform Mapping Package

DatabasePlatform

For relational projects

oracle.toplink.mappings

oracle.toplink.xdb

oracle.toplink.objectrelational

EISPlatform

For EIS projects

oracle.toplink.eis

oracle.toplink.mappings.TransformationMapping

XMLPlatform

For XML projects

oracle.toplink.ox

oracle.toplink.mappings.TransformationMapping

Object-Relational Mappings

30-26 Oracle TopLink Developer’s Guide

TopLink provides the following relational mappings:

■ Chapter 35, "Configuring a Relational Direct-to-Field Mapping"

■ Chapter 36, "Configuring a Relational Direct-to-XMLType Mapping"

■ Chapter 37, "Configuring a Relational One-to-One Mapping"

■ Chapter 38, "Configuring a Relational Variable One-to-One Mapping"

■ Chapter 39, "Configuring a Relational One-to-Many Mapping"

■ Chapter 40, "Configuring a Relational Many-to-Many Mapping"

■ Chapter 41, "Configuring a Relational Aggregate Collection Mapping"

■ Chapter 42, "Configuring a Relational Direct Collection Mapping"

■ Chapter 44, "Configuring a Relational Direct Map Mapping"

■ Chapter 43, "Configuring a Relational Aggregate Object Mapping"

■ Chapter 45, "Configuring a Relational Transformation Mapping"

Object-Relational Mappings
An object-relational mapping transforms certain object data member types to
structured data source representations optimized for storage in specialized
object-relational databases such as Oracle Database. Object-relational mappings allow
you to map an object model into an object-relational data-model.

Use object-relational mappings in relational projects. For more information, see
"Relational Projects" on page 17-6.

For more information about object-relational mappings, see Chapter 46,
"Understanding Object-Relational Mappings" and Chapter 47, "Configuring an
Object-Relational Mapping".

Note: Do not confuse relational mappings with object-relational
mappings (see "Object-Relational Mappings" on page 30-26). An
object-relational mapping transforms certain object data member
types to structured data source representations optimized for storage
in specialized object-relational databases such as Oracle Database.
Object-relational mappings allow you to map an object model into an
object-relational data-model. In general, you can use relational
mappings with any supported relational database. You can only use
Object-relational mappings with specialized object-relational
databases optimized to support object-relational data source
representations.

EIS Mappings

Understanding Mappings 30-27

TopLink provides the following object-relational mappings:

■ Chapter 48, "Configuring an Object-Relational Structure Mapping"

■ Chapter 49, "Configuring an Object-Relational Reference Mapping"

■ Chapter 50, "Configuring an Object-Relational Array Mapping"

■ Chapter 51, "Configuring an Object-Relational Object Array Mapping"

■ Chapter 52, "Configuring an Object-Relational Nested Table Mapping"

XML Mappings
An XML mapping transforms object data members to the XML elements of an XML
file whose structure is defined by an XML schema document (XSD).

Use XML mappings in XML projects. For more information, see "XML Projects" on
page 17-9.

For more information about XML mappings, see Chapter 62, "Understanding XML
Mappings" and Chapter 63, "Configuring an XML Mapping".

TopLink provides the following XML mappings:

■ Chapter 64, "Configuring an XML Direct Mapping"

■ Chapter 65, "Configuring an XML Composite Direct Collection Mapping"

■ Chapter 66, "Configuring an XML Composite Object Mapping"

■ Chapter 67, "Configuring an XML Composite Collection Mapping"

■ Chapter 68, "Configuring an XML Any Object Mapping"

■ Chapter 69, "Configuring an XML Any Collection Mapping"

■ Chapter 70, "Configuring an XML Transformation Mapping"

EIS Mappings
An EIS mapping transforms object data members to the EIS record format defined by
the object’s descriptor.

Note: Do not confuse object-relational mappings with relational
mappings (see "Relational Mappings" on page 30-25). A relational
mapping transforms any object data member type to a corresponding
relational database (SQL) data source representation in any supported
relational database. Relational mappings allow you to map an object
model into a relational data-model. In general, you can use relational
mappings with any supported relational database. You can only use
Object-relational mappings with specialized object-relational
databases optimized to support object-relational data source
representations.

Note: If you understand the concept of relational mappings, you
understand the EIS mappings. For more information about relational
mappings, see "Relational Mappings" on page 30-25.

EIS Mappings

30-28 Oracle TopLink Developer’s Guide

Use EIS mappings in EIS projects. For more information, see "EIS Projects" on
page 17-7.

For more information about EIS mappings, see Chapter 53, "Understanding EIS
Mappings" and Chapter 54, "Configuring an EIS Mapping".

TopLink provides the following EIS mappings:

■ Chapter 55, "Configuring an EIS Direct Mapping"

■ Chapter 56, "Configuring an EIS Composite Direct Collection Mapping"

■ Chapter 57, "Configuring an EIS Composite Object Mapping"

■ Chapter 58, "Configuring an EIS Composite Collection Mapping"

■ Chapter 59, "Configuring an EIS One-to-One Mapping"

■ Chapter 60, "Configuring an EIS One-to-Many Mapping"

■ Chapter 61, "Configuring an EIS Transformation Mapping"

Creating a Mapping 31-1

31
Creating a Mapping

This chapter includes information on the following:

■ Mapping Creation Overview

■ Creating Mappings Manually During Development

■ Creating Mappings Automatically During Development

■ Creating Mappings Automatically During Deployment

■ Creating Mappings to Oracle LOB Database Objects

■ Removing Mappings

Mapping Creation Overview
You can create a database mapping using TopLink Workbench or Java code. Oracle
recommends using TopLink Workbench to create and manage your mappings.

For more information on creating mappings in Java, see Oracle TopLink API Reference

For complete information on the various types of mapping that TopLink supports, see
"Mapping Types" on page 30-1.

During development, you can create mappings individually (see "Creating Mappings
Manually During Development" on page 31-1) or you can allow TopLink Workbench
to automatically map all attributes (see "Creating Mappings Automatically During
Development" on page 31-2).

For CMP projects using OC4J, you can also configure TopLink to create mappings
automatically at deployment time (see "Creating Mappings Automatically During
Deployment" on page 31-2).

After you create a mapping, you must configure its various options (see Chapter 32,
"Configuring a Mapping").

Creating Mappings Manually During Development
You can manually create a mapping from each persistent field of a class to a data
source using TopLink Workbench or Java code. Oracle recommends that you use
TopLink Workbench.

Using TopLink Workbench
To manually create a mapping using TopLink Workbench, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

Creating Mappings Automatically During Development

31-2 Oracle TopLink Developer’s Guide

2. On the Descriptor Info tab, associate the descriptor with the data source (see
Chapter 25, "Configuring a Descriptor"). You must associate descriptors with a
database table or schema context before mapping their attributes.

3. In the Navigator, expand the descriptor to display its attributes.

4. Select an attribute and click the appropriate mapping on the toolbar (see "Context
Toolbar" on page 4-7), or right-click the attribute and select Map As > specific
mapping from the menu (see "Context Menus" on page 4-5).

Continue with Chapter 32, "Configuring a Mapping" to complete the mapping.

Creating Mappings Automatically During Development
For relational database projects, TopLink Workbench can automatically map class
attributes to a similarly named database field. For example, TopLink Workbench can
map the attribute province to the database field PROV, the attribute street to the
field ST, and the attribute postalCode to the field POSTAL_CODE.

The Automap function creates mappings only for unmapped attributes–it does not
change previously defined mappings.

You can automatically map classes for an entire project or for specific classes or
descriptors. If TopLink cannot

Using TopLink Workbench
To automatically map all the descriptors in a project, right-click the project icon in the
Navigator window and choose Automap from the context menu or choose Selected >
Automap from the menu.

To automatically map a specific descriptor or attribute, choose the descriptor or
attributes and right-click, and then select Automap from the context menu or choose
Selected > Automap from the menu.

Creating Mappings Automatically During Deployment
If you create a project from an OC4J EJB CMP EAR at deployment time, you can take
advantage of the TopLink default mapping feature to automatically create mappings
at deployment time.

For more information, see the following:

■ "Creating a Project From an OC4J EJB CMP EAR at Deployment Time" on
page 18-10

■ "Default Mapping in CMP Projects Using OC4J at Run Time" on page 30-4

Creating Mappings to Oracle LOB Database Objects
In an Oracle Database, large amounts of binary or character data is stored as a BLOB
(binary large object) or CLOB (character large object), respectively. Depending on the

Note: Associating a descriptor with a database table (see
"Configuring Associated Tables" on page 26-2) before using the
Automap function can aid the automapper if it cannot guess the
correct table for a class.

Creating Mappings to Oracle LOB Database Objects

Creating a Mapping 31-3

size of the LOB value and your Oracle Database database version, the value may be
stored either inside or outside of the table.

■ With Oracle8i version 8.1.6 and earlier, LOB values less than 4K are stored inline;
values more than 4K are stored outside the table.

■ With Oracle8i version 8.1.7 and later, LOB values less than 5.9K are stored inline;
values more than 5.9K are stored outside the table.

A client application (such as Oracle TopLink) must use a LOB locator to write a LOB
value, if the value is stored outside of the database. The Oracle JDBC OCI driver and
server driver handle these LOB (large object) values differently than the Oracle JDBC
thin driver.

Using the Oracle JDBC OCI Driver or Server Driver
When using the Oracle JDBC OCI or Server driver, the driver is responsible for
acquiring the LOB locator before writing the value–not TopLink. You can use any
TopLink mapping type to read and write a LOB value.

Use this procedure to map LOB values using the Oracle JDBC OCI driver:

1. Use any mapping type to map the attributes of a TopLink descriptor to a LOB
value. Example 31–1 shows an example of a direct-to-field mapping to a BLOB
value.

Example 31–1 Mapping a BLOB with a Direct-To-Field Mapping

DirectToField pictureMapping = new DirectToField();
pictureMapping.setAttributeName("picture");
pictureMapping.setFieldName("IMAGE.PICTURE");
descriptor.addMapping(pictureMapping);

2. Acquire the DatabaseLogin from the session.

DatabaseLogin login = session.getLogin();

3. Configure the parameter bindings for the specific LOB value:

■ For BLOB values, enable byte array binding to ensure that byte arrays are
bound (in the event that shouldBindAllParamters is false) and enable the
streams for binding to ensure that stream binding is used for byte arrays.
Example 31–2 shows configuring the parameter bindings in TopLink
Workbench. Example 31–3 shows configuring the parameter bindings in
TopLink Workbench.

Creating Mappings to Oracle LOB Database Objects

31-4 Oracle TopLink Developer’s Guide

Example 31–2 Configuring Parameter Bindings in TopLink Workbench

Example 31–3 Configuring Parameter Bindings in Java Code

login.setUsesByteArrayBinding(true);
login.setUsesStreamsForBinding(true);

■ For CLOB values, enable string binding to ensure that long string values (more
than 255 characters) are bound as character streams. Example 31–4 shows
configuring string binding in TopLink Workbench. Example 31–5 shows
configuring string binding in TopLink Workbench.

Example 31–4 Configuring String Binding in TopLink Workbench

Example 31–5 Configuring String Binding in Java Code

login.useStringBinding();

Creating Mappings to Oracle LOB Database Objects

Creating a Mapping 31-5

Using the Oracle JDBC Thin Driver
When using the Oracle JDBC thin driver, TopLink is responsible for acquiring the LOB
locator before writing the value. You can use a type conversion mapping (see
"Configuring a Type Conversion Converter" on page 32-20) to retrieve the locator
during a commit operation.

Use this procedure to map LOB values using the Oracle JDBC thin driver:

1. Use a type conversion mapping to map the attributes of a TopLink descriptor to a
LOB value. Example 31–6 shows a type conversion mapping to a BLOB value in
TopLink Workbench. Example 31–6 shows the Java code for the same mapping.

Example 31–6 Mapping a BLOB in TopLink Workbench

Example 31–7 Mapping a BLOB in Java Code

TypeConversionMapping pictureMapping = new TypeConversionMapping();
pictureMapping.set.AttributeName("picture");
pictureMapping.setFieldName("IMAGE.PICTURE");
pictureMapping.setFieldClassification(java.sql.Blob.class);
descriptor.addMapping(pictureMapping);

2. Acquire the DatabaseLogin from the session.

DatabaseLogin login = session.getLogin();

3. Configure a platform that provides locator support.

■ For Oracle8i, use the
oracle.toplink.oraclespecific.Oracle8Platform class:

login.usePlatform(new Oracle8Platform());

■ For Oracle9i Database Server, use the
oracle.toplink.oraclespecific.Oracle9Platform class:

login.usePlatform(new Oracle9Platform());

■ Oracle Database 10g, use the
oracle.toplink.oraclespecific.Oracle10Platform class:

login.usePlatform(new Oracle10Platform());

Removing Mappings

31-6 Oracle TopLink Developer’s Guide

In TopLink Workbench, select the appropriate platform in the Database editor.

Figure 31–1 Selecting Database Platform in TopLink Workbench

Removing Mappings
If you are using TopLink Workbench, you can unmap any mapped attribute.

Using TopLink Workbench
To unmap an attribute (that is, remove its mapping), use this procedure:

Select the attribute in the Navigator window and click Unmap. You can also unmap
the attribute by right-clicking the attribute and selecting Map As > Unmapped from
the context menu.

To unmap all the attributes in a descriptor or Java package, use this procedure:

Right-click the descriptor or Java package in the Navigator window and select
Unmap > Unmap Selected Descriptor or Unmap All Descriptors in Package from the
context menu.

Configuring a Mapping 32-1

32
Configuring a Mapping

This chapter describes how to configure TopLink mappings.

Table 32–1 lists the types of TopLink mappings that you can configure and provides a
cross-reference to the type-specific chapter that lists the configurable options
supported by that type.

Table 32–2 lists the configurable options shared by two or more TopLink mapping
types.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Understanding Mappings" on page 30-1

Configuring Common Mapping Options
Table 32–2 lists the configurable options shared by two or more TopLink mapping
types. In addition to the configurable options described here, you must also configure
the options described for the specific Mapping Types, as shown in Table 32–1

Table 32–1 Configuring TopLink Mappings

If you are creating... See...

Relational Mappings Chapter 34, "Configuring a Relational Mapping"

Object-Relational Mappings Chapter 47, "Configuring an Object-Relational Mapping"

EIS Mappings Chapter 54, "Configuring an EIS Mapping"

XML Mappings Chapter 63, "Configuring an XML Mapping"

Table 32–2 Common Mapping Options

Option Type
TopLink
Workbench Java

"Configuring Read-Only Mappings" on page 32-2 Basic

"Configuring Indirection" on page 32-3 Basic

"Configuring XPath" on page 32-10 Basic

"Configuring a Default Null Value at the Mapping Level" on
page 32-12

Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Private or Independent Relationships" on
page 32-16

Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

Configuring Read-Only Mappings

32-2 Oracle TopLink Developer’s Guide

Configuring Read-Only Mappings
Mappings that are read-only will not be affected during insert, update, and delete
operations.

Use read-only mappings when multiple attributes in an object map to the same fields
in the database but only one of the mappings can write to the field.

You can also use read-only mappings with bi-directional many-to-many mappings to
designate which mapping will be responsible for updating the many-to-many join
table.

Mappings defined for the write-lock or class indicator field must be read-only, unless
the write-lock is configured not to be stored in the cache or the class indicator is part of
the primary key.

Use read-only mappings only if specific mappings in a descriptor are read-only. If the
entire descriptor is read-only, use the descriptor-level setting (see "Configuring
Read-Only Descriptors" on page 25-5).

Table 32–3 summarizes which mappings support this option.

"Configuring a Serialized Object Converter" on page 32-18 Advanced

"Configuring a Type Conversion Converter" on page 32-20 Advanced

"Configuring an Object Type Converter" on page 32-22 Advanced

"Configuring a Simple Type Translator" on page 32-23 Advanced

"Configuring a JAXB Typesafe Enumeration Converter" on
page 32-25

Advanced

"Configuring Container Policy" on page 32-26 Advanced

"Configuring Attribute Transformer" on page 32-29 Advanced

"Configuring Field Transformer Associations" on page 32-31 Advanced

"Configuring Mutable Mappings" on page 32-33 Advanced

"Configuring Bidirectional Relationship" on page 32-34 Advanced

"Configuring the Use of a Single Node" on page 32-36 Advanced

Note: The primary key mappings cannot not be read-only.

Table 32–3 Mapping Support for Read-Only

Mapping

Using
TopLink
Workbench Using Java

Relational Mappings

Object-Relational Mappings

EIS Mappings

XML Mappings

Table 32–2 (Cont.) Common Mapping Options

Option Type
TopLink
Workbench Java

Configuring Indirection

Configuring a Mapping 32-3

Using TopLink Workbench
To specify a mapping as read-only, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 32–1 General Tab, Read-Only Option

Select the Read-Only option to set the mapping to be read-only and not affected
during update and delete operations.

Using Java
Use the following DatabaseMapping methods to configure the read access of a
mapping:

■ readOnly–configures mapping read access to read-only

■ readWrite–configures mapping read access to read and write (default)

Example 32–1 shows how to use these methods with a class that has a read-only
attribute named phones.

Example 32–1 Configuring Read Only Mappings in Java

// Map the phones attribute
phonesMapping.setAttributeName("phones");

// Specify read-only
phonesMapping.readOnly();

Configuring Indirection
By default, when TopLink retrieves a persistent object, it retrieves all of the dependent
objects to which it refers. When you enable indirection for an attribute mapped with a
relationship mapping, TopLink uses an indirection object as a placeholder for the
referenced object: TopLink defers reading the dependent object until you access that
specific attribute. This can result in a significant performance improvement, especially
if the application is interested only in the contents of the retrieved object rather than
the objects to which it refers.

Configuring Indirection

32-4 Oracle TopLink Developer’s Guide

Oracle strongly recommends using indirection for all relationship mappings. Not only
does this allow you to optimize data source access, but it also allows TopLink to
optimize the unit of work processing, cache access, and concurrency.

Table 32–4 summarizes which mappings support this option.

In general, Oracle recommends that you use value holder indirection (see "Value
Holder Indirection" on page 30-7) for one-to-one mappings and transparent indirect
container indirection (see "Transparent Indirect Container Indirection" on page 30-8)
for collection mappings. Enable indirection for transformation mappings if the
execution of the transformation is a resource-intensive task (such as accessing a
database, in a relational project).

When using indirection with EJB, the version of EJB and application server you use
affects how indirection is configured and what types of indirection are applicable (see
"Indirection and EJB" on page 30-9).

When using indirection with an object that your application serializes, you must
consider the effect of any untriggered indirection objects at deserialization time (see
"Indirection, Serialization, and Detachment" on page 30-9).

For more information, see "Indirection" on page 30-5.

Using TopLink Workbench
To complete the indirection options on a mapping’s General tab use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Table 32–4 Mapping Support for Indirection

Mapping

Value
Holder
Indirection

Transparent
Indirect
Container
Indirection

Proxy
Indirection

Using
TopLink
Workbench

Using
Java

Relational Mappings

Direct-to-Field Mapping

Transformation Mapping

One-to-One Mapping

Variable One-to-One Mapping

One-to-Many Mapping

Many-to-Many Mapping

Aggregate Collection Mapping

Direct Collection Mapping

Direct Map Mapping

Object-Relational Mappings

Object-Relational Reference Mapping

Object-Relational Nested Table Mapping

EIS Mappings

EIS One-to-One Mapping

EIS One-to-Many Mapping

XML Mappings

XML Transformation Mapping

Configuring Indirection

Configuring a Mapping 32-5

Figure 32–2 General Tab, Indirection Options

Use the following information to complete the Indirection fields on the tab:

Using Java
When creating mappings through the Java API, all foreign reference mappings default
to using value-holder indirection and all transformation mappings default to not using
indirection.

To disable indirection use ForeignReferenceMapping method
dontUseIndirection.

To enable value holder indirection, use ForeignReferenceMapping method
useBasicIndirection.

To enable transparent container indirection, use one of the following
CollectionMapping methods:

■ useTransparentCollection

■ useTransparentList

■ useTransparentMap

■ useTransparentSet

To enable proxy indirection, use ObjectReferenceMapping method
useProxyIndirection.

Field Description

Use Indirection Specify if this mapping uses indirection.

ValueHolder Specify that the mapping uses Value Holder indirection. See
"Value Holder Indirection" on page 30-7 for more information.

Proxy Specify that the mapping uses Proxy indirection. See "Proxy
Indirection" on page 30-8 for more information.

Configuring Indirection

32-6 Oracle TopLink Developer’s Guide

This section provides additional information on the following:

■ Configuring ValueHolder Indirection

■ Configuring ValueHolder Indirection With Method Accessing

■ Configuring ValueHolder Indirection With EJB 3.0 on OC4J

■ Configuring IndirectContainer Indirection

■ Configuring Proxy Indirection

Configuring ValueHolder Indirection
Instances of oracle.toplink.mappings.ForeignReferenceMapping and
oracle.toplink.mappings.foundation.AbstractTransformationMapping
provide the useBasicIndirection method to configure a mapping to an attribute
that you code with an oracle.toplink.indirection.ValueHolderInterface
between it and the real object.

If the attribute is of a Collection type (such as a Vector), then you can either use
an IndirectContainer (see "Configuring IndirectContainer Indirection" on
page 32-8) or define the ValueHolder in the constructor as follows:

addresses = new ValueHolder(new Vector());

Example 32–2 illustrates the Employee class using ValueHolder indirection. The
class definition conceals the use of ValueHolder within the existing getter and setter
methods.

Example 32–2 Class Using ValueHolder Indirection

public class Employee {

protected ValueHolderInterface address;

// Initialize ValueHolders in constructor
public Employee() {

address = new ValueHolder();
}

public Address getAddress() {
return (Address) this.addressHolder.getValue();

}

public void setAddress(Address address) {
this.addressHolder.setValue(address);

}
}

Example 32–3 shows how to configure a one-to-one mapping to the address
attribute.

Example 32–3 Mapping Using ValueHolder Indirection

OneToOneMapping mapping = new OneToOneMapping();
mapping.useBasicIndirection();
mapping.setReferenceClass(Employee.class);
mapping.setAttributeName("address");

The application uses Employee methods getAddress and setAddress to access the
Address object. Because basic indirection is enabled, TopLink expects the persistent
fields to be of type ValueHolderInterface.

Configuring Indirection

Configuring a Mapping 32-7

Configuring ValueHolder Indirection With Method Accessing
If you are using ValueHolder indirection with method accessing (see "Configuring
Method Accessing" on page 32-14), in addition to changing your attributes types in
your Java code to ValueHolderInterface, you must also provide TopLink with
two pairs of getter and setter methods:

■ getter and setter of the indirection object that are registered with the mapping and
used only by TopLink. They include a get method that returns an instance that
conforms to ValueHolderInterface, and a set method that accepts one
argument that conforms to the same interface.

■ getter and setter of the actual attribute value used by the application

Example 32–2 illustrates the Employee class using ValueHolder indirection with
method access. The class definition is modified so that the address attribute of
Employee is a ValueHolderInterface instead of an Address, and appropriate
getter and setter methods are supplied.

Example 32–4 Class Using ValueHolder Indirection with Method Accessing

public class Employee {

protected ValueHolderInterface address;

// Initialize ValueHolders in constructor
public Employee() {

address = new ValueHolder();
}

// getter and setter registered with the mapping and used only by TopLink
public ValueHolderInterface getAddressHolder() {

return address;
}
public void setAddressHolder(ValueHolderInterface holder) {

address = holder;
}

// getter and setter methods used by the application to access the attribute
public Address getAddress() {

return (Address) address.getValue();
}
public void setAddress(Address theAddress) {

address.setValue(theAddress);
}

}

Example 32–3 shows how to configure a one-to-one mapping to the address
attribute.

Example 32–5 Mapping Using ValueHolder Indirection with Method Accessing

OneToOneMapping mapping = new OneToOneMapping();
mapping.useBasicIndirection();
mapping.setReferenceClass(Employee.class);
mapping.setAttributeName("address");
mapping.setGetMethodName("getAddressHolder");
mapping.setSetMethodName("setAddressHolder");

The application uses Employee methods getAddress and setAddress to access the
Address object. Because basic indirection is enabled, TopLink uses Employee
methods getAddressHolder and setAddressHolder methods when performing
persistence operations on instances of Employee.

Configuring Indirection

32-8 Oracle TopLink Developer’s Guide

Configuring ValueHolder Indirection With EJB 3.0 on OC4J
When using indirection with EJB 3.0 persistence on OC4J (see "Indirection and EJB" on
page 30-9), if your application serializes any indirection-enabled enterprise bean (see
"Indirection, Serialization, and Detachment" on page 30-9), then, to preserve
untriggered indirection objects on deserialization, configure your client to use the
same Java agent that OC4J uses, as follows:

1. Include the following JAR files (from <TOPLINK_HOME>\jlib) in your client
classpath:

■ toplink.jar

■ toplink-agent.jar

■ asm.jar

■ asm-util.jar

■ ejb3-toplink-session.xml (and whatever project deployment XML it
refers to)

2. Add the following argument to the Java command line you use to start your client:

-javaagent:toplink-agent.jar

Configuring IndirectContainer Indirection
Instances of oracle.toplink.mappings.ForeignReferenceMapping and
oracle.toplink.mappings.foundation.AbstractTransformationMapping
provide the useContainerIndirection method to configure a mapping to an
attribute that you code with an
oracle.toplink.indirection.IndirectContainer between it and the real
object.

Using an IndirectContainer, a java.util.Collection class can act as a
TopLink indirection object: the Collection will only read its contents from the
database when necessary (typically, when a Collection accessor is invoked).
Without an IndirectContainer, all members of the Collection must be
retrieved when the Collection attribute is accessed.

Example 32–2 illustrates the Employee class using IndirectContainer indirection
with method access. The class definition is modified so that the addresses attribute
of Employee is an IndirectContainer instead of an Addresses, and appropriate
getter and setter methods are supplied. In this example, addresses is a
java.util.List, so an instance of
oracle.toplink.indirection.IndirectList is used.

Example 32–6 Class Using IndirectContainer Indirection

public class Employee {

protected IndirectList addresses;

// Initialize ValueHolders in constructor
public Employee() {

addresses = new IndirectList();
}

// getter and setter methods registered with the mapping and used by TopLink
public ValueHolderInterface getAddressesHolder() {

return addresses.getValueHolder();
}
public void setAddressesHolder(ValueHolderInterface holder) {

Configuring Indirection

Configuring a Mapping 32-9

addresses = addresses.setValueHolder(holder);
}

// getter and setter methods used by the application to access the attribute
public List getAddresses() {

return (List) addresses.getValue();
}
public void setAddresses(List newAddresses) {

addresses.removeAll();
addresses.addAll(newAddresses);

}
}

Example 32–3 shows how to configure a one-to-one mapping to the addresses
attribute.

Example 32–7 Mapping Using IndirectContainer Indirection

OneToOneMapping mapping = new OneToOneMapping();
mapping.useBasicIndirection();
mapping.setReferenceClass(Employee.class);
mapping.setAttributeName("addresses");
mapping.setGetMethodName("getAddressesHolder");
mapping.setSetMethodName("setAddressesHolder");

Configuring Proxy Indirection
Example 32–8 illustrates an Employee to Address one-to-one relationship.

Example 32–8 Proxy indirection Examples

public interface Employee {
public String getName();
public Address getAddress();
public void setName(String value);
public void setAddress(Address value);
. . .

}
public class EmployeeImpl implements Employee {

public String name;
public Address address;
. . .
public Address getAddress() {

return this.address;
}
public void setAddress(Address value) {

this.address = value;
}

}
public interface Address {

public String getStreet();
public void setStreet(String value);
. . .

}
public class AddressImpl implements Address {

public String street;
. . .

}

In Example 32–8, both the EmployeeImpl and the AddressImpl classes implement
public interfaces (Employee and Address respectively). Therefore, because the
AddressImpl class is the target of the one-to-one relationship, it is the only class that
must implement an interface. However, if the EmployeeImpl is ever to be the target

Configuring XPath

32-10 Oracle TopLink Developer’s Guide

of another one-to-one relationship using transparent indirection, it must also
implement an interface, as shown in the following example:

Employee emp = (Employee) session.readObject(Employee.class);
System.out.println(emp.toString());
System.out.println(emp.getAddress().toString());
// Would print:
[Employee] John Smith
{ IndirectProxy: not instantiated }
String street = emp.getAddress().getStreet();
// Triggers database read to get Address information
System.out.println(emp.toString());
System.out.println(emp.getAddress().toString());
// Would print:
[Employee] John Smith
{ [Address] 123 Main St. }

Using proxy indirection does not change how you instantiate your own domain
objects for an insert operation. You still use the following code:

Employee emp = new EmployeeImpl("John Smith");
Address add = new AddressImpl("123 Main St.");
emp.setAddress(add);

Configuring XPath
TopLink uses XPath statements to map the attributes of a Java object to locations in an
XML document. When you create an XML mapping or EIS mapping using XML
records, you can specify the XPath based on any of the following:

■ Name

■ Position

■ Path and name

Table 32–5 summarizes which mappings support this option.

Table 32–5 Mapping Support for XPath

Mapping
Using TopLink
Workbench Using Java

EIS Mappings1

1 When used with XML records only (see "Configuring Record Format" on page 28-5).

EIS Direct Mapping

EIS Composite Direct Collection Mapping

EIS Composite Object Mapping2

EIS Composite Collection Mapping

XML Mappings

XML Direct Mapping

XML Composite Direct Collection Mapping

XML Composite Object Mapping2

XML Composite Collection Mapping

XML Any Object Mapping

XML Any Collection Mapping

Configuring XPath

Configuring a Mapping 32-11

Before you can select an XPath for a mapping, you must associate the descriptor with a
schema context (see "Configuring Schema Context for an EIS Descriptor" on page 28-2
or "Configuring Schema Context for an XML Descriptor" on page 29-1).

For more information, see "Mappings and XPath" on page 30-15.

Using TopLink Workbench
Use this table to select the XPath for an XMl mapping or EIS mapping using XML
records:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. If necessary, click the General tab. The General tab appears.

Figure 32–3 General Tab, XPath Options

Figure 32–4 XPath Options for Composite Object Mappings

Click Browse and select the XPath to map to this attribute (see "Choosing the XPath").

2 Supports the self XPath (".") so that the TopLink runtime performs all read and write operations in the
parent’s element and not an element nested within it (see "Mappings and the jaxb:class Customization" on
page 30-20).

Configuring a Default Null Value at the Mapping Level

32-12 Oracle TopLink Developer’s Guide

For an EIS composite object mapping using XML records or an XML composite object
mapping, you can choose one of the following:

■ Specify XPath: select the XPath to map to this attribute (see "Choosing the
XPath").

■ Aggregate into parent element: select the self XPath (".") (see "Self XPath" on
page 30-16) so that the TopLink runtime performs all read and write operations in
the parent’s element, and not an element nested within it (see "Mappings and the
jaxb:class Customization" on page 30-20).

Choosing the XPath
From the Choose XPath dialog box, select the XPath and click OK. TopLink
Workbench builds the complete XPath name.

Figure 32–5 Choose XPath Dialog Box

Configuring a Default Null Value at the Mapping Level
A default null value is the Java Object type and value that TopLink uses instead of
null when TopLink reads a null value from a data source.

When you configure a default null value at the mapping level, TopLink uses it to
translate in two directions:

■ When TopLink reads null from the data source, it converts this null to the
specified type and value.

■ When TopLink writes or queries to the data source, it converts the specified type
and value back to null.

Table 32–6 summarizes which mappings support this option.

Table 32–6 Mapping Support for Default Null Values

Mapping
Using TopLink
Workbench Using Java

Relational Mappings

Direct-to-Field Mapping

Direct-to-XMLType Mapping

EIS Mappings

EIS Direct Mapping

XML Mappings

Configuring a Default Null Value at the Mapping Level

Configuring a Mapping 32-13

You can also use TopLink to set a default null value for all mappings used in a session
(see "Configuring a Default Null Value at the Login Level" on page 82-5).

Using TopLink Workbench
To configure a default null value for a mapping, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 32–6 General Tab, Default Null Value Options

Use the following information to complete the Default Null Value fields on the tab:

Using Java
To configure a mapping null value using Java API, use the
AbstractDirectMapping method setNullValue.

XML Direct Mapping

XML Composite Direct Collection Mapping

Note: A default null value must be an Object. To specify a
primitive value (such as int), you must use the corresponding
Object wrapper (such as Integer).

Field Description

Default Null Value Specify if this mapping contains a default value in the event that
the data source is null. If selected, you must enter both the Type
and Value of the default.

Type Select the Java type of the default value.

Value Enter the default value.

Table 32–6 (Cont.) Mapping Support for Default Null Values

Mapping
Using TopLink
Workbench Using Java

Configuring Method Accessing

32-14 Oracle TopLink Developer’s Guide

For example:

// Defaults a null salary to 0
salaryMapping.setNullValue(new Integer(0));

Configuring Method Accessing
By default, TopLink uses direct access to access public attributes. Alternatively, you
can use getter and setter methods to access object attributes when writing the
attributes of the object to the database, or reading the attributes of the object from the
database. This is known as method access.

The attribute’s visibility (public, protected, private, or package visibility) and the
supported version of JDK may restrict the type of access that you can use.

Using private, protected or package variable or method access requires you to enable
the Java reflect security setting. This is enabled by default in most application servers
(see "Security Permissions" on page 7-4), but may need to be enabled explicitly in
certain JVM configurations. If necessary, use the java.policy file to grant
ReflectPermission to the entire application or the application’s code base. For
example:

grant{
permission java.lang.reflect.ReflectPermission;

};

Oracle recommends using direct access whenever possible to improve performance and
avoid executing any application-specific behavior while building objects.

Table 32–7 summarizes which mappings support this option.

For information on configuring method accessing at the project level, see "Configuring
Mapped Field Access at the Project Level" on page 19-4.

Using TopLink Workbench
To complete the field access method for a mapping, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Table 32–7 Mapping Support for Method Accessing

Mapping

Using
TopLink
Workbench Using Java

Relational Mappings

Object-Relational Mappings

EIS Mappings

XML Mappings

Configuring Method Accessing

Configuring a Mapping 32-15

Figure 32–7 General Tab, Method Accessing Options

Use the following information to complete the Method Accessing fields on this tab:

To change the default access type used by all new mappings, use the Defaults tab on
the project Editor window. See "Configuring Mapped Field Access at the Project Level"
on page 19-4 for more information.

Using Java
Use the following DatabaseMapping methods to configure the user-defined getters
and setters that TopLink will use to access the mapped attribute:

For mappings not supported in TopLink Workbench, use the setGetMethodName
and setSetMethodName methods to access the attribute through user-defined
methods, rather than directly.

■ setGetMethodName–set the String name of the user-defined method to get the
mapped attribute

■ setSetMethodName–set the String name of the user-defined method to set the
mapped attribute

Example 32–9 shows how to use these methods with a class that has an attribute
phones and accessor methods getPhones and setPhones in an object-relational
mapping.

Example 32–9 Configuring Access Method in Java

// Map the phones attribute
phonesMapping.setAttributeName("phones");

// Specify access method
phonesMapping.setGetMethodName("getPhones");
phonesMapping.setSetMethodName("setPhones");

Field Description

Method Accessing Specify if this mapping uses specific accessor methods instead
directly accessing public attributes. By default, this option is not
selected (that is, the mapping uses direct access).

Get Method Select a specific get method.

Set Method Select a specific set method.

Configuring Private or Independent Relationships

32-16 Oracle TopLink Developer’s Guide

Configuring Private or Independent Relationships
In TopLink, object relationships can be either private or independent:

■ In a private relationship, the target object is a private component of the source
object. The target object cannot exist without the source and is accessible only
through the source object. Destroying the source object will also destroy the target
object.

■ In an independent relationship, the source and target objects are public ones that
exist independently. Destroying one object does not necessarily imply the
destruction of the other.

Table 32–8 summarizes which mappings support this option.

Tip: TopLink automatically manages private relationships.
Whenever an object is written to the database, any private objects it
owns are also written to the database. When an object is removed
from the database, any private objects it owns are also removed. Be
aware of this when creating new systems, since it may affect both
the behavior and the performance of your application.

Table 32–8 Mapping Support for Private or Independent Relationships

Mapping
Implicitly
Private

Private or
Independent

Using
TopLink
Workbench

Using
Java

Relational Mappings

One-to-One Mapping

Variable One-to-One Mapping

One-to-Many Mapping

Many-to-Many Mapping

Aggregate Collection Mapping

Direct Collection Mapping

Direct Map Mapping

Aggregate Object Mapping

Object-Relational Mappings

Object-Relational Structure Mapping

Object-Relational Reference Mapping

Object-Relational Array Mapping

Object-Relational Object Array Mapping

Object-Relational Nested Table Mapping

EIS Mappings

EIS Composite Direct Collection Mapping

EIS Composite Object Mapping

EIS Composite Collection Mapping

EIS One-to-One Mapping

EIS One-to-Many Mapping

XML Mappings

XML Composite Direct Collection Mapping

Configuring Private or Independent Relationships

Configuring a Mapping 32-17

Using TopLink Workbench
To create a privately owned mapping, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 32–8 General Tab, Private Owned option

To create private ownership, select the Private Owned option.

Using Java
For mappings not supported in TopLink Workbench, use the
independentRelationship (default), privateOwnedRelationship, and
setIsPrivateOwned methods.

Example 32–9 shows how to use these methods with a class that has a privately owned
attribute, phones, in a mapping.

Example 32–10 Configuring Access Method in Java

// Map the phones attribute
phonesMapping.setAttributeName("phones");

// Specify as privately owned
phonesMapping.privateOwnedRelationship();

XML Composite Object Mapping

XML Composite Collection Mapping

Table 32–8 (Cont.) Mapping Support for Private or Independent Relationships

Mapping
Implicitly
Private

Private or
Independent

Using
TopLink
Workbench

Using
Java

Configuring Mapping Comments

32-18 Oracle TopLink Developer’s Guide

Configuring Mapping Comments
You can define a free-form textual comment for each mapping. You can use these
comments however you whish: for example, to record important project
implementation details such as the purpose or importance of a mapping.

Comments are stored in the TopLink Workbench project, in the TopLink deployment
XML file. There is no Java API for this feature.

Table 32–9 summarizes which mappings support this option.

Using TopLink Workbench
To add a comment for a mapping, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 32–9 General Tab, Comment

Enter a comment that describes this mapping.

Configuring a Serialized Object Converter
A serialized object converter can be used to store an arbitrary object or set of objects
into a data source binary large object (BLOB) field. It uses the Java serializer so the
target must be serializable.

For more information about the serialized object converter, see "Serialized Object
Converter" on page 30-10.

Table 32–10 summarizes which mappings support this option.

Table 32–9 Mapping Support for Comments

Mapping
Using TopLink
Workbench Using Java

Relational Mappings

EIS Mappings

XML Mappings

Configuring a Serialized Object Converter

Configuring a Mapping 32-19

Using TopLink Workbench
To create an serialized object direct mapping, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the Converter tab. The Converter tab appears.

Figure 32–10 Converter Tab, Serialized Object Converter Option

To specify a serialized object converter, select the Serialized Object Converter option.

Using Java
You can set an oracle.toplink.converters.SerializedObjectConverter
on any instance of
oracle.toplink.mappings.foundation.AbstractCompositeDirectCollec
tionMapping using AbstractCompositeDirectCollectionMapping method
setValueConverter as Example 32–11 shows.

Table 32–10 Mapping Support for Serialized Object Converter

Mapping

Using
TopLink
Workbench Using Java

Relational Mappings

Direct-to-Field Mapping

Object-Relational Mappings

Object-Relational Array Mapping

EIS Mappings

EIS Direct Mapping

EIS Composite Direct Collection Mapping

XML Mappings

XML Direct Mapping

XML Composite Direct Collection Mapping

Configuring a Type Conversion Converter

32-20 Oracle TopLink Developer’s Guide

Example 32–11 Configuring a SerializedObjectConverter in Java

// Create SerializedObjectConverter instance
SerializedObjectConverter serializedObjectConvter = new SerializedObjectConverter();

// Set SerializedObjectConverter on ArrayMapping
ArrayMapping arrayMapping = new ArrayMapping();
arrayMapping.setValueConverter(serializedObjectConvter);
arrayMapping.setAttributeName("responsibilities");
arrayMapping.setStructureName("Responsibilities_t");
arrayMapping.setFieldName("RESPONSIBILITIES");
orDescriptor.addMapping(arrayMapping);

Configuring a Type Conversion Converter
A type conversion converter is used to explicitly map a data source type to a Java type.

For more information about the type conversion converter, see "Type Conversion
Converter" on page 30-11.

Table 32–11 summarizes which mappings support this option.

Using TopLink Workbench
To create an type conversion direct mapping, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the Converter tab. The Converter tab appears.

3. Select the Type Conversion Converter option.

Table 32–11 Mapping Support for Type Conversion Converter

Mapping

Using
TopLink
Workbench Using Java

Relational Mappings

Direct-to-Field Mapping

Object-Relational Mappings

Object-Relational Array Mapping

EIS Mappings

EIS Direct Mapping

EIS Composite Direct Collection Mapping

XML Mappings

XML Direct Mapping

XML Composite Direct Collection Mapping

Configuring a Type Conversion Converter

Configuring a Mapping 32-21

Figure 32–11 Converter Tab, Type Conversion Converter Option

Use the following information to complete the Type Conversion Converter fields on
the Converter tab:

Using Java
You can set an oracle.toplink.converters.TypeConversionConverter on
any instance of
oracle.toplink.mappings.foundation.AbstractCompositeDirectCollec
tionMapping using AbstractCompositeDirectCollectionMapping method
setValueConverter as Example 32–12 shows.

Example 32–12 Configuring a TypeConversionConverter in Java

// Create TypeConversionConverter instance
TypeConversionConverter typeConversionConverter = new TypeConversionConverter();
typeConversionConverter.setDataClass();
typeConversionConverter.setObjectClass();

// Set TypeConversionConverter on ArrayMapping
ArrayMapping arrayMapping = new ArrayMapping();
arrayMapping.setValueConverter(typeConversionConverter);
arrayMapping.setAttributeName("responsibilities");
arrayMapping.setStructureName("Responsibilities_t");
arrayMapping.setFieldName("RESPONSIBILITIES");
orDescriptor.addMapping(arrayMapping);

Configure the TypeConversionConverter instance using the following API:

■ setDataClass(java.lang.Class dataClass)–to specify the data type class

■ setObjectClass(java.lang.Class objectClass)–to specify the object
type class

Field Description

Data Type Select the Java type of the data in the data source.

Attribute Type Select the Java type of the attribute in the Java class.

Configuring an Object Type Converter

32-22 Oracle TopLink Developer’s Guide

Configuring an Object Type Converter
An object type converter is used to match a fixed number of data source data values to
Java object values. It can be used when the values in the data source and in Java differ.

For more information about the object type converter, see "Object Type Converter" on
page 30-12.

Table 32–12 summarizes which mappings support this option.

Using TopLink Workbench
To add an object type converter to a direct mapping, use this procedure:

1. Select the mapping in the Navigator. Its properties appear in the Editor.

2. Click the Converter tab. The Converter tab appears.

Figure 32–12 Converter Tab, Object Type Converter

Use the following fields on the mapping’s Converter tab to specify the object type
converter options:

Table 32–12 Mapping Support for Object Type Converter

Mapping

Using
TopLink
Workbench Using Java

Relational Mappings

Object-Relational Mappings

Object-Relational Array Mapping

EIS Mappings

EIS Direct Mapping

EIS Composite Direct Collection Mapping

XML Mappings

XML Direct Mapping

XML Composite Direct Collection Mapping

Configuring a Simple Type Translator

Configuring a Mapping 32-23

Using Java
You can set an oracle.toplink.converters.ObjectTypeConverter on any
instance of
oracle.toplink.mappings.foundation.AbstractCompositeDirectCollec
tionMapping using AbstractCompositeDirectCollectionMapping method
setValueConverter as Example 32–13 shows.

Example 32–13 Configuring an ObjectTypeConverter in Java

// Create ObjectTypeConverter instance
ObjectTypeConverter objectTypeConvter = new ObjectTypeConverter();
objectTypeConverter.addConversionValue("F", "Female");

// Set ObjectTypeConverter on ArrayMapping
ArrayMapping arrayMapping = new ArrayMapping();
arrayMapping.setValueConverter(objectTypeConverter);
arrayMapping.setAttributeName("responsibilities");
arrayMapping.setStructureName("Responsibilities_t");
arrayMapping.setFieldName("RESPONSIBILITIES");
orDescriptor.addMapping(arrayMapping);

Configure the ObjectTypeConverter instance using the following API:

■ addConversionValue(java.lang.Object fieldValue,
java.lang.Object attributeValue)–to associate data-type values to
object-type values

■ addToAttributeOnlyConversionValue(java.lang.Object
fieldValue, java.lang.Object attributeValue)–to add one-way
conversion values

■ setDefaultAttributeValue(java.lang.Object
defaultAttributeValue)–to set the default value

Configuring a Simple Type Translator
The simple type translator allows you to automatically translate an XML element
value to an appropriate Java type based on the element’s <type> attribute, as defined
in your XML schema. You can use a simple type translator only when the mapping’s

Field Description

Data Type Select the Java type of the data in the data source.

Attribute Type Select the Java type of the attribute in the Java class.

Conversion Values Click Add to add a new conversion value. Click Edit to modify an
existing conversion value. Click Remove to delete an existing
conversion value.

Use to specify the selected value as the default value. If TopLink
retrieves a value from the database that is not mapped as a valid
Conversion Value, the default value will be used.

Data Value Specify the value of the attribute in the data source.

Attribute Value Specify the value of the attribute in the Java class

Default Attribute Value Specify whether or not to use the selected value as the default
value. If TopLink retrieves a value from the database that is not
mapped as a valid Conversion Value, the default value will be
used.

Configuring a Simple Type Translator

32-24 Oracle TopLink Developer’s Guide

XPath goes to an element. You cannot use a simple type translator if the mapping’s
XPath goes to an attribute.

For more information, see "Simple Type Translator" on page 30-12.

Table 32–13 summarizes which mappings support this option.

Using TopLink Workbench
Use this table to qualify elements from the XML schema

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 32–13 General Tab, Use XML Schema "type" Attribute Option

Select the Field Uses XML Schema "type" attribute field to qualify elements from the
XML schema.

Using Java
To create an XML mapping with a simple type translator with Java code in your IDE,
you need the following elements:

Table 32–13 Mapping Support for Simple Type Translator

Mapping

Using
TopLink
Workbench Using Java

EIS Mappings

EIS Direct Mapping

EIS Composite Direct Collection Mapping

XML Mappings

XML Direct Mapping

XML Composite Direct Collection Mapping

Configuring a JAXB Typesafe Enumeration Converter

Configuring a Mapping 32-25

■ EISDirectMapping or EISCompositeDirectCollectionMapping or
XMLDirectMapping or XMLCompositeDirectCollectionMapping

■ instance of Converter

■ instance of TypedElementField

Example 32–14 shows how to implement your own simple type translator with an
XMLDirectMapping to override the built-in conversion for writing XML so that
TopLink writes a Byte array (ClassConstants.ABYTE) as a Base64
(XMLConstants.BASE64_BINARY) encoded string.

Example 32–14 Creating a Type Translation XML Mapping

XMLDirectMapping mapping = new XMLDirectMapping();
mapping.setConverter(new SerializedObjectConverter());
TypedElementField field = new TypedElementField("element");
field.getSimpleTypeTranslator().addJavaConversion(

ClassConstants.ABYTE,
new QName(XMLConstants.SCHEMA_URL, XMLConstants.BASE64_BINARY)

);
mapping.setField(field);

Configuring a JAXB Typesafe Enumeration Converter
The JAXB typesafe enumeration converter allows you to automatically translate an
XML element value to an appropriate typesafe enumeration value as defined in your
XML schema.

For more information, see "Mappings and JAXB Typesafe Enumerations" on
page 30-24.

Table 32–14 summarizes which mappings support this option.

TopLink Workbench does not support the JAXBTypesafeEnumConverter directly:
to configure a mapping with this converter, you must use Java to create an
amendment method (see "Using Java" on page 32-26).

If you create a project and object model using the TopLink JAXB compiler (see
"Creating an XML Project From an XML Schema" on page 18-6), the compiler will
create the type safe enumeration class and a class with descriptor amendment
methods and register the required amendment methods automatically (see "Typesafe

Table 32–14 Mapping Support for JAXB Typesafe Enumeration Converter

Mapping

Using
TopLink
Workbench Using Java

EIS Mappings1

1 When used with XML records only (see "Configuring Record Format" on page 28-5).

EIS Direct Mapping

EIS Composite Direct Collection Mapping

XML Mappings

XML Direct Mapping

XML Composite Direct Collection Mapping

Configuring Container Policy

32-26 Oracle TopLink Developer’s Guide

Enumeration Converter Amendment Method DescriptorAfterLoads Class" on
page 17-12).

Using Java
To configure a mapping with a JAXBTypesafeEnumConverter in Java, use a
descriptor amendment method (see "Configuring Amendment Methods" on
page 25-81). Example 32–15 illustrates an amendment method that configures an
XMLDirectMapping with a JAXBTypesafeEnumConverter. In this example,
attribute _Val is mapped to a JAXB typesafe enumeration corresponding to typesafe
enumeration class MyTypesafeEnum.

Example 32–15 Creating a JAXB Typesafe Enumeration XML Mapping

public class DescriptorAfterLoads {
public static void amendRootImplDescriptor(ClassDescriptor descriptor) {

DatabaseMapping _ValMapping = descriptor.getMappingForAttributeName("_Val");
JAXBTypesafeEnumConverter _ValConverter = new JAXBTypesafeEnumConverter();
ValConverter.setEnumClassName("MyTypesafeEnum");
((XMLDirectMapping) _ValMapping).setConverter(_ValConverter);

}
}

Configuring Container Policy
Collection mapping container policy specifies the concrete class TopLink should use
when reading target objects from the database.

Collection mappings can use any concrete class that implements the
java.util.List, java.util.Set, java.util.Collection, or
java.util.Map interface. You can map object attributes declared as List, Set,
Collection, Map, or any subinterface of these interfaces, or as a class that
implements one of these interfaces.

By default, the TopLink runtime uses the following concrete classes from the
oracle.toplink.indirection package for each of these container types:

■ List–IndirectList or EJBIndirectList

■ Set–IndirectSet or EJBIndirectSet

■ Collection–IndirectList or EJBIndirectList

■ Map–IndirectMap or EJBIndirectMap

Alternatively, you can specify in the mapping the concrete container class to be used.
When TopLink reads objects from the database that contain an attribute mapped with
a collection mapping, the attribute is set with an instance of the concrete class
specified. For example, TopLink does not sort in memory. If you want to sort in
memory, override the default Set type (IndirectList) with java.util.TreeSet
as the concrete collection type. By default, a collection mapping’s container class is
java.util.Vector.

Note: If you are using TopLink Workbench and you override the
default Collection class with a custom Collection class of your
own, you must put your custom Collection class on the TopLink
Workbench classpath (see "Configuring the TopLink Workbench
Environment" on page 4-2).

Configuring Container Policy

Configuring a Mapping 32-27

Table 32–15 summarizes which mappings support this option.

Using TopLink Workbench
To specify a mapping’s container policy, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

3. Click the Advanced button. The Advanced Container Options appear on the
General tab.

Table 32–15 Mapping Support for Container Policy

Mapping List Set Collection Map

Using
TopLink
Workbench

Using
Java

Relational Mappings

One-to-Many Mapping

Many-to-Many Mapping

Aggregate Collection Mapping

Direct Collection Mapping

Direct Map Mapping

Object-Relational Mappings

Object-Relational Array Mapping

Object-Relational Object Array
Mapping

Object-Relational Nested Table
Mapping

EIS Mappings

EIS Composite Direct Collection
Mapping

EIS Composite Collection
Mapping

EIS One-to-Many Mapping

XML Mappings

XML Composite Direct
Collection Mapping

XML Composite Collection
Mapping

XML Any Collection Mapping

Configuring Container Policy

32-28 Oracle TopLink Developer’s Guide

Figure 32–14 General Tab, Advanced Container Options

Use the following Advanced Container Options fields on the General tab to specify
the container options:

Using Java
Classes that implement the oracle.toplink.mappings.ContainerMapping
interface provide the following methods to set the container policy:

Field1

1 Not all mappings support all options. For more information, see Table 32–15.

Description

Container Type Specify the type of Collection class to use:

■ List–use a java.util.List

■ Set–use a java.util.Set

■ Collection–use a java.util.Collection

■ Map–use a java.util.Map

Override Default Class Specify to use a custom class as the mapping’s container policy.
Click Browse to select a different class.

The container class must implement (directly or indirectly) the
java.util.Collection interface.

Key Method If you configure Container Type as Map, use this option to
specify the name of the zero argument method whose result,
when called on the target object, is used as the key in the
Hashtable or Map. This method must return an object that is a
valid key in the Hashtable or Map.

Configuring Attribute Transformer

Configuring a Mapping 32-29

■ useCollectionClass(java.lang.Class concreteClass)–Configure the
mapping to use an instance of the specified java.util.Collection container
class to hold the target objects.

■ useMapClass(java.lang.Class concreteClass, java.lang.String
methodName)–Configure the mapping to use an instance of the specified
java.util.Map container class to hold the target objects. The key used to index
a value in the Map is the value returned by a call to the specified zero-argument
method. The method must be implemented by the class (or a superclass) of any
value to be inserted into the Map.

Classes that extend oracle.toplink.mappings.CollectionMapping (which
implements the ContainerMapping interface) also provide the following methods to
set the container policy:

■ useSortedSetClass(java.lang.Class concreteClass,
java.util.Comparator comparator)–Configure the mapping to use an
instance of the specified java.util.SortedSet container class. Specify the
Comparator to use to sort the target objects.

Example 32–16 shows how to configure an ObjectArrayMapping to use a
java.util.ArrayList container class.

Example 32–16 Object Array Mapping

// Create a new mapping and register it with the source Object-relational descriptor
ObjectArrayMapping phonesMapping = new ObjectArrayMapping();
phonesMapping.setAttributeName("phones");
phonesMapping.setGetMethodName("getPhones");
phonesMapping.setSetMethodName("setPhones");
phonesMapping.setStructureName("PHONELIST_TYPE");
phonesMapping.setReferenceClass(Phone.class);
phonesMapping.setFieldName("PHONES");
phonesMapping.useCollectionClass(ArrayList.class);
orDescriptor.addMapping(phonesMapping);

Configuring Attribute Transformer
A transformation mapping is made up of an attribute transformer for field-to-attribute
transformation at read (unmarshall) time and one or more field transformers for
attribute-to-field transformation at write (marshall) time (see "Configuring Field
Transformer Associations" on page 32-31).

This section describes how to configure the attribute transformer that a transformation
mapping uses to perform the field-to-attribute transformation at read (unmarshal)
time.

You can do this using either a method or class-based transformer.

A method-based transformer must map to a method in the domain object.

A class-based transformer allows you to place the transformation code in another
class, making this approach non-intrusive: that is, your domain object does not need to
implement a TopLink interface or provide a special transformation method

Table 32–16 summarizes which mappings support this option.

Configuring Attribute Transformer

32-30 Oracle TopLink Developer’s Guide

Using TopLink Workbench
To specify a mapping’s attribute transformer, use this procedure:

1. Select the transformation mapping in the Navigator. Its properties appear in the
Editor.

Figure 32–15 Transformation Mapping, Attribute Transformer Field

2. Click Edit. The Specify Transformer dialog box appears.

Figure 32–16 Specify Transformer Dialog Box

Table 32–16 Mapping Support for Attribute Transformer

Mapping
Using TopLink
Workbench Using Java

Relational Mappings

Transformation Mapping

EIS Mappings

EIS Transformation Mapping

XML Mappings

XML Transformation Mapping

Configuring Field Transformer Associations

Configuring a Mapping 32-31

Use the following information to enter data in each field of the dialog box and click
OK:

Using Java
You can configure a method-based attribute transformer using
AbstractTransformationMapping method setAttributeTransformation,
passing in the name of the domain object method to use.

You can configure a class-based attribute transformer using
AbstractTransformationMapping method setAttributeTransformer,
passing in an instance of
oracle.toplink.mappings.Transfomers.AttributeTransformer.

A convenient way to create an AttributeTransformer is to extend
AttributeTransformerAdapter.

Configuring Field Transformer Associations
A transformation mapping is made up of an attribute transformer for field-to-attribute
transformation at read (unmarshall) time (see "Configuring Attribute Transformer" on
page 32-29) and one or more field transformers for attribute-to-field transformation at
write (marshall) time.

This section describes how to configure the field transformers that a transformation
mapping uses to perform the object attribute-to-field transformation at write (marshal)
time.

You can do this using either a method or class-based transformer.

A method-based transformer must map to a method in the domain object.

A class-based transformer allows you to place the transformation code in another
class, making this approach non-intrusive: that is, your domain object does not need to
implement a TopLink interface or provide a special transformation method.

Table 32–17 summarizes which mappings support this option.

Field Description

Use Transformation Method Select a specific method to control the transformation. A
method based transformer must map to a method in the
domain object.

Use Transformer Class Select a specific class to control the transformation. The
class must be available on the TopLink Workbench
application classpath.

Table 32–17 Mapping Support for Field Transformer

Mapping
Using TopLink
Workbench Using Java

Relational Mappings

Transformation Mapping

EIS Mappings

EIS Transformation Mapping

XML Mappings

XML Transformation Mapping

Configuring Field Transformer Associations

32-32 Oracle TopLink Developer’s Guide

Using TopLink Workbench
Use this procedure to complete the Object->Field Method fields:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

Figure 32–17 Transformation Mapping, Field Transformer Associations

To add a new association, click Add. Continue with "Specifying Field-to-Transformer
Associations" on page 32-32.

To change an existing association, click Edit. Continue with "Specifying
Field-to-Transformer Associations" on page 32-32.

To delete an existing association, select the field transformation association and click
Delete.

Specifying Field-to-Transformer Associations
To specify the actual transformation method or class used for the field of a
transformation mapping, use this procedure.

1. From the Transformation Mapping, Field Transformer Associations, click Add or
Edit. The Specify Field-Transformer Association dialog box appears.

Figure 32–18 Specify Field-Transformer Association Dialog Box

Use the following information to complete each field on the dialog box:

Configuring Mutable Mappings

Configuring a Mapping 32-33

Using Java
You can specify a specific transformation method on your domain object or an
instance of oracle.toplink.mappings.Transfomers.FieldTransformer
(you can also extend the FieldTransformerAdapter). Using a
FieldTransformer is non-intrusive: that is, your domain object does not need to
implement a TopLink interface or provide a special transformation method.

You can configure a method-based field transformer using
AbstractTransformationMapping method addFieldTransformation, passing
in the name of the database field and the name of the domain object method to use.

You can configure a class-based field transformer using
AbstractTransformationMapping method addFieldTransformer, passing in
the name of the database field and an instance of
oracle.toplink.mappings.Transfomers.FieldTransformer.

A convenient way to create a FieldTransformer is to extend
FieldTransformerAdapter.

Configuring Mutable Mappings
Direct mappings typically map simple, non-mutable values such as String or
Integer. Transformation mappings can potentially map complex mutable object
values, such as mapping several database field values to an instance of a Java class.

If a transformation mapping maps a mutable value, TopLink must clone and compare
the value in a unit of work (see "Configuring Copy Policy" on page 25-71).

By default, TopLink assumes that all transformation mappings are mutable. If the
mapping maps a simple nonmutable value, you can improve unit of work
performance by configuring the IsMutable option to false.

Table 32–18 summarizes which mappings support this option.

Field Description

Field Select the database field (from the descriptor’s associated
table) for this transformation.

Transformer Select one of the following methods to control the
transformation:

Use Transformation Method Select a specific method to control the transformation. A
method based transformer must map to a method in the
domain object.

Use Transformer Class Select a specific class to control the transformation. The
class must be available on TopLink Workbench
application classpath.

Table 32–18 Mapping Support for Mutable Mappings

Mapping
Using TopLink
Workbench Using Java

Relational Mappings

Transformation Mapping

EIS Mappings

EIS Transformation Mapping

Configuring Bidirectional Relationship

32-34 Oracle TopLink Developer’s Guide

Using TopLink Workbench
Use this table to complete the Object->Field Method fields:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

Figure 32–19 Transformation Mapping, Mutable Option

By default, the IsMutable option is selected in all transformation mappings. If the
mapping maps to a simple atomic value, unselect this option.

Using Java
You can specify whether or not a mapping is mutable using
AbstractTransformationMapping method setIsMutable.

Configuring Bidirectional Relationship
If a mapping has a bidirectional relationship in which the two classes in the
relationship reference each other with one-to-one mappings, then set up the foreign
key information as follows:

■ One mapping must call the setForeignKeyFieldName method.

■ The other must call the setTargetForeignKeyFieldName method.

It is also possible to set up composite foreign key information by calling the
addForeignKeyFieldName and addTargetForeignKeyFieldName methods.
Because TopLink enables indirection by default, the attribute must be a
ValueHolderInterface.

XML Mappings

XML Transformation Mapping

Table 32–18 (Cont.) Mapping Support for Mutable Mappings

Mapping
Using TopLink
Workbench Using Java

Configuring Bidirectional Relationship

Configuring a Mapping 32-35

Table 32–18 summarizes which mappings support this option.

Using TopLink Workbench
To maintain a bidirectional relationship for a mapping, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 32–20 General tab, Maintains Bidirectional Relationship option

Note: When your application does not use a cache, enable indirection
for at least one object in a bidirectional relationship. In rare cases,
disabling indirection on both objects in the bidirectional relationship can
lead to infinite loops. For more information, see the following:

■ Directionality

■ Maintaining Bidirectional Relationships

■ Indirection

Table 32–19 Mapping Support for Mutable Mappings

Mapping
Using TopLink
Workbench Using Java

Relational Mappings

One-to-One Mapping

One-to-Many Mapping

Many-to-Many Mapping

EIS Mappings

EIS One-to-One Mapping

EIS One-to-Many Mapping

Configuring the Use of a Single Node

32-36 Oracle TopLink Developer’s Guide

Use this table to enter data in the following fields on the tab:

Configuring the Use of a Single Node
For the XML-based mappings that Table 32–6 summarizes, when you map a list value,
you can configure whether or not the mapping unmarshalls (writes) the list to a single
node, like <item>aaa bbb ccc</item>, or to multiple nodes, like:

<item>aaa</item>
<item>bbb</item>
<item>ccc</item>

Table 32–6 summarizes which mappings support this option.

Using TopLink Workbench
To configure a mapping to use a single node, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Field Description

Maintains Bidirectional
Relationship

Specify if TopLink should maintain the bidirectional link
for this relational mapping.

Relationship Partner Select the relationship partner (from the list of mapped
attributes of the Reference Descriptor) for this
bidirectional relationship.

Table 32–20 Mapping Support for Use Single Node

Mapping
Using TopLink
Workbench Using Java

EIS Mappings1

1 When used with XML records only (see "Configuring Record Format" on page 28-5).

EIS Direct Mapping

EIS Composite Direct Collection Mapping

XML Mappings

XML Direct Mapping

XML Composite Direct Collection Mapping

Configuring the Use of a Single Node

Configuring a Mapping 32-37

Figure 32–21 General Tab, Use Single Node Option

To configure the mapping to unmarshall (write) a list value to a single node (like
<item>aaa bbb ccc</item>), click Use single node.

By default, the mapping unmarshalls a list value to separate nodes.

Using Java
Use AbstractCompositeDirectCollectionMapping method
setUsesSingleNode to configure the mapping to write a list value to a single node
by passing in a value of true. To configure the mapping to write a list value to
multiple nodes, pass in a value of false.

For any mapping that takes an XMLField, use XMLField method
setUsesSingleNode to configure the mapping to write a list value to a single node
by passing in a value of true. To configure the mapping to write a list value to
multiple nodes, pass in a value of false. Example 32–17 shows how to use this
method with an XMLDirectMapping:

Example 32–17 Using XMLField Method setUsesSingleNode

XMLDirectMapping tasksMapping = new XMLDirectMapping();
tasksMapping.setAttributeName("tasks");
XMLField myField = new XMLField("tasks/text()"); // pass in the XPath
myField.setUsesSingleNode(true);
tasksMapping.setField(myField);

Configuring the Use of a Single Node

32-38 Oracle TopLink Developer’s Guide

Part X
 Relational Mappings

A relational mapping transforms any object data member type to a corresponding
relational database (SQL) data source representation in any supported relational
database. Relational mappings let you map an object model into a relational data
model.

This part contains the following chapters:

■ Chapter 33, "Understanding Relational Mappings"

This chapter describes each of the different TopLink relational mapping types and
important relational mapping concepts.

■ Chapter 34, "Configuring a Relational Mapping"

This chapter explains how to configure TopLink relational mapping options
common to two or more relational mapping types.

■ Chapter 35, "Configuring a Relational Direct-to-Field Mapping"

This chapter explains how to configure a direct to field relational database
mapping.

■ Chapter 36, "Configuring a Relational Direct-to-XMLType Mapping"

This chapter explains how to configure a direct mapping to an Oracle XDB XML
type field.

■ Chapter 37, "Configuring a Relational One-to-One Mapping"

This chapter explains how to configure a one-to-one relational database mapping.

■ Chapter 38, "Configuring a Relational Variable One-to-One Mapping"

This chapter explains how to configure a variable one-to-one relational database
mapping.

■ Chapter 39, "Configuring a Relational One-to-Many Mapping"

This chapter explains how to configure a one-to-many relational database
mapping.

■ Chapter 40, "Configuring a Relational Many-to-Many Mapping"

This chapter explains how to configure a many-to-many relational database
mapping.

■ Chapter 41, "Configuring a Relational Aggregate Collection Mapping"

This chapter explains how to configure an aggregate collection relational database
mapping.

■ Chapter 42, "Configuring a Relational Direct Collection Mapping"

This chapter explains how to configure a direct collection relational database
mapping.

■ Chapter 44, "Configuring a Relational Direct Map Mapping"

This chapter explains how to configure a direct map relational database mapping.

■ Chapter 43, "Configuring a Relational Aggregate Object Mapping"

This chapter explains how to configure an aggregate object-relational database
mapping.

■ Chapter 45, "Configuring a Relational Transformation Mapping"

This chapter explains how to configure a transformation relational database
mapping.

Understanding Relational Mappings 33-1

33
Understanding Relational Mappings

A relational mapping transforms any object data member type to a corresponding
relational database (SQL) data source representation in any supported relational
database. Relational mappings let you map an object model into a relational data
model.

Relational mappings transform object data members to relational database fields. Use
them to map simple data types including primitives (such as int), JDK classes (such
as String), and large object (LOB) values. You can also use them to transform object
data members that reference other domain objects by way of association where data
source representations require object identity maintenance (such as sequencing and
back references) and possess various types of multiplicity and navigability. The
appropriate mapping class is chosen primarily by the cardinality of the relationship.

Do not confuse relational mappings with object-relational mappings (see
"Understanding Object-Relational Mappings" on page 46-1). An object-relational
mapping transforms certain object data member types to structured data source
representations optimized for storage in specialized object-relational databases such as
Oracle9i Database Server. Object-relational mappings let you map an object model into
an object-relational data model. In general, you can use relational mappings with any
supported relational database. You can only use object-relational mappings with
specialized object-relational databases optimized to support object-relational data
source representations.

This chapter describes the following:

■ Relational Mapping Types

■ Relational Mapping Concepts

Relational Mapping Types
TopLink supports the relational mappings listed in Table 33–1.

Table 33–1 TopLink Relational Mapping Types

Type Description Type
TopLink
Workbench Java

"Direct-to-Field Mapping" on page 33-4 Map a Java attribute directly to a
database field.

Basic

"Direct-to-XMLType Mapping" on
page 33-4

Map Java attributes to an XMLType
column in an Oracle Database
(introduced in version 9.2.0.1).

Advanced

"One-to-One Mapping" on page 33-5 Map a reference to another persistent
Java object to the database.

Basic

Relational Mapping Concepts

33-2 Oracle TopLink Developer’s Guide

Relational Mapping Concepts
This section introduces direct mapping concepts unique to TopLink, including the
following:

■ Directionality

■ Converters and Transformers

■ Relational Mappings and EJB

Directionality
The direction of a relationship may be either unidirectional or bidirectional. In a
unidirectional relationship, only one entity bean has a relationship field that refers to
the other. All TopLink relational mappings are unidirectional, from the class being
described (the source class) to the class with which it is associated (the target class). The
target class does not have a reference to the source class in a unidirectional
relationship.

In a bidirectional relationship, each entity bean has a relationship field that refers to
the other bean. Through the relationship field, an entity bean's code can access its
related object. To implement a bidirectional relationship (classes that reference each
other), use two unidirectional mappings with the sources and targets reversed.

"Variable One-to-One Mapping" on
page 33-6

Map a reference to an interface to the
database.

Basic

"One-to-Many Mapping" on page 33-7 Map Java collections of persistent
objects to the database.

Advanced

"Many-to-Many Mapping" on page 33-8 Use an association table to map Java
collections of persistent objects to the
database.

Advanced

"Aggregate Collection Mapping" on
page 33-10

Map Java collections of persistent
objects to the database.

Basic

"Direct Collection Mapping" on page 33-11 Map Java collections of objects that do
not have descriptors.

Basic

"Direct Map Mapping" on page 33-12 Direct map mappings store instances
that implement java.util.Map.

Basic

"Aggregate Object Mapping" on page 33-12 Create strict one-to-one mappings that
require both objects to exist in the same
database row.

Basic

"Transformation Mapping" on page 33-15 Create custom mappings where one or
more fields can be used to create the
object to be stored in the attribute.

Basic

Note: Maintenance of bidirectional relationships presents a number
of technical challenges. For more information, see the following:

■ "Maintaining Bidirectional Relationships" on page 2-29

■ "Configuring Bidirectional Relationship" on page 32-34

■ "Indirection" on page 30-5

Table 33–1 (Cont.) TopLink Relational Mapping Types

Type Description Type
TopLink
Workbench Java

Relational Mapping Concepts

Understanding Relational Mappings 33-3

Converters and Transformers
You can store object attributes directly in a database table as follows:

■ Using a Direct Mapping

■ Using a Converter Mapping

■ Using a Transformation Mapping

Using a Direct Mapping
If the attribute type is comparable to a database type, the information can be stored
directly simply by using a direct-to-field mapping (see "Direct-to-Field Mapping" on
page 33-4).

Using a Converter Mapping
If the attribute type is comparable to a database type but requires conversion, the
information can be stored directly by using a direct-to-field mapping (see
"Direct-to-Field Mapping" on page 33-4) and an appropriate Converter instance.

In the previous release, TopLink provided subclasses of DirectToFieldMapping for
object type direct mappings, serialized object direct mappings, and type conversion
direct mappings. In this release, these subclasses are deprecated. In their place, Oracle
recommends that you use the DirectToFieldMapping method setConverter and
the corresponding Converter instance. Table 33–2 summarizes these changes.

If the application’s objects contain attributes that cannot be represented as
direct-to-field with an existing converter, use a direct-to-field mapping with a custom
converter.

Using a Transformation Mapping
If there is no database primitive type that is logically comparable to the attribute’s
type, or, if an attribute requires data from multiple fields, it must be transformed on its
way to and from the database.

In this case, use a transformation mapping (see "Transformation Mapping" on
page 33-15).

Relational Mappings and EJB
Use direct mappings to map the (non-CMR) CMF attributes of a bean.

In EJB CMP projects, the bean class does not define real variables in the class – only
abstract getter and setter methods. To map the bean’s attributes, you must import
ejb-jar.xml file into TopLink Workbench (see "Configuring Persistence Type" on
page 19-5).

Table 33–2 Using a Converter for Direct-to-Field Mappings

Deprecated
DirectToFieldMapping subclass... Replaced by Converter instance...

ObjectTypeMapping ObjectTypeConverter (see "Object Type Converter"
on page 30-12)

SerializedObjectMapping SerializedObjectConverter (see "Serialized Object
Converter" on page 30-10)

TypeConversionMapping TypeConversionConverter (see "Type Conversion
Converter" on page 30-11

Direct-to-Field Mapping

33-4 Oracle TopLink Developer’s Guide

You can map entity bean attributes using direct mappings without any special
considerations.

There are some special considerations when using one-to-one mappings (see
"One-to-One Mappings and EJB" on page 33-6), one-to-many mappings (see
"One-to-Many Mappings and EJB" on page 33-8), and many-to-many mappings (see
"Many-to-Many Mappings and EJB" on page 33-9).

Direct-to-Field Mapping
Use direct-to-field mappings to map primitive object attributes, or non persistent
regular objects, such as the JDK classes. For example, use a direct-to-field mapping to
store a String attribute in a VARCHAR field.

Example 33–1 Direct-to-Field Mapping Example

Figure 33–1 illustrates a direct-to-field mapping between the Java attribute city and
the relational database column CITY. Similarly, direct-to-field mappings could be
defined from country to COUNTRY, id to ADDRESS_ID, established to EST_DATE,
and province to PROVINCE.

Figure 33–1 Direct-to-Field Mapping

You can use a direct-to-field mapping with any of the following Converter instances:

■ see "Object Type Converter" on page 30-12

■ see "Serialized Object Converter" on page 30-10

■ see "Type Conversion Converter" on page 30-11

You can use a direct-to-field mapping with a change policy (see "Configuring Change
Policy" on page 25-73.

See Chapter 35, "Configuring a Relational Direct-to-Field Mapping" for more
information.

Direct-to-XMLType Mapping
Using a direct-to-XMLType mapping, you can map XML data in the form of a String
or an org.w3c.dom.Document object to an XMLType column in an Oracle Database
(introduced in version 9.2.0.1).

If you plan to use direct to XML type mappings in TopLink Workbench and the
TopLink runtime, you must include the Oracle Database xdb.jar file in the TopLink
Workbench classpath (see "Configuring the TopLink Workbench Environment" on
page 4-2).

Note: When you work with EJB, do not map the entity context
attribute (type javax.ejb.EntityContext).

One-to-One Mapping

Understanding Relational Mappings 33-5

The TopLink query framework provides a number of expression operators you can
use to create queries based on the content of that XML data (see "XMLType Functions"
on page 95-5).

See Chapter 36, "Configuring a Relational Direct-to-XMLType Mapping" for more
information.

One-to-One Mapping
One-to-one mappings represent simple pointer references between two Java objects. In
Java, a single pointer stored in an attribute represents the mapping between the source
and target objects. Relational database tables implement these mappings using foreign
keys.

Figure 33–2 illustrates a one-to-one relationship from the address attribute of an
Employee object to an Address object. To store this relationship in the database,
create a one-to-one mapping between the address attribute and the Address class.
This mapping stores the id of the Address instance in the EMPLOYEE table when the
Employee instance is written. It also links the Employee instance to the Address
instance when the Employee is read from the database. Because an Address does not
have any references to the Employee, it does not have to provide a mapping to
Employee.

For one-to-one mappings, the source table normally contains a foreign key reference to
a record in the target table. In Figure 33–2, the ADDR_ID field of the EMPLOYEE table
is a foreign key.

Figure 33–2 One-to-One Mappings

You can also implement a one-to-one mapping where the target table contains a
foreign key reference to the source table. In Figure 33–2, the database design would
change such that the ADDRESS row would contain the EMP_ID to identify the
Employee to which it belonged. In this case, the target must also have a relationship
mapping to the source.

The update, insert and delete operations, which are normally done for the target
before the source for privately owned one-to-one relationships, are performed in the
opposite order when the target owns the foreign key. Target foreign keys normally
occur in bidirectional one-to-one mappings (see "Directionality" on page 33-2), because
one side has a foreign key and the other shares the same foreign key in the other’s
table.

Target foreign keys can also occur when large cascaded composite primary keys exist
(that is, one object’s primary key is composed of the primary key of many other

Variable One-to-One Mapping

33-6 Oracle TopLink Developer’s Guide

objects). In this case it is possible to have a one-to-one mapping that contains both
foreign keys and target foreign keys.

In a foreign key, TopLink automatically updates the foreign key value in the object’s
row. In a target foreign key, it does not. In TopLink, use the Target Foreign Key
option when a target foreign key relationship is defined.

When mapping a relationship, you must understand these differences between a
foreign key and a target foreign key, to ensure that the relationship is defined
correctly.

In a bidirectional relationship where the two classes in the relationship reference each
other, only one of the mappings should have a foreign key. The other mapping should
have a target foreign key. If one of the mappings in a bidirectional relationship is a
one-to-many mapping, see "Configuring a Relational Variable One-to-One Mapping"
on page 38-1 for details.

You can use a one-to-one mapping with a change policy (see "Configuring Change
Policy" on page 25-73.

See "Configuring a Relational One-to-One Mapping" on page 37-1 for more
information.

One-to-One Mappings and EJB
To maintain EJB compliance, the object attribute that points to the target of the
relationship must be the local interface type–not the bean class.

TopLink provides variations on one-to-one mappings that lets you define complex
relationships when the target of the relationship is a dependent Java object. For
example, variable one-to-one mappings enable you to specify variable target objects in the
relationship. These variations are not available for entity beans, but are valid for
dependent Java objects.

For more information, see the Chapter 38, "Configuring a Relational Variable
One-to-One Mapping".

Variable One-to-One Mapping
Variable class relationships are similar to polymorphic relationships, except that in this
case the target classes are not related through inheritance (and thus not good
candidates for an abstract table), but through an interface.

To define variable class relationships in TopLink Workbench, use the variable
one-to-one mapping selection, but choose the interface as the reference class. This
makes the mapping a variable one-to-one. When defining mappings in Java code, use
the VariableOneToOneMapping class.

TopLink supports variable relationships only in one-to-one mappings. It handles this
relationship in two ways:

■ Through the class indicator field (see "Configuring Class Indicator" on page 38-1).

■ Through unique primary key values among target classes implementing the
interface (see "Configuring Unique Primary Key" on page 38-3).

One-to-Many Mapping

Understanding Relational Mappings 33-7

Figure 33–3 Variable One-to-One Mappings with Class Indicator

See "Configuring a Relational Variable One-to-One Mapping" on page 38-1 for more
information.

One-to-Many Mapping
One-to-many mappings are used to represent the relationship between a single source
object and a collection of target objects. They are a good example of something that is
simple to implement in Java using a Vector (or other collection types) of target
objects, but difficult to implement using relational databases.

In a Java Vector, the owner references its parts. In a relational database, the parts
reference their owner. Relational databases use this implementation to make querying
more efficient.

The purpose of creating this one-to-one mapping in the target is so that the foreign key
information can be written when the target object is saved. Alternatives to the
one-to-one mapping back reference include the following:

■ Use a direct-to-field mapping to map the foreign key and maintain its value in the
application. Here the object model does not require a back reference, but the data
model still requires a foreign key in the target table.

■ Use a many-to-many mapping to implement a logical one-to-many. This has the
advantage of not requiring a back reference in the object model and not requiring
a foreign key in the data model. In this model the many-to-many relation table
stores the collection. It is possible to put a constraint on the join table to enforce
that the relation is a logical one-to-many relationship.

Note: See "Configuring Container Policy" on page 32-26 for
information on using collection classes other than Vector with
one-to-many mappings.

Many-to-Many Mapping

33-8 Oracle TopLink Developer’s Guide

Figure 33–4 One-to-Many Relationships

You can use a many-to-many mapping with a change policy (see "Configuring Change
Policy" on page 25-73.

See "Configuring a Relational One-to-Many Mapping" on page 39-1 for more
information.

One-to-Many Mappings and EJB
Use one-to-many mappings for relationships between entity beans or between an
entity bean and a collection of privately owned regular Java objects. When you create
one-to-many mappings, also create a one-to-one mapping from the target objects back
to the source. The object attribute that contains a pointer to the bean must be the local
interface type–not the bean class.

TopLink automatically maintains back-pointers when you create or update
bidirectional relationships between beans.

For more information, see "Configuring Bidirectional Relationship" on page 32-34.

Many-to-Many Mapping
Many-to-many mappings represent the relationships between a collection of source
objects and a collection of target objects. They require the creation of an intermediate
table for managing the associations between the source and target records.

Figure 33–5 illustrates a many-to-many mapping in Java and in relational database
tables.

Many-to-Many Mapping

Understanding Relational Mappings 33-9

Figure 33–5 Many-to-many Relationships

Many-to-many mappings are implemented using a relation table. This table contains
columns for the primary keys of the source and target tables. Composite primary keys
require a column for each field of the composite key. The intermediate table must be
created in the database before using the many-to-many mapping.

The target class does not have to implement any behavior for the many-to-many
mappings. If the target class also creates a many-to-many mapping back to its source,
then it can use the same relation table, but one of the mappings must be set to
read-only. If both mappings write to the table, they can cause collisions.

Indirection is enabled by default in a many-to-many mapping, which requires that the
attribute have the ValueHolderInterface type or transparent collections.

You can use a many-to-many mapping with a change policy (see "Configuring Change
Policy" on page 25-73.

See "Configuring a Relational Many-to-Many Mapping" on page 40-1 for more
information.

Many-to-Many Mappings and EJB
When you use CMP, many-to-many mappings are valid only between entity beans,
and cannot be privately owned. The only exception is when a many-to-many mapping
is used to implement a logical one-to-many mapping with a relation table.

TopLink automatically maintains back-pointers when you create or update
bidirectional relationships.

For more information, see "Configuring Bidirectional Relationship" on page 32-34.

Note: See "Configuring Container Policy" on page 32-26 for
information on using Collection classes other than Vector with
one-to-many mappings.

Aggregate Collection Mapping

33-10 Oracle TopLink Developer’s Guide

Aggregate Collection Mapping
Aggregate collection mappings are used to represent the aggregate relationship
between a single-source object and a collection of target objects. Unlike the TopLink
one-to-many mappings, in which there should be a one-to-one back reference
mapping from the target objects to the source object, there is no back reference
required for the aggregate collection mappings, because the foreign key relationship is
resolved by the aggregation.

Although aggregate collection mappings are similar to one-to-many mappings, they
are not replacements for one-to-many mappings. Use aggregate collections only in
situations where the target collections are of a reasonable size and if having a
one-to-one back mapping is difficult.

Because one-to-many relationships offer better performance and are more robust and
scalable, consider using a one-to-many relationship rather than an aggregate
collection. In addition, aggregate collections are privately owned by the source of the
relationship and must not be shared or referenced by other objects.

Aggregate collections are privately owned by the source of the relationship and
should not be shared or referenced by other objects.

This section describes the following:

■ Aggregate Collection Mappings and Inheritance

■ Aggregate Collection Mappings and EJB

■ Implementing Aggregate Collection Mappings

See "Configuring a Relational Aggregate Collection Mapping" on page 41-1 for more
information.

Aggregate Collection Mappings and Inheritance
Aggregate collection descriptors can use inheritance. You must also declare subclasses
as aggregate collection. The subclasses can have their own mapped tables, or share the
table with their parent class. See "Descriptors and Inheritance" on page 23-3 for more
information on inheritance.

In a Java Vector, the owner references its parts. In a relational database, the parts
reference their owners. Relational databases use this implementation to make
querying more efficient.

Aggregate collection mappings require a target table for the target objects.

To implement an aggregate collection mapping, the following must take place:

■ The descriptor of the target class must declare itself as an aggregate collection
object. Unlike the aggregate object mapping, in which the target descriptor does
not have a specific table to associate with, there must be a target table for the
target object.

■ The descriptor of the source class must add an aggregate collection mapping that
specifies the target class.

Note: To use aggregate collections with TopLink Workbench, you
must use an amendment method (see "Configuring Amendment
Methods" on page 25-81), or manually edit the project source to add
the mapping.

Direct Collection Mapping

Understanding Relational Mappings 33-11

Aggregate Collection Mappings and EJB
You can use aggregate collection mappings with entity beans if the source of the
relationship is an entity bean or Java object, and the mapping targets are regular Java
objects. Entity beans cannot be the target of an aggregate object mapping.

Implementing Aggregate Collection Mappings
To implement an aggregate collection mapping, the following must take place:

■ The descriptor of the target class must declare itself to be an aggregate collection
object. Unlike the aggregate object mapping, in which the target descriptor does
not have a specific table to associate with, there must be a target table for the
target object.

■ The descriptor of the source class must add an aggregate collection mapping that
specifies the target class.

Direct Collection Mapping
Direct collection mappings store collections of Java objects that are not
TopLink-enabled. The object type stored in the direct collection is typically a Java type,
such as String.

It is also possible to use direct collection mappings to map a collection of non-String
objects. For example, it is possible to have an attribute that contains a collection of
Integer or Date instances. The instances stored in the collection can be any type
supported by the database and has a corresponding wrapper class in Java.

Support for primitive data types such as int is not provided, because Java Vectors
hold only objects.

Figure 33–6 illustrates how a direct collection is stored in a separate table with two
fields. The first field is the reference key field, which contains a reference to the
primary key of the instance owning the collection. The second field contains an object
in the collection and is called the direct field. There is one record in the table for each
object in the collection.

Figure 33–6 Direct Collection Mappings

Maps are not supported for direct collection because there is no key value.

You can use a direct collection mapping with any of the following Converter
instances:

Note: The responsibilities attribute is of type Vector.
When using JDK 1.2, it is possible to use a Collection interface
(or any class that implements the Collection interface) for declaring
the collection attribute. See "Configuring Container Policy" on
page 32-26 for details.

Direct Map Mapping

33-12 Oracle TopLink Developer’s Guide

■ see "Object Type Converter" on page 30-12

■ see "Serialized Object Converter" on page 30-10

■ see "Type Conversion Converter" on page 30-11

You can use a direct collection mapping with a change policy (see "Configuring
Change Policy" on page 25-73).

See "Configuring a Relational Direct Collection Mapping" on page 42-1 for more
information.

Direct Map Mapping
Direct map mappings store instances that implement java.util.Map. Unlike
one-to-many or many-to-many mappings, the keys and values of the map in this type
of mapping are Java objects that do not have descriptors. The object type stored in the
key and the value of direct map are Java primitive wrapper types such as String
objects.

Figure 33–7 illustrates how a direct map is stored in a separate table with three fields.
The first field (EMPID) is the reference key field, which contains a reference to the
primary key of the instance owning the collection. The second field (ADDRESS)
contains an object in the collection and is called the direct value field. The third field
(TYPE) contains the direct key field. In this example, the direct map uses a object type
converter for the direct key field, converting the single character W in the database to
the full string Work in the object (and H to Home).

Figure 33–7 Direct Map Mappings

You can use a direct collection mapping with any of the following Converter
instances:

■ see "Object Type Converter" on page 30-12

■ see "Serialized Object Converter" on page 30-10

■ see "Type Conversion Converter" on page 30-11

You can use a direct map mapping with a change policy (see "Configuring Change
Policy" on page 25-73).

See "Configuring a Relational Direct Map Mapping" on page 44-1 for more
information.

Aggregate Object Mapping
Two objects–a source (parent or owning) object and a target (child or owned)
object–are related by aggregation if there is a strict one-to-one relationship between
them and all the attributes of the target object can be retrieved from the same table(s)
as the source object. This means that if the source object exists, then the target object
must also exist and if the source object is destroyed, then the target object is also
destroyed.

Aggregate Object Mapping

Understanding Relational Mappings 33-13

An aggregate mapping allows you to associate data members in the target object with
fields in the source object’s underlying database tables.

You configure the aggregate mapping in the source object’s descriptor. However,
before doing so, you must designate the target object’s descriptor as an aggregate (see
"Configuring a Relational Descriptor as a Class or Aggregate Type" on page 26-11).

Aggregate objects are privately owned and should not be shared or referenced by
other objects.

You cannot configure one-to-one, one-to-many, or many-to-many mappings from a
nonaggregate object to an aggregate target object.

You can configure such mappings from an aggregate target object to another
nonaggregate object. If you configure a one-to-many mapping from an aggregate
target object to another nonaggregate object, you must configure a one-to-one
mapping from the other object back to the source object that owns the aggregate
(instead of to the aggregate target object itself). This is because the source object
contains the table and primary key information of the aggregate target.

You can configure inheritance for a descriptor designated as an aggregate (see
"Descriptors and Inheritance" on page 23-3), however, in this case, all the descriptors in
the inheritance tree must be aggregates. Aggregate and class descriptors cannot exist
in the same inheritance tree.

This section describes the following:

■ Aggregate Object Mappings with a Single Source Object

■ Aggregate Object Mappings With Multiple Source Objects

■ Implementing an Aggregate Object Relationship Mapping

You can use an aggregate object mapping with a change policy (see "Configuring
Change Policy" on page 25-73.

For more information on configuring an aggregate object relationship mapping, see
"Configuring a Relational Aggregate Object Mapping" on page 43-1.

Aggregate Object Mappings with a Single Source Object
Figure 33–8 shows an example aggregate object mapping between source object
Employee and target object Period. In this example, the target object is not shared by
other types of source object.

Figure 33–8 Aggregate Object Mapping with a Single Source Object

Aggregate target classes not shared among multiple source classes can have any type
of mapping, including other aggregate object mappings.

Aggregate Object Mapping

33-14 Oracle TopLink Developer’s Guide

Aggregate Object Mappings With Multiple Source Objects
Figure 33–9 shows an example aggregate object mapping in which different source
objects–Employee and Project–map instances of the same type of target object,
Period.

Figure 33–9 Aggregate Object Mapping with Multiple Source Objects

When you configure the aggregate object mapping in the source object, you choose the
source object table for that particular mapping. This allows different source types to
store the same target information within their tables. Each source object’s table may
use different field names. TopLink automatically manages the case where multiple
source object tables use different field names.

For example, in Figure 33–9, The Employee attribute employPeriod is mapped by
an aggregate object mapping to target object Period. This mapping associates
Period attribute startDate with EMPLOYEE table field START_DATE. The Project
attribute projectPeriod is also mapped by an aggregate object mapping to target
object Period. This mapping associates Period attribute startDate with PROJECT
table field S_DATE.

Aggregate target classes shared with multiple source classes cannot have one-to-many
or many-to-many mappings.

Implementing an Aggregate Object Relationship Mapping
You must ensure that the following takes place:

■ The descriptor of the target class declares itself to be an aggregate object. Because
all its information comes from its parent’s table(s), the target descriptor does not
have a specific table associated with it. You must, however, choose one or more
candidate table(s) from which you can use fields in mapping the target.

In the example above, you could choose the EMPLOYEE table so that the START_
DATE and END_DATE fields are available during mapping.

■ The descriptor of the source class adds an aggregate object mapping that specifies
the target class.

 In the example above, the Employee class has an attribute called employPeriod
that would be mapped as an aggregate object mapping with Period as the
reference class.

Transformation Mapping

Understanding Relational Mappings 33-15

The source class must ensure that its table has fields that correspond to the field
names registered with the target class.

■ If a source object has a null target reference, TopLink writes NULLs to the
aggregate database fields (see "Configuring Allowing Null Values" on page 43-2).
When the source is read from the database, it can handle this null target in one of
two ways:

■ Create an instance of the object with all its attributes equal to null.

■ Put a null reference in the source object without instantiating a target. (This is
the default method of handling null targets.)

Transformation Mapping
Use transformation mappings for specialized translations for how a value is
represented in Java and how it is represented in the database.

Figure 33–10 illustrates a transformation mapping. The values from the B_DATE and
B_TIME fields are used to create a java.util.Date to be stored in the birthDate
attribute.

Figure 33–10 Transformation Mappings

Often, a transformation mapping is appropriate when values from multiple fields are
used to create an object. This type of mapping requires that you provide an attribute
transformation that is invoked when reading the object from the database. This must
have at least one parameter that is an instance of Record. In your attribute
transformation, you can use Record method get to retrieve the value in a specific
column. Your attribute transformation can specify a second parameter, when it is an
instance of Session. The Session performs queries on the database to get additional
values needed in the transformation. The transformation should return the value to be
stored in the attribute.

Transformation mappings also require a field transformation for each field, to be written
to the database when the object is saved. The transformation returns the value to be
stored in that field.

Tip: Use transformation mappings only when mapping multiple
fields into a single attribute. Because of the complexity of
transformation mappings, it is often easier to perform the
transformation with a converter or getter and setter methods of a
direct-to-field mapping. See Chapter 35, "Configuring a Relational
Direct-to-Field Mapping" for more information.

Transformation Mapping

33-16 Oracle TopLink Developer’s Guide

See Chapter 45, "Configuring a Relational Transformation Mapping" for more
information.

Configuring a Relational Mapping 34-1

34
Configuring a Relational Mapping

This chapter describes how to configure a relational mapping.

Table 34–1 lists the types of relational mappings that you can configure and provides a
cross-reference to the type-specific chapter that lists the configurable options
supported by that type.

Table 34–2 lists the configurable options shared by two or more relational mapping
types.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Understanding Relational Mappings" on page 33-1

Configuring Common Relational Mapping Options
Table 34–2 lists the configurable options shared by two or more relational mapping
types. In addition to the configurable options described here, you must also configure
the options described for the specific Relational Mapping Types, as shown in
Table 34–1.

Table 34–1 Configuring Relational Mappings

If you are creating... See...

Direct-to-Field Mapping Chapter 35, "Configuring a Relational Direct-to-Field Mapping"

Transformation Mapping Chapter 45, "Configuring a Relational Transformation Mapping"

Direct-to-XMLType Mapping Chapter 36, "Configuring a Relational Direct-to-XMLType Mapping"

One-to-One Mapping Chapter 37, "Configuring a Relational One-to-One Mapping"

Variable One-to-One Mapping Chapter 38, "Configuring a Relational Variable One-to-One Mapping"

One-to-Many Mapping Chapter 39, "Configuring a Relational One-to-Many Mapping"

Many-to-Many Mapping Chapter 40, "Configuring a Relational Many-to-Many Mapping"

Aggregate Collection Mapping Chapter 41, "Configuring a Relational Aggregate Collection Mapping"

Direct Collection Mapping Chapter 42, "Configuring a Relational Direct Collection Mapping"

Direct Map Mapping Chapter 44, "Configuring a Relational Direct Map Mapping"

Aggregate Object Mapping Chapter 43, "Configuring a Relational Aggregate Object Mapping"

Configuring a Database Field

34-2 Oracle TopLink Developer’s Guide

Configuring a Database Field
You can associate an object attribute with a database field.

Table 34–3 summarizes which relational mappings support this option.

When choosing the database field, you must consider Java and database field type
compatibility.

TopLink supports the following Java types:

■ java.lang: Boolean, Float, Integer, String, Double, Long, Short, Byte,
Byte[], Character, Character[]; all the primitives associated with these
classes

■ java.math: BigInteger, BigDecimal

■ java.sql: Date, Time, Timestamp

■ java.util: Date, Calendar

While executing reads, the mappings in Table 34–6 perform the simple one-way data
conversions that Table 34–4 describes. For two-way or more complex conversions, You
must use converters (see "Converters and Transformers" on page 33-3).

Table 34–2 Common Relational Mapping Options

Option Type
TopLink
Workbench Java

"Configuring a Database Field" on page 34-2 Basic

"Configuring Reference Descriptor" on page 34-5 Basic

"Configuring Container Policy" on page 32-26 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring a Default Null Value at the Mapping Level"
on page 32-12

Basic

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Indirection" on page 32-3 Basic

"Configuring Private or Independent Relationships" on
page 32-16

Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring a Serialized Object Converter" on page 32-18 Advanced

"Configuring a Type Conversion Converter" on page 32-20 Advanced

"Configuring an Object Type Converter" on page 32-22 Advanced

"Configuring Bidirectional Relationship" on page 32-34 Advanced

"Configuring Batch Reading" on page 34-6 Advanced

"Configuring Query Key Order" on page 34-8 Advanced

"Configuring Table and Field References (Foreign and
Target Foreign Keys)" on page 34-8

Advanced

Table 34–3 Relational Mapping Support for Database Field

Mapping
Using TopLink
Workbench Using Java

Direct-to-Field Mapping

Direct-to-XMLType Mapping

Configuring a Database Field

Configuring a Relational Mapping 34-3

The mappings in Table 34–3 also allow you to specify a null value. This may be
required if primitive types are used in the object, and the database field allows null
values. For more information, see "Configuring a Default Null Value at the Mapping
Level" on page 32-12.

Support for oracle.sql.TimeStamp
TopLink provides additional support for mapping Java date and time data types to
Oracle database DATE, TIMESTAMP, and TIMESTAMPTZ data types when you use the
Oracle JDBC driver with Oracle9i Database Server or later and the Oracle9Platform
in TopLink.

In a direct-to-field mapping, you are not required to specify the database type of the
field value; TopLink determines the appropriate data type conversion.

Table 34–5 lists the supported direct-to-field mapping combinations.

Table 34–4 Type Conversions Provided by Direct-to-Field Mappings

Java type Database type

Integer, Float, Double, Byte, Short,
BigDecimal, BigInteger, int, float, double,
byte, short

NUMBER, NUMERIC, DECIMAL, FLOAT,
DOUBLE, INT, SMALLINT, BIT, BOOLEAN

Boolean, boolean BOOLEAN, BIT, SMALLINT, NUMBER,
NUMERIC, DECIMAL, FLOAT, DOUBLE, INT

String VARCHAR, CHAR, VARCHAR2, CLOB, TEXT,
LONG, LONG VARCHAR, MEMO

The following types apply only to Oracle9:
NVARCHAR2, NCLOB, NCHAR

byte[] BLOB, LONG RAW, IMAGE, RAW, VARBINARY,
BINARY, LONG VARBINARY

Time TIME

sql.Date DATE (only applies to DB2)

Timestamp, util.Date, Calendar TIMESTAMP (only applies to DB2)

sql.Date, Time, Timestamp, util.Date,
Calendar

To use oracle.sql.TimeStamp, see
"Support for oracle.sql.TimeStamp" on
page 34-3.

DATE, DATETIME (applies to Oracle, Sybase,
SQL Server)

Table 34–5 Supported Oracle Database Date and Time Direct-to-Field Mappings

Java Type Database Type Description

java.sql.Time TIMESTAMP Full bidirectional support.

TIMESTAMPTZ Full bidirectional support.

DATE Full bidirectional support.

java.sql.Date TIMESTAMP Full bidirectional support.

TIMESTAMPTZ Full bidirectional support.

DATE Full bidirectional support.

java.sql.Timestamp TIMESTAMP Full bidirectional support.

TIMESTAMPTZ Full bidirectional support.

Configuring a Database Field

34-4 Oracle TopLink Developer’s Guide

Note that some of these mappings result in a loss of precision: avoid these
combinations if you require this level of precision. For example, if you create a
direct-to-field mapping between a java.sql.Date attribute and a TIMESTAMPTZ
database field, there is no loss of precision. However, if you create a direct-to-field
mapping between a java.sql.Timestamp attribute and a DATE database field, the
nanoseconds or milliseconds of the attribute are not stored in the database.

Using TopLink Workbench
Use this procedure to select a specific database field for a direct mapping.

1. Select the direct mapping attribute in the Navigator. Its properties appear in the
Editor.

2. Click the General tab. The General tab appears.

Figure 34–1 Direct Mapping General Tab, Database Field Option

DATE Nanoseconds are not stored in the database.

java.util.Date TIMESTAMP Full bidirectional support.

TIMESTAMPTZ Full bidirectional support.

DATE Milliseconds are not stored in the database.

java.util.Calendar TIMESTAMP Native SQL or binding gives Calendar timezone.

Note: The TIMESTAMP database value has no timezone
– the Calendar object provides the local timezone by
default. If the database is not in this timezone, you must
obtain the database timezone by some other means and
update the Calendar object accordingly. For this reason,
TIMESTAMPTZ may be a better choice.

TIMESTAMPTZ Native SQL or binding stores timezone; standard SQL is
based on the local timezone.

DATE Neither timezone nor milliseconds are stored in the
database.

Table 34–5 (Cont.) Supported Oracle Database Date and Time Direct-to-Field Mappings

Java Type Database Type Description

Configuring Reference Descriptor

Configuring a Relational Mapping 34-5

Use the Database Field field to select a field for this direct mapping. You must have
previously associated the descriptor with a database table as described in "Configuring
Associated Tables" on page 26-2.

Configuring Reference Descriptor
In relational mappings that extend
oracle.toplink.mappings.ForeignReferenceMapping, attributes reference
other TopLink descriptors–not the data source. You can select any descriptor in the
project.

Table 34–6 summarizes which relational mappings support this option.

Using TopLink Workbench
To specify a reference descriptor for a relational mapping, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Note: For direct to field mappings of a an Aggregate descriptor (see
"Configuring a Relational Descriptor as a Class or Aggregate Type" on
page 26-11), this field is for display only and cannot be changed.

Table 34–6 Relational Mapping Support for Reference Descriptor

Mapping
Using TopLink
Workbench Using Java

One-to-One Mapping

Variable One-to-One Mapping

One-to-Many Mapping

Many-to-Many Mapping

Aggregate Collection Mapping

Aggregate Object Mapping

Configuring Batch Reading

34-6 Oracle TopLink Developer’s Guide

Figure 34–2 General Tab, Reference Descriptor Field

Use the Reference Descriptor field to select the descriptor referenced by this
relationship mapping.

You can specify a reference descriptor that is not in the current TopLink Workbench
project. For example, to create a mapping to an Employee class that does not exist in
the current project, do the following:

1. Add the Employee class to your current project. See "Working With Projects" on
page 18-10.

2. Create the relationship mapping to the Employee descriptor.

3. Deactivate the Employee descriptor. See "Active and Inactive Descriptors" on
page 4-10.

When you generate the deployment XML for your project, the mapping to the
Employee class will be included, but not the Employee class.

Configuring Batch Reading
Batch reading can be used in most of the relational mappings. This feature should be
used only if it is known that the related objects are always required with the source
object.

Table 34–7 summarizes which relational mappings support this option.

Note: For aggregate mappings the Reference Descriptor must be an
aggregate. See "Configuring a Relational Descriptor as a Class or
Aggregate Type" on page 26-11 for more information.

For variable one-to-one mappings, the Reference Descriptor must be
an interface. See Chapter 38, "Configuring a Relational Variable
One-to-One Mapping" for more information.

Configuring Batch Reading

Configuring a Relational Mapping 34-7

Using TopLink Workbench
To use batch reading in a relationship mapping, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 34–3 General Tab, Batch Reading Option

To specify that this mapping using batch reading, select the Batch Reading option.

Using Java

Example 34–1 Query Optimization Using Batching

The following code example illustrates using batch for query optimization.

// Queries on Employee are configured to always batch read Address
OneToManyMapping phoneNumbersMapping = new OneToManyMapping();
phoneNumbersMapping.setReferenceClass("
PhoneNumber.class")
phoneNumbersMapping.setAttributeName("phones");

Table 34–7 Relational Mapping Support for Batch Reading

Mapping
Using TopLink
Workbench Using Java

One-to-One Mapping

One-to-Many Mapping

Many-to-Many Mapping

Direct Collection Mapping

Direct Map Mapping

Aggregate Object Mapping

Configuring Query Key Order

34-8 Oracle TopLink Developer’s Guide

phoneNumbersMapping.useBatchReading();
phoneNumbersMapping.privateOwnedRelationship();

Configuring Query Key Order
You can configure TopLink to maintain collections in order by query key.

Table 34–8 summarizes which relational mappings support this option.

Using TopLink Workbench
To specify the order of a mapping’s query keys, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the Ordering tab. The Ordering tab appears.

Figure 34–4 Ordering Tab

Configuring Table and Field References (Foreign and
Target Foreign Keys)

A foreign key is a combination of one or more database columns that reference a
unique key, usually the primary key, in another table. Foreign keys can be any number

Table 34–8 Relational Mapping Support for Query Key Order

Mapping
Using TopLink
Workbench Using Java

Variable One-to-One Mapping

One-to-Many Mapping

Aggregate Collection Mapping

Field Description

Query Key Specify the query key to order by.

Click Add to add query keys to, or Remove to remove query
keys from the ordering operation.

Click Up or Down to change the sort order of selected query
keys.

Order Specify if TopLink orders the selected query key in Ascending
or Descending (alphabetical) order.

Configuring Table and Field References (Foreign and Target Foreign Keys)

Configuring a Relational Mapping 34-9

of fields (similar to a primary key), all of which are treated as a unit. A foreign key and
the parent key it references must have the same number and type of fields.

Mappings that extend oracle.toplink.mappings.ForeignReferenceMapping
use foreign keys to find information in the database so that the target object(s) can be
instantiated. For example, if every Employee has an attribute address that contains
an instance of Address (which has its own descriptor and table) then, the one-to-one
mapping for the address attribute would specify foreign key information to find an
Address for a particular Employee.

TopLink classifies foreign keys into two categories in mappings–foreign keys and
target foreign keys:

■ In a foreign key, the key is found in the table associated with the mapping’s own
descriptor. For example, an Employee foreign key to ADDRESS would be in the
EMPLOYEE table.

■ In a target foreign key, the reference is from the target object’s table back to the key
from the mapping’s descriptor’s table. For example, the ADDRESS table would
have a foreign key to EMPLOYEE.

The table reference is the database table that contains the foreign key references.

Table 34–9 summarizes which relational mappings support this option.

Using TopLink Workbench, you can either import this table from your database or
create it. If you import tables from the database (see "Importing Tables From a
Database" on page 4-22), TopLink creates references that correspond to existing
database constraints (if supported by the driver). You can also define references in
TopLink without creating similar constraints on the database.

Using TopLink Workbench
To specify a table for a mapping reference, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the Table Reference tab. The Reference tab appears.

Caution: Make sure you fully understand the distinction between
foreign key and target foreign key before defining a mapping.

Table 34–9 Relational Mapping Support for Table Reference

Mapping
Using TopLink
Workbench Using Java

One-to-One Mapping

One-to-Many Mapping

Many-to-Many Mapping

Aggregate Collection Mapping

Direct Collection Mapping

Direct Map Mapping

Configuring Table and Field References (Foreign and Target Foreign Keys)

34-10 Oracle TopLink Developer’s Guide

Figure 34–5 Table Reference Tab, Table Reference Field

Use the following information to select the field references on the tab:

Field Description

Table Reference Select an existing table, or click New to create a new table
reference.

Source and Target Field Click Add to create new foreign key reference.

To delete an existing key pair reference, select the Source
and Target fields and click Remove.

Source Field Select the database field from the source table for this
foreign key reference.

Target Field Select the database field from the target table for this
foreign key reference.

Target Foreign Key Specify whether or not the reference is from the target
object’s table back to the key from the mapping’s
descriptor’s table.

Configuring a Relational Direct-to-Field Mapping 35-1

35
Configuring a Relational Direct-to-Field

Mapping

This chapter describes the various components that you must configure in order to use
a relational direct-to-field mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Direct-to-Field Mapping" on page 33-4

Relational Direct-to-Field Mapping Configuration Overview
Table 35–1 lists the configurable options for a relational direct-to-field mapping.

Table 35–1 Configurable Options for Relational Direct-to-Field Mapping

Option Type
TopLink
Workbench Java

"Configuring a Database Field" on page 34-2 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring a Default Null Value at the Mapping Level" on
page 32-12

Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring a Serialized Object Converter" on page 32-18 Advanced

"Configuring a Type Conversion Converter" on page 32-20 Advanced

"Configuring an Object Type Converter" on page 32-22 Advanced

Relational Direct-to-Field Mapping Configuration Overview

35-2 Oracle TopLink Developer’s Guide

Configuring a Relational Direct-to-XMLType Mapping 36-1

36
Configuring a Relational Direct-to-XMLType

Mapping

This chapter describes the various components that you must configure in order to use
a relational direct-to-XMLType mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Direct-to-XMLType Mapping" on page 33-4

Relational Direct-to-XMLType Mapping Overview
Table 36–1 lists the configurable options for a relational direct-to-XMLType mapping.

Configuring Read Whole Document
When mapping an XML Type to a Document Object Model (DOM), by default
TopLink uses the database representation of the DOM. This allows for lazy loading of
the XML data from the database.

However, if you require the entire DOM, (or if you require the DOM to be available in
a disconnected fashion from the database connection) use the Read Whole option to
retrieve the entire DOM from the database.

Using TopLink Workbench
To specify that this mapping reads the whole XML document, use this procedure:

1. Select the mapping in the Navigator. Its properties appear in the Editor.

2. Click General. The General tab appears.

Table 36–1 Configurable Options for Relational Direct-To-XMLType Mapping

Option Type
TopLink
Workbench Java

"Configuring a Database Field" on page 34-2 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Read Whole Document" on page 36-1 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

Configuring Read Whole Document

36-2 Oracle TopLink Developer’s Guide

Figure 36–1 DIrect to XML Mapping Property Sheet, Read Whole Document Option

Choose the Read Whole Document option to read the whole XML document. If you
do not select this option, the connection must remain open for TopLink to read the
database values.

Configuring a Relational One-to-One Mapping 37-1

37
Configuring a Relational One-to-One

Mapping

This chapter describes the various components that you must configure in order to use
a relational one-to-one mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "One-to-One Mapping" on page 33-5

Relational One-to-One Mapping Configuration Overview
Table 37–1 lists the configurable options for a relational one-to-one mapping.

Configuring Joining at the Mapping Level
TopLink supports configuring an inner join at the mapping level for one-to-one
mappings only. When a class that owns the mapping is read, the TopLink runtime will
always get the class and the target of the one-to-one mapping with one database hit.

Use this feature only if the target object is always required with the source object, or
when indirection is not used.

You can also configure join reading (see "Join Reading and Object-Level Read Queries"
on page 93-12) at the query level.

Table 37–1 Configurable Options for Relational One-to-One Mapping

Option Type
TopLink
Workbench Java

"Configuring Reference Descriptor" on page 34-5 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Private or Independent Relationships" on
page 32-16

Advanced

"Configuring Batch Reading" on page 34-6 Advanced

"Configuring Joining at the Mapping Level" on page 37-1 Advanced

"Configuring Indirection" on page 32-3 Advanced

"Configuring Bidirectional Relationship" on page 32-34 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring Table and Field References (Foreign and
Target Foreign Keys)" on page 34-8

Basic

Configuring Joining at the Mapping Level

37-2 Oracle TopLink Developer’s Guide

For more information about joins, see "Expressions for Joining and Complex
Relationships" on page 95-6.

Using TopLink Workbench
To use joining in a relationship mapping, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 37–1 General Tab, Use Joining Option

To use joining with this relationship, select the Use Joining option.

Configuring a Relational Variable One-to-One Mapping 38-1

38
Configuring a Relational Variable One-to-One

Mapping

This chapter describes the various components that you must configure in order to use
a relational variable one-to-one mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Variable One-to-One Mapping" on page 33-6

Relational Variable One-to-One Mapping Configuration Overview
Table 38–1 lists the configurable options for a relational variable one-to-one mapping.

Configuring Class Indicator
In variable one-to-one mappings, you can use an indicator column in the source table
to specify the correct target table, as illustrated in Figure 38–1. This section includes
information on implementing class indicators.

A source table has an indicator column that specifies the target table through the class
indicator field.

Figure 38–1 illustrates the EMPLOYEE table that has a TYPE column that indicates the
target for the row (either PHONE or EMAIL).

Table 38–1 Configurable Options for Relational Variable One-to-One Mapping

Option Type
TopLink
Workbench Java

"Configuring Reference Descriptor" on page 34-5 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Private or Independent Relationships" on page 32-16 Advanced

"Configuring Indirection" on page 32-3 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring Query Key Association" on page 38-4 Advanced

"Configuring Class Indicator" on page 38-1 Basic

"Configuring Unique Primary Key" on page 38-3 Basic

Configuring Class Indicator

38-2 Oracle TopLink Developer’s Guide

Figure 38–1 Variable One-to-One Mapping using Class indicator Field

The principles of defining such a variable class relationship are similar to defining a
normal one-to-one relationship, except:

■ The reference class is a Java interface, not a Java class. However, the method to set
the interface is identical.

■ You must specify a type indicator field.

■ You specify the class indicator values on the mapping so that mapping can
determine the class of object to create.

■ You must specify the foreign key names and the respective abstract query keys
from the target interface descriptor.

Alternatively, you can use unique primary keys to specify the correct target. See
"Configuring Unique Primary Key" on page 38-3 for more information.

Using TopLink Workbench
To specify the class indicators for a variable one-to-one mapping, use this procedure:

1. Select the variable one-to-one mapping in the Navigator. Its attributes appear in
the Editor.

2. Click the Class Indicator Info tab. The Class Indicator Info tab appears.

Figure 38–2 Class Indicator Info Tab

Use the Class Indicator Field to select the field on the database table (associated with
the mapping’s descriptor) to use as the indicator for the variable mapping.

Use the Indicator Type to specify the data type of the class indicator field by selecting
the data type from the list.

To specify the specific class indicator field values for each (nonabstract) child class,
click Edit and enter the appropriate value for each child class.

Configuring Unique Primary Key

Configuring a Relational Variable One-to-One Mapping 38-3

Configuring Unique Primary Key
In variable one-to-one mappings, you can use a unique primary key in the source table
to specify the correct target table, as illustrated in Figure 38–3. This section includes
information on implementing class indicators.

Alternatively, you can use a class indicator to specify the correct target. See
"Configuring Class Indicator" on page 38-3 for more information.

Understanding Unique Primary Key
As Figure 38–3 illustrates, the value of the foreign key in the source table (C_ID)
mapped to the primary key of the target table is unique. No primary key values
among the target tables are the same, so primary key values are not unique just in the
table, but also among the tables.

Figure 38–3 Variable One-to-One Relationship with Unique Primary Key

If there is no indicator stored in the source table, TopLink cannot determine to which
target table the foreign key value is mapped. Therefore, TopLink reads through all the
target tables until it finds an entry in one of the target tables. This is an inefficient way
of setting up a relation model. The class indicator is much more efficient as it reduces
the number of reads performed on the tables to get the data. In the class indicator
method, TopLink knows exactly which target table to look into for the data.

The principles of defining such a variable class relationship are similar to defining
class indicator variable one-to-one relationships, except:

■ A type indicator field is not specified.

■ The class indicator values are not specified.

The type indicator field and its values are not needed, because TopLink goes through
all the target tables until data is finally found.

Using TopLink Workbench
To specify the variable one-to-one mapping with a primary key, use this procedure:

1. Select the variable one-to-one mapping in the Navigator. Its attributes appear in
the Editor.

2. Click the Class Indicator Info tab. The Class Indicator Info tab appears.

Configuring Query Key Association

38-4 Oracle TopLink Developer’s Guide

Figure 38–4 Class Indicator Info Tab, Configuring Primary Key

Use the Class Indicator Field to select none.

Use the Indicator Type to select none.

Use the Indicator Value column to specify none.

After choosing the reference descriptor for the mapping, deselect the Include check
boxes.

Using Java
Example 38–1 illustrates how to define a variable one-to-one mapping using a unique
primary key in Java code.

Example 38–1 Defining a variable one-to-one mapping using a unique primary key

VariableOneToOneMapping variableOneToOneMapping = new VariableOneToOneMapping();
variableOneToOneMapping.setAttributeName("contact");
variableOneToOneMapping.setReferenceClass (Contact.class);
variableOneToOneMapping.setForeignQueryKeyName ("C_ID", "id");
variableOneToOneMapping.dontUseIndirection();
variableOneToOneMapping.privateOwnedRelationship();

Configuring Query Key Association
The API to configure query key associations is
oracle.toplink.mappings.VariableOneToOneMapping method
addForeingQueryKeyName(String, String).

Using TopLink Workbench
To specify the query keys used for a variable one-to-one mapping, use this procedure:

1. Select the variable one-to-one mapping in the Navigator. Its attributes appear in
the Editor.

2. Click the Query Key Associations tab. The Query Key Associations tab appears

Note: You cannot deselect the value in the Class Indicator Field,
unless the foreign key values in the source table are unique.

Configuring Query Key Association

Configuring a Relational Variable One-to-One Mapping 38-5

Figure 38–5 Query Key Associations Tab

Use the following information to enter data in each field on the tab:

Use the Indicator Type to specify the data type of the class indicator field by selecting
the data type from the list.

Field Description

Foreign Key The field from the database table to use as the foreign key in this
relationship.

Query Key Name The name of the query key (from the referenced descriptor) for
this association. See "Configuring Query Keys" on page 25-30 for
more information.

Configuring Query Key Association

38-6 Oracle TopLink Developer’s Guide

Configuring a Relational One-to-Many Mapping 39-1

39
Configuring a Relational One-to-Many

Mapping

This chapter describes the various components that you must configure in order to use
a relational one-to-many mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "One-to-Many Mapping" on page 33-7

Relational One-to-Many Mapping Configuration Overview
Table 39–1 lists the configurable options for a relational one-to-many mapping.

Table 39–1 Configurable Options for Relational One-to-Many Mapping

Option Type
TopLink
Workbench Java

"Configuring Reference Descriptor" on page 34-5 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Private or Independent Relationships" on page 32-16 Advanced

"Configuring Batch Reading" on page 34-6 Advanced

"Configuring Indirection" on page 32-3 Advanced

"Configuring Bidirectional Relationship" on page 32-34 Advanced

"Configuring Container Policy" on page 32-26 Basic

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring Table and Field References (Foreign and
Target Foreign Keys)" on page 34-8

Basic

"Configuring Query Key Order" on page 34-8 Advanced

Relational One-to-Many Mapping Configuration Overview

39-2 Oracle TopLink Developer’s Guide

Configuring a Relational Many-to-Many Mapping 40-1

40
Configuring a Relational Many-to-Many

Mapping

This chapter describes the various components that you must configure in order to use
a relational many-to-many mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Many-to-Many Mapping" on page 33-8

Relational Many-to-Many Mapping Configuration Overview
Table 40–1 lists the configurable options for a relational many-to-many mapping.

Configuring a Relation Table
The relation table contains the columns for the primary keys of the source table and
target table involved in the many-to-many mapping. You must create this table in the

Table 40–1 Configurable Options for Relational Many-to-Many Mapping

Option Type
TopLink
Workbench Java

"Configuring Reference Descriptor" on page 34-5 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Private or Independent Relationships" on
page 32-16

Advanced

"Configuring Batch Reading" on page 34-6 Advanced

"Configuring Indirection" on page 32-3 Advanced

"Configuring Bidirectional Relationship" on page 32-34 Basic

"Configuring Container Policy" on page 32-26 Basic

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring a Relation Table" on page 40-1 Basic

"Configuring Table and Field References (Foreign and
Target Foreign Keys)" on page 34-8 (Source)

Basic

"Configuring Table and Field References (Foreign and
Target Foreign Keys)" on page 34-8 (Target)

Basic

"Configuring Query Key Order" on page 34-8 Advanced

Configuring a Relation Table

40-2 Oracle TopLink Developer’s Guide

database before completing the mapping. See "Working With Databases" on page 4-21
for information on creating database tables.

In Figure 33–5 on page 33-9, the PROJ_EMP table serves as the relation table between
the PROJECT and EMPLOYEE tables.

Using TopLink Workbench
To select a relation table for a mapping, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 40–1 Table Reference Tab, Relation Table Option

Use the Relation Table field to select a database table to define this mapping.

Configuring a Relational Aggregate Collection Mapping 41-1

41
Configuring a Relational Aggregate

Collection Mapping

This chapter describes the various components that you must configure in order to use
a relational aggregate collection mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Aggregate Collection Mapping" on page 33-10

Relational Aggregate Collection Mapping Configuration Overview
Table 41–1 lists the configurable options for a relational aggregate collection mapping.

Note: To use a relational aggregate collection mapping with
TopLink Workbench, you must use an amendment method (see
"Configuring Amendment Methods" on page 25-81).

Table 41–1 Configurable Options for Relational Aggregate Collection Mapping

Option Type
TopLink
Workbench Java

"Configuring a Database Field" on page 34-2 Basic

"Configuring Reference Descriptor" on page 34-5 Basic

"Configuring Container Policy" on page 32-26 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Batch Reading" on page 34-6 Advanced

"Configuring Bidirectional Relationship" on page 32-34 Advanced

"Configuring Query Key Order" on page 34-8 Advanced

"Configuring Table and Field References (Foreign and
Target Foreign Keys)" on page 34-8

Advanced

Relational Aggregate Collection Mapping Configuration Overview

41-2 Oracle TopLink Developer’s Guide

Configuring a Relational Direct Collection Mapping 42-1

42
Configuring a Relational Direct Collection

Mapping

This chapter describes the various components that you must configure in order to use
a relational direct collection mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Direct Collection Mapping" on page 33-11

Relational Direct Collection Mapping Configuration Overview
Table 42–1 lists the configurable options for a relational direct collection mapping.

Configuring Target Table
Each direct collection stores reference information in a target table. In Figure 33–6 on
page 33-11, the RESPONS table contains the primary key and object of the instance
owning the collection. You must create this table in your database.

Table 42–1 Configurable Options for Relational Direct Collection Mapping

Option Type
TopLink
Workbench Java

"Configuring Target Table" on page 42-1 Basic

"Configuring Direct Value Field" on page 42-2 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Batch Reading" on page 34-6 Advanced

"Configuring Indirection" on page 32-3 Advanced

"Configuring Container Policy" on page 32-26 Basic

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring a Serialized Object Converter" on page 32-18 Advanced

"Configuring a Type Conversion Converter" on page 32-20 Advanced

"Configuring an Object Type Converter" on page 32-22 Advanced

"Configuring Table and Field References (Foreign and
Target Foreign Keys)" on page 34-8

Basic

Configuring Direct Value Field

42-2 Oracle TopLink Developer’s Guide

Using TopLink Workbench
To specify the direct collection specifics, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 42–1 General Tab, Target Table Options

Use the Target Table list to select the table that contains the reference fields for the
direct collection mapping.

Configuring Direct Value Field
The direct value field, located in the reference table, stores the primitive data value. In
Figure 33–6 on page 33-11, the DESCRIP field stores the collection.

Using TopLink Workbench
To specify the direct collection specifics, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Configuring Direct Value Field

Configuring a Relational Direct Collection Mapping 42-3

Figure 42–2 General Tab, Direct Value Field

Use the Direct Value Field list to select the field from the Target Table table that
contains the object of the collection.

Configuring Direct Value Field

42-4 Oracle TopLink Developer’s Guide

Configuring a Relational Aggregate Object Mapping 43-1

43
Configuring a Relational Aggregate Object

Mapping

This chapter describes the various components that you must configure in order to use
a relational aggregate object mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Aggregate Object Mapping" on page 33-12

Relational Aggregate Object Mapping Configuration Overview
Table 43–1 lists the configurable options for a relational aggregate object mapping.

Configuring Aggregate Fields
When you designate a descriptor as an aggregate, TopLink allows you to specify a
mapping type for each field in the target class, but defers associating the field with a
database table until you configure the aggregate object mapping in the source class
descriptor. In other words, the target class descriptor defines how each target class
field is mapped but the source class descriptor defines where each target class field is
mapped.

Note: You configure the relational aggregate object mapping in the
source object’s descriptor. However, before doing so, you must
designate the target object’s descriptor as an aggregate (see
"Configuring a Relational Descriptor as a Class or Aggregate Type" on
page 26-11).

Table 43–1 Configurable Options for Relational Aggregate Object Mapping

Option Type
TopLink
Workbench Java

"Configuring Reference Descriptor" on page 34-5 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Allowing Null Values" on page 43-2 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring Aggregate Fields" on page 43-1 Basic

Configuring Allowing Null Values

43-2 Oracle TopLink Developer’s Guide

This section explains how to configure the source class descriptor to define where each
target class field is mapped.

For more information on how to configure the target class descriptor to define how
each target class field is mapped, see "Configuring a Relational Descriptor as a Class or
Aggregate Type" on page 26-11.

Using TopLink Workbench
To specify the mapped fields of an aggregate mapping, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the Fields tab. The Fields tab appears.

Figure 43–1 Fields Tab

3.

Use the following information to complete each field on the tab:

Configuring Allowing Null Values
If all the fields in the database row for the aggregate object are null, then, by default,
TopLink places null in the appropriate source object, as opposed to filling an
aggregate object with null values.

Using TopLink Workbench
To allow a mapping to contain a null value, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Field Description

Field Description This column shows the name of the fields from the target
object, whose descriptor is designated as an aggregate (see
"Configuring a Relational Descriptor as a Class or Aggregate
Type" on page 26-11). These are for display only and cannot
be changed.

Fields Use this column to select the source object database table
field that TopLink will map to the corresponding target
object field.

Configuring Allowing Null Values

Configuring a Relational Aggregate Object Mapping 43-3

Figure 43–2 General Tab, Allow Null Option

Select the Allows Null option to allow this mapping to contain a null value.

Configuring Allowing Null Values

43-4 Oracle TopLink Developer’s Guide

Configuring a Relational Direct Map Mapping 44-1

44
Configuring a Relational Direct Map Mapping

This chapter describes the various components that you must configure in order to use
a relational direct map mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Direct Map Mapping" on page 33-12

Relational Direct Map Mapping Configuration Overview
Table 44–1 lists the configurable options for a relational direct map mapping.

Configuring Direct Value Field
The direct value field in the reference table stores the primitive data value of the map
value. If the value’s object value and database value are different types, use a
converter (see "Configuring Value Converters" on page 44-3).

Using TopLink Workbench
1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

Table 44–1 Configurable Options for Relational Direct Map Mapping

Option Type
TopLink
Workbench Java

"Configuring Target Table" on page 42-1 Basic

"Configuring Direct Value Field" on page 44-1 Basic

"Configuring Direct Key Field" on page 44-2 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Batch Reading" on page 34-6 Advanced

"Configuring Indirection" on page 32-3 Advanced

"Configuring Container Policy" on page 32-26 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring Key Converters" on page 44-3 Advanced

"Configuring Value Converters" on page 44-4 Advanced

"Configuring Table and Field References (Foreign and
Target Foreign Keys)" on page 34-8

Basic

Configuring Direct Key Field

44-2 Oracle TopLink Developer’s Guide

2. Click the General tab. The General tab appears.

Figure 44–1 General Tab, Direct Value Field

Use the Direct Value Field list to select the field from the Target Table table that
contains the object of the direct map mapping.

Configuring Direct Key Field
The direct key field in the reference table stores the primitive data value of the map
key. If the key’s object value and database value are different types, use a converter
(see "Configuring Key Converters" on page 44-3).

Using TopLink Workbench
To specify the direct key field in the reference table, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Configuring Key Converters

Configuring a Relational Direct Map Mapping 44-3

Figure 44–2 General Tab, Direct Key Field

Use the Direct Key Field list to select the key from the Target Table table that contains
the object of the direct map mapping.

Configuring Key Converters
If the key’s object value and database value are different types, use a converter.
TopLink supports the following key converters:

■ see "Serialized Object Converter" on page 30-10

■ see "Type Conversion Converter" on page 30-11

■ see "Object Type Converter" on page 30-12

Using TopLink Workbench
Use this procedure to specify the converter for a direct map mapping key:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the Converter tab. The Converter tab appears.

3. Click the Key Converter tab. The Key Converter tab appears.

Configuring Value Converters

44-4 Oracle TopLink Developer’s Guide

Figure 44–3 Converter Tab, Key Converter Subtab

Configuring Value Converters
If the value’s object value and database value are different types, use a converter.
TopLink supports the following value converters:

■ "Serialized Object Converter" on page 30-10

■ "Type Conversion Converter" on page 30-11

■ "Object Type Converter" on page 30-12

Using TopLink Workbench
1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the Converter tab. The Converter tab appears.

3. Click the Value Converter tab. The Value Converter tab appears.

Converter Description

No Converter Do not use a Key Converter for this mapping.

Serialized Object Converter See "Configuring a Serialized Object Converter" on
page 32-18.

Type Conversion Converter See "Configuring a Type Conversion Converter" on
page 32-20.

Object Type Converter See "Configuring an Object Type Converter" on
page 32-22.

Configuring Value Converters

Configuring a Relational Direct Map Mapping 44-5

Figure 44–4 Converter Tab, Value Converter Subtab

Converter Description

No Converter Do not use a Value Converter for this mapping.

Serialized Object Converter See "Configuring a Serialized Object Converter" on
page 32-18.

Type Conversion Converter See "Configuring a Type Conversion Converter" on
page 32-20.

Object Type Converter See "Configuring an Object Type Converter" on
page 32-22.

Configuring Value Converters

44-6 Oracle TopLink Developer’s Guide

Configuring a Relational Transformation Mapping 45-1

45
Configuring a Relational Transformation

Mapping

This chapter describes the various components that you must configure in order to use
a relational transformation mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Transformation Mapping" on page 33-15

Relational Transformation Mapping Configuration Overview
Table 45–1 lists the configurable options for a relational transformation mapping.

Table 45–1 Configurable Options for Relational Transformation Mapping

Option Type
TopLink
Workbench Java

"Configuring Attribute Transformer" on page 32-29 Basic

"Configuring Field Transformer Associations" on page 32-31 Basic

"Configuring Indirection" on page 32-3 Advanced

"Configuring Mutable Mappings" on page 32-33 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

Relational Transformation Mapping Configuration Overview

45-2 Oracle TopLink Developer’s Guide

Part XI
Object-Relational Mappings

An object-relational mapping transforms certain object data member types to
structured data source representations optimized for storage in specialized
object-relational databases (such as Oracle Database). Object-relational mappings let
you map an object model into an object-relational data model.

This part contains the following chapters:

■ Chapter 46, "Understanding Object-Relational Mappings"

This chapter describes each of the different TopLink object-relational mapping
types and important object-relational mapping concepts.

■ Chapter 47, "Configuring an Object-Relational Mapping"

This chapter explains how to configure TopLink object-relational mapping options
common to two or more object-relational mapping types.

■ Chapter 49, "Configuring an Object-Relational Reference Mapping"

This chapter explains how to configure a reference object-relational mapping.

■ Chapter 52, "Configuring an Object-Relational Nested Table Mapping"

This chapter explains how to configure a nested table object-relational mapping.

■ Chapter 51, "Configuring an Object-Relational Object Array Mapping"

This chapter explains how to configure an object array object-relational mapping.

■ Chapter 48, "Configuring an Object-Relational Structure Mapping"

This chapter explains how to configure a structure object-relational mapping.

■ Chapter 50, "Configuring an Object-Relational Array Mapping"

This chapter explains how to configure an array object-relational mapping.

Understanding Object-Relational Mappings 46-1

46
Understanding Object-Relational Mappings

An object-relational mapping transforms certain object data member types to
structured data source representations optimized for storage in specialized
object-relational databases (such as Oracle Database). Object-relational mappings let
you map an object model into an object-relational data model.

Do not confuse object-relational mappings with relational mappings (see
"Understanding Relational Mappings" on page 33-1). A relational mapping transforms
any object data member type to a corresponding relational database (SQL) data source
representation in any supported relational database. Relational mappings let you map
an object model into a relational data model. In general, you can use relational
mappings with any supported relational database. You can only use object-relational
mappings with specialized object-relational databases optimized to support
object-relational data source representations.

This chapter describes:

■ Object-Relational Mapping Types

Object-Relational Mapping Types
TopLink supports the object-relational mappings listed in Table 46–1.

These mappings allow for an object model to persist in an object-relational data model.
Currently, TopLink Workbench does not support object-relational mappings–they
must be defined in code or through amendment methods.

Table 46–1 TopLink Object-Relationship Mapping Types

Type Description Type
TopLink
Workbench Java

"Object-Relational Structure Mapping"
on page 46-2

Map to object-relational aggregate structures
(the Struct type in JDBC and the OBJECT
type in Oracle Databasei)

Advanced

"Object-Relational Reference
Mapping" on page 46-2

Map to object-relational references (the Ref
type in JDBC and the REF type in Oracle
Database)

Advanced

"Object-Relational Array Mapping" on
page 46-2

Map a collection of primitive data to
object-relational array data types (the Array
type in JDBC and the VARRAY type in Oracle
Database).

Advanced

"Object-Relational Object Array
Mapping" on page 46-2

Map to object-relational array data types (the
Array type in JDBC and the VARRAY type in
Oracle Database).

Advanced

"Object-Relational Nested Table
Mapping" on page 46-3

Map to object-relational nested tables (the
Array type in JDBC and the NESTED TABLE
type in Oracle Database)

Advanced

Object-Relational Structure Mapping

46-2 Oracle TopLink Developer’s Guide

Object-Relational Structure Mapping
In an object-relational data model, structures are user-defined data types or object
types. This is similar to a Java class–it defines attributes or fields in which each
attribute is one of the following:

■ A primitive data type

■ Another structure

■ Reference to another structure

TopLink maps nested structures with the StructureMapping class. The structure
mapping supports null values and shared aggregates without requiring additional
settings (because of the object-relational support of the database).

See "Configuring an Object-Relational Structure Mapping" on page 48-1 for more
information.

Object-Relational Reference Mapping
In an object-relational data model, structures reference each other through refs–not
through foreign keys (as in a traditional data model). Refs are based on the target
structure’s ObjectID. They represent an object reference in Java.

TopLink maps refs with the ReferenceMapping class. The reference mapping does
not require foreign key information (because of the object-relational support of the
database).

See "Configuring an Object-Relational Reference Mapping" on page 49-1 for more
information.

Object-Relational Array Mapping
In an object-relational data model, structures can contain arrays (collections of other
data types). These arrays can contain primitive data types or collections of other
structures.

TopLink maps arrays of primitive data types with the ArrayMapping class. An array
mapping maps to object-relational array data types (the Array type in JDBC and the
VARRAY type in Oracle Database). To map a collection of aggregate structures, use an
object array mapping (see "Object-Relational Object Array Mapping" on page 46-2).

The object-relational database stores the arrays with their parent structure in the same
table. To store information in a separate table from the parent structure’s table, use a
nested table mapping (see "Object-Relational Nested Table Mapping" on page 46-3).

All elements in the array must be the same data type. The number of elements in an
array controls the size of the array. An Oracle Database allows arrays of variable sizes
(the VARRAY type).

See "Configuring an Object-Relational Array Mapping" on page 50-1 for more
information.

Object-Relational Object Array Mapping
In an object-relational data model, structures can contain arrays (collections of other
data types). These arrays can contain primitive data types or collections of other
structures.

Object-Relational Nested Table Mapping

Understanding Object-Relational Mappings 46-3

TopLink maps arrays of structures with the ObjectArrayMapping class. An object
array mapping defines a collection-aggregated relationship, in which the target objects
share the same row as the source object.

You must associate this mapping to an attribute in the parent class.

See "Configuring an Object-Relational Object Array Mapping" on page 51-1 for more
information.

Object-Relational Nested Table Mapping
Nested table types model an unordered set of elements. These elements may be
built-in or user-defined types. You can view a nested table as a single-column table or,
if the nested table is an object type, as a multicolumn table (with a column for each
attribute of the object type).

TopLink maps nested tables with the NestedTableMapping class. It represents a
collection of object references in Java. Because of the object-relational support of the
database, nested table mapping does not require foreign key information (as with a
one-to-many mapping) or a relational table (as with a many-to-many mapping).

Typically, nested tables represent a one-to-many or many-to-many relationship of
references to another independent structure. They support querying and joining better
than the VARRAY types that are in-lined to the parent table. TopLink supports
mapping a nested table of REF types only. TopLink does not support nested tables of
basic or other structured data types–use array (see "Object-Relational Array Mapping"
on page 46-2) or object array (see "Object-Relational Object Array Mapping" on
page 46-2) mappings instead.

See "Configuring an Object-Relational Nested Table Mapping" on page 52-1 for more
information.

Object-Relational Nested Table Mapping

46-4 Oracle TopLink Developer’s Guide

Configuring an Object-Relational Mapping 47-1

47
Configuring an Object-Relational Mapping

This chapter describes how to configure an object-relational mapping.

Table 47–1 lists the types of object-relational mappings that you can configure and
provides a cross-reference to the type-specific chapter that lists the configurable
options supported by that type.

Table 47–2 lists the configurable options shared by two or more object-relational
mapping types.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Understanding Object-Relational Mappings" on page 46-1

Configuring Common Object-Relational Mapping Options
Table 47–2 lists the configurable options shared by two or more object-relational
mapping types. In addition to the configurable options described here, you must also
configure the options described for the specific Object-Relational Mapping Types, as
shown in Table 47–1.

Table 47–1 Configuring Object-Relational Mappings

If you are creating... See Also...

Object-Relational Structure
Mapping

Chapter 48, "Configuring an Object-Relational Structure Mapping"

Object-Relational Reference
Mapping

Chapter 49, "Configuring an Object-Relational Reference Mapping"

Object-Relational Array
Mapping

Chapter 50, "Configuring an Object-Relational Array Mapping"

Object-Relational Object Array
Mapping

Chapter 51, "Configuring an Object-Relational Object Array Mapping"

Object-Relational Nested Table
Mapping

Chapter 52, "Configuring an Object-Relational Nested Table Mapping"

Table 47–2 Common Options for Object-Relational Mappings

Option Type
TopLink
Workbench Java

"Configuring Reference Class" on page 47-2 Basic

"Configuring Attribute Name" on page 47-2 Basic

"Configuring Field Name" on page 47-3 Basic

Configuring Reference Class

47-2 Oracle TopLink Developer’s Guide

Configuring Reference Class
When mapping an attribute that involves a relationship to another class, you must
specify the reference class–the Java class to which the mapped attribute refers.

Table 47–3 summarizes which object-relational mappings support this option.

Using Java
Use oracle.toplink.mappings.ForeignReferenceMapping method
setReferenceClass to specify the target class of the attribute being mapped.

Example 47–1 shows how to use this method with a ReferenceMapping that maps
the manager attribute of the Employee class.

Example 47–1 Configuring Reference Class in Java

ReferenceMapping managerMapping = new new ReferenceMapping();
managerMapping.setReferenceClass("Employee.class");
managerMapping.setAttributeName("manager");

Configuring Attribute Name
All object-relational mappings map an attribute in a Java object to field in the database.
The attribute name is the name of the attribute being mapped. The name is as specified
in the reference class (see "Configuring Reference Class" on page 47-2).

Table 47–4 summarizes which object-relational mappings support this option.

"Configuring Structure Name" on page 47-4 Basic

"Configuring Read-Only Mappings" on page 32-2 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Indirection" on page 32-3 Advanced

"Configuring Container Policy" on page 32-26 Advanced

Table 47–3 Mapping Support for Reference Class

Mapping
Using TopLink
Workbench Using Java

Object-Relational Structure Mapping

Object-Relational Reference Mapping

Object-Relational Array Mapping

Object-Relational Object Array Mapping

Object-Relational Nested Table Mapping

Table 47–4 Mapping Support for Attribute Name

Mapping
Using TopLink
Workbench Using Java

Object-Relational Structure Mapping

Table 47–2 (Cont.) Common Options for Object-Relational Mappings

Option Type
TopLink
Workbench Java

Configuring Field Name

Configuring an Object-Relational Mapping 47-3

Using Java
Use oracle.toplink.mappings.DatabaseMapping method
setAttributeName to specify the name of the attribute being mapped.

Example 47–2 shows how to use this method with a ReferenceMapping that maps
the manager attribute of the Employee class.

Example 47–2 Configuring Attribute Name in Java

ReferenceMapping managerMapping = new new ReferenceMapping();
managerMapping.setReferenceClass("Employee.class");
managerMapping.setAttributeName("manager");

Configuring Field Name
All object-relational mappings require the name of database field to which their
specified attribute is mapped. This field name can be the column name of a database
table or the name of a field in an object type created on the database.

Table 47–5 summarizes which object-relational mappings support this option.

Using Java
Use the object-relational mapping method setFieldName to specify the database
field to which the attribute is mapped.

Example 47–3 shows how to use this method with an ObjectArrayMapping that
maps the Employee class attribute phone to database field name PHONE_NUMBER.

Example 47–3 Configuring Field Name in Java

ObjectArrayMapping phonesMapping = new ObjectArrayMapping();
managerMapping.setReferenceClass("Employee.class");
phonesMapping.setAttributeName("phone");
phonesMapping.setFieldName("PHONE_NUMBER");

Object-Relational Reference Mapping

Object-Relational Array Mapping

Object-Relational Object Array Mapping

Object-Relational Nested Table Mapping

Table 47–5 Mapping Support for Field Name

Mapping
Using TopLink
Workbench Using Java

Object-Relational Structure Mapping

Object-Relational Reference Mapping

Object-Relational Array Mapping

Object-Relational Object Array Mapping

Object-Relational Nested Table Mapping

Table 47–4 (Cont.) Mapping Support for Attribute Name

Mapping
Using TopLink
Workbench Using Java

Configuring Structure Name

47-4 Oracle TopLink Developer’s Guide

Configuring Structure Name
Certain object-relational mappings require the specification of the data type or
structure name of the field being mapped. The structure name is the name of the array
or table type that defines the field.

Table 47–6 summarizes which object-relational mappings support this option.

Using Java
Use the object-relational mapping method setStructureName to specify the
structure of the attribute being mapped.

Example 47–4 shows how to use this method with an ObjectArrayMapping that
maps the Employee class attribute phones to database field name PHONE_
NUMBERS of type PHONE_ARRAY_TYPE.

Example 47–4 Configuring Structure Name in Java

ObjectArrayMapping phonesMapping = new ObjectArrayMapping();
managerMapping.setReferenceClass("Employee.class");
phonesMapping.setAttributeName("phones");
phonesMapping.setFieldName("PHONE_NUMBERS");
phonesMapping.setStructureName("PHONE_ARRAY_TYPE");

Table 47–6 Mapping Support for Structure Name

Mapping
Using TopLink
Workbench Using Java

Object-Relational Structure Mapping

Object-Relational Reference Mapping

Object-Relational Array Mapping

Object-Relational Object Array Mapping

Object-Relational Nested Table Mapping

Configuring an Object-Relational Structure Mapping 48-1

48
Configuring an Object-Relational Structure

Mapping

This chapter describes the various components that you must configure in order to use
an object-relational structure mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Object-Relational Structure Mapping" on page 46-2

Object-Relational Structure Mapping Configuration Overview
Table 48–1 lists the configurable options for an object-relational structure mapping.

Table 48–1 Configurable Options for Object-Relational Structure Mapping

Option Type
TopLink
Workbench Java

"Configuring Reference Class" on page 47-2 Basic

"Configuring Attribute Name" on page 47-2 Basic

"Configuring Field Name" on page 47-3 Basic

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Method Accessing" on page 32-14 Advanced

Object-Relational Structure Mapping Configuration Overview

48-2 Oracle TopLink Developer’s Guide

Configuring an Object-Relational Reference Mapping 49-1

49
Configuring an Object-Relational Reference

Mapping

This chapter describes the various components that you must configure in order to use
an object-relational reference mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Object-Relational Reference Mapping" on page 46-2

Object-Relational Reference Mapping Configuration Overview
Table 49–1 lists the configurable options for an object-relational reference mapping.

Table 49–1 Configurable Options for Object-Relational Reference Mapping

Option Type
TopLink
Workbench Java

"Configuring Reference Class" on page 47-2 Basic

"Configuring Attribute Name" on page 47-2 Basic

"Configuring Field Name" on page 47-3 Basic

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Private or Independent Relationships" on
page 32-16

Advanced

"Configuring Indirection" on page 32-3 Advanced

Object-Relational Reference Mapping Configuration Overview

49-2 Oracle TopLink Developer’s Guide

Configuring an Object-Relational Array Mapping 50-1

50
Configuring an Object-Relational Array

Mapping

This chapter describes the various components that you must configure in order to use
an object-relational array mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Object-Relational Array Mapping" on page 46-2

Object-Relational Array Mapping Configuration Overview
Table 50–1 lists the configurable options for an object-relational array mapping.

Note: To map a collection of aggregate structures, use an
object-relational object array mapping (see "Object-Relational Object
Array Mapping" on page 46-2). To store information in a separate
table from the parent structure’s table, use an object-relational nested
table mapping (see "Object-Relational Nested Table Mapping" on
page 46-3).

Table 50–1 Configurable Options for Object-Relational Array Mapping

Option Type
TopLink
Workbench Java

"Configuring Attribute Name" on page 47-2 Basic

"Configuring Field Name" on page 47-3 Basic

"Configuring Structure Name" on page 47-4 Basic

"Configuring Read-Only Mappings" on page 32-2 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring a Serialized Object Converter" on page 32-18 Advanced

"Configuring a Type Conversion Converter" on page 32-20 Advanced

"Configuring an Object Type Converter" on page 32-22 Advanced

"Configuring Container Policy" on page 32-26 Advanced

Object-Relational Array Mapping Configuration Overview

50-2 Oracle TopLink Developer’s Guide

Configuring an Object-Relational Object Array Mapping 51-1

51
Configuring an Object-Relational Object

Array Mapping

This chapter describes the various components that you must configure in order to use
an object-relational object array mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Object-Relational Object Array Mapping" on page 46-2

Object-Relational Object Array Mapping Configuration Overview
Table 51–1 lists the configurable options for an object-relational object array mapping.

Table 51–1 Configurable Options for Object-Relational Object Array Mapping

Option Type
TopLink
Workbench Java

"Configuring Reference Class" on page 47-2 Basic

"Configuring Attribute Name" on page 47-2 Basic

"Configuring Field Name" on page 47-3 Basic

"Configuring Structure Name" on page 47-4 Basic

"Configuring Read-Only Mappings" on page 32-2 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Container Policy" on page 32-26 Advanced

Object-Relational Object Array Mapping Configuration Overview

51-2 Oracle TopLink Developer’s Guide

Configuring an Object-Relational Nested Table Mapping 52-1

52
Configuring an Object-Relational Nested

Table Mapping

This chapter describes the various components that you must configure in order to use
an object-relational nested table mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Object-Relational Nested Table Mapping" on page 46-3

Object-Relational Nested Table Mapping Configuration Overview
Table 52–1 lists the configurable options for an object-relational nested table mapping.

Note: For an equivalent mapping for basic or other structured data
types, use object-relational array (see "Object-Relational Array
Mapping" on page 46-2) or object array (see "Object-Relational Object
Array Mapping" on page 46-2) mappings.

Table 52–1 Configurable Options for Object-Relational Nested Table Mapping

Option Type
TopLink
Workbench Java

"Configuring Reference Class" on page 47-2 Basic

"Configuring Attribute Name" on page 47-2 Basic

"Configuring Field Name" on page 47-3 Basic

"Configuring Structure Name" on page 47-4 Basic

"Configuring Read-Only Mappings" on page 32-2 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Indirection" on page 32-3 Advanced

"Configuring Indirection" on page 32-3 Advanced

Object-Relational Nested Table Mapping Configuration Overview

52-2 Oracle TopLink Developer’s Guide

Part XII
 EIS Mappings

TopLink enterprise information system (EIS) mappings provide support for accessing
legacy data sources and enterprise applications through J2EE Connector architecture
(J2C) adapter. TopLink EIS mappings use the J2C Common Client Interface (CCI) to
access the EIS through its resource adapter. This provides the ability to directly map
from an existing Java object model to any transactional data source, such as
mainframes with flat file/hierarchical data. An EIS mapping transforms object data
members to the EIS record format defined by the object’s descriptor.

This part contains the following chapters:

■ Chapter 53, "Understanding EIS Mappings"

This chapter describes each of the different TopLink EIS mapping types and
important EIS mapping concepts.

■ Chapter 54, "Configuring an EIS Mapping"

This chapter explains how to configure TopLink EIS mapping options common to
two or more EIS mapping types.

■ Chapter 55, "Configuring an EIS Direct Mapping"

This chapter explains how to configure a direct EIS mapping.

■ Chapter 56, "Configuring an EIS Composite Direct Collection Mapping"

This chapter explains how to configure a direct collection EIS mapping.

■ Chapter 57, "Configuring an EIS Composite Object Mapping"

This chapter explains how to configure a composite object EIS mapping.

■ Chapter 58, "Configuring an EIS Composite Collection Mapping"

This chapter explains how to configure a composite collection EIS mapping.

■ Chapter 61, "Configuring an EIS Transformation Mapping"

This chapter explains how to configure a transformation EIS mapping.

■ Chapter 59, "Configuring an EIS One-to-One Mapping"

This chapter explains how to configure a one-to-one EIS mapping.

■ Chapter 60, "Configuring an EIS One-to-Many Mapping"

This chapter explains how to configure a one-to-many EIS mapping.

Understanding EIS Mappings 53-1

53
Understanding EIS Mappings

TopLink enterprise information system (EIS) mappings provide support for accessing
legacy data sources and enterprise applications through J2EE Connector architecture
(J2C) adapter. TopLink EIS mappings use the J2C Common Client Interface (CCI) to
access the EIS through its resource adapter. This provides the ability to directly map
from an existing Java object model to any transactional data source, such as
mainframes with flat file/hierarchical data.

An EIS mapping transforms object data members to the EIS record format defined by
the object’s descriptor.

This chapter describes the following:

■ EIS Mapping Types

■ EIS Mapping Concepts

EIS Mapping Types
TopLink supports the EIS mappings listed in Table 53–1.

Table 53–1 TopLink Object EIS Mapping Types

Mapping Type Description Type
TopLink
Workbench Java

"EIS Direct Mapping" on page 53-5 Map a simple object attribute directly to
an EIS record.

Basic

"EIS Composite Direct Collection Mapping"
on page 53-6

Map a collection of Java attributes
directly to an EIS record.

Basic

"EIS Composite Object Mapping" on
page 53-7

Map a Java object to an EIS record in a
privately owned one-to-one relationship.
Composite object mappings represent a
relationship between two classes.

Advanced

"EIS Composite Collection Mapping" on
page 53-7

Map a Map or Collection of Java
objects to an EIS record in a privately
owned one-to-many relationship.

Advanced

EIS Mapping Concepts

53-2 Oracle TopLink Developer’s Guide

EIS Mapping Concepts
This section describes concepts unique to TopLink EIS mappings, including the
following:

■ EIS Record Type

■ XPath Support

■ xsd:list and xsd:union Support

■ jaxb:class Support

■ Typesafe Enumeration Support

■ Composite and Reference EIS Mappings

■ EIS Mapping Architecture

EIS Record Type
TopLink supports the following J2C EIS record types:

■ Indexed Records

■ Mapped Records

■ XML Records

You configure the record type at the EIS descriptor level (see "Configuring Record
Format" on page 28-5). EIS mappings use the record type of their EIS descriptor to
determine how to map Java attributes. That is, you use the same EIS mapping
regardless of the record type, with which you configure an EIS descriptor.

Indexed Records
The javax.resource.cci.IndexedRecord represents an ordered collection of
record elements based on the java.util.List interface.

The TopLink runtime maps Java objects to indexed record elements or subrecords of
an indexed record depending on the type of EIS mapping you use (see "Composite and
Reference EIS Mappings" on page 53-4).

"EIS One-to-One Mapping" on page 53-8 Define a reference mapping that
represents the relationship between a
single source object and a single mapped
persistent Java object.

Basic

"EIS One-to-Many Mapping" on page 53-12 Define a reference mapping that
represents the relationship between a
single source object and a collection of
mapped persistent Java objects.

Basic

"EIS Transformation Mapping" on
page 53-17

Create custom mappings where one or
more EIS record fields can be used to
create the object to be stored in a Java
class’s attribute.

Advanced

Note: Not all J2C adapters support all record types. Consult your
J2C adapter documentation for details.

Table 53–1 (Cont.) TopLink Object EIS Mapping Types

Mapping Type Description Type
TopLink
Workbench Java

EIS Mapping Concepts

Understanding EIS Mappings 53-3

Mapped Records
The javax.resource.cci.MappedRecord represents a key-value map-based
collection of record elements based on the java.util.Map interface.

The TopLink runtime maps Java objects to mapped record elements or subrecords of a
mapped record depending on the type of EIS mapping you use (see "Composite and
Reference EIS Mappings" on page 53-4).

XML Records
An XML record represents a javax.resource.cci.Record as an XML schema
(XSD)-based XML document. Not all J2C adapters support XML records.

The TopLink runtime maps Java objects to XML documents according to your XSD
and the behavior defined for XML mappings.

For more information, see "Understanding XML Mappings" on page 62-1.

XPath Support
When using XML records, TopLink EIS mappings use XPath statements to efficiently
map the attributes of a Java object to locations in an XML record. For more information
about using XPath with XML mappings, see "Mappings and XPath" on page 30-15.

xsd:list and xsd:union Support
When using XML records, you can use EIS direct (see "EIS Direct Mapping") and
composite direct collection (see "EIS Composite Direct Collection Mapping") mappings
to map to xsd:list and xsd:union types in an XML record.

For more information, see "Mappings and xsd:list and xsd:union Types" on page 30-17.

jaxb:class Support
When using XML records, you can configure an EIS composite object mapping (see
"EIS Composite Object Mapping" on page 53-7) to accommodate jaxb:class
customizations with the following XSD structures:

■ all

■ sequence

■ choice

■ group

For more information, see "Mappings and the jaxb:class Customization" on page 30-20.

Typesafe Enumeration Support
You can map a Java attribute to a typesafe enumeration using the
JAXBTypesafeEnumConverter with an EISDirectMapping or
EISCompositeDirectCollectionMapping with XML records.

For more information, see "Mappings and JAXB Typesafe Enumerations" on
page 30-24.

EIS Mapping Concepts

53-4 Oracle TopLink Developer’s Guide

Composite and Reference EIS Mappings
TopLink supports composite and reference EIS mappings. Although there is a source
and target object in both mapping types, the TopLink runtime handles interactions
with each differently. This section explains how.

Composite EIS Mappings
In a composite EIS mapping ("EIS Composite Direct Collection Mapping", "EIS
Composite Object Mapping", and "EIS Composite Collection Mapping"), the source
object contains (owns) the target object.

TopLink puts the attributes of the target (owned) object (or the owned collection of
objects) into the source (owning) object’s record as a subrecord. The target object needs
not be a root object type (see "Configuring an EIS Descriptor as a Root or Composite
Type" on page 28-8): it needs not have interactions defined for it.

Figure 53–1 illustrates a read interaction on an instance of the Customer class using
indexed records. For the composite object EIS mapping defined for the address
attribute, TopLink creates an Address subrecord in the Customer record.

Figure 53–1 EIS Composite Mappings

Reference EIS Mappings
In a reference EIS mapping ("EIS One-to-One Mapping" and "EIS One-to-Many
Mapping"), the source object contains only a foreign key (pointer) to the target object
or, alternatively, the target object contains a foreign key to the source object (key on
target).

TopLink puts the foreign key of the target object into the source object’s record as a
simple value. When an interaction is executed on the source object, TopLink uses the
selection interaction that you define on its descriptor to retrieve the appropriate target
object instance and creates a record for it in the source object’s transaction. By default,
the selection interaction is the target object’s read interaction. If the read interaction is
not sufficient, you can define a separate selection interaction (see "Configuring
Selection Interaction" on page 54-3). Because both the source and target object use
interactions, they must both be of a root object type (see "Configuring an EIS
Descriptor as a Root or Composite Type" on page 28-8).

Figure 53–2 illustrates a read interaction on an instance of the Order class using
indexed records. For the one-to-one EIS mapping defined for the customer attribute,
TopLink puts the target Customer object’s foreign key into the Order record as a
simple value. TopLink then uses the selection interaction you configure on the Order
descriptor to retrieve the appropriate instance of Customer and creates a record for it
in the Order object’s transaction.

EIS Direct Mapping

Understanding EIS Mappings 53-5

Figure 53–2 EIS Reference Mappings

EIS Mapping Architecture
Figure 53–3 illustrates the following possible TopLink EIS mapping architectures:

■ JDBC database gateway (such as Oracle Database 10g)

■ JDBC adapter

■ Proprietary adapter (such as Oracle Interconnect)

■ J2C

Figure 53–3 Possible EIS Mapping Architectures

The best solution may vary, depending on your specific EIS and infrastructure.

EIS Direct Mapping
An EIS direct mapping maps a simple object attribute directly to an EIS record
according to its descriptor’s record type as shown in Table 53–2.

EIS Composite Direct Collection Mapping

53-6 Oracle TopLink Developer’s Guide

Figure 53–4 illustrates a direct EIS mapping between Order class attribute
orderedBy and XML record attribute ordered_by within the order element.

Figure 53–4 EIS Direct Mappings

See Chapter 55, "Configuring an EIS Direct Mapping" for more information.

EIS Composite Direct Collection Mapping
An EIS composite direct collection mapping maps a collection of Java attributes
directly to an EIS record according to its descriptor’s record type, as shown in
Table 53–3.

Figure 53–5 illustrates a composite direct collection mapping between Order class
attribute items and an XML record. The Order attribute items is a collection type
(such as Vector). It is mapped to an XML record composed of an order element that
contains a sequence of item elements.

Figure 53–5 EIS Composite Direct Collection Mapping

Table 53–2 EIS Direct Mapping by EIS Record Type

EIS Record Type Mapping Behavior

Indexed Maps directly to a field in the indexed record.

Mapped Maps directly to a field in the mapped record.

XML Maps directly to an attribute or text node in the XML record1.
1 See also "XML Direct Mapping" on page 62-5.

Table 53–3 EIS Composite Direct Collection Mapping by EIS Record Type

EIS Record Type Mapping Behavior

Indexed Maps directly to a subrecord in the indexed record1.

1 See also "Composite EIS Mappings" on page 53-4.

Mapped Maps directly to a subrecord in the mapped record1.

XML Maps directly to an attribute or text node in the XML record2.

2 See also "XML Composite Direct Collection Mapping" on page 62-14.

EIS Composite Collection Mapping

Understanding EIS Mappings 53-7

See Chapter 56, "Configuring an EIS Composite Direct Collection Mapping" for more
information.

EIS Composite Object Mapping
An EIS composite object mapping maps a Java object to a privately owned one-to-one
relationship in an EIS record according to its descriptor’s record type, as shown in
Table 53–4.

Figure 53–6 illustrates a composite object EIS mapping between Order class attribute
address and an XML record. Order attribute address is mapped to an XML record
composed of an order element that contains an address element.

Figure 53–6 EIS Composite Object Mappings

You can use an EIS composite object mapping with a change policy (see "Configuring
Change Policy" on page 25-73.

See Chapter 57, "Configuring an EIS Composite Object Mapping" for more
information.

EIS Composite Collection Mapping
An EIS composite collection mapping maps a collection of Java objects to a privately
owned one-to-many relationship in an EIS record according to its descriptor’s record
type as shown in Table 53–5. Composite collection mappings can reference any class
that has a TopLink descriptor.

Table 53–4 EIS Composite Object Mapping by EIS Record Type

EIS Record Type Mapping Behavior

Indexed Maps directly to a subrecord in the indexed record1.

1 See also "Composite EIS Mappings" on page 53-4.

Mapped Maps directly to a subrecord in the mapped record1.

XML Maps directly to an attribute or text node in the XML record2.

2 See also "XML Composite Object Mapping" on page 62-21.

Table 53–5 EIS Composite Collection Mapping by EIS Record Type

EIS Record Type Mapping Behavior

Indexed Maps directly to a subrecord in the indexed record1.

Mapped Maps directly to a subrecord in the mapped record1.

XML Maps directly to an attribute or text node in the XML record2.

EIS One-to-One Mapping

53-8 Oracle TopLink Developer’s Guide

Figure 53–7 illustrates a composite collection EIS mapping between Phone class
attribute phoneNumbers and an XML record. Employee attribute phoneNumbers is
mapped to an XML record composed of an EMPLOYEE element that contains a
sequence of PHONE_NUMBER elements.

Figure 53–7 EIS Composite Collection Mappings

See Chapter 58, "Configuring an EIS Composite Collection Mapping" for more
information.

EIS One-to-One Mapping
An EIS one-to-one mapping is a reference mapping that represents the relationship
between a single source and target object. The source object usually contains a foreign
key (pointer) to the target object (key on source). Alternatively, the target object may
contain a foreign key to the source object (key on target). Because both the source and
target object use interactions, they must both be of a root object type (see "Configuring
an EIS Descriptor as a Root or Composite Type" on page 28-8)

Table 53–6 summarizes the behavior of this mapping depending on the EIS record type
you are using.

1 See also "Composite EIS Mappings" on page 53-4.
2 See also "XML Composite Collection Mapping" on page 62-25.

Table 53–6 EIS One-to-One Mapping by EIS Record Type

EIS Record Type Mapping Behavior

Indexed A new indexed record is created for the target object1:

■ With the Key on Source use case, the foreign key(s) is added to
the record for the source object.

■ With the Key on Target use case, the foreign key(s) is added to
the record for the target object

Mapped A new mapped record is created for the target object1:

■ With the Key on Source use case, the foreign key(s) is added to
the record for the source object.

■ With the Key on Target use case, the foreign key(s) is added to
the record for the target object

EIS One-to-One Mapping

Understanding EIS Mappings 53-9

This section describes the following:

■ EIS One-to-One Mappings With Key on Source

■ EIS One-to-One Mappings With Key on Target

See Chapter 59, "Configuring an EIS One-to-One Mapping" for more information.

EIS One-to-One Mappings With Key on Source
Figure 53–8 illustrates a EIS one-to-one mapping between the Employee class
attribute project and the Project class using XML records in a key on source
design.

Figure 53–8 EIS One-to-One Mapping with Key on Source

When a read interaction is executed on the Employee object, TopLink puts the target
Project object’s primary key into the Employee record as a simple value. TopLink
then uses the selection interaction you configure on the Employee descriptor to
retrieve the appropriate instance of Project and creates a record for it in the
Employee object’s transaction. In this example, you can designate the Project class’s
read interaction as the selection interaction.

The general procedure for creating and configuring this mapping is as follows:

1. Create a one-to-one EIS mapping on Employee attribute project.

2. Configure the reference descriptor as Project (see "Configuring Reference
Descriptors" on page 54-2).

3. Configure the source and target foreign keys (see "Configuring Foreign Key Pairs"
on page 59-1).

In this example:

XML .A new XML record is created for the target object:

■ With the Key on Source use case, the foreign key(s) is added to
the record for the source object.

■ With the Key on Target use case, the foreign key(s) is added to
the record for the target object

1 See also "Reference EIS Mappings" on page 53-4.

Table 53–6 (Cont.) EIS One-to-One Mapping by EIS Record Type

EIS Record Type Mapping Behavior

EIS One-to-One Mapping

53-10 Oracle TopLink Developer’s Guide

■ Source XML Field: @project-id

■ Target XML Field: @id

4. Configure the selection interaction (see "Configuring Selection Interaction" on
page 54-3).

In this example, you can designate the Project class’s read interaction as the
selection interaction.

Given the XSD shown in Example 53–1, you can configure an EIS one-to-one mapping
with key on source, as Example 53–2 shows. In this case, the source object contains a
foreign key reference to the target object. In the following example, the source object is
Employee and the target object is Project. Here, the Employee object has a
Project that is referenced using the project's id.

Example 53–1 XML Schema for EIS One-to-One Mapping with Key on Source

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xsd:element name="employee" type="employee-type"/>
<xsd:element name="project" type="project-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="project">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="project-id" type="xsd:integer"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="project-type">

<xsd:sequence>
<xsd:element name="id" type="xsd:integer"/>
<xsd:element name="leader" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Example 53–2 EIS One-to-One Mapping with Key On Source

// Employee descriptor
EISDescriptor descriptor = new EISDescriptor();
descriptor.setJavaClass(Employee.class);
descriptor.setDataTypeName("employee");
descriptor.setPrimaryKeyFieldName("name/text()");

EISOneToOneMapping projectMapping = new EISOneToOneMapping();
projectMapping.setReferenceClass(Project.class);
projectMapping.setAttributeName("project");
projectMapping.dontUseIndirection();
projectMapping.addForeignKeyFieldName("project/project-id/text()", "id/text()");

EIS One-to-One Mappings With Key on Target
Figure 53–9 illustrates EIS one-to-one mapping between the Employee class attribute
project and the Project class using XML records in a key on target design. You
still configure a one-to-one EIS mapping between Employee and Project, but in this

EIS One-to-One Mapping

Understanding EIS Mappings 53-11

design, the Project attribute leader contains the foreign key of the Employee
object.

Figure 53–9 EIS One-to-One Mapping with Key on Target

When a read interaction is executed on the Employee object, TopLink uses the
selection interaction you configure on the Employee descriptor to retrieve the
appropriate instance of Project and creates a record for it in the Employee object’s
transaction. In this example, the Project class’s read interaction is unlikely to be
sufficient: it is likely implemented to read based on Project attribute Id, not on
leader. If this is the case, you must define a separate selection interaction on the
Employee descriptor that does the following: finds the Project, whose leader
equals X, where X is the value of Employee attribute firstName.

Note that in this configuration, Project attribute leader is not persisted. If you
want this attribute persisted, you must configure a one-to-one EIS mapping from it to
Employee attribute firstName.

The general procedure for creating and configuring this mapping is as follows:

1. Create a one-to-one EIS mapping on Employee attribute project.

2. Configure the reference descriptor as Project (see "Configuring Reference
Descriptors" on page 54-2).

3. Configure the source and target foreign keys (see "Configuring Foreign Key Pairs"
on page 59-1).

In this example:

■ Source XML Field: firstName/text()

■ Target XML Field: leader/text()

4. Configure the selection interaction (see "Configuring Selection Interaction" on
page 54-3).

In this example, you must define a separate selection interaction on the Employee
descriptor.

Given the XSD shown in Example 53–3, you can configure an EIS one-to-one mapping
with key on target, as Example 53–4 shows. In this case, the target object contains a
foreign key reference to the source object. In the following example, the source object is
Employee, and the target object is Project. Here, a Project references its leader
using the employee's name.

EIS One-to-Many Mapping

53-12 Oracle TopLink Developer’s Guide

Example 53–3 XML Schema for EIS One-to-One Mapping with Key on Target

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xsd:element name="employee" type="employee-type"/>
<xsd:element name="project" type="project-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="project">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="project-id" type="xsd:integer"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="project-type">

<xsd:sequence>
<xsd:element name="id" type="xsd:integer"/>
<xsd:element name="leader" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Example 53–4 EIS One-to-One Mapping with Key on Target

// Project descriptor
EISDescriptor descriptor = new EISDescriptor();
descriptor.setJavaClass(Project.class);
descriptor.setDataTypeName("project");
descriptor.setPrimaryKeyFieldName("id/text()");

EISOneToOneMapping leaderMapping = new EISOneToOneMapping();
leaderMapping.setReferenceClass(Employee.class);
leaderMapping.setAttributeName("leader");
leaderMapping.dontUseIndirection();
leaderMapping.addForeignKeyFieldName("leader/text()", "name/text()");

EIS One-to-Many Mapping
An EIS one-to-many mapping is a reference mapping that represents the relationship
between a single source object and a collection of target objects. The source object
usually contains a foreign key (pointer) to the target objects (key on source);
alternatively, the target objects may contain a foreign key to the source object (key on
target). Because both the source and target objects use interactions, they must all be of
a root object type (see "Configuring an EIS Descriptor as a Root or Composite Type" on
page 28-8).

Table 53–7 summarizes the behavior of this mapping depending on the EIS record type
you are using.

EIS One-to-Many Mapping

Understanding EIS Mappings 53-13

This section describes the following:

■ EIS One-to-Many Mappings With Key on Source

■ EIS One-to-Many Mappings With Key on Target

See Chapter 60, "Configuring an EIS One-to-Many Mapping" for more information.

EIS One-to-Many Mappings With Key on Source
Figure 53–10 illustrates an EIS one-to-many mapping between the Employee class
attribute projects and multiple Project class instances using XML records in a key
on source design.

Table 53–7 EIS One-to-Many Mapping by EIS Record Type

EIS Record Type Mapping Behavior

Indexed A new indexed record is created for each target object1:

■ With the Key on Source use case, the foreign key(s) is added to the
record for the source object for each target object.

■ With the Key on Target use case, the foreign key(s) is added to the
record for the target object

1 See also "Reference EIS Mappings" on page 53-4.

Mapped A new mapped record is created for each target object1:

■ With the Key on Source use case, the foreign key(s) is added to the
record for the source object.

■ With the Key on Target use case, the foreign key(s) is added to the
record for the target object

XML .A new XML record is created for each target object:

■ With the Key on Source use case, the foreign key(s) is added to the
record for the source object for each target object.

■ With the Key on Target use case, the foreign key(s) is added to the
record for the target object

EIS One-to-Many Mapping

53-14 Oracle TopLink Developer’s Guide

Figure 53–10 EIS One-to-Many Mapping with Key on Source

When a read interaction is executed on the Employee object, TopLink puts each target
Project object’s foreign key into the Employee record as a subelement. If you
specify only one pair of source and target XML fields, by default, the foreign keys are
not grouped in the Employee record. If you specify more than one pair of source and
target XML fields, you must choose a grouping element (see "Configuring Reference
Descriptors" on page 54-2). Figure 53–10 shows an Employee record with grouping
element Project. TopLink then uses the selection interaction you configure on the
Employee descriptor to retrieve the appropriate instances of Project and creates a
record for each in the Employee object’s transaction. In this example, you can
designate the Project class’s read interaction as the selection interaction.

The general procedure for creating and configuring this mapping is as follows:

1. Create a one-to-many EIS mapping on Employee attribute project.

2. Configure the reference descriptor as Project (see "Configuring Reference
Descriptors" on page 54-2).

3. Configure the source and target foreign keys (see "Configuring Foreign Key Pairs"
on page 60-1).

In this example:

■ Source XML Field: PROJECT

■ Target XML Field: @ID

4. Configure the selection interaction (see "Configuring Selection Interaction" on
page 54-3).

In this example, you can designate the Project class’s read interaction as the
selection interaction.

Given the XSD shown in Example 53–3, you can configure an EIS one-to-many
mapping with key on source, as Example 53–4 shows. In this case, the source object
contains a foreign key reference to the target object. In the following example, the

EIS One-to-Many Mapping

Understanding EIS Mappings 53-15

source object is Employee, and the target object is Project. Here, the Employee
object has one or more Project instances that are referenced by Project id.

Example 53–5 XML Schema for EIS One-to-Many Mapping with Key on Source

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xsd:element name="employee" type="employee-type"/>
<xsd:element name="project" type="project-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="projects">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="project-id"
type="xsd:integer" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="project-type">

<xsd:sequence>
<xsd:element name="id" type="xsd:integer"/>
<xsd:element name="leader" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Example 53–6 EIS One-to-Many Mapping with Key on Source

// Employee descriptor
EISDescriptor descriptor = new EISDescriptor();
descriptor.setJavaClass(Employee.class);
descriptor.setDataTypeName("employee");
descriptor.setPrimaryKeyFieldName("name/text()");

EISOneToManyMapping projectMapping = new EISOneToManyMapping();
projectMapping.setReferenceClass(Project.class);
projectMapping.setAttributeName("projects");
projectMapping.setForeignKeyGroupingElement("projects");
projectMapping.setIsForeignKeyRelationship(true);
projectMapping.dontUseIndirection();
projectMapping.addForeignKeyFieldName("project-id/text()", "id/text()");

EIS One-to-Many Mappings With Key on Target
Figure 53–9 illustrates an EIS one-to-many mapping between the Employee class
attribute projects and multiple Project class instances using XML records in a key
on target design. You still configure a one-to-one EIS mapping between Employee
and Project but in this design, the Project attribute leader contains the foreign
key of the Employee object.

EIS One-to-Many Mapping

53-16 Oracle TopLink Developer’s Guide

Figure 53–11 EIS One-to-Many Mapping with Key on Target

When a read interaction is executed on the Employee object, TopLink uses the
selection interaction you configure on the Employee descriptor to retrieve the
appropriate instances of Project and creates a record for each in the Employee
object’s transaction. In this example, the Project class’s read interaction is unlikely to
be sufficient: it is likely implemented to read based on Project attribute Id, not on
leader. If this is the case, you must define a separate selection interaction on the
Employee descriptor that does the following: finds the Project, whose leader
equals X, where X is "Jane".

Note that in this configuration, Project attribute leader is not persisted. If you
want this attribute persisted, you must configure a one-to-one EIS mapping from it to
Employee attribute firstName.

The general procedure for creating and configuring this mapping is as follows:

1. Create a one-to-one EIS mapping on Employee attribute project.

2. Configure the reference descriptor as Project (see "Configuring Reference
Descriptors" on page 54-2).

3. Configure the source and target foreign keys (see "Configuring Foreign Key Pairs"
on page 59-1).

In this example, you select Foreign Keys Located On Source and specify one pair
of source and target XML fields:

■ Source XML Field:

■ Target XML Field:

4. Configure the selection interaction (see "Configuring Selection Interaction" on
page 54-3).

In this example, you must define a separate selection interaction on the Employee
descriptor.

Given the XSD shown in Example 53–3, you can configure an EIS one-to-many
mapping with key on target as Example 53–4 shows. In this case, the target object
contains a foreign key reference to the source object. In the following example, the

EIS Transformation Mapping

Understanding EIS Mappings 53-17

source object is Employee, and the target object is Project. Here, each Project
references its leader using the employee's name.

Example 53–7 XML Schema for EIS One-to-Many Mapping with Key on Target

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xsd:element name="employee" type="employee-type"/>
<xsd:element name="project" type="project-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="projects">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="project-id"
type="xsd:integer" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="project-type">

<xsd:sequence>
<xsd:element name="id" type="xsd:integer"/>
<xsd:element name="leader" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Example 53–8 EIS One-to-Many Mapping with Key on Target

// Project descriptor
EISDescriptor descriptor = new EISDescriptor();
descriptor.setJavaClass(Project.class);
descriptor.setDataTypeName("project");
descriptor.setPrimaryKeyFieldName("id/text()");

EISOneToManyMapping leaderMapping = new EISOneToOneMapping();
leaderMapping.setReferenceClass(Employee.class);
leaderMapping.setAttributeName("leader");
leaderMapping.dontUseIndirection();
leaderMapping.addForeignKeyFieldName("leader/text()", "name/text()");

EIS Transformation Mapping
A transformation EIS mapping lets you create a custom mapping, where one or more
fields in an EIS record can be used to create the object to be stored in a Java class’s
attribute.

Table 53–8 summarizes the behavior of this mapping depending on the EIS record type
you are using.

Table 53–8 EIS Transformation Mapping by EIS Record Type

EIS Record Type Mapping Behavior

Indexed .The field transformer adds data to the indexed record (you have access to
the indexed record in the attribute transformer).

Mapped .The field transformer adds data to the mapped record (you have access to
the mapped record in the attribute transformer).

EIS Transformation Mapping

53-18 Oracle TopLink Developer’s Guide

As Figure 53–12 illustrates, you configure the transformation mapping with an
oracle.toplink.mappings.transformers.AttributeTransformer instance
to perform the XML instance-to-Java attribute transformation at unmarshall time. In
this example, the AttributeTransformer combines two XML text nodes into a
single Java object.

Figure 53–12 EIS Transformation Mappings

See Chapter 61, "Configuring an EIS Transformation Mapping" for more information.

XML .The field transformer adds data to the XML record (you have access to the
XML record in the attribute transformer).

Table 53–8 (Cont.) EIS Transformation Mapping by EIS Record Type

EIS Record Type Mapping Behavior

Configuring an EIS Mapping 54-1

54
Configuring an EIS Mapping

This chapter describes how to configure an enterprise information service (EIS)
mapping.

Table 54–2 lists the types of EIS mappings that you can configure and provides a
cross-reference to the type-specific chapter that lists the configurable options
supported by that type.

Table 54–2 lists the configurable options shared by two or more EIS mapping types.

Fore more information, see:

■ "Mapping Creation Overview" on page 31-1

■ "Understanding EIS Mappings" on page 53-1

Configuring Common EIS Mapping Options
Table 54–2 lists the configurable options shared by two or more EIS mapping types. In
addition to the configurable options described here, you must also configure the
options described for the specific EIS Mapping Types, as shown in Table 54–1.

Table 54–1 Configuring EIS Mappings

If you are creating... See Also...

EIS Direct Mapping Chapter 55, "Configuring an EIS Direct Mapping"

EIS Composite Direct Collection Mapping Chapter 56, "Configuring an EIS Composite Direct
Collection Mapping"

EIS Composite Object Mapping Chapter 57, "Configuring an EIS Composite
Object Mapping"

EIS Composite Collection Mapping Chapter 58, "Configuring an EIS Composite Collection
Mapping"

EIS One-to-One Mapping Chapter 59, "Configuring an EIS One-to-One Mapping"

EIS One-to-Many Mapping Chapter 60, "Configuring an EIS One-to-Many Mapping"

EIS Transformation Mapping Chapter 61, "Configuring an EIS Transformation
Mapping"

Table 54–2 Common Options for EIS Mapping

Option Type
TopLink
Workbench Java

"Configuring Read-Only Mappings" on page 32-2 Basic

"Configuring Indirection" on page 32-3 Basic

"Configuring XPath" on page 32-10 Basic

Configuring Reference Descriptors

54-2 Oracle TopLink Developer’s Guide

Configuring Reference Descriptors
In EIS mappings that extend
oracle.toplink.mappings.ForeignReferenceMapping or
oracle.toplink.mappings.AggregateMapping class, attributes reference other
TopLink descriptors–not the data source. You can select a descriptor in the current
project, or a descriptor from some other project.

Table 54–3 summarizes which EIS mappings support this option.

Using TopLink Workbench
To specify a reference descriptor for an EIS mapping, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

"Configuring a Default Null Value at the Mapping Level" on
page 32-12

Basic

"Configuring Reference Descriptors" on page 54-2 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Private or Independent Relationships" on
page 32-16

Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring a Serialized Object Converter" on page 32-18 Advanced

"Configuring a Type Conversion Converter" on page 32-20 Advanced

"Configuring an Object Type Converter" on page 32-22 Advanced

"Configuring a Simple Type Translator" on page 32-23 Advanced

"Configuring Container Policy" on page 32-26 Advanced

"Configuring Selection Interaction" on page 54-3 Advanced

"Configuring the Use of a Single Node" on page 32-36 Advanced

"Configuring a JAXB Typesafe Enumeration Converter" on
page 32-25

Advanced

Table 54–3 Mapping Support for Reference Descriptor

Mapping
Using TopLink
Workbench Using Java

EIS Direct Mapping

EIS Composite Direct Collection Mapping

EIS One-to-One Mapping

EIS One-to-Many Mapping

EIS Composite Object Mapping

EIS Composite Collection Mapping

EIS Transformation Mapping

Table 54–2 (Cont.) Common Options for EIS Mapping

Option Type
TopLink
Workbench Java

Configuring Selection Interaction

Configuring an EIS Mapping 54-3

Figure 54–1 General Tab, Reference Descriptor Field

Use the Reference Descriptor field to select the descriptor referenced by this
relationship mapping.

You can specify a reference descriptor that is not in the current TopLink Workbench
project. For example, to create a mapping to an Employee class that does not exist in
the current project, do the following:

1. Add the Employee class to your current project. See "Working With Projects" on
page 18-10.

2. Create the relationship mapping to the Employee descriptor.

3. Deactivate the Employee descriptor. See "Active and Inactive Descriptors" on
page 4-10.

When you generate the deployment XML for your project, the mapping to the
Employee class will be included, but not the Employee class itself.

Configuring Selection Interaction
In EIS mappings that extend
oracle.toplink.mappings.ForeignReferenceMapping class, TopLink uses a
selection interaction to acquire the instance of the target object to which the mapping
refers.

By default, TopLink uses the read interaction you define for the mapping’s reference
descriptor (see "Configuring Reference Descriptors" on page 54-2). In most cases, this
interaction is sufficient. If the reference descriptor’s read interaction is not sufficient,
you can define a separate interaction.

Table 54–4 summarizes which EIS mappings support this option.

Note: For one-to-one and one-to-many EIS mappings, the reference
descriptor must be a root descriptor. See "Configuring an EIS
Descriptor as a Root or Composite Type" on page 28-8.

Configuring Selection Interaction

54-4 Oracle TopLink Developer’s Guide

For more information about how TopLink uses the selection criteria, see "Reference EIS
Mappings" on page 53-4.

Using TopLink Workbench
To specify the selection interaction (such as Read Object) for the EIS mapping, use this
procedure:

1. Select the one-to-many EIS mapping in the Navigator. Its properties appear in the
Editor.

2. Click the Selection Interaction tab. The Selection Interaction tab appears.

Figure 54–2 Selection Interaction Tab

Use the following information to enter data in each field on the tab:

Table 54–4 Mapping Support for Selection Interaction

Mapping
Using TopLink
Workbench Using Java

EIS Direct Mapping

EIS Composite Direct Collection Mapping

EIS One-to-One Mapping

EIS One-to-Many Mapping

EIS Composite Object Mapping

EIS Composite Collection Mapping

EIS Transformation Mapping

Configuring Selection Interaction

Configuring an EIS Mapping 54-5

Field Description

Function Name The name of the EIS function that this call type (Read Object or
Read All) invokes on the EIS.

Input Record Name The name passed to the J2C adapter when creating the input
record.

Input Root Element Name The root element name to use for the input DOM.

Input Arguments The query argument name to map to the interaction field or XPath
nodes in the argument record.

For example, if you are using XML records, use this option to map
input argument name to the XPath name/first-name.

Output Arguments The result record field or XPath nodes to map to the correct nodes
in the record used by the descriptor's mappings.

For example, if you are using XML records, use this option to map
the output fname to name/first-name.

Output arguments are not required if the interaction returns an
XML result that matches the descriptor's mappings.

Input Result Path Use this option if the EIS interaction expects the interaction
arguments to be nested in the XML record.

For example, specify arguments, if the arguments were to be
nested under the root element exec-find-order, then under an
arguments element.

Output Result Path The name of the EIS function that this call type (Read Object or
Read All) invokes on the EIS.

Properties Any properties required by your EIS platform. For example,
property name operation (from AQPlatform.QUEUE_
OPERATION) and property value enqueue (from
AQPlatform.ENQUEUE).

Configuring Selection Interaction

54-6 Oracle TopLink Developer’s Guide

Configuring an EIS Direct Mapping 55-1

55
Configuring an EIS Direct Mapping

This chapter describes the various components that you must configure in order to use
an EIS direct mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "EIS Direct Mapping" on page 53-5

EIS Direct Mapping Configuration Overview
Table 55–1 lists the configurable options for an EIS direct mapping.

Table 55–1 Configurable Options for EIS Direct Mapping

Option Type
TopLink
Workbench Java

"Configuring XPath" on page 32-10 Basic

"Configuring the Use of a Single Node" on page 32-36 Advanced

"Configuring a Simple Type Translator" on page 32-23 Advanced

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring a Default Null Value at the Mapping Level" on
page 32-12

Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring a Serialized Object Converter" on page 32-18 Advanced

"Configuring a Type Conversion Converter" on page 32-20 Advanced

"Configuring an Object Type Converter" on page 32-22 Advanced

"Configuring a JAXB Typesafe Enumeration Converter" on
page 32-25

Advanced

EIS Direct Mapping Configuration Overview

55-2 Oracle TopLink Developer’s Guide

Configuring an EIS Composite Direct Collection Mapping 56-1

56
Configuring an EIS Composite Direct

Collection Mapping

This chapter describes the various components that you must configure in order to use
an EIS composite direct collection mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "EIS Composite Direct Collection Mapping" on page 53-6

EIS Composite Direct Collection Mapping Configuration Overview
Table 56–1 lists the configurable options for an EIS composite direct collection
mapping.

Table 56–1 Configurable Options for EIS Composite Direct Collection Mapping

Option Type
TopLink
Workbench Java

"Configuring XPath" on page 32-10 Basic

"Configuring a Simple Type Translator" on page 32-23 Advanced

"Configuring the Use of a Single Node" on page 32-36 Advanced

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Container Policy" on page 32-26 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring a Serialized Object Converter" on page 32-18 Advanced

"Configuring a Type Conversion Converter" on page 32-20 Advanced

"Configuring an Object Type Converter" on page 32-22 Advanced

"Configuring a JAXB Typesafe Enumeration Converter" on
page 32-25

Advanced

EIS Composite Direct Collection Mapping Configuration Overview

56-2 Oracle TopLink Developer’s Guide

Configuring an EIS Composite Object Mapping 57-1

57
Configuring an EIS Composite

Object Mapping

This chapter describes the various components that you must configure in order to use
an EIS composite object mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "EIS Composite Object Mapping" on page 53-7

EIS Composite Object Mapping Configuration Overview
Table 57–1 lists the configurable options for an EIS composite object mapping.

Table 57–1 Configurable Options for EIS Composite Object Mapping

Option Type
TopLink
Workbench Java

"Configuring XPath" on page 32-10 Basic

"Configuring Reference Descriptors" on page 54-2 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

EIS Composite Object Mapping Configuration Overview

57-2 Oracle TopLink Developer’s Guide

Configuring an EIS Composite Collection Mapping 58-1

58
Configuring an EIS Composite Collection

Mapping

This chapter describes the various components that you must configure in order to use
an EIS composite collection mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "EIS Composite Collection Mapping" on page 53-7

EIS Composite Collection Mapping Configuration Overview
Table 58–1 lists the configurable options for an EIS composite collection mapping.

Table 58–1 Configurable Options for EIS Composite Collection Mapping

Option Type
TopLink
Workbench Java

"Configuring XPath" on page 32-10 Basic

"Configuring Reference Descriptors" on page 54-2 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Container Policy" on page 32-26 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

EIS Composite Collection Mapping Configuration Overview

58-2 Oracle TopLink Developer’s Guide

Configuring an EIS One-to-One Mapping 59-1

59
Configuring an EIS One-to-One Mapping

This chapter describes the various components that you must configure in order to use
an EIS one-to-one mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "EIS One-to-One Mapping" on page 53-5

EIS One-to-One Mapping Configuration Overview
Table 59–1 lists the configurable options for an EIS one-to-one mapping.

Configuring Foreign Key Pairs
In a one-to-one EIS mapping, you relate a source object attribute to a target object
attribute by specifying one or more pairs of source and target object fields.

In a one-to-one EIS mapping with key on source (see "EIS One-to-One Mappings With
Key on Source" on page 53-9) using XML records, TopLink puts the target XML field
value into the source object’s record as a simple value.

In a one-to-one EIS mapping with key on target (see "EIS One-to-One Mappings With
Key on Target" on page 53-10) using XML records, TopLink uses the source XML field
value in the selection interaction to acquire the appropriate instance of target object.

Table 59–1 Configurable Options for EIS One-to-One Mappings

Option Type
TopLink
Workbench Java

"Configuring Reference Descriptors" on page 54-2 Basic

"Configuring Foreign Key Pairs" on page 59-1 Basic

"Configuring Bidirectional Relationship" on page 32-34 Advanced

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Private or Independent Relationships" on
page 32-16

Advanced

"Configuring Indirection" on page 32-3 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring Selection Interaction" on page 54-3 Basic

Configuring Foreign Key Pairs

59-2 Oracle TopLink Developer’s Guide

Using TopLink Workbench
To specify the source and target XML field pairs for a one-to-one EIS mapping, use this
procedure:

1. Select the one-to-one EIS mapping in the Navigator. Its properties appear in the
Editor.

2. Click the General tab. The General tab opens.

Figure 59–1 General Tab, Foreign Keys Field

3. Click Add in the Foreign Keys area to add a key pair. The Specify Field Pair dialog
box appears.

Figure 59–2 Specify Field Pair Dialog Box

Click Browse to add a foreign key for the Source XPath and Target XPath fields.

Configuring an EIS One-to-Many Mapping 60-1

60
Configuring an EIS One-to-Many Mapping

This chapter describes the various components that you must configure in order to use
an EIS one-to-many mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "EIS One-to-Many Mapping" on page 53-12

EIS One-to-Many Mapping Configuration Overview
Table 60–1 lists the configurable options for an EIS one-to-many mapping.

Configuring Foreign Key Pairs
In a one-to-many EIS mapping, you relate a source object attribute to a target object
attribute by specifying one or more pairs of source and target object fields.

In a one-to-many EIS mapping with key on source (see "EIS One-to-Many Mappings
With Key on Source" on page 53-13) using XML records, TopLink puts the target XML
field value into the source object’s record as a simple value. By default, these values
are not grouped, as Example 60–1 shows.

Table 60–1 Configurable Options for EIS One-to-Many Mappings

Option Type
TopLink
Workbench Java

"Configuring Reference Descriptors" on page 54-2 Basic

"Configuring Foreign Key Pairs" on page 60-1 Advanced

"Configuring Bidirectional Relationship" on page 32-34 Advanced

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Private or Independent Relationships" on
page 32-16

Advanced

"Configuring Indirection" on page 32-3 Advanced

"Configuring Container Policy" on page 32-26 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring Selection Interaction" on page 54-3 Advanced

"Configuring Delete All Interactions" on page 60-3 Advanced

Configuring Foreign Key Pairs

60-2 Oracle TopLink Developer’s Guide

Example 60–1 Source Object XML Record without Grouping

<employee>
<name>Jane</name>
<project-id>3</project-id>
<project-id>4</project-id>

</employee>

If you specify more than one source and target XML field pair, you must specify a
grouping element, as Example 60–2 shows.

Example 60–2 Source Object XML Record with Grouping

<employee>
<name>Jane</name>
<project>

<project-id>3</project-id>
<project-name>Project 3</project-name>

</project>
<project>

<project-id>4</project-id>
<project-name>Project 4</project-name>

</project>
</employee>

In a one-to-one EIS mapping with key on target (see "EIS One-to-Many Mappings With
Key on Target" on page 53-15) using XML records, TopLink uses the source XML field
value in the selection interaction to acquire the appropriate instances of target object.

Using TopLink Workbench
To specify the source and target XML field pairs for a one-to-many EIS mapping, use
this procedure:

1. Select the one-to-one EIS mapping in the Navigator. Its properties appear in the
Editor.

2. Click the General tab. The General tab appears.

Configuring Delete All Interactions

Configuring an EIS One-to-Many Mapping 60-3

Figure 60–1 Foreign Keys Field on General Tab

Use the following information to complete the Foreign Keys fields on the General tab:

Configuring Delete All Interactions
The TopLink query and expression framework supports delete all queries. If your J2C
adapter provides access to an EIS Delete All function, you can configure a delete all
interaction to support TopLink delete all queries.

Field Description

Foreign Keys Located On Target Select if you are creating a one-to-many EIS mapping with
key on target (see "EIS One-to-Many Mappings With Key
on Target" on page 53-15).

Foreign Keys Located On Source Select if you are creating a one-to-many EIS mapping with
key on source (see "EIS One-to-Many Mappings With Key
on Source" on page 53-13).

Grouping Element Specify the element in which foreign key pairs are grouped
in the source object’s EIS record.

If you specify only one pair of source and target XML
fields, this is optional.

If you specify more than one pair of source and target XML
fields, this is required.

Field Pairs Click Add to add a pair of source and target XML fields.

Specify Field Pair dialog box opens. Click Browse to add a
foreign key for the Source XPath and Target XPath fields.

Configuring Delete All Interactions

60-4 Oracle TopLink Developer’s Guide

Using TopLink Workbench
To specify the DeleteAll interaction for an EIS one-to-many mapping, use this
procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the Delete All Interaction tab. The Delete All Interaction tab appears.

Figure 60–2 Delete All Interaction Tab

Use the following information to enter data in each field on the Delete All Interaction
tab:

Field Description

Function Name The name of the EIS function that this call type (Read Object or
Read All) invokes on the EIS.

Input Record Name The name passed to the J2C adapter when creating the input
record.

Input Root Element Name The root element name to use for the input DOM.

Input Arguments The query argument name to map to the interaction field or XPath
nodes in the argument record.

For example, if you are using XML records, use this option to map
input argument name to the XPath name/first-name.

Output Arguments The result record field or XPath nodes to map to the correct nodes
in the record used by the descriptor's mappings.

For example, if you are using XML records, use this option to map
the output fname to name/first-name.

Output arguments are not required if the interaction returns an
XML result that matches the descriptor's mappings.

Configuring Delete All Interactions

Configuring an EIS One-to-Many Mapping 60-5

Input Result Path Use this option if the EIS interaction expects the interaction
arguments to be nested in the XML record.

For example, specify arguments, if the arguments were to be
nested under the root element exec-find-order, then under an
arguments element.

Output Result Path The name of the EIS function that this call type (Read Object or
Read All) invokes on the EIS.

Properties Any properties required by your EIS platform. For example,
property name operation (from AQPlatform.QUEUE_
OPERATION) and property value enqueue (from
AQPlatform.ENQUEUE).

Field Description

Configuring Delete All Interactions

60-6 Oracle TopLink Developer’s Guide

Configuring an EIS Transformation Mapping 61-1

61
Configuring an EIS Transformation Mapping

This chapter describes the various components that you must configure in order to use
an EIS transformation mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "EIS Transformation Mapping" on page 53-17

EIS Transformation Mapping Configuration Overview
Table 61–1 lists the configurable options for an EIS transformation mapping.

Table 61–1 Configurable Options for EIS Transformation Mapping

Option Type
TopLink
Workbench Java

"Configuring Attribute Transformer" on page 32-29 Basic

"Configuring Field Transformer Associations" on page 32-31 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Mutable Mappings" on page 32-33 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

EIS Transformation Mapping Configuration Overview

61-2 Oracle TopLink Developer’s Guide

Part XIII
 XML Mappings

An XML mapping transforms object data members to the XML nodes of an XML
document, whose structure is defined by an XML schema document (XSD).

This part contains the following chapters:

■ Chapter 62, "Understanding XML Mappings"

This chapter describes each of the different TopLink XML mapping types and
important XML mapping concepts.

■ Chapter 63, "Configuring an XML Mapping"

This chapter explains how to configure TopLink XML mapping options common
to two or more XML mapping types.

■ Chapter 64, "Configuring an XML Direct Mapping"

This chapter explains how to configure a direct XML mapping.

■ Chapter 65, "Configuring an XML Composite Direct Collection Mapping"

This chapter explains how to configure a composite direct collection XML
mapping.

■ Chapter 66, "Configuring an XML Composite Object Mapping"

This chapter explains how to configure a composite object XML mapping
including an XML mapping to a single named complex type of type xs:anyType.

■ Chapter 67, "Configuring an XML Composite Collection Mapping"

This chapter explains how to configure a composite collection XML mapping.

■ Chapter 68, "Configuring an XML Any Object Mapping"

This chapter explains how to configure an XML mapping to a single unnamed
complex type specified as xs:any.

■ Chapter 69, "Configuring an XML Any Collection Mapping"

This chapter explains how to configure an XML mapping to an unnamed sequence
of complex types specified as xs:any, an unnamed sequence of complex types of
type xs:anyType, or a root element of type xs:anyType.

■ Chapter 70, "Configuring an XML Transformation Mapping"

This chapter explains how to configure a transformation XML mapping.

Understanding XML Mappings 62-1

62
Understanding XML Mappings

An XML mapping transforms object data members to the XML nodes of an XML
document whose structure is defined by an XML schema document (XSD).

This chapter describes the following:

■ XML Mapping Types

■ XML Mapping Concepts

XML Mapping Types
TopLink supports the XML mappings listed in Table 62–1.

Table 62–1 TopLink XML Mapping Types

Mapping Type Description Type
TopLink
Workbench Java

"XML Direct Mapping" on page 62-5 Map a simple object attribute to an XML
attribute or text node.

Basic

"XML Composite Direct Collection
Mapping" on page 62-14

Map a collection of simple object
attributes to XML attributes or text
nodes.

Basic

"XML Composite Object Mapping" on
page 62-21

Map any attribute that contains a single
object to an XML element. The TopLink
runtime uses the descriptor for the
referenced object to populate the
contents of that element.

Basic

"XML Composite Collection Mapping"
on page 62-25

Map an attribute that contains a
homogenous collection of objects to
multiple XML elements. The TopLink
runtime uses the descriptor for the
referenced object to populate the
contents of those elements.

Basic

XML Mapping Concepts

62-2 Oracle TopLink Developer’s Guide

XML Mapping Concepts
You can map the attributes of a Java object to a combination of XML simple and
complex types using a wide variety of XML mapping types.

TopLink stores XML mappings for each class in the class descriptor. TopLink uses the
descriptor to instantiate objects mapped from an XML document and to store new or
modified objects as an XML document.

To configure XML mappings, Oracle recommends that you use TopLink Workbench
and its rich graphical user interface (GUI) environment to set the descriptor properties
and configure the mappings.

This section describes concepts unique to TopLink XML mappings, including the
following:

■ Mapping to Simple and Complex Types

■ Mapping Order

■ XPath Support

■ xsd:list and xsd:union Support

■ xs:any and xs:anyType Support

■ jaxb:class Support

■ Typesafe Enumeration Support

■ Mapping Extensions

Mapping to Simple and Complex Types
Consider the XML document shown in Example 62–1.

Example 62–1 XML Document

<EMPLOYEE ID="123">
<NAME>Jane Doe</NAME>

"XML Any Object Mapping" on
page 62-27

The any object XML mapping is similar
to the composite object XML mapping
(see "XML Composite Object Mapping"
on page 62-21), except that the reference
object may be of different types
(including String), not necessarily
related to each other through inheritance
or a common interface.

Advanced

"XML Any Collection Mapping" on
page 62-29

The any collection XML mapping is
similar to the composite collection XML
mapping (see "XML Composite
Collection Mapping" on page 62-25)
except that the referenced objects may be
of different types (including String),
not necessarily related to each other
through inheritance or a common
interface.

Advanced

"XML Transformation Mapping" on
page 62-31

Create custom mappings where one or
more XML nodes can be used to create
the object to be stored in a Java class’s
attribute.

Advanced

Table 62–1 (Cont.) TopLink XML Mapping Types

Mapping Type Description Type
TopLink
Workbench Java

XML Mapping Concepts

Understanding XML Mappings 62-3

<ADDRESS>
<STREET>123 Any St.</STREET>
<CITY>MyCity</CITY>

</ADDRESS>
</EMPLOYEE>

In general, using TopLink XML mappings, you can map a Java class to a simple type
(such as NAME) or to a complex type (such as ADDRESS).

Specifically, you can map a Java object’s simple attributes to XML attributes (such as
ID) and text nodes (such as NAME). You can also map a Java object’s relationships to
XML elements (such as ADDRESS).

Table 62–2 summarizes the XML simple and complex types supported by each
TopLink XML mapping.

Mapping Order
Unlike relational database mappings, the order in which mappings are persisted in
XML is significant.

The order in which you define XML mappings in TopLink (whether in TopLink
Workbench or in Java code) including the order in which you define mapping
components such as Transformers (see "XML Transformation Mapping" on
page 62-31) is reflected in the order, in which TopLink persists data in an XML
document.

XPath Support
TopLink uses XPath statements to efficiently map the attributes of a Java object to
locations in an XML document. For more information about using XPath with XML
mappings, see "Mappings and XPath" on page 30-15.

xsd:list and xsd:union Support
You can use XML direct (see "XML Direct Mapping" on page 62-5) and composite
direct collection (see "XML Composite Direct Collection Mapping" on page 62-14)
mappings to map to xsd:list and xsd:union types in an XML document.

For more information, see "Mappings and xsd:list and xsd:union Types" on page 30-17.

Table 62–2 XML Mapping Support for XML Simple and Complex Types

Mapping
XML
Attribute

XML Text
Node

XML
Element

XML Direct Mapping

XML Composite Direct Collection Mapping

XML Composite Object Mapping

XML Composite Collection Mapping

XML Any Object Mapping

XML Any Collection Mapping

XML Transformation Mapping

XML Mapping Concepts

62-4 Oracle TopLink Developer’s Guide

xs:any and xs:anyType Support
In an XML schema, you can define elements and complex types that correspond to any
data type using xs:any and xs:anyType. You can map objects to such elements and
complex types using XML mappings XMLAnyObjectMapping and
XMLAnyCollectionMapping.

Table 62–3 lists the XML mappings to use with common applications of xs:any and
xs:anyType. For more details, see the specified XML mapping type.

jaxb:class Support
You can configure an XML composite object mapping (see "XML Composite Object
Mapping" on page 62-21) to accommodate jaxb:class customizations with the
following XSD structures:

■ all

■ sequence

■ choice

■ group

For more information, see "Mappings and the jaxb:class Customization" on page 30-20.

Typesafe Enumeration Support
You can map a Java attribute to such a typesafe enumeration using the
JAXBTypesafeEnumConverter with an XMLDirectMapping or
XMLCompositeDirectCollectionMapping with XML documents.

For more information, see "Mappings and JAXB Typesafe Enumerations" on
page 30-24

Mapping Extensions
If existing TopLink XML mappings do not meet your needs, you can create custom
XML mappings using XML mapping extensions, including object type, serialized
object, type conversion converters, and a simple type translator. For more information,
see "Mapping Converters and Transformers" on page 30-10.

Table 62–3 XML Mappings and XML Schema xs:any and xs:anyType

Use XML Mapping ... To Map XML Schema Definition ...

See "XML Any Object Mapping" on
page 62-27

Element with a single1 unnamed complex type
specified as xs:any.

1 minOccurs and maxOccurs are both equal to 1.

See "XML Any Collection Mapping" on
page 62-29

Element with an unnamed sequence2 of complex
types specified as xs:any.

Element with a named sequence2 of complex types
of type xs:anyType.

Root element of type xs:anyType.

2 maxOccurs is greater than 1.

XML Direct Mapping

Understanding XML Mappings 62-5

XML Direct Mapping
XML direct mappings map a Java attribute directly to XML text nodes. You can use an
XML direct mapping in the following scenarios:

■ Mapping to a Text Node

■ Mapping to an Attribute

■ Mapping to a Specified Schema Type

■ Mapping to a List Field With an XML Direct Mapping

■ Mapping to a Union Field With an XML Direct Mapping

■ Mapping to a Union of Lists With an XML Direct Mapping

■ Mapping to a Union of Unions With an XML Direct Mapping

■ Mapping With a Simple Type Translator

See Chapter 64, "Configuring an XML Direct Mapping" for more information.

Mapping to a Text Node
This section describes using an XML direct mapping when:

■ Mapping to a Simple Text Node

■ Mapping to a Text Node in a Simple Sequence

■ Mapping to a Text Node in a Subelement

■ Mapping to a Text Node by Position

Mapping to a Simple Text Node
Given the XML schema in Example 62–2, Figure 62–1 illustrates an XML direct
mapping to a simple text node in a corresponding XML document. Example 62–3
shows how to configure this mapping in Java.

Example 62–2 Schema for XML Direct Mapping to Simple Text Node

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="phone-number" type="xsd:string"/>
</xsd:schema>

Figure 62–1 XML Direct Mapping to Simple Text Node

Note: Do not confuse an XML direct mapping with a relational
direct-to-XMLType mapping (see "Direct-to-XMLType Mapping" on
page 33-4).

XML Direct Mapping

62-6 Oracle TopLink Developer’s Guide

Example 62–3 Java for XML Direct Mapping to Simple Text Node

XMLDirectMapping numberMapping = new XMLDirectMapping();
numberMapping.setAttributeName("number");
numberMapping.setXPath("text()");

Mapping to a Text Node in a Simple Sequence
Given the XML schema in Example 62–4, Figure 62–2 illustrates an XML direct
mapping to individual text nodes in a sequence in a corresponding XML document.
Example 62–5 shows how to configure this mapping in Java.

Example 62–4 Schema for XML Direct Mapping to a Text Node in a Simple Sequence

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="first-name" type="xsd:string"/>
<xsd:element name="last-name" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Figure 62–2 XML Direct Mapping to a Text Node in a Simple Sequence

Example 62–5 Java for XML Direct Mapping to a Text Node in a Simple Sequence

XMLDirectMapping firstNameMapping = new XMLDirectMapping();
firstNameMapping.setAttributeName("firstName");
firstNameMapping.setXPath("first-name/text()");

XMLDirectMapping lastNameMapping = new XMLDirectMapping();
lastNameMapping.setAttributeName("lastName");
lastNameMapping.setXPath("last-name/text()");

Mapping to a Text Node in a Subelement
Given the XML schema in Example 62–6, Figure 62–3 illustrates an XML direct
mapping to a text node in a subelement in a corresponding XML document.
Example 62–7 shows how to configure this mapping in Java.

XML Direct Mapping

Understanding XML Mappings 62-7

Example 62–6 Schema for XML Direct Mapping to a Text Node in a Subelement

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="personal-info">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="first-name" type="xsd:string"/>
<xsd:element name="last-name" type="xsd:string"/>

<xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

Figure 62–3 XML Direct Mapping to a Text Node in a Subelement

Example 62–7 Java for XML Direct Mapping to a Text Node in a Subelement

XMLDirectMapping firstNameMapping = new XMLDirectMapping();
firstNameMapping.setAttributeName("firstName");
firstNameMapping.setXPath("personal-info/first-name/text()");

XMLDirectMapping lastNameMapping = new XMLDirectMapping();
lastNameMapping.setAttributeName("lastName");
lastNameMapping.setXPath("personal-info/last-name/text()");

Mapping to a Text Node by Position
Given the XML schema in Example 62–8, Figure 62–4 illustrates an XML direct
mapping to a text node by position in a corresponding XML document. Example 62–9
shows how to configure this mapping in Java.

Example 62–8 Schema for XML Direct Mapping to Text Node by Position

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string" maxOccurs="2"/>

</xsd:sequence>
</xsd:complexType>

XML Direct Mapping

62-8 Oracle TopLink Developer’s Guide

</xsd:schema>

Figure 62–4 XML Direct Mapping to Text Node by Position

Example 62–9 Java for XML Direct Mapping to Text Node by Position

XMLDirectMapping firstNameMapping = new XMLDirectMapping();
firstNameMapping.setAttributeName("firstName");
firstNameMapping.setXPath("name[1]/text()");

XMLDirectMapping lastNameMapping = new XMLDirectMapping();
lastNameMapping.setAttributeName("lastName");
lastNameMapping.setXPath("name[2]/text()");

Mapping to an Attribute
Given the XML schema in Example 62–8, Figure 62–4 illustrates an XML direct
mapping to a text node by position in a corresponding XML document. Example 62–9
shows how to configure this mapping in Java.

Example 62–10 Schema for XML Direct Mapping to an Attribute

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:attribute name="id" type="xsd:integer"/>
</xsd:complexType>

</xsd:schema>

Figure 62–5 XML Direct Mapping to an Attribute

Example 62–11 Java for XML Direct Mapping to an Attribute

XMLDirectMapping idMapping = new XMLDirectMapping();

XML Direct Mapping

Understanding XML Mappings 62-9

idMapping.setAttributeName("id");
idMapping.setXPath("@id");

Mapping to a Specified Schema Type
In most cases, TopLink can determine the target format in the XML document.
However, there are cases where you must specify which one of a number of possible
targets TopLink should use. For example, a java.util.Calendar could be
marshalled to a schema date, time, or dateTime node, or a byte[] could be
marshalled to a schema hexBinary or base64Binary node.

Given the XML schema in Example 62–8, Figure 62–4 illustrates an XML direct
mapping to a text node by position in a corresponding XML document. Example 62–9
shows how to configure this mapping in Java.

Example 62–12 Schema for XML Direct Mapping to a Specified Schema Type

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="picture" type="xsd:hexBinary"/>
<xsd:element name="resume" type="xsd:base64Binary"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Figure 62–6 XML Direct Mapping to a Specified Schema Type

Example 62–13 Java for XML Direct Mapping to a Specified Schema Type

XMLDirectMapping pictureMapping = new XMLDirectMapping();
pictureMapping.setAttributeName("picture");
pictureMapping.setXPath("picture/text()");
XMLField pictureField = (XMLField) pictureMapping.getField();
pictureField.setSchemaType(XMLConstants.HEX_BINARY_QNAME);

XMLDirectMapping resumeMapping = new XMLDirectMapping();
resumeMapping.setAttributeName("resume");
resumeMapping.setXPath("resume/text()");
XMLField resumeField = (XMLField) resumeMapping.getField();
resumeField.setSchemaType(XMLConstants.BASE_64_BINARY_QNAME);

XML Direct Mapping

62-10 Oracle TopLink Developer’s Guide

Mapping to a List Field With an XML Direct Mapping
Given the XML schema in Example 62–14, Figure 62–7 illustrates an XML direct
mapping to an xsd:list type in a corresponding XML document when you
represent the list in your object model as a String of white space delimited tokens.
Example 62–15 shows how to configure this mapping in Java.

Example 62–14 Schema for XML Direct Mapping to a List Field

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="employee" type="employee-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="tasks" type="tasks-type"/>

</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="tasks-type">

<xsd:list itemType="xsd:string"/>
</xsd:simpleType>

</xsd:schema>

Figure 62–7 XMLDirect Mapping to a List Field

Example 62–15 Java for XML Direct Mapping to a List Field Node

XMLDirectMapping tasksMapping = new XMLDirectMapping();
tasksMapping.setAttributeName("tasks");
XMLField myField = new XMLField("tasks/text()"); // pass in the XPath
myField.setUsesSingleNode(true);
tasksMapping.setField(myField);

Mapping to a Union Field With an XML Direct Mapping
Given the XML schema in Example 62–16, Figure 62–8 illustrates a Java class that can
be mapped to a corresponding XML document. Note the shoeSize attribute in this
class: when using a union field, the corresponding attribute must be able to store all
possible values.

Example 62–16 Schema for XML Direct Mapping to a Union Field

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="shoe-size" type="size-type"/>

</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="size-type">

<xsd:union memberTypes="xsd:decimal xsd:string"/>

XML Direct Mapping

Understanding XML Mappings 62-11

</xsd:simpleType>
</xsd:schema>

Figure 62–8 Java Class for XML Direct Mapping to a Union Field

Figure 62–9 illustrates an XML direct mapping to a union field in an XML document
that conforms to the schema in Example 62–16. When TopLink unmarshalls the XML
document, it tries each of the union types until it can make a successful conversion.
The first schema type in the union is xsd:decimal. Because "10.5" is a valid decimal,
TopLink converts the value to the appropriate type. If the Object attribute is specific
enough to trigger an appropriate value, TopLink will use that type instead. Otherwise,
TopLink uses a default (in this case BigDecimal). You can override this behavior in
Java code.

Figure 62–9 XML Direct Mapping to the First Valid Union Type

Figure 62–10 illustrates an XML direct mapping to union field in another XML
document that conforms to the schema in Example 62–16. In this document, the value
"M" is not a valid xsd:decimal type so the next union type is tried. The next union
type is xsd:string and a conversion can be done.

Figure 62–10 XML Direct Mapping to Another Valid Union Type

Example 62–17 shows how to configure this mapping in Java.

Example 62–17 Java for XML Direct Mapping to a Union Type

XMLDirectMapping shoeSizeMapping = new XMLDirectMapping();
shoeSizeMapping.setAttributeName("shoeSize");
XMLUnionField shoeSizeField = new XMLUnionField();
shoeSizeField.setXPath("shoe-size/text()");
shoeSizeField.addSchemaType(XMLConstants.DECIMAL_QNAME);
shoeSizeField.addSchemaType(XMLConstants.STRING_QNAME);
shoeSizeMapping.setField(shoeSizeField);

To override the default conversion, use the XMLUnionField method
addConversion:

XML Direct Mapping

62-12 Oracle TopLink Developer’s Guide

shoeSizeField.addConversion(XMLConstants.DECIMAL_QNAME, Float.class);

Mapping to a Union of Lists With an XML Direct Mapping
Given the XML schema in Example 62–18, Figure 62–11 illustrates an XML direct
mapping to a union of lists in a corresponding XML document. Example 62–19 shows
how to configure this mapping in Java.

Example 62–18 Schema for XML Direct Mapping to Union of Lists

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="vacation" type="unionOfLists"/>
<xsd:simpleType name="unionOfLists">

<xsd:union memberTypes="xsd:double">
<xsd:simpleType>

<xsd:list itemType="xsd:date"/>
</xsd:simpleType>
<xsd:simpleType>

<xsd:list itemType="xsd:integer"/>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

</xsd:schema>

Figure 62–11 XML Direct Mapping to Union of Lists

Note that in this example, valid XML documents contain either all xsd:double, all
xsd:date, or all xsd:integer values.

Example 62–19 Java for XML Direct Mapping to Union of Lists

XMLDirectMapping mapping = new XMLDirectMapping();
mapping.setAttributeName("vacation");
mapping.setXPath("UnionOfLists/text()");

Mapping to a Union of Unions With an XML Direct Mapping
Given the XML schema in Example 62–20, Figure 62–12 illustrates a Java class that can
be mapped to a corresponding XML document. Example 62–27 shows how to
configure this mapping in Java.

Example 62–20 Schema for XML Direct Mapping to a Union of Unions

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="vacation" type="unionOfUnions"/>
<xsd:simpleType name="unionOfUnions">

<xsd:union>
<xsd:simpleType>

<xsd:union>
<xsd:simpleType>

XML Direct Mapping

Understanding XML Mappings 62-13

<xsd:list itemType="xsd:date"/>
</xsd:simpleType>
<xsd:simpleType>

<xsd:list itemType="xsd:integer"/>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>
<xsd:simpleType>

<xsd:union>
<xsd:simpleType>

<xsd:list itemType="xsd:string"/>
</xsd:simpleType>
<xsd:simpleType>

<xsd:list itemType="xsd:float"/>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

</xsd:schema>

Figure 62–12 Java Class for XML Direct Mapping to a Union of Unions

Example 62–21 Java for XML Direct Mapping to a Union of Unions

XMLDirectMapping vacationMapping = new XMLDirectMapping();
vacationMapping.setAttributeName("vacation");
XMLUnionField vacationField = new XMLUnionField();
vacationField.setXPath("vacation/text()");
vacationField.addSchemaType(XMLConstants.DATE_QNAME);
vacationField.addSchemaType(XMLConstants.INTEGER_QNAME);
vacationField.addSchemaType(XMLConstants.STRING_QNAME);
vacationField.addSchemaType(XMLConstants.FLOAT_QNAME);
vacationMapping.setField(vacationField);

Mapping With a Simple Type Translator
If the type of a node is not defined in your XML schema, you can configure an XML
direct mapping to use the xsi:type attribute to provide type information.

Given the XML schema fragment in Example 62–22, Figure 62–13 illustrates a Java
class that can be mapped to a corresponding XML document.

Example 62–22 Schema for XML Direct Mapping with Simple Type Translator

...
<xs:element name="area-code" type="anySimpleType"/>
<xs:element name="number" type="anySimpleType"/>

...

XML Composite Direct Collection Mapping

62-14 Oracle TopLink Developer’s Guide

Figure 62–13 Java Class for XML Direct Mapping with Simple Type Translator

Figure 62–14 illustrates an XML direct mapping with a simple type translator in an
XML document that conforms to the schema in Example 62–22.

Figure 62–14 XML Direct Mapping with a Simple Type Translator

Example 62–23 shows how to configure this mapping in Java.

Example 62–23 Java for XML Direct Mapping with Simple Type Translator

XMLDirectMapping numberMapping = new XMLDirectMapping();
numberMapping.setAttributeName("number");
numberMapping.setXPath("number/text()");
XMLField numberField = (XMLField) numberMapping.getField();
numberField.setIsTypedTextField(true);

For more information, see "Simple Type Translator" on page 30-12.

XML Composite Direct Collection Mapping
XML composite direct collection mappings map a Java collection of simple object
attributes to XML attributes and text nodes. Use multiplicity settings to specify an
element as a collection. The XML schema allows you to define minimum and
maximum occurrences. You can use a composite direct collection XML mapping in the
following scenarios:

■ Mapping to Multiple Text Nodes

■ Mapping to Multiple Attributes

■ Mapping to a Single Text Node With an XML Composite Direct Collection
Mapping

■ Mapping to a Single Attribute With an XML Composite Direct Collection Mapping

■ Mapping to a List of Unions With an XML Composite Direct Collection Mapping

■ Mapping to a Union of Lists With an XML Composite Direct Collection Mapping

■ Specifying the Content Type of a Collection With an XML Composite Direct
Collection Mapping

See Chapter 65, "Configuring an XML Composite Direct Collection Mapping" for more
information.

XML Composite Direct Collection Mapping

Understanding XML Mappings 62-15

Mapping to Multiple Text Nodes
This section describes using a composite direct collection XML mapping when:

■ Mapping to a Simple Sequence

■ Mapping to a Sequence in a Subelement

Mapping to a Simple Sequence
Given the XML schema in Example 62–24, Figure 62–15 illustrates a composite direct
collection XML mapping to a simple sequence of text nodes in a corresponding XML
document. Example 62–25 shows how to configure this mapping in Java.

Example 62–24 Schema for Composite Direct Collection XML Mapping to a Simple
Sequence

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="employee" type="employee-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="task" type="xsd:string" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Figure 62–15 Composite Direct Collection XML Mapping to a Simple Sequence

Example 62–25 Java for Composite Direct Collection XML Mapping to a Simple
Sequence

XMLCompositeDirectCollectionMapping tasksMapping = new XMLCompositeDirectCollectionMapping();
tasksMapping.setAttributeName("tasks");
tasksMapping.setXPath("task/text()");

Mapping to a Sequence in a Subelement
Given the XML schema in Example 62–26, Figure 62–16 illustrates a composite direct
collection XML mapping to a sequence of text nodes in a subelement in a
corresponding XML document. Example 62–27 shows how to configure this mapping
in Java.

Example 62–26 Schema for Composite Direct Collection XML Mapping to a Subelement
Sequence

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="employee" type="employee-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>

XML Composite Direct Collection Mapping

62-16 Oracle TopLink Developer’s Guide

<xsd:element name="tasks">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="task" type="xsd:string" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

Figure 62–16 Composite Direct Collection XML Mapping to a Subelement Sequence

Example 62–27 Java for Composite Direct Collection XML Mapping to a Subelement
Sequence

XMLCompositeDirectCollectionMapping tasksMapping = new XMLCompositeDirectCollectionMapping();
tasksMapping.setAttributeName("tasks");
tasksMapping.setXPath("tasks/task/text()");

Mapping to Multiple Attributes
Given the XML schema in Example 62–28, Figure 62–17 illustrates a composite direct
collection XML mapping to a sequence of text nodes in a subelement in a
corresponding XML document. Example 62–29 shows how to configure this mapping
in Java.

Example 62–28 Schema for Composite Direct Collection XML Mapping to Multiple
Attributes

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="employee" type="employee-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="tasks" maxOccurs="unbounded">

<xsd:complexType>
<xsd:attribute name="task" type="xsd:string"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

XML Composite Direct Collection Mapping

Understanding XML Mappings 62-17

Figure 62–17 Composite Direct Collection XML Mapping to Multiple Attributes

Example 62–29 Java for Composite Direct Collection XML Mapping to Multiple
Attributes

XMLCompositeDirectCollectionMapping tasksMapping = new XMLCompositeDirectCollectionMapping();
tasksMapping.setAttributeName("tasks/@task");
tasksMapping.setXPath("task/text()");

Mapping to a Single Text Node With an XML Composite Direct Collection Mapping
When you map a collection to a single node, the contents of the node is treated as a
space-separated list.

Given the XML schema in Example 62–30, Figure 62–18 illustrates a composite direct
collection XML mapping to a single text node in a corresponding XML document.
Example 62–31 shows how to configure this mapping in Java.

Example 62–30 Schema for XML Composite Direct Collection Mapping to a Single Text
Node

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="employee" type="employee-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="tasks" type="tasks-type"/>

</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="tasks-type">

<xsd:list itemType="xsd:string"/>
</xsd:simpleType>

</xsd:schema>

Figure 62–18 XML Composite Direct Collection Mapping to a Single Text Node

Example 62–31 Java for XML Composite Direct Collection Mapping to a Single Text
Node

XMLCompositeDirectCollectionMapping tasksMapping = new XMLCompositeDirectCollectionMapping();
tasksMapping.setAttributeName("tasks");

XML Composite Direct Collection Mapping

62-18 Oracle TopLink Developer’s Guide

tasksMapping.setXPath("tasks/text()");
tasksMapping.setUsesSingleNode(true);

Mapping to a Single Attribute With an XML Composite Direct Collection Mapping
Given the XML schema in Example 62–32, Figure 62–19 illustrates a composite direct
collection XML mapping to a single attribute in a corresponding XML document.
Example 62–33 shows how to configure this mapping in Java.

Example 62–32 Schema for XML Composite Direct Collection Mapping to a Single
Attribute

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="employee" type="employee-type"/>
<xsd:complexType name="employee-type">

<xsd:attribute name="tasks" type="tasks-type"/>
</xsd:complexType>
<xsd:simpleType name="tasks-type">

<xsd:list itemType="xsd:string"/>
</xsd:simpleType>

</xsd:schema>

Figure 62–19 XML Composite Direct Collection Mapping to a Single Attribute

Example 62–33 Java for XML Composite Direct Collection Mapping to a Single Attribute

XMLCompositeDirectCollectionMapping tasksMapping = new XMLCompositeDirectCollectionMapping();
tasksMapping.setAttributeName("tasks");
tasksMapping.setXPath("@tasks");
tasksMapping.setUsesSingleNode(true);

Mapping to a List of Unions With an XML Composite Direct Collection Mapping
Given the XML schema in Example 62–34, Figure 62–20 illustrates a composite direct
collection XML mapping to a list of unions in a corresponding XML document.
Example 62–35 shows how to configure this mapping in Java.

Example 62–34 Schema for XML Composite Direct Collection Mapping to List of Unions

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="vacation" type="listOfUnions"/>
<xsd:simpleType name="listOfUnions">

<xsd:list>
<xsd:simpleType>

<xsd:union memberTypes="xsd:date xsd:integer"/>
</xsd:simpleType>

</xsd:list>

XML Composite Direct Collection Mapping

Understanding XML Mappings 62-19

</xsd:simpleType>
</xsd:schema>

Figure 62–20 Composite XML Direct Collection Mapping to List of Unions

Example 62–35 Java for XML Composite Direct Collection Mapping to List of Unions

XMLCompositeDirectCollectionMapping mapping = new XMLCompositeDirectCollectionMapping();
mapping.setAttributeName("myattribute");
XMLUnionField field = new XMLUnionField("listOfUnions/text()");
mapping.addSchemaType(new Qname(url,"int"));
mapping.addSchemaType(new Qname(url,"date"));
mapping.setField(field);
mapping.useSingleElement(false);

Mapping to a Union of Lists With an XML Composite Direct Collection Mapping
Given the XML schema in Example 62–34, Figure 62–20 illustrates an XML composite
direct collection mapping to a list of unions in a corresponding XML document.
Example 62–35 shows how to configure this mapping in Java.

Example 62–36 Schema for XML Composite Direct Collection Mapping to a Union of
Lists

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="vacation" type="unionOfLists"/>
<xsd:simpleType name="unionOfLists">

<xsd:union memberTypes="xsd:double">
<xsd:simpleType>

<xsd:list itemType="xsd:date"/>
</xsd:simpleType>
<xsd:simpleType>

<xsd:list itemType="xsd:integer"/>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

</xsd:schema>

Figure 62–21 XML Composite Direct Collection Mapping to a Union of Lists

Note that in this example, valid XML documents contain either all xsd:double, all
xsd:date, or all xsd:integer values.

XML Composite Direct Collection Mapping

62-20 Oracle TopLink Developer’s Guide

Example 62–37 Java for XML Composite Direct Collection Mapping to a Union of Lists

XMLCompositeDirectCollectionMapping mapping = new XMLCompositeDirectCollectionMapping();
mapping.setAttributeName("myattribute");
mapping.useSingleElement(false);
XMLUnionField unionField = new XMLUnionField("UnionOfLists/text()");
field.addSchemaType(new Qname(url," integer"))
field.addSchemaType (new Qname(url," date"))
field.addSchemaType (new Qname(url," double"))
field.setUsesSingleNode(false);

Specifying the Content Type of a Collection With an XML Composite Direct Collection
Mapping

By default, TopLink will treat the node values read by a composite direct collection
XML mapping as objects of type String. You can override this behavior by specifying
the type of the collection’s contents.

Given the XML schema in Example 62–38, Figure 62–22 illustrates an XML composite
direct collection mapping to a simple sequence in a corresponding XML document.
The mapping is configured to specify the content type of the collection as Calendar.
Example 62–39 shows how to configure this mapping in Java.

Example 62–38 Schema for XML Composite Direct Collection Mapping with Specified
Content Type

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="employee" type="employee-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="vacation" type="xsd:string" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Figure 62–22 XML Composite Direct Collection Mapping with Specified Content Type

Example 62–39 Java for XML Composite Direct Collection Mapping with Specified
Content Type

XMLCompositeDirectCollectionMapping tasksMapping = new XMLCompositeDirectCollectionMapping();
tasksMapping.setAttributeName("vacationDays");
tasksMapping.setXPath("vacation/text()");
tasksMapping.setAttributeElementClass(Calendar.class);

XML Composite Object Mapping

Understanding XML Mappings 62-21

XML Composite Object Mapping
XML composite object mappings represent a relationship between two classes. In
XML, the "owned" class may be nested with the element tag representing the "owning"
class. You can use a composite object XML mapping in the following scenarios:

■ Mapping Into the Parent Record

■ Mapping to an Element

■ Mapping to Different Elements by Element Name

■ Mapping to Different Elements by Element Position

See Chapter 66, "Configuring an XML Composite Object Mapping" for more
information.

Mapping Into the Parent Record
The composite object may be mapped to the same record as the parent.

Given the XML schema in Example 62–40, Figure 62–23 illustrates an XML composite
object mapping into the parent record in a corresponding XML document.
Example 62–41 shows how to configure this mapping in Java.

Example 62–40 Schema for XML Composite Object Mapping into the Parent Record

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="first-name" type="xsd:string"/>
<xsd:element name="last-name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Note: The nodes mapped to by the composite object must be
sequential.

XML Composite Object Mapping

62-22 Oracle TopLink Developer’s Guide

Figure 62–23 XML Composite Object Mapping into the Parent Record

Example 62–41 Java for XML Composite Object Mapping into the Parent Record

XMLCompositeObjectMapping addressMapping = new XMLCompositeObjectMapping();
addressMapping.setAttributeName("address");
addressMapping.setXPath(".");
addressMapping.setReferenceClass(Address.class);

Mapping to an Element
Given the XML schema in Example 62–42, Figure 62–24 illustrates an XML composite
object mapping to an element in a corresponding XML document. Example 62–43
shows how to configure this mapping in Java.

Example 62–42 Schema for XML Composite Object Mapping to an Element

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="first-name" type="xsd:string"/>
<xsd:element name="last-name" type="xsd:string"/>
<xsd:element name="address">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

XML Composite Object Mapping

Understanding XML Mappings 62-23

Figure 62–24 XML Composite Object Mapping to an Element

Example 62–43 Java for XML Composite Object Mapping to an Element

XMLCompositeObjectMapping addressMapping = new XMLCompositeObjectMapping();
addressMapping.setAttributeName("address");
addressMapping.setXPath("address");
addressMapping.setReferenceClass(Address.class);

Mapping to Different Elements by Element Name
An object may have multiple composite object mappings to the same reference class.
Each composite object mapping must have a unique XPath. This example uses unique
XPaths by name .

Given the XML schema in Example 62–44, Figure 62–25 illustrates an XML composite
object mapping to different elements by name in a corresponding XML document.
Example 62–45 shows how to configure this mapping in Java.

Example 62–44 Schema for XML Composite Object Mapping to Elements by Name

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="first-name" type="xsd:string"/>
<xsd:element name="last-name" type="xsd:string"/>
<xsd:element name="billing-address" type="address-type"/>
<xsd:element name="shipping-address" type="address-type"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="address-type">

<xsd:sequence>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

XML Composite Object Mapping

62-24 Oracle TopLink Developer’s Guide

Figure 62–25 XML Composite Object Mapping to Elements by Name

Example 62–45 Java for XML Composite Object Mapping to Elements by Name

XMLCompositeObjectMapping billingAddressMapping = new XMLCompositeObjectMapping();
billingAddressMapping.setAttributeName("billingAddress");
billingAddressMapping.setXPath("billing-address");
billingAddressMapping.setReferenceClass(Address.class);

XMLCompositeObjectMapping shippingAddressMapping = new XMLCompositeObjectMapping();
shippingAddressMapping.setAttributeName("shippingAddress");
shippingAddressMapping.setXPath("shipping-address");
shippingAddressMapping.setReferenceClass(Address.class);

Mapping to Different Elements by Element Position
An object may have multiple composite object mappings to the same reference class.
Each composite object mapping must have a unique XPath. This example uses unique
XPaths by position.

Given the XML schema in Example 62–44, Figure 62–25 illustrates an XML composite
object mapping to different elements by position in a corresponding XML document.
Example 62–45 shows how to configure this mapping in Java.

Example 62–46 Schema for XML Composite Object Mapping to Elements by Position

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="first-name" type="xsd:string"/>
<xsd:element name="last-name" type="xsd:string"/>
<xsd:element name="address" maxOccurs="2">

<xsd:complexType>
<xsd:sequence>

XML Composite Collection Mapping

Understanding XML Mappings 62-25

<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

Figure 62–26 XML Composite Object Mapping to Elements by Position

Example 62–47 Java for XML Composite Object Mapping to Elements by Position

XMLCompositeObjectMapping billingAddressMapping = new XMLCompositeObjectMapping();
billinAddressMapping.setAttributeName("billingAddress");
billinAddressMapping.setXPath("address[1]");
billinAddressMapping.setReferenceClass(Address.class);

XMLCompositeObjectMapping shippingAddressMapping = new XMLCompositeObjectMapping();
shippingAddressMapping.setAttributeName("shippingAddress");
shippingAddressMapping.setXPath("address[2]");
shippingAddressMapping.setReferenceClass(Address.class);

XML Composite Collection Mapping
Use XML composite collection mappings to represent one-to-many relationships.
Composite collection XML mappings can reference any class that has a TopLink
descriptor. The attribute in the object mapped must implement either the Java
Collection interface (for example, Vector or HashSet) or Map interface (for
example, Hashtable or TreeMap). The CompositeCollectionMapping class
allows a reference to the mapped class and the indexing type for that class.

Given the XML schema in Example 62–48, Figure 62–27 illustrates an XML composite
collection mapping to different elements by position in a corresponding XML

XML Composite Collection Mapping

62-26 Oracle TopLink Developer’s Guide

document. Example 62–49 shows how to configure this mapping in Java for a
Collection attribute and Example 62–50 shows how to configure this mapping in
Java for a Map attribute.

Example 62–48 Schema for XML Composite Collection Mapping

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="first-name" type="xsd:string"/>
<xsd:element name="last-name" type="xsd:string"/>
<xsd:element name="phone-number">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="number" type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="type" type="xsd:string"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Figure 62–27 XML Composite Collection Mapping

Example 62–49 Java for XML Composite Collection Mapping for a Collection Attribute

XMLCompositeCollectionMapping phoneNumbersMapping = new XMLCompositeCollectionMapping();
phoneNumbersMapping.setAttributeName("phoneNumbers");
phoneNumbersMapping.setXPath("phone-number");
phoneNumbersMapping.setReferenceClass(PhoneNumber.class);

XML Any Object Mapping

Understanding XML Mappings 62-27

Example 62–50 Java for XML Composite Collection Mapping for a Map Attribute

XMLCompositeCollectionMapping phoneNumbersMapping = new XMLCompositeCollectionMapping();
phoneNumbersMapping.setAttributeName("phoneNumbers");
phoneNumbersMapping.setXPath("phone-number");
phoneNumbersMapping.setReferenceClass(PhoneNumber.class);
phoneNumbersMapping.useMapClass(HashMap.class, "getType");

See Chapter 67, "Configuring an XML Composite Collection Mapping" for more
information.

XML Any Object Mapping
The XML any object mapping is similar to the composite object XML mapping (see
"XML Composite Object Mapping" on page 62-21) except that the reference object may
be of any type (including String). This type does not need to be related to any other
particular type through inheritance or a common interface.

The corresponding object attribute value can be an instance of any object with a
Descriptor, a java.lang.Object, a java.lang.String, a primitive object
(such as java.lang.Integer), or a user defined type generic enough for all possible
application values.

This mapping is useful with the following XML schema constructs:

■ any

■ choice

■ substitution groups

Referenced objects can specify a default root element on their descriptor (see "Default
Root Element" on page 23-9).

Given the XML schema in Example 62–51, Figure 62–28 illustrates the Java classes
used in this example. A single XML any object mapping is used to map Customer
attribute contactMethod. This attribute must be generic enough to reference all
possible values: in this example, instances of Address, PhoneNumber, and String.

Example 62–51 Schema for XML Any Object Mapping

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="contact-method" type="xsd:anyType"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="address">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="phone-number" type="xsd:string"/>

Note: The undefined document root element of a referenced object is
ignored during marshalling with an any collection mapping and
object mapping.

XML Any Object Mapping

62-28 Oracle TopLink Developer’s Guide

</xsd:schema>

Figure 62–28 Java Classes for XML Any Object Mapping

Figure 62–29, Figure 62–30, and Figure 62–31 illustrate how the XML any object
mapping maps to an Address, PhoneNumber, and String (respectively) in XML
documents that conform to the schema in Example 62–51.

Figure 62–29 XML Any Object Mapping to Address Type

Figure 62–30 XML Any Object Mapping to PhoneNumber Type

XML Any Collection Mapping

Understanding XML Mappings 62-29

Figure 62–31 XML Any Object Mapping to String Type

Example 62–49 shows how to configure this mapping in Java.

Example 62–52 Java for XML Any Object Mapping

XMLAnyObjectMapping contactMethodMapping = new XMLAnyObjectMapping();
contactMethodMapping.setAttributeName("contactMethod");
contactMethodMapping.setXPath("contact-method");

For more information about TopLink XML mapping support for xs:any and
xs:anyType, see "xs:any and xs:anyType Support" on page 62-4.

See Chapter 68, "Configuring an XML Any Object Mapping" for more information.

XML Any Collection Mapping
The XML any collection mapping is similar to the composite collection XML mapping
(see "XML Composite Collection Mapping" on page 62-25), except that the referenced
objects may be of different types (including String). These types need not be related
to each other through inheritance or a common interface.

The corresponding object attribute value can be an instance of any object with a
Descriptor, a java.lang.Object, a java.lang.String, a primitive object
(such as java.lang.Integer), or a user defined type generic enough for all possible
application values.

This mapping is useful with the following XML schema constructs:

■ any

■ choice

■ substitution groups

Each of the referenced objects (except String) must specify a default root element on
their descriptor (see "Default Root Element" on page 23-9).

Given the XML schema in Example 62–53, Figure 62–32 illustrates the Java classes
used in this example. A single XML any collection mapping is used to map Customer
attribute contactMethods. This attribute must be generic enough to reference all
possible values: in this example, instances of Address, PhoneNumber, and String.

Example 62–53 Schema for XML Any Collection Mapping

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="contact-methods" type="xsd:anyType"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="address">

XML Any Collection Mapping

62-30 Oracle TopLink Developer’s Guide

<xsd:complexType>
<xsd:sequence>

<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="phone-number" type="xsd:string"/>

</xsd:schema>

Figure 62–32 Java Classes for XML Any Collection Mapping

Figure 62–33 illustrate how the XML any collection mapping maps to a collection of
Address, PhoneNumber, and String objects in an XML document that conforms to
the schema in Example 62–53.

Figure 62–33 XML Any Collection Mapping

Example 62–54 shows how to configure this mapping in Java.

XML Transformation Mapping

Understanding XML Mappings 62-31

Example 62–54 Java for XML Any Collection Mapping

XMLAnyCollectionMapping contactMethodsMapping = new XMLAnyCollectionMapping();
contactMethodsMapping.setAttributeName("contactMethods");
contactMethodsMapping.setXPath("contact-methods");

For more information about TopLink XML mapping support for xs:any and
xs:anyType, see "xs:any and xs:anyType Support" on page 62-4.

See Chapter 69, "Configuring an XML Any Collection Mapping" for more information.

XML Transformation Mapping
You can use an XML transformation mapping to create a custom mapping where one
or more XML nodes can be used to create the object to be stored in a Java class’s
attribute. To handle the custom requirements at marshall (write) and unmarshall
(read) time, a transformation mapping takes instances of
oracle.toplink.mappings.transformers (such as AttributeTransformer
and FieldTransformer) that you provide. This provides a nonintrusive solution
that avoids the need for your domain objects to implement special interfaces for this
purpose.

As Figure 62–34 illustrates, you configure the transformation mapping with an
oracle.toplink.mappings.transformers.AttributeTransformer instance
to perform the XML instance-to-Java attribute transformation at unmarshall time. In
this example, the AttributeTransformer combines two XML text nodes into a
single Java object.

Similarly, you also configure the transformation mapping with one or more
oracle.toplink.mappings.transformers.FieldTransformer instances to
perform the Java attribute-to-XML instance transformation at marshall time. In this
example, each FieldTransformer is responsible for mapping one of the Java object
values to an XML text node.

Figure 62–34 XML Transformation Mappings

See Chapter 70, "Configuring an XML Transformation Mapping" for more information.

XML Transformation Mapping

62-32 Oracle TopLink Developer’s Guide

Configuring an XML Mapping 63-1

63
Configuring an XML Mapping

This chapter describes how to configure an XML mapping.

Table 63–1 lists the types of XML mappings that you can configure and provides a
cross-reference to the type-specific chapter that lists the configurable options
supported by that type.

Table 63–2 lists the configurable options shared by two or more XML mapping types.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "Understanding XML Mappings" on page 62-1

■ "Understanding Descriptors" on page 23-1

■ "Configuring an XML Descriptor" on page 29-1

Configuring Common XML Mapping Options
Table 63–2 lists the configurable options shared by two or more XML mapping types.
In addition to the configurable options described here, you must also configure the
options described for the specific XML Mapping Types, as shown in Table 63–1.

Table 63–1 Configuring XML Mappings

If you are creating... See Also...

XML Direct Mapping Chapter 64, "Configuring an XML Direct Mapping"

XML Composite Direct Collection
Mapping

Chapter 65, "Configuring an XML Composite Direct Collection
Mapping"

XML Composite Object Mapping Chapter 66, "Configuring an XML Composite Object Mapping"

XML Composite Collection Mapping Chapter 67, "Configuring an XML Composite Collection
Mapping"

XML Any Object Mapping Chapter 68, "Configuring an XML Any Object Mapping"

XML Any Collection Mapping Chapter 69, "Configuring an XML Any Collection Mapping"

XML Transformation Mapping Chapter 70, "Configuring an XML Transformation Mapping"

Table 63–2 Common Options for XML Mappings

Option Type
TopLink
Workbench Java

"Configuring XPath" on page 32-10 Basic

"Configuring Reference Descriptor" on page 63-2 Basic

Configuring Reference Descriptor

63-2 Oracle TopLink Developer’s Guide

Configuring Reference Descriptor
For XML attributes that reference other descriptors (instead of a schema element), you
must select a specific reference descriptor.

Table 63–3 summarizes which XML mappings support reference descriptor
configuration.

Using TopLink Workbench
To specify a reference descriptor for an XML mapping that references another
descriptor (instead of a schema element), use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

"Configuring Container Policy" on page 32-26 Advanced

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Maps to Wildcard" on page 63-3 Advanced

"Configuring a Serialized Object Converter" on page 32-18 Advanced

"Configuring a Type Conversion Converter" on page 32-20 Advanced

"Configuring an Object Type Converter" on page 32-22 Advanced

"Configuring a Simple Type Translator" on page 32-23 Advanced

"Configuring the Use of a Single Node" on page 32-36 Advanced

Table 63–3 XML Mapping Support for Reference Descriptor Configuration

XML Mapping
Using TopLink
Workbench Using Java

XML Direct Mapping

XML Composite Direct Collection Mapping

XML Composite Object Mapping

XML Composite Collection Mapping

XML Any Object Mapping

XML Any Collection Mapping

XML Transformation Mapping

Table 63–2 (Cont.) Common Options for XML Mappings

Option Type
TopLink
Workbench Java

Configuring Maps to Wildcard

Configuring an XML Mapping 63-3

Figure 63–1 General Tab, Reference Descriptor Field

If this XML attribute refers to another descriptor (instead of a schema element), use the
Reference Descriptor field to select a descriptor in the project.

Configuring Maps to Wildcard
This attribute applies only to TopLink Workbench. Use this option to solve "No XPath
specified" problems (see "Using the Problems Window" on page 4-11) for an XML
mapping that does not need an XPath (see "Configuring XPath" on page 32-10) for it
maps to a wildcard.

If the XML mapping is owned by an anyType descriptor (see "Configuring for
Complex Type of anyType" on page 29-3), it cannot map to a wildcard, and you must
specify an XPath.

Table 63–4 summarizes which XML mappings support maps to wildcard
configuration.

Using TopLink Workbench
To specify a map a schema element using the xs:any declaration, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

Table 63–4 XML Mapping Support for Maps to Wildcard Configuration

XML Mapping
Using TopLink
Workbench Using Java

XML Direct Mapping

XML Composite Direct Collection Mapping

XML Composite Object Mapping

XML Composite Collection Mapping

XML Any Object Mapping

XML Any Collection Mapping

XML Transformation Mapping

Configuring Maps to Wildcard

63-4 Oracle TopLink Developer’s Guide

Figure 63–2 Mapping Tab, Maps to Wildcard Option

If the XML mapping is not owned by an anyType descriptor (see "Configuring for
Complex Type of anyType" on page 29-3) and maps to a wildcard, then you do not
need to specify an XPath (see "Configuring XPath" on page 32-10). Select the Maps to
Wildcard (uses "any" tag) option to clear the missing XPath neediness message.

If the XML mapping is owned by an anyType descriptor, it cannot map to a wildcard
and you must specify an XPath. Deselect the Maps to Wildcard (Uses "any" tag)
option and ensure that you specify an XPath.

Configuring an XML Direct Mapping 64-1

64
Configuring an XML Direct Mapping

This chapter describes the various components that you must configure in order to use
an XML direct mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "XML Direct Mapping" on page 62-5

XML Direct Mapping Configuration Overview
Table 64–1 lists the configurable options for an XML direct mapping.

Table 64–1 Configurable Options for XML Direct Mapping

Option Type
TopLink
Workbench Java

"Configuring XPath" on page 32-10 Basic

"Configuring a Simple Type Translator" on page 32-23 Advanced

"Configuring the Use of a Single Node" on page 32-36 Advanced

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring a Default Null Value at the Mapping Level" on
page 32-12

Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring a Serialized Object Converter" on page 32-18 Advanced

"Configuring a Type Conversion Converter" on page 32-20 Advanced

"Configuring an Object Type Converter" on page 32-22 Advanced

"Configuring a JAXB Typesafe Enumeration Converter" on
page 32-25

Advanced

XML Direct Mapping Configuration Overview

64-2 Oracle TopLink Developer’s Guide

Configuring an XML Composite Direct Collection Mapping 65-1

65
Configuring an XML Composite Direct

Collection Mapping

This chapter describes the various components that you must configure in order to use
an XML composite direct collection mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "XML Composite Direct Collection Mapping" on page 62-14

XML Composite Direct Collection Mapping Configuration Overview
Table 65–1 lists the configurable options for an XML direct collection mapping.

Table 65–1 Configurable Options for XML Direct Collection Mapping

Option Type
TopLink
Workbench Java

"Configuring XPath" on page 32-10 Basic

"Configuring a Simple Type Translator" on page 32-23 Advanced

"Configuring the Use of a Single Node" on page 32-36 Advanced

"Configuring Method Accessing" on page 32-14 Basic

"Configuring Read-Only Mappings" on page 32-2 Basic

"Configuring Container Policy" on page 32-26 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring a Serialized Object Converter" on page 32-18 Advanced

"Configuring a Type Conversion Converter" on page 32-20 Advanced

"Configuring an Object Type Converter" on page 32-22 Advanced

"Configuring a JAXB Typesafe Enumeration Converter" on
page 32-25

Advanced

XML Composite Direct Collection Mapping Configuration Overview

65-2 Oracle TopLink Developer’s Guide

Configuring an XML Composite Object Mapping 66-1

66
Configuring an XML Composite Object

Mapping

This chapter describes the various components that you must configure in order to use
an XML composite object mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "XML Composite Object Mapping" on page 62-21

XML Composite Object Mapping Configuration Overview
Table 66–1 lists the configurable options for an XML composite object mapping.

Table 66–1 Configurable Options for XML Composite Object Mapping

Option Type
TopLink
Workbench Java

"Configuring XPath" on page 32-10 Basic

"Configuring Reference Descriptor" on page 63-2 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

XML Composite Object Mapping Configuration Overview

66-2 Oracle TopLink Developer’s Guide

Configuring an XML Composite Collection Mapping 67-1

67
Configuring an XML Composite Collection

Mapping

This chapter describes the various components that you must configure in order to use
an XML composite collection mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "XML Composite Collection Mapping" on page 62-21

XML Composite Collection Mapping Configuration Overview
Table 67–1 lists the configurable options for an XML composite collection mapping.

Table 67–1 Configurable Options for XML Composite Collection Mapping

Option Type
TopLink
Workbench Java

"Configuring XPath" on page 32-10 Basic

"Configuring Reference Descriptor" on page 63-2 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Container Policy" on page 32-26 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

XML Composite Collection Mapping Configuration Overview

67-2 Oracle TopLink Developer’s Guide

Configuring an XML Any Object Mapping 68-1

68
Configuring an XML Any Object Mapping

This chapter describes the various components that you must configure in order to use
an XML any object mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "XML Any Object Mapping" on page 62-27

XML Any Object Mapping Configuration Overview
Table 68–1 lists the configurable options for an XML any object mapping.

Table 68–1 Configurable Options for XML Any Object Mapping

Option Type
TopLink
Workbench Java

"Configuring XPath" on page 32-10 Basic

"Configuring Maps to Wildcard" on page 63-3 Advanced

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

XML Any Object Mapping Configuration Overview

68-2 Oracle TopLink Developer’s Guide

Configuring an XML Any Collection Mapping 69-1

69
Configuring an XML Any Collection Mapping

This chapter describes the various components that you must configure in order to use
an XML any collection mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "XML Any Collection Mapping" on page 62-29

XML Any Collection Mapping Configuration Overview
Table 69–1 lists the configurable options for an XML any collection mapping.

Table 69–1 Configurable Options for XML Any Collection Mapping

Option Advanced
TopLink
Workbench Java

"Configuring XPath" on page 32-10 Basic

"Configuring Maps to Wildcard" on page 63-3 Advanced

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Container Policy" on page 32-26 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

XML Any Collection Mapping Configuration Overview

69-2 Oracle TopLink Developer’s Guide

Configuring an XML Transformation Mapping 70-1

70
Configuring an XML Transformation Mapping

This chapter describes the various components that you must configure in order to use
an XML transformation mapping.

For more information, see the following:

■ "Mapping Creation Overview" on page 31-1

■ "XML Transformation Mapping" on page 62-31

XML Transformation Mapping Configuration Overview
Table 70–1 lists the configurable options for a XML transformation mapping.

Table 70–1 Configurable Options for XML Transformation Mapping

Option Type
TopLink
Workbench Java

"Configuring Attribute Transformer" on page 32-29 Basic

"Configuring Field Transformer Associations" on page 32-31 Basic

"Configuring Method Accessing" on page 32-14 Advanced

"Configuring Read-Only Mappings" on page 32-2 Advanced

"Configuring Mutable Mappings" on page 32-33 Advanced

"Configuring Mapping Comments" on page 32-18 Advanced

"Configuring Indirection" on page 32-3 Advanced

XML Transformation Mapping Configuration Overview

70-2 Oracle TopLink Developer’s Guide

Part XIV
 Using TopLink Overview

This part describes how to associate a TopLink project with a particular instance of a
data source and use it to manage persistence in your application. It contains the
following chapters:

■ Chapter 71, "Understanding the Persistence Layer"

This chapter provides an overview of how to use sessions, queries, and
transactions in your application.

Understanding the Persistence Layer 71-1

71
Understanding the Persistence Layer

This chapter describes the following:

■ Overview of the Persistence Layer

■ Sessions

■ Data Access

■ Cache

■ Queries and Expressions

■ Transactions

Overview of the Persistence Layer
The purpose of your application’s persistence layer is to use a session (see "Sessions"
on page 71-1) at run time to associate mapping metadata (see "Mapping Metadata" on
page 2-13) and a data source (see "Data Access" on page 71-1) in order to create, read,
update, and delete persistent objects using the TopLink cache (see "Cache" on
page 71-2), queries and expressions (see "Queries and Expressions" on page 71-2), as
well as transactions (see "Transactions" on page 71-3).

Sessions
A session is the primary interface between the client application and the TopLink
runtime, and represents the connection to the underlying data source.

For non-CMP projects, TopLink offers several different session types (see
"Understanding TopLink Sessions" on page 72-1), each optimized for different design
requirements and architectures. The most commonly used session is the server
session–a session that clients access on the server through a client session. The server
session provides a shared cache and shared connection resources.

For CMP projects, the TopLink runtime creates and uses a session internally, but your
application does not acquire or use this session directly. Depending on the application
server you use, you can specify some of the parameters for this internal session (see
"<J2EE-Container>-ejb-jar.xml File" on page 8-5).

Data Access
The login (if any) associated with a session determines how the TopLink runtime
connects to the project’s data source.

Cache

71-2 Oracle TopLink Developer’s Guide

A login includes details of data source access, such as authentication, use of
connection pools, and use of external transaction controllers. A login (an instance of
Login interface) owns a data source platform.

A platform includes options specific to a particular data source, including such as
binding, use of native SQL, use of batch writing, and sequencing. For more
information about platforms, see "Data Source Platform Types" on page 81-3.

For projects that do not persist to a data source, a login is not required. For projects
that do persist to a data source, a login is always required.

For relational and For more information, see "Understanding Data Access" on
page 81-1

Cache
By default, a TopLink session provides an object level cache that guarantees object
identity and enhances performance by reducing the number of times the application
needs to access the data source. TopLink provides a variety of cache options, including
locking, refresh, invalidation, isolation, and coordination. Using cache coordination,
you can configure TopLink to synchronize changes with other instances of the
deployed application. You configure most cache options at the session level. You can
also configure cache options on a per-query basis, or on a descriptor to apply to all
queries on the reference class.

For more information, see "Understanding the Cache" on page 87-1

Queries and Expressions
TopLink provides several object and data query types, and offers flexible options for
query selection criteria, including the following:

■ TopLink expressions

■ EJB QL

■ SQL

■ Stored procedures

■ Query by example

With these options, developers can build any type of query. Oracle recommends using
predefined queries to define application queries. Predefined queries are held in the
project metadata and referenced by name. This simplifies application development
and encapsulates the queries to reduce maintenance costs.

When using EJB entity beans, you can code finders using only EJB QL (in addition to
any of the other TopLink query options), enabling the application to comply with the
J2EE specification.

Regardless of the architecture or persistent entity type, you are free to use any of the
query options. TopLink Workbench provides the simplest way to define queries.
Alternatively, you can build queries in code, using the TopLink API.

For more information, see the following:

■ "Understanding TopLink Queries" on page 93-1

■ "Understanding TopLink Expressions" on page 95-1

Transactions

Understanding the Persistence Layer 71-3

Transactions
TopLink provides the ability to write transactional code isolated from the underlying
database and schema by using a unit of work.

The unit of work isolates changes in a transaction from other threads until it
successfully commits the changes to the database. Unlike other transaction
mechanisms, the unit of work automatically manages changes to the objects in the
transaction, the order of the changes, and changes that might invalidate other TopLink
caches. The unit of work manages these issues by calculating a minimal change set,
ordering the database calls to comply with referential integrity rules and deadlock
avoidance, and merging changed objects into the shared cache. In a clustered
environment, the unit of work also synchronizes changes with the other servers in the
coordinated cache.

If an application uses EJB entity beans, you do not access the unit of work API directly,
but you still benefit from its features: the integration between the TopLink runtime
and the J2EE container automatically uses the unit of work.

For more information, see "Understanding TopLink Transactions" on page 97-1.

Transactions

71-4 Oracle TopLink Developer’s Guide

Part XV
TopLink Sessions

This part describes the TopLink artifact used to associate a TopLink project with a
particular instance of a data source. It contains the following chapters:

■ Chapter 72, "Understanding TopLink Sessions"

This chapter describes each of the different TopLink session types and important
session concepts.

■ Chapter 73, "Creating Sessions"

This chapter contains procedures for creating TopLink sessions.

■ Chapter 74, "Configuring a Session"

This chapter explains how to configure TopLink session options common to two or
more session types.

■ Chapter 75, "Acquiring and Using Sessions at Run Time"

This chapter explains how to acquire and use a TopLink session at runtime.

■ Chapter 76, "Configuring Server Sessions"

This chapter explains how to configure TopLink server and client sessions.

■ Chapter 77, "Configuring Exclusive Isolated Client Sessions for Virtual Private
Database"

This chapter explains how to configure a TopLink isolated client session.

■ Chapter 78, "Configuring Historical Sessions"

This chapter explains how to configure a TopLink historical session.

■ Chapter 79, "Configuring Session Broker and Client Sessions"

This chapter explains how to configure TopLink session broker and client sessions.

■ Chapter 80, "Configuring Database Sessions"

This chapter explains how to configure a TopLink database session suitable for
simple single-user, single-data source and prototyping applications.

Understanding TopLink Sessions 72-1

72
Understanding TopLink Sessions

A TopLink session provides the primary access to the TopLink runtime. It is the means
by which your application performs all persistence operations with the data source
that contains persistent objects.

A session associates data source platform information, data source login information,
and mapping metadata for a particular application. You can reuse mapping metadata
in different applications by defining different sessions.

TopLink provides different session types, each optimized for different design
requirements and data access strategies. You can combine different session types in
the same application.

This chapter explains the following:

■ Session Types

■ Session Concepts

■ Sessions and the Cache

■ Understanding the Session API

Session Types
Table 72–1 lists the session types that you can use in a non-CMP TopLink application
and classifies them as basic or advanced. See "Sessions and CMP" on page 72-13 for
information on using Oracle TopLink with CMP.

Table 72–1 TopLink Session Types

Session Type Description Type
TopLink
Workbench Java

Server and
Client
Sessions

Server sessions provide session management to a single data source
(including shared object cache and connection pools) for multiple
clients in a three-tier architecture using database or EIS platforms.
This is the most flexible, scalable, and commonly used session.

You acquire a client session from a server session at run time to
provide access to a single data source for each client.

Basic

Unit of Work
Sessions

Acquired from any session type (directly, or by way of an external
transaction controller) to transactionally modify objects.

Basic

Isolated Client
Sessions

A special type of client session that uses a session cache isolated from
the shared object cache of its parent server session.

Advanced

Historical
Sessions

A special type of client session that provides a read-only snapshot of
object versions as of a specified time and uses a session cache isolated
from the shared object cache of its parent server session.

Advanced

Session Concepts

72-2 Oracle TopLink Developer’s Guide

For more information, see the following:

■ "Creating Sessions" on page 73-1

■ "Configuring a Session" on page 74-1

■ "Acquiring and Using Sessions at Run Time" on page 75-1

Session Concepts
This section describes concepts unique to TopLink sessions, including the following:

■ Session Architecture

■ Session Configuration and the sessions.xml File

■ Session Customization

■ Acquiring a Session at Run Time With the Session Manager

■ Managing Session Events With the Session Event Manager

■ Logging

■ Profiler

■ Integrity Checker

■ Exception Handlers

■ Registering Descriptors

■ Sessions and CMP

■ Sessions and Sequencing

Session Architecture
As Figure 72–1 illustrates, a session instance is composed of the following components:

■ Object Cache

■ Connection Pools

■ Query Mechanism

■ Java Object Builder

Session
Broker and
Client
Sessions

Provides session management to multiple data sources for multiple
clients by aggregating two or more server sessions (can also be used
with database sessions).

You acquire a client session from a session broker at run-time to
provide access to all the data sources managed by the session broker
for each client.

Advanced

Database
Sessions

Provides session management to a single database for a single client
suitable for simple or two-tiered applications. Oracle does not
recommend this session type in three-tiered applications because it
does not offer the same flexibility and scalability as the server session.

Basic

Remote
Sessions

A client-side session that communicates over RMI with a
corresponding dedicated client session and shared server session.
Remote sessions handle object identity and marshalling and
unmarshalling between client-side and server-side.

Advanced

Table 72–1 (Cont.) TopLink Session Types

Session Type Description Type
TopLink
Workbench Java

Session Concepts

Understanding TopLink Sessions 72-3

Figure 72–1 Simple TopLink Session Architecture

How these session components are implemented and how they interact depends on
the type of session. For example, for server and client sessions, the server session
provides a connection pool and shared object cache on behalf of all client sessions
acquired from it.

Object Cache
TopLink sessions provide an object cache. This cache, known as the session cache,
retains information about objects that are read from or written to the database, and is a
key element for improving the performance of a TopLink application.

Typically, a server session’s object cache is shared by all client sessions acquired from
it. That is, for a Server session myServerSession, each client session acquired by
calling server session method acquireClientSession shares the same object cache
as myServerSession.

Isolated and historical sessions provide their own session cache isolated from the
shared object cache of their parent server session. For more information, see "Isolated
Client Sessions" on page 72-19 and "Historical Sessions" on page 72-25.

You can easily manage concurrent access to this shared cache by using a unit of work
session acquired from any session. For more information, see "Unit of Work Sessions"
on page 72-19.

For more information, see "Sessions and the Cache" on page 72-33.

Connection Pools
A connection pool is a collection of reusable connections to a single data source.

Because creating a data source connection is usually expensive, a properly configured
connection pool significantly improves performance.

You can configure your session to use internal connection pools provided by TopLink
or external connection pools provided by a JDBC driver or J2EE container. By default,
TopLink uses internal connection pools.

Note: To simultaneously access multiple databases from within a
single session, use a session broker. For more information, see "Session
Broker and Client Sessions" on page 72-26.

Session Concepts

72-4 Oracle TopLink Developer’s Guide

Internal connection pools are usually used in non-EJB applications, or when an
external transaction controller (JTA) is not used. If you configure your session to use
internal connection pools, you can configure its default read and write connection
pools. You can create special purpose connection pools for application-specific
purposes (named connection pools) or exclusively for sequencing (sequence
connection pool). For more information, see "Internal Connection Pools" on page 81-7.

External connection pools are usually used in EJB applications and when an external
transaction controller (JTA) is used. For more information, see "External Connection
Pools" on page 81-8.

For more information about data access configuration in general, see "Understanding
Data Access" on page 81-1.

Query Mechanism
At run time, your application uses a session to perform all persistence operations:
creating, reading, updating, and deleting objects. You perform these operations using
TopLink queries and expressions with the session query API.

For more information, see "Understanding TopLink Queries" on page 93-1.

Java Object Builder
When you use object-level read queries, TopLink automatically builds Java objects
from the data retrieved. When you use object-level write queries, TopLink
automatically converts the affected Java objects into the appropriate data native to
your data source.

Session Configuration and the sessions.xml File
TopLink provides two ways to configure your sessions: through Java code using the
Session API, or using TopLink Workbench to build a session configuration file, the
sessions.xml file.

In most cases, you configure sessions for the application using the sessions.xml
file. This file is an Extensible Markup Language (XML) file that contains all sessions
that are associated with the application. The sessions.xml file can contain any
number of sessions and session types.

Oracle recommends that you use the sessions.xml file to deploy a TopLink
application, because it provides the following advantages:

■ It is easy to create and maintain in TopLink Workbench.

■ It is easy to troubleshoot.

■ It provides access to most session configuration options.

■ It offers excellent flexibility, including the ability to modify deployed applications
without recompiling.

For more information on creating a session in the sessions.xml file, see "Session
Creation Overview" on page 73-1.

Session Customization
You can customize a session at run time by specifying a session customizer–a Java
class that implements the
oracle.toplink.tools.sessionconfiguration.SessionCustomizer
interface and provides a default (zero-argument) constructor.

Session Concepts

Understanding TopLink Sessions 72-5

Since the sessions.xml file is not used for CMP projects, use
oracle.toplink.ejb.cmp.DeploymentCustomization interface as a
customizer when creating a CMP project to specify your database login information.

You use a session customizer to customize a session at run time through code API
similar to how you use an amendment method to customize a descriptor (see
"Amendment and After-Load Methods" on page 23-5).

For more information, see "Configuring Customizer Class" on page 74-13.

Acquiring a Session at Run Time With the Session Manager
The TopLink session manager enables developers to build a series of sessions that are
maintained under a singleton object called the session manager.

The session manager is a static utility class that loads TopLink sessions from the
sessions.xml file (see "Session Configuration and the sessions.xml File" on
page 72-4), caches the sessions by name in memory, and provides a single access point
for TopLink sessions.

At run time, TopLink will attempt to load the sessions.xml file from the two
following default resource names: sessions.xml and META-INF/sessions.xml.
Refer to Chapter 9, "Packaging a TopLink Application" for additional information.

The session manager supports the following session types:

■ ServerSession (see "Server and Client Sessions" on page 72-14)

■ SessionBroker (see "Session Broker and Client Sessions" on page 72-26)

■ DatabaseSession (see "Database Sessions" on page 72-29)

The session manager has two main functions: it creates instances of these sessions and
it ensures that only a single instance of each named session exists for any instance of a
session manager.

The session manager instantiates sessions as follows:

1. The client application requests a session by name.

2. The session manager looks up the session name in the sessions.xml file. If the
session name exists, the session manager instantiates the specified session;
otherwise, it raises an exception.

3. After instantiation, the session remains viable until you shut down the application.

Once you have a session instance, you can use it to acquire additional types of sessions
for special tasks. For example, you can acquire a unit of work from any session to
perform transactional operations. You can acquire a client session from a server
session to perform client operations in a three-tier architecture.

For more information, see "Acquiring and Using Sessions at Run Time" on page 75-1.

Managing Session Events With the Session Event Manager
Sessions raise session events for most session operations. Session events help you
debug or coordinate the actions of multiple sessions.

The session event manager handles information about session events. Applications
register session event listeners with the session event manager to receive session
events.

For example, session event listeners play an important role in the configuration of
isolated sessions (see "Configuring Exclusive Isolated Client Sessions for Virtual

Session Concepts

72-6 Oracle TopLink Developer’s Guide

Private Database" on page 77-1). In an isolated session, if the TopLink runtime raises a
SessionEvent.NoRowsModified event, it is handled by your
SessionEventListener (see "NoRowsModifiedSessionEvent Event Handler" on
page 77-3). This event listener is your opportunity to determine whether the update
failure was due to a security violation (in which case you should not retry the
operation) or due to an optimistic lock issue (in which case a retry may be
appropriate). See "Logging" on page 72-7 for information on adding logging to your
event listeners.

Another example is the use of session event listeners to configure proxy authentication
in an Oracle Database. (see "Configuring Oracle Database Proxy Authentication" on
page 83-12).

This section explains how to use session events, including the following:

■ Session Event Manager Events

■ Session Event Listeners

Session Event Manager Events
The session event manager supports the session events listed in the following tables:

■ Table 72–2, " Session Events"

■ Table 72–3, " Unit of Work Events"

Table 72–2 Session Events

Event Description

MissingDescriptor Raised if a descriptor is missing for a class being persisted. You can use
this event to lazy register the descriptor or set of descriptors.

MoreRowsDetected Raised when a ReadObjectQuery detects more than one row
returned from the database. This event can indicate a possible error
condition in your application.

NoRowsModified Raised after update or delete SQL has been sent to the database and a
row count of zero is returned.

OutputParametersDetected Raised after a stored procedure call with output parameters executes.
This event enables you to retrieve a result set and output parameters
from a single stored procedure.

PostAcquireClientSession Raised after a client Session is acquired

PostAcquireConnection Raised after acquiring a connection

PostAcquireExclusiveConnection Raised when a client Session, with isolated data, acquires an exclusive
connection.

PostBeginTransaction Raised after a database transaction starts

PostCommitTransaction Raised after a database transaction commits

PostConnect Raised after connecting to the database

PostExecuteQuery Raised after the execution of every query on the session

PostLogin Raised after the Session initializes and acquires connections

PostReleaseClientSession Raised after releasing a client Session

PostRollbackTransaction Raised after a database transaction rolls back

PreBeginTransaction Raised before a database transaction starts

PreCommitTransaction Raised before a database transaction commits

PreExecuteQuery Raised before the execution of every query on the session

PreLogin Raised before the Session initializes and acquires connections

PreReleaseClientSession Raised before releasing a client Session

Session Concepts

Understanding TopLink Sessions 72-7

Session Event Listeners
You can create session event listeners in two ways: either by implementing the
SessionEventListener interface, or by extending the SessionEventAdapter
class.

To register a SessionEventListener for session events, register it with a session
using the SessionEventManager method addListener.

For more information, see "Configuring Session Event Listeners" on page 74-17.

Logging
You can configure a session to write run-time information to a TopLink log. This
information includes status, diagnostic, SQL, and, when profiling is enabled,
performance data (see "Measuring TopLink Performance With the TopLink Profiler" on
page 11-2 or "Measuring TopLink Performance With the Oracle
Dynamic Monitoring System (DMS)" on page 11-4).

Logging options are configurable at the session level (see "Configuring Logging" on
page 74-4).

PreReleaseConnection Raised before releasing a connection

PreReleaseExclusiveConnection Raised before a client Session, with isolated data, releases its exclusive
connection.

PreRollbackTransaction Raised before a database transaction rolls back

Table 72–3 Unit of Work Events

Event Description

PostAcquireUnitOfWork Raised after a UnitOfWork is acquired

PostCalculateUnitOfWorkChangeSet Raised after the commit has begun on the UnitOfWork
and after the changes are calculated. The
UnitOfWorkChangeSet, at this point, will contain
change sets without the version fields updated and
without identity field type primary keys. These will be
updated after the insert, or update, of the object.

PostCommitUnitOfWork Raised after a UnitOfWork commits

PostDistributedMergeUnitOfWorkChangeSet Raised after a UnitOfWork change set has been merged
when that change set has been received from a distributed
session.

PostMergeUnitOfWorkChangeSet Raised after a UnitOfWork change set has been merged.

PostReleaseUnitOfWork Raised on a UnitOfWork after it is released.

PostResumeUnitOfWork Raised on a UnitOfWork after it resumes.

PreCalculateUnitOfWorkChangeSet Raised after the commit has begun on the UnitOfWork
but before the changes are calculated.

PreCommitUnitOfWork Raised before a UnitOfWork commits.

PreDistributedMergeUnitOfWorkChangeSet Raised before a UnitOfWork change set has been merged
when that change set has been received from a distributed
session.

PreMergeUnitOfWorkChangeSet Raised before a UnitOfWork change set has been merged.

PrepareUnitOfWork Raised after the a UnitOfWork flushes its SQL, but before
it commits its transaction.

PreReleaseUnitOfWork Raised on a UnitOfWork before it is released.

Table 72–2 (Cont.) Session Events

Event Description

Session Concepts

72-8 Oracle TopLink Developer’s Guide

This section describes session log options, including the following:

■ Log Types

■ Log Output

■ Log Level

■ Logging SQL

■ Logging Chained Exceptions

■ Viewing TopLink Log Messages From the Application Server Control Console

Log Types
TopLink supports the following types of logging:

■ TopLink Native Logging

■ java.util Logging

■ Server Logging

For a non-CMP application, you can configure the log type using TopLink Workbench
(see "Using TopLink Workbench" on page 74-5). For a CMP application, see
"Configuring Logging in a CMP Application" on page 74-9.

TopLink Native Logging

TopLink native logging is the default session log type. It is provided by
oracle.toplink.logging.DefaultSessionLog. Example 72–1 shows a typical
TopLink native log message.

You can configure TopLink native logging options using TopLink Workbench (see
"Using TopLink Workbench" on page 74-5).

Example 72–1 Sample TopLink Log Message

[TopLink Info]: DATE
TIME-DatabaseSession(12345)-Thread(12345)-TopLink, version: Oracle TopLink - 10g (Build
031203)
[TopLink Config]: DATE
TIME-DatabaseSession(12345)-Thread(12345)-Connection(12345)-

Note: To facilitate the debugging, you can add logging to your
listeners to only log the events that are of the interest to your
application. Within the session context, use the following logging
utility:

Session.getSessionLog().log(int level, String message)

Without the session context, use the following logging utility:

AbstractSessionLog.getLog().log(int level, String message)

Both the getSessionLog and getLog methods return a session log
(an instance of a SessionLog interface) loaded with an accessor’s log
messages and SQL. Then the session log performs logging at the level
that you specify.

For more information on session event listeners, see "Session Event
Listeners" on page 72-7.

Session Concepts

Understanding TopLink Sessions 72-9

connecting(DatabaseLogin(
platform=>Oracle9Platform
user name=> "username"
datasource URL=> "jdbc:oracle:thin:@144.23.214.115:1521:toplink"

))
[TopLink Config]: DATE
TIME-DatabaseSession(12345)-Thread(12345)-Connection(12345)-
Connected: jdbc:oracle:thin:@144.23.214.115:1521:toplink
User: USERNAME
Database: Oracle Version: Oracle9i Enterprise Edition - Production

With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.3.0 - Production
Driver: Oracle JDBC driver Version: 9.2.0.3.0

[TopLink Info]: DATE
TIME-DatabaseSession(12345)-Thread(12345)-loggingTestSession login
successful

java.util Logging

This type of logging makes TopLink conform to the java.util.logging package. It
is provided by oracle.toplink.logging.JavaLog. Logging options are
configured in the <JRE_HOME>/lib/logging.properties file. Messages are
written to any number of destinations based on this configuration. Example 72–2
shows a typical java.util.logging log message.

For more information on using java.util.logging package, see "Configuring a
Session to use java.util.logging Package" on page 74-8.

Example 72–2 Sample java.util.logging Log Messages

Dec 9, 2003 2:05:05 PM oracle.toplink.loggingTestSession DatabaseSession(32603767) Thread(10)
INFO: TopLink, version: Oracle TopLink - 10g (10.0.3) Developer Preview (Build 031203)
Dec 9, 2003 2:05:07 PM oracle.toplink.loggingTestSession.connection DatabaseSession(32603767)
Connection(927929) Thread(10)
CONFIG: connecting(DatabaseLogin(

platform=>Oracle9Platform
user name=> "coredev8"
datasource URL=> "jdbc:oracle:thin:@144.23.214.115:1521:toplink"

))
Dec 9, 2003 2:05:08 PM oracle.toplink.loggingTestSession.connection DatabaseSession(32603767)
Connection(927929) Thread(10)
CONFIG: Connected: jdbc:oracle:thin:@144.23.214.115:1521:toplink

User: COREDEV8
Database: Oracle Version: Oracle9i Enterprise Edition Release 9.2.0.3.0 - Production

With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.3.0 - Production

Driver: Oracle JDBC driver Version: 9.2.0.3.0
Dec 9, 2003 2:05:08 PM oracle.toplink.loggingTestSession DatabaseSession(32603767) Thread(10)
INFO: loggingTestSession login successful

Server Logging

Server logging is used to integrate TopLink logging with an application server log.

The TopLink runtime determines the server log type to use given the server platform
you configure when you create your project ("Project Creation Overview" on
page 18-1).

For example, if your project uses the OC4J platform, TopLink uses the
oracle.toplink.platform.server.oc4j.OjdlLog; if your project uses the
BEA WebLogic platform, TopLink uses the
oracle.toplink.platform.server.wls.WlsLog.

Session Concepts

72-10 Oracle TopLink Developer’s Guide

Log Output
If you are using TopLink native logging, you can configure TopLink to write log
messages to a file or to the console (see "Configuring Logging" on page 74-4).

If you are using java.util.logging, TopLink writes log messages to the
destinations you configure in the <JRE_HOME>/lib/logging.properties file (see
"Configuring a Session to use java.util.logging Package" on page 74-8).

If you are using server logging, TopLink writes log messages to the application
server's log file (there is no separate TopLink log file in this case).

Log Level
You can control the amount and detail of log output by configuring the log level (in
ascending order of information) in the following way:

■ SEVERE–Logs exceptions indicating TopLink cannot continue, as well as any
exceptions generated during login. This includes a stack trace.

■ WARNING–Logs exceptions that do not force TopLink to stop, including all
exceptions not logged with severe level. This does not include a stack trace.

■ INFO (default)–Logs the login/logout per server session, including the user name.
After acquiring the session, detailed information is logged.

■ CONFIG–Logs only login, JDBC connection, and database information.

■ FINE–Logs SQL (including thread information).

■ FINER–Similar to warning. Includes stack trace.

■ FINEST–Includes additional low level information

■ ALL–Logs everything.

By default, TopLink logs at the oracle.toplink.logging.SessionLog.INFO
level so that some information is logged by default.

At run time, set the log level using Session method setLogLevel, passing in one of
the log level constants provided by oracle.toplink.logging.SessionLog.

Logging SQL
In a relational project, TopLink accesses the database using SQL strings that it
generates internally. This feature enables applications to use the session methods or
query objects without having to perform their own SQL translation.

If, for debugging purposes, you want to review a record of the SQL that is sent to the
database, set the session log level to
oracle.toplink.logging.SessionLog.FINE–the session will log all executed
SQL to the session log.

Example 72–3 shows how to configure the log destination using the setLog()
method on the session.

Example 72–3 Configuring the Log Destination

private static SessionEventListener buildListener() {
return new SessionEventAdapter() {

public void preLogin(SessionEvent event) {
File file = new
File("C:\\oracle\\904\\toplink\\examples\\jdev\\2-TierEmployee\\toplin

k.log");
try {

Session Concepts

Understanding TopLink Sessions 72-11

System.out.println("FILE: " + file.getAbsolutePath());
FileWriter writer = new FileWriter(file);
event.getSession().setLog(writer);
} catch (IOException ioe) {
ioe.printStackTrace();
throw new RuntimeException("Failed to setup logging to: " +

file.getAbsolutePath());
}

}
};

}

Logging Chained Exceptions
The logging chained exception facility enables you to log causality when one exception
causes another as part of the standard stack back-trace. If you build your applications
with JDK 1.4, causal chains appear automatically in your logs.

Viewing TopLink Log Messages From the Application Server Control Console
You can view TopLink log messages using Oracle Enterprise Manager 10g.

If you are using TopLink native logging (to a file) or java.util.logging package,
edit the <OC4J_HOME>\toplink\config\TOPLINK.xml file log element attribute
path to match the log output file you specified in your session (see "Configuring
Logging" on page 74-4), or in the <JRE_HOME>/lib/logging.properties file (see
"Configuring a Session to use java.util.logging Package" on page 74-8). Example 72–4
shows the default TOPLINK.xml file:

Example 72–4 Default TOPLINK.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<logs xmlns="http://www.oracle.com/iAS/EMComponent/ojdl">

<log path="toplink/config/toplink.log" componentId="TOPLINK">
<logviewer LogType="ERROR" />

</log>
</logs>

If you are using server logging, you do not need to configure the <OC4J_
HOME>\toplink\config\TOPLINK.xml file: in this case, it is not used. Instead, all
TopLink log messages are written to the OC4J log file (which you can also view from
the application server control console).

For more information, see the Oracle Application Server Administrator’s Guide.

Profiler
The TopLink session provides profiling API that lets you identify performance
bottlenecks in your application (see "Configuring a Performance Profiler" on
page 74-10). When enabled, the profiler logs a summary of the performance statistics
for every query that the application executes.

TopLink allows you to measure application performance using the following tools:

■ TopLink Profiler

■ Oracle Dynamic Monitoring System (DMS)

Session Concepts

72-12 Oracle TopLink Developer’s Guide

TopLink Profiler
The TopLink profiler is a high-level logging service. Instead of logging SQL
statements, the profiler logs a summary of each query you execute. The summary
includes a performance breakdown of the query that lets you identify performance
bottlenecks. The profiler also provides a report summarizing the query performance
for an entire session.

Access profiler reports and profiles through the Profile tab in the TopLink Web client,
or create your own application or applet to view the profiler logs. For more
information, see "Accessing the TopLink Profiler Results" on page 11-3.

For more information, see "Measuring TopLink Performance With the TopLink
Profiler" on page 11-2.

Oracle Dynamic Monitoring System (DMS)
Oracle DMS is a library that enables application and system developers to use a
variety of DMS sensors to measure and export customized performance metrics for
specific software components (called nouns).

TopLink includes DMS instrumentation in essential objects to provide efficient
monitoring of runtime data in TopLink enabled applications, including both J2EE and
non-J2EE applications.

By enabling DMS profiling in a TopLink application, you can collect and easily access
run-time data that can help you with application administration tasks and
performance tuning.

You can easily access DMS data at run time using a management application that
supports the Java Management Extensions (JMX) API (see "Accessing Oracle DMS
Profiler Data Using JMX" on page 11-7), or using any Web browser and the DMS Spy
servlet (see "Accessing Oracle DMS Profiler Data Using the DMS Spy Servlet" on
page 11-7).

For more information, see "Measuring TopLink Performance With the Oracle
Dynamic Monitoring System (DMS)" on page 11-4.

Integrity Checker
When you log into a session, TopLink initializes and validates the descriptors you
registered with it. By configuring the integrity checker, you can customize this
validation process.

For more information, see "Configuring the Integrity Checker" on page 74-18.

Exception Handlers
Exception handlers allow any exception that occurs in a session to be caught and
processed. Exception handlers can be used for debugging purposes, or to resolve
database timeouts or failures.

To use exception handlers, register an implementor of the
oracle.toplink.exceptions.ExceptionHandler interface with the session
(see "Configuring an Exception Handler" on page 74-12).

If an exception occurs during a session operation, such as executing a query, the
exception is passed to the exception handler. The exception handler can either rethrow
the exception, or handle the exception and retry the operation. When handling
exceptions, ensure that the following conditions are met:

Session Concepts

Understanding TopLink Sessions 72-13

■ If you are performing a write query and you are within a transaction, you should
not retry the operation.

■ If you are performing a read query, you may retry the operation, and, if
successful, return the query result.

If your exception handler cannot proceed, you should throw an appropriate
application-specific exception.

For more information on the types of exceptions that TopLink can throw, see Part V,
"Troubleshooting a TopLink Application".

Registering Descriptors
You use a session to perform persistence operations on the objects described by
TopLink mapping metadata represented as a TopLink project (see "Understanding
Projects" on page 17-1). Each session must therefor be associated with the descriptors
of at least one TopLink project. You associate descriptors with a session by registering
them with the session.

The preferred way to register descriptors with a session is to use TopLink Workbench
to configure the session with a mapping project (see "Configuring a Primary Mapping
Project" on page 74-2 and "Configuring Multiple Mapping Projects" on page 74-9).

Sessions and CMP
Although TopLink is an integral part of a J2EE application, in most cases the client
does not interact with TopLink directly. Instead, TopLink features are invoked
indirectly by way of EJB container callbacks.

In a CMP TopLink project, you do not explicitly create, configure, or acquire a session.
The TopLink runtime creates, configures, acquires and uses a session itself internally.
For more information, see "Creating Session Metadata" on page 2-21. Similarly, in a
CMP TopLink project, how metadata is deployed depends on the EJB container and
application server you use (see "Deploying Metadata" on page 2-22).

Sessions and Sequencing
An essential part of maintaining object identity is managing the assignment of unique
values to distinguish one instance from another. For more information, see "Projects
and Sequencing" on page 17-4.

Sequencing options you configure in a sessions.xml (or project.xml) file
determine the type of sequencing that TopLink uses.

In a CMP project, you do not configure a sessions.xml file directly: in this case you
must configure the sequence type in the project.xml file (see "Configuring
Sequencing at the Project Level" on page 20-3).

In a non-CMP project, you can use session-level sequence configuration to override
project-level sequence configuration, on a session-by-session basis, if required (see
"Configuring Sequencing at the Session Level" on page 83-4).

After configuring the sequence type at the session (or project) level, for each descriptor
you must also configure sequencing options for that descriptor to use sequencing (see
"Descriptors and Sequencing" on page 23-9).

Server and Client Sessions

72-14 Oracle TopLink Developer’s Guide

Server and Client Sessions
A server session manages the server side of client/server communications, providing
shared resources, including a shared object cache and connection pools to a single data
source.

A client session is a client-side communications mechanism that works together with
the server session to provide the client/server connection. You acquire client sessions
from a server session at run time as required. By default, a client session shares the
session cache of its parent server session. Each client session serves one client. A client
session communicates with the server session on behalf of the client application.

Each client session can have only one associated server session, but a server session
can support any number of client sessions.

As Figure 72–2 illustrates, together, the client session and server session provide a
three-tier architecture that you can scale easily, by adding more client sessions. A
server session is the most common TopLink session type because it supports this
three-tier architecture that is common in enterprise applications. Because of this
scalability, Oracle recommends that you use the three-tier architecture to build your
TopLink applications.

Figure 72–2 Typical TopLink Server Session with Client Session Architecture

This section explains the advantages of using server sessions and client sessions in
your TopLink application, including the following:

■ Three-Tier Architecture Overview

■ Advantages of the TopLink Three-Tier Architecture

For more information, see the following:

■ "Creating a Server Session" on page 73-4

■ "Configuring Server Sessions" on page 76-1

■ "Acquiring a Session From the Session Manager" on page 75-3

■ "Acquiring a Client Session" on page 75-6

Three-Tier Architecture Overview
In a TopLink three-tier architecture, client sessions and server sessions both reside on
the server. Client applications access the TopLink application through a client session,
and the client session communicates with the database using the server session.

Server and Client Sessions

Understanding TopLink Sessions 72-15

Figure 72–3 Server Session and Client Session Usage

Advantages of the TopLink Three-Tier Architecture
Although the server session and the client session are two different session types, you
can treat them as a single unit in most cases, because they are both required to provide
three-tier functionality to the application. The server session provides the client
session to client applications, and also supplies the majority of the session
functionality.

This section discusses some of the advantages and general concepts associated with
the TopLink three-tier design, including the following:

■ Shared Resources

■ Providing Read Access

■ Providing Write Access

■ Security and User Privileges

■ Concurrency

■ Connection Allocation

Shared Resources
The three-tier design enables multiple clients to share persistent resources. The server
session provides its client sessions with a shared live object cache, read and write
connection pooling, and parameterized named queries. Client sessions also share
descriptor metadata.

You can use client sessions and server sessions in any application server architecture
that allows for shared memory and supports multiple clients. These architectures can
include HyperText Markup Language (HTML), Servlet, JavaServer Pages (JSP),
Remote Method Invocation (RMI), Common Object Request Broker Architecture
(CORBA), Web services, and EJB.

To support a shared object cache, client sessions must do the following:

■ Implement any changes to the database with the TopLink unit of work.

Server and Client Sessions

72-16 Oracle TopLink Developer’s Guide

■ Share a common database login for reading (you can implement separate logins
for writing).

Providing Read Access
To read objects from the database, the client must first acquire a client session from the
server session. Acquiring a client session gives the client access to the session cache
and the database through the server session. The server session behaves as follows:

■ If the object or data is in the session cache, then the server session returns the
information back to the client.

■ If the object or data is not in the cache, then the server session reads the
information from the database and stores the object in the session cache. The
objects are then available for retrieval from the cache.

Because a server session processes each client request in a separate thread, this enables
multiple clients to access the database connection pool concurrently.

Figure 72–4 illustrates how multiple clients read from the database using the server
session.

Figure 72–4 Multiple Client Sessions Reading the Database Using the Server Session

To read objects from the database using a client session, do the following:

1. Acquire a Session from the Server:

Server server =
(Server) SessionManager.getManager().getSession(

sessionName, MyServerSession.class.getClassLoader()
);

Session clientSession = (Session) server.acquireClientSession();

For more information, see "Acquiring and Using Sessions at Run Time" on
page 75-1.

2. Use the Session object to perform read operations (for more information, see
"Understanding TopLink Queries" on page 93-1 and "Understanding TopLink
Expressions" on page 95-1).

Server and Client Sessions

Understanding TopLink Sessions 72-17

Providing Write Access
Because the client session disables all database modification methods, a client session
cannot create, change, or delete objects directly. Instead, the client must obtain a unit
of work from the client session to perform database modification methods.

To write to the database, the client acquires a client session from the server session and
then acquires a unit of work within that client session. The unit of work acts as an
exclusive transactional object space, and also ensures that any changes that are
committed to the database also occur in the session cache.

Figure 72–5 illustrates how to write to the database using a client session acquired
from a server session.

Figure 72–5 Writing with Client Sessions and Server Sessions

To write to the database using a unit of work, use this procedure:

1. Acquire a session from the server session:

Server server =
(Server) SessionManager.getManager().getSession(

sessionName, MyServerSession.class.getClassLoader()
);

Session clientSession = (Session) server.acquireClientSession();

For more information, see "Acquiring and Using Sessions at Run Time" on
page 75-1.

Note: Oracle recommends that you do not use the Server session
object directly to read objects from the database.

Note: Although client sessions are thread-safe, do not use them to write
across multiple threads. Multithread write operations from the same
client session can result in errors and a loss of data. For more
information, see "Concurrency" on page 72-18.

Server and Client Sessions

72-18 Oracle TopLink Developer’s Guide

2. Acquire a UnitOfWork object from the Session object.

UnitOfWork uow = clientSession.acquireUnitOfWork();

For more information, see "Unit of Work Sessions" on page 72-19.

3. Use the unit of work to perform the required updates and then commit the
UnitOfWork.

For more information, see the following:

■ "Understanding TopLink Queries" on page 93-1

■ "Understanding TopLink Expressions" on page 95-1)

■ "Understanding TopLink Transactions" on page 97-1

Security and User Privileges
You can define several different server sessions in your application to support users
with different data access rights. For example, your application may serve a group
called "Managers," who has access rights to salary information, and a group called
"Employees," who do not. Because each session you define in the sessions.xml file
has its own login information, you can create multiple sessions, each with its own
login credentials, to meet the needs of both of these groups.

When you use internal TopLink connection pools (see "Connection Pools" on
page 81-7), each server session provides a read connection pool and a write connection
pool. All read queries use connections from the read connection pool and all queries
that write changes to the data store use connections from the write connection pool.
This ensures that connections for one session are kept separate from the connections
used in another.

To further isolate users from one another, you can use an isolated session: a special
type of client session that provides its own session cache isolated from the shared
object cache of its parent server session to provide improved user-based security, or to
avoid caching highly volatile data. For more information, see "Isolated Client Sessions"
on page 72-19.

Concurrency
The server session supports concurrent clients by providing each client with a
dedicated thread of execution. Dedicated threads enable clients to operate
asynchronously–that is, client processes execute as they are called and do not wait for
other client processes to complete.

TopLink safeguards thread safety with a concurrency manager. The concurrency
manager ensures that no two threads interfere with each other when performing
operations such as creating new objects, executing a transaction on the database, or
accessing value holders.

For more information about handling concurrency issues, see "Handling Stale Data" on
page 87-6.

Connection Allocation
When you instantiate the server session, it creates a pool of data source connections.
The session then manages the connection pool based on your session configuration,
and shares the connections among its client sessions. When the client session releases
the connection, the server session recovers the connection and makes it available to
other client processes. Reusing connections reduces the number of connections

Isolated Client Sessions

Understanding TopLink Sessions 72-19

required by the application and allows a server session to support a larger number of
clients.

The server session provides connections to client sessions as needed. By default, the
server session does not allocate a data source connection for a client session until a
transaction starts (a lazy data source connection). Alternatively, you can acquire a
client session that allocates a connection immediately (see "Acquiring a Client Session
That Does Not Use Lazy Connection Allocation" on page 75-9).

The server session allocates read connections from its read connection pool to all client
sessions. If your application requires multiple read security levels then you must use
multiple server sessions or TopLink isolated sessions (see "Isolated Client Sessions" on
page 72-19).

The server session also supports multiple write connection pools and nonpooled
connections. Be default, all client sessions use the default write connection pool.
However, if your application requires multiple security levels or user logins for write
access, then you can use multiple write connection pools. You can configure a client
session to use a specific write connection pool or nonpooled connection when it is
acquired (see "Acquiring a Client Session That Uses a Named Connection Pool" on
page 75-8). This connection is only used for writes, not reads (reads still go through the
server session read connection pool).

For more information, see the following:

■ "Internal Connection Pools" on page 81-7

■ "External Connection Pools" on page 81-8

Unit of Work Sessions
The unit of work ensures that the client edits objects in a separate object transaction
space. This feature lets clients perform object transactions in parallel. When
transactions are committed, the unit of work makes any required changes in the
database, and then merges the changes into the shared TopLink session cache. The
modified objects are then available to all other users.

For information on creating, configuring, and using a unit of work, see
"Understanding TopLink Transactions" on page 97-1.

Isolated Client Sessions
An isolated client session is a special type of client session that provides its own
session cache. This session cache is isolated from the shared session cache of its parent
server session.

If in your TopLink project you configure all classes as isolated (see "Configuring Cache
Isolation at the Project Level" on page 19-16), or one or more classes as isolated (see
"Configuring Cache Isolation at the Descriptor Level" on page 25-37), then all client
sessions that you acquire from a parent server session will be isolated client sessions.

Figure 72–6 illustrates the relationship between a parent server session’s shared
session cache and its child isolated client sessions.

Isolated Client Sessions

72-20 Oracle TopLink Developer’s Guide

Figure 72–6 Isolated Client Sessions

Each isolated client session owns an initially empty cache and identity maps used
exclusively for isolated objects that the isolated client session accesses while it is active.
The isolated client session’s isolated session cache is discarded when the isolated client
session is released.

When you use an isolated client session to read an isolated class, the client session
reads the isolated object directly from the database and stores it in that client session’s
isolated session cache. When you use the client session to read a shared class, the client
session reads the shared object from the parent server session’s shared session cache. If
the shared object is not in the parent server session’s shared session cache, it will read
it from the database and store it in the parent server session’s shared session cache.

Isolated objects in an isolated client session’s isolated session cache may reference
shared objects in the parent server session’s shared session cache, but shared objects in
the parent server session’s shared session cache cannot reference isolated objects in an
isolated client session’s isolated session cache.

Client sessions can access the data source using a connection pool, or an exclusive
connection. To use an exclusive connection, acquire the isolated client session using a
ConnectionPolicy (see "Acquiring a Client Session That Uses Exclusive
Connections" on page 75-7). Using an exclusive connection provides improved
user-based security for reads and writes. Named queries can also use an exclusive
connection (see "Configuring Named Query Advanced Options" on page 25-24).

Note: You cannot define mappings from shared classes to isolated
classes. If using CMP, you also cannot define references from isolated
enterprise beans to shared EJB.

Isolated Client Sessions

Understanding TopLink Sessions 72-21

Use isolated client sessions to do the following:

■ avoid caching highly volatile data in the shared session cache

■ achieve serializable transaction isolation (see "Isolated Client Session Cache" on
page 99-29)

■ use the Oracle Virtual Private Database (VPD) feature in your TopLink-enabled
application (see "Isolated Client Sessions and Oracle Virtual Private Database
(VPD)" on page 72-21)

For more information, see the following:

■ "Isolated Client Session Limitations" on page 72-24

■ "Acquiring an Isolated Client Session" on page 75-7

■ "Configuring Exclusive Isolated Client Sessions for Virtual Private Database" on
page 77-1

Isolated Client Sessions and Oracle Virtual Private Database (VPD)
Oracle9i Database Server (and later) provides a server-enforced, fine-grained access
control mechanism called Virtual Private Database (VPD). VPD ties a security policy to
a table by dynamically appending SQL statements with a predicate to limit data access
at the row level. You can create your own security policies, or use Oracle’s custom
implementation of VPD called Oracle Label Security (OLS). For more information on
VPD and OLS, see:

http://www.oracle.com/technology/deploy/security/index.html.

To use the Oracle Database VPD feature in your TopLink-enabled application, use
isolated client sessions.

Any class that maps to a table that uses VPD must have the descriptor configured as
isolated (see "Configuring Cache Isolation at the Descriptor Level" on page 25-37).

When you use isolated client sessions with VPD, you typically use exclusive
connections (see "Acquiring a Client Session That Uses Exclusive Connections" on
page 75-7).

To support VPD, you are responsible for implementing session event handlers that the
TopLink runtime invokes during the isolated client session life cycle (see "Isolated
Client Session Life Cycle" on page 72-22). The session event handler you must
implement depends on whether or not you are using Oracle Database proxy
authentication (see "VPD With Oracle Database Proxy Authentication" on page 72-22
and "VPD Without Oracle Database Proxy Authentication" on page 72-22).

For information, see "Configuring Exclusive Isolated Client Sessions for Virtual Private
Database" on page 77-1.

Note: If an isolated session contains an exclusive connection, you
must release the session when you are finished using it. Relying on
the finalizer to release the connection when the session is garbage
collected may cause errors when dealing with Java Transaction API
(JTA) transactions.

Isolated Client Sessions

72-22 Oracle TopLink Developer’s Guide

VPD With Oracle Database Proxy Authentication
If you are using Oracle Database proxy authentication ("Oracle Database Proxy
Authentication" on page 81-5), you must implement a session event handler for the
following session events:

■ noRowsModifiedSessionEvent (see "NoRowsModifiedSessionEvent Event
Handler" on page 77-3)

By using Oracle Database proxy authentication, you can set up VPD support entirely
in the database. That is, rather than making the isolated client session execute SQL (see
"PostAcquireExclusiveConnection Event Handler" on page 77-1 and
"PreReleaseExclusiveConnection Event Handler" on page 77-2), the database performs
the required setup in an after login trigger using the proxy session_user.

VPD Without Oracle Database Proxy Authentication
If you are not using Oracle Database proxy authentication, you must implement
session event handlers for the following session events:

■ postAcquireExclusiveConnection (see "PostAcquireExclusiveConnection
Event Handler" on page 77-1): used to perform VPD setup at the time TopLink
allocates a dedicated connection to an isolated session and before the isolated
session user uses the connection to interact with the database.

■ preReleaseExclusiveConnection (see "PreReleaseExclusiveConnection
Event Handler" on page 77-2): used to perform VPD cleanup at the time the
isolated session is released and after the user is finished interacting with the
database.

■ noRowsModifiedSessionEvent (see "NoRowsModifiedSessionEvent Event
Handler" on page 77-3)

In your implementation of these handlers, you obtain the required user credentials
from the ConnectionPolicy associated with the session (see "Acquiring a Client
Session That Uses Connection Properties" on page 75-8).

Isolated Client Session Life Cycle
This section provides an overview of the key phases in the life cycle of an isolated
session, including the following:

■ Setup required before using an isolated session

■ Interaction among isolated session objects

■ Clean-up required after using an isolated session

To enable the life cycle of an isolated session, use this procedure:

1. Prepare VPD configuration in the database.

2. Configure your project and session:

■ Designate descriptors as isolated (see "Configuring Cache Isolation at the
Descriptor Level" on page 25-37).

■ Configure your server session to allocate exclusive connections (see
"Configuring Connection Policy" on page 74-19).

■ Implement session event listeners for the required connection events

– If you are using Oracle Database proxy authentication (see "Oracle
Database Proxy Authentication" on page 81-5), see
"NoRowsModifiedSessionEvent Event Handler" on page 77-3.

Isolated Client Sessions

Understanding TopLink Sessions 72-23

– If you are not using Oracle Database proxy authentication, see
"PostAcquireExclusiveConnection Event Handler" on page 77-1,
"PreReleaseExclusiveConnection Event Handler" on page 77-2, and
"NoRowsModifiedSessionEvent Event Handler" on page 77-3

■ Implement exception handlers for the appropriate exceptions (see
"ValidationException Handler" on page 77-3).

3. Acquire an isolated session:

■ If you are using Oracle Database proxy authentication (see "Oracle Database
Proxy Authentication" on page 81-5):

Session myIsolatedClientSession = server.acquireClientSession();

Because you configured one or more descriptors as isolated,
myIsolatedClientSession is an isolated session with an exclusive
connection.

■ If you are not using Oracle Database proxy authentication:

ConnectionPolicy myConnPolicy =
(ConnectionPolicy)server.getDefaultConnectionPolicy().clone();

myConnectionPolicy.setProperty("credentials", myUserCredentials);
Session myIsolatedClientSession =

server.acquireClientSession(myConnectionPolicy);

Set the user’s credentials as appropriate properties on
myConnectionPolicy. Because you configured one or more descriptors as
isolated, myIsolatedClientSession is an isolated session with an
exclusive connection.

The TopLink runtime raises a
SessionEvent.PostAcquireExclusiveConnection event handled by your
SessionEventListener (see "PostAcquireExclusiveConnection Event Handler"
on page 77-1).

4. Use myIsolatedClientSession to interact with the database.

If the TopLink runtime raises a SessionEvent.NoRowsModified event, it is
handled by your SessionEventListener (see "NoRowsModifiedSessionEvent
Event Handler" on page 77-3).

5. When you are finished using myIsolatedClientSession, release the isolated
session:

myIsolatedClientSession.release();

The TopLink runtime prepares to destroy the isolated cache and to close the
exclusive connection associated with this isolated session.

The TopLink runtime raises a
SessionEvent.PreReleaseExclusiveConnection event handled by your
SessionEventListener (see "PreReleaseExclusiveConnection Event Handler"
on page 77-2).

Note: You must add these session event listeners to the server
session from which you acquire your isolated client session. You
cannot add them to the isolated client session itself. For more
information, see "Configuring Session Event Listeners" on page 74-17

Isolated Client Sessions

72-24 Oracle TopLink Developer’s Guide

6. Repeat steps 3 to 5 (as required) until the application exits.

Isolated Client Session Limitations
For the purposes of security as well as efficiency, observe the limitations described in
the following section, when you use isolated client sessions in your TopLink three-tier
application:

■ Mapping

■ Inheritance

■ Caching and Cache Coordination

■ Sequencing

■ CMP

■ Transactions and JTA

Mapping
Consider the following mapping and relationship restrictions when using isolated
sessions with your relational model:

■ Isolated objects may be related to shared objects, but shared objects cannot have
any relationships with isolated objects.

■ If a table has a VPD security policy associated with it, then the class mapped to
that table must be isolated.

■ If one of the tables in a multiple table mapping is isolated, then the main class
must also be isolated.

The TopLink runtime enforces these restrictions during descriptor initialization.

Inheritance
Aggregates and aggregate mappings inherit the isolated configuration of their parents.

If a class is isolated, then all inheriting classes should be isolated. Otherwise, if you
relate a shared class to a shared superclass with isolated subclasses, it is possible that
some of the isolated subclasses will lose object identity when the isolated session is
released.

To give you the flexibility to mix shared and isolated classes, the TopLink runtime
does not enforce these restrictions during descriptor initialization. If you wish to mix
shared and isolated classes in your inheritance hierarchy, then you must be prepared
to deal with this possible loss of object identity.

Caching and Cache Coordination
Isolated classes are never loaded into the shared cache of a parent server session.
Isolated classes cannot be used with cache coordination.

Sequencing
Oracle recommends that you do not configure a sequencing object as isolated.
TopLink does not access sequencing objects using the isolated session’s dedicated
connection, and so the sequence values are not available to the isolated session.

Historical Sessions

Understanding TopLink Sessions 72-25

CMP
For CMP, relationships between isolated and shared data is not allowed. This is
because of the relationship maintenance requirements of having bidirectional
references for all relationships.

Transactions and JTA
Oracle recommends that you explicitly release an isolated session when you are
finished using it, rather than wait for the Java garbage collector to invoke the finalizer.
The finalizer is provided as a last resort: waiting for the garbage collector may cause
errors when dealing with a JTA transaction.

Historical Sessions
By default, a session represents a view of the most current version of objects, and
when you execute a query in that session, it returns the most current version of
selected objects.

If your data source maintains past versions of objects, you can configure TopLink to
access this historical data so that you can express read queries conditional on how
your objects are changing over time. You can also do the following:

■ Make series of queries relative to any point in time–not just the time of the first
query.

■ Provide read consistency so that a series of read operations or report queries all
execute as if at the same time.

■ Use the mergeClone method to provide deep recovery of an object by passing in
a past version of it.

In addition, you can express query selection criteria as either of the following:

■ A condition at a past time: for example, "employees who used to...".

■ A change over time: for example, "employees who recently...".

For more information, see the following:

■ "Historical Session Limitations" on page 72-25

■ "Configuring Historical Sessions" on page 78-1

■ "Acquiring a Historical Session" on page 75-9

■ "Historical Queries" on page 93-21.

Historical Session Limitations
The HistoryPolicy provides a very flexible means of accommodating a wide
variety of historical schemas. However, be aware of the following restrictions:

■ You cannot use the HistoryPolicy, if your design combines both current and
historical data in a single schema.

■ You cannot use historical sessions, nor historical queries, with EJB entity beans.

■ TopLink assumes that the current version of an object corresponds to the row in
the historical table whose row end field is NULL.

■ You cannot directly map the start and end fields of a history table because they do
not exist in the regular schema.

■ You cannot query on ranges of historical objects, only as of a specific point in time.

Session Broker and Client Sessions

72-26 Oracle TopLink Developer’s Guide

Session Broker and Client Sessions
The TopLink session broker is a mechanism that enables client applications to
transparently access multiple databases through a single TopLink session.

The TopLink session broker enables client applications to access two or more
databases through a single session. If your application stores objects in multiple
databases, the session broker, which provides seamless communication for client
applications, enables the client to view multiple databases as if they were a single
database.

When a three-tier session broker application uses server sessions to communicate with
the database, clients require a client session to access the database. Similarly, when
you implement a session broker, the client requires a client session broker to access the
database.

A client session broker is a collection of client sessions, one from each server session
associated with the session broker. When a client acquires a client session broker, the
session broker collects one client session from each associated server session, and
wraps the client sessions so that they appear to be a single client session to the client
application.

As Figure 72–7 illustrates, a session broker connects to the databases through two or
more server sessions or database sessions.

Figure 72–7 TopLink Session Broker with Server Session Architecture

This section explains the following:

■ Session Broker Architecture

■ Committing a Transaction with a Session Broker

■ Session Broker Session Limitations

■ Session Broker Alternatives

For information, see:

■ "Creating Session Broker and Client Sessions" on page 73-6

■ "Configuring Session Broker and Client Sessions" on page 79-1

■ "Acquiring a Session From the Session Manager" on page 75-3

■ "Acquiring a Client Session" on page 75-6

Session Broker Architecture
As Figure 72–7 illustrates, a session broker contains a broker object that acts as an
intermediary between the application and the multiple sessions added to the session
broker.

Session Broker and Client Sessions

Understanding TopLink Sessions 72-27

To construct a session broker, use TopLink Workbench to modify your
sessions.xml file as follows:

1. Define two or more sessions (of the same type, either server sessions or database
sessions).

2. Define a session broker.

3. Add the sessions to the session broker.

When you use SessionManager method getSession(sessionBrokerName)
where sessionBrokerName is the name of the session broker you defined, the
session manager returns the corresponding session broker session (call it
mySessionBroker) that contains an instance of each of the sessions you added to it.
When you use mySessionBroker method login, it logs into each defined session.
Thereafter, you use mySessionBroker as you would any other session: TopLink
transparently handles access to the multiple databases.

In the case of a three-tier architecture where the session broker contains two or more
server sessions, you use session broker method acquireClientSessionBroker to
acquire a single client session that lets you query across all the data sources managed
by the various server sessions. You use this client session as you would any other
client session.

Committing a Transaction with a Session Broker
By default, when you commit a transaction with a session broker session, a two-stage
commit is performed.

Ideally, you should incorporate a JTA external transaction controller in order to benefit
from its two-phase commit.

Committing a Session with a JTA Driver: Two-Phase Commits
If you use a session broker, incorporate a JTA external transaction controller wherever
possible. The external transaction controller provides a two-phase commit, which passes
the SQL statements that are required to commit the transaction to the JTA driver. The
JTA driver handles the entire commit process.

JTA guarantees that the transaction commits or rolls back completely, even if the
transaction involves more than one database. If the commit operation to any one
database fails, then all database transactions roll back. The two-phase commit
operation is the safest method available to commit a transaction to the database.

Two-phase commit support requires integration with a compliant JTA driver.

Committing a Session Without a JTA Driver: Two-Stage Commits
If there is no JTA driver available, then the session broker provides a two-stage commit
algorithm. A two-stage commit differs from a two-phase commit in that it guarantees
data integrity only up to the point of the final commit of the transaction. If the SQL
script executes successfully on all databases, but the commit operation then fails on
one database, only the database that experiences the commit failure rolls back.

Although unlikely, this scenario is possible. As a result, if your system does not
include a JTA driver and you use a two-stage commit, build a mechanism into your
application to deal with this type of potential problem.

Session Broker and Client Sessions

72-28 Oracle TopLink Developer’s Guide

Session Broker Session Limitations
Although the session broker is a powerful tool that lets you use data that is distributed
across multiple databases from a single application, it has some limitations:

■ It may not meet the needs of your particular distributed data application (see
"Session Broker Alternatives" on page 72-28).

■ You cannot split multiple table descriptors across databases.

■ Each class must reside on only one database.

■ You cannot use joins through expressions across databases.

■ Many-to-many join tables must reside on the same database as the target object
(See "Many-to-Many Join Tables and Direct Collection Tables" on page 72-28 for a
work-around for this limitation).

Many-to-Many Join Tables and Direct Collection Tables
By default, TopLink assumes that many-to-many and direct collection tables are on the
same database as the source object. If they are on a different database, then you must
configure the mapping's session name using ManyToManyMapping or
DirectCollectionMapping method setSessionName as Example 72–5
illustrates.

Note that a many-to-many join table must still reside on the same database as the
target object.

Example 72–5 Using Mapping setSessionName in a Descriptor Amendment Method

public void addToDescriptor(ClassDescriptor descriptor) {
descriptor.getMappingForAttributeName("projects").setSessionName("branch-database");

}

To work around this problem for data-level queries, use the DatabaseQuery method
setSessionName.

Session Broker Alternatives
When evaluating whether or not to use a session broker in your application, consider
the following alternatives:

■ Database Linking

■ Multiple Sessions

Database Linking
Most enterprise databases, such as the Oracle Database, support linking other
databases on the database server. This allows querying and two-phase commit across
linked databases. Using the session broker is not the same as linking databases. If your
database allows linking, Oracle recommends that you use that functionality to provide
multiple database access instead of using a session broker.

Multiple Sessions
An alternative to the session broker is to use multiple sessions to work with multiple
databases:

■ If the data on each database is unrelated to data on the other databases, and
relationships do not cross database boundaries, then you can create a separate

Database Sessions

Understanding TopLink Sessions 72-29

session for each database. For example, you might have individual databases and
associated sessions dedicated to each department.

This arrangement requires that you to manage each session manually and ensure
that the class descriptors for your project reside in the correct session.

■ You can use additional sessions to house a standard batch job. In this case, you can
create two or more sessions on the same database. In addition to the main session
that supports client queries, you create other sessions that support batch inserts at
low-traffic times in your system. This lets you maintain the client cache.

Database Sessions
A database session provides a client application with a single data source connection,
for simple, standalone applications in which a single connection services all data
source requests for one user.

Figure 72–8 TopLink Database Session Architecture

A database session is the simplest session TopLink offers. It provides both client and
server communications and supports only a single client and a single database
connection. It is suitable for simple applications or 2-tier applications.

A database session contains and manages the following information:

■ An instance of Project and DatabaseLogin, which store database login and
configuration information

■ The JDBC connection and the database access

■ The descriptors for each of the application persistent classes

■ Identity maps that maintain object identity and act as a cache

For more information, see the following:

■ "Creating Database Sessions" on page 73-4

■ "Configuring Database Sessions" on page 73-8

■ "Acquiring a Session From the Session Manager" on page 75-3

Note: Oracle does not recommend using this session type in a 3-tier
application because it is not as flexible or scalable as a server and client
session. Oracle recommends that you use server sessions and client
sessions (see "Server and Client Sessions" on page 72-14). Applications
that are built using database sessions may be difficult to migrate to a
scalable architecture in the future.

Remote Sessions

72-30 Oracle TopLink Developer’s Guide

Remote Sessions
A remote session is a client-side session that communicates over RMI with a
corresponding client session and server session on the server-side. Remote sessions
handle object identity and marshalling and unmarshalling between client-side and
server-side.

A remote session resides on the client rather than the TopLink server. The remote
session does not replace the client session; rather, a remote session requires a client
session to communicate with the server session.

Figure 72–9 Typical TopLink Server Session with Remote Session Architecture

The remote session provides a full TopLink session, complete with a session cache, on
the client system. TopLink manages the remote session cache and enables client
applications to execute operations on the server.

A remote session offers database access to clients that do not reside on the server. The
remote session resides on the client and connects by way of RMI to a corresponding
client session, which, in turn, connects to its server session on the server.

This section describes the following:

■ Architectural Overview

■ Remote Session Concepts

For more information, see "Creating Remote Sessions" on page 73-10.

Architectural Overview
As Figure 72–10 illustrates, the remote session model consists of the following layers:

■ The application layer–a client-side application talking to a remote session

■ The transport layer–a communication layer, RMI or RMI-IIOP

■ The server layer–a TopLink session communicating with a database

The request from the client application to the server travels down through the layers of
a distributed system. A client that makes a request to the server session uses the
remote session as a conduit to the server session. The client references the remote
session, and the remote session forwards a request to the server session through the
transport layer.

At run time, the remote session builds its knowledge base by reading descriptors and
mappings from the server side as they are needed. These descriptors and mappings
are lightweight, because not all information is passed on to the remote session. The
information needed to traverse an object tree and to extract primary keys from the
given object is passed with the mappings and descriptors.

Remote Sessions

Understanding TopLink Sessions 72-31

Figure 72–10 An Architectural Overview of the Remote Session

Application Layer
The application layer includes the application client and the remote session. The
remote session is a subclass of Session and maintains all the public protocols of the
session, giving the appearance of working with the corresponding client session.

The remote session maintains its own identity map and a project of all the descriptors
read from the server. If the remote session can handle a request by itself, the request is
not passed to the server. For example, a request for an object that is in the remote
session cache is processed by the remote session. However, if the object is not in the
remote session cache, the request passes to the server session.

Transport Layer
The transport layer is responsible for carrying the semantics of the invocation. It is a
layer that hides all the protocol dependencies from the application and server layers.

The transport layer includes a remote connection that is an abstract entity, through
which all requests to the server are forwarded. Each remote session maintains a single
remote connection that marshals and unmarshals all requests and responses on the
client side.

The remote session supports communications over RMI.

Server Layer
The server layer includes a remote session controller dispatcher and a TopLink
sessions: Figure 72–10 illustrates a three-tier server and its client sessions. The remote
session controller dispatcher is an interface between the session and transport layers: it
marshals and unmarshals all responses and requests between the sessions on the
server and their corresponding remote sessions on the client.

Remote Session Concepts
When using remote sessions, consider the following:

■ Securing Remote Session Access

■ Queries

■ Refreshing

■ Indirection

■ Cursored Streams

■ Unit of Work

Remote Sessions

72-32 Oracle TopLink Developer’s Guide

Securing Remote Session Access
The remote session represents a potential security risk because it requires you to
register a remote session controller dispatcher as a service that anyone can access. This
can expose the entire database to nonprivileged access.

To reduce this threat, run a server manager as a service to hold the remote session
controller dispatcher. All the clients must then communicate through the server
manager, which implements the security model for accessing the remote session
controller dispatcher.

On the client side, the user requests the remote session controller dispatcher. The
manager returns a remote session controller dispatcher only if the user has access
rights according to the security model built into the server manager.

To access the system, the remote session controller dispatcher on the client side creates
a remote connection, and acquires a remote session from the remote connection. The
API for the remote session is the same as for the session, and there is no user-visible
difference between working on a session or a remote session.

Queries
Read queries are publicly available on the client side, but queries that modify objects
must be performed using the unit of work.

Refreshing
Calling refresh methods on the remote session causes database read operations, and
may also cause cache updates if the data being refreshed is modified in the database.
This can lead to poor performance.

To improve performance, configure refresh methods to run against the server session
cache, by configuring the descriptor to always remotely refresh the objects in the cache
on all queries. This technique ensures that all queries against the remote session
refresh the objects from the server session cache, without the database access.

Cache hits on remote sessions still occur on read object queries based on the primary
keys. To avoid this, disable the remote session cache hits on read object queries based
on the primary key.

For more information, see "Configuring Cache Refreshing" on page 25-27.

Indirection
The remote session supports indirection objects. An indirection object is a value holder
that can be invoked remotely on the client side. When invoked, the value holder first
checks to see if the requested object exists on the remote session. If not, then the
associated value holder on the server is instantiated to get the value that is then passed
back to the client. Remote value holders are used automatically; the application’s code
does not change.

Cursored Streams
A remote session supports both cursored streams and scrollable cursors.

For more information, see "Stream and Cursor Query Results" on page 93-8.

Unit of Work
Use a unit of work acquired from the remote session to modify objects on the database.
A unit of work acquired from the remote session offers the user the same functionality
as a unit of work acquired from the client session or the database session.

Understanding the Session API

Understanding TopLink Sessions 72-33

Sessions and the Cache
Server, database, isolated, and historical sessions include an identity map that
maintains object identity, and acts as a cache.

This section explains how the cache differs between the following sessions:

■ Server and Database Session Cache

■ Isolated Session Cache

■ Historical Session Cache

For more information, see "Understanding the Cache" on page 87-1.

Server and Database Session Cache
When a server or database session reads objects from the database, it instantiates them
and stores them in its identity map (cache). When the application subsequently queries
for the same object, TopLink returns the object in the cache, rather than read the object
from the database again.

This cache plays an important role in the performance of your application.

In the case of a server session, all client sessions acquired from it share the server
session’s cache.

To define how the cache manages objects, specify a strategy for cache management in
TopLink Workbench.

Isolated Session Cache
When an isolated session reads an object, whose descriptor is configured as isolated,
that object is instantiated and stored in the isolated session’s cache only–it is not stored
in the parent server session’s shared object cache. Objects in the isolated session’s
cache may reference objects in the parent server session’s shared object cache, but
objects in the parent server session’s shared object cache can never reference objects in
the isolated session’s cache.

Historical Session Cache
When a historical session reads objects, it does so only from its static, read-only cache,
which is populated with all objects as of a specified time.

Understanding the Session API
The session API is defined by the following interfaces:

■ oracle.toplink.sessions.Session

■ oracle.toplink.sessions.DatabaseSession

■ oracle.toplink.sessions.UnitOfWork

■ oracle.toplink.threetier.Server

These APIs are used at run time to access objects and the data source. Always use the
session public interfaces, not the corresponding implementation classes.

You should use the Session interface when reading and querying with any of client
sessions, session brokers, isolated client sessions, historical sessions, remote sessions,
and database sessions.

Understanding the Session API

72-34 Oracle TopLink Developer’s Guide

You should use the UnitOfWork interface for all units of work acquired from any type
of session.

You should use the Server interface to configure and acquire a client session from a
Server session.

The DatabaseSession interface can be used for a database session.

Typically, you define server sessions, database sessions, and session broker sessions in
a sessions.xml file and acquire them at run time using the SessionManager. You
can also acquire a server session or database session from a Project. The only session
that should ever be instantiated directly is the SessionBroker, and only when not
using the SessionManager.

You acquire a client session from a server session.

You can also acquire a client session broker from a session broker composed of server
sessions.

You acquire a unit of work from any session instance, client session broker, or session
broker which contains DatabaseSession instances.

Example 72–6 illustrates the session interfaces that derive from
oracle.toplink.sessions.Session interface.

Example 72–6 Session Interface Inheritance Hierarchy

oracle.toplink.sessions.Session
oracle.toplink.sessions.DatabaseSession

oracle.toplink.threetier.Server
oracle.toplink.sessions.UnitOfWork

Creating Sessions 73-1

73
Creating Sessions

This chapter explains how to create TopLink sessions, including the following:

■ Session Creation Overview

■ Creating a Sessions Configuration

■ Configuring a Sessions Configuration

■ Creating a Server Session

■ Creating Session Broker and Client Sessions

■ Creating Database Sessions

■ Creating Remote Sessions

For information on the various types of session available, see "Session Types" on
page 72-1.

Session Creation Overview
Each TopLink session is contained within a sessions configuration (sessions.xml)
file. You can create a sessions configuration using TopLink Workbench or Java code.
Oracle recommends that you use TopLink Workbench to create and manage your
sessions (see "Creating a Sessions Configuration" on page 73-1).

Alternatively, you can create sessions in Java. For more information on creating
sessions in Java, see Oracle TopLink API Reference.

After you create a session, you must configure its various options (see "Configuring a
Session" on page 74-1). After configuring the session, you can use it in your application
to manage persistence (see "Acquiring and Using Sessions at Run Time" on page 75-1).

Creating a Sessions Configuration
TopLink Workbench lets you create session instances and save them in the
sessions.xml file. It represents the sessions.xml file as a sessions configuration.
Individual session instances are contained within the sessions configuration. You can
create multiple sessions configurations, each corresponding to its own uniquely
named sessions.xml file.

Oracle recommends that you use TopLink Workbench to create and manage sessions.
It is the most efficient and flexible approach to session management. For more
information about the advantages of this approach, see "Session Configuration and the
sessions.xml File" on page 72-4.

Configuring a Sessions Configuration

73-2 Oracle TopLink Developer’s Guide

TopLink Workbench displays sessions configurations and their contents in the
Navigator window. When you select a session configuration, its attributes are
displayed in the Editor window.

Figure 73–1 calls out the following user interface elements:

1. Sessions Configuration

2. Database Session

3. Relational Server Session

4. Connection Pool

5. EIS Server Session

6. XML Session

7. Session Broker

Figure 73–1 Sessions Configurations in Navigator Window

Using TopLink Workbench
To create a TopLink sessions configuration (sessions.xml file), use this procedure:

1. Click New on the toolbar and select Sessions Configuration.

You can also create a new sessions configuration by selecting File > New >
Session Configuration from the menu, or by clicking Create New Sessions
Configuration in the standard toolbar.

2. The new sessions configuration element appears in the Navigator window; the
Sessions Configuration property sheet appears in the Editor window.

Enter data in each field on the Sessions Configuration property sheet as
"Configuring a Sessions Configuration" on page 73-2 describes.

Configuring a Sessions Configuration
Each TopLink sessions configuration (sessions.xml file) can contain multiple
sessions and session brokers. In addition, you can specify a classpath for each sessions
configuration that applies to all the sessions it contains.

Using TopLink Workbench
To configure a session configuration, use this procedure:

Configuring a Sessions Configuration

Creating Sessions 73-3

1. Select the session configuration in the Navigator. Its properties appear in the
Editor.

Figure 73–2 Sessions Configuration Property Sheet

Use the following information to enter data in each field of the Sessions configuration
property sheet:

Field Description

Project Save Location Click Change and select the directory in which to save the
sessions configuration.

Classpath Lists the JAR or ZIP files that contain the compiled Java classes
on which this sessions configuration depends for features that
require an external Java class (for example, session event
listeners).

■ To add a JAR or ZIP file, click Add Entries or Browse add
the file.

■ To remove a JAR or ZIP file, select the file and click
Remove.

■ To change the order in which TopLink searches these JAR
or ZIP files, select a file and click Up to move it forward or
click Down to move it back in the list.

Sessions for <sessions
configuration name>

Lists the available sessions defined in this sessions
configuration:

■ To add a session, click Add Session.

■ To remove a session, select the session and click Remove.

■ To rename a session, select the session and click Rename.

For more information on creating sessions using TopLink
Workbench, seen the following:

■ "Creating a Server Session" on page 73-4

■ "Creating Session Broker and Client Sessions" on page 73-6

■ "Creating Database Sessions" on page 73-8

Creating a Server Session

73-4 Oracle TopLink Developer’s Guide

Creating a Server Session
Oracle recommends that you create server sessions using TopLink Workbench (see
"Using TopLink Workbench" on page 73-4).

After you create a server session, you create a client session by acquiring it from the
server session (see "Acquiring a Client Session" on page 75-6).

Using TopLink Workbench
Before you create a server session, you must first create a sessions configuration (see
"Creating a Sessions Configuration" on page 73-1).

Creating a Session
To create a new TopLink server session, use this procedure:

1. Select the sessions configuration in the Navigator window in which you want to
create a session.

2. Click Add Session on the toolbar. The Create New Session dialog box appears.

You can also create a new server session by right-clicking the sessions
configuration in the Navigator and selecting New > Session from the context
menu, or by clicking Add Session on the Sessions Configuration property sheet.

Figure 73–3 Create New Session Dialog Box, Server Session Option

Use the following information to enter data in each field of the dialog box:

Field Description

Name Specify the name of the new session.

Use Server Platform Check this field if you intend to deploy your application to a J2EE
application server.

If you check this field, you must configure the target application
server by selecting a Platform.

Creating a Server Session

Creating Sessions 73-5

Using Java
You can create a server session in Java code using a project. You can create a project in
Java code, or read a project from a project.xml file.

Example 73–1 illustrates creating an instance (called serverSession) of a Server
class using a Project class.

Example 73–1 Creating a Server Session from a Project Class

Project myProject = new Project();
Server serverSession = myProject.createServerSession();

Example 73–2 illustrates creating an instance (called serverSession) of a Server
class using a Project read in from a project.xml file.

Platform This option is only available if you check Use Server Platform.

Select the J2EE application server to which you will deploy your
application.

TopLink supports the following J2EE application servers:

■ OC4J 10.1.3

■ OC4J 10.1.2

■ OC4J 9.0.4

■ OC4J 9.0.3

■ WebLogic 8.1

■ WebLogic 7.0

■ WebLogic 6.1

■ WebSphere 6.0

■ WebSphere 5.1

■ WebSphere 5.0

■ WebSphere 4.0

■ Custom

The server platform you select is the default server platform for all
sessions you create in this sessions configuration. At the session
level, you can override this selection or specify a custom server
platform class (see "Configuring the Server Platform" on
page 74-14).

Select Data Source Select the data source for this session configuration. Each session
configuration must contain one data source. Choose one of the
following:

■ Database to create a session for a relational project.

■ EIS to create a session for an EIS project.

■ XML to create a session for an XML project1.

See "TopLink Project Types" on page 17-1 for more information.

Select Session Select Server Session to create a session for a single data source
(including shared object cache and connection pools) for multiple
clients in a three-tier application.

1 You cannot create a server session for an XML project.

Field Description

Creating Session Broker and Client Sessions

73-6 Oracle TopLink Developer’s Guide

Example 73–2 Creating a Server Session from a project.xml File Project

Project myProject = XMLProjectReader.read("myproject.xml");
Server serverSession = myProject.createServerSession();

Example 73–3 illustrates creating a server session with a specified write connection
pool minimum and maximum size (when using TopLink internal connection pooling).
The default write connection pool minimum size is 5 and maximum size is 10.

Example 73–3 Creating a Server Session with Custom Write Connection Pool Size

XMLProjectReader.read("myproject.xml");
Server serverSession = myProject.createServerSession(32, 32);

Creating Session Broker and Client Sessions
A session broker may contain both server sessions and database sessions. Oracle
recommends that you use the session broker with server sessions because server
sessions are the most scalable session type.

Oracle recommends that you create server sessions using TopLink Workbench (see
"Using TopLink Workbench" on page 73-6).

After you create and configure a session broker with server sessions, you can acquire a
client session from the session broker at run time to provide a dedicated connection to
all the data sources managed by the session broker for each client. For more
information, see "Acquiring a Client Session" on page 75-6.

Using TopLink Workbench
Before you create a session broker session, you must first create a sessions
configuration (see "Creating a Sessions Configuration" on page 73-1) and one or more
server sessions ("Creating a Server Session" on page 73-4), or one or more database
sessions ("Creating Database Sessions" on page 73-8).

To create a new TopLink session broker, use this procedure:

1. Select the sessions configuration in the Navigator window in which you want to
create a session broker.

2. Click Add Session Broker on the toolbar. The Create New Session Broker dialog
box appears.

You can also create a new session broker by right-clicking the sessions
configuration in the Navigator window and selecting Add Session Broker from
the context menu or by clicking Add Session Broker on the Sessions
Configuration property sheet.

Creating Session Broker and Client Sessions

Creating Sessions 73-7

Figure 73–4 Create New Session Broker Dialog Box

Use the following information to enter data in each field of the dialog box:

Field Description

Name Specify the name of the new session broker.

Use Server Platform Check this field if you intend to deploy your application to a J2EE
application server.

If you check this field, you must configure the target application
server by selecting a Platform.

Platform This option is available only if you check Use Server Platform.

Select the J2EE application server to which you will deploy your
application.

TopLink supports the following J2EE application servers:

■ OC4J 10.1.3

■ OC4J 9.0.31

■ WebLogic 8.1

■ WebLogic 7.0

■ WebLogic 6.1

■ websphere 5.1

■ websphere 5.0

■ websphere 4.0

■ Custom

The server platform you select is the default server platform for all
sessions you create in this sessions configuration. At the session
level, you can override this selection or specify a custom server
platform class (see "Configuring the Server Platform" on
page 74-14).

1 Includes support for both 9.0.3 and 9.0.4.

Select the sessions to
Manage

Select sessions to be managed by this new session broker (from the
list of available sessions) and click OK.

Note: This field appears only if the configuration contains valid
sessions.

Creating Database Sessions

73-8 Oracle TopLink Developer’s Guide

Continue with Chapter 74, "Configuring a Session".

Using Java
Example 73–4 illustrates how you can create a session broker in Java code by
instantiating a SessionBroker and registering the brokered sessions with it.

Because the session broker references other sessions, configure these sessions before
instantiating the session broker. Add all required descriptors to the session, but do not
initialize the descriptors or log the sessions. The session broker manages these issues
when you instantiate it.

Example 73–4 Creating a Session Broker

Project databaseProject = new MyDatabaseProject();
Server databaseSession = databaseProject.createServerSession();

Project eisProject = new MyEISProject();
Server eisSession = eisProject.createServerSession();

SessionBroker sessionBroker = new SessionBroker();
sessionBroker.registerSession("myDatabase", databaseSession);
sessionBroker.registerSession("myEIS", eisSession);

sessionBroker.login();

Creating Database Sessions
Oracle recommends that you create database sessions using TopLink Workbench (see
"Using TopLink Workbench" on page 73-8).

After you create a database session, you can acquire and use it at run time. For more
information on acquiring a database session, see "Acquiring a Session From the
Session Manager" on page 75-3.

Using TopLink Workbench
Before you create a database session, you must first create a sessions configuration (see
"Creating a Sessions Configuration" on page 73-1).

To create a new TopLink database session, use this procedure:

1. Select the session configuration in the Navigator window in which you want to
create a session.

2. Click Add Session on the toolbar. The Create New Session dialog box appears.

You can also create a new configuration by right-clicking the sessions
configuration in the Navigator window and selecting New > Session from the
context menu.

Creating Database Sessions

Creating Sessions 73-9

Figure 73–5 Create New Session Dialog Box, Database Session Option

Use the following information to enter data in each field of the dialog box:

Field Description

Name Specify the name of the new session.

Use Server Platform Check this field if you intend to deploy your application to a J2EE
application server.

If you check this field, you must configure the target application
server by selecting a Platform.

Platform This option is available only if you check Use Server Platform.

Select the J2EE application server to which you will deploy your
application.

TopLink supports the following J2EE application servers:

■ OC4J 10.1.3

■ OC4J 9.0.31

■ WebLogic 8.1

■ WebLogic 7.0

■ WebLogic 6.1

■ websphere 5.1

■ websphere 5.0

■ websphere 4.0

■ Custom

The server platform you select is the default server platform for all
sessions you create in this sessions configuration. At the session
level, you can override this selection or specify a custom server
platform class (see "Configuring the Server Platform" on
page 74-14).

Creating Remote Sessions

73-10 Oracle TopLink Developer’s Guide

Enter the necessary information and click OK.

TopLink Workbench window appears, showing the database session in the Navigator
window.

Continue with Chapter 74, "Configuring a Session".

Using Java
You can create an instance of the DatabaseSession class in Java code using a
Project. You can create a project in Java code or read a project from a project.xml
file.

Example 73–5 illustrates creating a DatabaseSession using a Project class.

Example 73–5 Creating a Database Session from a Project Class

Project myProject = new Project();
DatabaseSession databaseSession = myProject.createDatabaseSession();

Example 73–6 illustrates creating a DatabaseSession using a Project read in from
a project.xml file.

Example 73–6 Creating a Database Session from a project.xml File Project

Project myProject = XMLProjectReader.read("myproject.xml");
DatabaseSession databaseSession = myProject.createDatabaseSession();

Creating Remote Sessions
Remote sessions are acquired through a remote connection to their server-side session.
Remote sessions are acquired through Java code on the remote client. The server-side
session must also be registered with an
oracle.toplink.remote.ejb.RemoteSessionController and accessible from
the RMI naming service.

You create remote sessions entirely in Java code (see "Using Java" on page 73-10).

Using Java
Example 73–7 and Example 73–8 demonstrate how to create a remote TopLink session
on a client that communicates with a remote session controller on a server that uses

Select Data Source Select the data source for this session configuration. Each session
configuration must contain one data source. Choose one of the
following:

■ Database to create a session for a relational project.

■ EIS to create a session for an EIS project.

■ XML to create a session for an XML project.

See "TopLink Project Types" on page 17-1 for more information.

Select Session Select Database Session to create a session for a single database
(including shared object cache and connection pools) for a single
client suitable for simple applications or prototyping.

1 Includes support for both 9.0.3 and 9.0.4.

Field Description

Creating Remote Sessions

Creating Sessions 73-11

RMI. After creating the connection, the client application uses the remote session as it
does with any other TopLink session.

Server
Example 73–7 shows the code you add to your application's RMI service
(MyRMIServerManagerImpl) to create and return an instance of an
RMIRemoteSessionController to the client. The controller sits between the remote
client and the local TopLink session.

The RMIRemoteSessionController you create on the server is based on a TopLink
server session. You create and configure this server session as described in "Creating a
Server Session" on page 73-4 and "Configuring Server Sessions" on page 76-1.

Example 73–7 Server Creating RMIRemoteSessionController for Client

RMIRemoteSessionController controller = null;
try {

// Create instance of RMIRemoteSessionControllerDispatcher which implements
// RMIRemoteSessionController. The constructor takes a TopLink session as a parameter
controller = new RMIRemoteSessionControllerDispatcher (localTopLinkSession);

} catch (RemoteException exception) {
System.out.println("Error in invocation " + exception.toString());

}
return controller;

Client
The client-side code gets a reference to the application's RMI service (in this example it
is called MyRMIServerManager) and uses this code to get the
RMIRemoteSessionController running on the server. The reference to the session
controller is then used to create the RMIConnection from which it acquires a remote
session.

Example 73–8 Client Acquiring RMIRemoteSessionController from Server

MyRMIServerManager serverManager = null;
// Set the client security manager
try {

System.setSecurityManager(new MyRMISecurityManager());
} catch(Exception exception) {

System.out.println("Security violation " + exception.toString());
}
// Get the remote factory object from the Registry
try {

serverManager = (MyRMIServerManager) Naming.lookup("SERVER-MANAGER");
} catch (Exception exception) {

System.out.println("Lookup failed " + exception.toString());
}
// Start RMIRemoteSession on the server and create an RMIConnection
RMIConnection rmiConnection = null;
try {

rmiConnection = new RMIConnection(
serverManager.createRemoteSessionController()

);
} catch (RemoteException exception) {

System.out.println("Error in invocation " + exception.toString());
}
// Create a remote session which we can use as a normal TopLink session
Session session = rmiConnection.createRemoteSession();

Creating Remote Sessions

73-12 Oracle TopLink Developer’s Guide

Configuring a Session 74-1

74
Configuring a Session

This chapter describes how to configure TopLink sessions.

Table 74–1 lists the types of TopLink sessions that you can configure and provides a
cross-reference to the type-specific chapter that lists the configurable options
supported by that type.

Table 74–2 lists the configurable options shared by two or more TopLink sessions
types.

For more information, see the following:

■ "Understanding TopLink Sessions" on page 72-1

■ "Creating Sessions" on page 73-1

Configuring Common Session Options
Table 74–2 lists the configurable options shared by two or more TopLink session types.
In addition to the configurable options described here, you must also configure the
options described for the specific Session Types, as shown in Table 74–1

Table 74–1 Configuring TopLink Sessions

If you are creating... See...

Server and Client Sessions Chapter 76, "Configuring Server Sessions"

Unit of Work Sessions Chapter 97, "Understanding TopLink Transactions"

Isolated Client Sessions Chapter 77, "Configuring Exclusive Isolated Client Sessions
for Virtual Private Database"

Historical Sessions Chapter 78, "Configuring Historical Sessions"

Session Broker and Client
Sessions

Chapter 79, "Configuring Session Broker and Client Sessions"

Database Sessions Chapter 80, "Configuring Database Sessions"

Table 74–2 Configurable Options for Session

Option Type
TopLink
Workbench Java

"Configuring a Primary Mapping Project" on page 74-2 Basic

"Configuring a Session Login" on page 74-4 Basic

"Configuring Logging" on page 74-4 Basic

"Configuring Multiple Mapping Projects" on page 74-9 Advanced

Configuring a Primary Mapping Project

74-2 Oracle TopLink Developer’s Guide

Configuring a Primary Mapping Project
The mapping project contains your TopLink mapping metadata (see "Understanding
Projects" on page 17-1), including descriptors and mappings. Each session is associated
with at least one project so that the session can register the descriptors.

Table 74–3 summarizes which sessions support a primary mapping project
configuration.

Using TopLink Workbench, you can export your mapping metadata as either a
deployment XML file or as a Java class. Consequently, in a session, you can specify the
mapping project as an XML file or as a Java class.

Oracle recommends that you export your mapping metadata from TopLink
Workbench as a deployment XML file (see "Exporting Project Information" on
page 18-13).

If you export your mapping metadata as a Java class, you must compile it and add it to
the session configuration classpath (see "Configuring a Sessions Configuration" on
page 73-2) before adding it to a session.

"Configuring a Performance Profiler" on page 74-10 Advanced

"Configuring an Exception Handler" on page 74-12 Advanced

"Configuring Customizer Class" on page 74-13 Advanced

"Configuring the Server Platform" on page 74-14 Advanced

"Configuring Session Event Listeners" on page 74-17 Advanced

"Configuring a Coordinated Cache" on page 88-1 Advanced

"Configuring the Integrity Checker" on page 74-18 Advanced

"Configuring Connection Policy" on page 74-19 Advanced

"Configuring Named Queries at the Session Level" on
page 74-21

Basic

Table 74–3 Session Support for Primary Mapping Project

Session
Using TopLink
Workbench Using Java

Server and Client Sessions

Session Broker and Client Sessions

Database Sessions

Note: When specifying the mapping project using XML, you can
specify the Java resource path. In most applications, the
sessions.xml and project.xml files are deployed inside the JAR
file, and the project XML path is specified as a Java resource path.

 When specifying the Java resource path, ensure that you are using the
forward slash character (/) for directories, not the back slash (\).
For example, com/myapp/mypersistence/my-project.xml, or
META-INF/my-project.xml.

Table 74–2 (Cont.) Configurable Options for Session

Option Type
TopLink
Workbench Java

Configuring a Primary Mapping Project

Configuring a Session 74-3

See "Configuring Multiple Mapping Projects" on page 74-9 for information on
configuring additional TopLink projects for the session.

Using TopLink Workbench
To specify the primary TopLink project metadata for your session, use this procedure:

1. Select a server or database session in the Navigator. Its properties appear in the
Editor.

2. Click the General tab. The General tab appears.

3. Click the Project subtab. The Project subtab appears.

Figure 74–1 General Tab, Project Subtab, Primary Project Option

4. Select the following options:

■ Click Edit to define the primary project. The Edit PrimaryProject dialog box
appears.

■ Select the Multiple Projects option to add additional projects to the session.
See "Configuring Multiple Mapping Projects" for more information.

Figure 74–2 Edit Primary Project Dialog Box

Use this information to enter date in each field of the Edit Primary Project dialog box:

Using Java
Using Java, you can register descriptors with a session using the following API:

Field Description

XML Select XML to add a mapping project as a deployment XML file. Click
Browse to select the file.

Class Select Class to add a mapping project as a compiled Java class file. Click
Browse to select the file.

Configuring a Session Login

74-4 Oracle TopLink Developer’s Guide

■ Project API–Read your project.xml file (or instantiate your project class) and
create your session using Project method createServerSession or
createDatabaseSession.

■ Session API–Add a descriptor or set of descriptors to a session using the
DatabaseSession API that Table 74–4 lists. Descriptors should be registered
before login, but independent sets of descriptors can be added after login.

Configuring a Session Login
A session login encapsulates details of data source access for any session that persists
to a data source. The session login overrides any other login configuration.

Table 74–5 summarizes which sessions support session login configuration.

The session login provides access to a variety of features, including the following:

■ Connection configuration such as whether or not to use external connection
pooling

■ Sequencing configuration (that overrides sequencing configuration made at the
project level, if any)

■ Miscellaneous options specific to your chosen data source

■ Properties (arbitrary, application-specific named values)

For more information, see the following:

■ "Data Source Login Types" on page 81-2

■ "Configuring a Data Source Login" on page 82-1

Configuring Logging
Use the TopLink logging framework to record TopLink behavior to a log file or session
console.

Table 74–6 summarizes which sessions support logging configuration.

Table 74–4 DatabaseSession API for Registering Descriptors

Session Method Description

addDescriptors(Project) Add to the session all the descriptors owned by the
passed in Project.

addDescriptors(Vector) Add to the session all the descriptors in the passed in
Vector.

addDescriptor(Descriptor) Add an individual descriptor to the session.

Table 74–5 Session Support for Session Login

Session Session Login

Server and Client Sessions

Session Broker and Client Sessions

Database Sessions

Configuring Logging

Configuring a Session 74-5

For a non-CMP application, you can configure logging using TopLink Workbench (see
"Using TopLink Workbench" on page 74-5). For a CMP application, see "Configuring
Logging in a CMP Application" on page 74-9.

For more information, see "Logging" on page 72-7.

Using TopLink Workbench
To specify the logging information for a session, use this procedure:

1. Select a database session in the Navigator. Its properties appear in the Editor.

2. Click the Logging tab. The Logging tab appears.

Figure 74–3 Logging Tab

Use the following information to enter data in each field of the Logging tab to select
the profiler option to use with this session:

Table 74–6 Session Support for Logging

Session
Using TopLink
Workbench Using Java

Server and Client Sessions

Unit of Work Sessions

Session Broker and Client Sessions

Database Sessions

Note: If the session belongs to a session broker, you must specify the
logging information in the session broker–not in the session itself.

Option Description

No Logging Select this option to specify that nothing is logged for
this session.

Configuring Logging

74-6 Oracle TopLink Developer’s Guide

Server Select this option to use logging capabilities of the
application server to which you are deploying this
application.

Java Select this option to use java.util.logging package.

Standard Select this option to use the TopLink logging framework.

When selected, you can optionally configure the
following options.

Logging Level Define the amount of logging information to record (in
ascending order of information):

■ Config–Log only login, JDBC connection, and
database information.

■ Info (default)–Log the login/logout per sever
session, with user name. After acquiring the session,
detailed information is logged.

■ Warning–Log exceptions that do not force TopLink
to stop, including all exceptions not logged with
Severe level. This does not include a stack trace.

■ Severe –Log exceptions indicating TopLink cannot
continue, and any exceptions generated during
login. This includes a stack trace.

■ Fine–Log SQL (including thread information).

■ Finer–Similar to warning. Includes stack trace.

■ Finest–Includes additional low-level information.

■ All–Log everything.

Console Select this option to display logging information to the
standard console output.

File Select this option to record logging information in a file.
Click Browse to specify the name and location of the log
file.

Options Select this option to override additional logging option
defaults for Java and Standard logging only.

Log Exception Stack Trace Select this option to include the stack trace with any
exception written to the log.

Default: For SEVERE messages, log stack trace. For
WARNING messages, only log stack trace at log level
FINER or lower.

Print Connection Select this option to include the connection identifier in
any connection related log messages.

Default: Enabled for all message and log levels.

Print Date Select this option to include the date and time at which
the log message was generated.

Default: Enabled for all message and log levels.

Print Session Select this option to include the session name in any
session related log messages.

Default: Enabled for all message and log levels.

Print Thread Select this option to include the thread name in any
thread related log messages.

Default: Log only at log level FINER or lower.

Option Description

Configuring Logging

Configuring a Session 74-7

Using Java
This section describes the following:

■ Using Session Logging API

■ Configuring a Session to use java.util.logging Package

■ Configuring Logging in a CMP Application

Using Session Logging API
If you use TopLink native logging (the default), then at run time, you can configure
logging options using oracle.toplink.sessions.Session logging API.

The Session interface defines the following logging methods:

■ setSessionLog–specify the type of logging to use (any implementor of
oracle.toplink.logging.SessionLog)

■ dontLogMessages–disable logging

■ setLog–specify the java.io.Writer to which the session logs messages

■ setLogLevel– specify the level at which the session logs using
oracle.toplink.logging.SessionLog constants:

– OFF

– SEVERE

– WARNING

– INFO

– CONFIG

– FINE

– FINER

– FINEST

– ALL

Example 74–1 illustrates how to configure a session to use java.util.logging
package.

Example 74–1 Configuring a Session to Use java.util.logging

session.setSessionLog(new JavaLog());

Example 74–2 illustrates how to configure a session to use the server log that OC4J
provides. For more information about server logging, see "Server Logging" on
page 72-9.

Example 74–2 Configuring a Session to Use Application Server Logging

session.setSessionLog(new OjdlLog());

Example 74–3 illustrates how to configure a session to log to a java.io.Writer:

Example 74–3 Configuring a Session to Log to a java.io.Writer

session.setLog(myWriter);

Configuring Logging

74-8 Oracle TopLink Developer’s Guide

Configuring a Session to use java.util.logging Package
If you use java.util.logging package, then you configure logging options in the
<JRE_HOME>/lib/logging.properties file. Messages are written to zero or
multiple destinations based on this configuration file.

If you configure a session to use java.util.logging package, consider the
following:

■ logging.properties

■ Formatters

■ Namespace

logging.properties Configure the logging.properties file as Example 74–4
illustrates:

Example 74–4 java.util.logging Configuration in logging.properties

handlers = java.util.logging.ConsoleHandler
java.util.logging.ConsoleHandler.level = CONFIG
java.util.logging.ConsoleHandler.formatter = oracle.toplink.logging.TopLinkSimpleFormatter
oracle.toplink.LoggingSession.connection.level = CONFIG

For information about the types of formatters available, see "Formatters" on page 74-8.

Formatters TopLink provides two formatters: TopLinkSimpleFormatter and
TopLinkXMLFormatter. They override the corresponding java.util.logging
formatters and always log session and connection info when available. They also log
thread and exception stack trace information at certain levels as specified by the
logging level.

Namespace Namespace is supported for java.util.logging. Table 74–7 lists the
static constants defined in oracle.toplink.logging.SessionLog for TopLink
components and the corresponding strings in logging.properties.

In the logging.properties names listed in Table 74–7, note that <sessionname>
is the name of the session that the application is running in. For example, if the name

Table 74–7 Logging Property FIle Names

SessionLog logging.properites

Not Applicable oracle.toplink

Not Applicable oracle.toplink.<sessionname>

SQL oracle.toplink.<sessionname>.sql

TRANSACTION oracle.toplink.<sessionname>.transaction

EVENT oracle.toplink.<sessionname>.event

CONNECTION oracle.toplink.<sessionname>.connection

QUERY oracle.toplink.<sessionname>.query

CACHE oracle.toplink.<sessionname>.cache

PROPAGATION oracle.toplink.<sessionname>.propagation

SEQUENCING oracle.toplink.<sessionname>.sequencing

EJB oracle.toplink.<sessionname>.ejb

Configuring Multiple Mapping Projects

Configuring a Session 74-9

of the session is MyApplication, then you would use
oracle.toplink.MyApplication.sql for the SQL logging property.

An application can also define its own namespace and write to it through the logging
API, as long as the logger for that namespace is defined in the logging configuration.
Otherwise messages are written to the parent logger,
oracle.toplink.<sessionname>.

Configuring Logging in a CMP Application
For a CMP project, you do not configure a session directly. In this case, you specify the
type of logging by configuring system property toplink.log.destination with
one of the following values:

■ fully qualified file specification (for example, C:\logs\toplink.log)–use
TopLink native logging to write log messages to the specified file.

■ JAVA–use java.util.logging package to write log messages to any
destination you configure in the <JRE_HOME>/lib/logging.properties file.

■ SERVER–use server logging to write log messages to the application server's log
file (there is no separate TopLink log file in this case).

■ SYSOUT–write log messages to System.out.

The log level for TopLink standard (default) logging can be set through the
toplink.log.level system property.

To configure other logging options, use a customization-class (see "Configuring
pm-properties" on page 8-10).

Configuring Multiple Mapping Projects
Each session is associated with at least one mapping project (see "Configuring a
Primary Mapping Project" on page 74-2). You can include additional TopLink mapping
projects for a session.

Table 74–8 summarizes which sessions support additional mapping project
configuration.

Using TopLink Workbench
To specify additional TopLink projects for your session, use this procedure:

1. Select a server or database session in the Navigator. Its properties appear in the
Editor.

2. Click the General tab. The General tab appears.

3. Click the Project subtab. The Project subtab appears.

Table 74–8 Session Support for Additional Mapping Project

Session
Using TopLink
Workbench Using Java

Server and Client Sessions

Session Broker and Client Sessions

Database Sessions

Configuring a Performance Profiler

74-10 Oracle TopLink Developer’s Guide

Figure 74–4 General Tab, Project Subtab, Multiple Projects Options

4. Select Multiple Projects option. The Multiple Projects subtab appears.

5. Click the Multiple Projects subtab.

Figure 74–5 General Tab, Multiple Projects Subtab

To add an additional mapping project to this session, click Add. For more information,
see "Configuring a Primary Mapping Project" on page 74-2.

To remove TopLink mapping projects, select the project file and click Remove.

Using Java
Using Java, you can register descriptors from more than one project with a session
using the DatabaseSession API that Table 74–9 lists. You can register descriptors
before login, but you can add independent sets of descriptors after login.

Configuring a Performance Profiler
To successfully improve the performance of a TopLink application, you must measure
performance before and after each optimization. TopLink provides a variety of built-in
performance measuring features (known as profilers) that you can configure at the
session level.

Table 74–10 summarizes which sessions support performance profiler configuration.

Table 74–9 DatabaseSession API for Registering Descriptors

Session Method Description

addDescriptors(Project) Add additional descriptor to the session in the form of a
project.

addDescriptors(Vector) Add a vector of individual descriptor files to the session
in the form of a project.

addDescriptor(Descriptor) Add individual descriptor to the session.

Configuring a Performance Profiler

Configuring a Session 74-11

 TopLink provides the following profilers:

■ TopLink profiler: logs performance statistics for every executed query in a given
session (see "Measuring TopLink Performance With the TopLink Profiler" on
page 11-2)

■ Oracle Dynamic Monitoring System (DMS): includes DMS instrumentation in
essential objects to provide efficient Web browser based monitoring of run-time
data in TopLink-enabled applications (see "Measuring TopLink Performance With
the Oracle Dynamic Monitoring System (DMS)" on page 11-4)

Using TopLink Workbench
To specify the type of profiler in a session, use this procedure:

1. Select a session in the Navigator. Its properties appear in the Editor.

2. Click the Options tab. The Options tab appears.

Figure 74–6 Options Tab, Profiler Options

Use the following information to select the profiler option to use with this session:

Table 74–10 Session Support for Performance Profiler Configuration

Session
Using TopLink
Workbench Using Java

Server and Client Sessions

Session Broker and Client Sessions

Database Sessions

Option Description

No Profiler Disable all profiling.

DMS Enable Oracle Dynamic Monitoring (DMS) profiling. For more
information, see the following:

■ "Configuring the Oracle DMS Profiler" on page 11-6

■ "Measuring TopLink Performance With the Oracle
Dynamic Monitoring System (DMS)" on page 11-4.

Standard (TopLink) Enable TopLink profiling. For more information, see the following:

■ "Configuring the TopLink Performance Profiler" on page 11-3

■ "Measuring TopLink Performance With the TopLink Profiler" on
page 11-2

Configuring an Exception Handler

74-12 Oracle TopLink Developer’s Guide

Using Java
You can use Java to configure a session with a profiler using Session method
setProfiler, as Example 74–5 shows.

Example 74–5 Configuring a Session with a TopLink Profiler

session.setProfiler(new PerformanceProfiler());

To end a profiling session, use Session method clearProfiler.

Configuring an Exception Handler
You can associate a single exception handling class with each session. This class must
implement the oracle.toplink.exceptions.ExceptionHandler interface.

Table 74–11 summarizes which sessions support exception handler configuration.

For an example exception handler implementation, see "Using Java" on page 74-12.

For more information, see "Exception Handlers" on page 72-12.

Using TopLink Workbench
To specify the exception handler class in a session, use this procedure:

1. Select a session in the Navigator. Its properties appear in the Editor.

2. Click the Options tab. The Options tab appears.

Figure 74–7 Options Tab, Exception Handler Field

Click Browse and select the exception handler class for this session.

Using Java
Example 74–6 shows an example exception handler implementation. In this
implementation, the exception handler always tries to reestablish the connection if it
has been reset by peer, but only retries a query if it is an instance of ReadQuery. Note

Table 74–11 Session Support for Exception Handler Configuration

Session
Using TopLink
Workbench Using Java

Server and Client Sessions

Session Broker and Client Sessions

Database Sessions

Configuring Customizer Class

Configuring a Session 74-13

that this exception handler either returns the result of the reexecuted ReadQuery or
throws an exception.

Example 74–6 Implementing an Exception Handler

session.setExceptionHandler(
new ExceptionHandler()
{
public Object handleException(RuntimeException exception)
{
if (exception instanceof DatabaseException)
{
DatabaseException dbex = (DatabaseException) exception;
if ((dbex.getInternalException() instanceof SQLException) &&

(((SQLException) dbex.getInternalException()).getErrorCode() == MyDriver.CONNECTION_RESET_BY_PEER))
{

dbex.getAccessor().reestablishConnection(dbex.getSession());
if (dbex.getQuery() instanceof ReadQuery)
{
return dbex.getSession().executeQuery(dbex.getQuery());

}
throw exception;

}
}
throw exception;

}
}

);

Configuring Customizer Class
A session customizer class is a Java class that implements the
oracle.toplink.tools.sessionconfiguration.SessionCustomizer
interface and provides a default (zero-argument) constructor. You can use a session
customizer to customize a session at run time on a loaded session before login occurs,
similar to how you can use an amendment method to customize a descriptor (see
"Configuring Amendment Methods" on page 25-81). For example, you can use a
session customizer class to define and register session event listeners with the session
event manager (see "Configuring Session Event Listeners" on page 74-17).

Table 74–12 summarizes which sessions support customizer class configuration.

For more information, see "Session Customization" on page 72-4.

Note: Unhandled exceptions must be rethrown by the exception
handler code.

Table 74–12 Session Support for Customizer Class Configuration

Session
Using TopLink
Workbench Using Java

Server and Client Sessions

Session Broker and Client Sessions

Database Sessions

Configuring the Server Platform

74-14 Oracle TopLink Developer’s Guide

Using TopLink Workbench
To specify the session customizer class in a session, use this procedure:

1. Select a session in the Navigator. Its properties appear in the Editor.

2. Click the Options tab. The Options tab appears.

Figure 74–8 Options Tab, Session Customizer Class Field

Click Browse and select the customizer class for this session.

Configuring the Server Platform
The TopLink server platform defines how a session integrates with a J2EE server
including the following:

■ Run-time services: Enables the deployment of a Java Management Extensions
(JMX) MBean that allows monitoring of the TopLink session. Currently, this is
only supported for OC4J.

■ External transaction controller: Integrates the TopLink session with the server's
Java Transaction API (JTA) service. This should always be used when using EJB or
JTA transactions. You configure TopLink to integrate with the container’s external
transaction service by specifying a TopLink external transaction controller. For
more information on external transaction services, see "Unit of Work Transaction
Demarcation" on page 97-2.

Table 74–8 summarizes which sessions support a server platform.

If the primary mapping project that you associate with a session has a persistence type
of bean-managed persistence (BMP) or Java objects, you may configure a server
platform using TopLink Workbench. For more information on primary mapping
project, see "Configuring a Primary Mapping Project" on page 74-2.

If the primary mapping project you associate with a session has a persistence type of
container-managed persistence (CMP), by default, the TopLink runtime automatically
configures a server platform to accommodate the application server on which it is
deployed.

Table 74–13 Session Support for Server Platform

Session
Using TopLink
Workbench Using Java

Server and Client Sessions

Session Broker and Client Sessions

Database Sessions

Configuring the Server Platform

Configuring a Session 74-15

Using TopLink Workbench
To specify the server platform options for a session, use this procedure:

1. Select a session in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

3. Click the Server Platform subtab. The Server Platform subtab appears.

Figure 74–9 General Tab, Server Platform Subtab

Use the following information to enter data in each field of the Server Platform subtab:

Field Description

Server Platform Check this field if you intend to deploy your application to a J2EE
application server.

If you check this field, you must configure the target application
server by selecting a Platform.

Configuring the Server Platform

74-16 Oracle TopLink Developer’s Guide

Platform Select the J2EE application server to which you will deploy your
application.

TopLink supports the following J2EE application servers:

■ OC4J 10.1.3

■ OC4J 10.1.2

■ OC4J 9.0.4

■ OC4J 9.0.3

■ WebLogic 8.1

■ WebLogic 7.0

■ WebLogic 6.1

■ WebSphere 6.0

■ WebSphere 5.1

■ WebSphere 5.0

■ WebSphere 4.0

■ Custom

For detailed information about supported application server
versions and configuration requirements, see "Integrating TopLink
With an Application Server" on page 7-1.

Select Custom if you have created your own
oracle.toplink.platform.server.ServerPlatform class
to use an application server not currently supported by TopLink or
to override an existing ServerPlatform. If you select Custom,
you must specify your custom ServerPlatform class by selecting
a Server Platform Class.

The server platform you select overrides the default server platform
set at the sessions configuration level (see "Creating a Sessions
Configuration" on page 73-1).

Enable Runtime
Services

Check this field to configure the TopLink runtime to enable the
deployment of a JMX MBean that allows monitoring of the TopLink
session. Currently, this is only supported for OC4J.

To use this feature, you must enable DMS data collection. For more
information, see "Configuring the Oracle DMS Profiler" on
page 11-6.

Enable External
Transaction Controller
(JTA)

Check this field if you intend to integrate your application with an
external transaction controller. For more information, see "Unit of
Work Transaction Demarcation" on page 97-2.

If you configure Platform for a J2EE application server that
TopLink supports, the TopLink runtime will automatically select
the appropriate external transaction controller class.

If you configure Platform as Custom, you must specify an external
transaction controller class by selecting an External Transaction
Controller.

Server Platform Class This option is only available if you configure Platform as Custom.

Click Browse to select your custom ServerPlatform class.

Transaction Controller
Class (JTA)

This option is only available if you configure Platform as Custom.

If you checked Enable External Transaction Controller (JTA), click
Browse to select the transaction controller class that corresponds
with your custom ServerPlatform class.

Field Description

Configuring Session Event Listeners

Configuring a Session 74-17

Using Java
When using Java, you must pass the session in a server platform constructor.
Example 74–7 illustrates using a session event listener (see "Configuring Session Event
Listeners" on page 74-17) to configure a session with a server platform from the
oracle.toplink.platform.server package.

Example 74–7 Configuring a Session with a Server Platform

public void preLogin(SessionEvent event) {
Server server = (Server) event.getSession();
server.setServerPlatform(new Oc4j_10_1_3_Platform((DatabaseSession) server));
}

Configuring Session Event Listeners
As you perform persistence operations with a session, the session produces various
events (see "Session Event Manager Events" on page 72-6) that the TopLink runtime
uses to coordinate its various components. You can configure a session with one or
more session event listeners (see "Session Event Listeners" on page 72-7) to customize
session behavior and debug session operations. For example, session event listeners
play an important role in the configuration of isolated sessions (see "Configuring
Exclusive Isolated Client Sessions for Virtual Private Database" on page 77-1).

Table 74–14 summarizes which sessions support event listeners.

Using TopLink Workbench

Session Event Listeners
To specify the event listener class in a session, use this procedure:

1. Select a session in the Navigator. Its properties appear in the Editor.

2. Click the Options tab. The Options tab appears.

Figure 74–10 Options Tab, Event Listeners field

Table 74–14 Session Support for Event LIsteners

Session
Using TopLink
Workbench Using Java

Server and Client Sessions

Session Broker and Client Sessions

Database Sessions

Configuring the Integrity Checker

74-18 Oracle TopLink Developer’s Guide

To add a new event listener, click Add, then select the event listener class for this
session.

To remove an existing event listener, select the Event Listener and click Remove.

Using Java
Example 74–8 illustrates how to use Java to register a session event listener with a
session. TopLink provides a SessionEventAdapter to simplify creating a
SessionEventListener. The SessionEventAdapter provides a default
implementation of all the methods of the SessionEventListener interface. You
need only override the specific methods of interest. Typically, you would define
session event listeners in a session customizer class (see "Configuring Customizer
Class" on page 74-13).

Example 74–8 Using the Session Event Adapter to Create a Session Event Listener

...
SessionEventAdapter myEventListener = new SessionEventAdapter() {

// Listen for PostCommitUnitOfWork events
public void postCommitUnitOfWork(SessionEvent event) {

// Call the handler routine
unitOfWorkCommitted();

}
};
mySession.getEventManager().addListener(myEventListener);
...

For information on how to add logging to your listeners, see "Logging" on page 72-7.

Configuring the Integrity Checker
When you log into a session, TopLink initializes and validates the descriptors you
registered with it. By configuring the integrity checker, you can customize this
validation process to do the following:

■ Check Database

■ Catch All Exceptions

■ Catch Instantiation Policy Exceptions

Table 74–15 summarizes which sessions support descriptor integrity checking
configuration.

Check Database
The IntegrityChecker method setShouldCheckDatabase specifies whether or
not the integrity checker should verify the descriptor's metadata against the database
metadata. This will report any errors due to missing or incorrect table or fields

Table 74–15 Session Support for Checking Descriptor Integrity

Session
Using TopLink
Workbench

Using
Java

Server and Client Sessions

Session Broker and Client Sessions

Database Sessions

Configuring Connection Policy

Configuring a Session 74-19

specified in the descriptors. This is turned off by default as it adds a significant
overhead to connecting a session.

Catch All Exceptions
By default, the integrity checker catches all exceptions that occur during initialization,
and throws a single exception at the end of initialization reporting all of the errors
detected. If you only want the first exception encountered, you can disable this feature
using IntegrityChecker method setShouldCatchExceptions(false).

Catch Instantiation Policy Exceptions
By default, the integrity checker tests the default or configured constructor for each
descriptor initialized in the session. To disable this feature, use IntegrityChecker
method setShouldCheckInstantiationPolicy(false).

Using Java
As Example 74–9 shows, you can configure the integrity checker validation process.

Example 74–9 Configuring the Integrity Checker

session.getIntegrityChecker().setShouldCheckDatabase(true);
session.getIntegrityChecker().setShouldCatchExceptions(false);
session.getIntegrityChecker().setShouldCheckInstantiationPolicy(false);
session.login();

Configuring Connection Policy
Using a connection policy, you can control how a TopLink session acquires and uses
read and write connections, including the following:

■ Exclusive Write Connections

■ Lazy Connection Acquisition

Table 74–15 summarizes which sessions support connection policy configuration.

Exclusive Write Connections
An exclusive connection is one that TopLink allocates to a client session for reading (of
isolated data) and writing for the duration of the client session's life cycle.

By default, exclusive connections are not used and a client session uses the server
session's read connection pool for all non-pessimistic read queries. A connection is
obtained from the read connection pool for each read query execution and released
back to the pool after the query is executed. A connection is only obtained from the
write connection pool for the unit of work commit operation, or, potentially, earlier if
data modify queries, or read queries using pessimistic locking are used. The
connection will be release back to the write connection pool after the unit of work is
committed or released.

Table 74–16 Session Support for Connection Policy

Session
Using TopLink
Workbench

Using
Java

Server and Client Sessions

Session Broker and Client Sessions

Database Sessions

Configuring Connection Policy

74-20 Oracle TopLink Developer’s Guide

Exclusive connections are provided for use with database read security or Virtual
Private Database (VPD) support. When using an exclusive connection, you will obtain
it from the server session's write connection pool. When you acquire the client, the
exclusive connection will be used for read queries to isolated classes (see "Isolated
Client Sessions" on page 72-19), exclusive read queries, pessimistic read queries, and
for the unit of work commit operation. The exclusive connection will only be released
when the client session is released. TopLink still acquires a shared connection from the
read connection pool for reading nonisolated data. If you use a JTA-managed external
connection pool with exclusive connections, do not reuse a client session across JTA
transaction boundaries, as the physical JTA database connection is released and
acquired from the connection pool relative to the JTA transaction life cycle. A new
client session, or the active unit of work, should be used for each JTA transaction. For
more information, see "Configuring Exclusive Read Connections" on page 86-6.

You can also configure exclusive connections on a client-session-by-client-session basis
(see "Acquiring a Client Session That Uses Exclusive Connections" on page 75-7) and
for named queries (see "Configuring Named Query Advanced Options" on
page 25-24).

Lazy Connection Acquisition
By default, TopLink acquires write connections lazily, when you perform the first unit
of work commit operation, exclusive read query, or pessimistic read query with your
client session. The write connection will also be released after each unit of work it
committed or released.

Alternatively, you can configure TopLink to acquire the write connection at the time
you acquire a client session, and release the connection when you release the client
session.

You can also configure lazy connection acquisition on a client-session-by-client-session
basis (see "Acquiring a Client Session That Does Not Use Lazy Connection Allocation"
on page 75-9).

Using TopLink Workbench
To specify the connection policy in a session, use this procedure:

1. Select a session in the Navigator. Its properties appear in the Editor.

2. Click the Connection Policy tab. The Connection Policy tab appears.

Figure 74–11 Connection Policy Tab

Note: If any client session contains an exclusive connection, you
must release the session (see "Logging Out of a Session" on
page 75-10) when you are finished using it. Relying on the finalizer to
release the connection when the session is garbage collected may
cause errors when dealing with JTA transactions.

Configuring Named Queries at the Session Level

Configuring a Session 74-21

Using Java
To configure whether or not an exclusive connection is allocated to a particular
isolated session, use ConnectionPolicy method
setShouldUseExclusiveConnection.

To define a map of properties used to support an isolated session, use the following
ConnectionPolicy methods:

■ setProperty(Object key, Object value): Adds the property value to
the Map under key, overwriting the existing value if key already exists in the Map.

■ Object getProperty(Object key): Returns the value associated with key as
an Object.

■ boolean hasProperties: Returns true if one or more properties exist in the
Map; otherwise returns false.

The TopLink runtime passes this Map into SessionEvent events
PostAcquireExclusiveConnection and PreReleaseExclusiveConnection
so that your implementation can make the appropriate PL/SQL calls to the underlying
database platform (see "PostAcquireExclusiveConnection Event Handler" on page 77-1
and "PreReleaseExclusiveConnection Event Handler" on page 77-2).

To configure the session to use a named connection pool, use the ConnectionPool
constructor that takes a String connection pool name as an argument:

Session clientSession = server.acquireClientSession(
new ConnectionPolicy("myConnectionPool")

);

Configuring Named Queries at the Session Level
A named query is a TopLink query that you create and store, by name, in a session for
later retrieval and execution. Named queries improve application performance,
because they are prepared once and they (and all their associated supporting objects)
can be efficiently reused thereafter making them well-suited for frequently executed
operations.

If a named query is global to a project, configure it at the session level. Alternatively,
you can configure a named query at the descriptor level (see "Configuring Named
Queries at the Descriptor Level" on page 25-10).

Use named queries to specify SQL, EJB QL, or TopLink Expression queries to access
your data source.

Table 74–17 summarizes which sessions support named query configuration.

After you create a named query, you can execute it by name on the TopLink session
(see "Using Named Queries" on page 94-18).

For more information about named queries, see "Named Queries" on page 93-16.

Table 74–17 Session Support for Named Queries

Session
Using TopLink
Workbench

Using
Java

Server and Client Sessions

Session Broker and Client Sessions

Database Sessions

Configuring Named Queries at the Session Level

74-22 Oracle TopLink Developer’s Guide

Using Java
You can store a query by name in a Session using Session method
addQuery(String name, DatabaseQuery query).

Acquiring and Using Sessions at Run Time 75-1

75
Acquiring and Using Sessions at Run Time

After you create and configure sessions, you can use the session manager to acquire a
session instance at run time.

This section explains the following:

■ Session Acquisition Overview

■ Acquiring the Session Manager

■ Acquiring a Session From the Session Manager

■ Acquiring a Client Session

■ Logging In to a Session

■ Using Session API

■ Logging Out of a Session

■ Storing Sessions in the Session Manager Instance

■ Destroying Sessions in the Session Manager Instance

Session Acquisition Overview
Oracle recommends that you export session instances from TopLink Workbench to
one or more uniquely named sessions.xml files and then use the session manager
to load sessions from these sessions.xml files.

The TopLink session manager enables developers to build a series of sessions that are
maintained under a single entity. The session manager is a static utility class that loads
TopLink sessions from the sessions.xml file, caches the sessions by name in
memory, and provides a single access point for TopLink sessions.

The session manager supports the following session types:

■ Server Session

■ Database Session

■ SessionBroker

See Chapter 72, "Understanding TopLink Sessions" for detailed information on these
available sessions.

The session manager has two main functions: it creates instances of the sessions and it
ensures that only a single instance of each named session exists for any instance of a
session manager.

Acquiring the Session Manager

75-2 Oracle TopLink Developer’s Guide

This is particularly useful for EJB applications in that an enterprise bean can acquire
the session manager and acquire the desired session from it.

Understanding the Session Manager
When a client application requires a session, it requests the session from the TopLink
session manager. The two main functions of the session manager are to instantiate
TopLink sessions for the server, and to hold the sessions for the life of the application.
The session manager instantiates database sessions, server sessions, or session brokers
based on the configuration information in the sessions.xml file.

The session manager instantiates sessions as follows:

■ The client application requests a session by name.

■ The session manager looks up the session name in the sessions.xml file. If the
session name exists, the session manager instantiates the specified session;
otherwise, it throws an exception.

■ After instantiation, the session remains viable until the application is shut down.

Multiple Sessions
Oracle does not recommend instantiating a session and passing it around as a global
entity.

Oracle recommends that you acquire sessions from the session manager and perform
all persistence operations using the unit of work acquired from the session.

Note that in the case of a server session or a session broker that contains server
sessions, after you acquire the session you will acquire a client session from it. From a
given server session (or session broker that contains server sessions), you can acquire
as many client sessions as you have clients.

Each client can easily manage concurrent access and referential constraints by
acquiring a unit of work from its client session and performing all persistence
operations using the unit of work.

Acquiring the Session Manager
TopLink maintains only one instance of the session manager class. The singleton
session manager maintains all the named TopLink sessions at run time. When an
application requests a session by name, the session manager retrieves the specified
session from the appropriate configuration file.

As Example 75–1 illustrates, to access the session manager instance, use the
oracle.toplink.tools.sessionmanagement.SessionManager method
getManager. You can then use the session manager instance to load TopLink
sessions.

Example 75–1 Acquiring a Session Manager Instance

import oracle.toplink.tools.sessionmanagement.SessionManager;
SessionManager sessionManager = SessionManager.getManager();

Acquiring a Session From the Session Manager

Acquiring and Using Sessions at Run Time 75-3

Acquiring a Session From the Session Manager
When the session manager loads a session that is not yet in its cache, the session
manager creates an instance of the appropriate session type and configures it
according to the sessions.xml file configuration.

This section explains the following:

■ Loading a Session From sessions.xml Using Defaults

■ Loading a Session From sessions.xml With an Alternative Class Loader

■ Loading a Session From an Alternative Session Configuration File

■ Loading a Session Without Logging In

■ Reloading and Refreshing Session Configuration

■ Refreshing a Session When the Class Loader Changes

Loading a Session From sessions.xml Using Defaults
If you have a single sessions configuration file (sessions.xml) that contains all the
session instances created from by TopLink Workbench, then you can load a session by
name, as Example 75–2 illustrates.

Example 75–2 Acquiring a Named Session from Session Manager Using Defaults

/* Load a named session (mysession) defined in the sessions.xml file. */
SessionManager manager = SessionManager.getManager();
Session session = manager.getSession("mysession");

In this example, the following session manager default configuration applies:

■ Class loader–The thread-based class loader is used to find and load the
sessions.xml resource and resolve any classes referenced in the
sessions.xml and project.xml files.

If you acquire the session in an application class, this will typically be the
application's class loader, which is correct. In a J2EE application, it is best to
specify this as the class loader from a class in the same JAR file that the
sessions.xml file is deployed in.

■ File–By default, the file named sessions.xml in the root directory relative to the
class loader is used.

If the file is named differently, or not in the root directory, the relative path must
be specified. Relative resource paths in Java must use /, not \.

■ Session name–The name passed into the getSession call.

This name must be unique for the entire application server, not just unique within
the application.

■ Login–true. The session will be connected by default.

Note: To best use the methods associated with the session type
that is being instantiated, cast the session that is returned from the
getSession method. This type must match the session type that is
defined in the sessions.xml file for the named session.

Acquiring a Session From the Session Manager

75-4 Oracle TopLink Developer’s Guide

If you must manually configure the session before login, set this option to false
(see "Loading a Session Without Logging In" on page 75-5).

■ Refresh–false. If already loaded, the same session will be returned.

Refresh should only be used, if it is known that the existing session is not being
used, and the configuration has changed, such as in a J2EE environment
redeployment scenario.

■ Verify class loader–false. The session manager will not refresh the session if the
class loader changes.

This should normally be set to true. It must be set to true in a J2EE environment,
if hot deployment or redeployment to a running application server is required (see
"Refreshing a Session When the Class Loader Changes" on page 75-6).

Loading a Session From sessions.xml With an Alternative Class Loader
You can use an alternative class loader to load sessions. This is common when your
TopLink application integrates with a J2EE container. The session manager uses the
class loader to find and load the sessions.xml resource and resolve any classes
referenced in the sessions.xml and project.xml files.

In most cases, you use the class loader from the current thread context, as
Example 75–3 illustrates. In this example, the session named mysession is loaded
from the first file in the application classpath named sessions.xml using the class
loader associated with the current thread context.

Example 75–3 Loading a Session Using the Current Thread Context Class Loader

/* Use the specified ClassLoader to load a session (mysession) defined in the
sessions.xml file */
SessionManager manager = SessionManager.getManager();
Session session = manager.getSession(

"mysession", // session name to load
Thread.current().getContextClassLoader() // ClassLoader instance to use

);

However, if your J2EE container does not support using the current thread context
class loader, you can use the class loader from the current class, as Example 75–4
illustrates.

Example 75–4 Loading a Session Using the Current Class’s Class Loader

/* Use the specified ClassLoader to load a session (mysession) defined in the
sessions.xml file */
SessionManager manager = SessionManager.getManager();
Session session = manager.getSession(

"mysession", // session name to load
this.getClass().getClassLoader() // ClassLoader instance to use

);

Loading a Session From an Alternative Session Configuration File
If your session instances are contained in multiple, uniquely named session
configuration files (sessions.xml files), then you must explicitly create an

Note: Oracle Containers for J2EE supports the use of the class loader
from the current thread.

Acquiring a Session From the Session Manager

Acquiring and Using Sessions at Run Time 75-5

XMLSessionConfigLoader object initialized with the name of the sessions.xml
file and pass that XMLSessionConfigLoader into the SessionManager method
getSession, as Example 75–5 illustrates.

The file path you specify is relative to the class loader root directory. Relative resource
paths in Java must use the forward slash (/), not back slash (\).

In this example, the session named mysession is loaded by the specified class loader
from the first file in the application classpath named toplink-sessions.xml.

Example 75–5 Loading a Session from an Alternative Configuration File

/* XMLSessionConfigLoader loads the toplink-sessions.xml file */
SessionManager manager = SessionManager.getManager();
manager.getSession(

new XMLSessionConfigLoader("toplink-sessions.xml"),
"mysession",
this.class.getClassLoader()

);

Loading a Session Without Logging In
The XMLSessionConfigLoader (see "Loading a Session From an Alternative Session
Configuration File" on page 75-4) lets you call a session using the SessionManager
method getSession, without invoking the Session method login, as
Example 75–6 shows. This lets you prepare a session for use and leave login to the
application.

Example 75–6 Open Session with No Login

SessionManager manager = SessionManager.getManager();
Session session = manager.getSession(

new XMLSessionConfigLoader(), // XMLSessionConfigLoader (sessions.xml file)
"mysession", // session name
YourApplicationClass.getClassLoader(), // class loader
false, // do not log in session
false); // do not refresh session

Reloading and Refreshing Session Configuration
You can tell the session manager to refresh an existing session from the
sessions.xml file. Typically, this would only ever be used in a J2EE environment at
redeployment time, or after a reset of a running server. You should only use this
option when you know that the existing session is not being used.

Example 75–7 Forcing a Reparse of the sessions.xml File

//In this example, XMLSessionConfigLoader loads sessions.xml from the classpath
SessionManager manager = SessionManager.getManager();
Session session = manager.getSession(

new XMLSessionConfigLoader(), // XMLSessionConfigLoader (sessions.xml file)
"mysession", // session name
YourApplicationClass.getClassLoader(), // class loader
true, // log in session
true // refresh session

);

Acquiring a Client Session

75-6 Oracle TopLink Developer’s Guide

Refreshing a Session When the Class Loader Changes
In a non-CMP J2EE environment, if you require hot deployment or redeployment to a
running application server, you must tell the session manager to refresh your session
if the class loader changes, as Example 75–8 shows. This option makes the session
manager refresh the session if the class loader changes, which occurs when the
application is redeployed. When this option is set to true, the same class loader must
always be used to retrieve the session.

Example 75–8 Forcing a Reparse of the sessions.xml File

//In this example, XMLSessionConfigLoader loads sessions.xml from the classpath
SessionManager manager = SessionManager.getManager();
Session session = manager.getSession(

new XMLSessionConfigLoader(), // XMLSessionConfigLoader (sessions.xml file)
"mysession", // session name
YourApplicationClass.getClassLoader(), // class loader
true, // log in session
false, // do not refresh session when loaded
true // do refresh session if class loader changes

);

In a CMP J2EE environment, the TopLink runtime and CMP integration handles this
for you automatically.

Acquiring a Client Session
Before you can acquire a client session, you must first use the session manager to
acquire a server session or a session broker that contains server sessions (see
"Acquiring a Session From the Session Manager" on page 75-3).

Table 75–1 summarizes the methods used to acquire various types of client sessions
from a server session and a session broker session that contains server sessions.

The acquireClientSession method returns a session of type ClientSession.

The acquireClientSessionBroker method returns a session of type
SessionBroker.

In both cases, you should cast the returned object to type Session and use it as you
would any other session.

For more information, see the following:

■ "Acquiring an Isolated Client Session" on page 75-7

■ "Acquiring a Historical Session" on page 75-9

■ "Acquiring a Client Session That Uses Exclusive Connections" on page 75-7

■ "Acquiring a Client Session That Uses Connection Properties" on page 75-8

Table 75–1 Method Used to Acquire a Client Session

Client
Session Server Session Method Session Broker Session Method

Regular or
Isolated

acquireClientSession() acquireClientSessionBroker()

Regular or
Isolated

acquireClientSession(ConnectionPolicy) not applicable

Historical acquireHistoricalSession(AsOfClause) not applicable

Acquiring a Client Session

Acquiring and Using Sessions at Run Time 75-7

■ "Acquiring a Client Session That Uses a Named Connection Pool" on page 75-8

■ "Acquiring a Client Session That Does Not Use Lazy Connection Allocation" on
page 75-9

Acquiring an Isolated Client Session
If in your TopLink project you configure all classes as isolated (see "Configuring Cache
Isolation at the Project Level" on page 19-16), or one or more classes as isolated (see
"Configuring Cache Isolation at the Descriptor Level" on page 25-37), then all client
sessions that you acquire from a parent server session will be isolated client sessions
(see "Isolated Client Sessions" on page 72-19).

Using a ConnectionPolicy, you can acquire an isolated client session that uses
exclusive connections (see "Acquiring a Client Session That Uses Exclusive
Connections" on page 75-7). This isolated client session can be configured with
connection properties for use with the Oracle Virtual Private Database (VPD) feature
(see "Acquiring a Client Session That Uses Connection Properties" on page 75-8).

For more information about VPD, see "Isolated Client Sessions and Oracle Virtual
Private Database (VPD)" on page 72-21.

Acquiring a Client Session That Uses Exclusive Connections
Example 75–9 illustrates how to configure a ConnectionPolicy and use it to acquire
a client session that uses exclusive connections.

Example 75–9 Acquiring a Client Session that Uses Connection Properties

ConnectionPolicy connectionPolicy = new ConnectionPolicy();
// Use an exclusive connection for the session
connectionPolicy.setShouldUseExclusiveConnection(true);

Session clientSession = server.acquireClientSession(connectionPolicy);
// By default, an exclusive connection will be acquired lazily

An exclusive connection is allocated from a shared connection pool. The connection is
dedicated to the client session that acquires it.

Acquiring a Client Session

75-8 Oracle TopLink Developer’s Guide

A named query can also use an exclusive connection (see "Configuring Named Query
Advanced Options" on page 25-24).

For more information, see the following:

■ "Acquiring a Client Session That Does Not Use Lazy Connection Allocation" on
page 75-9

■ "Configuring Connection Policy" on page 74-19.

Acquiring a Client Session That Uses Connection Properties
Example 75–10 illustrates how to configure a ConnectionPolicy and use it to
acquire a client session that uses connection properties. In this example, the properties
are used by the Oracle VPD feature (see "Isolated Client Sessions and Oracle Virtual
Private Database (VPD)" on page 72-21). You can use connection properties for other
application purposes.

Example 75–10 Acquiring an Isolated Session Using Connection Properties

ConnectionPolicy connectionPolicy = new ConnectionPolicy();
// Set VPD specific properties to be used in the events
connectionPolicy.setProperty("userLevel", new Integer(5));

Session clientSession = server.acquireClientSession(connectionPolicy);

For more information, see "Configuring Connection Policy" on page 74-19.

Acquiring a Client Session That Uses a Named Connection Pool
Before you can acquire a client session that uses a named connection pool, you must
configure your session with a named connection pool. For more information on named
connection pools, see "Application-Specific Connection Pools" on page 81-9. For more
information on creating a named connection pool, see "Internal Connection Pool
Creation Overview" on page 85-1.

Note: Typically, the life cycle of a client session is the duration of a
server request. However, if you are using JTA, it is the life cycle of a
JTA transaction.

You cannot hold the client session across the JTA transaction
boundaries. If you are not using a unit of work in your transaction
and you are configuring a client session to use an exclusive connection
(see Chapter 77, "Configuring Exclusive Isolated Client Sessions for
Virtual Private Database"), you must explicitly acquire and release the
session when you are finished using it. Although client sessions have
a finalizer that would release the session when it is garbage-collected,
you must not rely on the finalizer and release the exclusive client
session (or a non-lazy session) in the application to release the data
source connection. Note that the requirement to release the session in
not JTA-specific.

If you are using a unit of work (see Chapter 99, "Using Advanced Unit
of Work API"), you do not have to worry about releasing its client
session as the unit of work always automatically releases it at the end
of the JTA transaction.

Acquiring a Historical Session

Acquiring and Using Sessions at Run Time 75-9

To acquire a client session that uses a named connection pool, use Server method
acquireClientSession, passing in a ConnectionPolicy configured with the
desired connection pool. The acquired ClientSession uses connections from the
specified pool for writes (reads still go through the Server read connection pool).

Example 75–11 illustrates how to configure a ConnectionPolicy to specify a named
connection pool named myConnectionPool.

Example 75–11 Acquiring a Client Session that Uses a Named Connection Pool

// Assuming you created a connection pool named "myConnectionPool"
Session clientSession = server.acquireClientSession(

new ConnectionPolicy("myConnectionPool")
);

For more information, see "Configuring Connection Policy" on page 74-19.

Acquiring a Client Session That Does Not Use Lazy Connection Allocation
By default, the server session does not allocate a data source connection for a client
session until a transaction starts (a lazy data source connection). Alternatively, you can
acquire a client session that allocates a connection immediately.

Example 75–12 illustrates how to configure a ConnectionPolicy to specify that lazy
connection allocation is not used.

Example 75–12 Acquiring a Client Session that Does Not Use Lazy Connections

ConnectionPolicy connectionPolicy = new ConnectionPolicy();
connectionPolicy.setIsLazy(false);
Session clientSession = server.acquireClientSession(connectionPolicy);

For more information, see "Configuring Connection Policy" on page 74-19.

Acquiring a Historical Session
After you configure TopLink to access historical data (see "Historical Session
Configuration Overview" on page 78-1), you can query historical data using any
session type.

When you query historical data using a regular client session or database session, you
must always set ObjectLevelReadQuery method maintainCache to false in
order to prevent old (historical) data from corrupting the session cache. However, you
can query both current and historical object versions.

As a convenience, TopLink provides a historical session to simplify this process. When
you query historical data using a historical session, you do not need to set
ObjectLevelReadQuery method maintainCache to false. However, you can
query objects only as of the specified time.

Before you can acquire a historical session, you must first use the session manager to
acquire a server session.

To acquire a historical session, use Server method acquireHistoricalSession
passing in an AsOfClause.

The AsOfClause specifies a point in time that applies to all queries and expressions
subsequently executed on the historical session. The historical session’s cache is a
read-only snapshot of object versions as of the specified time. Its cache is isolated from
its parent server session’s shared object cache.

Logging In to a Session

75-10 Oracle TopLink Developer’s Guide

Logging In to a Session
Before you can use a session, you must first log in to the session using Session
method login.

By default, when you load a session using the session manager, TopLink automatically
logs in to the session using the zero-argument login method. For information on
loading a session without automatically logging into the session, see "Loading a
Session Without Logging In" on page 75-5.

If you load a session without logging in, you can choose from the following signatures
of the login method:

■ login(): Use the Login, user name, and password defined in the corresponding
sessions.xml file.

■ login(Login login): Override the Login defined in the corresponding
sessions.xml file with the specified Login.

■ login(String username, String password): Override the user name and
password defined in the corresponding sessions.xml file with the specified
user name and password.

When you log in to a session broker, the session broker logs in all contained sessions
and initializes the descriptors in the sessions. After login, the session broker appears
and functions as a regular session. TopLink handles the multiple database access
transparently.

Using Session API
For more information on using session API, for caching, see "Understanding the
Cache" on page 87-1.

For more information on using session API for queries, see "Understanding TopLink
Queries" on page 93-1.

For more information on using session API for transactions, see "Understanding
TopLink Transactions" on page 97-1.

Logging Out of a Session
When you are finished using a database or server session, you must log out of the
session using Session method logout.

When logging out of a session broker session logs out of all sessions registered with
the session broker.

When you are finished using a client session, you must release the session and any
connections allocated to it using Session method release.

Although TopLink provides a finalizer to release sessions, this is a last resort. Oracle
recommends that you always log out of your sessions.

Storing Sessions in the Session Manager Instance
Although Oracle recommends that you export all session instances from TopLink
Workbench to one or more sessions.xml files, alternatively, you can manually
create a session in your application and, as Example 75–13 illustrates, manually store it
in the session manager using SessionManager method addSession. Then, you can
acquire a session by name using the SessionManager method getSession.

Destroying Sessions in the Session Manager Instance

Acquiring and Using Sessions at Run Time 75-11

Example 75–13 Storing Sessions Manually in the Session Manager

// create and log in to the session programmatically
Session theSession = project.createDatabaseSession();
theSession.login();
// store the session in the SessionManager instance
SessionManager manager = SessionManager.getManager();
manager.addSession("mysession", theSession);
// retrieve the session
Session session = SessionManager.getManager().getSession("mysession");

Destroying Sessions in the Session Manager Instance
You can destroy sessions individually by name or destroy all sessions.

To destroy one session instance by name, use SessionManager method
destroySession, as Example 75–14 illustrates. If the specified session is not in the
session manager cache, a ValidationException is thrown.

Example 75–14 Destroying a Session in the Session Manager

SessionManager manager = SessionManager.getManager();
Server server = (Server) manager.getSession("myserversession");
…
// Destroy session by name. If the session named myserversession is not in the
// session manager cache, throw a ValidationException
manager.destroySession("myserversession");

To destroy all session instances, use the SessionManager method
destoryAllSessions, as Example 75–15 illustrates.

Example 75–15 Destroying All Sessions in the Session Manager

SessionManager manager = SessionManager.getManager();
Server server = (Server) manager.getSession("myserversession");
SessionBroker broker = (SessionBroker) manager.getSession("mysessionbroker");
…
// Destroy all sessions stored in the session manager
manager.destroyAllSessions();

Note: The addSession method is not necessary if you are
loading sessions from a session configuration file.

Note: You should only do this when a J2EE application is
un-deployed, or when the entire application is shut down and only
when it is known that the session is no longer in use. You should log
out of a session before destroying it (see "Logging Out of a Session" on
page 75-10). If you do not log out of a session, the session manager
will at the time you use it to destroy a session.

Destroying Sessions in the Session Manager Instance

75-12 Oracle TopLink Developer’s Guide

Configuring Server Sessions 76-1

76
Configuring Server Sessions

This chapter describes the various components that you must configure to use server
and client sessions.

Server Session Configuration Overview
Table 76–1 lists the configurable options for server sessions.

Configuring Internal Connection Pools
An internal connection pool is a collection of reusable connections to a single data
source provided by any session that persists to a data source. By default, such a
session provides both an internal read and write connection pool.

In this case, you can do the following:

■ Configure read and write connection pool options such as minimum and
maximum number of connections, alternate connection configuration, and
properties (arbitrary, application-specific named values).

Table 76–1 Configurable Options for Server Sessions

Option Type
TopLink
Workbench Java

"Configuring Internal Connection Pools" on page 76-1 Basic

"Configuring a Primary Mapping Project" on page 74-2 Basic

"Configuring a Session Login" on page 74-4 Basic

"Configuring Logging" on page 74-4 Basic

"Configuring External Connection Pools" on page 76-2 Advanced

"Configuring Multiple Mapping Projects" on page 74-9 Advanced

"Configuring a Performance Profiler" on page 74-10 Advanced

"Configuring an Exception Handler" on page 74-12 Advanced

"Configuring Customizer Class" on page 74-13 Advanced

"Configuring the Server Platform" on page 74-14 Advanced

"Configuring Session Event Listeners" on page 74-17 Advanced

"Configuring a Coordinated Cache" on page 88-1 Advanced

"Configuring the Integrity Checker" on page 74-18 Advanced

"Configuring Named Queries at the Session Level" on page 74-21 Basic

Configuring External Connection Pools

76-2 Oracle TopLink Developer’s Guide

■ Create named connection pools for whatever application-specific purpose you
choose.

■ Create sequence connection pools that TopLink uses exclusively for obtaining
object identifiers.

For more information about creating and configuring internal connection pools, see
the following:

■ "Creating an Internal Connection Pool" on page 85-1

■ "Configuring an Internal Connection Pool" on page 86-1

For more information about configuring the type of connection pool your session uses,
see "Configuring External Connection Pooling" on page 82-2.

Configuring External Connection Pools
An external connection pool is a collection of reusable connections to a single data
source provided by a JDBC driver or J2EE container.

By default, a session uses internal connection pools (see "Configuring Internal
Connection Pools" on page 76-1). For more information about configuring a session to
use an external connection pool, see "Configuring External Connection Pooling" on
page 82-2.

Configuring Exclusive Isolated Client Sessions for Virtual Private Database 77-1

77
Configuring Exclusive Isolated Client
Sessions for Virtual Private Database

This chapter describes the various components that you must configure before you can
acquire an exclusive isolated client session from a server session.

Exclusive Isolated Client Session Configuration Overview
Table 77–1 lists the configurable options for isolated sessions.

These options are used throughout the isolated session life cycle (see "Isolated Client
Session Life Cycle" on page 72-22).

PostAcquireExclusiveConnection Event Handler
TopLink raises this event after an exclusive connection is allocated to an isolated
session after the user has logged in to the database with it.

If you are using Oracle Database proxy authentication (see "Oracle Database Proxy
Authentication" on page 81-5), then you do not need to implement this session event
handler.

If you are not using Oracle Database proxy authentication, then, as part of the isolated
session life cycle, you must implement a SessionEventListener for
SessionEvent.PostAcquireExclusiveConnection.

Table 77–1 Configurable Options for Isolated Client Sessions

Option Type
TopLink
Workbench Java

"Configuring Cache Isolation at the Descriptor Level" on page 25-37 Basic

"Configuring Connection Policy" on page 74-19 Basic

"PostAcquireExclusiveConnection Event Handler" on page 77-1 Basic

"PreReleaseExclusiveConnection Event Handler" on page 77-2 Basic

"NoRowsModifiedSessionEvent Event Handler" on page 77-3 Basic

"ValidationException Handler" on page 77-3 Basic

Note: You must add this session event listener to the server session
from which you acquire your isolated client session. You cannot add
them to the isolated client session itself. For more information, see
"Configuring Session Event Listeners" on page 74-17

PreReleaseExclusiveConnection Event Handler

77-2 Oracle TopLink Developer’s Guide

Using Java
The SessionEvent.PostAcquireExclusiveConnection event listener is your
opportunity to authenticate your user and interact with the underlying database
platform: for example, to execute PL/SQL to create VPD packages and set VPD
context information.

Example 77–1 illustrates a typical session event listener used to handle
postAcquireExclusiveConnection events for an isolated session.

Example 77–1 Session Event Listener for an Isolated Session

class VPDEventListener extends SessionEventAdaptor{
public void postAcquireExclusiveConnection(SessionEvent event){

ClientSession session = (ClientSession)event.getSession();
// Get property set on the ConnectionPolicy prior to acquiring the connection
String userLevel = session.getConnectionPolicy().getProperty("userLevel");
// Make the Stored Procedure call for VPD to set up the Context Information
session.executeNonSelectingSQL("StoreProcSetContextUser("+ userLevel + ")");

}
}

To get the required user credentials, use ClientSession method
getConnectionPolicy to get the associated ConnectionPolicy, and then use
ConnectionPolicy method getProperty. The ConnectionPolicy associated
with the ClientSession should contain all required user credentials (see
"Configuring Connection Policy" on page 74-19).

After you implement the required SessionEventListener, add it to the parent
server session from which you acquire your isolated client session. For more
information, see "Configuring Session Event Listeners" on page 74-17.

PreReleaseExclusiveConnection Event Handler
TopLink raises a SessionEvent.PreReleaseExclusiveConnection event after
you call the isolated session method release.

If you are using Oracle Database proxy authentication (see "Oracle Database Proxy
Authentication" on page 81-5), then you do not need to implement this session event
handler.

If you are not using Oracle Database proxy authentication, then as part of the isolated
session life cycle, you must implement a SessionEventListener for
SessionEvent.PreReleaseExclusiveConnection.

Using Java
The SessionEvent.PreReleaseExclusiveConnection event listener gives you
an opportunity to interact with the underlying database platform: for example, to
perform any VPD-specific cleanup such as executing PL/SQL to delete VPD packages
or context information.

Example 77–1 illustrates a typical session event listener used to handle
preReleaseExclusiveConnection events for an isolated session.

Note: You must add this session event listener to the server session
from which you acquire your isolated client session. You cannot add
them to the isolated client session itself. For more information, see
"Configuring Session Event Listeners" on page 74-17

ValidationException Handler

Configuring Exclusive Isolated Client Sessions for Virtual Private Database 77-3

Example 77–2 Session Event Listener for an Isolated Session

class VPDEventListener extends SessionEventAdaptor{
public void preReleaseExclusiveConnection(SessionEvent event){

Session session event.getSession();
// Make the Stored Procedure call for VPD to reset the Context Information
session.executeNonSelectingSQL("StoreProcResetContext()");

}
}

To get the required user credentials, use ClientSession method
getConnectionPolicy to get the associated ConnectionPolicy, and then use
ConnectionPolicy method getProperty. The ConnectionPolicy associated
with the ClientSession should contain all required user credentials (see
"Configuring Connection Policy" on page 74-19).

After you implement the required SessionEventListener, add it to the parent
server session, from which you acquire your isolated client session. For more
information, see "Configuring Session Event Listeners" on page 74-17.

NoRowsModifiedSessionEvent Event Handler
As part of your general error handling strategy, you should implement a
SessionEventListener for SessionEvent.NoRowsModifiedSessionEvent.

TopLink raises this event when an update or delete query is executed against the
database, but no rows are updated, that is, a zero row count is returned.

If optimistic locking is not enabled and you query the database and violate your VPD
security configuration, no exception is thrown: the query simply returns zero rows
updated.

If optimistic locking is enabled and you query the database and violate your VPD
security configuration, an OptimisticLockException is thrown even though the
root cause of the failure was a security violation, not an optimistic locking issue.

Using Java
This event listener gives you an opportunity to determine whether the update failure
was due to a security violation (in which case you should not retry the operation), or
due to an optimistic lock issue (in which case a retry may be appropriate).

You can use the existing session event API, such as getQuery().getResult(), to
get the affected object, if any.

After you implement the required SessionEventListener, add it to the parent
server session, from which you acquire your isolated client session. For more
information, see "Configuring Session Event Listeners" on page 74-17.

ValidationException Handler
As part of your general error handling strategy, your application should be prepared
to handle a ValidationException of type ISOLATED_SESSION_IS_NO_LONGER_
AVAILABLE.

Note: You must add this session event listener to the server session
from which you acquire your isolated client session. You cannot add
them to the isolated client session itself. For more information, see
"Configuring Session Event Listeners" on page 74-17

ValidationException Handler

77-4 Oracle TopLink Developer’s Guide

TopLink throws an ISOLATED_SESSION_IS_NO_LONGER_AVAILABLE when a client
triggers the indirection on an isolated object when the isolated session used to load
that object is no longer available, that is, after you call the isolated session method
release.

Fore more information, see:

■ "Exception Handlers" on page 72-12

■ "Configuring an Exception Handler" on page 74-12

Configuring Historical Sessions 78-1

78
Configuring Historical Sessions

This chapter describes the various components that you must configure in order to be
able to use historical sessions.

For more information about historical sessions, see "Historical Sessions" on page 72-25.

Historical Session Configuration Overview
There are two ways to configure TopLink to access the historical versions of objects
maintained by your data source:

■ Configuring Historical Sessions Using an Oracle Platform

■ Configuring Historical Sessions Using a TopLink HistoryPolicy

Configuring Historical Sessions Using an Oracle Platform
Oracle9i Database Server (or later) automatically maintains historical versions of
objects and extends SQL with an AS_OF clause used to query this historical data.
Oracle refers to these as flashback queries.

If you configure your Session with an OraclePlatform (see "Configuring a
Relational Database Platform at the Session Level" on page 83-1) for Oracle9i Database
Server (or later), you can query the historical versions of objects automatically
maintained by Oracle Database.

No further session configuration is required.

For more information, see the following:

■ "Acquiring a Historical Session" on page 75-9

■ "Historical Queries" on page 93-21.

Configuring Historical Sessions Using a TopLink HistoryPolicy
If you use a schema that you designed to maintain historical versions of objects and if
that schema can be described by TopLink HistoryPolicy, you can query the
historical versions of objects maintained by your database in accordance with your
schema.

For more information, see the following:

■ "Configuring a History Policy" on page 25-76

■ "Acquiring a Historical Session" on page 75-9

■ "Historical Queries" on page 93-21.

Historical Session Configuration Overview

78-2 Oracle TopLink Developer’s Guide

Configuring Session Broker and Client Sessions 79-1

79
Configuring Session Broker and

Client Sessions

This chapter describes the various components that you must configure in order to use
session broker sessions.

Session Broker and Client Session Configuration Overview
Table 79–1 lists the configurable options for session broker sessions.

Removing, Renaming, or Adding Sessions
Using TopLink Workbench, you can manage the sessions contained by a session
broker.

Table 79–1 Configurable Options for Session Broker Session

Option Type
TopLink
Workbench Java

"Removing, Renaming, or Adding Sessions" on page 79-1 Basic

"Configuring a Primary Mapping Project" on page 74-2 Basic

"Configuring a Session Login" on page 74-4 Basic

"Configuring Logging" on page 74-4 Basic

"Configuring Multiple Mapping Projects" on page 74-9 Advanced

"Configuring a Performance Profiler" on page 74-10 Advanced

"Configuring an Exception Handler" on page 74-12 Advanced

"Configuring Customizer Class" on page 74-13 Advanced

"Configuring the Server Platform" on page 74-14 Advanced

"Configuring Session Event Listeners" on page 74-17 Advanced

"Configuring a Coordinated Cache" on page 88-1 Advanced

"Configuring the Integrity Checker" on page 74-18 Advanced

"Configuring Named Queries at the Session Level" on page 74-21 Basic

Note: Add only sessions of the same type to any given session
broker. Do not mix sessions of different types within a session broker.

Removing, Renaming, or Adding Sessions

79-2 Oracle TopLink Developer’s Guide

Using TopLink Workbench
To add sessions to, remove sessions from, or rename sessions in a session broker, use
this procedure:

1. Select a session broker in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

3. Click the Sessions subtab. The Sessions subtab appears.

Figure 79–1 General Tab, Sessions Subtab

To manage the sessions in this session broker, choose one of the following:

■ To remove a session, select the session in the Sessions tab’s list and click Remove.

■ To rename a session, select the session in the Sessions tab’s list and click Rename.
The Rename dialog box appears. Enter a new name and click OK.

■ To add a session, click Add Session. The Sessions dialog box appears showing a
list of all the sessions currently configured in the session configuration that owns
this session broker.

Figure 79–2 Sessions Dialog Box

Check the sessions in the Session dialog that you want to add to the session broker
and click OK.

Configuring Database Sessions 80-1

80
Configuring Database Sessions

This chapter describes the various components that you must configure in order to use
database sessions.

Database Session Configuration Overview
Table 80–1 lists the configurable options for database sessions.

Configuring External Connection Pools
Unlike a server session, a database session does not provide internal connection pools.
A database session only has a single database connection that it uses for its life cycle.

Oracle recommends that you use a server and client session in a three-tier
environment. Alternatively, you can use a database session with an external
connection pool (see "Configuring External Connection Pooling" on page 82-2): in this
case, you should allocate a new database session per user/thread or request.

Table 80–1 Configurable Options for Database Session

Option Type
TopLink
Workbench Java

"Configuring External Connection Pools" on page 80-1 Basic

"Configuring a Primary Mapping Project" on page 74-2 Basic

"Configuring a Session Login" on page 74-4 Basic

"Configuring Logging" on page 74-4 Basic

"Configuring Multiple Mapping Projects" on page 74-9 Advanced

"Configuring a Performance Profiler" on page 74-10 Advanced

"Configuring an Exception Handler" on page 74-12 Advanced

"Configuring Customizer Class" on page 74-13 Advanced

"Configuring the Server Platform" on page 74-14 Advanced

"Configuring Session Event Listeners" on page 74-17 Advanced

"Configuring a Coordinated Cache" on page 88-1 Advanced

"Configuring the Integrity Checker" on page 74-18 Advanced

"Configuring Named Queries at the Session Level" on page 74-21 Basic

Configuring External Connection Pools

80-2 Oracle TopLink Developer’s Guide

The usage of an external connection pool reduces the number of the database session
login and logout attempts to acquire the database connection.

WARNING: Do not allow the concurrent use of a database session
by multiple users/threads.

Part XVI
 Data Access

This part describes how TopLink defines connections to a data source. It contains the
following chapters:

■ Chapter 81, "Understanding Data Access"

This chapter describes each of the different TopLink data source login types and
important data access concepts.

■ Chapter 82, "Configuring a Data Source Login"

This chapter explains how to configure TopLink data source login options
common to two or more data source login types.

■ Chapter 83, "Configuring a Database Login"

This chapter explains how to configure a TopLink database login for a session
used in a relational project.

■ Chapter 84, "Configuring an EIS Login"

This chapter explains how to configure a TopLink EIS login for a session used in
an EIS project.

■ Chapter 85, "Creating an Internal Connection Pool"

This chapter explains how to create an internal connection pool.

■ Chapter 86, "Configuring an Internal Connection Pool"

This chapter explains how to configure an internal connection pool.

Understanding Data Access 81-1

81
Understanding Data Access

One of the most important functions of a session is to provide access to a data source.
This chapter explains session components specific to accessing a data source.

This chapter explains the following:

■ Data Access Concepts

■ Understanding Data Access API

Data Access Concepts
This section describes concepts unique to TopLink data access, including the
following:

■ Externally Managed Transactional Data Sources

■ Data Source Login Types

■ Data Source Platform Types

■ Authentication

■ Connections

■ Connection Pools

Externally Managed Transactional Data Sources
A TopLink transactional data source is externally managed if the connection pool is
managed by a transaction service (such as an application server controlled transaction
or a JTA transaction). A JTA managed data source or connection pool is commonly
used in J2EE applications and normally required in EJB applications. Use an
externally-managed connection pool as follows:

■ Configure the session to use an ExternalTransactionController to
integrate TopLink’s unit of work with the external transaction service (see
"Integrating the Unit of Work With an External Transaction Service" on
page 99-21).

■ Use the external-transaction-control option to specify the connection’s login and
inform TopLink that the connection is maintained by the external controller (see
"Configuring External Connection Pooling" on page 82-2).

■ You may need to configure the TopLink read connection pool or sequence
connection pool to use a non-JTA connection pool in order to avoid transactional
overhead (see "Default (Write) and Read Connection Pools" on page 81-8).

For more information on transactional data sources, see the following:

Data Access Concepts

81-2 Oracle TopLink Developer’s Guide

■ "JTA Controlled Transactions" on page 97-3

■ "OTS Controlled Transactions" on page 97-3

■ "CMP Controlled Transactions" on page 97-3

Refer to Chapter 97, "Understanding TopLink Transactions" for more information on
TopLink transactions.

Data Source Login Types
The login (if any) associated with a session determines how the TopLink runtime
connects to the project’s data source.

A login includes details of data source access, such as authentication, use of
connection pools, and use of external transaction controllers. A Login owns a data
source platform.

A data source platform includes options specific to a particular data source including
such as binding, use of native SQL, use of batch writing, and sequencing. For more
information about platforms, see "Data Source Platform Types" on page 81-3.

For projects that do not persist to a data source, a login is not required. For projects
that do persist to a data source, a login is always required.

In TopLink Workbench, the project type determines the type of login that the project
uses, if applicable.

You can use a login in a variety of roles. A login’s role determines where and how you
create it. The login role you choose depends on the type of project you are creating and
how you intend to use the login:

■ "Non-CMP Session Role: Session Login" on page 17-3

■ "CMP Deployment Role: Deployment Login" on page 17-3

■ "Development Role: Development Login" on page 17-4

There is a session login type for each project type that persists to a data source:

■ DatabaseLogin

■ EISLogin

Note that there is no XML login. TopLink XML projects are used for nonpersistent,
in-memory object to XML data transformation and consequently there is no data
source to log in to. For more information about persistent and nonpersistent projects,
see "Persistent and Nonpersistent Projects" on page 17-2.

For additional information, see the following:

■ "Projects and Login" on page 17-3

■ "Configuring Common Data Source Login Options" on page 82-1

DatabaseLogin
If you are creating a project that accesses a relational database, you must configure the
project with a DatabaseLogin. Your choice of DatabasePlatform further
customizes your project for a particular type of database (see "Database Platforms" on
page 81-3).

For more information, see "Database Login Configuration Overview" on page 83-1.

Data Access Concepts

Understanding Data Access 81-3

EISLogin
If you are creating a project that accesses a nonrelational data source using a J2C
adapter, you must configure the project with an EISLogin. Your choice of
EISPlatform further customizes your project for a particular J2C adapter and
specifies what record type TopLink uses to exchange data with the EIS (see "EIS
Platforms" on page 81-4).

For more information, see "EIS Login Configuration Overview" on page 84-1.

Data Source Platform Types
TopLink abstracts the details of your underlying data source using data source
platform classes. TopLink provides the following data source platforms:

■ Database Platforms

■ EIS Platforms

A data source platform is owned by your project’s Login. For more information about
logins, see "Data Source Login Types" on page 81-2.

In general, TopLink Workbench provides minimal access to a platform API. To
configure most platform options, you must use an amendment method (see
"Configuring Amendment Methods" on page 25-81), or a preLogin event listener (see
"Managing Session Events With the Session Event Manager" on page 72-5).

Database Platforms
TopLink interacts with databases using structured query language (SQL). Because
each database platform uses its own variation on the basic SQL language, TopLink
must adjust the SQL it uses to communicate with the database to ensure that the
application runs smoothly.

The type of database platform you choose determines the specific means by which the
TopLink runtime accesses the database, including the type of Java Database
Connectivity (JDBC) driver to use. JDBC is an application programming interface
(API) that gives Java applications access to a database. TopLink relational projects rely
on JDBC connections to read objects from, and write objects to, the database. TopLink
applications use either individual JDBC connections or a JDBC connection pool (see
"Connection Pools" on page 81-7), depending on the application architecture.

TopLink provides a variety of database-specific platforms that let you customize your
project for your target database.

Oracle Database platforms are located in
oracle.toplink.platform.database.oracle package and include the
following:

■ OraclePlatform

■ Oracle8Platform

■ Oracle9Platform

Non-Oracle Database platforms are located in
oracle.toplink.platform.database package and include the following:

■ AccessPlatform for Microsoft Access databases

■ AttunityPlatform for Attunity Connect JDBC drivers

■ CloudscapePlatform

Data Access Concepts

81-4 Oracle TopLink Developer’s Guide

■ DB2MainframePlatform

■ DB2Platform

■ DBasePlatform

■ HSQLPlatform

■ InformixPlatform

■ MySQL4Platform

■ PointBasePlatform

■ SQLAnyWherePlatform

■ SQLServerPlatform

■ SybasePlatform

Specify your database platform at the project level (see "Configuring Relational
Database Platform at the Project Level" on page 20-2) for all sessions, or override this
project-level configuration at the session level (see "Configuring a Relational Database
Platform at the Session Level" on page 83-1).

If you set your database platform in TopLink Workbench, then TopLink Workbench
manages the database platform configuration for you automatically.

EIS Platforms
TopLink interacts with an EIS data source indirectly by way of a J2C adapter. TopLink
abstracts the details of an EIS data source using the
oracle.toplink.eis.EISPlatform class.

The type of EIS platform you choose determines the specific means by which the
TopLink runtime accesses the EIS, including the type of J2C adapter to use. TopLink
EIS projects rely on EIS connections to read objects from, and write objects to, the EIS.
TopLink applications use individual EIS connections returned by the EIS connection
factory specified by the EIS platform.

TopLink provides a variety of EISPlaform classes that let you customize your project
for your target EIS.

EIS platforms for production are located in oracle.toplink.eis.adapters
package and include the following:

■ oracle.toplink.eis.adapters.aq.AQPlatform to access an EIS using
Oracle Advanced Queuing messages.

■ oracle.toplink.eis.adapters.attunity.AttunityPlatform to access
an EIS using an Attunity J2C adapter.

■ oracle.toplink.eis.adapters.jms.JMSPlatform to access an EIS using
JMS messages.

■ oracle.toplink.eis.adapters.mqseries.MQPlatform to access an EIS
using IBM MQSeries messages.

EIS platforms for testing are also located in oracle.toplink.eis.adapters and
include the following:

■ oracle.toplink.eis.adapters.blackbox.BlackBoxPlatform for testing
your EIS project with the Sun BlackBox reference adapter using indexed records
only.

Data Access Concepts

Understanding Data Access 81-5

■ oracle.toplink.eis.adapters.xmlfile.XMLFilePlatform for testing
your EIS project with an EIS emulated as one or more XML files in the local file
system using XML records.

Specify your EIS platform at the session level (see "Configuring an EIS Data Source
Platform at the Session Level" on page 84-1).

If you set your platform in TopLink Workbench, then TopLink Workbench manages
the EIS platform configuration for you automatically.

Authentication
Authentication is the means by which a data source validates a user’s identity and
determines whether or not the user has sufficient privileges to perform a given action.

For two-tier applications, simple JDBC authentication is usually sufficient (see "Simple
JDBC Authentication" on page 81-5).

For three-tier applications, you can use simple JDBC authentication or, proxy
authentication (see "Oracle Database Proxy Authentication" on page 81-5) when using
the Oracle Call Interface (OCI) JDBC driver.

Authentication plays a central role in data security and user accountability and
auditing (see "Auditing" on page 81-6).

Simple JDBC Authentication
When you configure a TopLink database login with a user name and password
("Configuring User Name and Password" on page 82-1), TopLink provides these
credentials to the JDBC driver that you configure your application to use (see
"Configuring Database Login Connection Options" on page 83-2).

By default, TopLink writes passwords to and reads them from the sessions.xml file
in encrypted form using JCE encryption. Optionally, you can configure a different
encryption class (see "Configuring Password Encryption" on page 82-2).

Oracle Database Proxy Authentication
TopLink supports proxy authentication with the Oracle Database in JSE applications
and JEE applications using OC4J native or managed data sources with Oracle JDBC
driver release 10.1.0.2.0 or later and external connection pools (see "External
Connection Pools" on page 81-8) only.

Oracle Database proxy authentication delivers the following security benefits:

■ A limited trust model, by controlling the users on whose behalf middle tiers can
connect, and the roles the middle tiers can assume for the user.

■ Scalability, by supporting user sessions through Oracle Call Interface (OCI) and
thick JDBC, and eliminating the overhead of reauthenticating clients.

■ Accountability, by preserving the identity of the real user through to the database,
and enabling auditing of actions taken on behalf of the real user.

■ Flexibility, by supporting environments in which users are known to the database,
and in which users are merely "application users" of which the database has no
awareness.

Note: TopLink does not support Oracle Database proxy
authentication with JTA.

Data Access Concepts

81-6 Oracle TopLink Developer’s Guide

For more information about authentication in an Oracle Database, see "Preserving
User Identity in Multitiered Environments" in the Oracle Database Security Guide.

Configure your TopLink database login to use proxy authentication (see "Configuring
Oracle Database Proxy Authentication" on page 83-12) to do the following:

■ address the complexities of authentication in a three-tier architecture (such as
client-to-middle-tier and middle-tier-to-database authentication, and client
reauthentication through the middle -tier to the database)

■ enhance database audit information (for even triggers and stored procedures) by
using a specific user for database operations, rather than the generic pool user

■ simplify VPD/OLS configuration (see "Isolated Client Sessions and Oracle Virtual
Private Database (VPD)" on page 72-21) by using a proxy user, rather than setting
user information directly in the session context with stored procedures

Auditing
Regardless of what type of authentication you choose, TopLink logs the name of the
user associated with all database operations. Example 81–1 shows the CONFIG level
TopLink logs when a ServerSession connects through the main connection for the
sample user "scott", and a ClientSession uses proxy connection "jeff".

Example 81–1 TopLink Logs with Oracle Database Proxy Authentication

[TopLink
Config]--ServerSession(13)--Connection(14)--Thread(Thread[main,5,main])--connecting(DatabaseL
ogin(platform=>Oracle9Platform user name=> "scott" connector=>OracleJDBC10_1_0_
2ProxyConnector datasource name=>DS))
[TopLink Config]--ServerSession(13)--Connection(34)--Thread(Thread[main,5,main])--Connected:
jdbc:oracle:thin:@localhost:1521:orcl
User: SCOTT
[TopLink
Config]--ClientSession(53)--Connection(54)--Thread(Thread[main,5,main])--connecting(DatabaseL
ogin(platform=>Oracle9Platform user name=> "scott" connector=>OracleJDBC10_1_0_
2ProxyConnector datasource name=>DS))
[TopLink Config]--ClientSession(53)--Connection(56)--Thread(Thread[main,5,main])--Connected:
jdbc:oracle:thin:@localhost:1521:orcl
User: jeff

For more information on configuring TopLink log level and log options, see
"Configuring Logging" on page 74-4.

Your database server likely provides additional user auditing options. Consult your
database server documentation for details.

Alternatively, you may consider using the TopLink unit of work in conjunction with
your database schema for auditing purposes (see "Implementing User and Date
Auditing With the Unit of Work" on page 99-21).

Connections
A connection is an object that provides access to a data source by way of the driver
you configure your application to use (see "Configuring Database Login Connection
Options" on page 83-2). Relational projects use JDBC to connect to the data source; EIS
and XML projects use JCA. TopLink uses the interface

Note: Oracle Database supports proxy authentication in three-tiers
only; it does not support it across multiple middle tiers.

Data Access Concepts

Understanding Data Access 81-7

oracle.toplink.internal.databaseaccess.Accessor to wrap data source
connections. This interface is accessible from certain events (see "Descriptor Event
Manager" on page 23-8).

Typically, when using a server session, TopLink uses a a different connection for both
reading and writing. This lets you use nontransactional connections for reading and
avoid maintaining connections when not required. See "Reading Through the Write
Connection" on page 99-28 and "Exclusive Write Connections" on page 74-19 for more
information.

By default, a TopLink server session acquires connections lazily: that is, only during
the commit operation of a unit of work. Alternatively, you can configure TopLink to
acquire a write connections at the time you acquire a client sessions (see "Lazy
Connection Acquisition" on page 74-20).

Connections can be allocated from internal or external connection pools (see
"Connection Pools" on page 81-7).

Connection Pools
A connection pool is a service that creates and maintains a shared collection (pool) of
data source connections on behalf of one or more clients. The connection pool provides
a connection to a process on request, and returns the connection to the pool when the
process is finished using it. When it is returned to the pool, the connection is available
for other processes. Because establishing a connection to a data source can be
time-consuming, reusing such connections in a connection pool can improve
performance.

TopLink uses connection pools to manage and share the connections used by server
and client sessions. This feature reduces the number of connections required and
allows your application to support many clients.

You can configure your session to use internal connection pools provided by TopLink
or external connection pools provided by a JDBC driver or J2EE container.

You can use connection pools in your TopLink application for a variety of purposes,
such as reading, writing, sequencing, and other application-specific functions.

This section describes the following:

■ Internal Connection Pools

■ External Connection Pools

■ Default (Write) and Read Connection Pools

■ Sequence Connection Pools

■ Application-Specific Connection Pools

Internal Connection Pools
For non-J2EE applications, you typically use internal connection pools. By default,
TopLink sessions use internal connection pools.

Using internal connection pools, you can use TopLink Workbench to configure the
default (write) and read connection pools (see "Default (Write) and Read Connection
Pools" on page 81-8) and you can create additional connection pools for object identity
(see "Sequence Connection Pools" on page 81-8), or any other purpose (see
"Application-Specific Connection Pools" on page 81-9).

Data Access Concepts

81-8 Oracle TopLink Developer’s Guide

Using internal connection pools, you can optimize the creation of read connections for
applications that read data only to display it and only infrequently modify data (see
"Configuring a Nontransactional Read Login" on page 86-3).

For information on selecting the type of connection pool to use, see "Configuring
External Connection Pooling" on page 82-2.

For more information on creating and configuring internal connection pools, see:

■ "Internal Connection Pool Creation Overview" on page 85-1

■ "Internal Connection Pool Configuration Overview" on page 86-1

External Connection Pools
For J2EE applications, you typically use external connection pools.

If you are using an external transaction controller (JTA), you must use external
connection pools to integrate with the JTA (see "Integrating the Unit of Work With an
External Transaction Service" on page 99-21).

Using external connection pools, you can use either TopLink Workbench or Java to
configure the default (write) and read connection pools (see "Default (Write) and Read
Connection Pools" on page 81-8) and create additional connection pools for object
identity (see "Sequence Connection Pools" on page 81-8), or any other purpose (see
"Application-Specific Connection Pools" on page 81-9).

For more information on selecting the type of connection pool to use, see "Configuring
External Connection Pooling" on page 82-2.

Default (Write) and Read Connection Pools
A server session provides a read connection pool and a write connection pool. These
could be different pools, or if you use external connection pooling, the same
connection pool.

All read queries use connections from the read connection pool and all queries that
write changes to the data source use connections from the write connection pool. You
can configure attributes of the default read and write connection pools.

Whenever a new connection is established, TopLink uses the connection configuration
you specify in your session’s DatasourceLogin. Alternatively, when you use an
external transaction controller, you can define a separate connection configuration for
a read connection pool to avoid the additional overhead, if appropriate (see
"Configuring a Nontransactional Read Login" on page 86-3).

For more information on configuring read and write connection pools, see "Internal
Connection Pool Configuration Overview" on page 86-1.

Sequence Connection Pools
An essential part of maintaining object identity (see "Cache Type and Object Identity"
on page 87-3) is sequencing–managing the assignment of unique values to distinguish
one instance from another. For more information, see "Projects and Sequencing" on
page 17-4.

Sequencing involves reading and writing a special sequence resource maintained by
your data source.

By default, TopLink includes sequence operations in a separate transaction. This
avoids complications during the write transaction, which may lead to deadlocks over
the sequence resource. However, when using an external transaction controller (such
as a JTA data source or connection pool), TopLink cannot use a different transaction

Understanding Data Access API

Understanding Data Access 81-9

for sequencing. Use a sequence connection pool to configure a non-JTA transaction
pool for sequencing. This is required only for table sequencing–not native sequencing.

In each server session, you can create one connection pool, called a sequence
connection pool, that TopLink uses exclusively for sequencing. With a sequence
connection pool, TopLink satisfies a request for a new object identifier outside of the
transaction from which the request originates. This allows TopLink to immediately
commit an update to the sequence resource, which avoids deadlocks.

You should use a sequence connection pool, if the following applies:

■ You use table sequencing (that is, non-native sequencing). See "Table Sequencing"
on page 17-16 and "Unary Table Sequencing" on page 17-17 for more information.

■ You use external transaction controller (JTA).

You should not use a sequence connection pool, if the following applies:

■ You do not use sequencing, or use the data source’s native sequencing (see "Native
Sequencing With an Oracle Database Platform" on page 17-18 and "Native
Sequencing With a Non-Oracle Database Platform" on page 17-19).

■ You have configured the sequence table to avoid deadlocks.

■ You use non-JTA data sources.

For more information, see

■ "Internal Connection Pool Creation Overview" on page 85-1

■ "Internal Connection Pool Configuration Overview" on page 86-1

Application-Specific Connection Pools
When you use internal TopLink connection pools in a session, you can create one or
more connection pools that you can use for any application purpose. These are called
named connection pools, as you can give them any name you want and use them for
any purpose.

Typically, use these named connection pools to provide pools of different security
levels. For example, the "default" connection pool may only allow access to specific
tables but the "admin" connection pool may allow access to all tables.

For more information, see the following:

■ "Internal Connection Pool Creation Overview" on page 85-1

■ "Internal Connection Pool Configuration Overview" on page 86-1

■ "Acquiring a Client Session That Uses a Named Connection Pool" on page 75-8

Understanding Data Access API
This section describes the following:

■ Login Inheritance Hierarchy

■ Platform Inheritance Hierarchy

Note: If you use a sequence connection pool and the original
transaction fails, the sequence operation does not roll back.

Understanding Data Access API

81-10 Oracle TopLink Developer’s Guide

Login Inheritance Hierarchy
Example 81–2 illustrates the login types that are derived from abstract class
oracle.toplink.sessions.DatasourceLogin.

Example 81–2 Login Inheritance Hierarchy

class oracle.toplink.sessions.DatasourceLogin
class oracle.toplink.sessions.DatabaseLogin
class oracle.toplink.eis.EISLogin

Platform Inheritance Hierarchy
Example 81–3 illustrates the platform type class hierarchy.

Example 81–3 Platform Inheritance Hierarchy

oracle.toplink.platform.database
AccessPlatform
AttunityPlatform
CloudscapePlatform
DatabasePlatform
DB2MainframePlatform
DB2Platform
DBasePlatform
HSQLPlatform
InformixPlatform
PointBasePlatform
SQLAnyWherePlatform
SQLServerPlatform
SybasePlatform

oracle.toplink.platform.database.oracle
Oracle8Platform
Oracle9Platform
OraclePlatform

Configuring a Data Source Login 82-1

82
Configuring a Data Source Login

This chapter describes how to configure TopLink data source logins.

Table 82–1 lists the types of TopLink data source logins that you can configure and
provides a cross-reference to the type-specific chapter that lists the configurable
options supported by that type.

Table 82–2 lists the configurable options shared by two or more TopLink data source
login types.

When using the sessions.xml file to configure login information, TopLink will
override any login information in the project.xml and instead use the information
from the sessions.xml configuration. For more information, see "Understanding
Data Access" on page 81-1.

Configuring Common Data Source Login Options
Table 82–2 lists the configurable options shared by two or more TopLink data source
login types. In addition to the configurable options described here, you must also
configure the options described for the specific Data Source Login Types, as shown in
Table 82–1

Configuring User Name and Password
Optionally, you can specify the user name and password of a login.

Table 82–1 Configuring TopLink Data Source Logins

If you are configuring a... See...

DatabaseLogin Chapter 83, "Configuring a Database Login"

EISLogin Chapter 84, "Configuring an EIS Login"

Table 82–2 Common Data Source Login Options

Option Type
TopLink
Workbench Java

"Configuring User Name and Password" on page 82-1 Basic

"Configuring Password Encryption" on page 82-2 Advanced

"Configuring External Connection Pooling" on page 82-2 Advanced

"Configuring Properties" on page 82-4 Advanced

"Configuring a Default Null Value at the Login Level" on page 82-5 Advanced

Configuring Password Encryption

82-2 Oracle TopLink Developer’s Guide

If you specify a password using TopLink Workbench, enter the plain text (not
encrypted) value. By default, TopLink Workbench writes passwords to and reads
passwords from the sessions.xml file in encrypted form using JCE encryption. For
information on configuring password encryption, see "Configuring Password
Encryption" on page 82-2.

Using TopLink Workbench
To specify a user name and password, use this procedure:

1. Select a server or database session in the Navigator. Its properties appear in the
Editor.

2. Click the Login tab. The Login tab appears.

3. Click the Connection subtab. The Connection subtab appears.

Figure 82–1 Login Tab, Connection Subtab, User Name and Password Fields

Enter a user name and password in plain text (not encrypted).

Configuring Password Encryption
By default, passwords are written to and read from the sessions.xml file in
encrypted form using JCE encryption.

Currently, TopLink Workbench does not support specifying the encryption class used.
To change the encryption class used, you must modify the login in Java using a
preLogin event listener.

Using Java
To specify the encryption class that TopLink should use to write a password to or read
a password from the sessions.xml file, use DatasourceLogin method
setEncryptionClassName, passing in the name of the encryption class as a String.

To configure a DatasourceLogin with an encrypted password, use
DatasourceLogin method setEncryptedPassword, passing in the encrypted
password as a String.

Configuring External Connection Pooling
For non-J2EE applications, you typically use internal connection pools provided by
TopLink (see "Internal Connection Pools" on page 81-7). In this case, you can use

Configuring External Connection Pooling

Configuring a Data Source Login 82-3

TopLink Workbench to configure connection pool options and to create a sequence
connection pool and application-specific (named) connection pools.

For J2EE applications, you typically use external connection pools provided by a JDBC
driver or J2EE container (see "External Connection Pools" on page 81-8). Optionally,
you can configure a read connection pool to use a nontransactional login, and you can
configure a sequence connection pool to use a separate (preferably nontransactional)
login of its own.

Because JTA external transaction controllers are dependent upon the external
transaction service that the application server provides, you must configure TopLink
to use external connection pools if you are using an external transaction controller (see
"Integrating the Unit of Work With an External Transaction Service" on page 99-21).

External connection pools enable your TopLink application to do the following:

■ Integrate into a J2EE-enabled system.

■ Integrate with JTA transactions (JTA transactions require a JTA-enabled data
source).

■ Leverage a shared connection pool in which multiple applications use the same
data source.

■ Use a data source configured and managed directly on the server.

For more information about connection pools, see "Connection Pools" on page 81-7.

Using TopLink Workbench
To specify if the session login uses external connection pooling, use this procedure:

1. Configure a data source on the application server.

If you are using the external connection pool with an external transaction
controller (see "Configuring the Server Platform" on page 74-14), be sure to
configure a JTA-enabled data source.

For more information, see your J2EE container documentation.

2. Select a server or database session in the Navigator. Its properties appear in the
Editor.

3. Click the Login tab. The Login tab appears.

4. Click the Connection subtab. The Connection subtab appears.

Figure 82–2 Login Tab, Connection Subtab, External Connection Pooling Field,
Database Driver

Configuring Properties

82-4 Oracle TopLink Developer’s Guide

Figure 82–3 Connection Tab, External Connection Pooling Field, J2EE Data Source

Specify if this login uses External Connection Pooling. For a database driver, external
connection pooling is optional. For a J2EE data source, external connection pooling is
mandatory.

Configuring Properties
For all DatasourceLogin types, you can specify custom named values, called
properties. Some data sources require additional, driver-specific properties not
supported in the DatasourceLogin API (for example, see "JDBC Driver Properties
Optimization" on page 11-14). Add these properties to the DatasourceLogin so that
TopLink can pass them to the driver.

For relational sessions, you must first enable advanced option Use Properties (see
"Configuring Advanced Options" on page 83-11).

For EIS sessions, properties are always enabled.

When using TopLink Workbench, you can only set character values, which TopLink
returns as String objects (see "Using TopLink Workbench" on page 82-4).

When using Java, you can set any Object value (see "Using Java" on page 82-5).

Using TopLink Workbench
To specify arbitrary named value pairs that TopLink associates with a
DatasourceLogin, use this procedure:

1. Select a server or database session in the Navigator. Its properties appear in the
Editor.

2. Click the Login tab. The Login tab appears.

3. If necessary, enable support for properties:

■ For relational sessions, you must first enable advanced option Use Properties
(see "Configuring Advanced Options" on page 83-11)

■ For EIS sessions, properties are always enabled.

4. Click the Properties subtab. The Properties subtab appears.

Note: Do not set a password as a property. Always use TopLink
Workbench or DatabaseLogin method setPassword. For more
information on configuring a password, see "Configuring User Name
and Password" on page 82-1.

Configuring a Default Null Value at the Login Level

Configuring a Data Source Login 82-5

Figure 82–4 Login Tab, Properties Subtab

To add (or change) a new Name/Value property, click Add (or Edit). Add Property
dialog box appears.

Use the following information to add or edit a login property on the Add Property
dialog box:

To delete an existing property, select the Name/Value row and click Remove.

Using Java
Using Java, you can set any Object value using DatasourceLogin method
setProperty. To remove a property, use DatasourceLogin method
removeProperty.

Configuring a Default Null Value at the Login Level
A default null value is the Java Object type and value that TopLink uses instead of
null when TopLink reads a null value from a data source.

When you configure a default null value at the login level, it applies to all mappings
used in a session. In this case, TopLink uses it to translate in one direction only: when
TopLink reads null from the data source, it converts this null to the specified type
and value.

You can also use TopLink to set a default null value on a per-mapping basis (see
"Configuring a Default Null Value at the Mapping Level" on page 32-12).

Option Description

Name The name by which TopLink retrieves the property value using
the DatasourceLogin method getProperty.

Value The value TopLink retrieves using the DatasourceLogin
method getProperty passing in the corresponding property
name.

Using TopLink Workbench, you can set only character values
that TopLink returns as String objects.

Note: A default null value must be an Object. To specify a
primitive value (such as int), you must use the corresponding
Object wrapper (such as Integer).

Configuring a Default Null Value at the Login Level

82-6 Oracle TopLink Developer’s Guide

Using Java
Using Java API, you can configure a default null value for all mappings used in a
session with the DatabaseLogin method
setDefaultNullValue(Class,Object).

For example:

// Defaults all null String values read from the database to empty String
session.getLogin().setDefaultNullValue(String.class, "");

Configuring a Database Login 83-1

83
Configuring a Database Login

In a relational database project, TopLink retrieves the table information from the
database, for each descriptor. Each TopLink Workbench project contains an associated
database. You can create multiple logins for each database.

Database Login Configuration Overview
Table 83–1 lists the configurable options for a database login.

Configuring a Relational Database Platform at the Session Level
For each database session, you must specify the database platform (such as Oracle9i
Database Server). This platform configuration overrides the platform at the project
level, if configured.

For more information, see the following:

■ "Configuring Relational Database Platform at the Project Level" on page 20-2

■ "Data Source Platform Types" on page 81-2

Using TopLink Workbench
To specify the database platform options for a relational server (or database) session
login, use this procedure:

Table 83–1 Configurable Options for Database Login

Option Type
TopLink
Workbench Java

"Configuring a Relational Database Platform at the Session Level" on
page 83-1

Basic

"Configuring Database Login Connection Options" on page 83-2 Basic

"Configuring Sequencing at the Session Level" on page 83-4 Basic

"Configuring JDBC Options" on page 83-9 Basic

"Configuring User Name and Password" on page 82-1 Basic

"Configuring a Table Qualifier" on page 83-8 Advanced

"Configuring Advanced Options" on page 83-11 Advanced

"Configuring Password Encryption" on page 82-2 Advanced

"Configuring External Connection Pooling" on page 82-2 Advanced

"Configuring Properties" on page 82-4 Advanced

"Configuring Oracle Database Proxy Authentication" on page 83-12 Advanced

Configuring Database Login Connection Options

83-2 Oracle TopLink Developer’s Guide

1. Select a relational server (or database) session in the Navigator. Its properties
appear in the Editor.

2. Click the Login tab. The Login tab appears.

3. Click the Connection subtab. The Connection subtab appears.

Figure 83–1 Login Tab, Connection Subtab, Database Platform Option

Select the database platform from the menu of options. This menu includes all
instances of DatabasePlatform in the TopLink classpath.

Configuring Database Login Connection Options
You configure connection information at the session level for a non-CMP TopLink
application. This information is stored in the sessions.xml file. The TopLink
runtime uses this information whenever you perform a persistence operation using the
session in your non-CMP TopLink application.

This connection configuration overrides the connection information at the project
level, if configured. For more information about project-level configuration, see
"Configuring Development and Deployment Logins" on page 20-6.

This connection configuration is overridden by the connection information at the
connection pool level. For more information, see "Configuring Connection Pool
Connection Options" on page 86-4.

Using TopLink Workbench
To specify the connection options for a relational server (or database) session login, use
this procedure:

1. Select a relational server (or database) session in the Navigator. Its properties
appear in the Editor.

2. Click the Login tab. The Login tab appears.

3. Click the Connection subtab. The Connection subtab appears.

Configuring Database Login Connection Options

Configuring a Database Login 83-3

Figure 83–2 Login Tab, Connection Subtab, Database Driver

Figure 83–3 Login Tab, Connection Subtab

Use the following information to enter data in the driver fields on the tab:

Field Description

Database Driver Specify the appropriate database driver:

■ Driver Manager: specify this option to configure the driver
class and URL used to connect to the database. In this case,
you must configure the Driver Class and Driver URL
fields.

■ J2EE Data Source: specify this option to use a J2EE data
source already configured on your target application server.
In this case, you must configure the Datasource Name field.

Note: If you select J2EE Datasource, you must use external
connection pooling. You cannot use internal connection pools
with this Database Driver option (for more information, see
"Configuring External Connection Pooling" on page 82-2).

Driver Class1 Configure this field when Database Driver is set to Driver
Manager. Select from the menu of options. This menu includes
all JDBC drivers in the TopLink classpath.

Driver URL1 Configure this field when Database Driver is set to Driver
Manager. Select from the menu of options relevant to the
selected Driver Class, and edit the URL to suit your data source.

Configuring Sequencing at the Session Level

83-4 Oracle TopLink Developer’s Guide

Configuring Sequencing at the Session Level
You configure TopLink sequencing at the session or project level to tell TopLink how
to obtain sequence values: that is, what type of sequences to use.

In a CMP project, you do not configure a session directly: in this case, you must
configure sequences at the project level (see "Configuring Sequencing at the Project
Level" on page 20-3). In a non-CMP project, you can configure a session directly: in
this case, you can use session-level sequence configuration to override project-level
sequence configuration, on a session-by-session basis, if required.

Using TopLink Workbench (see "Using TopLink Workbench" on page 83-5), you can
configure table sequencing (see "Table Sequencing" on page 17-16) and native
sequencing ("Native Sequencing With an Oracle Database Platform" on page 17-18 and
"Native Sequencing With a Non-Oracle Database Platform" on page 17-19), and you
can configure a preallocation size that applies to all sequences (see "Sequencing and
Preallocation Size" on page 17-20).

Using Java (see "Using Java" on page 83-5), you can configure any sequence type that
TopLink supports ("Sequencing Types" on page 17-16). You can create any number and
combination of sequences. You can create a sequence object explicitly or use the
default sequence that the platform creates. You can associate the same sequence with
more than one descriptor and you can configure a separate preallocation size for each
descriptor’s sequence.

If you are migrating a BEA WebLogic CMP application to OC4J and TopLink
persistence (see "Migrating BEA WebLogic Persistence to OC4J TopLink Persistence"
on page 7-16), the TopLink migration tool does not migrate BEA WebLogic single
column sequence tables to TopLink unary sequence tables (see "Unary Table
Sequencing" on page 17-17). After migration, you must manually configure your
project to use TopLink unary sequence tables if your application originally used
single-column sequence tables in BEA WebLogic.

After configuring the sequence type at the session (or project) level, to enable
sequencing, you must configure a descriptor with a sequence field and a sequence
name (see "Configuring Sequencing at the Descriptor Level" on page 26-3).

For more information about sequencing, see "Understanding Sequencing in Relational
Projects" on page 17-14.

Data Source Name2 Configure this field when Database Driver is set to J2EE
Datasource. Specify any valid JNDI name that identifies the
J2EE data source preconfigured on your target application
server (example: jdbc/EmployeeDB).

By convention, all such names should resolve to the JDBC
subcontext (relative to the standard java:comp/env naming
context that is the root of all provided resource factories).

Lookup Type2 Configure this field when Database Driver is set to J2EE
Datasource. Specify the lookup method for determining the
JNDI name:

■ Composite Name

■ Compound Name

■ String
1 Applicable only when Database Driver is set to Driver Manager.
2 Applicable only when Database Driver is set to J2EE Datasource.

Field Description

Configuring Sequencing at the Session Level

Configuring a Database Login 83-5

Using TopLink Workbench
To specify the sequencing information for a relational server (or database) session, use
this procedure:

1. Select the session object in the Navigator.

2. Click the Login tab in the Editor.

3. Click the Sequencing subtab. The Sequencing subtab appears.

Figure 83–4 Login Tab, Sequencing Subtab

Use the following information to enter data in each field of the Sequencing subtab to
configure the persistence type:

Using Java
Using Java, you can perform the following sequence configurations:

■ Using the Platform Default Sequence

■ Configuring Multiple Sequences

■ Configuring Query Sequencing

Field Description

Preallocation Size Select the default preallocation size (see "Sequencing and
Preallocation Size" on page 17-20). Default is 50. The preallocation
size you configure applies to all sequences.

Default Sequence Table Select this option to use table sequencing (see "Table Sequencing" on
page 17-16) with default sequence table name SEQUENCE, default
sequence name field SEQ_NAME, and default sequence count field
SEQ_COUNT.

Native Sequencing Select this option to use a sequencing object (see "Native Sequencing
With an Oracle Database Platform" on page 17-18 or "Native
Sequencing With a Non-Oracle Database Platform" on page 17-19)
created by the database platform. This option applies only to Oracle,
Sybase, Microsoft SQL, IBM Informix and IBM DB2 database
platforms.

Custom Sequence Table Select this option to use table sequencing (see "Table Sequencing" on
page 17-16) with a sequence table name, sequence name field, and
sequence count field name that you specify.

Name Select the name of the sequence table.

Name Field Select the name of the column used to store the sequence name.

Counter Field Select the name of the column used to store the sequence count.

Configuring Sequencing at the Session Level

83-6 Oracle TopLink Developer’s Guide

Using the Platform Default Sequence
After you configure your login with a platform (see "Configuring a Relational
Database Platform at the Session Level" on page 83-1), you can use the default
sequence that the platform provides.

If you associate a descriptor with an unspecified sequence, the TopLink runtime will
create an instance of DefaultSequence to provide sequencing for that descriptor.
For more information, see "Configuring the Platform Default Sequence" on page 26-6.

You can access the default platform sequence directly as Example 83–1 shows. For
example, by default, a DatabasePlatform creates a table sequence using the default
table and column names (see "Table Sequencing" on page 17-16).

Example 83–1 Accessing the Platform Default Sequence

// assume that dbLogin owns a DatabasePlatform
TableSequence tableSeq2 = ((TableSequence)dbLogin.getDefaultSequence()).clone();
tableSeq2.setName("EMP_SEQ");
tableSeq2.setPreallocationSize(75);
dbLogin.addSequence(tableSeq2);

To avoid having to clone the platform default sequence, you can use the
DefaultSequence class–a wrapper for the platform default sequence–as
Example 83–2 shows. The new sequence named EMP_SEQ will be of the same type as
the platform default sequence.

Example 83–2 Using the DefaultSequence Class

login.addSequence(
new DefaultSequence("EMP_SEQ", 75)

);

You can override the default platform sequence as Example 83–3 shows. In this
example, dbLogin owns a DatabasePlatform that provides a default sequence of
type TableSequence. After setting the default sequence to type
UnaryTableSequence, when you use the DefaultSequence class, it will access the
new default sequence type. In this example, the sequence named EMP_SEQ will be of
type UnaryTableSequence and have a preallocation size of 75.

Example 83–3 Overriding the Platform Default Sequence

// assume that dbLogin owns a DatabasePlatform
Sequence unaryTableSequence = new UnaryTableSequence();
unaryTableSequence.setPreallocationSize(40);
dbLogin.setDefaultSequence(unaryTableSequence);
dbLogin.addSequence(

new DefaultSequence("EMP_SEQ", 75) // UnaryTableSequence
);

Configuring Multiple Sequences
In addition to using the platform default sequence (see "Using the Platform Default
Sequence" on page 83-6), you can explicitly create sequence instances and configure a
Login with any combination of sequence types, each with their own preallocation size
as Example 83–4 shows. In this example, the sequence named EMP_SEQ will provide
sequence values exclusively for instances of the Employee class and ADD_SEQ will
provide sequence values exclusively for instances of the Address class. The sequence
named PHONE_SEQ will use the platform default sequence with a preallocation size of
30 to provide sequence values for the Phone class.

Configuring Sequencing at the Session Level

Configuring a Database Login 83-7

Example 83–4 Configuring Multiple Sequences Explicitly

login.addSequence(new TableSequence("EMP_SEQ", 25));
login.addSequence(new DefaultSequence("PHONE_SEQ", 30));
login.addSequence(new UnaryTableSequence("ADD_SEQ", 55));
login.addSequence(new NativeSequence("NAT_SEQ", 10));

If login owned a DatabasePlatform (whose default sequence type is
TableSequence), you could configure your sequences using the platform default
sequence type as Example 83–5 shows. In this example, sequences EMP_SEQ and
PHONE_SEQ share the same TableSequence table: EMP_SEQ and PHONE_SEQ
represent rows in this table.

Example 83–5 Configuring Multiple Sequences Using the Default Sequence Type

login.addSequence(new DefaultSequence("EMP_SEQ", 25));
login.addSequence(new DefaultSequence("PHONE_SEQ", 30));
login.addSequence(new UnaryTableSequence("ADD_SEQ", 55));
login.addSequence(new NativeSequence("NAT_SEQ", 10));

Configuring Query Sequencing
You can configure the query that TopLink uses to update or read a sequence value for
any sequence type that extends QuerySequence.

In most applications, the queries that TopLink automatically uses are sufficient.
However, if your application has special sequencing needs–for example, if you want to
use stored procedures for sequencing–then you can configure the update and read
queries that the TopLink sequence uses.

Example 83–7 illustrates how to specify a stored procedure that updates a sequence
and returns the new sequence value with a single SQL select query. In this example,
the stored procedure is named UPDATE_SEQ. It contains one input argument–the
name of the sequence to update (SEQ_NAME), and one output argument–the value of
the sequence after the updated (SEQ_COUNT). The stored procedure increments the
sequence value associated with the sequence named SEQ_NAME and returns the new
sequence value in the output argument named SEQ_COUNT.

Example 83–6 Using a Stored Procedure for both Sequence Update and Select

ValueReadQuery seqReadQuery = new ValueReadQuery();
StoredProcedureCall spCall = new StoredProcedureCall();
spCall.setProcedureName("UPDATE_SEQ");
seqReadQuery.addNamedArgument("SEQ_NAME");
seqReadQuery.addNamedOutputArgument("SEQ_COUNT");
seqReadQuery.setCall(spCall);
((QuerySequence)login.getDefaultSequence()).setSelectQuery(seqReadQuery);

Example 83–7 and Example 83–8 illustrate how to specify separate stored procedures
for sequence update and select actions.

In Example 83–7, the stored procedure is named UPDATE_SEQ and it contains one
input argument: the name of the sequence to update (SEQ_NAME). The stored
procedure increments the sequence value associated with the sequence named SEQ_
NAME.

Example 83–7 Using a Stored Procedure for Sequence Updates Only

DataModifyQuery seqUpdateQuery = new DataModifyQuery();
StoredProcedureCall spCall = new StoredProcedureCall();

Configuring a Table Qualifier

83-8 Oracle TopLink Developer’s Guide

spCall.setProcedureName("UPDATE_SEQ");
seqUpdateQuery.addNamedArgument("SEQ_NAME");
seqUpdateQuery.setCall(spCall);
((QuerySequence)login.getDefaultSequence()).setUpdateQuery(seqUpdateQuery);

In Example 83–8, the stored procedure is named SELECT_SEQ and it takes one
argument: the name of the sequence to select from (SEQ_NAME). The stored procedure
reads one data value: the current sequence value associated with the sequence name
SEQ_NAME.

Example 83–8 Using a Stored Procedure for Sequence Selects Only

ValueReadQuery seqReadQuery = new ValueReadQuery();
StoredProcedureCall spCall = new StoredProcedureCall();
spCall.setProcedureName("SELECT_SEQ");
seqReadQuery.addArgument("SEQ_NAME");
seqReadQuery.setCall(spCall);
login.((QuerySequence)getDefaultSequence()).setSelectQuery(seqReadQuery)

You can also create a QuerySequence directly and add it to your login, as
Example 83–9 shows.

Example 83–9 Using the QuerySequence Class

// Use the two-argument constructor: pass in sequence name and preallocation size.
// Alternatively, you can use zero- or one-argument (sequence name) constructor
login.addSequence(new QuerySequence("SEQ1", 75));

Configuring a Table Qualifier
Some databases (such as Oracle Database and DB2) require that all tables be qualified
by an identifier. This can be the creator of the table or database name on which the
table exists. When you specify a table qualifier, TopLink uses this qualifier for all of
the tables it references. Specify a table qualifier only if required and only if all of the
tables have the same qualifier.

Using TopLink Workbench
To specify a table qualifier, use this procedure:

1. Select a relational server (or database) session in the Navigator. Its properties
appear in the Editor.

2. Click the Login tab. The Login tab appears.

3. Click the Options subtab. The Options subtab appears.

Configuring JDBC Options

Configuring a Database Login 83-9

Figure 83–5 Login Tab, Options Subtab, Table Qualifier Field

In the Table Qualifier field enter the identifier used to qualify references to all tables
in this database.

Configuring JDBC Options
Most JDBC drivers support the run-time configuration of various options to customize
driver operation to meet user needs. TopLink provides direct support (in API and
TopLink Workbench) for many of the most important options, as this section
describes, as well as more advanced options (see "Configuring Advanced Options" on
page 83-11)

You can also configure additional options by specifying properties (see "Configuring
Properties" on page 82-4).

Using TopLink Workbench
To specify the JDBC options for a relational server (or database) session login, use this
procedure:

1. Select a relational server (or database) session in the Navigator. Its properties
appear in the Editor.

2. Click the Login tab. The Login tab appears.

3. Click the Options subtab. The Options subtab appears.

Note: Not all drivers support all JDBC options. Selecting a
combination of options may result in different behavior from one
driver to another. Before selecting JDBC options, consult your JDBC
driver documentation.

Configuring JDBC Options

83-10 Oracle TopLink Developer’s Guide

Figure 83–6 Login Tab, Options Subtab, JDBC Options

Option Description

Queries Should Bind All
Parameters1

1 For more information, see "Parameterized SQL (Binding) and Prepared Statement Caching" on page 11-15.

Select this option to bind all of the query’s parameters.

Cache All Statements1 Select this option to enable TopLink to cache each prepared
statement so that when reexecuted, you avoid the SQL
preparation time which improves performance.

Byte Array Binding1 Select this option if you query binary large object (BLOB) data.

Streams for Binding1 Select this option if you use a JDBC driver that is more efficient
at handling BLOB data using java.io.InputStream and
java.io.OutputStream.

Native SQL By default, TopLink generates SQL using JDBC SQL grammar.
Select this option if you want TopLink to use database specific
SQL grammar, for example, if your database driver does not
support the full JDBC SQL grammar.

Batch Writing2

2 If you are using the MySQL4 database platform (see "Data Source Platform Types" on page 81-3), use
JDBC batch writing (do not use TopLink batch writing). For more information, see "Batch Writing" on
page 11-15.

Select this option if you use a JDBC driver that supports
sending groups of INSERT, UPDATE, and DELETE statements
to the database in a single transaction, rather than individually.

Select JDBC to use the batch writing capabilities of your JDBC
driver.

Select TopLink to use the native batch writing capabilities that
TopLink provides. Select this option if your JDBC driver does
not support batch writing.

String Binding1 Select this option if you query large java.lang.String
objects.

You can configure the maximum String length (default:
32000 characters).

Configuring Advanced Options

Configuring a Database Login 83-11

Using Java
To enable prepared statement caching for all queries, configure at the Login level, as
Example 83–10 shows. For more information, see "Parameterized SQL (Binding) and
Prepared Statement Caching" on page 11-15.

Example 83–10 Configuring Prepared Statement Caching at the Login Level

databaseLogin.cacheAllStatements();
databaseLogin.setStatementCacheSize(100);

To enable JDBC batch writing, use Login method useBatchWriting, as
Example 83–11 shows:

Example 83–11 Using JDBC Batch Writing

project.getLogin().useBatchWriting();
project.getLogin().setMaxBatchWritingSize(100);

Configuring Advanced Options
Most JDBC drivers support the run-time configuration of various options to customize
driver operation to meet user needs. TopLink provides direct support (in API and
TopLink Workbench) for many of the most important options (see "Configuring JDBC
Options" on page 83-9), as well as more advanced options, as this section describes.

You can also configure additional options by specifying properties (see "Configuring
Properties" on page 82-4).

Using TopLink Workbench
To specify the advanced options for a relational server (or database) session login, use
this procedure:

1. Select a relational server (or database) session in the Navigator. Its properties
appear in the Editor.

2. Click the Login tab. The Login tab appears.

3. Click the Options subtab. The Options subtab appears.

Note: Not all drivers support all JDBC options. Selecting a
combination of options may result in different behavior from one
driver to another. Before selecting JDBC options, consult your JDBC
driver documentation.

Configuring Oracle Database Proxy Authentication

83-12 Oracle TopLink Developer’s Guide

Figure 83–7 Login Tab, Options Subtab, Advanced Options

Configuring Oracle Database Proxy Authentication
You can configure a database login to use Oracle Database proxy authentication with
an Oracle Database platform in JSE applications and JEE applications using OC4J
native or managed data sources with Oracle JDBC driver release 10.1.0.2.0 or later and
external connection pools only.

There is no TopLink Workbench support for this feature. To configure TopLink to use
Oracle Database proxy authentication, you must use Java (see "Using Java" on
page 83-13).

For more information, see "Oracle Database Proxy Authentication" on page 81-5.

You can use TopLink support for Oracle Database proxy authentication by doing the
following:

■ Providing Authenticated Reads and Writes of Secured Data Through the Use of an
Exclusive Isolated Client Session

Option Description

Force Field Names to
Uppercase

By default, TopLink uses the case of field names as returned by
the database. If your application expects field names to be
uppercase but the database does not return consistent case (for
example, if you accessing different databases), enable this
option.

Optimize Data Conversion By default, TopLink optimizes data access by accessing the
data from JDBC in the format the application requires. If you
are using an older JDBC driver that does not perform data
conversion correctly and conflicts with this optimization,
disable this optimization.

Trim String By default, TopLink discards the trailing blanks from CHAR
field values. To read and write CHAR field values literally
(including any trailing blanks), disable this option.

Properties Check this option to enable the use of properties for this
DatabaseLogin (see "Configuring Properties" on page 82-4).

Configuring Oracle Database Proxy Authentication

Configuring a Database Login 83-13

■ Providing Authenticated Writes for Database Auditing Purposes With a Client
Session

■ Providing Authenticated Writes for Database Auditing Purposes With a Client
Session

Providing Authenticated Reads and Writes of Secured Data Through the Use of
an Exclusive Isolated Client Session
In this configuration, the client Session is an isolated client session (see "Isolated Client
Sessions" on page 72-19) that uses an exclusive proxy connection. You must acquire the
client session using a ConnectionPolicy that specifies the proxy authentication user
credentials.

Reads and writes of secured data are performed through the proxy-authenticated
connection. Reads of nonsecured data occur through nonproxy-authenticated
connections.

If you are using Oracle Private Virtual Database (VPD) (see "Isolated Client Sessions
and Oracle Virtual Private Database (VPD)" on page 72-21), use this configuration to
set up VPD support entirely in the database. That is, rather than making the isolated
client session execute SQL (see "PostAcquireExclusiveConnection Event Handler" on
page 77-1 and "PreReleaseExclusiveConnection Event Handler" on page 77-2), the
database performs the required set up in an after login trigger using the proxy
session_user.

Providing Authenticated Writes for Database Auditing Purposes With a Client
Session
In this configuration, isolated data or exclusive connections are not required. You must
acquire client session using a ConnectionPolicy that specifies the proxy
authentication user credentials.

Writes are performed through the proxy-authenticated connection. Reads occur
through nonproxy-authenticated connections. This enables the database auditing
process to access the user that performed the write operations.

Providing Authenticated Reads and Writes With a Database Session
In this configuration, you use a DatabaseSession object with a proxy-authenticated
login. All reads and writes occur through the proxy-authenticated connection.

Using Java
You configure Oracle Database proxy authentication by customizing your session in
your Java code, such as through a SessionCustomizer when using the
sessions.xml file. You can wrap a configured TopLink DatasourceLogin
JNDIConnector with a TopLink proxy connector instance (from
oracle.toplink.platform.database.oracle) appropriate for your JDBC
driver and to configure proxy authentication properties.

Note: Oracle recommends that you exclusively use server and client
sessions in a three-tier environment.

Do not use database sessions in a three-tier environment. Ensure that
a database session is used by a single user and not accessed
concurrently.

Configuring Oracle Database Proxy Authentication

83-14 Oracle TopLink Developer’s Guide

If you are using the Oracle JDBC OCI driver, use the OracleOCIProxyConnector
and property constants defined in
oracle.jdbc.pool.OracleOCIConnectionPool.

If you are using the Oracle JDBC Thin driver, use the OracleJDBC10_1_0_
2ProxyConnector and the property constants defined in
oracle.jdbc.OracleConnection.

The properties to set are shown in Tables 83–2 through 83–5.

To configure TopLink to use Oracle Database proxy authentication, do the following:

1. Decide on the proxy type you want to use and create appropriate users and roles.

a. User Name Authentication:

To authenticate a proxy user sarah by user name only, create the user account
on the Oracle Database using the following:

alter user sarah grant connect through dbadminuser
with roles clerk, reports;

In this case, you will need to set the proxy properties shown in Table 83–2.

b. User Name and Password Authentication:

To authenticate a proxy user sarah by user name and password, create the
user account on the Oracle Database using the following:

alter user sarah grant connect through dbadminuser
authenticated using password
with roles clerk, reports;

In this case, you will need to set the proxy properties shown in Table 83–3.

Note: Property constant names and values are consistent between
the two classes except for PROXYTYPE_ constants (such as
PROXYTYPE_USER_NAME). In OracleOCIConnectionPool these
are of type String and in OracleConnection they are of type int.
If you are using the Oracle JDBC Thin driver and OracleJDBC10_1_
0_2ProxyConnector, you must always set these properties as a
String. For example:

login.setProperty(
"proxytype", Integer.toString(OracleConnection.PROXYTYPE_USER_NAME));

Table 83–2 Proxy Properties for User Name Authentication

Property Name Property Value

"proxytype" PROXYTYPE_USER_NAME

PROXY_USER_NAME "sarah"

PROXY_ROLES String[] {"role1", "role2", ...}

Table 83–3 Proxy Properties for User Name and Password Authentication

Property Name Property Value

"proxytype" PROXYTYPE_USER_NAME

Configuring Oracle Database Proxy Authentication

Configuring a Database Login 83-15

c. Distinguished Name Authentication:

To authenticate a proxy user sarah by globally unique distinguished name,
create the user account on the Oracle Database using the following:

create user sarah identified globally as
'CN=sarah,OU=americas,O=oracle,L=city,ST=ca,C=us';

alter user sarah grant connect through dbadminuser
authenticated using distinguished name
with roles clerk, reports;

In this case, you will need to set the proxy properties shown in Table 83–4.

d. Certificate Authentication:

To authenticate a proxy user sarah by encrypted distinguished name, create
the user account on the Oracle Database using the following:

alter user sarah grant connect through dbadminuser
authenticated using certificate
with roles clerk, reports;

In this case, you will need to set the proxy properties shown in Table 83–2.

2. Configure your session login using Java code. Do this through a
SessionCustomizer when using the sessions.xml file.

The following example demonstrates how you can wrap the already specified
JNDIConnector with the appropriate TopLink proxy authentication connector.
You can set the server session's default connection policy to the same proxy
authenticated login.

If you use Oracle VPD (ref VPD), you should set the connection policy to use
exclusive connections, and the descriptor for secured data to isolated (ref isolated).

PROXY_USER_NAME "sarah"

PROXY_PASSWORD "passwordforsarah"

PROXY_ROLES String[] {"role1", "role2", ...}

Table 83–4 Proxy Properties for Distinguished Name Authentication

Property Name Property Value

"proxytype" PROXYTYPE_DISTINGUISHED_NAME

PROXY_DISTINGUISHED_NAME "CN=sarah,OU=americas,O=oracle,L=city,ST=ca,C=us"

PROXY_ROLES String[] {"role1", "role2", ...}

Table 83–5 Proxy Properties for User Name Authentication

Property Name Property Value

"proxytype" PROXYTYPE_CERTIFICATE

PROXY_CERTIFICATE byte[] {<EncryptedCertificate>}

PROXY_ROLES String[] {"role1", "role2", ...}

Table 83–3 (Cont.) Proxy Properties for User Name and Password Authentication

Property Name Property Value

Configuring Oracle Database Proxy Authentication

83-16 Oracle TopLink Developer’s Guide

Login login = server.getDatasourceLogin();
// Make sure that external connection pooling is used
login.setUsesExternalConnectionPooling(true);
// Wrap JNDIConnector with either
// OracleOCIProxyConnector or OracleJDBC10_1_0_2ProxyConnector
login.setConnector(

new OracleOCIProxyConnector(
((JNDIConnector)login.getConnector()).getName()));

ConnectionPolicy policy = server.getDefaultConnectionPolicy();
policy.setPoolName(null);
policy.setLogin(login);
// If using Oracle VPD support,set the connection policy to exclusive
policy.setShouldUseExclusiveConnection(true);

3. Acquire a proxy-authenticated client session through specifying a
ConnectionPolicy with this user's credentials.

ConnectionPolicy policy =
(ConnectionPolicy)server.getDefaultConnectionPolicy().clone();

Login login = (Login)policy.getLogin().clone;
// Set proxy properties into connection policy's login
login.setProperty("proxytype" , OracleOCIConnectionPool.PROXYTYPE_USER_NAME);
login.setProperty(OracleOCIConnectionPool.PROXY_USER_NAME ,"sarah");
policy.setLogin(login);
Session session = server.acquireClientSession(policy);

Configuring an EIS Login 84-1

84
Configuring an EIS Login

This chapter describes the various components that you must configure to use an EIS
login.

EIS Login Configuration Overview
Table 84–1 lists the configurable options for an EIS login.

Configuring an EIS Data Source Platform at the Session Level
For each EIS session, you must specify the platform (such as AQ). This platform
configuration overrides the platform at the project level, if configured.

For more information, see the following:

■ "Configuring Relational Database Platform at the Project Level" on page 20-2

■ "Data Source Login Types" on page 81-2

Using TopLink Workbench
To specify the database platform options for an EIS session login, use this procedure:

1. Select an EIS session in the Navigator. Its properties appear in the Editor.

2. Click the Login tab. The Login tab appears.

3. Click the Connection subtab. The Connection subtab appears.

Table 84–1 Configurable Options for EIS Login

Option Type
TopLink
Workbench Java

"Configuring an EIS Data Source Platform at the Session Level" on
page 84-1

Basic

"Configuring EIS Connection Specification Options at the Session
Level" on page 84-2

Basic

"Configuring User Name and Password" on page 82-1 Basic

"Configuring Password Encryption" on page 82-2 Advanced

"Configuring External Connection Pooling" on page 82-2 Advanced

"Configuring Properties" on page 82-4 Advanced

Configuring EIS Connection Specification Options at the Session Level

84-2 Oracle TopLink Developer’s Guide

Figure 84–1 Login Tab, Connection Subtab, Platform Options

Use the following information to enter data in the Platform field on the Connection tab
to configure the platform:

Configuring EIS Connection Specification Options at the Session Level
You can configure connection information at the session level for an EIS application.
This information is stored in the sessions.xml file. The Oracle TopLink runtime
uses this information whenever you perform a persistence operation using the session
in your EIS application.

This connection configuration overrides the connection information at the project
level, if configured. For more information about project-level configuration, see
"Configuring Development and Deployment Logins" on page 20-6 and "Configuring
EIS Connection Specification Options at the Project Level" on page 21-2.

This connection configuration is overridden by the connection information at the
connection pool level. For more information about connection pool-level
configuration, see "Configuring Connection Pool Connection Options" on page 86-4.

Using TopLink Workbench
Use this procedure to specify the connection options for an EIS session login.

1. Select an EIS session in the Navigator window. Its properties appear in the Editor
window.

2. Click the Login tab. The Login tab appears.

3. Click the Connection subtab. The Connection tab appears.

Field Description

Platform The EIS platform for the session. Select from the menu of options.
This menu includes all instances of EISPlatform in the TopLink
classpath.

Configuring EIS Connection Specification Options at the Session Level

Configuring an EIS Login 84-3

Figure 84–2 Login Tab, Connection Subtab

Use the following information to enter data in the connection fields on the tab:

Field Description

Connection Specification Class Specify the appropriate connection specification class for the
selected Platform. Click Browse to choose from all the classes
in the TopLink classpath. (For example: if Platform is
oracle.toplink.eis.aq.AQPlatform, use
oracle.toplink.eis.aq.AQEISConnectionSpec).

For more information on platform configuration, see
"Configuring an EIS Data Source Platform at the Session
Level" on page 84-1.

Connection Factory URL Specify the appropriate connection factory URL for the
selected Connection Specification Class (For example:
jdbc:oracle:thin@:localhost:1521:orcl).

Configuring EIS Connection Specification Options at the Session Level

84-4 Oracle TopLink Developer’s Guide

Creating an Internal Connection Pool 85-1

85
Creating an Internal Connection Pool

This chapter explains how to create TopLink internal connection pools, including the
following:

■ Internal Connection Pool Creation Overview

For information, see "Internal Connection Pools" on page 81-7.

Internal Connection Pool Creation Overview
You can create internal connection pools only for server sessions (not for any other
session type, including database sessions).

You can create an internal connection pool using TopLink Workbench or Java code.
Oracle recommends that you use TopLink Workbench to create and manage your
internal connection pools. For more information, see "Using TopLink Workbench" on
page 85-1.

Alternatively, you can create internal connection pools in Java. For more information
on creating sessions in Java, see the Oracle TopLink API Reference.

After you create an internal connection pool, you must configure its various options
(see "Internal Connection Pool Configuration Overview" on page 86-1).

After you create and configure a sequence connection pool, TopLink uses it whenever
it needs to assign an identifier to a new object.

After you create and configure a named connection pool, you use it in your
application by passing in a ConnectionPolicy when you acquire a client session
(see "Acquiring a Client Session That Uses a Named Connection Pool" on page 75-8).

Using TopLink Workbench
Before you create a connection pool, you must first create a server session (see
"Creating a Server Session" on page 73-4).

To create a new TopLink internal connection pool, use this procedure:

1. Select the server session in the Navigator in which you want to create a connection
pool.

2. Click the appropriate button on the toolbar to create the type of connection pool
you want:

■ To create a named connection pool, select Create a New Named Connection
Pool, enter a name, and click OK.

Internal Connection Pool Creation Overview

85-2 Oracle TopLink Developer’s Guide

■ To create a sequence connection pool, select Add the Sequence Connection
Pool.

■ To create a write connection pool, select Add the Write Connection Pool.

You can also create a new internal connection pool by right-clicking the server
session configuration in the Navigator and selecting New > Named Connection
Pool, Sequence Connection Pool, or Write Connection Pool from the context
menu.

Configuring an Internal Connection Pool 86-1

86
Configuring an Internal Connection Pool

This chapter describes the various components that you must configure to use an
internal connection pool.

Internal Connection Pool Configuration Overview
When you are using server sessions, you can configure the default read connection
pool and write connection pool. You can also configure the optional named connection
pools and sequence connection pool you may have created (see "Internal Connection
Pool Creation Overview" on page 85-1).

Table 86–1 lists the configurable options for an internal connection pool.

Configuring Connection Pool Sizes
By default, if using TopLink internal connection pooling, the TopLink write
connection pool maintains a minimum of five connections and a maximum of ten. The
read connection pool maintains a minimum and maximum of two connections.

Connection pool size can significantly influence the concurrency of your application
and should be set to be large enough to handle your expected application load.

Table 86–1 Configurable Options for Connection Pool

Option Type
TopLink
Workbench Java

"Configuring Connection Pool Sizes" on page 86-1 Basic

"Configuring Exclusive Read Connections" on page 86-61 Advanced

"Configuring a Nontransactional Read Login" on page 86-31

1 Read connection pools only.

Advanced

"Configuring Properties" on page 86-2 Advanced

"Configuring Connection Pool Connection Options" on
page 86-42

2 Not applicable to write connection pools.

Advanced

Tip: To maintain compatibility with JDBC drivers that do not
support many connections, the default number of connections is
small. If your JDBC driver supports it, use a larger number of
connections for reading and writing.

Configuring Properties

86-2 Oracle TopLink Developer’s Guide

The smallest value you can enter is 0. Setting the maximum number of connections to
0 will make it impossible for TopLink to allocate any connections.

The minimum number of connections should always be less than or equal to the
maximum number of connections.

If the maximum number of connections is in use, the next connection request will be
blocked until a connection is available.

Using TopLink Workbench
To specify the minimum and maximum number of connections in a TopLink internal
connection pool, use this procedure:

1. Expand a server session to reveal its connection pools in the Navigator.

2. Select a connection pool in the Navigator. Its properties appear in the Editor.

3. Click the General tab. The General tab appears.

Figure 86–1 General Tab, Connection Count Options

Enter the desired minimum and maximum number of connections and press Enter or
use the increment and decrement arrows.

Configuring Properties
For all connection pools, except write connection pools, you can specify arbitrary
named values, called properties.

Some data sources require additional, driver-specific properties not supported in the
ConnectionPool API. Add these properties to the ConnectionPool so that
TopLink can pass them to the driver.

Using TopLink Workbench
To specify arbitrary named value pairs that TopLink associates with a
ConnectionPool, use this procedure:

1. Expand a server session to reveal its connection pools in the Navigator.

2. Select a read, named, or sequence connection pool in the Navigator. Its properties
appear in the Editor.

3. Click the Login tab. The Login tab appears.

4. Click the Properties subtab. The Properties subtab appears.

Configuring a Nontransactional Read Login

Configuring an Internal Connection Pool 86-3

Figure 86–2 Login Tab, Properties Subtab

Use the following information to add or edit a login property on the Add Property
dialog box to add or edit a login property:

To add (or change) a new Name/Value property, click Add (or Edit).

To delete an existing property, select the Name/Value row and click Remove.

Using Java
Using Java, you can set any Object value using the DatasourceLogin method
setProperty. To remove a property, use the DatasourceLogin method
removeProperty.

Configuring a Nontransactional Read Login
When you use an external transaction controller (see "Configuring the Server
Platform" on page 74-14), establishing a connection requires not only the usual
connection setup overhead, but also transactional overhead. If your application reads
data only to display it and only infrequently modifies data, you can configure an
internal read connection pool to use its own connection specification that does not use
the external transaction controller. This may improve performance by reducing the
time it takes to establish a new read connection.

Using TopLink Workbench
To enable the configuration of nontransactional connection information for a TopLink
read connection pool, use this procedure:

1. Expand a server session to reveal its connection pools in the Navigator.

2. Select a read connection pool in the Navigator. Its properties appear in the Editor.

3. Click the Login tab. The Login tab appears.

Option Description

Name The name by which TopLink retrieves the property value using
the DatasourceLogin method getProperty.

Value The value TopLink retrieves using the DatasourceLogin
method getProperty passing in the corresponding property
name.

Using TopLink Workbench, you can set only character values
which TopLink returns as String objects.

Configuring Connection Pool Connection Options

86-4 Oracle TopLink Developer’s Guide

4. Click the Connection subtab. The Connection subtab appears.

Figure 86–3 Login Tab, Connection Subtab

To enable a nontransactional read login, select the Use Non-Transactional Read Login
option (see "Externally Managed Transactional Data Sources" on page 81-1). Continue
with "Configuring Connection Pool Connection Options" on page 86-4 to specify the
connection information.

Configuring Connection Pool Connection Options
By default, connection pools use the login configuration specified for their session (see
"Configuring Database Login Connection Options" on page 83-2 and "Configuring EIS
Connection Specification Options at the Session Level" on page 84-2).

For read, named, and sequence connection pools, you can override the session login
configuration on a per-connection pool basis.

To configure login configuration for a read connection pool, you must first enable it
for a nontransactional read login (see "Configuring a Nontransactional Read Login" on
page 86-3).

Using TopLink Workbench
To configure connection information for a TopLink read, named, or sequence
connection pool, use this procedure:

1. Expand a server session to reveal its connection pools in the Navigator.

2. Select a read, named, or sequence connection pool in the Navigator. Its properties
appear in the Editor.

3. Click the Login tab. The Login tab appears.

4. Click the Connection subtab. The Connection subtab appears.

Configuring Connection Pool Connection Options

Configuring an Internal Connection Pool 86-5

Figure 86–4 Login Tab, Connection Subtab, Relational Session Connection Pool
Options

Figure 86–5 Login Tab, Connection Subtab, EIS Session Connection Pool Options

5. Ensure the Use Non-Transaction Read Login option is selected.

Use the following information to complete fields on the Connection subtab:

Field Description

Database Driver1 Specify the appropriate database driver:

■ Driver Manager: Specify this option to configure the
driver class and URL used to connect to the database.
In this case, you must configure the Driver Class and
Driver URL fields.

■ J2EE Datasource: Specify this option to use a J2EE data
source already configured on your target application
server. In this case, you must configure the Datasource
Name field.

Note: If you select J2EE Datasource, you must use external
connection pooling. You cannot use internal connection
pools with this Database Driver option (for more
information, see "Configuring External Connection Pooling"
on page 82-2).

Driver Class1 Configure this field when Database Driver is set to Driver
Manager. Select from the menu of options. This menu
includes all JDBC drivers in the TopLink application
classpath.

URL1 Configure this field when Database Driver is set to Driver
Manager. Select from the menu of options relevant to the
selected Driver Class and edit the URL to suit your data
source.

Configuring Exclusive Read Connections

86-6 Oracle TopLink Developer’s Guide

Configuring Exclusive Read Connections
An exclusive connection is one that TopLink allocates specifically to a given session
and one that is never used by any other session.

Allowing concurrent reads on the same connection reduces the number of read
connections required and reduces the risk of having to wait for an available
connection. However, many JDBC drivers do not support concurrent reads.

If you are using internal connection pools (see "Internal Connection Pools" on
page 81-7), you can configure TopLink to acquire an exclusive connection from the
read connection pool.

By default, TopLink acquires exclusive read connections.

If you are using external connection pools, read connections are always exclusive.

Using TopLink Workbench
To configure a TopLink read connection pool to allocate exclusive connections, use this
procedure:

1. Expand a server session to reveal its connection pools in the Navigator.

2. Select a read connection pool in the Navigator. Its properties appear in the Editor.

3. Click the Login tab. The Login tab appears.

4. Click the Connection subtab. The Connection subtab appears.

Datasource Name1 Configure this field when Database Driver is set to J2EE
Datasource. Specify any valid JNDI name that identifies the
J2EE data source preconfigured on your target application
server (For example: jdbc/EmployeeDB).

By convention, all such names should resolve to the JDBC
subcontext (relative to the standard java:comp/env
naming context that is the root of all provided resource
factories).

Connection Specification Class2 Specify the appropriate connection specification class for the
selected Platform. Click Browse to choose from all the
classes in the TopLink classpath. (For example: if Platform
is oracle.toplink.eis.aq.AQPlatform, use
oracle.toplink.eis.aq.AQEISConnectionSpec).

For more information on platform configuration, see
"Configuring an EIS Data Source Platform at the Session
Level" on page 84-1.

Connection Factory URL2 Specify the appropriate connection factory URL for the
selected Connection Specification Class (For example:
jdbc:oracle:thin@:localhost:1521:orcl).

1 For sessions that contain a DatabaseLogin.
2 For sessions that contain an EISLogin.

Field Description

Configuring Exclusive Read Connections

Configuring an Internal Connection Pool 86-7

Figure 86–6 Login Tab, Connection Subtab, Exclusive Connections Option

Select the Exclusive Connections option to configure TopLink to acquire an exclusive
connection from the read connection pool.

Deselect the Exclusive Connections option to configure TopLink to share read
connections and allow concurrent reads. Before selecting this option, ensure that your
JDBC driver supports concurrent reads.

Configuring Exclusive Read Connections

86-8 Oracle TopLink Developer’s Guide

Part XVII
Cache

This part describes using the TopLink object cache in both distributed and
nondistributed applications. It contains the following chapters:

■ Chapter 87, "Understanding the Cache"

This chapter describes each of the different TopLink cache types and important
cache concepts.

■ Chapter 88, "Configuring a Coordinated Cache"

This chapter explains how to configure TopLink coordinated cache options
common to two or more coordinated cache types.

■ Chapter 89, "Configuring a JMS Coordinated Cache"

This chapter explains how to configure a TopLink JMS coordinated cache.

■ Chapter 90, "Configuring an RMI Coordinated Cache"

This chapter explains how to configure a TopLink RMI coordinated cache.

■ Chapter 91, "Configuring a CORBA Coordinated Cache"

This chapter explains how to configure a TopLink CORBA coordinated cache.

Understanding the Cache 87-1

87
Understanding the Cache

The TopLink cache is an in-memory repository that stores recently read or written
objects based on class and primary key values. TopLink uses the cache to do the
following:

■ Improve performance by holding recently read or written objects and accessing
them in-memory to minimize database access

■ Manage locking and isolation level

■ Manage object identity

This section describes the following:

■ Cache Architecture

■ Cache Concepts

■ Understanding the Cache API

Cache Architecture
TopLink uses two types of cache: the session cache maintains objects retrieved from
and written to the data source; and the unit of work cache holds objects while they
participate in transactions. When a unit of work successfully commits to the data
source, TopLink updates the session cache accordingly.

As Figure 87–1 shows, the session cache and the unit of work cache work together
with the data source connection to manage objects in a TopLink application. The object
life cycle relies on these three mechanisms.

Note: You can also configure a query to cache its results (see
"Caching Results in a ReadQuery" on page 96-20)

Cache Concepts

87-2 Oracle TopLink Developer’s Guide

Figure 87–1 Object Life Cycle and the TopLink Caches

Session Cache
The session cache is a shared cache that services clients attached to a given session.
When you read objects from or write objects to the data source using a client session,
TopLink saves a copy of the objects in the parent server session’s cache and makes
them accessible to all other processes in the session.

TopLink adds objects to the session cache from the following:

■ The data store, when TopLink executes a read operation

■ The unit of work cache, when a unit of work successfully commits a transaction

An isolated client session is a special type of client session that provides its own
session cache isolated from the shared object cache of its parent server session. The
isolated client session cache can be used to improve user-based security or to avoid
caching highly volatile data. For more information, see "Isolated Client Sessions" on
page 72-19.

Unit of Work Cache
The unit of work cache services operations within the unit of work. It maintains and
isolates objects from the session cache, and writes changed or new objects to the
session cache after the unit of work commits changes to the data source.

Cache Concepts
This section describes concepts unique to the TopLink cache, including the following:

■ Cache Type and Object Identity

■ Querying and the Cache

■ Handling Stale Data

■ Explicit Query Refreshes

■ Cache Invalidation

■ Cache Coordination

■ Cache Isolation

Cache Concepts

Understanding the Cache 87-3

■ Cache Locking and Transaction Isolation

■ Cache Optimization

Cache Type and Object Identity
TopLink preserves object identity through its cache using the primary key attributes of
a persistent entity. These attributes may or may not be assigned through sequencing
(see "Projects and Sequencing" on page 17-4). In a Java application, object identity is
preserved if each object in memory is represented by one, and only one, object
instance. Multiple retrievals of the same object return references to the same object
instance–not multiple copies of the same object.

Maintaining object identity is extremely important when the application’s object
model contains circular references between objects. You must ensure that the two
objects are referencing each other directly, rather than copies of each other. Object
identity is important when multiple parts of the application may be modifying the
same object simultaneously.

Oracle recommends that you always maintain object identity. Disable object identity
only if absolutely necessary, for example, for read-only objects (see "Configuring
Read-Only Descriptors" on page 25-5).

You can configure how object identity is managed on a class-by-class basis. The
Descriptor object provides the cache and identity map options described in
Table 87–1.

For more information, see "Guidelines for Configuring the Cache and Identity Maps"
on page 87-4.

Full Identity Map
This option provides full caching and guaranteed identity: objects are never flushed
from memory unless they are deleted.

It caches all objects and does not remove them. Cache size doubles whenever the
maximum size is reached. This method may be memory-intensive when many objects
are read. Do not use this option on batch operations.

Oracle recommends using this identity map when the data set size is small and
memory is in large supply.

Weak Identity Map
This option is similar to the full identity map, except that the map holds the objects by
using weak references. This method allows full garbage collection and provides full
caching and guaranteed identity.

Table 87–1 Cache and Identity Map Options

Option (Identity Map) Caching
Guaranteed
Identity

Memory
Use

Client/Server
Transaction Save

Full Identity Map Yes Yes High Yes

Weak Identity Map Yes Yes Low No

Soft and Hard Cache Weak
Identity Maps

Yes Yes Lower Yes

No Identity Map No No None No

Cache Concepts

87-4 Oracle TopLink Developer’s Guide

The weak identity map uses less memory than full identity map but also does not
provide a durable caching strategy across client/server transactions. Objects are
available for garbage collection when the application no longer references them on the
server side (that is, from within the server JVM).

Oracle recommends using this identity map for transactions that, once started, stay on
the server side. Do not use this option for applications that expect objects to remain
cached across client/server invocations.

Soft and Hard Cache Weak Identity Maps
This option is similar to the weak identity map except that it maintains a most
frequently used subcache. The subcache uses soft or hard references to ensure that
these objects are garbage-collected only if the system is low on memory.

The soft cache weak identity map and hard cache weak identity map provide more
efficient memory use. They release objects as they are garbage-collected, except for a
fixed number of most recently used objects. Note that weakly cached objects might be
flushed if the transaction spans multiple client/server invocations. The size of the
subcache is proportional to the size of the identity map as specified by the
Descriptor method setIdentityMapSize. You should set this cache size to be as
large as the maximum number of objects (of the same type) referenced within a
transaction (see "Configuring Cache Type and Size at the Descriptor Level" on
page 25-35).

Oracle recommends using this identity map in most circumstances as a means to
control memory used by the cache.

For more information, see "Understanding the Internals of Soft and Hard Cache Weak
Identity Map" on page 87-5.

No Identity Map
This option does not preserve object identity and does not cache objects.

Oracle does not recommend using the no identity map option.

Guidelines for Configuring the Cache and Identity Maps
You can configure the cache at the project ("Configuring Cache Type and Size at the
Project Level" on page 19-13) or descriptor ("Configuring Cache Type and Size at the
Descriptor Level" on page 25-35) level.

Use the following guidelines when configuring your cache and identity map:

■ If objects with a long life span and object identity are important, use a
SoftCacheWeakIdentityMap or HardCacheWeakIdentityMap policy. For
more information on when to choose one or the other, see "Understanding the
Internals of Soft and Hard Cache Weak Identity Map" on page 87-5.

■ If object identity is important, but caching is not, use a WeakIdentityMap policy.

■ If an object has a long life span or requires frequent access, or object identity is
important, use a FullIdentityMap policy.

WARNING: Use the FullIdentityMap only if the class has a
small number of finite instances. Otherwise, a memory leak will
occur.

Cache Concepts

Understanding the Cache 87-5

■ If an object has a short life span or requires frequent access, and identity is not
important, use a CacheIdentityMap policy.

■ If objects are discarded immediately after being read from the database, such as in
a batch operation, use a NoIdentityMap policy. The NoIdentityMap does not
preserve object identity.

Understanding the Internals of Soft and Hard Cache Weak Identity Map
The SoftCacheWeakIdentityMap and HardCacheWeakIdentityMap types of
identity map contain two caches:

■ Reference cache: implemented as a LinkedList that contains soft or hard
references, respectively

■ Weak cache: implemented as a HashMap that contains weak references

When you create a SoftCacheWeakIdentityMap or
HardCacheWeakIdentityMap with a specified size, the reference cache
LinkedList is exactly this size. The weak cache HashMap is initialized to 100 percent
of the specified size: the weak cache will grow when more objects than the specified
size are read in. Because TopLink does not control garbage collection, the JVM can
reap the weakly held objects whenever it sees fit.

Because the reference cache is implemented as a LinkedList, new objects are added
to the end of the list. Because of this, it is by nature a least recently used (LRU) cache:
fixed size, object at the top of the list is deleted, provided the maximum size has been
reached.

The SoftCacheWeakIdentityMap and HardCacheWeakIdentityMap are
essentially the same type of identity map. The HardCacheWeakIdentityMap was
constructed to work around an issue with some JVMs.

If your application reaches a low system memory condition frequently enough, or if
your platform's JVM treats weak and soft references the same, the objects in the
reference cache may be garbage-collected so often that you will not benefit from the
performance improvement provided by it. If this is the case, Oracle recommends that
you use the HardCacheWeakIdentityMap. It is identical to the
SoftCacheWeakIdentityMap except that it uses hard references in the reference
cache. This guarantees that your application will benefit from the performance
improvement provided by it.

When an object in a HardCacheWeakIdentityMap or
SoftCacheWeakIdentityMap is pushed out of the reference cache, it gets put in the
weak cache. Although it is still cached, TopLink cannot guarantee that it will be there
for any length of time because the JVM can decide to garbage-collect weak references
at anytime.

TopLink cleans up dead cache keys after every nth access to a
HardCacheWeakIdentityMap or SoftCacheWeakIdentityMap. For example, if
you set the size to 100, then TopLink locks the cache and cleans up these cache keys on
the 100th access, 200th access, 300th access, and so on. Although this may appear to be a
memory leak, it is not: it is a compromise that provides improved performance at the
expense of holding on to memory until the nth access. While reducing n frees memory
more frequently, it does so at the unacceptable performance cost of performing an
enumeration of the cache too frequently.

Note: Oracle does not recommend the use of CacheIdentityMap
and NoIdentityMap policies.

Cache Concepts

87-6 Oracle TopLink Developer’s Guide

If you are querying in memory and you absolutely need the guarantee that the objects
are in memory, then you should have those classes set to FullIdentityMap (see
"Full Identity Map" on page 87-3). Querying in memory with
SoftCacheWeakIdentityMap or HardCacheWeakIdentityMap does not 100
percent guarantee that the query will retrieve the objects that you expect.

When you query in memory, TopLink does not move the objects around to maintain a
strict LRU. This behavior occurs only when you merge or query the database. Not
supporting in-memory LRU functionality is a compromise that enhances performance.
To support in-memory LRU functionality, the identity map would have to be locked
for the duration of the move, resulting in performance degradation.

Querying and the Cache
A query that is run against the shared session cache is known as an in-memory query.
Careful configuration of in-memory querying can improve performance (see "Using
In-Memory Queries" on page 93-30).

By default, a query that looks for a single object based on primary key attempts to
retrieve the required object from the cache first, searches the data source only if the
object is not in the cache. All other query types search the database first, by default.
You can specify whether a given query runs against the in-memory cache, the
database, or both.

For more information, see "Queries and the Cache" on page 93-29.

Handling Stale Data
Stale data is an artifact of caching, in which an object in the cache is not the most
recent version committed to the data source. To avoid stale data, implement an
appropriate cache locking strategy.

By default, TopLink optimizes concurrency to minimize cache locking during read or
write operations. Use the default TopLink isolation level, unless you have a very
specific reason to change it. For more information on isolation levels in TopLink, see
"Database Transaction Isolation Levels" on page 99-26.

Cache locking regulates when processes read or write an object. Depending on how
you configure it, cache locking determines whether a process can read or write an
object that is in use within another process.

A well-managed cache makes your application more efficient. There are very few
cases in which you turn the cache off entirely, because the cache reduces database
access, and is an important part of managing object identity.

To make the most of your cache strategy and to minimize your application’s exposure
to stale data, Oracle recommends the following:

■ Configure a Locking Policy

■ Configure the Cache on a Per-Class Basis

■ Force a Cache Refresh When Required on a Per-Query Basis

■ Configure Cache Invalidation

■ Configure Cache Coordination

Configure a Locking Policy
Make sure you configure a locking policy so that you can prevent or at least identify
when values have already changed on an object you are modifying. Typically, this is

Cache Concepts

Understanding the Cache 87-7

done using optimistic locking. TopLink offers several locking policies such as numeric
version field, time-stamp version field, and some or all fields.

For more information, see "Configuring Locking Policy" on page 25-64.

Configure the Cache on a Per-Class Basis
If other applications can modify the data used by a particular class, use a weaker style
of cache for the class. For example, the SoftCacheWeakIdentityMap or
WeakIdentityMap minimizes the length of time the cache maintains an object whose
reference has been removed.

For more information, see "Configuring Cache Type and Size at the Descriptor Level"
on page 25-35.

Force a Cache Refresh When Required on a Per-Query Basis
Any query can include a flag that forces TopLink to go to the data source for the most
up-to-date version of selected objects and update the cache with this information.

For more information, see the following:

■ "Cache Refresh API" on page 87-14

■ "Using DatabaseQuery Queries" on page 94-4

■ "Using Named Queries" on page 94-18

Configure Cache Invalidation
Using descriptor API, you can designate an object as invalid: when any query attempts
to read an invalid object, TopLink will go to the data source for the most up to date
version of that object and update the cache with this information. You can manually
designate an object as invalid or use a CacheInvalidationPolicy to control the
conditions under which an object is designated invalid.

For more information, see "Cache Invalidation" on page 87-8.

Configure Cache Coordination
If your application is primarily read-based and the changes are all being performed by
the same Java application operating with multiple, distributed sessions, you may
consider using the TopLink cache coordination feature. Although this will not prevent
stale data, it should greatly minimize it.

For more information, see "Cache Coordination" on page 87-9.

Explicit Query Refreshes
Some distributed systems require only a small number of objects to be consistent
across the servers in the system. Conversely, other systems require that several specific
objects must always be guaranteed to be up-to-date, regardless of the cost. If you build
such a system, you can explicitly refresh selected objects from the database at
appropriate intervals, without incurring the full cost of distributed cache coordination.

To implement this type of strategy, do the following:

1. Configure a set of queries that refresh the required objects.

2. Establish an appropriate refresh policy.

3. Invoke the queries as required to refresh the objects.

Cache Concepts

87-8 Oracle TopLink Developer’s Guide

Refresh Policy
When you execute a query, if the required objects are in the cache, TopLink returns the
cached objects without checking the database for a more recent version. This reduces
the number of objects that TopLink must build from database results, and is optimal
for noncoordinated cache environments. However, this may not always be the best
strategy for a coordinated cache environment.

To override this behavior, set a refresh policy that specifies that the objects from the
database always take precedence over objects in the cache. This updates the cached
objects with the data from the database.

You can implement this type of refresh policy on each TopLink descriptor, or just on
certain queries, depending upon the nature of the application.

For more information, see the following:

■ "Configuring Cache Refreshing" on page 25-27

■ "Refreshing the Cache" on page 93-35

EJB Finders and Refresh Policy
When you invoke a findByPrimaryKey finder, if the object exists in the cache,
TopLink returns that copy. This is the default behavior, regardless of the refresh
policy. To force a database query, you can configure the query to refresh by calling
refreshIdentityMapResult method on it.

For more information, see the following:

■ "Queries and the Cache" on page 93-29

■ "Configuring Named Query Options" on page 25-22

Cache Invalidation
By default, objects remain in the session cache until they are explicitly deleted (see
"Deleting Objects" on page 98-7) or garbage collected when using a weak identity map
(see "Configuring Cache Type and Size at the Project Level" on page 19-13).

Alternatively, you can configure any object with a CacheInvalidationPolicy that
lets you specify, either automatically or manually, under what circumstances a cached
object is invalid: when any query attempts to read an invalid object, TopLink will go to
the data source for the most up-to-date version of that object, and update the cache
with this information.

You can use any of the following CacheInvalidationPolicy instances:

■ DailyCacheInvalidationPolicy: the object is automatically flagged as
invalid at a specified time of day.

■ NoExpiryCacheInvalidationPolicy: the object can only be flagged as
invalid by explicitly calling
oracle.toplink.sessions.IdentityMapAccessor method
invalidateObject.

■ TimeToLiveCacheInvalidationPolicy: the object is automatically flagged as
invalid after a specified time period has elapsed since the object was read.

Note: Refreshing does not prevent phantom reads from occurring. See
"Refreshing Finder Results" on page 93-38.

Cache Concepts

Understanding the Cache 87-9

You can configure a cache invalidation policy in the following ways:

■ At the project level that applies to all objects ("Configuring Cache Expiration at the
Project Level" on page 19-19)

■ At the descriptor level to override the project level configuration on a per-object
basis ("Configuring Cache Expiration at the Descriptor Level" on page 25-42)

■ At the query level that applies to the results returned by the query ("Configuring
Cache Expiration at the Query Level" on page 96-21)

If you configure a query to cache results in its own internal cache (see "Caching Query
Results in the Query Cache" on page 93-36), the cache invalidation policy you
configure at the query level applies to the query’s internal cache in the same way it
would apply to the session cache.

If you are using a coordinated cache (see "Cache Coordination" on page 87-9), you can
customize how TopLink communicates the fact that an object has been declared
invalid. For more information, see "Configuring Cache Coordination Change
Propagation at the Descriptor Level" on page 25-40.

Cache Coordination
The need to maintain up-to-date data for all applications is a key design challenge for
building a distributed application. The difficulty of this increases as the number of
servers within an environment increases. TopLink provides a distributed cache
coordination feature that ensures data in distributed applications remains current.

Cache coordination reduces the number of optimistic lock exceptions encountered in a
distributed architecture, and decreases the number of failed or repeated transactions in
an application. However, cache coordination in no way eliminates the need for an
effective locking policy. To effectively ensure working with up-to-date data, cache
coordination must be used with optimistic or pessimistic locking. Oracle recommends
that you use cache coordination with an optimistic locking policy (see "Configuring
Locking Policy" on page 25-64).

You can use cache invalidation to improve cache coordination efficiency. For more
information, see "Cache Invalidation" on page 87-8.

For more information, see "Understanding Cache Coordination" on page 87-10.

Cache Isolation
Isolated client sessions provide a mechanism for disabling the shared server session
cache. Any classes marked as isolated only cache objects relative to the life cycle of
their client session. These classes never utilize the shared server session cache. This is
the best mechanism to prevent caching as it is configured on a per-class basis allowing
caching for some classes, and denying for others.

For more information, see "Isolated Client Sessions" on page 72-19.

Cache Locking and Transaction Isolation
By default, TopLink optimizes concurrency to minimize cache locking during read or
write operations. Use the default TopLink transaction isolation configuration unless
you have a very specific reason to change it.

For more information, see "Database Transaction Isolation Levels" on page 99-26.

Understanding Cache Coordination

87-10 Oracle TopLink Developer’s Guide

Cache Optimization
Tune the TopLink cache for each class to help eliminate the need for distributed cache
coordination. Always tune these settings before implementing cache coordination.

For more information, see "Cache Optimization" on page 11-13.

Understanding Cache Coordination
As Figure 87–2 shows, cache coordination is a session feature that allows multiple,
possibly distributed, instances of a session to broadcast object changes among each
other so that each session’s cache is either kept up-to-date or notified that the cache
must update an object from the data source the next time it is read.

Figure 87–2 Cache Coordination

When sessions are distributed, that is, when an application contains multiple sessions
(in the same JVM, in multiple JVMs, possibly on different servers), as long as the
servers hosting the sessions are interconnected on the network, sessions can
participate in cache coordination. Coordinated cache types that require discovery
services also require the servers to support User Datagram Protocol (UDP)
communication and multicast configuration (for more information, see "Coordinated
Cache Architecture" on page 87-11).

This section describes the following:

■ When to use Cache Coordination

■ Coordinated Cache Architecture

■ Coordinated Cache Types

■ Custom Coordinated Cache

For more information, see "Configuring a Coordinated Cache" on page 88-1.

Note: You cannot use isolated client sessions (see "Isolated Client
Sessions" on page 72-19) with cache coordination.

Understanding Cache Coordination

Understanding the Cache 87-11

When to use Cache Coordination
Cache coordination can enhance performance and reduce the likelihood of stale data
for applications that have the following characteristics:

■ Changes are all being performed by the same Java application operating with
multiple, distributed sessions

■ Primarily read-based

■ Regularly requests and updates the same objects

To maximize performance, avoid cache coordination for applications that do not have
these characteristics. For more information about alternatives to cache coordination,
see "Cache Optimization" on page 11-13.

Cache coordination enhances performance mainly by avoiding data source access.

Cache coordination reduces the occurrence of stale data by increasing the likelihood
that distributed caches are kept up-to-date with changes and are notified when one of
the distributed caches must update an object from the data source the next time it is
read.

Cache coordination reduces the number of optimistic lock exceptions encountered in a
distributed architecture, and decreases the number of failed or repeated transactions in
an application. However, cache coordination in no way eliminates the need for an
effective locking policy. To effectively ensure working with up-to-date data, cache
coordination must be used with optimistic or pessimistic locking. Oracle recommends
that you use cache coordination with an optimistic locking policy (see "Configuring
Locking Policy" on page 25-64).

For other options to reduce the likelihood of stale data, see "Handling Stale Data" on
page 87-6.

Coordinated Cache Architecture
TopLink provides coordinated cache implementations that perform discovery and
message transport services using various technologies including the following:

■ Java Message Service (JMS)–See "JMS Coordinated Cache" on page 87-12

■ Remote Method Invocation (RMI)–See "RMI Coordinated Cache" on page 87-12

■ Common Object Request Broker Architecture (CORBA)–See "CORBA Coordinated
Cache" on page 87-13

Regardless of the type of discovery and message transport you choose to use, the
following are the principal objects that provide coordinated cache functionality:

■ Session

■ Descriptor

■ Unit of Work

Session
When you enable a session for change propagation, the session provides discovery
and message transport services using either JMS, RMI, or CORBA.

Discovery services ensure that sessions announce themselves to other sessions
participating in cache coordination. Discovery services use UDP communication and
multicast configuration to monitor sessions as they join and leave the coordinated
cache. All coordinated cache types (except JMS) require discovery services.

Understanding Cache Coordination

87-12 Oracle TopLink Developer’s Guide

Message transport services allow the session to broadcast object change notifications
to other sessions participating in cache coordination when a unit of work from this
session commits a change.

Descriptor
You can configure how object changes are broadcast on a descriptor-by-descriptor
basis. This lets you fine-tune the type of notification to make.

For example, for an object with few attributes, you can configure its descriptor to send
object changes. For an object with many attributes, it may be more efficient to
configure its descriptor so that the object is flagged as invalid (so that other sessions
will know to update the object from the data source the next time it is read).

Unit of Work
Only changes committed by a unit of work are subject to propagation when cache
coordination is enabled. The unit of work computes the appropriate change set based
on the descriptor configuration of affected objects.

Coordinated Cache Types
You can create the following types of coordinated cache:

■ JMS Coordinated Cache

■ RMI Coordinated Cache

■ CORBA Coordinated Cache

JMS Coordinated Cache
For a JMS coordinated cache, when a particular session’s coordinated cache starts up,
it uses its JNDI naming service information to locate and create a connection to the
JMS server. The coordinated cache is ready when all participating sessions are
connected to the same topic on the same JMS server. At this point, sessions can start
sending and receiving object change messages. You can then configure all sessions that
are participating in the same coordinated cache with the same JMS and JNDI naming
service information.

Because you must supply the necessary information to connect to the JMS Topic, a JMS
coordinated cache does not use a discovery service.

If you do use cache coordination, Oracle recommends that you use JMS cache
coordination: JMS is robust, easy to configure, and provides efficient support for
asynchronous change propagation.

For more information, see Chapter 89, "Configuring a JMS Coordinated Cache".

RMI Coordinated Cache
For an RMI coordinated cache, when a particular session’s coordinated cache starts up,
the session binds its connection in its naming service (either an RMI registry or JNDI),
creates an announcement message (that includes its own naming service information),
and broadcasts the announcement to its multicast group (see "Configuring a Multicast
Group Address" on page 88-4 and "Configuring a Multicast Port" on page 88-5). When
a session that belongs to the same multicast group receives this announcement, it uses
the naming service information in the announcement message to establish
bidirectional connections with the newly announced session’s coordinated cache. The
coordinated cache is ready when all participating sessions are interconnected in this
way, at which point sessions can start sending and receiving object change messages.

Understanding the Cache API

Understanding the Cache 87-13

You can then configure each session with naming information that identifies the host
on which the session is deployed.

If you do use cache coordination, Oracle recommends that you use RMI cache
coordination only if you require synchronous change propagation (see "Configuring
the Synchronous Change Propagation Mode" on page 88-2).

TopLink also supports cache coordination using RMI over the Internet Inter-ORB
Protocol (IIOP). An RMI/IIOP coordinated cache uses RMI (and a JNDI naming
service) for discovery and message transport services.

For more information, see Chapter 90, "Configuring an RMI Coordinated Cache".

CORBA Coordinated Cache
For a CORBA coordinated cache, when a particular session’s coordinated cache starts
up, the session binds its connection in JNDI, creates an announcement message (that
includes its own JNDI naming service information), and broadcasts the announcement
to its multicast group (see "Configuring a Multicast Group Address" on page 88-4 and
"Configuring a Multicast Port" on page 88-5). When a session that belongs to the same
multicast group receives this announcement, it uses the naming service information in
the announcement message to establish bidirectional connections with the newly
announced session’s coordinated cache. The coordinated cache is ready when all
participating sessions are interconnected in this way, at which point, sessions can start
sending and receiving object change messages. You can then configure each session
with naming information that identifies the host on which the session is deployed.

Currently, TopLink provides support for the Sun Object Request Broker.

For more information on configuring a CORBA coordinated cache, see Chapter 91,
"Configuring a CORBA Coordinated Cache".

Custom Coordinated Cache
Using the classes in oracle.toplink.remotecommand package, you can define
your own coordinated cache for custom solutions. For more information, contact your
TopLink support representative.

Once you have created the required cache coordination classes, for more information
on configuring a user-defined coordinated cache, see Chapter 92, "Configuring a
Custom Coordinated Cache".

Understanding the Cache API
To configure the TopLink cache, you use the appropriate API in the following objects:

■ Object Identity API

■ Cache Refresh API

■ Cache Invalidation API

■ Cache Coordination API

Note: If you use an RMI coordinated cache, Oracle recommends that
you use RMI/IIOP only if absolutely necessary.

Understanding the Cache API

87-14 Oracle TopLink Developer’s Guide

Object Identity API
You configure object identity using the Descriptor API summarized in
Example 87–1.

For more information, see "Configuring Cache Type and Size at the Descriptor Level"
on page 25-35.

Example 87–1 Object Identity Descriptor API

useCacheIdentityMap()
useFullIdentityMap()
useHardCacheWeakIdentityMap()
useNoIdentityMap()
useSoftCacheWeakIdentityMap()
useWeakIdentityMap()

Cache Refresh API
You configure cache refresh using the Descriptor API summarized in Example 87–2.

Example 87–2 Cache Refresh Descriptor API

alwaysRefreshCache()
alwaysRefreshCacheOnRemote()
disableCacheHits()
disableCacheHitsOnRemote()
onlyRefreshCacheIfNewerVersion()

You can also configure cache refresh using the following API calls:

■ Session: refreshObject method

■ DatabaseSession and UnitOfWork: refreshAndLockObject methods

■ ObjectLevelReadQuery: refreshIdentityMapResult and
refreshRemoteIdentityMapResult methods

For more information, see "Configuring Cache Refreshing" on page 25-27.

Cache Invalidation API
You configure cache invalidation using Descriptor methods
getCacheInvalidationPolicy and setCacheInvalidationPolicy to
configure an
oracle.toplink.descriptors.invalidation.CacheInvalidationPolicy.

You can use any of the following CacheInvalidationPolicy instances:

■ DailyCacheInvalidationPolicy: The object is automatically flagged as
invalid at a specified time of day.

■ NoExpiryCacheInvalidationPolicy: The object can only be flagged as
invalid by explicitly calling
oracle.toplink.sessions.IdentityMapAccessor method
invalidateObject.

■ TimeToLiveCacheInvalidationPolicy: The object is automatically flagged
as invalid after a specified time period has elapsed since the object was read.

Understanding the Cache API

Understanding the Cache 87-15

You can also configure cache invalidation using a variety of API calls accessible
through the Session. The oracle.toplink.sessions.IdentityMapAccessor
provides the following methods:

■ getRemainingValidTime: Returns the remaining life of the specified object.
This time represents the difference between the next expiry time of the object and
its read time.

■ invalidateAll: Sets all objects for all classes to be invalid in TopLink identity
maps.

■ invalidateClass(Class klass) and invalidateClass(Class klass,
boolean recurse): Set all objects of a specified class to be invalid in TopLink
identity maps.

■ invalidateObject(Object object), invalidateObject(Record
rowWithPrimaryKey, Class klass) and invalidateObject(Vector
primaryKey, Class klass): Set an object to be invalid in TopLink identity
maps.

■ invalidateObjects(Expression selectionCriteria) and
invalidateObjects(Vector collection): Set all objects from the specified
Expression/collection to be invalid in TopLink identity maps.

■ isValid(DatabaseRow rowContainingPrimaryKey, Class theClass),
isValid(Object object) and isValid(java.util.Vector
primaryKey, Class theClass): Return true if the object is valid in TopLink
identity maps.

For more information, see the following:

■ "Configuring Cache Expiration at the Project Level" on page 19-19

■ "Configuring Cache Expiration at the Descriptor Level" on page 25-42

■ "Configuring Cache Expiration at the Query Level" on page 96-21

Cache Coordination API
You configure cache coordination using the Session methods summarized in
Example 87–3.

You configure how object changes are propagated using the Descriptor methods
summarized in Example 87–4.

For more information, see "Configuring Common Coordinated Cache Options" on
page 88-1.

Example 87–3 Cache Coordination Session API

Session.getCommandManager()
setShouldPropagateAsynchronously(boolean)

Session.getCommandManager().getDiscoveryManager()
setAnnouncementDelay()
setMulticastGroupAddress()
setMulticastPort()
setPacketTimeToLive()

Session.getCommandManager().getTransportManager()
setEncryptedPassword()
setInitialContextFactoryName()
setLocalContextProperties(Hashtable)
setNamingServiceType() passing in one of:

TransportManager.JNDI_NAMING_SERVICE

Understanding the Cache API

87-16 Oracle TopLink Developer’s Guide

TransportManager.REGISTRY_NAMING_SERVICE
setPassword()
setRemoteContextProperties(Hashtable)
setShouldRemoveConnectionOnError()
setUserName()

Example 87–4 Cache Coordination Descriptor API

setCacheSynchronizationType() passing in one of:
ClassDescriptor.DO_NOT_SEND_CHANGES
ClassDescriptor.INVALIDATE_CHANGED_OBJECTS
ClassDescriptor.SEND_NEW_OBJECTS_WITH_CHANGES
ClassDescriptor.SEND_OBJECT_CHANGES

Configuring a Coordinated Cache 88-1

88
Configuring a Coordinated Cache

This chapter describes how to configure a TopLink coordinated cache.

Table 88–1 lists the configurable options shared by two or more TopLink coordinated
cache types.

For more information, see "Understanding Cache Coordination" on page 87-10.

Configuring Common Coordinated Cache Options
Table 88–1 lists the configurable options shared by two or more TopLink coordinated
cache types. In addition to the configurable options described here, you must also
configure the options described for the specific Coordinated Cache Types, as shown in
Table 88–2.

Table 88–1 Configuring TopLink Coordinated Caches

If you are configuring a... See...

JMS Coordinated Cache Chapter 89, "Configuring a JMS Coordinated Cache"

RMI Coordinated Cache Chapter 90, "Configuring an RMI Coordinated Cache"

CORBA Coordinated Cache Chapter 91, "Configuring a CORBA Coordinated Cache"

Custom Coordinated Cache Chapter 92, "Configuring a Custom Coordinated Cache"

Table 88–2 Common Coordinated Cache Options

Option Type
TopLink
Workbench Java

"Configuring Cache Coordination Change Propagation at the
Descriptor Level" on page 25-40

Basic

"Configuring the Synchronous Change Propagation Mode" on
page 88-2

Basic

"Configuring a Service Channel" on page 88-3 Basic

"Configuring a Multicast Group Address" on page 88-4 Basic

"Configuring a Multicast Port" on page 88-5 Basic

"Configuring a Naming Service Type" on page 88-7 Basic

"Configuring an Announcement Delay" on page 88-11 Basic

"Configuring Connection Handling" on page 88-13 Advanced

"Configuring Context Properties" on page 88-14 Advanced

"Configuring a Packet Time-to-Live" on page 88-15 Advanced

Configuring the Synchronous Change Propagation Mode

88-2 Oracle TopLink Developer’s Guide

Configuring the Synchronous Change Propagation Mode
You can configure whether the coordinated cache should propagate object changes
asynchronously or synchronously.

Table 88–3 summarizes which coordinated caches support propagation mode
configuration.

Synchronous propagation mode forces the session to wait for an acknowledgement
before sending the next object change notification: this reduces the likelihood of stale
data at the expense of performance.

Asynchronous propagation mode allows the session to create separate threads to
propagate changes to remote servers. TopLink returns control to the client
immediately after the local commit operation, whether or not the changes merge
successfully on the remote servers. This offers superior performance for applications
that are somewhat tolerant of stale data.

For more information, "Handling Stale Data" on page 87-6.

Using TopLink Workbench
To specify the change propagation mode, use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 88–3). The cache coordination
options appear on the tab.

Table 88–3 Coordinated Cache Support for Propagation Mode Configuration

Coordinated Cache
Using TopLink
Workbench

Using
Java

JMS Coordinated Cache (asynchronous only)

RMI Coordinated Cache

CORBA Coordinated Cache

Custom Coordinated Cache

Configuring a Service Channel

Configuring a Coordinated Cache 88-3

Figure 88–1 Cache Coordination Tab, Synchronous Field

4. Select the Synchronous option to use synchronous change propagation. Do not
select this option to use asynchronous change propagation.

Configuring a Service Channel
The service channel is the name of the TopLink coordinated cache channel to which
sessions subscribe in order to participate in the same coordinated cache. Such sessions
use the service channel to exchange messages with each other. Messages sent on other
service channels will not be exchanged with this coordinated cache.

Table 88–4 summarizes which coordinated caches support service channel
configuration.

Using TopLink Workbench
To specify the service channel, use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

Table 88–4 Coordinated Cache Support for Service Channel Configuration

Coordinated Cache
Using TopLink
Workbench

Using
Java

JMS Coordinated Cache

RMI Coordinated Cache

CORBA Coordinated Cache

Custom Coordinated Cache

Configuring a Multicast Group Address

88-4 Oracle TopLink Developer’s Guide

3. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 88–4). The cache coordination
options appear on the tab.

Figure 88–2 Cache Coordination Tab, Channel Field

4. In the Channel field, enter the name of the service channel for this coordinated
cache.

Configuring a Multicast Group Address
A multicast group address is an Internet Protocol (IP) address in the range 224.0.0.0 to
239.255.255.255 that identifies the members of an IP multicast group. To efficiently
broadcast the same message to all members of an IP multicast group, you configure
each recipient with the same multicast group address and send the message to that
address.

Table 88–5 summarizes which coordinated caches support multicast group address
configuration.

Table 88–5 Coordinated Cache Support for Multicast Group Address Configuration

Coordinated Cache
Using TopLink
Workbench

Using
Java

JMS Coordinated Cache

RMI Coordinated Cache

CORBA Coordinated Cache

Custom Coordinated Cache

Configuring a Multicast Port

Configuring a Coordinated Cache 88-5

In addition to configuring the multicast group address, you must also configure the
multicast port (see "Configuring a Multicast Port" on page 88-5) for the coordinated
cache types shown in Table 88–5.

Using TopLink Workbench
To specify the multicast group address, use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 88–5). The cache coordination
options appear on the tab.

Figure 88–3 Cache Coordination Tab, Multicast Group Address Field

4. Enter the multicast group address in the range 224.0.0.0 to 239.255.255.255 to
subscribe this session to a given coordinated cache.

Configuring a Multicast Port
The multicast port is the port on which multicast messages are received. Members of a
multicast group (see "Configuring a Multicast Group Address" on page 88-4) rely on
messages broadcast to their multicast group address to communicate with one another.

Note: Ensure your host and network are configured to support
multicast operation before configuring this option.

Configuring a Multicast Port

88-6 Oracle TopLink Developer’s Guide

Table 88–6 summarizes which coordinated caches support multicast port
configuration.

Using TopLink Workbench
To specify the multicast port, use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 88–6). The cache coordination
options appear on the tab.

Figure 88–4 Cache Coordination Tab, Multicast Port Field

4. Enter the multicast port on which messages broadcast to the multicast group
address are received.

Table 88–6 Coordinated Cache Support for Multicast Port Configuration

Coordinated Cache
Using TopLink
Workbench

Using
Java

JMS Coordinated Cache

RMI Coordinated Cache

CORBA Coordinated Cache

Custom Coordinated Cache

Note: Ensure your host and network are configured to support
multicast operation before configuring this option

Configuring JNDI Naming Service Information

Configuring a Coordinated Cache 88-7

Configuring a Naming Service Type
The session’s message transport service uses a naming service when it looks up
connections to other sessions in the coordinated cache. You can configure the message
transport service to look up remote objects using an RMI registry or Java Naming and
Directory Interface (JNDI). By default, JNDI is used.

Table 88–7 summarizes which coordinated caches support naming service
configuration.

For information, see:

■ "Configuring RMI Registry Naming Service Information" on page 88-9

■ "Configuring JNDI Naming Service Information" on page 88-7

Configuring JNDI Naming Service Information
The session’s message transport service uses a naming service when it looks up
connections to other sessions in the coordinated cache. If you choose to use a JNDI
naming service, you must configure JNDI naming service information.

Table 88–8 summarizes which coordinated caches support JNDI naming service
configuration.

TopLink uses JNDI naming service information differently, depending on the type of
coordinated cache.

For a JMS coordinated cache, when a particular session’s coordinated cache starts up,
it uses its JNDI naming service information to locate and create a connection to the
JMS server. The coordinated cache is ready when all participating sessions are
connected to the JMS server. At this point, sessions can start sending and receiving
object change messages. You can then configure all sessions that are participating in
the same coordinated cache with the same JNDI naming service information.

Table 88–7 Coordinated Cache Support for Naming Service Configuration

Coordinated Cache
JNDI Naming
Service

RMI Registry
Naming Service

JMS Coordinated Cache

RMI Coordinated Cache

CORBA Coordinated Cache

Custom Coordinated Cache

Table 88–8 Coordinated Cache Support for JNDI Naming Service Configuration

Coordinated Cache

Using
TopLink
Workbench

Using
Java

JMS Coordinated Cache

RMI Coordinated Cache

CORBA Coordinated Cache

Custom Coordinated Cache

Configuring JNDI Naming Service Information

88-8 Oracle TopLink Developer’s Guide

For an RMI or CORBA coordinated cache, when a particular session’s coordinated
cache starts up, the session binds its connection in JNDI, creates an announcement
message (that includes its own JNDI naming service information), and broadcasts the
announcement to its multicast group (see "Configuring a Multicast Group Address" on
page 88-4 and "Configuring a Multicast Port" on page 88-5). When a session that
belongs to the same multicast group receives this announcement, it uses the JNDI
naming service information in the announcement message to establish bidirectional
connections with the newly announced session’s coordinated cache. The coordinated
cache is ready when all participating sessions are interconnected in this way, at which
point, sessions can start sending and receiving object change messages. You can then
configure each session with JNDI naming information that identifies the host on which
the session is deployed.

Using TopLink Workbench
To specify the sessions’s JNDI naming service, use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 88–8). The cache coordination
options appear on the tab.

Figure 88–5 Cache Coordination Tab, JNDI Naming Service Options

Use the following information to enter data in the fields of the Cache Coordination tab
to configure the naming service options:

Configuring RMI Registry Naming Service Information

Configuring a Coordinated Cache 88-9

Configuring RMI Registry Naming Service Information
The session’s message transport service uses a naming service when it looks up
connections to other sessions in the coordinated cache. If you choose to use an RMI
registry naming service, you can configure RMI registry naming service options.

Table 88–8 summarizes which coordinated caches support RMI registry naming
service configuration.

Field Description

URL The location of the JNDI naming service.

For a JMS coordinated cache: If you are using the Oracle
Containers for J2EE (OC4J) JNDI naming service and all the
hosts in your coordinated cache can communicate using the
OC4J proprietary RMI protocol ORMI, use a URL similar to the
following:

ormi://<JMS-host-IP>:<JMS-host-port>

where JMS-host-IP is the IP address of the host on which the
JMS service provider is running and JMS-host-port is the
port on which the JMS service provider is listening for JMS
requests.

For an RMI or CORBA coordinated cache: If you are using the
OC4J JNDI naming service and all the hosts in your coordinated
cache can communicate using the OC4J proprietary RMI
protocol ORMI on OC4J default port 23791, use a URL similar to
the following:

ormi://<session-host-IP>:23791

where session-host-IP is the IP address of the host on
which this session is deployed.

Username The user name required to log in to the JNDI naming service.

The value you enter defines the Context.SECURITY_
PRINCIPAL environment property.

Password The plain text (unencrypted) password required to log in to the
JNDI naming service. The password appears in plain text in
TopLink Workbench, but it is encrypted when written to the
sessions.xml file

The value you enter defines the Context.SECURITY_
CREDENTIALS environment property.

Initial Context Factory The name of the factory class, provided by your JNDI naming
service provider, that implements the
javax.naming.spi.InitialContextFactory interface.
This factory class is used to create a javax.naming.Context
instance that can access the JNDI naming service provider’s
context implementation.

The value you enter defines the Context.INITIAL_CONTEXT_
FACTORY environment property.

Properties The JNDI context properties.

Click Properties to configure custom JNDI context properties
(see "Configuring Context Properties" on page 88-14).

Configuring RMI Registry Naming Service Information

88-10 Oracle TopLink Developer’s Guide

For an RMI coordinated cache, when a particular session’s coordinated cache starts up,
the session binds its connection in its RMI registry, creates an announcement message
(that includes its own naming service information), and broadcasts the announcement
to its multicast group (see "Configuring a Multicast Group Address" on page 88-4 and
"Configuring a Multicast Port" on page 88-5). When a session that belongs to the same
multicast group receives this announcement, it uses the JNDI naming service
information in the announcement message to establish bidirectional connections with
the newly announced session’s coordinated cache. The coordinated cache is ready
when all participating sessions are interconnected in this way, at which point, sessions
can start sending and receiving object change messages. You can then configure each
session with RMI registry naming information that identifies the host on which the
session is deployed.

Using TopLink Workbench
To specify the sessions’s registry naming service, use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor window.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 88–9). The cache coordination
options appear on the tab.

Table 88–9 Coordinated Cache Support for RMI Registry Naming Service Configuration

Coordinated Cache
Using TopLink
Workbench

Using
Java

JMS Coordinated Cache

RMI Coordinated Cache

CORBA Coordinated Cache

Custom Coordinated Cache

Configuring an Announcement Delay

Configuring a Coordinated Cache 88-11

Figure 88–6 Cache Coordination Tab, Naming Service Options

Use the following information to configure the naming service options:

Configuring an Announcement Delay
Use the announcement delay option to set the amount of time (in milliseconds) that a
session should wait between the time that it is available and the time that it broadcasts
its announcement message to the members of the coordinated cache. This additional
delay may be necessary to give some systems more time to post their connections into
the naming service (see "Configuring a Naming Service Type" on page 88-7).

Table 88–10 summarizes which coordinated caches support announcement delay
configuration.

Field Description

URL Assuming that you are using the OC4J JNDI naming service and
that all the hosts in your coordinated cache can communicate
using the OC4J proprietary RMI protocol ORMI on OC4J default
port 23791, use a URL similar to the following:

ormi://<session-host-IP>:23791

where session-host-IP is the IP address of the host on
which this session is deployed.

Table 88–10 Coordinated Cache Support for Announcement Delay Configuration

Coordinated Cache
Using TopLink
Workbench

Using
Java

JMS Coordinated Cache

RMI Coordinated Cache

Configuring an Announcement Delay

88-12 Oracle TopLink Developer’s Guide

In addition to announcement delay, you may also need to consider packet time-to-live
configuration (see "Configuring a Packet Time-to-Live" on page 88-15).

Using TopLink Workbench
To specify the announcement delay (in milliseconds) for an RMI coordinated cache,
use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 88–10). The cache coordination
options appear on the tab.

Figure 88–7 Cache Coordination Tab, Announcement Delay Field

4. Select the amount of time (in milliseconds) that this session should wait between
the time that it is available and the time that it broadcasts its announcement
message to the members of the coordinated cache.

CORBA Coordinated Cache

Custom Coordinated Cache

Table 88–10 (Cont.) Coordinated Cache Support for Announcement Delay Configuration

Coordinated Cache
Using TopLink
Workbench

Using
Java

Configuring Connection Handling

Configuring a Coordinated Cache 88-13

Configuring Connection Handling
The session’s transport manager creates connections to the various members of the
coordinated cache. If a communication error occurs on one of these connections, you
can configure the session to either ignore the error or remove the connection.

Table 88–11 summarizes which coordinated caches support connection handling
configuration.

If you configure the session to remove the connection on error, the next time the
session tries to communicate with that coordinated cache member, it will construct a
new connection.

If you configure the session to ignore the error, the next time the session tries to
communicate with that coordinated cache member, it will continue to use the same
connection.

Using TopLink Workbench
To specify how TopLink handles session connections in the event of an error, use this
procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 88–11). The cache coordination
options appear on the tab.

Table 88–11 Coordinated Cache Support for Connection Handling Configuration

Coordinated Cache
Using TopLink
Workbench

Using
Java

JMS Coordinated Cache

RMI Coordinated Cache

CORBA Coordinated Cache

Custom Coordinated Cache

Configuring Context Properties

88-14 Oracle TopLink Developer’s Guide

Figure 88–8 Cache Coordination Tab, Remove Connection on Error Option

4. Select the Remove Connection on Error option to configure the session to remove
the data source connection in the event of an error.

Configuring Context Properties
When you configure a coordinated cache to use a JNDI naming service (see
"Configuring a Naming Service Type" on page 88-7), you can add new environment
properties to the environment of the initial JNDI context.

Table 88–12 summarizes which coordinated caches support context properties.

Using TopLink Workbench, TopLink uses the new environment properties you add to
create the initial context for both local and remote JNDI access.

Using Java, you can configure different properties for local and remote JNDI access
using a session customizer class to call TransportManager methods
setLocalContextProperties and setRemoteContectProperties (for more
information, see "Configuring Customizer Class" on page 74-13).

Using TopLink Workbench
To define JNDI context properties, use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

Table 88–12 Coordinated Cache Support for Context Properties

Coordinated Cache
Using TopLink
Workbench

Using
Java

JMS Coordinated Cache

RMI Coordinated Cache1

1 When JNDI naming service is selected (see "Configuring a Naming Service Type" on page 88-7).

CORBA Coordinated Cache1

Custom Coordinated Cache

Configuring a Packet Time-to-Live

Configuring a Coordinated Cache 88-15

2. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 88–12). The cache coordination
options appear on the tab.

3. Ensure the JNDI Naming Service option is selected. See "Configuring a Naming
Service Type" on page 88-7.

4. In the JNDI Naming Service area, click Properties. The Edit Properties dialog box
appears.

Figure 88–9 Edit Properties Dialog Box

5. Click Add to create a new property. The Add New Property dialog box appears.

To change (or delete) an existing property, select the property and click Edit (or
Remove).

Use this table to enter data in the following fields on the dialog box.

Configuring a Packet Time-to-Live
The packet time-to-live is the number of hops that session data packets can take
before expiring. The default is 2. This allows for a hub and an interface card, and
prevents the data packets from leaving the local network. If sessions are hosted on
different local area networks (LANs) that are part of wide area network (WAN), or if a
firewall configuration prevents it, the announcement sent by one session may not
reach the other sessions in the coordinated cache. In this case, consult your network
administrator for the correct time-to-live value.

Table 88–13 summarizes which coordinated caches support packet time-to-live
configuration.

Field Description

Name The name of the property.

Value The value of the property.

Table 88–13 Coordinated Cache Support for Packet Time-to-Live Configuration

Coordinated Cache

Using
TopLink
Workbench

Using
Java

JMS Coordinated Cache

RMI Coordinated Cache

Configuring a Packet Time-to-Live

88-16 Oracle TopLink Developer’s Guide

In addition to configuring packet time-to-live, you may also need to configure
announcement delay (see "Configuring an Announcement Delay" on page 88-11).

Using TopLink Workbench
To specify the number of hops that session data packets can take before expiring, use
this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 88–12). The cache coordination
options appear on the tab.

Figure 88–10 Cache Coordination Tab, Packet Time to Live Field

In the Packet Time to Live field, specify the number of hops (default = 2) that session
data packets can take before expiring.

CORBA Coordinated Cache

Custom Coordinated Cache

Table 88–13 (Cont.) Coordinated Cache Support for Packet Time-to-Live Configuration

Coordinated Cache

Using
TopLink
Workbench

Using
Java

Configuring a JMS Coordinated Cache 89-1

89
Configuring a JMS Coordinated Cache

This chapter describes the various components that you must configure in order to use
a JMS coordinated cache.

JMS Coordinated Cache Configuration Overview
Table 89–1 lists the configurable options for a JMS coordinated cache.

Configuring a Topic Name
A JMS topic identifies a publish/subscribe destination for a JMS server. JMS users who
wish to share messages subscribe to the same JMS topic.

The topic name you configure is the name that TopLink uses to look up the
javax.jms.Topic instance from the JNDI service. You must provide a fully
qualified JNDI name, such as jms/<topic_name>.

All the members of the same JMS coordinated cache must use the same JMS topic.

Using TopLink Workbench
To specify the topic name for JMS cache coordination, use this procedure:

1. Select a server session in the Navigator. Its properties appear in the Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

Table 89–1 Configurable Options for a JMS Coordinated Cache

Option Type
TopLink
Workbench Java

"Configuring Cache Coordination Change Propagation at the
Descriptor Level" on page 25-40

Basic

"Configuring the Synchronous Change Propagation Mode" on
page 88-2

Basic

"Configuring JNDI Naming Service Information" on page 88-7 Basic

"Configuring a Topic Name" on page 89-1 Basic

"Configuring a Topic Connection Factory Name" on page 89-2 Basic

"Configuring a Topic Host URL" on page 89-2 Advanced

"Configuring Connection Handling" on page 88-13 Advanced

"Configuring Context Properties" on page 88-14 Advanced

"Configuring a Packet Time-to-Live" on page 88-15 Advanced

Configuring a Topic Connection Factory Name

89-2 Oracle TopLink Developer’s Guide

3. Ensure Enable Cache Coordination is selected and the Type is JMS (see
"Understanding Cache Coordination" on page 87-10 for more information).

Figure 89–1 Cache Coordination Tab, Topic Name Field, JMS

4. Enter the topic name to use with the JMS coordinated cache for this session. This
must be a fully qualified JNDI name, such as jms/<topic_name>.

Configuring a Topic Connection Factory Name
A JMS topic connection factory creates connections with the JMS provider for a
specific JMS destination. Each connection factory contains the specific configuration
information to create a connection to a JMS destination.

The topic connection factory name you configure is the name that TopLink uses to
look up the javax.jms.TopicConnectionFactory instance from the JNDI
service. This must be a fully qualified JNDI name, such as jms/<resource_name>.

Using TopLink Workbench
To specify the topic connection factory for a JMS coordinated cache, use this
procedure:

1. Select a server session in the Navigator. Its properties appear in the Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure Enable Cache Coordination is selected and the Type is JMS (see
"Understanding Cache Coordination" on page 87-10 for more information).

Configuring a Topic Host URL

Configuring a JMS Coordinated Cache 89-3

Figure 89–2 Cache Coordination Tab, Topic Connection Factory Name Field

4. Enter the topic connection factory name to use with the JMS coordinated cache for
this session. This must be a fully qualified JNDI name, such as jms/<resource_
name>.

Configuring a Topic Host URL
The JMS topic host URL is the URL of the machine on the network that hosts the JMS
topic (see "Configuring a Topic Name" on page 89-1).

Using TopLink Workbench
To specify the topic host URL for a JMS coordinated cache, use this procedure:

1. Select a server session in the Navigator. Its properties appear in the Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure Enable Cache Coordination is selected and the Type is JMS (see
"Understanding Cache Coordination" on page 87-10 for more information).

Configuring a Topic Host URL

89-4 Oracle TopLink Developer’s Guide

Figure 89–3 Cache Coordination Tab, Topic Host URL Field

Enter the URL of the machine on the network that hosts the JMS topic (see
"Configuring a Topic Name" on page 89-1) to use with the JMS coordinated cache for
this session.

Configuring an RMI Coordinated Cache 90-1

90
Configuring an RMI Coordinated Cache

This chapter describes the various components that you must configure in order to use
an RMI coordinated cache.

RMI Coordinated Cache Configuration Overview
Table 90–1 lists the configurable options for an RMI coordinated cache.

Table 90–1 Configurable Options for an RMI Coordinated Cache

Option Type
TopLink
Workbench Java

"Configuring Cache Coordination Change Propagation at the
Descriptor Level" on page 25-40

Basic

"Configuring the Synchronous Change Propagation Mode" on
page 88-2

Basic

"Configuring a Service Channel" on page 88-3 Basic

"Configuring a Multicast Group Address" on page 88-4 Basic

"Configuring a Multicast Port" on page 88-5 Basic

"Configuring a Naming Service Type" on page 88-7 Basic

"Configuring an Announcement Delay" on page 88-11 Basic

"Configuring Connection Handling" on page 88-13 Advanced

"Configuring Context Properties" on page 88-14 Advanced

"Configuring a Packet Time-to-Live" on page 88-15 Advanced

RMI Coordinated Cache Configuration Overview

90-2 Oracle TopLink Developer’s Guide

Configuring a CORBA Coordinated Cache 91-1

91
Configuring a CORBA Coordinated Cache

This chapter describes the various components that you must configure to use a
CORBA coordinated cache.

CORBA Coordinated Cache Configuration Overview
Table 91–1 lists the configurable options for a CORBA coordinated cache.

Table 91–1 Configurable Options for a CORBA Coordinated Cache

Option Type
TopLink
Workbench Java

"Configuring Cache Coordination Change Propagation at the
Descriptor Level" on page 25-40

Basic

"Configuring the Synchronous Change Propagation Mode" on
page 88-2

Basic

"Configuring a Service Channel" on page 88-3 Basic

"Configuring a Multicast Group Address" on page 88-4 Basic

"Configuring a Multicast Port" on page 88-5 Basic

"Configuring a Naming Service Type" on page 88-7 Basic

"Configuring an Announcement Delay" on page 88-11 Basic

"Configuring Connection Handling" on page 88-13 Advanced

"Configuring Context Properties" on page 88-14 Advanced

"Configuring a Packet Time-to-Live" on page 88-15 Advanced

CORBA Coordinated Cache Configuration Overview

91-2 Oracle TopLink Developer’s Guide

Configuring a Custom Coordinated Cache 92-1

92
Configuring a Custom Coordinated Cache

This chapter describes the various components that you must configure to use a
custom, user-defined coordinated cache. For more information, see "Custom
Coordinated Cache" on page 87-13.

Custom Coordinated Cache Configuration Overview
Table 92–1 lists the configurable options for a custom coordinated cache.

Configuring Transport Class
To configure a custom coordinated cache, you must specify your custom instance of
oracle.toplink.remotecommand.TransportManager.

Using TopLink Workbench
To select the transport class for the user defined coordinated cache, use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected and the Type is User
Defined (see "Understanding Cache Coordination" on page 87-10).

Table 92–1 Configurable Options for a Custom Coordinated Cache

Option Type

Using
TopLink
Workbench Java

"Configuring Cache Coordination Change Propagation at the
Descriptor Level" on page 25-40

Basic

"Configuring a Service Channel" on page 88-3 Basic

"Configuring Transport Class" on page 92-1 Basic

"Configuring Connection Handling" on page 88-13 Advanced

Configuring Transport Class

92-2 Oracle TopLink Developer’s Guide

Figure 92–1 Cache Coordination, Transport Class Option

4. Click Browse and select the transport class for the user-defined coordinated cache.

Part XVIII
 Queries

This part describes building TopLink queries and using them to create, read, update,
and delete objects. It contains the following chapters.:

■ Chapter 93, "Understanding TopLink Queries"

This chapter describes each of the different TopLink query types and important
query concepts.

■ Chapter 94, "Using Basic Query API"

This chapter explains how to use basic TopLink query options.

■ Chapter 95, "Understanding TopLink Expressions"

This chapter describes the TopLink expressions framework and how to use it with
TopLink queries.

■ Chapter 96, "Using Advanced Query API"

This chapter explains how to use advanced TopLink query options.

Understanding TopLink Queries 93-1

93
Understanding TopLink Queries

TopLink enables you to create, read, update, and delete persistent objects or data
using queries in both J2EE and non-J2EE applications for both relational and
nonrelational data sources.

This chapter explains the following:

■ Query Types

■ Query Concepts

■ Building Queries

■ Executing Queries

■ Handling Query Results

■ Queries and the Cache

■ Understanding the Query API

Query Types
Table 93–1 lists the query types that you can build in TopLink, and classifies them as
basic or advanced.

Table 93–1 TopLink Query Types

Query Type Description Type
TopLink
Workbench Java

Session Queries A query implicitly constructed and executed by a Session
based on input parameters used to perform the most
common data source actions on objects.

Basic

Database Queries A query also known as a query object query. An instance of
DatabaseQuery that you create and then execute to perform
any data source action on either objects or data. You can
further refine a DatabaseQuery by also creating and
configuring its Call (see "Call Queries" on page 93-17).

Basic

Named Queries An instance of DatabaseQuery stored by name in a
Session or a descriptor’s DescriptorQueryManager
where it is constructed and prepared once. Such a query can
then be repeatedly executed by name.

Basic

Call Queries An instance of Call that you create and then either execute
directly, using a special Session API to perform limited
data source actions on data only, or execute indirectly in the
context of a DatabaseQuery. TopLink supports Call
instances for custom SQL, stored procedures, and EIS
interactions.

Basic

Query Concepts

93-2 Oracle TopLink Developer’s Guide

For more information, see the following:

■ "Using Basic Query API" on page 94-1

■ "Using Advanced Query API" on page 96-1

■ "Query Concepts" on page 93-2

Query Concepts
In general, querying a data source means performing an action on or interacting with
the contents of the data source. To do this, you must be able to perform the following:

■ Define an action in a syntax native to the data source being queried

■ Apply the action in a controlled fashion

■ Manage the results returned by the action (if any)

Specific to TopLink, you must also consider how the query affects the TopLink cache.
For more information, see "Queries and the Cache" on page 93-29.

This section introduces query concepts unique to TopLink, including the following:

■ Call

■ DatabaseQuery

■ Data-Level and Object-Level Queries

■ Summary Queries

■ Descriptor Query Manager

■ TopLink Expressions

■ Query Keys

■ Query Languages

Redirect Queries An instance of MethodBasedQueryRedirector (taking the
name of a static method and the Class in which it is defined
as parameters) set on a named query. When the query is
executed, the static method is invoked.

Advanced

Historical Queries Any query executed in the context of a historical session
using the time-aware features of the TopLink Expression
framework.

Advanced

Interface and
Inheritance
Queries

Any query that references an interface type or super and
subclasses of an inheritance hierarchy.

Advanced

Descriptor Query
Manager Queries

The DescriptorQueryManager defines a default
DatabaseQuery for each basic data source operation (create,
read, update, and delete), and provides an API with which
you can customize either the DatabaseQuery or its Call.

Advanced

EJB Finders A query defined on the home interface of an enterprise bean
that returns enterprise beans. You can implement finders
using any TopLink query type, including EJBQLCall, a
Call that takes EJB QL.

Advanced

Table 93–1 (Cont.) TopLink Query Types

Query Type Description Type
TopLink
Workbench Java

Query Concepts

Understanding TopLink Queries 93-3

Call
In TopLink, the Call object encapsulates an operation or action on a data source.
TopLink provides a variety of Call types such as structured query language (SQL),
Enterprise Java Beans Query Language (EJB QL), Extensible Markup Language (XML),
and enterprise information system (EIS).

You can execute a Call directly or in the context of a DatabaseQuery.

DatabaseQuery
A DatabaseQuery object is an abstraction that associates additional customization
and optimization options with the action encapsulated by a Call. By separating these
options from the Call, TopLink can provide sophisticated query capabilities across all
Call types.

For more information, see "Database Queries" on page 93-10.

Data-Level and Object-Level Queries
In TopLink, queries can be defined for objects or data.

■ Object-level queries (see "Object-Level Read Query" on page 93-11 and
"Object-Level Modify Query" on page 93-14) are object-specific and return data as
objects in your domain model. They are the preferred type of query for mapped
data. By far, object-level DatabaseQuery queries are the most common query
used in TopLink.

■ Data-level queries (see "Data-Level Read Query" on page 93-13 and "Data-Level
Modify Query" on page 93-15) are used to query database tables directly, and are
an appropriate way to work with unmapped data, such as foreign keys and object
version fields.

Summary Queries
While data-level queries return raw data and object-level queries return objects in your
domain model, summary queries return data about objects. TopLink provides partial
object queries (see "Partial Object Queries" on page 93-11) to return a set of objects with
only specific attributes populated, and report queries (see "Report Query" on
page 93-15) to return summarized (or rolled-up) data for specific attributes of a set of
objects.

Descriptor Query Manager
In addition to storing named queries applicable to a particular class (see "Named
Queries" on page 93-16), you can also use the DescriptorQueryManager to
override the default action that TopLink defines for common data source operations.
For more information, see "Descriptor Query Manager Queries" on page 93-23.

TopLink Expressions
TopLink expressions let you specify query search criteria based on your domain object
model. When you execute the query, TopLink translates these search criteria into the
appropriate query language for your platform.

TopLink provides two public classes to support expressions:

Query Concepts

93-4 Oracle TopLink Developer’s Guide

■ The Expression class represents an expression that can be anything from a
simple constant to a complex clause with boolean logic. You can manipulate,
group, and integrate expressions.

■ The ExpressionBuilder class is the factory for constructing new expressions.

You can specify a selection criterion as an Expression with DatabaseQuery
method setSelectionCriteria (see "Database Queries" on page 93-10), and in a
finder that takes an Expression (see "Expression Finders" on page 93-27).

For more information about using TopLink expressions, see "Understanding TopLink
Expressions" on page 95-1.

Query Keys
A query key is a schema-independent alias for a database field name. Using a query
key, you can refer to a field using a schema-independent alias. In relational projects
only, TopLink automatically creates query keys for all mapped attributes. The name of
the query key is the name of the class attribute specified in your object model.

You can configure query keys in a class descriptor (see "Configuring Query Keys" on
page 25-30) or interface descriptor (see "Configuring Interface Query Keys" on
page 25-33).

You can use query keys in expressions (see "Query Keys and Expressions" on
page 95-10) and to query variable one-to-one mappings (see "Using Queries on
Variable One-to-One Mappings" on page 96-5).

Query Languages
Using TopLink, you can express a query using any of the following query languages:

■ SQL Queries

■ EJB QL Queries

■ XML Queries

■ EIS Interactions

■ Query-by-Example

In most cases, you can compose a query directly in a given query language or,
preferably, you can construct a DatabaseQuery with an appropriate Call and
specify selection criteria using a TopLink Expression. Although composing a query
directly appears to be the simplest approach (and for simple operations or operations
on unmapped data, it is), using the DatabaseQuery approach offers the compelling
advantage of confining your query to your domain object model and avoiding
dependence on data source schema implementation details. Oracle recommends that
you compose your queries using DatabaseQuery, Call, and Expression.

SQL Queries
SQL is the most common query language for applications that use a relational
database data source.

You can execute custom SQL directly using Session methods
executeSelectingCall and executeNonSelectingCall, or you can construct a
DatabaseQuery with an appropriate Call.

Query Concepts

Understanding TopLink Queries 93-5

TopLink provides a variety of SQL Call objects for use with stored procedures and,
with Oracle databases, stored functions. For more information, see "SQL Calls" on
page 93-17.

EJB QL Queries
Like SQL, EJB QL is a query language; but unlike SQL, it presents queries from an
object model perspective, allowing you to declare queries using the attributes of each
abstract entity bean in your object model. It also includes path expressions that enable
navigation over the relationships defined between entity beans and dependent objects.

Using EJB QL offers the following advantages:

■ You do not need to know the database structure (such as tables and fields).

■ You can construct queries using the attributes of the entity beans instead of using
database tables and fields.

■ You can use relationships in a query to provide navigation from attribute to
attribute.

■ EJB QL queries are portable because they are database-independent.

■ You can specify the reference class in the SELECT clause.

The disadvantage of EJB QL queries is that it is difficult to use when you construct
complex queries.

TopLink provides the full support for the EJB QL specification.

EJB QL is the standard query language first defined in the EJB 2.0 specification.
Consequently, TopLink lets you specify selection criteria using EJB QL in an EJB finder
(see "EJB QL Finders" on page 93-27).

Although EJB QL is usually associated with EJB, TopLink also lets you specify
selection criteria using EJB QL in queries for regular Java objects as well. TopLink
provides an EJB QL Call that you can execute directly or in the context of a
DatabaseQuery. For more information, see "EJB QL Calls" on page 93-19 and
"DatabaseQuery" on page 93-3.

XML Queries
You can use TopLink XML to query XML data stored in an Oracle Database XMLType
field. For more information, see "Direct-to-XMLType Mapping" on page 33-4 and
"XMLType Functions" on page 95-5.

EIS Interactions
When you execute a TopLink query using an EIS Call (see "Enterprise Information
System (EIS) Interactions" on page 93-19), TopLink converts your selection criteria into
an XML format appropriate for your J2C adapter.

If supported by your J2C adapter, you can use the XQuery language by executing an
XQuery interaction (see "XQueryInteraction" on page 93-20) either directly or in the
context of a DatabaseQuery.

Note: TopLink supports the LOCATE string function and will
generate the correct SQL with it. However, not all data sources
support LOCATE. Before using the LOCATE string function, consult
your data source documentation.

Building Queries

93-6 Oracle TopLink Developer’s Guide

Query-by-Example
Query-by-example is a simple and intuitive way to express a query. To specify a
query-by-example, provide a sample instance of the persistent object to query, and set
appropriate values on only the data members on which you wish to query.

You can use a constructor with a reference class argument to create a sample instance
or example object. Alternatively, you can use a combination of any other type of
constructor and a setReferenceClass method of your query object. If you fail to
specify the reference class, a QueryException will be thrown.

Query-by-example lets you query for an object based on any attribute that uses a
direct mapping or a one-to-one relationship (including those with nesting).

Set only the attributes on which you base the query; set all other attributes to null. By
default, TopLink ignores attributes in the sample instance that contain null, zero (0),
empty strings, and FALSE. You can modify this list of values (and define other query
by example options) by specifying a QueryByExamplePolicy (see "Defining a
QueryByExamplePolicy" on page 94-7).

Query-by-example uses the AND operator to tie the attribute comparisons together. By
default, attribute values in the sample instance are compared against corresponding
values of candidate objects using EQUALS operator. You can modify this behaviour
using the QueryByExamplePolicy.

Both ReadAllQuery and ReadObjectQuery provide a setExampleObject
method and setQueryByExamplePolicy method that you can use to specify
selection criteria based on an example object instance.

For more information and examples, see "Reading Objects Using Query-By-Example"
on page 94-6.

Building Queries
You can build queries using TopLink Workbench or Java, using the TopLink API.

Some queries are implicitly constructed for you based on passed in arguments and
executed in one step (for example, session queries, as described in "Session Queries"
on page 93-9) and others you explicitly create, configure, and then execute (for
example, "Database Queries" on page 93-10).

For more information, see the following:

■ "Using Basic Query API" on page 94-1

■ "Using Advanced Query API" on page 96-1

Executing Queries
In TopLink, you execute most queries using the Session API summarized in
Table 93–2.

Note: Query-by-example does not support any other relationship
mapping types, nor does it support EJB beans.

Executing Queries

Understanding TopLink Queries 93-7

TopLink executes DescriptorQueryManager queries when you execute a session
query. For more information, see "Descriptor Query Manager Queries" on page 93-23.

You execute EJB finders when you call the appropriate finder method on an EJB. For
more information, see "EJB Finders" on page 93-24.

For more information, see the following:

■ "Using Basic Query API" on page 94-1

■ "Using Advanced Query API" on page 96-1

Table 93–2 Session Methods for Executing a Query

Query Type Session Method Advantages and Disadvantages

Session Queries readObject

readAllObjects

writeObject

writeAllObjects

deleteObject

deleteAllObjects

insertObject

updateObject

Advantages: the most convenient way to
perform common data source operations on
objects.

Disadvantages: less control over query
execution and results; less efficient for
frequently executed queries.

Database Queries

Named Queries

Redirect Queries

executeQuery Advantages: greatest configuration and
execution flexibility; can take advantage of
named queries for efficiency.

Disadvantages: you must explicitly create and
configure DatabaseQuery and possibly Call
objects.

Call Queries executeSelectingCall

executeNonSelectingCall

Advantages: convenient way to directly apply
an action to unmapped data.

Disadvantages: least control over query
execution and results; your application must
do more work to handle raw data results.

Note: Oracle recommends that you perform all data source
operations using a unit of work: doing so is the most efficient way to
manage transactions, concurrency, and referential constraints. For
more information, see "Understanding TopLink Transactions" on
page 97-1.

Alternatively, you can execute queries outside of a unit of work using
a session API directly, but doing so places greater responsibility on
your application to manage transactions, concurrency, and referential
constraints.

WARNING: Allowing an unverified SQL string to be passed into
methods (for example: setSQLString(String sql),
readAllObjects(Class class, String sql) methods) makes
your application vulnerable to SQL injection attacks.

Handling Query Results

93-8 Oracle TopLink Developer’s Guide

Handling Query Results
TopLink queries generally return Java objects as their result set. TopLink queries can
return any of the following:

■ Entire objects, with all attributes populated and the object reflected in the cache.

■ Collections of objects (see "Collection Query Results" on page 93-8).

■ Partial objects, with only the attributes you specify populated and without the
object reflected in the cache (see "Report Query Results").

■ Streams of objects (see "Stream and Cursor Query Results" on page 93-8).

■ EJB (see "EJB Finders" on page 93-24).

Collection Query Results
A collection is a group of Java objects contained by an instance of Collection or Map

By default, queries that return more than one object return their results in a Vector.

You can configure TopLink to return query results in any concrete instance of
Collection or Map.

Collection results are supported by all TopLink query types.

For information and examples on how to configure and handle collection query
results, see "Handling Collection Query Results" on page 94-26.

Report Query Results
A ReportQuery (a type of partial object query) returns summary data for selected
objects using the database reporting functions and features supported by your
platform. Although the report query returns data (not objects), it does enable you to
query the returned data and specify it at the object level.

By default, a ReportQuery returns a collection (see "Collection Query Results" on
page 93-8) of ReportQueryResult objects, one collection per database row returned.
You can use the ReportQuery API to configure how a ReportQuery returns its
results. For more information see "Handling Report Query Results" on page 94-26.

For more information, see the following:

■ "Report Query" on page 93-15

■ "Handling Report Query Results" on page 94-26

■ "Partial Object Queries" on page 93-11.

Stream and Cursor Query Results
A stream is a view of a collection, which can be a file, a device, or a Vector. A stream
provides access to the collection, one element at a time in sequence. This makes it
possible to implement stream classes in which the stream does not contain all the
objects of a collection at the same time.

Large result sets can be resource-intensive to collect and process. To improve
performance and give the client more control over the returned results, configure
TopLink queries to use a cursor or stream.

Cursors & streams are supported by all subclasses of DataReadQuery and
ReadAllQuery.

Session Queries

Understanding TopLink Queries 93-9

For more information, see "Handling Cursor and Stream Query Results" on page 96-15.

Session Queries
Sessions provide query methods that lets you perform the object operations listed in
Table 93–3.

These methods implicitly construct and execute a DatabaseQuery based on any of
the following input parameters and return Object or Object collection:

■ Reference Class (the Class of objects that the query accesses)

■ Reference Class and Call

■ Reference Class and Expression

■ Example object with primary key set

These methods are a convenient way to perform the most common data source
operations on objects.

To access all configurable options to further refine and optimize a query, consider
using a corresponding DatabaseQuery directly. For more information, see "Database
Queries" on page 93-10.

For more information, see "Using Session Queries" on page 94-1.

Read-Object Session Queries
Read-object queries return the first instance of an Object that matches the specified
selection criteria, and read-all object queries return all such instances.

Table 93–3 Session Object Query Summary

Session Type Create Read Update Delete

UnitOfWork NA readObject

readAllObjects

NA deleteObject

deleteAllObjects

Server NA NA NA NA

ClientSession NA readObject

readAllObjects

NA NA

DatabaseSession insertObject readObject

readAllObjects

updateObject

writeObject

writeAllObjects

deleteObject

deleteAllObjects

Note: Oracle recommends that you perform all data source
operations using a unit of work: doing so is the most efficient way to
manage transactions, concurrency, and referential constraints. For
more information, see "Understanding TopLink Transactions" on
page 97-1.

WARNING: Allowing an unverified SQL string to be passed into
these methods makes your application vulnerable to SQL injection
attacks.

Database Queries

93-10 Oracle TopLink Developer’s Guide

You can also pass in a domain Object with its primary key set and TopLink will
construct and execute a read-object query to select that object. This is one form of
query by example. For more information on query by example, see
"Query-by-Example" on page 93-6.

For more information, see "Reading Objects With a Session Query" on page 94-1.

Create, Update, and Delete Object Session Queries
Oracle recommends that you create and update objects using a unit of work: doing so
is the most efficient way to manage transactions, concurrency, and referential
constraints. For more information, see "Understanding TopLink Transactions" on
page 97-1.

However, you can also create and update objects using a session query. These session
queries are a convenient way to modify objects directly on the database when you
manage simple, nonbusiness object data that has no relationships (for example, user
preferences).

If you know an object is new, you can use an insertObject method to avoid having
TopLink perform an existence check. If you do not know if an object is new, use the
updateObject, writeObject, or writeAllObject methods: TopLink performs
an existence check if necessary.

When you execute a write session query, it writes both the object and its privately
owned parts to the database. To manage this behavior, use a corresponding
DatabaseQuery (see "Object-Level Modify Queries and Privately Owned Parts" on
page 93-15).

Using the Session method deleteObject, you can delete a specific object. Using
the Session method deleteAllObjects, you can delete a collection of objects. Each
specified object and all its privately owned parts are deleted. In the case of
deleteAllObjects, all deletions are performed within a single transaction.

For more information, see "Creating, Updating, and Deleting Objects With a Session
Query" on page 94-3.

Database Queries
All session types provide an executeQuery method that takes any of the following
types of DatabaseQuery:

■ Object-Level Read Query

■ Data-Level Read Query

■ Object-Level Modify Query

■ Data-Level Modify Query

■ Report Query

Using DatabaseQuery method setCall, you can define your own Call to
accommodate a variety of data source options such as SQL (including stored
procedures and stored functions), EJB QL queries, and EIS interactions. For more
information, see "Call Queries" on page 93-17.

Using DatabaseQuery method setSelectionCriteria, you can specify your
selection criteria using a TopLink Expression. For more information, see "TopLink
Expressions" on page 93-3.

For more information, see "Using DatabaseQuery Queries" on page 94-4.

Database Queries

Understanding TopLink Queries 93-11

Object-Level Read Query
Using an ObjectLevelReadQuery, you can query your data source and return
Object instances that match the specified selection criteria. This section describes the
following:

■ ReadObjectQuery

■ ReadAllQuery

■ Partial Object Queries

■ Join Reading and Object-Level Read Queries

■ Fetch Groups and Object-Level Read Queries

For more information, see "Reading Objects Using a DatabaseQuery" on page 94-4.

ReadObjectQuery
Using a ReadObjectQuery, you can query your data source and return the first
object that matches the specified selection criteria.

ReadAllQuery
Using a ReadAllQuery, you can query your data source and return a Collection
of all the objects that match the specified selection criteria.

Partial Object Queries
By default, an ObjectLevelReadQuery returns all attributes of the objects read.

If you require only certain attributes from selected objects, you can create a partial
object query by using ObjectLevelReadQuery method addPartialAttributes.
Using this method, you can improve query performance by making TopLink return
objects with only specified attributes populated.

Applications frequently use partial object queries to compile a list for further selection.
For example, a query to find the names and addresses of all employees over the age of
40 returns a list of data (the names and addresses) that partially represents objects (the
employees). A common next step is to present this list so the user can select the
required object or objects from the list. Later retrieval of a complete object is simplified
because TopLink always includes the primary key attribute (even if you do not add it
as a partial attribute.

Consider the following when you use partial object queries:

■ You cannot edit or cache partial objects.

■ Unspecified attributes will be left null.

■ You cannot have two partial attributes of the same type.

■ You cannot add a partial attribute which is of the same type as the class being
queried.

If you require only summary information for certain attributes from selected objects, it
is more efficient to use a ReportQuery (see "Report Query" on page 93-15).

For more information, see "Reading Objects Using Partial Object Queries" on
page 94-6.

Database Queries

93-12 Oracle TopLink Developer’s Guide

Join Reading and Object-Level Read Queries
Join reading is a query optimization feature that allows a single query for a class to
return the data to build the instances of that class and its related objects. Use this
feature to improve query performance by reducing database access. By default,
relationships are not join-read: each relationship is fetched separately when accessed if
you are using indirection (see "Indirection" on page 30-5), or as a separate database
query if you are not using indirection.

You can use join reading with ReadObjectQuery and ReadAllObjectQuery to
join only one-to-one or one-to-many mapped relationships. Join reading is not
currently supported for any other relationship mappings.

Join reading can specify multiple and nested relationships to be joined. Nested joins
are expressed through using expressions (see "Expressions for Joining and Complex
Relationships" on page 95-6).

Outer joins can also be used with join reading through using the expression outer join
API. If an outer join is not used, objects with missing one-to-one relationships or
empty one-to-many relationships will be filtered from the result set.

You can use join reading between relationships to the same class, or to concrete or leaf
inherited classes, but not to root or branch inherited classes that have multiple tables.
For more information about inheritance, see "Understanding Descriptors and
Inheritance" on page 23-12.

You can use join reading with custom SQL or stored procedures, but the query must
ensure that all of the required data to build all of the join-read objects is returned. If
the result set includes the same tables or fields, they must be returned in the same
table order as TopLink would have generated.

For more information, see "Using Join Reading" on page 94-11.

Avoiding Join-Reading Duplicate Data Join reading can result in returning duplicate data
if a one-to-many or a shared one-to-one relationship is joined. Although TopLink
correctly filters the duplicate results from the object result, the duplicate data still must
be fetched from the database and can degrade performance, especially if multiple
one-to-many relationships are joined. In general, batch reading can be used as a better
alternative to join reading, as it does not require fetching duplicate data.

Oracle recommends that you use one-to-many joining with caution, because it does
not scale well in many situations.

Because the main cost of a ReadObjectQuery is SQL execution, the performance of a
one-to-many join in this case is usually better than a query without joining.

However, because the main cost of a ReadAllObjectQuery is row-fetching, which
the duplicate data of a join increases, the performance of a one-to-many join in this
case is less efficient than batch reading in many scenarios (even though one-to-many
joining is more efficient than reading the objects one-by-one).

This is mainly due to the fact that a one-to-many join reads in duplicate data: the data
for each source object will be duplicated for each target object. Depending on the size
of the one-to-many relationship and the size of the source object's row, this can
become very inefficient, especially if the source object has a Large Object (LOB).

Note: TopLink does not support joining to a class that takes multiple
SQL calls to read. For example, joining to a superclass (potentially).

Database Queries

Understanding TopLink Queries 93-13

If you use multiple or nested one-to-many joins in the same query, the problem is
compounded: the source object's row is duplicated n*m times, and each target object n
and m times respectively. This can become a major performance issue.

To handle empty collections, you must use outer joins, so the queries can easily
become very database intensive. Batch reading has the advantage of only returning the
required data, and does not require outer joins.

Oracle recommends that you use batch reading to optimize querying relationships in
read-all applications.

For more information, see the following:

■ "Batch and Join Reading" on page 11-17

■ "Reading Case 2: Batch Reading Objects" on page 11-23

Fetch Groups and Object-Level Read Queries
You can use a fetch group with a ReadObjectQuery or ReadAllQuery. When you
execute the query, TopLink retrieves only the attributes in the fetch group. TopLink
automatically executes a query to fetch all the attributes excluded from this subset
when and if you call a getter method on any one of the excluded attributes.

For more information, see the following:

■ "Fetch Groups" on page 23-5

■ "Using Queries With Fetch Groups" on page 96-2

Data-Level Read Query
Using a DataLevelReadQuery, you can query your data source and return Object
instances that match the specified selection criteria. This section describes the
following:

■ DataReadQuery

■ DirectReadQuery

■ ValueReadQuery

For more information, see "Reading Data With a DatabaseQuery" on page 94-15.

DataReadQuery
Use a DataReadQuery to execute a selecting SQL string that returns a Collection
of the DatabaseRows representing the result set.

DirectReadQuery
Use a DirectReadQuery to read a single column of data (that is, one field) that
returns a Collection of values representing the result set.

Note: Currently, fetch groups only provide support for EJB.

WARNING: Allowing an unverified SQL string to be passed into
constructors of such objects as DataReadQuery,
DirectReadQuery and ValueReadQuery makes your application
vulnerable to SQL injection attacks.

Database Queries

93-14 Oracle TopLink Developer’s Guide

ValueReadQuery
Use a ValueReadQuery to read a single data value (that is, one field). A single data
value is returned, or null if no rows are returned.

Object-Level Modify Query
Using an ObjectLevelModifyQuery, you can query your data source to create,
update, and delete objects. This section describes the following:

■ WriteObjectQuery

■ UpdateObjectQuery

■ InsertObjectQuery

■ DeleteObjectQuery

■ UpdateAllQuery

■ Object-Level Modify Queries and Privately Owned Parts

For more information, see "Creating, Updating, and Deleting Objects With a
DatabaseQuery" on page 94-13.

WriteObjectQuery
If you do not know whether or not an object is new, use a WriteObjectQuery:
TopLink performs an existence check if necessary to determine whether to perform an
insert or an update.

If you do know whether or not an object exists, you can avoid the existence check by
using an UpdateObjectQuery (see "UpdateObjectQuery" on page 93-14) or
InsertObjectQuery (see "InsertObjectQuery" on page 93-14).

UpdateObjectQuery
If you know that the object you want to modify exists, use an UpdateObjectQuery
to avoid having TopLink perform an existence check.

InsertObjectQuery
If you know an object is new, you can use an InsertObjectQuery to avoid having
TopLink perform an existence check.

DeleteObjectQuery
To delete a specific object, construct a DeleteObjectQuery with a single specific
object as an argument.

UpdateAllQuery
The UpdateAllQuery allows you to take an expression and update a set of objects (at
the object level) without loading the objects into memory. You can updated to either a
specific or relative value. For example, you can set the value to 5 or to increase by 5
percent.

Note: Oracle recommends that you create and update objects using a
TopLink UnitOfWork: doing so is the most efficient way to manage
transactions, concurrency, and referential constraints. For more
information, see "Understanding TopLink Transactions" on page 97-1.

Database Queries

Understanding TopLink Queries 93-15

For more information, see "Creating, Updating, and Deleting Objects With a
DatabaseQuery" on page 94-13.

Object-Level Modify Queries and Privately Owned Parts
When you execute a create or update object DatabaseQuery, it writes both the object
and its privately owned parts to the database by default. To create a query that does
not update privately owned parts, use the DatabaseQuery method
dontCascadeParts. Use this method to do the following:

■ Increase performance when you know that only the object’s direct attributes have
changed.

■ Manually resolve referential integrity dependencies when you write large groups
of new, independent objects.

Data-Level Modify Query
Using a DataModifyQuery, you can query your data source to execute a nonselecting
SQL statement. It is equivalent to Session method executeNonSelectingCall.

For more information, see "Updating Data With a DatabaseQuery" on page 94-16.

Report Query
If you want to summarize (or roll up) certain attributes of a set of objects, you can use
a ReportQuery.

A ReportQuery returns summary data from a set of objects and their related objects.
That is, it returns data about objects, rather than the objects themselves. However, it
still lets you query and specify the data at the object level. To build a report query, you
specify the search criteria, the data you require about the objects, and how that data
should be summarized.

For example, you can create a report query to compute the average age of all
employees in your company. The report query is not interested in the specific objects
(the employees), but rather, summary information about them (their average age).

A ReportQuery lets you do the following:

■ Specify a subset of the object's attributes and its related object's attributes, which
allows you to query for lightweight information.

■ Build complex object-level expressions for the selection criteria and ordering
criteria.

■ Use data source aggregation functions (supported by your platform), such as SUM,
MIN, MAX, AVG, and COUNT.

■ Use expressions to group data.

■ Request primary key attributes with each ReportQueryResult. This makes it
easy to request the real object from a lightweight result.

A ReportQuery is the most efficient form of partial object query (see "Partial Object
Queries" on page 93-11) because it takes advantage of the reporting capabilities of your

Note: Because the unit of work resolves referential integrity
internally, this method is not required if you use the unit of work to
write to the data source. For more information, see "Understanding
TopLink Transactions" on page 97-1.

Named Queries

93-16 Oracle TopLink Developer’s Guide

data source (if available). Oracle recommends that you use ReportQuery to do partial
object queries.

The ReportQuery API returns a collection of ReportQueryResult objects, similar
in structure and behavior to a DatabaseRow or a Map. For more information, see
"Report Query Results" on page 93-8.

For more information, see the following:

■ "Reading Case 1: Displaying Names in a List" on page 11-20

■ "Reading Objects Using Report Queries" on page 94-6

■ "Configuring Named Queries at the Descriptor Level" on page 25-10

Named Queries
When you use a session query method like readAllObjects (see "Session Queries"
on page 93-9), TopLink creates a corresponding ReadAllQuery, which builds other
objects it needs to perform its task. When TopLink finishes execution of the
readAllObjects method, these objects are discarded. Each time you call this session
method, TopLink creates these related objects again, uses them once, and then
discards them.

Alternatively, you can create a DatabaseQuery (see "Database Queries" on
page 93-10) and store it by name at the descriptor- (see "Configuring Named Queries
at the Descriptor Level" on page 25-10) or session-level (see "Configuring Named
Queries at the Session Level" on page 74-21).

TopLink prepares a named query once, and it (and all its associated supporting
objects) can be efficiently reused thereafter making a named query well suited for
frequently executed operations.

Using the Session API (see "Using Named Queries" on page 94-18), you can execute
these queries by name, passing in any required arguments.

When to Use Named Queries
For a reasonably complex query that you execute frequently, you should consider
making the query a named query.

If a query is global to a project, configure the named query at the session level
("Configuring Named Queries at the Session Level" on page 74-21).

If a query is global to a Class or you want to configure CMP finders, configure the
named query at the descriptor level (see "Configuring Named Queries at the
Descriptor Level" on page 25-10). For more information about descriptor level query
configuration, see "Descriptor Query Manager Queries" on page 93-23.

For a very complex query, you can delegate query execution to your own static
method using a special form of a named query called a redirect query. For more
information about redirect queries, see "Redirect Queries" on page 93-20).

WARNING: Allowing an unverified SQL string to be passed into
methods (for example: readAllObjects(Class class, String
sql) method) makes your application vulnerable to SQL injection
attacks.

Call Queries

Understanding TopLink Queries 93-17

When Not to Use Named Queries
Rarely used queries may be more efficient when built on an as-needed basis. If you
seldom use a given query, it may not be worthwhile to build and store that query
when you invoke a session.

Call Queries
All session types provide executeSelectingCall and
executeNonSelectingCall methods that take any of the following Call types:

■ SQL Calls

■ EJB QL Calls

■ Enterprise Information System (EIS) Interactions

You can also execute a Call in the context of a DatabaseQuery. For more
information on DatabaseQuery, see "Database Queries" on page 93-10.

SQL Calls
SQL calls access fields in a relational database. TopLink supports the following SQL
calls:

■ SQLCall

■ StoredProcedureCall

■ StoredFunctionCall

Using the Call API (or SQL string conventions), you can specify input, output, and
input-output parameters and assign values for input and input/output parameters.

Using a descriptor ReturningPolicy, you can control whether or not TopLink
writes a parameter out, retrieves a value generated by the database, or both. For more
information, see "Configuring Returning Policy" on page 25-67.

SQLCall
Using a SQLCall, you can specify any arbitrary SQL statement and execute it on a
data source.

For more information, see "Using an SQLCall" on page 94-19.

StoredProcedureCall
A stored procedure is composed of one or more procedural language statements, such
as Procedural Language/Structured Query Language (PLSQL), stored by name in the
database. Most relational databases support stored procedures.

WARNING: Allowing an unverified SQL string to be passed into
methods (for example: executeSelectingCall(String sql)
method) makes your application vulnerable to SQL injection
attacks.

WARNING: Allowing an unverified SQL string to be passed into
methods makes your application vulnerable to SQL injection
attacks.

Call Queries

93-18 Oracle TopLink Developer’s Guide

You invoke a stored procedure to execute logic and access data from the data source.

Using a StoredProcedureCall, you can detect execution errors, specify input
parameters, output parameters, and input/output parameters. However, stored
procedures do not provide a return value.

For more information, see "Using a StoredProcedureCall" on page 94-21.

StoredFunctionCall
A stored function is an Oracle database feature that provides all the functionality of a
stored procedure as well as the ability to return a value.

Using a StoredFunctionCall, you can specify all the features of a
StoredProcedureCall as well as the field name of the return value.

For more information, see "Using a StoredFunctionCall" on page 94-23.

Oracle Extensions
When you use TopLink with an Oracle database, you can make use of the following
Oracle specific query features from within your TopLink applications:

■ Hints

■ Hierarchical Queries

■ Flashback Queries

■ Stored Functions

Hints Oracle lets you specify SQL query additions called hints that can influence how
the database server SQL optimizer works. This lets you influence decisions usually
reserved for the optimizer. You use hints to specify things such as join order for a join
statement, or the optimization approach for a SQL call.

You specify hints using the DatabaseQuery method setHintString.

For more information, see the following:

■ "Database Queries" on page 93-10

■ "Oracle Hints" on page 96-6

■ Your database Performance Tuning Guide and Reference.

Hierarchical Queries Oracle database Hierarchical Queries mechanism lets you select
database rows based on hierarchical order. For example, you can design a query that
reads the row of a given employee, followed by the rows of people the employee
manages, followed by their managed employees, and so on.

You specify a hierarchical query clause using DatabaseQuery subclass
ReadAllQuery method setHierarchicalQueryClause. For more information on
DatabaseQuery queries, see "Database Queries" on page 93-10.

For more information on configuring a ReadAllQuery with an Oracle hierarchical
query clause, see "Hierarchical Queries" on page 96-6.

Flashback Queries When using TopLink with Oracle9i (or later), you can acquire a
special historical session where all objects are read as of a past time, and then you can
express read queries depending on how your objects are changing over time.

For more information, see "Historical Queries" on page 93-21.

Call Queries

Understanding TopLink Queries 93-19

Stored Functions A stored function is an Oracle database mechanism that provides all
the capabilities of a stored procedure in addition to returning a value.

For more information, see "StoredFunctionCall" on page 93-18.

EJB QL Calls
In TopLink, EJB QL calls represent EJB QL strings. An EJBQLCall object is an
abstraction of a database invocation. You can execute an EJB QL call directly from a
session or in the context of a DatabaseQuery.

For more information, see the following:

■ "Using EJB QL Calls" on page 94-24

■ "Specifying a Custom EJB QL String in a DatabaseQuery" on page 94-17

■ "EJB QL Queries" on page 93-5

Enterprise Information System (EIS) Interactions
To invoke a query through a J2EE Connector Architecture (J2C) adapter to a remote
EIS, you use an EISInteraction, an instance of Call. TopLink supports the
following EISInteraction types:

■ IndexedInteraction

■ MappedInteraction

■ XMLInteraction

■ XQueryInteraction

■ QueryStringInteraction

In each of these interactions, you specify a functional interface (similar to a stored
procedure) that identifies the function to invoke on the EIS. This functional interface
contains the following:

■ The function name

■ The record name (if different than the function name)

■ A list of input arguments

■ A list of output arguments

For more information, see the following:

■ "EIS Projects" on page 17-7

■ "Using EIS Interactions" on page 94-24

IndexedInteraction
In an IndexedInteraction, you exchange data with the EIS using indexed records.
The order of the specification of the arguments must match the order of the values
defined in the indexed record.

MappedInteraction
In a MappedInteraction, you exchange data with the EIS using mapped records.
The arguments you specify map by name to fields in the mapped record.

Redirect Queries

93-20 Oracle TopLink Developer’s Guide

XMLInteraction
An XMLInteraction is a MappedInteraction that maps data to an XML record.
For an XMLInteraction, you may also provide an optional root element name.

XQueryInteraction
If your J2C adapter supports the XQuery dynamic query language, you can use an
XQueryInteraction, which is an XMLInteraction that lets you specify your
XQuery string.

QueryStringInteraction
If your J2C adapter supports a query string based dynamic query language, you can
use a QueryStringInteraction, which is a MappedInteraction that lets you
specify the dynamic query string.

Redirect Queries
To accommodate complex query logic, you can implement a redirect query: a named
query that delegates query execution control to your application. For more
information, see "Named Queries" on page 93-16.

Redirect queries lets you define the query implementation in code as a static method.
When you invoke the query, the call redirects to the specified static method. Redirect
queries accept any arbitrary parameters passed into them packaged in a Vector.

Although most TopLink queries search for objects directly, a redirect query generally
invokes a method that exists on another class and waits for the results. Redirect
queries let you build and use complex operations, including operations that might not
otherwise be possible within the query framework.

By delegating query invocation to a method you provide, redirect queries let you
dynamically make decisions about how a query should be executed based on
argument values.

Using a redirect query, you can do the following:

■ Dynamically configure the query options based on the arguments (for example,
ordering and query optimization)

■ Dynamically define the selection criteria based on the arguments

■ Pass query-by-example objects or expressions as the arguments

■ Post-process the query results

■ Perform multiple queries or special operations

If you execute the query on a UnitOfWork, the results register with that instance of
UnitOfWork, so any objects you attempt to retrieve with the invoke method must
come from the Session cache.

To create a redirect query, you implement the QueryRedirector interface and set
your implementation on a named query.

Oracle recommends that you take advantage of the
MethodBasedQueryRedirector, an instance of QueryRedirector that TopLink
provides. It takes the name of a static method and the Class in which it is defined as
parameters. When you set a MethodBasedQueryRedirector on a named query,
whenever invokeQuery method is called on this instance, TopLink uses reflection to
invoke your static method instead.

Historical Queries

Understanding TopLink Queries 93-21

The advantages of using a MethodBasedQueryRedirector are as follows:

■ You can specify the static method and its Class dynamically.

■ The class that provides the static method does not need to implement
QueryRedirector.

■ Your static method can have any name.

■ You can restrict the parameters to your static method to only a Session and a
Vector of arguments.

For more information, see "Using Redirect Queries" on page 96-1.

Historical Queries
By default, a session represents a view of the most current version of objects and when
you execute a query in that session, it returns the most current version of selected
objects.

If your data source maintains past or historical versions of objects, you can configure
TopLink to access this historical data (see "Historical Sessions" on page 72-25).

Once you configure TopLink to take advantage of this historical data, you can access
historical versions using the historical queries that Table 93–4 summarizes.

Using an ObjectLevelReadQuery With an AsOfClause
You can query historical versions of objects using an ObjectLevelReadQuery
configured with an AsOfClause (set by ObjectLevelReadQuery method
setAsOfClause) that specifies a point in time that applies to every Expression
used in the query.

Note: Flashback queries do not support view selects. This means you
cannot use a flashback query on objects with an inheritance policy for
read-all-subclasses views. For more information, see "Understanding
Descriptors and Inheritance" on page 23-12.

Table 93–4 Historical Queries

Historical Query Type Session Cache
Must set maintainCache
to false?

Query both current and
historical versions?

Using an
ObjectLevelReadQuery
With an AsOfClause

Regular1

1 A server or database session based on an OraclePlatform for an Oracle9i (or later) or based on a TopLink HistoryPolicy.

■ Global

■ Read and write

■ Contains current versions

Yes No

Using an
ObjectLevelReadQuery
With Expression Operator
asOf

Regular1 ■ Global

■ Read and write

■ Contains current versions

Yes Yes

Using an
ObjectLevelReadQuery in
a Historical Session

Historical2

2 A session returned by a server or database session based on an OraclePlatform or TopLink HistoryPolicy using the
acquireHistoricalSession method passing in an AsOfClause.

■ Isolated

■ Read-only

■ Contains static snapshot
as of specified time

No No

Interface and Inheritance Queries

93-22 Oracle TopLink Developer’s Guide

This type of historical query lets you query a static snapshot of object versions as of the
specified time.

For more information and examples of using an ObjectLevelReadQuery with an
AsOfClause, see "Using Historical Queries" on page 96-2.

Using an ObjectLevelReadQuery With Expression Operator asOf
You can query historical versions of objects using an ObjectLevelReadQuery (such
as ReadObjectQuery or ReadAllQuery) containing one or more expressions that
use Expression operator asOf to specify a point in time on an
Expression-by-Expression basis.

This type of historical query lets you combine both current and historical versions of
objects in the same query.

If you configure the ObjectLevelReadQuery with an AsOfClause, that point in
time overrides the point in time specified in any Expression in the query (see "Using
an ObjectLevelReadQuery With an AsOfClause" on page 93-21).

For more information and examples of using an ObjectLevelReadQuery with
Expression operator asOf, see "Using Historical Queries" on page 96-2.

Using an ObjectLevelReadQuery in a Historical Session
Given a session that maintains historical versions of objects (based on an appropriate
OraclePlatform or TopLink HistoryPolicy), you can use Session method
acquireHistoricalSession passing in an AsOfClause that specifies a point in
time that applies to all queries and expressions.

This method returns a lightweight, read-only snapshot of object versions as of the
specified time. The cache used in this type of session is isolated from the global shared
cache. You do not need to set ObjectLevelReadQuery method maintainCache to
false in this case.

For more information and examples of using an ObjectLevelReadQuery with a
historical session, see "Using Historical Queries" on page 96-2.

Interface and Inheritance Queries
When you define an interface descriptor (see "Relational Interface Descriptors" on
page 24-2), you can perform queries on interfaces and inheritance hierarchies.

For more information, see the following:

Note: To prevent corrupting the global shared cache with old
versions of objects, you must set ObjectLevelReadQuery method
maintainCache to false in this historical query. If you do not,
TopLink will throw an exception when you execute the query.

Note: To prevent corrupting the global shared cache with old
versions of objects, you must set ObjectLevelReadQuery method
maintainCache to false in this historical query. If you do not,
TopLink will throw an exception when you execute the query.

Descriptor Query Manager Queries

Understanding TopLink Queries 93-23

■ "Querying on Interfaces" on page 96-4

■ "Querying on an Inheritance Hierarchy" on page 96-4

Descriptor Query Manager Queries
Each Descriptor owns an instance of DescriptorQueryManager that you can use
for the following:

■ Configuring Named Queries

■ Configuring Default Query Implementations

■ Configuring Additional Join Expressions

Configuring Named Queries
The DescriptorQueryManager provides API for storing and retrieving frequently
used queries by name.

For more information, see "Named Queries" on page 93-16.

Configuring Default Query Implementations
The DescriptorQueryManager of each Descriptor lets you customize the query
implementation that TopLink uses for the following data source operations:

■ insert object

■ update object

■ read object

■ read all objects

■ delete object

For example, if you need to insert an object using a stored procedure, you can override
the default SQLCall used by the DescriptorQueryManager insert object query.

Whenever you execute a query on a given Class, TopLink consults the
DescriptorQueryManager to determine how to perform the given data source
operation.

You can use this capability for a variety of purposes such as to extend TopLink
behavior, access nonrelational data, or use stored procedures or customized SQL calls.

For information and examples on customizing these default query implementations,
see:

■ "Configuring Custom SQL Queries for Basic Persistence Operations" on page 26-6

■ "Configuring Custom EIS Interactions for Basic Persistence Operations" on
page 28-6

WARNING: Allowing an unverified SQL string to be passed into
methods makes your application vulnerable to SQL injection
attacks.

EJB Finders

93-24 Oracle TopLink Developer’s Guide

Configuring Additional Join Expressions
You can configure the DescriptorQueryManager to automatically append an
expression to every query it performs on a class. For example, you can add an
expression that filters the data source for the valid instances of a given class.

For more information, see "Appending Additional Join Expressions" on page 96-4.

EJB Finders
An EJB finder is a query as defined by the EJB specification. It returns EJB, collections,
and enumerations. The difference between a finder and a query is that queries return
Java objects, but finders return EJB. The TopLink query framework lets you create and
execute complex finders that retrieve entity beans.

Finders contain finder methods that define search criteria. The work involved in
creating these methods depends on whether you are building container-managed
persistence (CMP) bean finders or bean-managed persistence (BMP) bean finders:

■ CMP finders require the developer to define the finder API method signature on
the bean Home interface. The CMP provider generates the actual code mechanisms
for the finder from the API definition.

■ BMP finders require the developer to provide the code required to execute the
finder methods.

In either case, you define finders in the Home interface of the bean.

You can implement finders using any TopLink query feature and you can take
advantage of predefined finder implementations that TopLink provides for both CMP
and BMP entity beans.

This section describes the following:

■ Predefined Finders

■ Default Finders

■ Call Finders

■ DatabaseQuery Finders

■ Named Query Finders

■ Primary Key Finders

■ Expression Finders

■ EJB QL Finders

■ SQL Finders

■ Redirect Finders

■ The ejbSelect Method

For more information, see "Using EJB Finders" on page 96-7.

Predefined Finders
TopLink provides predefined finder implementations that provide a rich API that lets
you dynamically specify query properties at run time and take full advantage of
TopLink query features.

TopLink provides the following predefined finders:

EJB Finders

Understanding TopLink Queries 93-25

■ Predefined CMP Finders

■ Predefined BMP Finders

For more information, see the following:

■ "Understanding the EJB Entity Beans With CMP Architecture" on page 2-27

■ "Understanding the EJB Entity Beans With BMP Architecture" on page 2-31

Predefined CMP Finders
Table 93–5 lists the predefined finders you can use with TopLink CMP (using OC4J or
BEA WebLogic Server).

The TopLink runtime reserves the method names listed in Table 93–5.

You can also use each of these finders without a vector of arguments. For example,
EJBObject findOneByEJBQL(String ejbql) is a valid dynamic finder, but you
must replace the return type of EJBObject with your bean’s component interface.

For more information, see "Using EJB Finders" on page 96-7.

Predefined BMP Finders
Table 93–6 lists the predefined finders you can use if you extend your BMP EJB from
oracle.toplink.ejb.bmp.BMPEntityBase (see "Understanding the EJB Entity
Beans With BMP Architecture" on page 2-31).

The TopLink runtime reserves the method names listed in Table 93–6.

Table 93–5 Predefined CMP Finders

Method Arguments Return

findAll () Collection

findManyByEJBQL (String ejbql)
(String ejbql, Vector arguments)

Collection

findManyByQuery (DatabaseQuery query)
(DatabaseQuery query, Vector arguments)

Collection

findManyBySQL (String sql)
(String sql, Vector arguments)

Collection

findByPrimaryKey (Object primaryKeyObject) EJBObject

findOneByEJBQL (String ejbql)
(String ejbql, Vector arguments)

EJBObject

findOneByQuery (DatabaseQuery query)
(DatabaseQuery query, Vector arguments)

EJBObject

findOneBySQL (String sql)
(String sql, Vector arguments)

EJBObject

Note: If the finder is located on a local home, replace EJBObject with
EJBLocalObject in finders that contain findOneBy.

EJB Finders

93-26 Oracle TopLink Developer’s Guide

For more information about using EJB finders, see "Using EJB Finders" on page 96-7.

Default Finders
For each finder method defined on the home interface of an entity bean, whose name
matches findBy<CMP-FIELD-NAME> where <CMP-FIELD-NAME> is the name of a
persistent field on the bean, TopLink generates a finder implementation including a
TopLink query that uses the TopLink expressions framework. If the return type is a
single bean type, TopLink creates a ReadObjectQuery; if the return type is a
Collection, TopLink creates a ReadAllQuery.

Although you must still define the finder in the entity home, you do not need to
declare the finder in the ejb-jar.xml file.

For more information, see "Creating a Finder" on page 96-8.

Call Finders
Finders that use a Call lets you create dynamic queries that you generate at run time
rather than at deployment time.

For more information, see the following:

■ "Call Queries" on page 93-17.

■ "Predefined Finders" on page 93-24

DatabaseQuery Finders
Finders that use a DatabaseQuery lets you create dynamic queries that you generate
at run time rather than at deployment time.

In addition to finders that take a DatabaseQuery, TopLink also provides a default
findAll finder that returns all the EJB of a given type. As with other dynamic
finders, the TopLink runtime reserves the name findAll.

For more information, see "Database Queries" on page 93-10.

For more information on TopLink predefined finders that take a DatabaseQuery, see
"Predefined Finders" on page 93-24.

Table 93–6 Predefined BMP Finders

Method Arguments Return

findAll ()
(Call)
(Expression)
(ReadAllQuery)

Enumeration

findAllByNamedQuery (String queryName, Vector arguments) Enumeration

findByPrimaryKey (Object primaryKeyObject) Object

findOne (Call)
(Expression)
(ReadObjectQuery)

Object

findOneByNamedQuery (String queryName, Vector arguments) Object

EJB Finders

Understanding TopLink Queries 93-27

Named Query Finders
Finders that use a named DatabaseQuery stored in a DescriptorQueryManager
or Session lets you efficiently reuse frequently executed queries.

For more information, see

■ "Named Queries" on page 93-16

■ "Predefined Finders" on page 93-24

Primary Key Finders
TopLink provides predefined finder implementations that take a primary key class as
a Java Object.

Because the EJB 2.0 and 2.1 specifications requires the container to implement the
findByPrimaryKey call on each bean Home interface, do not delete this finder from a
bean.

For more information, see "Predefined Finders" on page 93-24.

Expression Finders
Using a finder based on a TopLink Expression offers the following advantages:

■ Version-controlled standardized queries in Java code

■ Ability to simplify most complex operations

■ A more complete set of querying features than is available through EJB QL

Because expressions lets you specify finder search criteria based on the object model,
they are frequently the best choice for constructing your finders.

For more information, see "TopLink Expressions" on page 93-3.

For more information on TopLink predefined finders that take an Expression, see
"Predefined Finders" on page 93-24.

You can also use an Expression in a finder that takes a DatabaseQuery by using
DatabaseQuery method setSelectionCriteria. For more information on
TopLink predefined finders that take a DatabaseQuery, see "DatabaseQuery Finders"
on page 93-26.

EJB QL Finders
TopLink supports EJB QL. EJB QL finders let you specify an EJB QL string as the
implementation of the query.

EJB QL offers the following advantages:

■ It is the EJB 2.0 and 2.1 standard for queries.

■ You can use it to construct most queries.

■ You can implement dependent-object queries with EJB QL.

The disadvantage of EJB QL is that it is difficult to use when you construct complex
queries.

For more information about EJB QL support in TopLink, see "Query Languages" on
page 93-4.

EJB Finders

93-28 Oracle TopLink Developer’s Guide

For more information on TopLink predefined finders that take EJB QL, see "Predefined
Finders" on page 93-24.

SQL Finders
Using SQL to define a finder offers the following advantages:

■ You can implement logic that cannot be expressed when you use EJB QL or a
TopLink Expression.

■ It allows for the use of a stored procedure instead of TopLink generated SQL.

■ There may be cases in which custom SQL will improve performance.

SQL finders also have the following disadvantages:

■ Writing complex custom SQL statements requires a significant maintenance effort
if the database tables change.

■ Hard-coded SQL limits portability to other databases.

■ No validation is performed on the SQL string. Errors in SQL statements will not be
detected until run time.

■ The use of SQL for a function other than SELECT may result in unpredictable
errors.

For more information on TopLink predefined finders that take SQL, see "Predefined
Finders" on page 93-24.

Redirect Finders
Redirect finders enable you to implement a finder that is defined on an arbitrary
helper class as a static method. When you invoke the finder, TopLink redirects the call
to the specified static method.

Redirect queries are complex and require an extra helper method to define the query.
However, because they support complex logic, they are often the best choice when you
need to implement logic unrelated to the bean on which the redirect method is called.

For more information, see the following:

■ "Redirect Queries" on page 93-20

■ "Using EJB Finders" on page 96-7

The ejbSelect Method
The ejbSelect method is a query method intended for internal use within an entity
bean instance. Specified on the abstract bean itself, the ejbSelect method is not directly
exposed to the client in the home or component interface. Defined as abstract, each
bean can include zero or more such methods.

ejbSelect methods have the following characteristics:

■ The method name must have ejbSelect as its prefix.

■ It must be declared as public.

■ It must be declared as abstract.

■ The throws clause must specify the javax.ejb.FinderException, although it
may also specify application-specific exceptions as well.

Queries and the Cache

Understanding TopLink Queries 93-29

■ The result-type-mapping tag in the ejb-jar.xml file determines the return
type for ejbSelect methods. Set the flag to Remote to return EJBObjects; set it
to Local to return EJBLocalObjects.

The format for an ejbSelect method definition looks as follows:

public abstract type ejbSelect<METHOD>(...);

The ejbSelect query return type is not restricted to the entity bean type on which
the ejbSelect is invoked. Instead, it can return any type corresponding to a
container-managed relationship or container-managed field.

Although the select method is not based on the identity of the entity bean instance on
which it is invoked, it can use the primary key of an entity bean as an argument. This
creates a query that is logically scoped to a particular entity bean instance.

For more information and examples on using TopLink queries in the ejbSelect
method, see "Using EJB Finders" on page 96-7.

Queries and the Cache
When you execute a query, TopLink retrieves the information from either the database
or the TopLink session cache. You can configure the way queries use the TopLink
cache to optimize performance.

TopLink maintains a client-side cache to reduce the number of read operations
required from the database. TopLink caches objects written to and read from the
database to maintain object identity. The sequence in which a query checks the cache
and database affects query performance. By default, primary key queries check the
cache before accessing the database, and all queries check the cache before rebuilding
an object from its row.

This section illustrates ways to manipulate the relationship between query and cache,
including the following:

■ Configuring the Cache

■ Using In-Memory Queries

■ Primary Key Queries and the Cache

■ Disabling the Identity Map Cache Update During a Read Query

■ Refreshing the Cache

■ Caching Query Results in the Session Cache

■ Caching Query Results in the Query Cache

■ Caching and EJB Finders

Configuring the Cache
The cache in a TopLink application holds objects that have already been read from or
written to the database. Use of the cache in a TopLink application reduces the number
of accesses to the database. Because accessing the database consumes time and

Note: You can override the default behavior in the caching policy
configuration information in the TopLink descriptor. For more
information, see "Explicit Query Refreshes" on page 87-7.

Queries and the Cache

93-30 Oracle TopLink Developer’s Guide

resources, an effective caching strategy is important to the efficiency of your
application.

For more information about configuring and using the cache, see Chapter 87,
"Understanding the Cache".

Using In-Memory Queries
An in-memory query is a query that is run against the shared session cache. Careful
configuration of in-memory querying improves performance, but not all queries
benefit from in-memory querying. For example, queries for individual objects based
on primary keys generally see performance gains from in-memory querying; queries
not based on primary keys are less likely to benefit.

By default, queries that look for a single object based on primary keys attempt to
retrieve the required object from the cache first, and then to search the database if the
object is not in the cache. All other query types search the database first, by default.
You can specify whether a given query runs against the in-memory cache, the
database, or both.

In-memory querying lets you perform queries on the cache rather than the database.
In-memory querying supports the following relationships:

■ One-to-one

■ One-to-many

■ Many-to-many

■ Aggregate collection

■ Direct collection

This section describes the following:

■ Configuring Cache Usage for In-Memory Queries

■ Expression Options for In-Memory Queries

■ Handling Exceptions Resulting From In-Memory Queries

Configuring Cache Usage for In-Memory Queries
You can configure in-memory query cache usage at the query level using
ReadObjectQuery and ReadAllQuery methods:

■ checkCacheByPrimaryKey: The default setting; if a read-object query contains
an expression that compares at least the primary key, you can obtain a cache hit if
you process the expression against the objects in memory.

■ checkCacheByExactPrimaryKey: If a read-object query contains an expression
where the primary key is the only comparison, you can obtain a cache hit if you
process the expression against the object in memory.

■ checkCacheThenDatabase: You can configure any read-object query to check
the cache completely before you resort to accessing the database.

Note: By default, the relationships themselves must be in memory for
in-memory traversal to work. Ensure that you trigger all value holders
to enable in-memory querying to work across relationships.

Queries and the Cache

Understanding TopLink Queries 93-31

■ checkCacheOnly: You can configure any read-all query to check only the parent
session cache (not the unit of work cache) and return the result from the parent
session cache without accessing the database.

■ conformResultsInUnitOfWork: You can configure any read-object or read-all
query within the context of a unit of work to conform the results with the changes
to the object made within that unit of work. This includes new objects, deleted
objects and changed objects. For more information and limitations on conforming,
see "Using Conforming Queries and Descriptors" on page 99-8.

Alternatively, you can configure cache usage using the ObjectLevelReadQuery
method setCacheUsage, passing in the appropriate ObjectLevelReadQuery field:
CheckCacheByPrimaryKey, CheckCacheByExactPrimaryKey,
CheckCacheThenDatabase, CheckCacheOnly,
ConformResultsInUnitOfWork, or DoNotCheckCache.

Expression Options for In-Memory Queries
You can use a subset of Expression (see Table 93–7) and ExpressionMath (see
Table 93–8) methods with in-memory queries. For more information about these
options, see "Understanding TopLink Expressions" on page 95-1.

Table 93–7 Expressions Operator Support for In-Memory Queries

Expressions Operator
In-Memory Query
Support

addMonths

and

anyof1

anyofAllowingNone1

asciiValue

between

concat

currentDate

dateToString

decode

equal

get1

getAllowingNull1

getFunction

greaterThan

greaterThanEqual

hexToRaw

ifNull

in

isNull

lastDay

Queries and the Cache

93-32 Oracle TopLink Developer’s Guide

leftPad

leftTrim

length

lessThan

lessThanEqual

like

monthsBetween

newTime

nextDay

notBetween

notIn

notIn

notNull

or

ref

replace

rightPad

rightTrim

subQuery

substring

toCharacter

toDate

toLowerCase

toNumber

toUpperCase

toUpperCasedWords

translate

trim

truncateDate

1 For more information, see "Join Reading and Object-Level
Read Queries" on page 93-12.

Table 93–8 ExpressionMath Operator Support for In-Memory Queries

ExpressionMath
Operator

In-Memory Query
Support

abs

acos

Table 93–7 (Cont.) Expressions Operator Support for In-Memory Queries

Expressions Operator
In-Memory Query
Support

Queries and the Cache

Understanding TopLink Queries 93-33

Handling Exceptions Resulting From In-Memory Queries
In-memory queries may fail for several reasons, the most common of which are the
following:

■ The query expression is too complex to execute in memory.

■ There are untriggered value holders in which indirection is used. All object
models that use indirection must first trigger value holders before they conform
on the relevant objects.

TopLink provides a mechanism to handle indirection exceptions. To specify how the
application must handle these exceptions, use the following
InMemoryQueryIndirectionPolicy methods:

add

asin

atan

atan2

ceil

chr

cos

cosh

exp

floor

ln

log

max

min

mod

none

power

round

sign

sin

sinh

sqrt

subtract

tan

tanh

trunc

Table 93–8 (Cont.) ExpressionMath Operator Support for In-Memory Queries

ExpressionMath
Operator

In-Memory Query
Support

Queries and the Cache

93-34 Oracle TopLink Developer’s Guide

■ throwIndirectionException: The default setting; it is the only setting that
throws indirection exceptions.

■ triggerIndirection: Triggers all valueholders to eliminate the problem.

■ ignoreIndirectionExceptionReturnConformed: Returns conforming if an
untriggered value holder is encountered. That is, results from the database are
expected to conform, and an untriggered value holder is taken to mean that the
underlying attribute has not changed.

■ ignoreIndirectionExceptionReturnNotConformed: Returns not
conforming if an untriggered value holder is encountered.

Primary Key Queries and the Cache
When a query searches for a single object by a primary key, TopLink extracts the
primary key from the query and attempts to return the object from the cache without
accessing the database. If the object is not in the cache, the query executes against the
database, builds the resulting object(s), and places it in the identity map.

If the query is based on a nonprimary key selection criteria or is a read-all query, the
query executes against the database (unless you are using ReadObjectQuery or
ReadAllQuery method checkCacheOnly). The query matches primary keys from
the result set to objects in the cache, and returns the cached objects, if any, in the result
set.

If an object is not in the cache, TopLink builds the object. If the query is a refreshing
query, TopLink updates the contents of any objects with the results from the query.
Use "equals" on the object identity to properly configure and use an identity map.

Clients can refresh objects when they want to ensure that they have the latest data at a
particular time.

Traversing Relationships With Compound Primary Keys
When getting objects by using compound primary keys to traverse relationships, you
must create use query keys (see "Query Keys and Expressions" on page 95-10). By
adding a query key for each mapped attribute in a class with a complex primary key,
TopLink can use the primary key on the cache.

Consider the class MyClass with two attributes: A and B. Both A and B are mapped as
1:1 mappings to the database and designated primary keys.

You should create a query key for each attribute (such as MyQueryKeyA and
MyQueryKeyB) that will map the attributes of the primary key of MyClass without
going through the other classes. You can then use the query key to find the object in
the cache and query the object’s primary key:

builder.get("MyQueryKeyA").equal(new Long("123456"));

Disabling the Identity Map Cache Update During a Read Query
To disable the identity map cache update, which is normally performed by a read
query, call the dontMaintainCache method. This improves the query performance

Note: When you build new applications, consider throwing all conform
exceptions. This provides more detailed feedback for unsuccessful
in-memory queries. For more information, see "Exceptions During
Conforming" on page 99-34.

Queries and the Cache

Understanding TopLink Queries 93-35

when you read objects that are not needed later by the application and can avoid
exceptions during partial object queries (see "Reading Objects Using Partial Object
Queries" on page 94-6).

Example 93–1 Disabling the Identity Map Cache Update

Example 93–1 demonstrates how code reads Employee objects from the database and
writes the information to a file.

// Reads objects from the employee table and writes them to an employee file
void writeEmployeeTableToFile(String filename, Session session) {

Vector employeeObjects;
// Create ReadAllQuery and set Employee as its reference class
ReadAllQuery query = new ReadAllQuery(Employee.class);
ExpressionBuilder builder = query.getExpressionBuilder();
query.setSelectionCriteria(builder.get("id").greaterThan(100));
query.dontMaintainCache();
Vector employees = (Vector) session.executeQuery(query);
// Write all the employee data to a file
Employee.writeToFile(filename, employees);

}

Refreshing the Cache
You can refresh objects in the cache to ensure that they are current with the database,
while preserving object identity. This section describes how to use query API to
perform the following:

■ Configure query refreshing at the descriptor level (see "Configuring Cache
Refreshing" on page 25-27) to apply cache refreshing to all queries of a particular
object type. Before configuring cache refresh options, consider their effect on
performance (see "Cache Optimization" on page 11-13).

Object Refresh
To refresh objects in the cache with the data in the database, call the Session method
refreshObject or the ReadObjectQuery method
setShouldRefreshIdentityMapResult(true).

Cascading Object Refresh
You can control the depth at which a refreshing updates objects and their related
objects. There are the following three options:

1. CascadePrivateParts: Default refresh behavior. Refreshes the local level object and
objects that are referenced in privately owned relationships.

2. CascadeNone: Refreshes only the first level of the object, but does not refresh
related objects.

3. CascadeAll: Refreshes the entire object tree, stopping when it reaches leaf objects.

Refreshing the Identity Map Cache During a Read Query
Include the refreshIdentityMapResult method in a query to force refreshing of
an identity map with the results of the query.

Queries and the Cache

93-36 Oracle TopLink Developer’s Guide

Example 93–2 Refreshing the Result of a Query in the Identity Map Cache During a Read
Query

// Create ReadObjectQuery and set Employee as its reference class
ReadObjectQuery query = new ReadObjectQuery(Employee.class);
ExpressionBuilder builder = query.getExpressionBuilder();
query.setSelectionCriteria(builder.get("lastName").equal("Smith"));
query.refreshIdentityMapResult();
Employee employee = (Employee) session.executeQuery(query);

The refreshIdentityMapResult method refreshes the object’s attributes, but not
the attributes of its privately owned parts. However, under most circumstances, you
should refresh an object’s privately owned parts and other related objects to ensure
consistency with the database.

To refresh privately owned or related parts, use the following methods:

■ cascadePrivateParts: Refreshes all privately owned objects

■ cascadeAllParts: Refreshes all related objects

Example 93–3 Using the cascadePrivateParts Method

ReadAllQuery query = new ReadAllQuery(Employee.class);
query.refreshIdentityMapResult();
query.cascadePrivateParts();
Vector employees = (Vector) session.executeQuery(query);

Caching Query Results in the Session Cache
By default, TopLink stores query results in the session cache enabling TopLink to
execute the query repeatedly, without accessing the database. This is useful when you
execute queries that run against static data.

By default, a read-all query always goes to the database, as it does not know how
many objects it is seeking. However if the object already exists in the cache, time can
be saved by not having to build a new object from the row.

For more information, see "Understanding the Cache" on page 87-1.

Caching Query Results in the Query Cache
In addition to TopLink’s object cache, TopLink also supports a query cache:

■ The object cache indexes objects by their primary key, allowing primary key
queries to obtain cache hits. By using the object cache, queries that access the data
source can avoid the cost of building the objects and their relationships if the
object is already present.

■ The query cache is distinct from the object cache. The query cache is indexed by
the query and the query parameters – not the object’s primary key. This allows for
any query executed with the same parameters to obtain a query cache hit and
return the same result set.

By default, a ReadQuery does not cache its query result set. You can, however,
configure the query to cache its result set. This is useful for frequently executed

Note: If the object is in the session cache, you can also use the
refreshObject method to refresh an object and its privately owned
parts.

Queries and the Cache

Understanding TopLink Queries 93-37

queries whose result set infrequently changes. The query cache always maintains hard
references to the result set; the number of results sets for distinct parameters stored in
the query cache is configurable. The query cache maintains its size number of the last
executed queries with distinct parameters.

For more information, see "Caching Results in a ReadQuery" on page 96-20.

You can apply a cache invalidation policy to the query’s internal cache (see
"Configuring Cache Expiration at the Query Level" on page 96-21). For more
information, see "Cache Invalidation" on page 87-8.

Internal Query Cache Restrictions
TopLink does not support the use of the query cache with cursors: if you use query
caching with cursors, TopLink will throw an exception. For information on cursor
query results, see "Stream and Cursor Query Results" on page 93-8 and "Handling
Cursor and Stream Query Results" on page 96-15.

Caching and EJB Finders
TopLink caches enterprise beans that EJB finders retrieve. For your application, you
can configure the caching of the EJB finders’ results in a variety of ways, force the
cache to be refreshed, or disable the caching.

This section describes the following:

■ Caching Options

■ Disabling Cache for Returned Finder Results

■ Refreshing Finder Results

Caching Options
You can apply various configurations to the underlying query to achieve the correct
caching behavior for the application. There are several ways to control the caching
options for queries. For most queries, you can set caching options using TopLink
Workbench.

You can set the caching options on a per-finder basis. Table 93–9 lists the valid values.

Table 93–9 Finder Caching Options

This Setting . . . Causes Finders to . . .
When the Search Involves
a Finder That . . .

ConformResultsInUnitOfWork1 Check the unit of work cache
before querying the session cache
or the database. The finder's
results always conform to
uncommitted new, deleted, and
changed objects.

Returns either a single bean
or a collection.

DoNotCheckCache Query the database, bypassing
the TopLink internal caches.

Returns either a single bean
or a collection.

CheckCacheByExactPrimaryKey Check the session cache for the
object.

Contains only a primary key,
and returns a single bean.

CheckCacheByPrimaryKey Check the session cache for the
object.

Contains a primary key (and
may contain other search
parameters), and returns a
single bean.

CheckCacheThenDatabase Search the session cache before
accessing the databas.e

Returns a single bean.

Understanding the Query API

93-38 Oracle TopLink Developer’s Guide

For more information about the TopLink queries, as well as the TopLink unit of work
and how it integrates with JTS, see Chapter 97, "Understanding TopLink Transactions".

Disabling Cache for Returned Finder Results
By default, TopLink adds all returned objects to the session cache. However, if you
know the set of returned objects is very large, and you want to avoid the expense of
storing these objects, you can disable this behavior. To override the default
configuration, implement the dontMaintainCache method on the query, or disable
returned object caching for the query in TopLink Workbench.

Refreshing Finder Results
A finder may return information from the database for an object whose primary key is
already in the cache. When set to true, the Refresh Cache option (in TopLink
Workbench) causes the query to refresh the object's nonprimary key attributes with
the returned information. This occurs on findByPrimaryKey finders as well as all
expression and SQL finders for the bean.

If you build a query in Java code, you can set this option by including the
refreshIdentityMapResult method. This method automatically cascades changes
to privately owned parts of the beans. If you require different behavior, configure the
query using a dynamic finder instead.

If your application includes an OptimisticLock field, use the refresh cache option in
conjunction with the onlyRefreshCacheIfNewerVersion option. This ensures
that the application refreshes objects in the cache only if the version of the object in the
database is newer than the version in the cache.

For finders that have no refresh cache setting, the
onlyRefreshCacheIfNewerVersion method has no effect.

Understanding the Query API
Table 93–10 summarizes the query support provided by each type of session. For each
session type, it shows the type of query operation (create, read, update, delete) that
you can perform and whether or not you can execute a DatabaseQuery or Call. For
example, using a unit of work, you can use session queries to read and delete; using a
server session, you can use session queries to create, read, update, and delete.

CheckCacheOnly Search the parent session cache
only (not the unit of work cache),
but not the database.

Returns either a single bean
or a collection.

1 Default.

Note: To apply caching options to finders with manually created
queries (findOneByQuery, findManyByQuery), use the TopLink API.

Note: When you invoke this option from within a transaction, the
refresh action overwrites object attributes, including any that have
not yet been written to the database.

Table 93–9 (Cont.) Finder Caching Options

This Setting . . . Causes Finders to . . .
When the Search Involves
a Finder That . . .

Understanding the Query API

Understanding TopLink Queries 93-39

Example 93–4 summarizes the important TopLink packages that provide query and
expression support:

Example 93–4 Query and Expression Packages

oracle.toplink.queryframework
oracle.toplink.expressions
oracle.toplink.querykeys
oracle.toplink.descriptors.DescriptorQueryManager

Table 93–10 Session Query API Summary

Session Create Read Update Delete

Execute
Database
Query

Execute
Call

Unit of
work

Database

Server

Client

Understanding the Query API

93-40 Oracle TopLink Developer’s Guide

Using Basic Query API 94-1

94
Using Basic Query API

This chapter explains the following essential TopLink query API calls most commonly
used throughout the development cycle:

■ Using Session Queries

■ Using DatabaseQuery Queries

■ Using Named Queries

■ Using SQL Calls

■ Using EJB QL Calls

■ Using EIS Interactions

■ Handling Exceptions

■ Handling Collection Query Results

■ Handling Report Query Results

For more information, see "Using Advanced Query API" on page 96-1.

Using Session Queries
This section provides examples of using the session query methods for the following:

■ Reading Objects With a Session Query

■ Creating, Updating, and Deleting Objects With a Session Query

For more information, see "Session Queries" on page 93-9.

Reading Objects With a Session Query
Using the session query API, you can perform the following read operations:

■ Reading an Object With a Session Query

■ Reading All Objects With a Session Query

■ Refreshing an Object With a Session Query

Note: Oracle recommends that you perform all data source
operations using a unit of work: doing so is the most efficient way to
manage transactions, concurrency, and referential constraints. For
more information, see "Understanding TopLink Transactions" on
page 97-1.

Using Session Queries

94-2 Oracle TopLink Developer’s Guide

Reading an Object With a Session Query
The readObject method retrieves a single object from the database. The application
must specify the class of object to read. If no object matches the criteria, a null value is
returned.

For example, the basic read operation is:

session.readObject(MyDomainObject.class);

This example returns the first instance of MyDomainObject found in the table used
for MyDomainObject. TopLink provides the Expression class to specify querying
parameters for a specific object.

When you search for a single, specific object using a primary key, the readObject
method is more efficient than the readAllObjects method, because readObject
can find an instance in the cache without accessing database. Because a
readAllObjects method does not know how many objects match the criteria, it
always searches the database to find matching objects, even if it finds matching objects
in the cache.

Example 94–1 readObject Using an Expression

import oracle.toplink.sessions.*;
import oracle.toplink.expressions.*;

/* Use an expression to read in the employee whose last name is Smith. Create an
expression using the Expression Builder and use it as the selection criterion of
the search */
Employee employee = (Employee) session.readObject(Employee.class, new
ExpressionBuilder().get("lastName").equal("Smith"));

Reading All Objects With a Session Query
The readAllObjects method retrieves a Vector of objects from the database and
does not put the returned objects in order. If the query does not find any matching
objects, it returns an empty Vector.

Specify the class for the query. You can also include an expression to define more
complex search criteria, as illustrated in Example 94–2.

Example 94–2 readAllObjects Using an Expression

// Returns a Vector of employees whose employee salary is greater than 10000
Vector employees = session.readAllObjects(Employee.class,new
ExpressionBuilder.get("salary").greaterThan(10000));

Refreshing an Object With a Session Query
The refreshObject method causes TopLink to update the object in memory using
data from the database. This operation refreshes any privately owned objects as well.

Note: A privately owned object is one that cannot exist without its
parent, or source object.

Using Session Queries

Using Basic Query API 94-3

Creating, Updating, and Deleting Objects With a Session Query
Using the session query API, you can perform the following create, update, and delete
operations:

■ Writing a Single Object to the Database With a Session Query

■ Writing All Objects to the Database With a Session Query

■ Adding New Objects to the Database With a Session Query

■ Modifying Existing Objects in the Database With a Session Query

■ Deleting Objects in the Database With a Session Query

Writing a Single Object to the Database With a Session Query
When you invoke the writeObject method, the method performs a does-exist check
to determine whether or not an object exists. If the object exists, writeObject
updates the object; if it does not exist, writeObject inserts a new object.

The writeObject method writes privately owned objects in the correct order to
maintain referential integrity.

Call the writeObject method when you cannot verify that an object exists in the
database.

Example 94–3 Writing a Single Object Using writeObject

// Create an instance of the employee and write it to the database
Employee susan = new Employee();
susan.setName("Susan");
...
// Initialize the susan object with all other instance variables
session.writeObject(susan);

Writing All Objects to the Database With a Session Query
You can call the writeAllObjects() method to write multiple objects to the
database. The writeAllObjects() method performs the same does-exist check as
the writeObject() method and then performs the appropriate insert or update
operations.

Example 94–4 Writing Several Objects Using writeAllObjects

// Read a Vector of all the current employees in the database.
Vector employees = (Vector) session.readAllObjects(Employee.class);
...// Modify any employee data as necessary
// Create a new employee and add it to the list of employees
Employee susan = new Employee();
...
// Initialize the new instance of employee
employees.add(susan);
/* Write all employees to the database. The new instance of susan not currently in
the database will be inserted. All the other employees currently stored in the
database will be updated */
session.writeAllObjects(employees);

Using DatabaseQuery Queries

94-4 Oracle TopLink Developer’s Guide

Adding New Objects to the Database With a Session Query
The insertObject method creates a new object in the database, but does not
perform the does-exist check before it attempts the insert operation. The
insertObject method is more efficient than the writeObject method if you are
certain that the object does not yet exist in the database. If the object does exist, the
database throws an exception when you execute the insertObject method.

Modifying Existing Objects in the Database With a Session Query
The updateObject method updates existing objects in the database, but does not
perform the does-exist check before it attempts the update operation. The
updateObject is more efficient than the writeObject method if you are certain
that the object does exist in the database. If the object does not exist, the database
throws an exception when you execute the updateObject method.

Deleting Objects in the Database With a Session Query
To delete a TopLink object from the database, read the object from the database and
then call the deleteObject method. This method deletes both the specified object
and any privately owned data.

Using DatabaseQuery Queries
This section describes creating and executing DatabaseQuery queries to perform a
variety of basic persistence operations, including the following:

■ Reading Objects Using a DatabaseQuery

■ Creating, Updating, and Deleting Objects With a DatabaseQuery

■ Reading Data With a DatabaseQuery

■ Updating Data With a DatabaseQuery

■ Specifying a Custom SQL String in a DatabaseQuery

■ Specifying a Custom EJB QL String in a DatabaseQuery

■ Using Parameterized SQL and Statement Caching in a DatabaseQuery

Reading Objects Using a DatabaseQuery
This section provides examples that illustrate how to read objects using a
DatabaseQuery, including the following:

■ Basic DatabaseQuery Read Operations

■ Reading Objects Using Partial Object Queries

■ Reading Objects Using Report Queries

■ Reading Objects Using Query-By-Example

■ Specifying Read Ordering

■ Specifying a Collection Class

■ Specifying the Maximum Rows Returned

■ Configuring Query Timeout at the Query Level

■ Using Batch Reading

■ Using Join Reading

Using DatabaseQuery Queries

Using Basic Query API 94-5

Basic DatabaseQuery Read Operations
Example 94–5 illustrates a simple read query. It uses a TopLink expression, but does
not use its own arguments for the query. Instead, it relies on the search parameters the
expression provides. This example builds the expression within its code, but does not
register the query with the session.

Example 94–5 A Simple ReadAllQuery

// This example returns a Vector of employees whose employee ID is > 100

// Initialize the DatabaseQuery by specifying the query type
// and set the reference class for the query
ReadAllQuery query = new ReadAllQuery(Employee.class);

// Retrieve ExpressionBuilder from the query
ExpressionBuilder builder = query.getExpressionBuilder();

/* Configure the query execution. Because this example uses an expression, it uses
the setSelectionCriteria method */
query.setSelectionCriteria(builder.get("id").greaterThan(100));

// Execute the query
Vector employees = (Vector) session.executeQuery(query);

Example 94–6 illustrates a complex readObject query that uses all available
configuration options.

Example 94–6 A Named Read Query with Two Arguments

// Initialize the DatabaseQuery by specifying the query type
// and set the reference class for the query
ReadObjectQuery query = new ReadObjectQuery(Employee.class);
// Retrieve ExpressionBuilder from the query
ExpressionBuilder builder = query.getExpressionBuilder();
// Define two expressions that map to the first and last names of the employee
Expression firstNameExpression =
emp.get("firstName").equal(emp.getParameter("firstName"));
Expression lastNameExpression =
emp.get("lastName").equal(emp.getParameter("lastName"));

/* Configure the query execution. Because this example uses an expression, it uses
the setSelectionCriteria method */
query.setSelectionCriteria(firstNameExpression.and(lastNameExpression));
// Specify the required arguments for the query
query.addArgument("firstName");
query.addArgument("lastName");

// Add the query to the session
session.addQuery("getEmployeeWithName", query);

/* Execute the query by referencing its name and providing values for the
specified arguments */
Employee employee = (Employee)
session.executeQuery("getEmployeeWithName","Bob","Smith");

Using DatabaseQuery Queries

94-6 Oracle TopLink Developer’s Guide

Reading Objects Using Partial Object Queries
Example 94–7 demonstrates the use of partial object reading. It reads only the last
name and primary key for the employees. This reduces the amount of data read from
the database.

Example 94–7 Optimization Through Partial Object Reading

/* Read all the employees from the database, ask the user to choose one and return
it. This uses partial object reading to read just the last name of the employees.
Since TopLink automatically includes the primary key of the object, the full
object can easily be read for editing */
List list;
// Fetch data from database and add to list box
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.addPartialAttribute("lastName");
// The next line avoids a query exception
query.dontMaintainCache();
Vector employees = (Vector) session.executeQuery(query);
list.addAll(employees);

// Display list box
....
// Get selected employee from list
Employee selectedEmployee = (Employee)session.readObject(list.getSelectedItem());
return selectedEmployee;

Reading Objects Using Report Queries
Example 94–8 reports the total and average salaries for Canadian employees grouped
by their city.

Example 94–8 Querying Reporting Information on Employees

ExpressionBuilder emp = new ExpressionBuilder();
ReportQuery query = new ReportQuery(Employee.class, emp);
query.addMaximum("max-salary", emp.get("salary"));
query.addAverage("average-salary", emp.get("salary"));
query.addAttribute("city", emp.get("address").get("city"));

query.setSelectionCriteria(emp.get("address").get("country").equal("Canada"));
query.addOrdering(emp.get("address").get("city"));
query.addGrouping(emp.get("address").get("city"));
Vector reports = (Vector) session.executeQuery(query);

The ReportQuery class provides an extensive reporting API, including methods for
computing average, maximum, minimum, sum, standard deviation, variance, and
count of attributes. For more information about the available methods for the
ReportQuery, see the Oracle TopLink API Reference.

Reading Objects Using Query-By-Example
Query-by-example enables you to specify query selection criteria in the form of a
sample object instance that you populate with only the attributes you want to use for
the query.

Note: Because ReportQuery inherits from ReadAllQuery, it also
supports most ReadAllQuery properties.

Using DatabaseQuery Queries

Using Basic Query API 94-7

To define a query-by-example, provide a ReadObjectQuery or a ReadAllQuery
with a sample persistent object instance and an optional query-by-example policy. The
sample instance contains the data to query, and, optionally, a
QueryByExamplePolicy (see "Defining a QueryByExamplePolicy" on page 94-7)
that specifies configuration settings, such as the operators to use and the attribute
values to ignore. You can also combine a query-by-example with an expression (see
"Combining Query-by-Example and Expressions" on page 94-8).

For more information, see "Query-by-Example" on page 93-6.

Example 94–9 Using Query-by-Example to Query an Employee

Example 94–9 queries the employee Bob Smith.

Employee employee = new Employee();
employee.setFirstName("Bob");
employee.setLastName("Smith");

// Create a query and set Employee as its reference class
ReadObjectQuery query = new ReadObjectQuery(Employee.class);
query.setExampleObject(employee);

Employee result = (Employee) session.executeQuery(query);

Example 94–10 Using Query-by-Example to Query an Employee’s Address

Example 94–10 queries across the employee’s address.

Employee employee = new Employee();
Address address = new Address();
address.setCity("Ottawa");
employee.setAddress(address);

// Create a query and set Employee as its reference class
ReadObjectQuery query = new ReadObjectQuery(Employee.class);
query.setExampleObject(employee);

Vector results = (Vector) session.executeQuery(query);

Defining a QueryByExamplePolicy
TopLink support for query-by-example includes a query-by-example policy. You can
edit the policy to modify query-by-example default behavior. You can modify the
policy to do the following:

■ Use LIKE or other operations to compare attributes. By default, query-by-example
allows only EQUALS.

■ Modify the set of values query-by-example ignores (the IGNORE set). The default
ignored values are zero (0), empty strings, and FALSE.

■ Force query-by-example to consider attribute values, even if the value is in the
IGNORE set.

■ Use isNull or notNull for attribute values.

To specify a query-by-example policy, include an instance of
QueryByExamplePolicy with the query.

Using DatabaseQuery Queries

94-8 Oracle TopLink Developer’s Guide

Example 94–11 Query-by-Example Policy Using like Operator

Example 94–11 uses like operator for strings and includes only objects whose salary
is greater than zero.

Employee employee = new Employee();
employee.setFirstName("B%");
employee.setLastName("S%");
employee.setSalary(0);

// Create a query and set Employee as its reference class
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.setExampleObject(employee);
// Query by example policy section adds like and greaterThan
QueryByExamplePolicy policy = new QueryByExamplePolicy();
policy.addSpecialOperation(String.class, "like");
policy.addSpecialOperation(Integer.class, "greaterThan");
policy.alwaysIncludeAttribute(Employee.class, "salary");
query.setQueryByExamplePolicy(policy);
Vector results = (Vector) session.executeQuery(query);

Example 94–12 Query-by-Example Policy Using Keywords

Example 94–12 uses keywords for strings and ignores the value -1.

Employee employee = new Employee();
employee.setFirstName("bob joe fred");
employee.setLastName("smith mc mac");
employee.setSalary(-1);

// Create a query and set Employee as its reference class
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.setExampleObject(employee);
// Query by example policy section
QueryByExamplePolicy policy = new QueryByExamplePolicy();
policy.addSpecialOperation(String.class, "containsAnyKeyWords");
policy.excludeValue(-1);
query.setQueryByExamplePolicy(policy);
Vector results = (Vector) session.executeQuery(query);

Combining Query-by-Example and Expressions
To create more complex query-by-example queries, combine query-by-example with
TopLink expressions, as shown in Example 94–13.

Example 94–13 Combining Query-by-Example with Expressions

Employee employee = new Employee();
employee.setFirstName("Bob");
employee.setLastName("Smith");

// Create a query and set Employee as its reference class
ReadAllQuery query = new ReadAllQuery(Employee.class);

query.setExampleObject(employee);

// Specify expression
ExpressionBuilder builder = query.getExpressionBuilder();
query.setSelectionCriteria(builder.get("salary").between(100000,200000);
Vector results = (Vector) session.executeQuery(query);

Using DatabaseQuery Queries

Using Basic Query API 94-9

Specifying Read Ordering
Ordering is a common DatabaseQuery option. Use the Order tab in TopLink
Workbench to order the collection of objects returned from a ReadAllQuery, or the
addOrdering, addAscendingOrdering, or addDescendingOrdering methods
in Java code. You can apply order based on attribute names or query keys and
expressions.

Example 94–14 A Query with Simple Ordering

// Retrieves objects ordered by last name then first name in ascending order
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.addAscendingOrdering ("lastName");
query.addAscendingOrdering ("firstName");
Vector employees = (Vector) session.executeQuery(query);

Example 94–15 A Query with Complex Ordering

/* Retrieves objects ordered by street address, descending case-insensitive order
of cities, and manager’s last name */
ReadAllQuery query = new ReadAllQuery(Employee.class);
ExpressionBuilder emp = query.getExpressionBuilder();
query.addOrdering (emp.getAllowingNull("address").get("street"));
query.addOrdering(

emp.getAllowingNull("address").get("city").toUpperCase().descending());
query.addOrdering(emp.getAllowingNull("manager").get("lastName"));
Vector employees = (Vector) session.executeQuery(query);

Note the use of getAllowingNull, which creates an outer join for the address and
manager relationships. This ensures that employees without an address or manager
still appear in the list.

For more information about configuring read ordering, see "Configuring Read All
Query Order" on page 25-15.

Specifying a Collection Class
By default, a ReadAllQuery returns its result objects in a vector. You can configure
the query to return the results in any collection class that implements the Collection
or Map interface, as shown in Example 94–16.

Example 94–16 Specifying the Collection Class for a Collection

ReadAllQuery query = new ReadAllQuery(Employee.class);
query.useCollectionClass(LinkedList.class);
LinkedList employees = (LinkedList) getSession().executeQuery(query);

Example 94–17 Specifying the Collection Class for a Map

ReadAllQuery query = new ReadAllQuery(Employee.class);
query.useMapClass(HashMap.class, "getFirstName");
HashMap employees = (HashMap) getSession().executeQuery(query);

Using DatabaseQuery Queries

94-10 Oracle TopLink Developer’s Guide

Specifying the Maximum Rows Returned
You can limit a query to a specified maximum number of rows. Use this feature to
avoid queries that can return an excessive number of objects.

To specify a maximum number of rows, use the setMaxRows method, and pass an
integer that represents the maximum number of rows for the query, as shown in
Example 94–18.

Example 94–18 Setting the Maximum Returned Object Size

ReadAllQuery query = new ReadAllQuery(Employee.class);
query.setMaxRows(5);
Vector employees = (Vector) session.executeQuery(query);

The setMaxRows method limits the number of rows the query returns, but does not
let you acquire more records after the initial result set.

If you want to browse the result set in fixed increments, use either cursors or cursored
streams. For more information, see "Handling Cursor and Stream Query Results" on
page 96-15.

Configuring Query Timeout at the Query Level
You can set the maximum amount of time that TopLink waits for results from a query.
This forces a hung or lengthy query to abort after the specified time has elapsed.
TopLink throws a DatabaseException after the timeout interval.

To specify a timeout interval on a per-query basis, use DatabaseQuery method
setQueryTimeout and pass the timeout interval as an integer representing the
number of seconds before the timeout interval should occur, as Example 94–19 shows.

Example 94–19 DatabaseQuery Timeout

// Create the appropriate query and set timeout limits
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.setQueryTimeout(2);
try{

Vector employees = (Vector)session.executeQuery(query);
}
catch (DatabaseException ex) {

// timeout occurs
}

To specify a timeout interval for all queries on a particular object type, configure a
query timeout interval at the descriptor level (see "Configuring Query Timeout at the
Descriptor Level" on page 25-26).

Using Batch Reading
Batch reading propagates query selection criteria through an object's relationship
attribute mappings. You can also nest batch read operations down through complex
object graphs. This significantly reduces the number of required SQL select statements
and improves database access efficiency.

Consider the following guidelines when you implement batch reading:

■ Use batch reading for processes that read in objects and all their related objects.

■ Do not enable batch reading for both sides of a bidirectional relationship.

Using DatabaseQuery Queries

Using Basic Query API 94-11

■ Avoid nested batch read operations, because they result in multiple joins on the
database, slowing query execution.

For more information, see "Reading Case 2: Batch Reading Objects" on page 11-23.

For example, in reading n employees and their related projects, TopLink may require n
+ 1 select operations. All employees are read at once, but the projects of each are read
individually. With batch reading, all related projects can also be read with one select
operation by using the original selection criteria, for a total of only two select
operations.

To implement batch reading, use one of the following methods:

■ To add the batch read attribute to a query, use the
query.addBatchReadAttribute(Expression anExpression) API.

For example:

…
ReadAllQuery raq = new ReadAllQuery(Trade.class);
ExpressionBuilder tradeBuilder = raq.getBuilder();
…
Expression batchReadProduct = tradeBuilder.get("product");
readAllQuery.addBatchReadAttribute(batchReadProduct);
Expression batchReadPricingDetails = batchReadProduct.get("pricingDetails");
readAllQuery.addBatchReadAttribute(batchReadPricingDetails);
…

■ Add batch reading at the mapping level for a descriptor. Use either TopLink
Workbench or a descriptor amendment method to add the
setUsesBatchReading API on the descriptor's relationship mappings.

For example:

public static void amendTradeDescriptor(Descriptor theDescriptor) {
OneToOneMapping productOneToOneMapping =
theDescriptor.getMappingForAttributeName("product");

productOneToOneMapping.setUsesBatchReading(true);
}

You can combine batch reading and indirection to provide controlled reading of object
attributes. For example, if you have one-to-one back pointer relationship attributes,
you can defer back pointer instantiation until the end of the query, when all parent
and owning objects are instantiated. This prevents unnecessary database access and
optimizes TopLink cache use.

Using Join Reading
Use join reading to configure a query for a class to return the data to build the
instances of that class and its related objects. For more information, see "Join Reading
and Object-Level Read Queries" on page 93-12.

To add one or more joined attributes to a query, you can use either TopLink
Workbench or Java.

Using TopLink Workbench To add one or more joined attributes to a query using TopLink
Workbench, configure joined attributes when you define named queries (see
"Configuring Named Query Optimization" on page 25-16) or Java. You cannot use
TopLink Workbench to create an ObjectLevelReadQuery with a join expression on
a one-to-many mapped attribute: you must use Java.

Using DatabaseQuery Queries

94-12 Oracle TopLink Developer’s Guide

Using Java You can use ObjectLevelReadQuery API to add joined attributes for
one-to-one and one-to-many relationships.

Use the ObjectLevelReadQuery method addJoinedAttribute(Expression
attributeExpression) to add join expressions to the query. Using this method,
you can add multiple joined attributes for one-to-one and one-to-many relationships,
including nested joins. The source and target can be the same class type. You cannot
use the ObjectLevelReadQuery method addJoinedAttribute with a join
expression on a many-to-many mapped attribute.

■ Use the ObjectLevelReadQuery method addJoinedAttribute with a join
expression on a one-to-one mapped attribute to get the class of the
ObjectLevelReadQuery and the target of the one-to-one mapped attribute of
that class with a single database hit.

■ Use the ObjectLevelReadQuery method addJoinedAttribute with a join
expression on a one-to-many mapped attribute to get the class of the
ObjectLevelReadQuery and the target collection of the one-to-many mapped
attribute of that class with a single database hit.

Example 94–20 is based on the TopLink ThreeTierEmployee example project. It
shows a ReadAllQuery configured to join-read multiple attributes. This query
produces the SQL that Example 94–21 shows.

Example 94–20 Join Reading Multiple Attributes

ReadAllQuery query = new ReadAllQuery(Employee.class);

Expression managedEmployees = query.getExpressionBuilder().anyOfAllowingNone(
"managedEmployees"

);
query.addJoinedAttribute(managedEmployees);
query.addJoinedAttribute(managedEmployees.get("address"));
query.addJoinedAttribute(managedEmployees.anyOf("phoneNumbers"));

Vector employees = (Vector)getSession().executeQuery(query);

Example 94–21 SQL for Multiple Attribute Join Reading

SELECT DISTINCT
t2.VERSION, t3.EMP_ID, t2.GENDER, t3.SALARY, t2.EMP_ID, t2.F_NAME, t2.L_NAME,
t2.MANAGER_ID, t2.ADDR_ID, t2.END_DATE, t2.START_DATE, t2.END_TIME,
t2.START_TIME, t0.VERSION, t1.EMP_ID, t0.GENDER, t1.SALARY, t0.EMP_ID,
t0.F_NAME, t0.L_NAME, t0.MANAGER_ID, t0.ADDR_ID, t0.END_DATE, t0.START_DATE,
t0.END_TIME, t0.START_TIME

FROM
SALARY t3, EMPLOYEE t2, SALARY t1, EMPLOYEE t0

WHERE
((t3.EMP_ID = t2.EMP_ID) AND
((t0.MANAGER_ID (+) = t2.EMP_ID) AND
(t1.EMP_ID (+) = t0.EMP_ID)))

Use the ObjectLevelReadQuery method
addJoinedAttribute(java.lang.String attributeName) to configure the
query to join-read a single attribute, as Example 94–22 shows.

Example 94–22 Join Reading a Single Attribute

ReadAllQuery query = new ReadAllQuery(Employee.class);
query.addJoinedAttribute("address");
Vector employees = (Vector)getSession().executeQuery(query);

Using DatabaseQuery Queries

Using Basic Query API 94-13

Creating, Updating, and Deleting Objects With a DatabaseQuery
This section describes the following:

■ Write Query Overview

■ UpdateAll Queries

■ Noncascading Write Queries

■ Disabling the Identity Map Cache During a Write Query

Write Query Overview
To execute a write query, use a WriteObjectQuery instance instead of using the
writeObject method of the session. Likewise, substitute DeleteObjectQuery,
UpdateObjectQuery, and InsertObjectQuery objects for their respective
Session methods.

Example 94–23 Using a WriteObjectQuery

WriteObjectQuery writeQuery = new WriteObjectQuery();
writeQuery.setObject(domainObject);
session.executeQuery(writeQuery);

Example 94–24 Using InsertObjectQuery, UpdateObjectQuery, and DeleteObjectQuery

InsertObjectQuery insertQuery= new InsertObjectQuery();
insertQuery.setObject(domainObject);
session.executeQuery(insertQuery);

/* When you use UpdateObjectQuery without a unit of work, UpdateObjectQuery writes
all direct attributes to the database */
UpdateObjectQuery updateQuery= new UpdateObjectQuery();
updateQuery.setObject(domainObject2);
session.executeQuery(updateQuery);

DeleteObjectQuery deleteQuery = new DeleteObjectQuery();
deleteQuery.setObject(domainObject2);
session.executeQuery(deleteQuery);

UpdateAll Queries
Use an UpdateAllQuery to update a large number of objects at once. With this
query, you can update a large number of objects with a single SQL statement, instead
of reading the objects into memory and updating them individually. Example 94–25
shows an UpdateAllQuery to give all full-time employees a raise.

Example 94–25 Using UpdateAllQuery

// Give all full time employees a 10% raise
UpdateAllQuery updateQuery = new UpdateAllQuery(Employee.class);
ExpressionBuilder employee = updateQuery.getExpressionBuilder();
updateQuery.setSelectionCriteria(eb.get("status").equal("FULL_TIME"));
updateQuery.addUpdateExpression(employee.get("salary"),

ExpressionMath.multiply(employee.get("salary"), new Float(1.10)));

Since multiple tables cannot be updated from the same SQL statement, the
UpdateAllQuery does not support objects that span multiple tables, or inheritance.
Additionally, the UpdateAllQuery must be executed from its own transaction–the

Using DatabaseQuery Queries

94-14 Oracle TopLink Developer’s Guide

unit of work must contain only the query. Use the UnitOfWork method
executeQuery.

In a non-JTA transaction, TopLink provides support for the unit of work and session
execute; in a JTA transaction, only the unit of work is supported–there is no support
for the session execute. For more information on transactions, see Chapter 97,
"Understanding TopLink Transactions".

UpdateAllQuery takes the cache into consideration and ensures that the cache is
kept up to date. You can configure the UpdateAllQuery to invalidate cache (see
"Cache Invalidation" on page 87-8) by setting the cache usage to INVALIDATE_CACHE
(default), or to not use the cache by specifying NO_CACHE option. You can manipulate
these settings through the setCacheUsage method. You can only update the cache
for expressions that can conform. For more information on cache, see Chapter 87,
"Understanding the Cache".

UpdateAll queries only support unidirectional one-to-one relationships; there is a full
support for direct, and a partial support for aggregate mappings (see Part IX,
"Mappings").

These queries do not support foreign key updates, therefore you cannot use these
queries to set foreign key fields to null.

You can use an UpdateAll query with optimistic locking (see "Understanding
Descriptors and Locking" on page 23-18) at the level of updating a row in a
database–there should be no updates in the cache. we will update the locking field on
the database. There is also support for version and timestamp locking, as well as
indirect support for field locking.

Noncascading Write Queries
When you execute a write query, it writes both the object and its privately owned
parts to the database by default. To build write queries that do not update privately
owned parts, include the dontCascadeParts method in your query definition.

Use this method to do the following:

■ Increase performance when you know that only the object’s direct attributes have
changed.

■ Resolve referential integrity dependencies when you write large groups of new,
independent objects.

Example 94–26 Performing a Noncascading Write Query

// the Employee is an existing employee read from the database
Employee.setFirstName("Bob");
UpdateObjectQuery query = new UpdateObjectQuery();
query.setObject(Employee);
query.dontCascadeParts();
session.executeQuery(query);

Note: You can set an attribute within an aggregate only, but not an
entire aggregate.

Note: Because the unit of work resolves referential integrity
internally, this method is not required if you use the unit of work to
write to the database.

Using DatabaseQuery Queries

Using Basic Query API 94-15

Disabling the Identity Map Cache During a Write Query
When you write objects to the database, TopLink copies them to the session cache by
default. To disable this within a query, call the dontMaintainCache method within
the query. This improves query performance when you insert objects into the
database, but must be used only on objects that will not be required later by the
application.

Example 94–27 Disabling the Identity Map Cache During a Write Query

Example 94–27 reads all the objects from a flat file and writes new copies of the objects
into a table.

// Reads objects from an employee file and writes them to the employee table
void createEmployeeTable(String filename, Session session) {
 Iterator iterator;
 Employee employee;
 // Read the employee data file
 List employees = Employee.parseFromFile(filename);
 Iterator iterator = employees.iterator();
 while (iterator.hasNext()) {
 Employee employee = (Employee) iterator.next();
 InsertObjectQuery query = new InsertObjectQuery();
 query.setObject(employee);
 query.dontMaintainCache();
 session.executeQuery(query);

}
}

Reading Data With a DatabaseQuery
This section describes the following:

■ Using a DataReadQuery

■ Using a DirectReadQuery

■ Using a ValueReadQuery

Using a DataReadQuery
You can use a DataReadQuery to execute a selecting SQL string that returns a
Collection of the DatabaseRows representing the result set, as Example 94–28
shows.

Example 94–28 Using a DataReadQuery

DataReadQuery dataReadQuery = new DataReadQuery();
dataReadQuery.setSQLStatement(sqlStatement);

// queryResults is a Vector of DatabaseRow objects
Vector queryResults = (Vector)session.executeQuery(dataReadQuery);

Note: Disable the identity map only when object identity is
unimportant in subsequent operations.

Using DatabaseQuery Queries

94-16 Oracle TopLink Developer’s Guide

Using a DirectReadQuery
You can use a DirectReadQuery to read a single column of data (that is, one field)
that returns a Collection of the DatabaseRows representing the result set, as
Example 94–29 shows.

Example 94–29 Using a DirectReadQuery

DirectReadQuery directReadQuery = new DirectReadQuery();
directReadQuery.setSQLStatement(sqlStatement);

// queryResults is a Vector of DatabaseRow objects
Vector queryResults = (Vector)session.executeQuery(directReadQuery);

Using a ValueReadQuery
You can use a ValueReadQuery to read a single data value (that is, one field). A
single data value is returned, or null if no rows are returned, as Example 94–30 shows.

Example 94–30 Using a ValueReadQuery

ValueReadQuery valueReadQuery = new ValueReadQuery();
valueReadQuery.setSQLString("SELECT DISTINCT CURRENT TIMESTAMP FROM SYSTABLES");

// result is a single Object value
Object result = session.executeQuery(valueReadQuery);

Updating Data With a DatabaseQuery
You can use a DataModifyQuery to execute a nonselecting SQL statement (directly
or as an SQLCall), as Example 94–31 shows. This is equivalent to Session method
executeNonSelectingCall (see "Using an SQLCall" on page 94-19).

Example 94–31 Using a DataModifyQuery

DataModifyQuery query = new DataModifyQuery(new SQLCall("Delete from Employee"));
session.executeQuery(query);

Specifying a Custom SQL String in a DatabaseQuery
All DatabaseQuery objects provide a setSQLString method that you can use to
define a custom SQL string.

For more information about using custom SQL in queries, see "Using SQL Calls" on
page 94-19.

Example 94–32 uses SQL to read all employee IDs.

Example 94–32 A Direct Read Query with SQL

DirectReadQuery query = new DirectReadQuery();
query.setSQLString("SELECT EMP_ID FROM EMPLOYEE");
Vector ids = (Vector) session.executeQuery(query);

WARNING: Allowing an unverified SQL string to be passed into
methods (for example: setSQLString method) makes your
application vulnerable to SQL injection attacks.

Using DatabaseQuery Queries

Using Basic Query API 94-17

Example 94–33 uses SQL to switch to a different database.

Example 94–33 A Data Modify Query with SQL

DataModifyQuery query = new DataModifyQuery();
query.setSQLString("USE SALESDATABASE");
session.executeQuery(query);

Specifying a Custom EJB QL String in a DatabaseQuery
All DatabaseQuery objects provide a setEJBQLString method that you can use to
specify a custom EJB QL string.

For more information about using custom EJB QL in queries, see "Using EJB QL Calls"
on page 94-24.

Provide both a reference class and a SELECT clause, and execute the query in the usual
manner.

Example 94–34 EJB QL

ReadAllQuery query = new ReadAllQuery(EmployeeBean.class);
query.setEJBQLString("SELECT OBJECT(emp) FROM EmployeeBean emp");
…
Vector returnedObjects = (Vector)session.executeQuery(query);

Example 94–35 defines the query similarly to Example 94–34, but creates, fills, and
passes a vector of arguments to the executeQuery method.

Example 94–35 A Simple ReadAllQuery Using EJB QL and Passing Arguments

// First define the query
ReadAllQuery query = new ReadAllQuery(EmployeeBean.class);
query.setEJBQLString("SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.firstName = ?1");
query.addArgument("1", String.class);
...
// Next define the arguments
Vector arguments = new Vector();
arguments.add("Bob");
...
// Finally, execute the query passing in the arguments
Vector returnedObjects = (Vector)session.executeQuery(query, arguments);

Using Parameterized SQL and Statement Caching in a DatabaseQuery
In TopLink, parameterized SQL is enabled by default. Example 94–36 demonstrates
how to disable the parameterized SQL on individual queries:

Example 94–36 A Simple ReadObjectQuery without Parameterized SQL

ReadObjectQuery query = new ReadObjectQuery(Employee.class);
query.setShouldBindAllParameters(false);

To turn the parameterised SQL back on and enable statement caching, set the flags to
true, as Example 94–37 shows. This causes TopLink to use a prepared statement,

WARNING: Allowing an unverified SQL string to be passed into
methods (for example: setSQLString method) makes your
application vulnerable to SQL injection attacks.

Using Named Queries

94-18 Oracle TopLink Developer’s Guide

binding all SQL parameters and caching the prepared statement. When you reexecute
this query, you avoid the SQL preparation, which improves performance.

Example 94–37

ReadObjectQuery query = new ReadObjectQuery(Employee.class);
query.setShouldBindAllParameters(true);
query.setShouldCacheStatement(true);

Alternatively, you can configure parameterized SQL and binding at the Login level
for all queries (see "Configuring JDBC Options" on page 83-9).

For more information about using parameterized SQL and binding for data access
optimization, see "Parameterized SQL (Binding) and Prepared Statement Caching" on
page 11-15.

Using Named Queries
Named queries improve application performance because they are prepared once and
they (and all their associated supporting objects) can be efficiently reused thereafter
making them well suited for frequently executed operations.

You can configure named queries at the session (see "Configuring Named Queries at
the Session Level" on page 74-21) or descriptor (see "Configuring Named Queries at
the Descriptor Level" on page 25-10) level.

For a session-level named query, you can execute the query using any of the following
Session API calls:

■ executeQuery(String queryName)

■ executeQuery(String queryName, arg1)

■ executeQuery(String queryName, arg1, arg2)

■ executeQuery(String queryName, arg1, arg2, arg3)

■ executeQuery(String queryName, Vector args)

Example 94–38 Executing a Session-Level Named Query

Vector args = new Vector();
args.add("Sarah");
Employee sarah = (Employee)session.executeQuery(

"employeeReadByFirstName",
args

);

For a descriptor-level named query, you can execute the query using any of the
following Session API calls, as Example 94–39 shows:

■ executeQuery(String queryName, Class domainClass)

■ executeQuery(String queryName, Class domainClass, arg1)

■ executeQuery(String queryName, Class domainClass, arg1,
arg2)

Note: For applications using a J2EE data source or external
connection pool, you must configure statement caching in the J2EE
server’s data source–not in TopLink.

Using SQL Calls

Using Basic Query API 94-19

■ executeQuery(String queryName, Class domainClass, arg1,
arg2, arg3)

■ executeQuery(String queryName, Class domainClass, Vector
args)

Example 94–39 Executing a Descriptor Level Named Query

Vector args = new Vector();
args.add("Sarah");
Employee sarah = (Employee)session.executeQuery(

"ReadByFirstName",
Employee.class,
args

);

For more information, see "Named Queries" on page 93-16

Using SQL Calls
The TopLink expression framework enables you to define complex queries at the
object level. If your application requires a more complex query or one that accesses
data or stored procedures directly, you can specify a custom SQL string in an SQL
Call object and provide that Call object to any query.

You can also specify an SQL string directly on DatabaseQuery. For more
information, see "Specifying a Custom SQL String in a DatabaseQuery" on page 94-16.

When using SQL calls, you can use a ReturningPolicy to control whether or not
TopLink writes a parameter out or retrieves a value generated by the database. For
more information, see "Configuring Returning Policy" on page 25-67.

This section describes the following:

■ Using an SQLCall

■ Using a StoredProcedureCall

■ Using a StoredFunctionCall

Using an SQLCall
You can provide an SQLCall object to any query instead of an expression, but the
SQL string contained in the SQLCall must return all data required to build an
instance of the queried class.

The SQL string can be a complex SQL query, a stored procedure call, or a stored
function call. You can specify input, output, and input/output parameters.

You can invoke an SQLCall through a session query method (as Example 94–40
illustrates) or through a DatabaseQuery.

Example 94–40 Session Read Query With Custom SQL

List result = session.executeSelectingCall(
new SQLCall("SELECT * FROM EMPLOYEE WHERE EMP_ID = 44"));

Using SQL Calls

94-20 Oracle TopLink Developer’s Guide

TopLink assumes that a token in the custom SQL string of an SQLCall is a parameter
if it is prefixed with one or more number signs (#). You can bind values to these
parameters using query API, as the following sections describe:

■ Specifying a SQLCall Input Parameter

■ Specifying a SQLCall Output Parameter

■ Specifying a SQLCall Input / Output Parameter

Specifying a SQLCall Input Parameter
In Example 94–41, you specify last_name as an input parameter by prefixing its
name with one number sign (#). Example 94–42 shows how to bind a value to this
input parameter when you execute the query.

Example 94–41 Specifying an SQLCall with an Input Parameter Using the # Prefix

SQLCall sqlCall = new SQLCall(
"INSERT INTO EMPLOYEE (L_NAME) VALUES (#last_name)");

Example 94–42 Executing an SQLCall with an Input Parameter

DataModifyQuery query = new DataModifyQuery();
query.setCall(sqlCall);
query.addArgument("last_name"); // input

Vector arguments = new Vector();
arguments.add("MacDonald");
session.executeQuery(query, arguments);

Specifying a SQLCall Output Parameter
In Example 94–43, you specify employee_id as an output parameter by prefixing its
name with three number signs (###). You specify the type of the output parameter
with SQLCall method setCustomSQLArgumentType. You continue to specify
last_name as an input parameter by prefixing its name with a number sign (#).

Example 94–43 Specifying a SQLCall with an Output Parameter Using the ### Prefix

SQLCall sqlCall = new SQLCall("begin;
INSERT INTO EMPLOYEE (L_NAME) VALUES (#L_NAME) RETURNING EMP_ID INTO ###employee_id;
end");

sqlCall.setCustomSQLArgumentType("employee_id", Integer.class);

Example 94–44 Executing a SQLCall with an Output Parameter

ValueReadQuery query = new ValueReadQuery();
query.setCall(sqlCall);
query.addArgument("last_name"); // input

Vector args = new Vector();
args.add("MacDonald");

Number employeeID = (Number)getSession().executeQuery(query, args);

WARNING: Allowing an unverified SQL string to be passed into
methods makes your application vulnerable to SQL injection
attacks.

Using SQL Calls

Using Basic Query API 94-21

You can also obtain results for an output parameter declared to be of type CURSOR.

Specifying a SQLCall Input / Output Parameter
In Example 94–45, you specify in_out as an input and output parameter by prefixing
its name with four number signs (####). The type of the input value determines the
type of the output value. In this example, a String ("MacDonald") is passed in and
the output value (for EMP_ID) is returned as a String.

Example 94–45 Specifying an Input and Output Parameter Using the #### Prefix

SQLCall sqlCall = new SQLCall(
"INSERT INTO EMPLOYEE (L_NAME) VALUES (####in_out) RETURNING EMP_ID INTO ####in_out");

Example 94–46 Executing a SQLCall with an Input and Output Parameter

ValueReadQuery query = new ValueReadQuery();
query.setCall(sqlCall);
query.addArgument("in_out"); // input and outpu

Vector args = new Vector();
args.add("MacDonald");

Number employeeID = (Numbere)getSession().executeQuery(query, args);

Using a StoredProcedureCall
You can provide a StoredProcedureCall object to any query instead of an
expression or a SQL string, but the procedure must return all data required to build an
instance of the class you query.

Example 94–47 A Read-All Query with a Stored Procedure

ReadAllQuery readAllQuery = new ReadAllQuery();
call = new StoredProcedureCall();
call.setProcedureName("Read_All_Employees");
call.useNamedCursorOutputAsResultSet("RESULT_SET");
readAllQuery.setCall(call);
Vector employees = (Vector) session.executeQuery(readAllQuery);

Using a StoredProcedureCall, you can access the following:

■ Specifying an Input Parameter

■ Specifying an Output Parameter

■ Specifying an Input / Output Parameter

■ Using an Output Parameter Event

Note: You no longer need to use DatabaseQuery method
bindAllParameters when using a StoredProcedureCall with
OUT or INOUT parameters. However, you should always specify the
Java type for all OUT and INOUT parameters. If you do not, be aware
of the fact that they default to type String.

Using SQL Calls

94-22 Oracle TopLink Developer’s Guide

Specifying an Input Parameter
In Example 94–48, you specify the parameter POSTAL_CODE as an input parameter
using the StoredProcedureCall method addNamedArgument, and you can
specify the value of the argument using method addNamedArgumentValue.

Example 94–48 Stored Procedure Call with an Input Parameter

StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("CHECK_VALID_POSTAL_CODE");
call.addNamedArgument("POSTAL_CODE");
call.addNamedArgumentValue("POSTAL_CODE", "L5J1H5");
call.addNamedOutputArgument(

"IS_VALID", // procedure parameter name
"IS_VALID", // out argument field name
Integer.class // Java type corresponding to type returned by procedure

);
ValueReadQuery query = new ValueReadQuery();
query.setCall(call);
Number isValid = (Number)session.executeQuery(query);

Specifying an Output Parameter
Output parameters enable the stored procedure to return additional information. You
can use output parameters to define a ReadObjectQuery if they return all the fields
required to build the object.

In Example 94–49, you specify the parameter IS_VALID as an output parameter using
the StoredProcedureCall method addNamedOutputArgument.

Example 94–49 Stored Procedure Call with an Output Parameter

StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("CHECK_VALID_POSTAL_CODE");
call.addNamedArgument("POSTAL_CODE");
call.addNamedOutputArgument(

"IS_VALID", // procedure parameter name
"IS_VALID", // out argument field name
Integer.class // Java type corresponding to type returned by procedure

);
ValueReadQuery query = new ValueReadQuery();
query.setCall(call);
query.addArgument("POSTAL_CODE");
Vector parameters = new Vector();
parameters.addElement("L5J1H5");
Number isValid = (Number)session.executeQuery(query,parameters);

If you are using an Oracle database, you can make use of TopLink cursor and stream
query results.

Specifying an Input / Output Parameter
In Example 94–50, you specify the parameter LENGTH as an input/output parameter
and specify the value of the argument when it is passed to the stored procedure using
the StoredProcedureCall method addNamedInOutputArgumentValue. If you

Note: Not all databases support the use of output parameters to
return data. However, because these databases generally support
returning result sets from stored procedures, they do not require
output parameters.

Using SQL Calls

Using Basic Query API 94-23

do not want to specify a value for the argument, use method
addNamedInOutputArgument.

Example 94–50 Stored Procedure Call with an Input/Output Parameter

StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("CONVERT_FEET_TO_METERs");
call.addNamedInOutputArgumentValue(

"LENGTH", // procedure parameter name
new Integer(100), // in argument value
"LENGTH", // out argument field name
Integer.class // Java type corresponding to type returned by procedure

)
ValueReadQuery query = new ValueReadQuery();
query.setCall(call);
Integer metricLength = (Integer)session.executeQuery(query);

Using an Output Parameter Event
TopLink manages output parameter events for databases that support them. For
example, if a stored procedure returns an error code that indicates that the application
wants to check for an error condition, TopLink raises the session event
OutputParametersDetected to allow the application to process the output
parameters.

Example 94–51 Stored Procedure with Reset Set and Output Parameter Error Code

StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("READ_EMPLOYEE");
call.addNamedArgument("EMP_ID");
call.addNamedOutputArgument(

"ERROR_CODE", // procedure parameter name
"ERROR_CODE", // out argument field name
Integer.class // Java type corresponding to type returned by procedure

);
call.useNamedCursorOutputAsResultSet("RESULT_SET");
ReadObjectQuery query = new ReadObjectQuery();
query.setCall(call);
query.addArgument("EMP_ID");
ErrorCodeListener listener = new ErrorCodeListener();
session.getEventManager().addListener(listener);
Vector args = new Vector();
args.addElement(new Integer(44));
Employee employee = (Employee)session.executeQuery(query, args);

Using a StoredFunctionCall
You use a StoredProcedureCall to invoke stored procedures defined on databases
that support them. You can also use a StoredFunctionCall to invoke stored
functions defined on databases that support them, that is, on databases for which the
DatabasePlatform method supportsStoredFunctions returns true.

In general, both stored procedures and stored functions let you specify input
parameters, output parameters, and input and output parameters. For more
information, see "Using a StoredProcedureCall" on page 94-21. However, stored
procedures need not return values, while stored functions always return a single
value.

The StoredFunctionCall class extends StoredProcedureCall to add one new
method: setResult. Use this method to specify the name (and alternatively both the
name and type) under which TopLink stores the return value of the stored function.

Using EJB QL Calls

94-24 Oracle TopLink Developer’s Guide

When TopLink prepares a StoredFunctionCall, it validates its SQL and throws a
ValidationException under the following circumstances:

■ If your current platform does not support stored functions. Stored functions are
supported only for Oracle.

■ If you fail to specify the return type

In Example 94–52, note that the name of the stored function is set using
StoredFunctionCall method setProcedureName.

Example 94–52 Creating a StoredFunctionCall

StoredFunctionCall functionCall = new StoredFunctionCall();
functionCall.setProcedureName("CHECK_VALID_EMPLOYEE");
functionCall.addNamedArgument("EMP_ID");
functionCall.setResult("FUNCTION_RESULT", String.class);
ValueReadQuery query = new ValueReadQuery();
query.setCall(functionCall);
query.addArgument("EMP_ID");
Vector args = new Vector();
args.addElement(new Integer(44));
String valid = (String) session.executeQuery(query, args);

Using EJB QL Calls
The TopLink expression framework lets you define complex queries at the object level.
Alternatively, you can specify a custom EJB QL string in an EJB QL Call object and
provide that Call object to any query.

You can also specify an EJB QL string directly in a DatabaseQuery. For more
information, see "Specifying a Custom EJB QL String in a DatabaseQuery" on
page 94-17.

You can provide an EJBQLCall object to any query instead of an expression or
EJB QL string, but the procedure must return all data required to build an instance of
the class you query.

You can invoke EJB QL queries through the session query methods or through a
DatabaseQuery.

Example 94–53 Session Read Query With Custom EJB QL

Vector theObjects = (Vector)aSession.readAllObjects(
EmployeeBean.class,
new EJBQLCall("SELECT OBJECT (emp) from EmployeeBean emp"));

Using EIS Interactions
For an EIS root descriptor, you can define EIS interactions to invoke methods on an
EIS.

TopLink represents EIS interactions using instances of
oracle.toplink.eis.interactions.EISInteraction. These classes
implement the Call interface and can be used wherever a Call can be used.

Table 94–1 lists the type of EIS interactions that TopLink supports.

Handling Exceptions

Using Basic Query API 94-25

You can use TopLink to define an interaction for each basic persistence operation
(insert, update, delete, read object, read all, or does exist) so that
when you query and modify your EIS-mapped objects, the TopLink runtime will use
the appropriate EIS interaction. For more information, see "Configuring Custom EIS
Interactions for Basic Persistence Operations" on page 28-6.

You can also use TopLink to define an interaction as a named query for read object
and read-all object queries. These queries are not called for basic persistence
operations; you can call these additional queries by name in your application for
special purposes. For more information, see "Creating an EIS Interaction for a Named
Query" on page 25-20.

Handling Exceptions
Most exceptions in queries are database exceptions, resulting from a failure in the
database operation (see "Database Exceptions (4002 – 4018)" on page 13-27). Write
operations can also throw an OptimisticLockException on a write, update, or
delete operation in applications that use optimistic locking. To catch these exceptions,
execute all database operations within a try-catch block:

try {
Vector employees = session.readAllObjects(Employee.class);

}
catch (DatabaseException exception) {

// handle exception
}

See Chapter 14, "TopLink Workbench Error Reference" for more information about
exceptions in a TopLink application.

Table 94–1 EIS Interactions

EIS Interaction Type Description

IndexedInteraction Defines the specification for a call to a J2C interaction that uses
indexed records. Builds the input and output records from the
arguments by position.

MappedInteraction Defines the specification for a call to a J2C interaction that uses
mapped records. Builds the input and output records from the
arguments by name.

XMLInteraction Specifies an instance of MappedInteraction that defines the
specification for a call to a J2C interaction that uses XML
records defined by the XML schema document (XSD)
associated with the EIS project (for more information, see
"Importing an XML Schema" on page 4-34).

QueryStringInteraction Specifies an instance of MappedInteraction that defines the
specification for a call to a J2C interaction that uses a query
string. Prefix arguments in the query string with a number sign
(#) character.

XQueryInteraction Specifies an instance of XMLInteraction that defines the
specification for a call to a J2C interaction that uses XQuery.
Translates the XQuery from the query arguments.

Handling Collection Query Results

94-26 Oracle TopLink Developer’s Guide

Handling Collection Query Results
TopLink provides a useCollectionClass method to all subclasses of
DataReadQuery and ReadAllQuery, that you can use to configure a query to return
results as any concrete instance of Collection or Map.

Do not confuse collection query result configuration with a mapping container policy
(see "Configuring Container Policy" on page 32-26): there is no relationship between
the two. Collection query result configuration determines how TopLink returns
multiobject results from a particular query. A mapping container policy tells TopLink
how your domain object implements a data member that contains a collection.

For example, consider a class Employee with a data member phoneNumbers. In your
implementation of Employee, the getPhoneNumbers method returns a Vector.
Using TopLink Workbench, you map the phoneNumbers data member as a
one-to-many mapping. You configure the mapping container policy so that the
mapping contains its value (many PhoneNumber objects) in a Vector. This
corresponds to your implementation of Employee.

You define a ReadAllQuery named localPhoneNumbers on the
DescriptorQueryManager of the PhoneNumber. The localPhoneNumbers query
takes one argument, the ID of an Employee object, and returns all the phone numbers
from its phoneNumbers data member whose area code is 613.

You get this query by name from the DescriptorQueryManager for PhoneNumber.
You call the useCollectionClass method on this ReadAllQuery, passing in the
ArrayList class. You execute the query, passing in the ID of an Employee. The
query returns all the PhoneNumber objects from the Employee object's
phoneNumbers data member whose area code is 613. The query returns these results
as an ArrayList.

Handling Report Query Results
 Table 94–2 lists the ReportQuery methods you can use to configure how a
ReportQuery returns its results.

For more information, see the following:

■ "Report Query" on page 93-15

■ "Report Query Results" on page 93-8

Table 94–2 Report Query Result Options

Method Query Returns Description

setShouldReturnSing
leAttribute

DatabaseRow Returns a single attribute (not wrapped in
a ReportQueryResult). Use this option
if you know that the ReportQuery
returns only one attribute.

setShouldReturnSing
leResult

ReportQueryResult Returns only the first
ReportQueryResult object (not
wrapped in a Collection or Map). Use
this option if you know that the
ReportQuery returns only one row.

setShouldReturnSing
leValue

Object Returns only a single value. Use this
option if you know that the
ReportQuery returns only one row that
contains only one attribute.

Handling Report Query Results

Using Basic Query API 94-27

■ "Reading Objects Using Report Queries" on page 94-6

■ "Configuring Named Query Attributes" on page 25-17

Handling Report Query Results

94-28 Oracle TopLink Developer’s Guide

Understanding TopLink Expressions 95-1

95
Understanding TopLink Expressions

Using the TopLink expressions framework, you can specify query search criteria based
on your domain object model. This section describes the following:

■ Understanding the Expression Framework

■ Expression Components

■ Parameterized Expressions

■ Query Keys and Expressions

■ Using Multiple Expressions

■ Data Queries and Expressions

■ Creating an Expression

■ Creating and Using a User-Defined Function

Understanding the Expression Framework
The TopLink expression framework provides methods through the following classes:

■ The Expression class provides most general functions, such as toUpperCase.

■ The ExpressionMath class supplies mathematical methods.

Example 95–1 illustrates how to use the Expression class.

Example 95–1 Using the Expression Class

expressionBuilder.get("lastName").equal("Smith");

Example 95–2 illustrates how to use the ExpressionMath class.

Example 95–2 Using the ExpressionMath Class

ExpressionMath.abs(ExpressionMath.subtract(emp.get("salary"),
emp.get("spouse").get("salary")).greaterThan(10000)

This division of functionality enables TopLink expressions to provide similar
mathematical functionality to the java.lang.Math class, but keeps both the
Expression and ExpressionMath classes from becoming unnecessarily complex.

Expressions Compared to SQL
Expressions offer the following advantages over SQL when you access a database:

■ Expressions are easier to maintain because the database is abstracted.

Expression Components

95-2 Oracle TopLink Developer’s Guide

■ Changes to descriptors or database tables do not affect the querying structures in
the application.

■ Expressions enhance readability by standardizing the Query interface so that it
looks similar to traditional Java calling conventions. For example, the Java code
required to get the street name from the Address object of the Employee class
looks like this:

emp.getAddress().getStreet().equals("Meadowlands");

The expression to get the same information is similar:

emp.get("address").get("street").equal("Meadowlands");

■ Expressions allow read queries to transparently query between two classes that
share a relationship. If these classes are stored in multiple tables in the database,
TopLink automatically generates the appropriate join statements to return
information from both tables.

■ Expressions simplify complex operations. For example, the following Java code
retrieves all employees that live on "Meadowlands" whose salary is greater than
10,000:

ExpressionBuilder emp = new ExpressionBuilder();
Expression exp = emp.get("address").get("street").equal("Meadowlands");
Vector employees = session.readAllObjects(Employee.class,
exp.and(emp.get("salary").greaterThan(10000)));

TopLink automatically generates the appropriate SQL from that code:

SELECT t0.VERSION, t0.ADDR_ID, t0.F_NAME, t0.EMP_ID, t0.L_NAME, t0.MANAGER_ID,
t0.END_DATE, t0.START_DATE, t0.GENDER, t0.START_TIME, t0.END_TIME,t0.SALARY
FROM EMPLOYEE t0, ADDRESS t1 WHERE (((t1.STREET = 'Meadowlands')AND (t0.SALARY
> 10000)) AND (t1.ADDRESS_ID = t0.ADDR_ID))

Expression Components
A simple expression usually consists of the following three parts:

1. The attribute, which represents a mapped attribute or query key of the persistent
class

2. The operator, which is an expression method that implements boolean logic, such
as GreaterThan, Equal, or Like

3. The constant or comparison, which refers to the value used to select the object

In the following code fragment:

expressionBuilder.get("lastName").equal("Smith");

■ The attribute is lastName.

■ The operator is equal.

■ The constant is the string "Smith".

The expressionBuilder substitutes for the object or objects to be read from the
database. In this example, expressionBuilder represents employees.

You can use the following components when constructing an Expression:

■ Boolean Logic

■ Database Functions and Operators

Expression Components

Understanding TopLink Expressions 95-3

■ Mathematical Functions

■ XMLType Functions

■ Platform and User-Defined Functions

■ Expressions for One-to-One and Aggregate Object Relationships

■ Expressions for Joining and Complex Relationships

Boolean Logic
Expressions use standard boolean operators, such as AND, OR, and NOT, and you can
combine multiple expressions to form more complex expressions. Example 95–3
illustrates a code fragment that queries for projects managed by a selected person, and
that have a budget greater than or equal to 1,000,000.

Example 95–3 Using Boolean Logic in an Expression

ExpressionBuilder project = new ExpressionBuilder();
Expression hasRightLeader, bigBudget, complex;
Employee selectedEmp = someWindow.getSelectedEmployee();
hasRightLeader = project.get("teamLeader").equal(selectedEmp);
bigBudget = project.get("budget").greaterThanEqual(1000000);
complex = hasRightLeader.and(bigBudget);
Vector projects = session.readAllObjects(Project.class, complex);

Database Functions and Operators

Functions
TopLink expressions support a variety of database functions, including, but not
limited to, the following:

■ toUpperCase

■ toLowerCase

■ toDate

■ decode

■ locate

■ monthsBetween

■ nextDay

■ replace

■ reverse

■ substring

■ translate

Database functions let you define more flexible queries. You can use these functions in
either a report query items using a SELECT clause, or with comparisons in a query’s
selection criteria using a WHERE clause. Example 95–4 illustrates a code fragment that
matches several last names, including "SMART", "Smith", and "Smothers":

Note: Some functions may be database platform specific.

Expression Components

95-4 Oracle TopLink Developer’s Guide

Example 95–4 Using a Database Function Supported by the Expression API

emp.get("lastName").toUpperCase().like("SM%")

You access most functions using Expression methods such as toUpperCase.

Some functions have very specific purpose: you can use ascending and
descending functions only within an ordering expression to place the result in
ascending or descending order, as Example 95–5 shows:

Example 95–5 Using an Ordering Database Function

readAllQuery.addOrderBy(expBuilder.get("address").get("city").ascending())

You can use aggregate functions, such as average, minimum, maximum, sum and so
forth, with ReportQuery (see "Report Query" on page 93-15).

Operators
Operators are relation operations that compare two values. TopLink expressions
support the following operators:

■ like

■ notLike

■ equal

■ notEqual

■ lessThan

■ lessThanEqual

■ equalsIgnoreCase

■ greaterThan

■ greaterThanEqual

■ in

■ notIn

■ between

■ notBetween

Example 95–4 demonstrates the use of the like operator.

Mathematical Functions
Mathematical functions are available through the ExpressionMath class.
Mathematical function support in expressions is similar to the support provided by
the Java class java.lang.Math. Example 95–6 illustrates using the abs and
subtract methods.

Example 95–6 Using Mathematical Functions in an Expression

ExpressionMath.abs(ExpressionMath.subtract(emp.get("salary"),emp.get("spouse")
.get("salary")).greaterThan(10000)

Expression Components

Understanding TopLink Expressions 95-5

XMLType Functions
You can use the following operators when constructing queries against data mapped
to an Oracle Database XMLType column:

■ extract: Takes an XPath string and returns an XMLType which corresponds to
the part of the original document that matches the XPath.

■ extractValue: Takes an Xpath string and returns either a numerical or string
value based on the contents of the node pointed to by the XPath.

■ existsNode: Takes an Xpath expression and returns the number of nodes that
match the Xpath.

■ getStringVal: Gets the string representation of an XMLType object.

■ getNumberVal: Gets the numerical representation of an XMLType object.

■ isFragment: Evaluates to 0 if the XML is a well formed document. Evaluates to 1
if the document is a fragment.

Example 95–7 illustrates how to use the extract operator in a query:

Example 95–7 Using the XMLType Extract Operator

Expression criteria =
builder.get("resume").extract("//education/degree/text()").getStringVal().equal("BCS");
Vector employees = session.readAllObject(Employee.class, criteria);

Platform and User-Defined Functions
You can use the Expression method getFunction to access database functions that
TopLink does not support directly. Example 95–8 illustrates how to access a database
function named VacationCredit from within an expression, even though there is no
support for such a function in the Expression API.

Example 95–8 Using a Database Function Not Supported by the Expression API

emp.get("lastName").getFunction("VacationCredit").greaterThan(42)

This expression produces the following SQL:

SELECT . . . WHERE VacationCredit(EMP.LASTNAME) > 42

The Expression API includes additional forms of the getFunction method that
allow you to specify arguments. For more information, see Oracle TopLink API
Reference.

You can also access a custom function that you create. For more information on
creating a custom function in TopLink, see "Creating and Using a User-Defined
Function" on page 95-16.

Expressions for One-to-One and Aggregate Object Relationships
Expressions can include an attribute that has a one-to-one relationship with another
persistent class. A one-to-one relationship translates naturally into a SQL join that
returns a single row.

Example 95–9 illustrates a code fragment that accesses fields from an employee’s
address.

Expression Components

95-6 Oracle TopLink Developer’s Guide

Example 95–9 Using an Expression with a One-to-One Relationship

emp.get("address").get("country").like("S%")

Example 95–9 corresponds to joining the EMPLOYEE table to the ADDRESS table,
based on the address foreign key, and checking for the country name.

You can nest these relationships infinitely, so it is possible to ask for complex
information as follows:

project.get("teamLeader").get("manager").get("manager").get("address").get("street")

Expressions for Joining and Complex Relationships
You can query against complex relationships, such as one-to-many, many-to-many,
direct collection, and aggregate collection relationships. Expressions for these types of
relationships are more complex to build, because the relationships do not map directly
to joins that yield a single row per object.

This section describes the following:

■ Understanding Joins

■ Using TopLink Expression API For Joins

Understanding Joins
A join is a relational database query that combines rows from two or more tables.
Relational databases perform a join whenever multiple tables appear in the query's
FROM clause. The query's select list can select any columns from any of these tables.

An inner join (sometimes called a "simple join") is a join of two or more tables that
returns only those rows that satisfy the join condition.

An outer join extends the result of an inner join. An outer join returns all rows that
satisfy the join condition and also returns some or all of those rows from one table for
which no rows from the other satisfy the join condition. Outer joins can be categorized
as left or right:

■ A query that performs a left outer join of tables A and B returns all rows from A.
For all rows in A that have no matching rows in B, the database returns null for
any select list expressions containing columns of B.

■ A query that performs a right outer join of tables A and B returns all rows from B.
For all rows in B that have no matching rows in A, the database returns null for
any select list expressions containing columns of A.

When you query with a join expression, TopLink can use joins to check values from
other objects or other tables that represent parts of the same object. Although this
works well under most circumstances, it can cause problems when you query against
a one-to-one relationship, in which one side of the relationship is not present.

For example, Employee objects may have an Address object, but if the Address is
unknown, it is null at the object level and has a null foreign key at the database level.
When you attempt a read that traverses the relationship, missing objects cause the
query to return unexpected results. Consider the following expression:

(emp.get("firstName").equal("Steve")).or(emp.get("address"). get("city").equal("Ottawa"))

In this case, employees with no address do not appear in the result set, regardless of
their first name. Although not obvious at the object level, this behavior is fundamental
to the nature of relational databases.

Expression Components

Understanding TopLink Expressions 95-7

Outer joins rectify this problem in the databases that support them. In this example,
the use of an outer join provides the expected result: all employees named Steve
appear in the result set, even if their address is unknown.

To implement an outer join, use Expression method getAllowingNull, rather
than get, and Expression method anyOfAllowingNone, rather than anyOf.

For example:

(emp.get("firstName").equal("Steve")).or(emp.getAllowingNull
("address").get("city").equal("Ottawa"))

Support and syntax for outer joins vary widely between databases and database
drivers. TopLink supports outer joins for Oracle databases, IBM DB2, SQL Anywhere,
Microsoft Access, Microsoft SQL Server, Sybase SQL Server, and the JDBC outer join
syntax.

Using TopLink Expression API For Joins
You can use joins anywhere expressions are used, including: selection-criteria,
ordering (see "Specifying Read Ordering" on page 94-9), report queries (see "Report
Query" on page 93-15), partial objects (see "Partial Object Queries" on page 93-11),
one-to-one relational mappings (see "Configuring Joining at the Mapping Level" on
page 37-1), and join reading (see "Join Reading and Object-Level Read Queries" on
page 93-12).

Use the expression API shown in Table 95–1 to configure inner and outer join
expressions.

To query across a one-to-many or many-to-many relationship, use the anyOf
operation. As its name suggests, this operation supports queries that return all items
on the "many" side of the relationship that satisfy the query criteria.

Example 95–10 illustrates an expression that returns employees who manage at least
one employee (through a one-to-many relationship) with a salary less than $10,000.

Example 95–10 Using an Expression with a One-to-Many Relationship

emp.anyOf("managedEmployees").get("salary").lessThan(10000);

Example 95–11 illustrates how to query across a many-to-many relationship using a
similar strategy:

Example 95–11 Using an Expression with a Many-to-Many Relationship

emp.anyOf("projects").equal(someProject)

TopLink translates these queries into SQL that joins the relevant tables using a
DISTINCT clause to remove duplicates. TopLink translates Example 95–10 into the
following SQL:

Table 95–1 Expression API for Joins

Expression API Type of Join Type of Mapping

get inner one-to-one

getAllowingNull outer one-to-one

anyOf inner one-to-many, many-to-many

anyOfAllowingNone outer one-to-many, many-to-many

Parameterized Expressions

95-8 Oracle TopLink Developer’s Guide

SELECT DISTINCT . . . FROM EMP t1, EMP t2 WHERE
t2.MANAGER_ID = t1.EMP_ID AND t2.SALARY < 10000

You can use one-to-one and one-to-many join expressions in an
ObjectLevelReadyQuery to configure joins on a per-query basis (see "Join Reading
and Object-Level Read Queries" on page 93-12).

You can also configure joins at the mapping level (see "Configuring Joining at the
Mapping Level" on page 37-1).

Parameterized Expressions
A relationship mapping differs from a regular query because it retrieves data for many
different objects. To be able to specify these queries, supply arguments when you
execute the query. Use the getParameter and getField methods to acquire values
for the arguments.

A parameterized expression executes searches and comparisons based on variables
instead of constants. This approach lets you build expressions that retrieve
context-sensitive information. This technique is useful when you define EJB finders
(see "EJB Finders" on page 93-24).

Parameterized expressions require that the relationship mapping know how to
retrieve an object or collection of objects based on its current context. For example, a
one-to-one mapping from Employee to Address must query the database for an
address based on foreign key information from the Employee table. Each mapping
contains a query that TopLink constructs automatically based on the information
provided in the mapping. To specify expressions yourself, use the mapping
customization mechanisms.

You can use parameterized expressions to create reusable queries (see "Named
Queries" on page 93-16).

Expression Method getParameter
The Expression method getParameter returns an expression that becomes a
parameter in the query. This lets you create a query that includes user input in the
search criteria. The parameter must be either the fully qualified name of the field from
a descriptor’s row, or a generic name for the argument.

Parameters you construct this way are global to the current query, so you can send this
message to any expression object.

Example 95–12 illustrates how to use a custom query to find an employee by first
name.

Example 95–12 Using a Parameterized Expression in a Custom Query

Expression firstNameExpression;

Note: Calling anyOf once would result in a different outcome than if
you call it twice. For example, if you query for an employee with a
telephone area code of 613 and a number of 123-4599, you would use a
single anyOf and a temporary variable. If you query for an employee,
whose telephone has an area code of 613, and whose telephone has a
number of 123-4599, you would call anyOf twice.

Parameterized Expressions

Understanding TopLink Expressions 95-9

ReadObjectQuery query = new ReadObjectQuery(Employee.class);
ExpressionBuilder emp = query.getExpressionBuilder();
firstNameExpression = emp.get("firstName").equal(emp.getParameter("firstName"));
query.setSelectionCriteria(firstNameExpression);
query.addArgument("firstName");
Vector v = new Vector();
v.addElement("Sarah");
Employee e = (Employee) session.executeQuery(query, v);

Example 95–13 illustrates how to use a custom query to find all employees that live in
the same city as a given employee.

Example 95–13 Using Nested Parameterized Expressions

Expression addressExpression;
ReadObjectQuery query = new ReadObjectQuery(Employee.class);
ExpressionBuilder emp = query.getExpressionBuilder();
addressExpression =

emp.get("address").get("city").equal(
emp.getParameter("employee").get("address").get("city"));

query.setName("findByCity");
query.setSelectionCriteria(addressExpression);
query.addArgument("employee");
Vector v = new Vector();
v.addElement(employee);
Employee e = (Employee) session.executeQuery(query, v);

Example 95–14 illustrates how to obtain a simple one-to-many mapping from class
PolicyHolder to Policy using a nondefault selection criteria. The SSN field of the
POLICY table is a foreign key to the SSN field of the HOLDER table.

Example 95–14 Using a Parameterized Expression in a Mapping

OneToManyMapping mapping = new OneToManyMapping();
mapping.setAttributeName("policies");
mapping.setGetMethodName("getPolicies");
mapping.setSetMethodName("setPolicies");
mapping.setReferenceClass(Policy.class);

// Build a custom expression here rather than using the defaults
ExpressionBuilder policy = new ExpressionBuilder();
mapping.setSelectionCriteria(policy.getField("POLICY.SSN")).equal(policy.
getParameter("HOLDER.SSN")));

Expression Method getField
The Expression method getField returns an expression that represents a database
field with the given name. Use this method to construct the selection criteria for a
mapping. The argument is the fully qualified name of the required field. Because fields
are not global to the current query, you must send this method to an expression that
represents the table from which this field is derived. See also "Data Queries and
Expressions" on page 95-12.

Example 95–15 illustrates how to use the Expression method getField.

Example 95–15 Using Expression Method getParameter

ExpressionBuilder address = new ExpressionBuilder();
Expression exp = address.getField("ADDRESS.EMP_ID").equal(

Query Keys and Expressions

95-10 Oracle TopLink Developer’s Guide

address.getParameter("EMPLOYEE.EMP_ID")
);
exp = exp.and(address.getField("ADDRESS.TYPE").equal(null));

Query Keys and Expressions
A query key is a schema-independent alias for a database field name.

Query keys are supported in relational database projects only.

Query keys are generated automatically for all direct and relationship mappings. The
name of the query key is the class attribute name.

For more information on how query keys are created and modified, see "Configuring
Query Keys" on page 25-30.

Example 95–16 illustrates how to use the query key firstName for the corresponding
directly mapped Employee attribute.

Example 95–16 Using an Automatically Generated Query Key in an Expression

Vector employees = session.readAllObjects(Employee.class,
new ExpressionBuilder().get("firstName").equal("Bob"));

Example 95–17 illustrates how to use a one-to-one query key within the TopLink
expression framework.

Example 95–17 Using a One-to-One Query Key in an Expression

ExpressionBuilder employee = new ExpressionBuilder();
Vector employees = session.readAllObjects(Employee.class,
employee.get("address").get("city").equal("Ottawa"));

To access one-to-many and many-to-many query keys that define a distinct join across
a collection relationship, use Expression method anyOf.

Using Multiple Expressions
Expressions support subqueries (SQL subselects) and parallel selects. To create a
subquery, use a single expression builder. With parallel selects, use multiple
expression builders when you define a single query. This lets you specify joins for
unrelated objects at the object level.

Subselects and Subqueries
Some queries compare the results of other, contained queries (or subqueries). SQL
supports this comparison through subselects. TopLink expressions provide subqueries
to support subselects.

Subqueries lets you define complex expressions that query on aggregated values
(counts, min, max) and unrelated objects (exists, in, comparisons). To obtain a
subquery, pass an instance of a report query to any expression comparison operation,
or use the subQuery operation on an expression builder. The subquery is not required
to have the same reference class as the parent query, and it must use its own
expression builder.

You can nest subqueries, or use them in parallel. Subqueries can also make use of
custom SQL.

Using Multiple Expressions

Understanding TopLink Expressions 95-11

For expression comparison operations that accept a single value (equal,
greaterThan, lessThan), the subquery result must return a single value. For
expression comparison operations that accept a set of values (in, exists), the
subquery result must return a set of values.

Example 95–18 illustrates how to create an expression that matches all employees with
more than five managed employees.

Example 95–18 A Subquery Expression Using a Comparison and Count Operation

ExpressionBuilder emp = new ExpressionBuilder();
ExpressionBuilder managedEmp = new ExpressionBuilder();
ReportQuery subQuery = new ReportQuery(Employee.class, managedEmp);
subQuery.addCount();
subQuery.setSelectionCriteria(managedEmp.get("manager") .equal(emp));
Expression exp = emp.subQuery(subQuery).greaterThan(5);

Example 95–19 illustrates how to create an expression that matches the employee with
the highest salary in the city of Ottawa.

Example 95–19 A Subquery Expression Using a Comparison and Max Operation

ExpressionBuilder emp = new ExpressionBuilder();
ExpressionBuilder ottawaEmp = new ExpressionBuilder();
ReportQuery subQuery = new ReportQuery(Employee.class, ottawaEmp);
subQuery.addMax("salary");
subQuery.setSelectionCriteria(ottawaEmp.get("address").get("city").equal("Ottawa"));
Expression exp =
emp.get("salary").equal(subQuery).and(emp.get("address").get("city").equal("Ottawa"));

Example 95–20 illustrates how to create an expression that matches all employees that
have no projects.

Example 95–20 A Subquery Expression Using a Not Exists Operation

ExpressionBuilder emp = new ExpressionBuilder();
ExpressionBuilder proj = new ExpressionBuilder();
ReportQuery subQuery = new ReportQuery(Project.class, proj);
subQuery.addAttribute("id");
subQuery.setSelectionCriteria(proj.equal(emp.anyOf("projects"));
Expression exp = emp.notExists(subQuery);

Parallel Expressions
Parallel expressions enable you to compare unrelated objects. Parallel expressions
require multiple expression builders, but do not require the use of report queries. Each
expression must have its own expression builder, and you must use the constructor for
expression builder that takes a class as an argument. The class does not have to be
the same for the parallel expressions, and you can create multiple parallel expressions
in a single query.

Only one of the expression builders is considered the primary expression builder for
the query. This primary builder makes use of the zero argument expression
constructor, and TopLink obtains its class from the query.

Example 95–21 illustrates how to create an expression that matches all employees with
the same last name as another employee of different gender, and accounts for the
possibility that returned results could be a spouse.

Data Queries and Expressions

95-12 Oracle TopLink Developer’s Guide

Example 95–21 A Parallel Expression on Two Independent Employees

ExpressionBuilder emp = new ExpressionBuilder();
ExpressionBuilder spouse = new ExpressionBuilder(Employee.class);
Expression exp = emp.get("lastName").equal(spouse.get("lastName"))
.and(emp.get("gender").notEqual(spouse.get("gender"));

Data Queries and Expressions
You can use expressions to retrieve data rather than objects. This is a common
approach when you work with unmapped information in the database, such as foreign
keys and version fields.

Expressions that query for objects generally refer to object attributes, which may in
turn refer to other objects. Data expressions refer to tables and their fields. You can
combine data expressions and object expressions within a single query. TopLink
provides two main methods for expressions that query for data: getField and
getTable.

getField
The getField method lets you retrieve data from either an unmapped table or an
unmapped field from an object. In either case, the field must be part of a table
represented by that object’s class; otherwise, TopLink raises an exception when you
execute the query.

You can also use the getField method to retrieve the foreign key information for an
object.

Example 95–22 illustrates how to use the data expression method (operator)
getField with an object.

Example 95–22 Using getField with an Object

builder.getField("[FIELD_NAME]").greaterThan("[ARGUMENT]");

getTable
The getTable method returns an expression that represents an unmapped table in
the database. This expression provides a context from which to retrieve an unmapped
field when you use the getField method.

Example 95–23 illustrates how to combine both getField and getTable in the same
expression.

Example 95–23 Using getTable and getField Together

builder.getTable("[TABLE_NAME]").getField("[FIELD_NAME]").equal("[ARGUMENT]");

A common use for the getTable and getField methods is to retrieve information
from a link table (or reference table) that supports a many-to-many relationship.

Example 95–24 reads a many-to-many relationship that uses a link table and also
checks an additional field in the link table. This code combines an object query with a
data query, using the employee’s manager as the basis for the data query. It also
features parameterization for the project ID.

Creating an Expression

Understanding TopLink Expressions 95-13

Example 95–24 Using a Data Query Against a Link Table

ExpressionBuilder emp = new ExpressionBuilder();
Expression manager = emp.get("manager");
Expression linkTable = manager.getTable("PROJ_EMP");
Expression empToLink = emp.getField("EMPLOYEE
.EMP_ID").equal(linkTable.getField("PROJ_EMP.EMP_ID");

Expression projToLink = linkTable.getField("PROJ_EMP
.PROJ_ID").equal(emp.getParameter("PROJECT.PROJ_ID"));

Expression extra = linkTable.getField("PROJ_EMP.TYPE").equal("W");
query.setSelectionCriteria((empToLink.and(projToLink)).and(extra));

Creating an Expression
You can create an expression using TopLink Workbench or Java code.

Use TopLink Workbench for creating basic expressions for use in named queries (see
"Using TopLink Workbench" on page 95-13).

Use Java code to create more complex expressions and to take full advantage of the
features in the expressions API (see "Using Java" on page 95-15).

Using TopLink Workbench
To create TopLink expressions for named queries, use this procedure:

1. From the Named Queries Format tab, click Edit (or double-click a query string).
The Expression Builder dialog box appears.

See "Named Queries" on page 93-16 for more information.

Figure 95–1 Expression Builder Dialog Box

Figure 95–1 numbered callouts identify the following user-interface components:

1. Expression tree

2. Arguments

Creating an Expression

95-14 Oracle TopLink Developer’s Guide

2. Click Add or Add Nested to create a new expression. TopLink assigns a sequence
number to each node and nested node.

Click Remove to remove an existing expression.

3. Select the node and use the Logical Operator list to specify the operator for the
node (AND, OR, Not AND, or Not OR).

Use this table to complete the argument fields for each expression:

Click OK. TopLink Workbench adds the expression to the Named Queries tab.

Adding Arguments
Each expression contains elements (arguments) to evaluate. Expressions using the Is
Null or Not Null operators require only a single argument.

To add new arguments, use this procedure:

1. Select an existing expression or click Add (or Add Nested) to add a new
expression to the named query.

2. For the First Argument, click Edit. The Choose Query Key dialog box appears.

Figure 95–2 Choose Query Key

Field Description

First Argument Click Edit and select the query key for the first argument. The
Choose Query Key dialog box appears.

Continue with "Adding Arguments" on page 95-14.

Operator Specify how TopLink should evaluate the expression. Valid
operators include: Equal, Not Equal, Equal Ignore Case, Greater
Than, Greater Than Equal, Less Than, Less Than Equal, Like, Not
Like, Like Ignore Case, Is Null, and Not Null.

Second Argument Specify the second argument:

■ Literal–Select the Type and enter a literal value for Value.

■ Query Key–Click Edit and select the query key.

■ Parameter–Click Add to add a new parameter and then select
from the list.

Continue with "Adding Arguments" on page 95-14

Creating an Expression

Understanding TopLink Expressions 95-15

3. Select the attribute, specify if the query allows a null value, and click OK.

Use the Allows Null and Allows None options to define an expression with an
outer join.

Check the Allows Null option to use the ExpressionBuilder method
getAllowingNull.

Check the Allows None option to use the ExpressionBuilder method
anyOfAllowingNone.

For more information, see "Using TopLink Expression API For Joins" on page 95-7.

4. Use the Operator list to specify how TopLink should evaluate the expression.

5. For the Second Argument, select Literal, Query Key, or Parameter.

■ For Literal arguments, choose the literal type (such as String or Integer) and
enter the literal value.

■ For Query Key arguments, click Edit. The Choose Query Key dialog box
appears (see step 3 and Figure 95–2 on page 95-14).

■ For Parameter arguments, click Add to add a parameter and then use the list
to select it.

Repeat this procedure for each expression or subexpression.

Example 95–25 Sample Expression

The following expression will find employees who:

■ Have a manager with the last name Jones or have no manager, and

■ work on projects with the name Beta or project ID 4, and

■ live in Canada and have a salary of more than 25,000, or

live in the United States and have a salary of more than 37,500

AND
 1.manager(Allows Null).lastName EQUAL "Jones"
 2.OR
 2.1.projects.name LIKE "BETA"
 2.2.projects.id EQUAL "4"
 3.OR
 3.1.AND
 3.1.1.address.country EQUAL "Canada"
 3.1.2.salary GREATER THAN "25000"
 3.2.AND
 3.1.1.address.country EQUAL "United States"
 3.1.2.salary GREATER THAN "37500"

Using Java
To create an expression in Java code, use the Expression class or
ExpressionBuilder method get.

The ExpressionBuilder acts as a substitute for the objects that you query. To
construct a query, call methods on the ExpressionBuilder that correspond to the
attributes of the objects. We recommend that you name ExpressionBuilder objects
according to the type of objects against which you do a query.

Creating and Using a User-Defined Function

95-16 Oracle TopLink Developer’s Guide

Example 95–26 illustrates how to use the query key lastName to reference the field
name L_NAME.

Example 95–26 Using ExpressionBuilder to Build a Simple Expression

Expression expression = new ExpressionBuilder().get("lastName").equal("Young");

Example 95–27 illustrates how to create a complex expression by combining two
smaller expressions with a logical and operator.

Example 95–27 Combining Two Expressions with a Logical AND Operator

ExpressionBuilder emp = new ExpressionBuilder();
Expression exp1, exp2;
exp1 = emp.get("firstName").equal("Ken");
exp2 = emp.get("lastName").equal("Young");
return exp1.and(exp2);

Example 95–28 illustrates how to create an expression using the notLike operator.

Example 95–28 Using Database Function notLike in an Expression

Expression expression = new ExpressionBuilder().get("lastName").notLike("%ung");

Creating and Using a User-Defined Function
Different databases sometimes implement the same functions in different ways. For
example, an argument that specifies that data returns in ascending order might be
ASC or ASCENDING. To manage differences, TopLink recognizes functions and other
operators that vary according to the relational database.

Although most platform-specific operators exist in TopLink, if necessary, you can
create your own operators.

To create a user-defined function, use the ExpressionOperator class.

An ExpressionOperator has a selector and a Vector of strings:

■ The selector is the identifier (id) by which users refer to the function.

■ The strings are the constant strings used in printing the function. When printed,
the strings alternate with the function arguments.

You can also specify whether the operator is prefix or postfix. In a prefix operator, the
first constant string prints before the first argument; in a postfix, it prints afterwards.

Where you create a user-defined function and how you add it to the TopLink
expression framework depends on whether you want the new function available to all
database platforms or to only a specific database platform.

This section describes the following:

■ Making a User-Defined Function Available to a Specific Platform

■ Making a User-Defined Function Available to All Platforms

Note: An instance of ExpressionBuilder is specific to a particular
query. Do not attempt to build another query using an existing builder,
because it still contains information related to the first query.

Creating and Using a User-Defined Function

Understanding TopLink Expressions 95-17

Making a User-Defined Function Available to a Specific Platform
To make the function that overrides a specific operation on your own platform, use the
following procedure:

1. Create a subclass of the desired DatabasePlatform (from
oracle.toplink.platform.database or
oracle.toplink.platform.database.oracle package) that provides a
public method that calls the protected superclass method addOperator:

...
public class MyDatabasePlatform extends DatabasePlatform {

protected void initializePlatformOperators() {
super.initializePlatformOperators();
// Create user-defined function
ExpressionOperator toUpper = new ExpressionOperator();
toUpper.setSelector(ExpressionOperator.ToUpperCase);
Vector v = new Vector();
v.addElement("UPPERCASE(");
v.addElement(")");
toUpper.printAs(v);
toUpper.bePrefix();
toUpper.setNodeClass(FunctionExpression.class);

// Make it available to this platform only
addOperator(toUpper);

}
}

2. Configure your session to use your platform subclass (see "Configuring Relational
Database Platform at the Project Level" on page 20-2 or "Configuring a Relational
Database Platform at the Session Level" on page 83-1).

Making a User-Defined Function Available to All Platforms
To make the function available to all platforms, use ExpressionOperator method
addOperator as Example 95–29 shows.

Example 95–29 Adding a toUpper Function for All Platforms

ExpressionOperator toUpper = new ExpressionOperator();
toUpper.setSelector(600);
Vector v = new Vector();
v.addElement("NUPPER(");
v.addElement(")");
toUpper.printAs(v);
toUpper.bePrefix();
toUpper.setNodeClass(FunctionExpression.class);

ExpressionOperator.addOperator(toUpper);

Using a User-Defined Function
Regardless of whether you added the function for all platforms or for a specific
platform, Example 95–30 illustrates how to use the Expression method

Note: Represent the number in the setSelector method by a
constant value. Ensure that this number is greater than 500 (numbers
below 500 are reserved in TopLink).

Creating and Using a User-Defined Function

95-18 Oracle TopLink Developer’s Guide

getFunction to access the user-defined expression operator represented by a
constant with the value 600.

Example 95–30 Accessing a User-Defined Function

ReadObjectQuery query = new ReadObjectQuery(Employee.class);
ExpressionBuilder builder = query.getExpressionBuilder();
Expression functionExpression = builder.get("firstName").

getFunction(600).equal("BOB");
query.setSelectionCriteria(functionExpression);
session.executeQuery(query);

Using Advanced Query API 96-1

96
Using Advanced Query API

This section explains more advanced TopLink query API calls and techniques most
commonly used later in the development cycle, including the following:

■ Using Redirect Queries

■ Using Historical Queries

■ Using Queries With Fetch Groups

■ Querying on Interfaces

■ Querying on an Inheritance Hierarchy

■ Appending Additional Join Expressions

■ Using Queries on Variable One-to-One Mappings

■ Using Oracle Database Features

■ Using EJB Finders

■ Handling Cursor and Stream Query Results

■ Using Queries and the Cache

For more information about the available query API, see Oracle TopLink API Reference.

Using Redirect Queries
A redirect query is a named query that delegates query execution control to your
application. redirect queried allow you to define the query implementation in code as
a static method.

To perform complex operations, you can combine query redirectors with the TopLink
query framework.

Creating a Redirect Query
To perform complex operations, you can combine query redirectors with the TopLink
query framework. To create a redirector, implement the
oracle.toplink.queryframework.QueryRedirector interface. The query
mechanism executes the Object invokeQuery(DatabaseQuery query,
Record arguments, Session session) method and waits for the results.

TopLink provides one preimplemented redirector, the
MethodBasedQueryRedirector method. To use this redirector, create a static
invoke method on a class, and use the setMethodName(String) call to specify
the method to invoke.

Using Historical Queries

96-2 Oracle TopLink Developer’s Guide

Example 96–1 Redirect Query

ReadObjectQuery query = new ReadObjectQuery(Employee.class);
query.setName("findEmployeeByAnEmployee");
query.addArgument("employee");

MethodBaseQueryRedirector redirector = new
 MethodBaseQueryRedirector(QueryRedirectorTest.class, "findEmployeeByAnEmployee");
query.setRedirector(redirector);
Descriptor descriptor = getSession().getDescriptor(query.getReferenceClass());
descriptor.getQueryManager().addQuery(query.getName(), query);

Vector arguments = new Vector();
arguments.addElement(employee);
objectFromDatabase =

getSession().executeQuery("findEmployeeByAnEmployee", Employee.class, arguments);

public class QueryRedirectorTest {
public static Object findEmployeeByAnEmployee(

DatabaseQuery query,
oracle.toplink.publicinterface.DatabaseRow arguments,
oracle.toplink.sessions.Session
session) {

((ReadObjectQuery) query).setSelectionObject(arguments.get("employee"));
return session.executeQuery(query);

}
}

Using Historical Queries
To make a query time-aware, you specify an AsOfClause that TopLink appends to
the query. Use the AsOfClause class if your historical schema is based on time
stamps or the AsOfSCNClause class if your historical schema is based on database
system change numbers. You can specify an AsOfClause at the time you acquire a
historical session so that TopLink appends the same clause to all queries, or you can
specify an AsOfClause on a query-by-query basis.

Example 96–2 shows how to create a query that uses a particular AsOfClause. This
query will read all Employee objects as of the time specified by timestamp using the
appropriate history tables described by the HistoryPolicy set on the Employee
descriptor.

Example 96–2 Using a Historical Session

ReadAllQuery historicalQuery = new ReadAllQuery(Employee.class);
AsOfClause asOfClause = new AsOfClause(timestamp);
historicalQuery.setAsOfClause(asOfClause);
historicalQuery.dontMaintainCache();
Vector pastEmployees = (Vector)historicalSession.executeQuery(historicalQuery);

Using Queries With Fetch Groups
You can use a fetch group with a ReadObjectQuery or ReadAllQuery. When you
execute the query, TopLink retrieves only the attributes in the fetch group. TopLink
automatically executes a query to fetch all the attributes excluded from this subset
when and if you call a getter method on any one of the excluded attributes.

Note: Fetch groups are only supported with CMP.

Using Queries With Fetch Groups

Using Advanced Query API 96-3

This section describes the following:

■ Configuring Default Fetch Group Behavior

■ Querying With a Static Fetch Group

■ Querying With a Dynamic Fetch Group

For more information about fetch groups, see "Fetch Groups and Object-Level Read
Queries" on page 93-13.

Configuring Default Fetch Group Behavior
You can optionally designate at most one fetch group as the default fetch group for a
descriptor’s reference class.

If you execute a ReadObjectQuery or ReadAllQuery without specifying a fetch
group, TopLink will use the default fetch group unless you configure the query
otherwise, as Example 96–3 shows.

Example 96–3 Configuring Default Fetch Group Behavior

// at the descriptor level
FetchGroup group = new FetchGroup("nameOnly");
group.addAttribute("firstName");
group.addAttribute("lastName");
employeeDescriptor.getFetchGroupManager().addFetchGroup(group);
// set the default fetch group
employeeDescriptor.getFetchGroupManager().setDefaultFetchGroup(group);

// when query1 is executed, the default fetch group applies
ReadAllQuery query1 = new ReadAllQuery(Employee.class);

// when query2 is executed, the default fetch group does not apply
ReadAllQuery query2 = new ReadAllQuery(Employee.class);
query2.setShouldUsedefaultFetchGroup(false);

Querying With a Static Fetch Group
Example 96–4 shows how to configure a ReadObjectQuery for the Employee class
with a FetchGroup named nameOnly previously stored in the
FetchGroupManager owned by the Employee class’s descriptor.

Example 96–4 Configuring a Query with a FetchGroup Using the FetchGroupManager

In this example, only the Employee attributes firstName and lastName are
fetched. If you call the Employee method get for any other attribute, TopLink
executes another query to retrieve all unfetched attribute values. Thereafter, calling
that get method will return the value directly from the object.

// create static fetch group at the descriptor level
FetchGroup group = new FetchGroup("nameOnly");
group.addAttribute("firstName");
group.addAttribute("lastName");
descriptor.getFetchGroupManager().addFetchGroup(group);

// use static fetch group at query level
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.setFetchGroupName("nameOnly");

Querying on Interfaces

96-4 Oracle TopLink Developer’s Guide

Querying With a Dynamic Fetch Group
Example 96–5 shows how to create a FetchGroup instance dynamically, at the time
you create and execute a query, and configure the query with that FetchGroup
directly.

Example 96–5 Configuring a Query with a FetchGroup Dynamically

In this example, only the firstName, lastName, and salary attributes are fetched.
If you call the Employee method get for any other attribute, TopLink executes
another query to retrieve all unfetched attribute values. Thereafter, calling that get
method will return the value directly from the object.

// dynamic fetch group query
ReadAllQuery query = new ReadAllQuery(Employee.class);
FetchGroup group = new FetchGroup("nameAndSalary");
group.addAttribute("firstName");
group.addAttribute("lastName");
group.addAttribute("salary");
query. setFetchGroup(group);

Querying on Interfaces
When you define descriptors for an interface to enable querying, TopLink supports
querying on an interface, as follows:

■ If there is only a single implementor of the interface, the query returns an instance
of the concrete class.

■ If there are multiple implementors of the interfaces, the query returns instances of
all implementing classes.

Querying on an Inheritance Hierarchy
When you query on a class that is part of an inheritance hierarchy, the session checks
the descriptor to determine the type of the class, as follows:

■ If you configure the descriptor to read subclasses (the default configuration), the
query returns instances of the class and its subclasses.

■ If you configure the descriptor not to read subclasses, the query returns only
instances of the queried class, but no instances of the subclasses.

■ If neither of these conditions applies, the class is a leaf class and does not have any
subclasses. The query returns instances of the queried class.

Appending Additional Join Expressions
You can set the query manager to automatically append an expression to every query
it performs on a class. For example, you can add an expression that filters the database
for the valid instances of a given class.

Use this to do the following:

■ Filter logically deleted objects

■ Enable two independent classes to share a single table without inheritance

■ Filter historical versions of objects

Using Oracle Database Features

Using Advanced Query API 96-5

Using Java
Using Java, configure a descriptor with additional join expressions by creating an
amendment method (see "Configuring Amendment Methods" on page 25-81), and
then using the DescriptorQueryManager methods
setAdditionalJoinExpression or setMultipleTableJoinExpression, as
Example 96–6 shows.

Example 96–6 Registering a Query That Includes a Join Expression

In Example 96–6, the join expression filters invalid instances of employee from the
query.

public static void addToDescriptor(Descriptor descriptor) {
ExpressionBuilder builder = new ExpressionBuilder();
descriptor.getQueryManager().setAdditionalJoinExpression(

(builder.getField("EMP.STATUS").notEqual("DELETED")).and(
builder.getField("EMP.STATUS").notEqual("HISTORICAL"))

);
}

Using Queries on Variable One-to-One Mappings
TopLink does not provide a method to directly query against variable one-to-one
mappings. To query against this type of mapping, combine TopLink
DirectQueryKeys and TopLink ReportQueries to create query selection criteria
for classes that implement the interface, as follows:

1. Create two DirectQueryKeys to query for the possible implementors of the
interface:

■ The first DirectQueryKey is for the class indicator field for the variable
one-to-one mapping.

■ The second DirectQueryKey is for the foreign key to the class or table that
implements the interface.

2. Create a subSelect statement for each concrete class that implements the
interface included in the query selection criteria.

3. Implement a ReportQuery.

Example 96–7 Creating DirectQueryKeys

/* The DirectQueryKeys as generated in the TopLink project Java source code from
TopLink Workbench */
…
descriptor.addDirectQueryKey("locationTypeCode","DEALLOCATION.DEALLOCATIONOBJECTTY
PE");
descriptor.addDirectQueryKey("locationTypeId","DEALLOCATION.DEALLOCATIONOBJECTID")
;

Using Oracle Database Features
If you are using Oracle Database, you can take advantage of TopLink support for the
following Oracle Database features:

■ Oracle Hints

Using Oracle Database Features

96-6 Oracle TopLink Developer’s Guide

■ Hierarchical Queries

Oracle Hints
Oracle Hints is an Oracle Database feature through which you can make decisions
usually reserved for the optimizer. You use hints to specify things such as join order
for a join statement, or the optimization approach of an SQL call.

The TopLink query framework supports Oracle Hints with the following API:

setHintString("/*[hints or comments]*/");

TopLink adds the hint to the SQL string as a comment immediately following a
SELECT, UPDATE, INSERT, or DELETE statement.

Add hints to a read query as follows:

1. Create a ReadObjectQuery or a ReadAllQuery

2. Set the selection criteria.

3. Add hints as needed.

For example, the following code uses the FULL hint (which explicitly chooses a full
table scan for the specified table):

// Create the query and set Employee as its reference class
ReadObjectQuery query = new ReadObjectQuery(Employee.class);
// Retrieve ExpressionBuilder from the query
ExpressionBuilder builder = query.getExpressionBuilder();
query.setSelectionCritera(builder.get("id").equal(new Integer(1));
// Add the hint
query.setHintString("/*+ FULL */");

This code generates the following SQL:

SELECT /*+ FULL */ FROM EMPLOYEE WHERE ID=1

To add hints to WRITE, INSERT, UPDATE, and DELETE, create custom queries for these
operations in the TopLink query framework, then specify hints as required. For more
information, see the following:

■ "Configuring Custom SQL Queries for Basic Persistence Operations" on page 26-6

■ "Configuring Custom EIS Interactions for Basic Persistence Operations" on
page 28-6

For more information about the available hints, see the Oracle Database
documentation.

Hierarchical Queries
Hierarchical Queries is an Oracle Database mechanism that lets you select database
rows based on hierarchical order. For example, you can design a query that reads the
row of a given employee, followed by the rows of people this employee manages,
followed by their managed employees, and so on.

To create a hierarchical query, use the setHierarchicalQueryClause method.
This method takes three parameters, as follows:

setHierarchicalQueryClause(startWith, connectBy, orderSibling)

This expression requires all three parameters, as described in the subsequent text.

Using EJB Finders

Using Advanced Query API 96-7

startWith Parameter
The startWith parameter in the expression specifies the first object in the hierarchy.
This parameter mirrors the Oracle Database START WITH clause.

To include a startWith parameter, build an expression to specify the appropriate
object, and pass it as a parameter in the setHierarchicalQueryClause method. If
you do not specify the root object for the hierarchy, set this value to null.

connectBy Parameter
The connectBy parameter specifies the relationship that creates the hierarchy. This
parameter mirrors the Oracle Database CONNECT BY clause.

Build an expression to specify the connectBy parameter, and pass it as a parameter
in the setHierarchicalQueryClause method. Because this parameter defines the
nature of the hierarchy, it is required for the setHierarchicalQueryClause
implementation.

orderSibling Parameter
The orderSibling parameter in the expression specifies the order in which the
query returns sibling objects in the hierarchy. This parameter mirrors the Oracle
Database ORDER SIBLINGS clause.

To include an orderSibling parameter, define a vector, and to include the order
criteria, use the addElement method. Pass the vector as the third parameter in the
setHierarchicalQueryClause method. If you do not specify an order, set this
value to null.

Example 96–8 Hierarchical Query

ReadAllQuery raq = new ReadAllQuery(Employee.class);
// Specifies a START WITH expression
Expression startExpr = expressionBuilder.get("id").equal(new Integer(1));
// Specifies a CONNECT BY expression
Expression connectBy = expressionBuilder.get("managedEmployees");
// Specifies an ORDER SIBLINGS BY vector
Vector order = new Vector();
order.addElement(expressionBuilder.get("lastName"));
order.addElement(expressionBuilder.get("firstName"));
raq.setHierarchicalQueryClause(startExpr, connectBy, order);
Vector employees = uow.executeQuery(raq);

This code generates the following SQL:

SELECT * FROM EMPLOYEE START WITH ID=1 CONNECT BY PRIOR ID=MANAGER_ID ORDER
SIBLINGS BY LAST_NAME, FIRST_NAME

Using EJB Finders
This section describes how to use EJB finders in TopLink, including the following:

■ Creating a Finder

■ Using DatabaseQuery Finders

■ Using Named Query Finders

■ Using Primary Key Finders

■ Using EJB QL Finders

Using EJB Finders

96-8 Oracle TopLink Developer’s Guide

■ Using SQL Finders

■ Using Redirect Finders

■ Using the ejbSelect Method

Creating a Finder
In general, to create a finder for an entity bean that uses the TopLink query
framework, you must define, declare, and configure it.

For predefined finders (see "Predefined Finders" on page 93-24), you do not need to
explicitly create a finder.

For default finders (see "Default Finders" on page 93-26), you only need to define the
finder method.

To create a finder for an entity bean that uses the TopLink query framework, follow
these steps:

1. Define the finder method on the entity bean's remoteHome or localHome
interface.

For entity beans with container-managed persistence, define the method on the
entity bean’s Home interface.

For default finders (see "Default Finders" on page 93-26), you must define the
finder as follows:

■ <RETURN-TYPE> findBy<CMP-FIELD-NAME>(<CMP-FIELD-TYPE>)

■ the first letter of <CMP-FIELD-NAME> must be capitalized

■ <RETURN-TYPE> may be a single bean type or Collection.

For example:

EmployeeBean (Integer id, String name)
EmployeeHome ..{
 Employee findById(Integer id) throws...;
 Collection findByName(String name) throws...;
}

2. Declare the finder in the ejb-jar.xml file (see "ejb-jar.xml Finder Options" on
page 96-9).

3. Start TopLink Workbench.

4. Click the project icon in the Navigator and select: Selected > Update Project from
ejb-jar.xml to read in the finders.

5. Go to the Queries > Named Queries tab for the bean (see "Using Named Queries"
on page 94-18).

6. Select and configure the finder.

Note: If you are using default finders (see "Default Finders" on
page 93-26), you are finished. TopLink will implement the finder for
you at run time.

Using EJB Finders

Using Advanced Query API 96-9

7. If required, create an implementation for the query. Some query options require a
query definition in code on a helper class, but most common queries do not.

When you use TopLink CMP, define finder methods on the bean’s Home interface, not
in the entity bean itself. TopLink CMP provides this functionality and offers several
strategies to create and customize finders. The EJB container and TopLink
automatically generate the implementation.

ejb-jar.xml Finder Options
The ejb-jar.xml file contains a project’s EJB entity bean information, including
definitions for any finders used for the beans. To create and maintain the
ejb-jar.xml file, use either a text editor or TopLink Workbench.

The entity tag encapsulates a definition for an EJB entity bean. Each bean has its
own entity tag that contains several other tags that define bean functionality,
including bean finders.

Example 96–9 illustrates the structure of a typical finder defined within the
ejb-jar.xml file.

Example 96–9 A Simple Finder Within the ejb-jar.xml File

<entity>...
<query>

<query-method>
<method-name>findLargeAccounts</method-name>

<method-params>
<method-param>double</method-param>

</method-params>
</query-method>

<ejb-ql><![CDATA[SELECT OBJECT(account) FROM AccountBean account WHERE
account.balance > ?1]]></ejb-ql>

</query>
...
</entity>

The entity tag contains zero or more query elements. Each query tag corresponds
to a finder method defined on the bean's home or local Home interface.

Notes: For predefined finders findOneByQuery and
findManyByQuery, the client creates a query at run time and passes it
as a parameter to the finder. Because of this, do not configure query
options on these finders. Instead, configure options on the query passed
into the finder. For more information about predefined finders, see
"Predefined Finders" on page 93-24.

Note: Use a combination of an escape character and a
double-quote (\") when defining your query using EJB QL. For
more information on correct query syntax, see a note at the end of
Configuring Named Query Selection Criteria on page 25-14.

Using EJB Finders

96-10 Oracle TopLink Developer’s Guide

Here are the elements defined in the query section of the ejb-jar.xml file:

■ description (optional): Provides a description of the finder.

■ query-method: Specifies the method for a finder or ejbSelect query.

■ method-name: Specifies the name of a finder or select method in the entity bean
implementation class.

■ method-params: Contains a list of the fully qualified Java type names of the
method parameters.

■ method-param: Contains the fully qualified Java type name of a method
parameter.

■ result-type-mapping (optional): Specifies how to map an abstract schema
type returned by a query for an ejbSelect method. You can map the type to an
EJBLocalObject or EJBObject type. Valid values are Local or Remote.

■ ejb-ql: Used for all EJB QL finders. It contains the EJB QL query string that
defines the finder or ejbSelect query. Leave this element empty for non-EJB QL
finders.

Using DatabaseQuery Finders
TopLink provides a predefined finder that takes a DatabaseQuery such as a
ReadAllQuery. To use this feature in a bean, add the following finder definition to
the Home interface of your bean:

public Collection findManyByQuery(ReadAllQuery query) throws RemoteException,
FinderException;

public <EJBLocal/Remote> findOneByQuery(ReadObjectQuery query) throws
RemoteException, FinderException;

To execute a ReadAllQuery finder, create the query on the client, as Example 96–10
shows.

Example 96–10 A ReadAllQuery Finder

{
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.addJoinedAttribute("address");
Enumeration employees = getEmployeeHome().findManyByQuery(query);

}

Using Named Query Finders
You can implement an EJB finder method (including TopLink predefined finders) as a
named query. For more information, see "Using Named Queries" on page 94-18. You
execute such a finder as you would any other.

Note: You can share a single query between both Home interfaces,
as follows:

■ Define the same finder (same name, return type, and
parameters) on both Home interfaces.

■ Include a single query element in the ejb-jar.xml file.

Using EJB Finders

Using Advanced Query API 96-11

Using Primary Key Finders
TopLink provides a predefined finder (findByPrimaryKey) that takes a primary key
as an Object.

Example 96–11 Executing a Primary Key Finder

{
Employee employee = getEmployeeHome().findByPrimaryKey(primraryKey);

}

Using EJB QL Finders
EJB QL is the standard query language first defined in the EJB 2.0 specification.
TopLink supports EJB QL. EJB QL finders let you specify an EJB QL string as the
implementation of the query.

EJB QL offers several advantages:

■ It is the EJB 2.0 and 2.1 standard for queries.

■ You can use it to construct most queries.

■ You can implement dependent object queries with EJB QL.

The disadvantage of EJB QL is that it is difficult to use when you construct complex
queries.

To create an EJB QL finder use this procedure:
1. Declare the finder on either the LocalHome or the RemoteHome interface.

2. Start TopLink Workbench.

3. Reimport the ejb-jar.xml file to synchronize the project to the file.

TopLink Workbench synchronizes changes between the project and the
ejb-jar.xml file.

The following is an example of a simple EJB QL query that requires one parameter. In
this example, the question mark (?) in?1 specifies a parameter:

SELECT OBJECT(employee) FROM Employee employee WHERE (employee.name =?1)

To create an EJB QL finder for an entity bean with container-managed
persistence, use this procedure:
1. Declare the finder in the ejb-jar.xml file, and enter the EJB QL string in the

ejb-ql tag.

2. Declare the finder on the Home interface, the LocalHome interface, or both, as
required.

3. Start TopLink Workbench.

4. Specify the ejb-jar.xml file location and choose File > Updated Project from
the ejb-jar.xml file to read in the finders.

Note: Use a combination of an escape character and a
double-quote (\") when defining your query using EJB QL. For
more information on correct query syntax, see a note at the end of
"Configuring Named Query Selection Criteria" on page 25-14.

Using EJB Finders

96-12 Oracle TopLink Developer’s Guide

5. Go to the Queries > Finders > Named Queries tab for the bean.

6. Add a finder, and give it the same name as the finder you declared on your bean's
home. Then add any required parameters.

7. Select and configure the finder.

The following is an example of a simple EJB QL query that requires one parameter. In
this example, the question mark ("?") in?1 specifies a parameter.

SELECT OBJECT(employee) FROM Employee employee WHERE (employee.name =?1)

Using SQL Finders
You can use custom SQL code to specify finder logic. SQL lets you implement logic
that might not be possible to express with TopLink expressions or EJB QL.

To create a SQL finder, use this procedure:
1. Declare the finder in the ejb-jar.xml file, and leave the ejb-ql tag empty.

2. Start TopLink Workbench.

3. Specify the ejb-jar.xml file location and choose File > Updated Project from
the ejb-jar.xml file to read in the finders.

4. Go the Queries > Named Queries tab for the bean.

5. Select the finder, select the SQL radio button, and enter the SQL string.

6. Configure the finder.

The following is an example of a simple SQL finder that requires one parameter. In
this example, the number sign character (#) is used to bind the argument
projectName within the SQL string:

SELECT * FROM EJB_PROJECT WHERE (PROJ_NAME = #projectName)

Using Redirect Finders
Redirect finders let you specify a finder in which the implementation is defined as a
static method on an arbitrary helper class. When you invoke the finder, it redirects the
call to the specified static method.

For more information about redirect queries, see "Redirect Queries" on page 93-20.

The finder can have any arbitrary parameters. If the finder includes parameters,
TopLink packages them into a Vector and passes them to the redirect method.

Redirect finders offer several advantages. Because you define the redirect finder
implementation independently from the bean that invokes it, you can build the
redirect finder to accept any type and number of parameters. This lets you create a
generic redirect finder that accepts several different parameters and return types,
depending on input parameters.

A common strategy for using redirect finders is to create a generic finder that does the
following:

■ Includes logic to perform several tasks

■ Reads the first passed parameter to identify the type of finder requested and select
the appropriate logic

Using EJB Finders

Using Advanced Query API 96-13

The redirect method contains the logic required to extract the relevant data from the
parameters and uses it to construct a TopLink query.

The main disadvantage of redirect finders is that they are complex and can be difficult
to configure. They also require an extra helper method to define the query. However,
because they support complex logic, they are often the best choice when you need to
implement logic unrelated to the bean on which the redirect method is called.

To create a redirect finder, use the following procedure:
1. Declare the finder in the ejb-jar.xml file, and leave the ejb-ql tag empty.

2. Declare the finder on the Home interface, the localHome interface, or both, as
required.

3. Create an amendment method.

For more information, see "Configuring Amendment Methods" on page 25-81.

4. Start TopLink Workbench.

5. Choose Advanced Properties > After Load from the menu for the bean.

6. Specify the class and name of the static method to enable the amendment method
for the descriptor.

The amendment method then adds a query to the descriptor's query manager, as
follows:

ReadAllQuery query = new ReadAllQuery();
query.setRedirector(new MethodBaseQueryRedirector (examples.ejb.cmp20.advanced.
FinderDefinitionHelper.class,"findAllEmployeesByStreetName"));

descriptor.getQueryManager().addQuery ("findAllEmployeesByStreetName", query);

The redirect method must return either a single entity bean (object) or a Vector. Here
are the possible method signatures:

public static Object redirectedQuery(oracle.toplink.sessions.Sessions, Vector args)

and

public static Vector redirectedQuery(oracle.toplink.sessions.Sessions, Vector args)

When you implement the query method, ensure that the method returns the correct
type. For methods that return more than one bean, set the return type to
java.util.Vector. TopLink converts this result to java.util.Enumeration (or
Collection) if required.

At run time, the client invokes the finder from the entity bean home and packages the
arguments into the args vector in order of appearance from the finder method
signature. The client passes the vector to the redirect finder, which uses them to
execute a TopLink expression.

Example 96–12 A Simple Redirect Query Implementation

public class RedirectorTest {
private Session session;
private Project project;

Note: The redirect method also interprets a TopLink session as a
parameter. For more information about a TopLink session, see Part XV,
"TopLink Sessions".

Using EJB Finders

96-14 Oracle TopLink Developer’s Guide

public static void main(String args[]) {

RedirectorTest test = new RedirectorTest();

test.login();

try {
// Create the arguments to be used in the query

Vector arguments = new Vector(1);
arguments.add("Smith");

// Run the query
Object o = test.getSession()
.executeQuery(test.redirectorExample(), arguments);
o.toString();

}
catch (Exception e) {

System.out.println("Exception caught -> " + e);
e.printStackTrace();

}
}

public ReadAllQuery redirectorExample() {

// Create a redirector
MethodBasedQueryRedirector redirector = new MethodBasedQueryRedirector();

// Set the class containing the public static method
redirector.setMethodClass(RedirectorTest.class);

// Set the name of the method to be run
redirector.setMethodName("findEmployeeByLastName");

// Create a query and add the redirector previously created
ReadAllQuery readAllQuery = new ReadAllQuery(Employee.class);
readAllQuery.setRedirector(redirector);
readAllQuery.addArgument("lastName");

return readAllQuery;
}

// Call the static method
public static Object findEmployeeByLastName(

oracle.toplink.sessions.Session session,
Vector arguments) {

// Create a query and set Employee as its ref. class
ReadAllQuery raq = new ReadAllQuery(Employee.class);
raq.addArgument("lastName");

// Create the selection criteria
ExpressionBuilder employee = query.getExpressionBuilder();
Expression whereClause =
employee.get("lastName").equal(arguments.firstElement());

// Set the selection criteria
raq.setSelectionCriteria(whereClause);

return (Vector)session.executeQuery(raq, arguments);
}

Handling Cursor and Stream Query Results

Using Advanced Query API 96-15

[...]
}

Using the ejbSelect Method
The ejbSelect method is a query method intended for internal use within an entity
bean instance. Specified on the abstract bean itself, the ejbSelect method is not
directly exposed to the client in the home or component interface. Defined as abstract,
each bean can include zero or more such methods.

Select methods have the following characteristics:

■ The method name must have ejbSelect as its prefix.

■ It must be declared as public.

■ It must be declared as abstract.

■ The throws clause must specify the javax.ejb.FinderException, although it
may also specify application-specific exceptions as well.

■ The result-type-mapping tag in the ejb-jar.xml file determines the return
type for ejbSelect methods. Set the flag to Remote to return EJBObjects; set it
to Local to return EJBLocalObjects.

The format for an ejbSelect method definition should be similar to the following:

public abstract type ejbSelect<METHOD>(...);

The ejbSelect query return type is not restricted to the entity bean type on which
the ejbSelect is invoked. Instead, it can return any type corresponding to a
container-managed relationship or container-managed field.

Although the ejbSelect method is not based on the identity of the entity bean
instance on which it is invoked, it can use the primary key of an entity bean as an
argument. This creates a query that is logically scoped to a particular entity bean
instance.

To create an ejbSelect method, use this procedure:
1. Update the ejb-jar.xml file as follows:

■ Declare the ejbSelect method.

■ Enter the EJB QL string in the ejb-ql tag.

■ Specify the return type in the result-type-mapping tag (if required).

2. Declare the ejbSelect on the abstract bean class.

3. Start TopLink Workbench.

4. Click the project icon in the Navigator, and select: Selected > Update Project from
ejb-jar.xml to read in the finders.

5. Go the Queries > Named Queries tab for the bean.

6. Select and configure the ejbSelect method.

Handling Cursor and Stream Query Results
Cursors and streams are related mechanisms that let you work with large result sets
efficiently. See "Stream and Cursor Query Results" on page 93-8 for more information.

Handling Cursor and Stream Query Results

96-16 Oracle TopLink Developer’s Guide

Table 96–1 lists the methods that TopLink provides for all subclasses of
DataReadQuery and ReadAllQuery that you can use to make your query return its
results as a cursor or stream.

Using a ScrollableCursor or CursoredStream combines the features of a
TopLink with the ability of the database to cursor data, and breaks up the result set
into smaller, more manageable pieces.

The behavior of a query that uses a ScrollableCursor or CursoredStream differs
from other queries in that the elements requested by the client are sent to the client.

This section describes the following:

■ Cursors and Java Iterators

■ Java Streams

■ Optimizing Streams

■ Using Cursors and Streams With EJB Finders

Cursors and Java Iterators
The TopLink scrollable cursor lets you scroll through a result set from the database
without reading the whole result set in a single database read operation. The
ScrollableCursor class implements the Java ListIterator interface to allow for
direct and relative access within the stream. Scrollable cursors also let you scroll
forward and backward through the stream.

Traversing Data With Scrollable Cursors
Several methods let you navigate data with a scrollable cursor:

■ relative(int i): advances the row number in relation to the current row by
one row

■ absolute(int i): places the cursor at an absolute row position, 1 being the first
row

Several strategies are available for traversing data with cursors. For example, to start
at the end of the data set and work toward the first record:

1. Call the afterLast method to place the cursor after the last row in the result set.

2. Use the hasPrevious method to determine whether there is a record above the
current record. This method returns false when you reach the final record in the
data set.

3. If the hasPrevious method returns true, call the previous method to move
the cursor to the row prior to the current row and read that object.

Table 96–1 Stream and Cursor Query Result Options

Method Query Returns Description

useScrollableCursor ScrollableCursor Allows you access a database result set
cursor, allowing you to move forward and
backward through the result set.

useCursoredStream CursoredStream Allows you to access results one at a time in
sequence, as results become available to the
underlying database result set cursor.

Handling Cursor and Stream Query Results

Using Advanced Query API 96-17

These are common methods for data traversal, but they are not the only available
methods. For more information about the available methods, see Oracle TopLink API
Reference.

To use the ScrollableCursor object, the JDBC driver must be compatible with the
JDBC 2.0 specifications.

Example 96–13 Traversing with a Scrollable Cursor

ReadAllQuery query = new ReadAllQuery(Employee.class);
query.useScrollableCursor();
ScrollableCursor cursor = (ScrollableCursor) session.executeQuery(query);

while (cursor.hasNext()) {
System.out.println(cursor.next().toString());

}
cursor.close();

Java Streams
Java streams let you retrieve query results as individual records or groups of records,
which can result in a performance increase. You can use streams to build efficient
TopLink queries, especially when the queries are likely to generate large result sets.

Cursored Stream Support
Cursored streams combine the iterative ability of the ScrollableCursor interface
with TopLink support for streams. The result is the ability to read back a query result
set from the database in manageable subsets, and to scroll through the result set
stream.

The useCursoredStream method of the ReadAllQuery class provides cursored
stream support.

Example 96–14 Cursored Streams

CursoredStream stream;
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.useCursoredStream();
stream = (CursoredStream) session.executeQuery(query);

The query returns an instance of CursoredStream rather than a Vector, which can
be a more efficient approach. For example, consider the following two code examples.
Example 96–15 returns a Vector that contains all employee objects. If ACME has
10,000 employees, the Vector contains references to 10,000 Employee objects.

Example 96–15 Using a Vector

ReadAllQuery query = new ReadAllQuery(Employee.class);
Enumeration employeeEnumeration;

Vector employees = (Vector) session.executeQuery(query);
employeeEnumeration = employee.elements();

while (employeeEnumeration.hasMoreElements())
{
Employee employee = (Employee) employeeEnumeration.nextElement();
employee.doSomeWork();
}

Handling Cursor and Stream Query Results

96-18 Oracle TopLink Developer’s Guide

The following example returns a CursoredStream instance rather than a Vector.
The CursoredStream collection appears to contain all 10,000 objects, but initially
contains a reference to only the first 10 Employee objects. It retrieves the remaining
objects in the collection as they are needed. In many cases, the application never needs
to read all the objects:

ReadAllQuery query = new ReadAllQuery(Employee.class);
query.useCursoredStream();

CursoredStream stream = (CursoredStream) session.executeQuery(query);
while (! stream.atEnd()) {

Employee employee = (Employee) stream.read();
employee.doSomeWork();
stream.releasePrevious();

}
stream.close();

Optimizing Streams
To optimize CursoredStream performance, provide a threshold and page size to the
useCursoredStream(Threshold, PageSize) method, as follows:

■ The threshold specifies the number of objects to read into the stream initially. The
default threshold is 10.

■ The page size specifies the number of objects to read into the stream after the
initial group of objects. This occurs after the threshold number of objects is read.
Although larger page sizes result in faster overall performance, they introduce
delays into the application when TopLink loads each page. The default page size
is 5.

When you execute a batch-type operation, use the dontMaintainCache method
with a cursored stream. A batch operation performs simple operations on large
numbers of objects and then discards the objects. Cursored streams create the required
objects only as needed, and the dontMaintainCache ensures that these transient
objects are not cached.

Using Cursors and Streams With EJB Finders
Large result sets can be resource-intensive to collect and process. To give the client
more control over the returned results, configure TopLink finders to use cursors. This
combines TopLink's CursoredStream with the ability of the database to cursor data,
and breaks up the result set into smaller, more manageable pieces.

Note: The releasePrevious message is optional. This releases
any previously read objects and frees system memory. Even though
released objects are removed from the cursored stream storage,
they remain in the identity map.

Note: If you use the transactional attribute REQUIRED for an entity
bean, wrap all read operations in UserTransaction methods begin
and commit to ensure that read operations beyond the first page of
the cursor have a transaction in which to work.

Handling Cursor and Stream Query Results

Using Advanced Query API 96-19

Building the Query
You can configure any finder that returns a java.util.Collection to use a cursor.
When you create the query for the finder, add the useCursoredStream option to
enable cursoring.

Example 96–16 Cursored Stream in a Finder

ReadAllQuery raq = new ReadAllQuery(ProjectBean.class);
ExpressionBuilder bldr = raq.getExpressionBuilder();
raq.useCursoredStream();
raq.addArgument("projectName");
raq.setSelectionCriteria(bldr.get("name").
like(bldr.getParameter("projectName")));
descriptor.getQueryManager().addQuery ("findByNameCursored", query);

Executing the Finder From the Client
TopLink offers the following additional elements for traversing finder results:

■ isEmpty method: As with java.util.Collection, isEmpty method returns
a boolean value indicating whether or not the Collection is empty.

■ size method: As with java.util.Collection, size method returns an
integer indicating the number of elements in the Collection.

■ iterator method: As with java.util.Collection, iterator method
returns a java.util.Iterator for enumerating the elements in the
Collection.

TopLink also offers an extended protocol for
oracle.toplink.ejb.cmp.wls.CursoredIterator (based on
java.util.Iterator):

■ close method: Closes the cursor on the server. The client must call this method to
close the database connection.

■ hasNext method: Returns a boolean value indicating whether or not any more
elements are in the result set.

■ next method: Returns the next available element.

■ next(int count) method: Retrieves a Vector of at most count elements from
the available results, depending on how many elements remain in the result set.

Example 96–17 illustrates client code executing a cursored finder.

Example 96–17 Cursored Finder

// import both CursoredCollection and CursoredIterator
import oracle.toplink.ejb.cmp.wls.*;
//... other imports as necessary
getTransaction().begin();
CursoredIterator cursoredIterator = (CursoredIterator)
getProjectHome().findByNameCursored("proj%").iterator();
Vector projects = new Vector();
for (int index = 0; index < 50; i++) {
Project project = (Project)cursoredIterator.next();
projects.addElement(project);
}
// Rest all at once ...
Vector projects2 = cursoredIterator.next(50);
cursoredIterator.close();

Using Queries and the Cache

96-20 Oracle TopLink Developer’s Guide

getTransaction().commit();

Using Queries and the Cache
This section describes how to use caching options in TopLink queries, including the
following:

■ Caching Results in a ReadQuery

■ Configuring Cache Expiration at the Query Level

Caching Results in a ReadQuery
 By default, each time you execute a ReadQuery, TopLink applies the current query
configuration to the read operation. In doing so, TopLink will access the session cache,
the data source, or both.

Some queries are known to return the same result set (for example, the number of
units sold last year by the current sales person). After the first query execution, there is
no need to actually execute the query if it is invoked again.

For these types of queries, you can use any TopLink ReadQuery and configure it to
store its query results in an internal query cache.

After its first execution for a set of query parameters, the query will return its cached
result set each time it is invoked with the same query parameters. This improves query
performance for frequently executed queries. By default a query will cache the results
sets for the last 100 queries of specific parameters. You can configure this query cache
as part of the QueryResultsCachePolicy.

Enable this feature using ReadQuery method cacheQueryResults or by calling the
ReadQuery method setQueryResultsCachePolicy with an instance of
QueryResultsCachePolicy, and disable it using ReadQuery method
doNotCacheQueryResults.

Before using this feature, consider the restrictions in "Internal Query Cache
Restrictions" on page 93-37. For more information, see "Caching Query Results in the
Query Cache" on page 93-36.

You can apply a cache invalidation policy to the query’s internal cache (see
"Configuring Cache Expiration at the Query Level" on page 96-21). For more
information, see "Cache Invalidation" on page 87-8.

Example 96–18 shows how to configure a ReadQuery to cache its results.

Example 96–18 Configuring a ReadQuery to Cache Its Query Results

ReadObjectQuery query = new ReadObjectQuery(Employee.class);

// Instruct the ReadQuery to cache its query results
query.cacheQueryResults();

// The first time you invoke it, the ReadQuery reads from the database, session
// cache, or both and stores the result set in its internal query cache
Employee employeeFirst = (Employee) session.executeQuery(query);

Example 96–19 shows how to configure the ReadQuery to stop caching its results. The
next time the query is executed, TopLink does not use the query cache. Instead, the
query accesses the data source.

Using Queries and the Cache

Using Advanced Query API 96-21

Example 96–19 Configuring a ReadQuery to Stop Caching Its Query Results

// Disable query caching
query.doNotCacheQueryResults();

// The ReadQuery does not use the query cahce and instead accesses the database
Employee employee = (Employee) session.executeQuery(query);

Alternativley, you can clear the query’s internal cache using ReadQuery method
clearQueryResults passing in your session. This clears the currently cached results
and ensures that the next query execution reads from the database.

Configuring Cache Expiration at the Query Level
You can configure a ReadQuery with a CacheInvalidationPolicy.

If you configure a query to cache results in its own internal cache (see "Caching Results
in a ReadQuery" on page 96-20), the cache invalidation policy allows the cached query
result set to expire, based on a time-to-live or daily-expiry. This invalidation time is
calculated from the time of the query execution that cached the query result set for the
specific set of query parameters.

Example 96–20 shows how to configure a ReadQuery so that a
TimeToLiveCacheInvalidationPolicy is applied to all the objects returned by
the query and cached in the query’s internal cache.

Example 96–20 Configuring a CacheInvalidationPolicy on a ReadQuery for the Query’s
Internal Cache

// The TimeToLiveCacheInvalidationPolicy applies to all objects returned by the query and
// cached in the query's internal cache
readQuery.setQueryResultsCachePolicy(

new QueryResultsCachePolicy(new TimeToLiveCacheInvalidationPolicy(1000))
);

For more information, see "Cache Invalidation" on page 87-8.

Using Queries and the Cache

96-22 Oracle TopLink Developer’s Guide

Part XIX
 Transactions

This part describes how to use the TopLink unit of work to transactionally perform
create, read, update, and delete operations with and without an external transaction
processor. It contains the following chapters:

■ Chapter 97, "Understanding TopLink Transactions"

This chapter describes how to use the unit of work, the TopLink wrapper for a
transaction, and how TopLink integrates with transaction management and other
important query concepts.

■ Chapter 98, "Using Basic Unit of Work API"

This chapter explains how to use basic TopLink unit of work options.

■ Chapter 99, "Using Advanced Unit of Work API"

This chapter explains how to use advanced TopLink unit of work options.

Understanding TopLink Transactions 97-1

97
Understanding TopLink Transactions

This chapter explains how transactions are implemented in TopLink, including the
following:

■ Unit of Work Architecture

■ Unit of Work Concepts

■ Understanding the Unit of Work API

■ Example Model Object and Schema

Unit of Work Architecture
A database transaction is a set of operations (create, read, update, or delete) that either
succeed or fail as a single operation. The database discards, or rolls back, unsuccessful
transactions, leaving the database in its original state. Transactions may be internal
(that is, provided by TopLink) or external (that is, provided by a source external to the
application, such as an application server).

In TopLink, transactions are contained in the unit of work object. You acquire a unit of
work from a session (see "Acquiring a Unit of Work" on page 98-1) and using its API,
you can control transactions directly or through a Java 2 Enterprise Edition (J2EE)
application server transaction controller such as the Java Transaction API (JTA).

Transactions execute in their own context, or logical space, isolated from other
transactions and database operations.

The transaction context is demarcated; that is, it has a defined structure that includes:

■ A begin point, where the operations within the transaction begin. At this point,
the transaction begins to execute its operations.

■ A commit point, where the operations are complete and the transaction attempts
to formalize changes on the database.

The degree to which concurrent (parallel) transactions on the same data are allowed to
interact is determined by the level of transaction isolation configured. ANSI/SQL
defines four levels of database transaction isolation as shown in Table 97–1. Each offers
a trade-off between performance and resistance from the following unwanted actions:

■ Dirty read: a transaction reads uncommitted data written by a concurrent
transaction.

■ Nonrepeatable read: a transaction rereads data and finds it has been modified by
some other transaction that was committed after the initial read operation.

■ Phantom read: a transaction reexecutes a query and the returned data has changed
due to some other transaction that was committed after the initial read operation.

Unit of Work Architecture

97-2 Oracle TopLink Developer’s Guide

As a transaction is committed, the database maintains a log of all changes to the data.
If all operations in the transaction succeed, the database allows the changes; if any part
of the transaction fails, the database uses the log to roll back the changes.

Like any transaction, a unit of work transaction provides the following:

■ Unit of Work Transaction Context

■ Unit of Work Transaction Demarcation

■ Unit of Work Transaction Isolation

Unit of Work Transaction Context
Unit of work operations occur within a unit of work context, in which writes are
isolated from the database until commit time. The unit of work executes changes on
copies, or clones, of objects in its own internal cache, and if successful, applies changes
to objects in the database and the session cache.

Unit of Work Transaction Demarcation
In a standalone TopLink application, your application demarcates transactions using
the unit of work.

If your application includes a J2EE container that provides container-managed
transactions, your application server demarcates transactions using its own transaction
service. You configure TopLink to integrate with the container’s transaction service by
specifying a TopLink external transaction controller.

A TopLink external transaction controller class integrates the unit of work with an
application server’s transaction service. Using an external transaction controller, your
application can participate in transactions that span multiple data sources and that are
managed by the application server. The external transaction controller coordinates
messages and callbacks between the application server’s transaction service and the
unit of work.

When you configure your application to use an external transaction controller (see
"Configuring the Server Platform" on page 74-14), the unit of work executes as part of
an external transaction. The unit of work still manages its own internal operations, but
it waits for the external transaction to tell it to write changes back to the database and
to the session cache.

Note that because the transaction happens outside of the unit of work context and is
controlled by the application server’s transaction service, errors can be more difficult
to diagnose and fix because exceptions may occur outside of your application code, for
example, during application server initiated call-backs.

You can integrate the unit of work with the following:

■ JTA Controlled Transactions

Table 97–1 Transaction Isolation Levels

Transaction Isolation Level Dirty Read
Nonrepeatable
Read Phantom Read

Read Uncommitted Yes Yes Yes

Read Committed No Yes Yes

Repeatable Read No No Yes

Serializable No No No

Unit of Work Architecture

Understanding TopLink Transactions 97-3

■ OTS Controlled Transactions

■ CMP Controlled Transactions

JTA Controlled Transactions
The Java Transaction API (JTA) is the application programming interface you use to
interact with a transaction manger.

Using JTA, your application can participate in a distributed transaction. A transaction
manager that implements JTA provides transaction management and connection
pooling and enables your application to interact with multiple data sources
transparently by using JTA.

For more information, see "Integrating the Unit of Work With an External Transaction
Service" on page 99-21.

OTS Controlled Transactions
The CORBA Object Transaction Service (OTS) specification is part of the Common
Object Request Brokers Architecture (CORBA) Object Services model and is the
standard for Object Request Broker (ORB) implementations. Some servers implement
the Java APIs for the OTS rather than for JTA (see "JTA Controlled Transactions" on
page 97-3).

Use TopLink OTS support with the unit of work to directly access the Java OTS
interfaces of servers that do not support JTA.

To integrate your application with an OTS transaction service, you must configure
your application to use a custom server platform (see "Configuring the Server
Platform" on page 74-14).

For more information, see "Integrating the Unit of Work With an External Transaction
Service" on page 99-21.

CMP Controlled Transactions
Entity beans that use container-managed persistence may participate in transactions
that are either client demarcated or container demarcated.

A client demarcated transaction occurs when a client of an entity bean directly sets up
transaction boundaries using the javax.transaction.UserTransaction
interface.

A container demarcated transaction occurs when the container automatically wraps an
invocation on an EJB in a transaction based upon the transaction attributes supplied in
the EJB deployment descriptor.

In transactions involving EJB, TopLink waits until the transaction begins its two-phase
commit process before updating the database. This allows for the following:

■ SQL optimizations that ensure only changed data is written to the data source

■ Proper ordering of updates to allow for database constraints

For more information, see "Integrating the Unit of Work With CMP" on page 99-24.

Unit of Work Transaction Isolation
The unit of work does not directly participate in database transaction isolation.
Because the unit of work may execute queries outside the database transaction (and,
by interacting with the cache, outside the database itself), the database does not have
control over this data and its visibility.

Unit of Work Concepts

97-4 Oracle TopLink Developer’s Guide

However, by default, TopLink provides a degree of transaction isolation regardless of
what database transaction isolation has been configured on the underlying database.

Each unit of work instance operates on its own copy (clone) of registered objects (see
"Clones and the Unit of Work" on page 97-9). In this case, because the unit of work
provides an API that allows querying to be done on object changes within a unit of
work (see "Using Conforming Queries and Descriptors" on page 99-8), the unit of work
provides read committed operations.

Optimistic locking, optimistic read locking, or pessimistic locking can be used to
further manage concurrency (see "Locking and the Unit of Work" on page 97-12).

Changes are committed to the database only when the unit of work commit method is
called (either directly or by way of an external transaction controller).

For detailed information on configuring and using TopLink to achieve a particular
level of transaction isolation and transaction isolation level limitations, see "Database
Transaction Isolation Levels" on page 99-26.

Unit of Work Concepts
This section introduces transaction concepts unique to TopLink, including the
following:

■ Unit of Work Benefits

■ Unit of Work Life Cycle

■ Unit of Work and Change Policy

■ Clones and the Unit of Work

■ Nested and Parallel Units of Work

■ Commit and Rollback Transactions

■ Primary Keys

■ Unit of Work Optimization

■ Example Model Object and Schema

Unit of Work Benefits
The TopLink unit of work simplifies transactions and improves transactional
performance. It is the preferred method of writing to a database in TopLink because it
performs the following:

■ Sends a minimal amount of SQL to the database during the commit by updating
only the exact changes down to the field level

■ Reduces database traffic by isolating transaction operations in their own memory
space

■ Optimizes cache coordination, in applications that use multiple caches, by passing
change sets (rather than objects) between caches

■ Isolates object modifications in their own transaction space to allow parallel
transactions on the same objects

■ Ensures referential integrity and minimizes deadlocks by automatically
maintaining SQL ordering

Unit of Work Concepts

Understanding TopLink Transactions 97-5

■ Orders database insert, update, and delete operations to maintain referential
integrity for mapped objects

■ Resolves bidirectional references automatically

■ Frees the application from tracking or recording its changes

■ Simplifies persistence with persistence by reachability (see "Associating a New
Source to an Existing Target Object" on page 98-6)

Unit of Work Life Cycle
TopLink uses the unit of work as follows:

1. The client application acquires a unit of work from a session object.

2. The client application queries TopLink to obtain a cache object it wants to modify,
and then registers the cache object with the unit of work.

3. The unit of work registers the object according to the object’s change policy. For
more information about how change policy affects registration, see "Unit of Work
and Change Policy" on page 97-6.

By default, as each object is registered, the unit of work accesses the object from
the session cache or database and creates a backup clone and working clone (see
"Clones and the Unit of Work" on page 97-9). The unit of work returns the working
clone to the client application.

4. The client application modifies the working object returned by the unit of work.

5. The client application (or external transaction controller) commits the transaction.

6. The unit of work calculates the change set for each registered object according to
the object’s change policy. For more information about how change policy affects
change set calculation, see "Unit of Work and Change Policy" on page 97-6.

By default, at commit time, the unit of work compares the working clones to the
backup clones and calculates the change set (that is, determines the minimum
changes required). The comparison is done with a backup clone so that concurrent
changes to the same objects will not result in incorrect changes being identified.
The unit of work then attempts to commit any new or changed objects to the
database.

If the commit transaction succeeds, the unit of work merges changes into the
shared session cache. Otherwise, no changes are made to the objects in the shared
cache. For more details, see "Commit and Rollback Transactions" on page 97-10.

If there are no changes, the unit of work does not start a new transaction.

Unit of Work Concepts

97-6 Oracle TopLink Developer’s Guide

Figure 97–1 The Life Cycle of a Unit of Work

Example 97–1 shows the default life cycle in code.

Example 97–1 Unit of Work Life Cycle

// The application reads a set of objects from the database
Vector employees = session.readAllObjects(Employee.class);

// The application specifies an employee to edit
. . .
Employee employee = (Employee) employees.elementAt(index);

try {
// Acquire a unit of work from the session
UnitOfWork uow = session.acquireUnitOfWork();
// Register the object that is to be changed. Unit of work returns a clone
// of the object and makes a backup copy of the original employee
Employee employeeClone = (Employee)uow.registerObject(employee);
// Make changes to the employee clone by adding a new phoneNumber.
// If a new object is referred to by a clone, it does not have to be
// registered. Unit of work determines it is a new object at commit time
PhoneNumber newPhoneNumber = new PhoneNumber("cell","212","765-9002");
employeeClone.addPhoneNumber(newPhoneNumber);
// Commit the transaction: unit of work compares the employeeClone with
// the backup copy of the employee, begins a transaction, and updates the
// database with the changes. If successful, the transaction is committed
// and the changes in employeeClone are merged into employee. If there is an
// error updating the database, the transaction is rolled back and the
// changes are not merged into the original employee object
uow.commit();

} catch (DatabaseException ex) {
// If the commit fails, the database is not changed. The unit of work should
// be thrown away and application-specific action taken

}
// After the commit, the unit of work is no longer valid. Do not use further

Unit of Work and Change Policy
The unit of work tracks changes for a registered object based on the change policy you
configure for the object’s descriptor. If there are no changes, the unit of work will not
start a new transaction.

Table 97–2 lists the change policies that TopLink provides.

Unit of Work Concepts

Understanding TopLink Transactions 97-7

For more information, see "Configuring Change Policy" on page 25-73.

Deferred Change Detection Policy
The DeferredChangeDetectionPolicy is the change policy that all persistent
objects use by default.

This option provides good unit of work commit performance for a wide range of
object change characteristics.

When you register in a unit of work an object whose descriptor is configured with a
DeferredChangeDetectionPolicy (see "Configuring Deferred Change Detection
Policy" on page 25-73), a backup clone is made of the object (see "Clones and the Unit
of Work" on page 97-9) and at commit time, the unit of work computes changes by
making an attribute-by-attribute comparison between the backup clone and the
original object.

This change policy is applicable to all mapping types.

Object-Level Change Tracking Policy
The ObjectChangeTrackingPolicy optimizes the unit of work commit transaction
by including objects in the change set calculation only if at least one attribute has
changed.

This option provides improved unit of work commit performance for objects with few
attributes, or with many attributes and many changed attributes.

When you register in a unit of work an object whose descriptor is configured with
ObjectChangeTracking change policy, a backup clone is made of the object and at
commit time, the unit of work computes changes by comparing the backup to the
current object if and only if at least one attribute is changed (if the object’s
hasChanges method returns true). If a registered object has no changes, the unit of
work does not compare it to the backup clone.

This change policy is applicable to a subset of mapping types (see "Change Policy
Mapping Support" on page 97-9).

TopLink provides different levels of support for this change policy depending on the
EBJ version and application server you are using:

EJB CMP For CMP applications deployed to an application server for which TopLink
provides CMP integration (see "Application Server Support" on page 7-1), when you
configure a descriptor for an entity bean with container-managed persistence with an
ObjectChangeTrackingPolicy, TopLink code generates a concrete subclass to
implement the TopLink ChangeTracker interface at deploy time (see "Configuring
Object Change Tracking Policy" on page 25-73).

Table 97–2 TopLink Change Policies

Change Policy Applicable to...

Deferred Change Detection Policy Wide range of object change characteristics.

The default change policy.

Object-Level Change Tracking Policy Objects with few attributes or with many attributes and many
changed attributes.

Attribute Change Tracking Policy Objects with many attributes and few changed attributes.

The most efficient change policy.

The default change policy for EJB 3.0 persistent or 2.n CMP on
OC4J.

Unit of Work Concepts

97-8 Oracle TopLink Developer’s Guide

Attribute Change Tracking Policy
The AttributeChangeTrackingPolicy optimizes the unit of work commit
transaction by tracking all object changes at the attribute level. This eliminates two
unit of work operations: backup clone creation and change detection through
comparison.

This option provides improved unit of work commit performance for objects with
many attributes, and few changed attributes. Generally, this is the most efficient
change policy.

This change policy is applicable to a subset of mapping types (see "Change Policy
Mapping Support" on page 97-9).

TopLink provides different levels of support for this change policy depending on the
EBJ version and application server you are using:

Plain Java Objects or Other Application Servers For plain Java objects or application
servers other than OC4J, to use the AttributeChangeTrackingPolicy with a
class, you must configure the class’s descriptor with an
AttributeChangeTrackingPolicy and you must implement the
ChangeTracker interface in that class (see "Configuring Attribute Change Tracking
Policy" on page 25-75).

EJB CMP on OC4J When using CMP on OC4J, if you want to benefit from this
performance enhancement, configure your descriptors with the default
DeferredChangeDetectionPolicy and allow TopLink to automatically apply an
AttributeChangeTrackingPolicy. If you configure your project’s descriptors
with any other change policy, TopLink will honor that configuration and not apply an
AttributeChangeTrackingPolicy.

When you deploy a TopLink-enabled CMP application to OC4J, for each mapped class
configured with the default DeferredChangeDetectionPolicy, TopLink uses
code generation to automatically override this configuration with an
AttributeChangeTrackingPolicy and to make the class implement the required
interfaces.

Note: The preceding paragraph is also true for applications that use
EJB 3.0 persistence.

Note: You cannot use the AttributeChangeTrackingPolicy if
you are using any instance of FieldsLockingPolicy (see
"Optimistic Field Locking Policies" on page 23-20).

Note: The preceding information is applicable to applications built
using EJB 3.0.

However, when you deploy a TopLink-enabled EJB 3.0 persistent
application to OC4J, for each mapped class configured with the
default DeferredChangeDetectionPolicy, TopLink uses
bytecode weaving to automatically override this configuration with
an AttributeChangeTrackingPolicy and to make the class
implement the required interfaces.

Unit of Work Concepts

Understanding TopLink Transactions 97-9

Change Policy Mapping Support
TopLink supports alternative change tracking policies (policies other than
DeferredChangeDetectionPolicy) for attributes that use any of the following
mapping types:

■ Direct-to-Field Mapping

■ Transformation Mapping (immutable mappings only)

■ One-to-One Mapping

■ Variable One-to-One Mapping

■ One-to-Many Mapping

■ Many-to-Many Mapping

■ Direct Collection Mapping

■ Direct Map Mapping

■ Aggregate Object Mapping

■ EIS Transformation Mapping (immutable mappings only)

TopLink uses the DeferredChangeDetectionPolicy (see "Deferred Change
Detection Policy" on page 97-7) for attributes that use any other type of mapping.

Clones and the Unit of Work
When using the DefrerredChangeDetectionPolicy or the
ObjectLevelChangeTrackingPolicy (see "Deferred Change Detection Policy" on
page 97-7), the unit of work maintains two copies of the original objects registered
with it:

■ Working clones

■ Backup clones

After you change the working clones and the transaction is committed, the unit of
work compares the working clones to the backup clones, and writes any changes to
the database. The unit of work uses clones to allow parallel units of work (see "Nested
and Parallel Units of Work" on page 97-9) to exist, a requirement in multiuser three-tier
applications.

The TopLink cloning process is efficient in that it clones only the mapped attributes of
registered objects, and stops at indirection objects unless you trigger the indirection.
For more information, see "Configuring Indirection" on page 32-3.

You can customize the cloning process using the descriptor’s copy policy. For more
information, see "Configuring Copy Policy" on page 25-71.

Never use a clone after committing the unit of work that the clone is from (even if the
transaction fails and rolls back). A clone is a working copy used during a transaction
and as soon as the transaction is committed (successful or not), the clone must not be
used. Accessing an uninstantiated clone value holder after a unit of work commit
transaction will raise an exception. The only time you can use a clone after a successful
commit transaction is when you use the advanced API described in "Resuming a Unit
of Work After Commit" on page 99-14.

Nested and Parallel Units of Work
You can use TopLink to create the following:

Unit of Work Concepts

97-10 Oracle TopLink Developer’s Guide

■ Nested Unit of Work

■ Parallel Unit of Work

For additional information and examples on using nested and parallel units of work,
see "Using a Nested or Parallel Unit of Work" on page 99-15.

Nested Unit of Work
You can nest a unit of work (the child) within another unit of work (the parent). A
nested unit of work does not commit changes to the database. Instead, it passes its
changes to the parent unit of work, and the parent attempts to commit the changes at
commit time. Nesting units of work lets you break a large transaction into smaller
isolated transactions, and ensures that:

■ Changes from each nested unit of work commit or fail as a group.

■ Failure of a nested unit of work does not affect the commit or rollback transaction
of other operations in the parent unit of work.

■ Changes are presented to the database as a single transaction.

Parallel Unit of Work
You can modify the same objects in multiple unit of work instances in parallel because
the unit of work manipulates copies of objects. TopLink resolves any concurrency
issues when the Units of Work commits the changes.

Commit and Rollback Transactions
When a unit of work transaction is committed, it either succeeds, or fails and rolls
back. A commit transaction can be initiated by your application or by a J2EE container.

Commit Transactions
At commit time, the unit of work compares the working clones and backup clones to
calculate the change set (that is, to determine the minimum changes required).
Changes include updates to or deletion of existing objects, and the creation of new
objects. The unit of work then begins a database transaction, and attempts to write the
changes to the database. If all changes commit successfully on the database, the unit of
work merges the changed objects into the session cache. If any one of the changes fail
on the database, the unit of work rolls back any changes on the database, and does not
merge changes into the session cache.

The unit of work calculates commit order using foreign key information from
one-to-one and one-to-many mappings. If you encounter constraint problems during a
commit transaction, verify your mapping definitions. The order in which you register
objects with the registerObject method does not affect the commit order.

Commit and JTA When your application uses JTA, the unit of work commit transaction
acts differently than in a non-JTA application. In most cases, the unit of work attaches
itself to an external transaction. If no transaction exists, the unit of work creates a
transaction. This distinction affects commit activity as follows:

■ If the unit of work attaches to an existing transaction, the unit of work ignores the
commit call. The transaction commits the unit of work when the entire external
transaction is complete.

■ If the unit of work starts the external transaction, the transaction treats the unit of
work commit call as a request to commit the external transaction. The external
transaction then calls its own commit code on the database.

Understanding the Unit of Work API

Understanding TopLink Transactions 97-11

In either case, only the external transaction can call commit on the database because it
owns the database connection.

For more information, see "Integrating the Unit of Work With an External Transaction
Service" on page 99-21.

Rollback Transactions
A unit of work commit transaction must succeed or fail as a unit. Failure in writing
changes to the database causes the unit of work to roll back the database to its
previous state. Nothing changes in the database, and the unit of work does not merge
changes into the session cache.

Rollback and JTA In a JTA environment, the unit of work does not own the database
connection. In this case, the unit of work sends the rollback call to the external
transaction rather than the database, and the external transaction treats the rollback
call as a request to roll the transaction back.

For more information, see "Integrating the Unit of Work With an External Transaction
Service" on page 99-21.

Primary Keys
You cannot modify the primary key attribute of an object in a unit of work. This is an
unsupported operation and doing so will result in unexpected behaviour (exceptions
or database corruption).

To replace one instance of an object with unique constraints with another, see "Using
the Unit of Work setShouldPerformDeletesFirst Method" on page 99-17.

Unit of Work Optimization
By default, the unit of work performs change set calculation efficiently for a wide
range of object change characteristics. However, there are various ways you can use
the unit of work to enhance application performance.

One way to improve performance is to consider using an alternative change policy
(see "Unit of Work and Change Policy" on page 97-6).

For more performance options, see "Unit of Work Optimization" on page 11-30.

Understanding the Unit of Work API
You do not instantiate an instance of oracle.toplink.sessions.UnitOfWork.
Rather, you acquire a unit of work from an instance of
oracle.toplink.sessions.Session or from another unit of work.

For more information on creating sessions, see "Creating Sessions" on page 73-1.

For more information on acquiring a unit of work, see "Acquiring a Unit of Work" on
page 98-1.

For more information on using the basic API of the unit of work, see "Using Basic Unit
of Work API" on page 98-1.

For more information on using the advanced API of the unit of work, see "Using
Advanced Unit of Work API" on page 99-1.

Example Model Object and Schema

97-12 Oracle TopLink Developer’s Guide

Unit of Work as Session
The unit of work extends the interface oracle.toplink.sessions.Session, and
implements all the usual session API. When using session API from a unit of work,
you should consider the following:

■ Reading and Querying Objects with the Unit of Work

■ Locking and the Unit of Work

Reading and Querying Objects with the Unit of Work
A unit of work offers the same set of database access methods as a regular session.

When called from a unit of work, these methods access the objects in the unit of work,
register the selected objects automatically, and return clones.

Although this makes it unnecessary for you to call the registerObject and
registerAllObjects methods, be aware of the restrictions on registering objects
described in "Creating an Object" on page 98-2 and "Associating a New Source to an
Existing Target Object" on page 98-6.

Reading Objects with the Unit of Work As with regular sessions, you use the readObject
and readAllObjects methods to read objects from the database.

Querying Objects with the Unit of Work You can execute queries in a unit of work with the
executeQuery method.

Locking and the Unit of Work
For information on locking API generic to all sessions, see:

■ "Locking" on page 2-11

■ "Configuring Locking Policy" on page 25-64

For information on locking API specific to a unit of work, see "Using Optimistic Read
Locking With forceUpdateToVersionField" on page 99-18.

Example Model Object and Schema
Throughout the chapters in this part, the following object model and schema are used
in the examples provided. The example object model appears in Figure 97–2 and the
example entity-relationship (data model) diagram appears in Figure 97–3.

Note: Because a unit of work manages changes to existing objects
and the creation of new objects, modifying queries such as
InsertObjectQuery or UpdateObjectQuery are not necessary
and therefore are not supported by the unit of work.

Example Model Object and Schema

Understanding TopLink Transactions 97-13

Figure 97–2 Example Object Model

Figure 97–3 Example Data Model

Example Model Object and Schema

97-14 Oracle TopLink Developer’s Guide

Using Basic Unit of Work API 98-1

98
Using Basic Unit of Work API

This chapter explains the essential unit of work API calls most commonly used
throughout the development cycle:

■ Acquiring a Unit of Work

■ Creating an Object

■ Modifying an Object

■ Associating a New Target to an Existing Source Object

■ Associating a New Source to an Existing Target Object

■ Associating an Existing Source to an Existing Target Object

■ Deleting Objects

For more information, see Chapter 99, "Using Advanced Unit of Work API".

Acquiring a Unit of Work
This example shows how to acquire a unit of work from a client session object.

Server server =
(Server) SessionManager.getManager().getSession(

sessionName, MyServerSession.class.getClassLoader()
);

Session session = (Session) server.acquireClientSession();
UnitOfWork uow = session.acquireUnitOfWork();

You can acquire a unit of work from any session type. For more information about
acquiring sessions at run time, see "Acquiring a Session at Run Time With the Session
Manager" on page 72-5.

Note that you do not need to create a new session and log in before every transaction.
The recommended pattern is to acquire a client session per client access (or thread),
and then acquire the necessary unit of work from this client session.

The unit of work is valid until the commit or release method is called. After a
commit or release transaction, a unit of work is not valid even if the transaction fails
and is rolled back.

A unit of work remains valid after the commitAndResume method is called as
described in "Resuming a Unit of Work After Commit" on page 99-14.

When using a unit of work with JTA, you can also use the advanced API
getActiveUnitOfWork method as described in "Integrating the Unit of Work With
an External Transaction Service" on page 99-21.

Creating an Object

98-2 Oracle TopLink Developer’s Guide

Creating an Object
When you create new objects in the unit of work, use the registerObject method
to ensure that the unit of work writes the objects to the database at commit time.

The unit of work calculates commit order using foreign key information from
one-to-one and one-to-many mappings. If you encounter constraint problems during a
commit transaction, verify your mapping definitions. The order in which you register
objects with the registerObject method does not affect the commit order.

Example 98–1 and Example 98–2 show how to create and persist a simple object
(without relationships) using the clone returned by the unit of work
registerObject method.

Example 98–1 Creating an Object: Preferred Method

UnitOfWork uow = session.acquireUnitOfWork();
Pet pet = new Pet();
Pet petClone = (Pet)uow.registerObject(pet);
petClone.setId(100);
petClone.setName("Fluffy");
petClone.setType("Cat");

uow.commit();

Example 98–2 shows a common alternative.

Example 98–2 Creating an Object: Alternative Method

UnitOfWork uow = session.acquireUnitOfWork();
Pet pet = new Pet();
pet.setId(100);
pet.setName("Fluffy");
pet.setType("Cat");
uow.registerObject(pet);

uow.commit();

Both approaches produce the following SQL:

INSERT INTO PET (ID, NAME, TYPE, PET_OWN_ID) VALUES (100, 'Fluffy', 'Cat', NULL)

Example 98–1 is preferred: it gets you into the pattern of working with clones and
provides the most flexibility for future code changes. Working with combinations of
new objects and clones can lead to confusion and unwanted results.

Modifying an Object
In Example 98–3, a Pet is read prior to a unit of work: the variable pet is the cache
copy clone for that Pet. Inside the unit of work, register the cache copy to get a
working copy clone. We then modify the working copy clone and commit the unit of
work.

Example 98–3 Modifying an Object

// Read in any pet
Pet pet = (Pet)session.readObject(Pet.class);
UnitOfWork uow = session.acquireUnitOfWork();

Pet petClone = (Pet) uow.registerObject(pet);
petClone.setName("Furry");

uow.commit();

Associating a New Target to an Existing Source Object

Using Basic Unit of Work API 98-3

In Example 98–4, we take advantage of the fact that you can query through a unit of
work and get back clones, saving the registration step. However, the drawback is that
we do not have a handle to the cache copy clone.

If we wanted to do something with the updated Pet after the commit transaction, we
would have to query the session to get it (remember that after a unit of work is
committed, its clones are invalid and must not be used).

Example 98–4 Modifying an Object: Skipping the Registration Step

UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet) uow.readObject(Pet.class);
petClone.setName("Furry");

uow.commit();

Both approaches produce the following SQL:

UPDATE PET SET NAME = 'Furry' WHERE (ID = 100)

Take care when querying through a unit of work. All objects read in the query are
registered in the unit of work and therefore will be checked for changes at commit
time. Rather than do a ReadAllQuery through a unit of work, it is better for
performance to design your application to do the ReadAllQuery through a session,
and then register in a unit of work only the objects that need to be changed.

Associating a New Target to an Existing Source Object
There are two ways to associate a new target object with an existing source object with
one-to-many and one-to-one relationships:

■ Associating Without Reference to the Cache Object

■ Associating With Reference to the Cache Object

Deciding which approach to use depends on whether or not your code requires a
reference to the cache copy clone of the new object after the unit of work is committed,
and on how adaptable to change you want your code to be.

Associating Without Reference to the Cache Object
Example 98–5 shows the first way of associating a new target with an existing source.

Example 98–5 Associating Without Reference to the Cache Object

UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet)uow.readObject(Pet.class);

PetOwner petOwner = new PetOwner();
petOwner.setId(400);
petOwner.setName("Donald Smith");
petOwner.setPhoneNumber("555-1212");

VetVisit vetVisit = new VetVisit();
vetVisit.setId(500);
vetVisit.setNotes("Pet was shedding a lot.");
vetVisit.setSymptoms("Pet in good health.");
vetVisit.setPet(petClone);

petClone.setPetOwner(petOwner);
petClone.getVetVisits().addElement(vetVisit);

Associating a New Target to an Existing Source Object

98-4 Oracle TopLink Developer’s Guide

uow.commit();

This executes the proper SQL:

INSERT INTO PETOWNER (ID, NAME, PHN_NBR) VALUES (400, 'Donald Smith', '555-1212')
UPDATE PET SET PET_OWN_ID = 400 WHERE (ID = 100)
INSERT INTO VETVISIT (ID, NOTES, SYMPTOMS, PET_ID) VALUES (500, 'Pet was shedding
a lot.', 'Pet in good health.', 100)

When associating new objects to existing objects, the unit of work treats the new object
as if it were a clone. That is, after the commit transaction:

petOwner != session.readObject(petOwner)

For a more detailed discussion of this fact, see "Using registerNewObject" on
page 99-2).

Therefore, after the unit of work commit transaction, the variables vetVisit and
petOwner no longer point to their respective cache objects; they point at working
copy clones.

If you need the cache object after the unit of work commit transaction, you must query
for it or create the association with a reference to the cache object (as described in
"Associating With Reference to the Cache Object" on page 98-4).

Associating With Reference to the Cache Object
Example 98–6 shows how to associate a new target with an existing source with
reference to the cache object.

Example 98–6 Associating With Reference to the Cache Object

UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet)uow.readObject(Pet.class);

PetOwner petOwner = new PetOwner();
PetOwner petOwnerClone = (PetOwner)uow.registerObject(petOwner);
petOwnerClone.setId(400);
petOwnerClone.setName("Donald Smith");
petOwnerClone.setPhoneNumber("555-1212");

VetVisit vetVisit = new VetVisit();
VetVisit vetVisitClone = (VetVisit)uow.registerObject(vetVisit);
vetVisitClone.setId(500);
vetVisitClone.setNotes("Pet was shedding a lot.");
vetVisitClone.setSymptoms("Pet in good health.");
vetVisitClone.setPet(petClone);

petClone.setPetOwner(petOwnerClone);
petClone.getVetVisits().addElement(vetVisitClone);

uow.commit();

Note: You cannot use UnitOfWork methods registerObject,
registerNewObject, or registerExistingObject with an
aggregate object (see "Relational Aggregate Descriptors" on
page 24-2). Doing so will raise a ValidationException or other
errors at commit time. For more information, see "Working With
Aggregates" on page 99-6.

Associating a New Target to an Existing Source Object

Using Basic Unit of Work API 98-5

Now, after the unit of work commit transaction:

petOwner == session.readObject(petOwner)

This means that we have a handle to the cache copy after the commit transaction,
rather than a clone.

Example 98–7 shows how to use unit of work method registerNewObject to add a
new object when a bidirectional relationship exists. For more information, see "Using
registerNewObject" on page 99-2.

Example 98–7 Resolving Issues When Adding New Objects

// Get an employee read from the parent session of the unit of work
Employee manager = (Employee)session.readObject(Employee.class);

// Acquire a unit of work
UnitOfWork uow = session.acquireUnitOfWork();

// Register the manager to get its clone
Employee managerClone = (Employee)uow.registerObject(manager);

// Create a new employee
Employee newEmployee = new Employee();
newEmployee.setFirstName("Spike");
newEmployee.setLastName("Robertson");

/* INCORRECT: Do not associate the new employee with the original manager. This
will cause a QueryException when TopLink detects this error during commit */
//newEmployee.setManager(manager);

/* CORRECT: Associate the new object with the clone. Note that in this example,
the setManager method is maintaining the bidirectional managedEmployees
relationship and adding the new employee to its managedEmployees. At commit time,
the unit of work will detect that this is a new object and will take the
appropriate action */
newEmployee.setManager(managerClone);

/* INCORRECT: Do not register the newEmployee: this will create two copies and
cause a QueryException when TopLink detects this error during commit */
//uow.registerObject(newEmployee);

/* CORRECT:
In the above setManager call, if the managerClone’s managedEmployees was not
maintained by the setManager method, then you should call registerObject before
the new employee is related to the manager. If in doubt, you could use the
registerNewObject method to ensure that the newEmployee is registered in the unit
of work. The registerNewObject method registers the object, but does not make a
clone */
uow.registerNewObject(newEmployee);

Note: You cannot use UnitOfWork methods registerObject,
registerNewObject, or registerExistingObject with an
aggregate object (see "Relational Aggregate Descriptors" on
page 24-2). Doing so will raise a ValidationException or other errors at
commit time. For more information, see "Working With Aggregates"
on page 99-6.

Associating a New Source to an Existing Target Object

98-6 Oracle TopLink Developer’s Guide

// Commit the unit of work
uow.commit();

Associating a New Source to an Existing Target Object
This section describes how to associate a new source object with an existing target
object with one-to-many and one-to-one relationships.

TopLink follows all relationships of all registered objects (deeply) in a unit of work to
calculate what is new and what has changed. This is known as persistence by
reachablity. In "Associating a New Target to an Existing Source Object" on page 98-3,
we saw that when you associate a new target with an existing source, you can choose
to register the object or not. If you do not register the new object, it is still reachable
from the source object (which is a clone, hence it is registered). However, when you
need to associate a new source object with an existing target, you must register the
new object. If you do not register the new object, then it is not reachable in the unit of
work, and TopLink will not write it to the database.

For example, the code shown in Example 98–8 shows how to create a new Pet and
associate it with an existing PetOwner.

Example 98–8 Associating a New Source to an Existing Target Object

UnitOfWork uow = session.acquireUnitOfWork();
PetOwner existingPetOwnerClone =

(PetOwner)uow.readObject(PetOwner.class);

Pet newPet = new Pet();
Pet newPetClone = (Pet)uow.registerObject(newPet);
newPetClone.setId(900);
newPetClone.setType("Lizzard");
newPetClone.setName("Larry");
newPetClone.setPetOwner(existingPetOwnerClone);

uow.commit();

This generates the proper SQL:

INSERT INTO PET (ID, NAME, TYPE, PET_OWN_ID) VALUES (900, 'Larry', 'Lizzard', 400)

In this situation, you should register the new object and work with the working copy
of the new object. If you associate the new object with the PetOwner clone without
registering, it will not be written to the database. If you are in a situation where you
want to associate the PetOwner clone with the new Pet object, use the advanced API
registerNewObject as described in "Using registerNewObject" on page 99-2.

If you fail to register the clone and accidentally associate the cache version of the
existing object with the new object, then TopLink will generate an error which states
that you have associated the cache version of an object ("from a parent session") with a
clone from this unit of work. You must work with working copies in units of work.

Note: You cannot use UnitOfWork methods registerObject,
registerNewObject, or registerExistingObject with an
aggregate object (see "Relational Aggregate Descriptors" on
page 24-2). Doing so will raise a ValidationException or other errors at
commit time. For more information, see "Working With Aggregates"
on page 99-6.

Deleting Objects

Using Basic Unit of Work API 98-7

Associating an Existing Source to an Existing Target Object
This section explains how to associate an existing source object with an existing target
object with one-to-many and one-to-one relationships.

As shown in Example 98–9, associating existing objects with each other in a unit of
work is as simple as associating objects in Java. Just remember to only work with
working copies of the objects.

Example 98–9 Associating an Existing Source to Existing Target Object

// Associate all VetVisits in the database to a Pet from the database
UnitOfWork uow = session.acquireUnitOfWork();

Pet existingPetClone = (Pet)uow.readObject(Pet.class);
Vector allVetVisitClones;
allVetVisitClones = (Vector)uow.readAllObjects(VetVisit.class);
Enumeration enum = allVetVisitClones.elements();
while(enum.hasMoreElements()) {

VetVisit vetVisitClone =(VetVisit)enum.nextElement();
existingPetClone.getVetVisits().addElement(vetVisitClone);
vetVisitClone.setPet(existingPetClone);

};
uow.commit();

The most common error when associating existing objects is failing to work with the
working copies. If you accidentally associate a cache version of an object with a
working copy you will get an error at commit time indicating that you associated an
object from a parent session (the cache version) with a clone from this unit of work.

Example 98–10 shows another example of associating an existing source to an existing
target object.

Example 98–10 Associating Existing Objects

// Get an employee read from the parent session of the unit of work
Employee employee = (Employee)session.readObject(Employee.class)

// Acquire a unit of work
UnitOfWork uow = session.acquireUnitOfWork();
Project project = (Project) uow.readObject(Project.class);

/* When associating an existing object (read from the session) with a clone, we
must make sure we register the existing object and assign its clone into a unit of
work */

/* INCORRECT: Cannot associate an existing object with a unit of work clone. A
QueryException will be thrown */
//project.setTeamLeader(employee);

/* CORRECT: Instead register the existing object then associate the clone */
Employee employeeClone = (Employee)uow.registerObject(employee);
project.setTeamLeader(employeeClone);
uow.commit();

Deleting Objects
To delete objects in a unit of work, use the deleteObject or deleteAllObjects
method. When you delete an object that is not already registered in the unit of work,
the unit of work registers the object automatically.

Deleting Objects

98-8 Oracle TopLink Developer’s Guide

When you delete an object, TopLink deletes the object’s privately owned child parts,
because those parts cannot exist without the owning (parent) object. At commit time,
the unit of work generates SQL to delete the objects, taking database constraints into
account.

When you delete an object, you must take your object model into account. You may
need to set references to the deleted object to null (for an example, see "Using
privateOwnedRelationship" on page 98-8).

This section explains how to delete objects within a unit of work, including the
following:

■ Using privateOwnedRelationship

■ Explicitly Deleting From the Database

■ Understanding the Order in Which Objects Are Deleted

Using privateOwnedRelationship
Relational databases do not have garbage collection like a Java Virtual Machine (JVM)
does. To delete an object in Java you just remove the reference to the object. To delete a
row in a relational database, you must explicitly delete it. Rather than tediously
manage when to delete data in the relational database, use the mapping attribute
privateOwnedRelationship to have TopLink manage the garbage collection in the
relational database for you.

As shown in Example 98–11, when you create a mapping using Java, use its
privateOwnedRelationship method to tell TopLink that the referenced object is
privately owned: that is, the referenced child object cannot exist without the parent
object.

Example 98–11 Specifying a Mapping as Privately Owned

OneToOneMapping petOwnerMapping = new OneToOneMapping();
petOwnerMapping.setAttributeName("petOwner");
petOwnerMapping.setReferenceClass(com.top.uowprimer.model.PetOwner.class);
petOwnerMapping.privateOwnedRelationship();
petOwnerMapping.addForeignKeyFieldName("PET.PET_OWN_ID", "PETOWNER.ID");
descriptor.addMapping(petOwnerMapping);

When you create a mapping using TopLink Workbench, you can select the Private
Owned check box under the General tab.

When you tell TopLink that a relationship is privately owned, you are specifying that:

■ If the source of a privately owned relationship is deleted, then delete the target.

■ If you remove the reference to a target from a source, then delete the target.

Do not configure privately owned relationships to objects that might be shared. An
object should not be the target in more than one relationship if it is the target in a
privately owned relationship.

The exception to this rule is the case when you have a many-to-many relationship in
which a relation object is mapped to a relation table and is referenced through a
one-to-many relationship by both the source and the target. In this case, if the
one-to-many mapping is configured as privately owned, then when you delete the
source, all the association objects will be deleted.

Consider the example shown in Example 98–12.

Deleting Objects

Using Basic Unit of Work API 98-9

Example 98–12 Privately Owned Relationships

// If the Pet-PetOwner relationship is privateOwned
// then the PetOwner will be deleted at uow.commit()
// otherwise, just the foreign key from PET to PETOWNER will
// be set to null. The same is true for VetVisit
UnitOfWork uow = session.acquireUnitOfWork();

Pet petClone = (Pet)uow.readObject(Pet.class);
petClone.setPetOwner(null);
VetVisit vvClone =

(VetVisit)petClone.getVetVisits().firstElement();
vvClone.setPet(null);
petClone.getVetVisits().removeElement(vvClone);

uow.commit();

If the relationships from Pet to PetOwner and from Pet to VetVisit are not
privately owned, this code produces the following SQL:

UPDATE PET SET PET_OWN_ID = NULL WHERE (ID = 150)
UPDATE VETVISIT SET PET_ID = NULL WHERE (ID = 350)

If the relationships are privately owned, this code produces the following SQL:

UPDATE PET SET PET_OWN_ID = NULL WHERE (ID = 150)
UPDATE VETVISIT SET PET_ID = NULL WHERE (ID = 350)
DELETE FROM VETVISIT WHERE (ID = 350)
DELETE FROM PETOWNER WHERE (ID = 250)

Explicitly Deleting From the Database
If there are cases where you have objects that will not be garbage collected through
privately owned relationships (especially root objects in your object model), then you
can explicitly tell TopLink to delete the row representing the object using the
deleteObject API, as shown in Example 98–13.

Example 98–13 Explicitly Deleting

UnitOfWork uow = session.acquireUnitOfWork();
pet petClone = (Pet)uow.readObject(Pet.class);
uow.deleteObject(petClone);

uow.commit();

The preceding code generates the following SQL:

DELETE FROM PET WHERE (ID = 100)

Understanding the Order in Which Objects Are Deleted
The unit of work does not track changes or the order of operations. It is intended to
insulate you from having to modify your objects in the order the database requires.

By default, at commit time, the unit of work correctly puts in order all insert and
update operations using the constraints defined by your schema. After all insert and
update operations are done, the unit of work will issue the necessary delete
operations.

Constraints are inferred from one-to-one and one-to-many mappings. If you have no
such mappings, you can add additional constraint knowledge to TopLink as described
in "Controlling the Order of Delete Operations" on page 99-16.

Deleting Objects

98-10 Oracle TopLink Developer’s Guide

Using Advanced Unit of Work API 99-1

99
Using Advanced Unit of Work API

This chapter explains the advanced unit of work API calls and techniques commonly
used later in the development cycle, including the following:

■ Registering and Unregistering Objects

■ Declaring Read-Only Classes

■ Writing Changes Before Commit Time

■ Using Conforming Queries and Descriptors

■ Merging Changes in Working Copy Clones

■ Resuming a Unit of Work After Commit

■ Reverting a Unit of Work

■ Using a Nested or Parallel Unit of Work

■ Using a Unit of Work With Custom SQL

■ Controlling the Order of Delete Operations

■ Using Optimistic Read Locking With forceUpdateToVersionField

■ Implementing User and Date Auditing With the Unit of Work

■ Integrating the Unit of Work With an External Transaction Service

■ Integrating the Unit of Work With CMP

■ Database Transaction Isolation Levels

■ Troubleshooting a Unit of Work

For more information about the available methods for the UnitOfWork, see Oracle
TopLink API Reference.

Registering and Unregistering Objects
The unit of work provides the following object registration options:

■ Creating and Registering an Object in One Step

■ Using registerNewObject

■ Using registerAllObjects

■ Using Registration and Existence Checking

■ Working With Aggregates

■ Unregistering Working Clones

Registering and Unregistering Objects

99-2 Oracle TopLink Developer’s Guide

Creating and Registering an Object in One Step
Example 99–1 shows how to use the unit of work newInstance method to create a
new Pet object, register it with the unit of work, and return a clone, all in one step. If
you are using a factory design pattern to create your objects (and have specified this in
the query builder), the newInstance method will use the appropriate factory.

Example 99–1 Creating and Registering an Object in One Step

UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet)uow.newInstance(Pet.class);
petClone.setId(100);
petClone.setName("Fluffy");
petClone.setType("Cat");

uow.commit();

Using registerNewObject
This section examines how to use the registerNewObject method, including the
following the following:

■ Registering a New Object With registerNewObject

■ Associating New Objects With One Another

Registering a New Object With registerNewObject
The registerNewObject method registers a new object as if it was a clone. At
commit time, the unit of work creates another instance of the object to be the cache
version of that object.

Use registerNewObject in situations where:

■ You do not need a handle to the cache version of the object after the commit
transaction and you do not want to work with clones of new objects.

■ You must pass a clone into the constructor of a new object, then register the new
object.

Example 99–2 shows how to register a new object with the registerNewObject
method.

Example 99–2 Registering a New Object with the registerNewObject Method

UnitOfWork uow = session.acquireUnitOfWork();
PetOwner existingPetOwnerClone =

PetOwner)uow.readObject(PetOwner.class);

Pet newPet = new Pet();
newPet.setId(900);
newPet.setType("Lizzard");
newPet.setName("Larry");
newPet.setPetOwner(existingPetOwnerClone);

Note: You cannot use UnitOfWork methods registerObject,
registerNewObject, or registerExistingObject with an
aggregate object (see "Relational Aggregate Descriptors" on
page 24-2). Doing so will raise a ValidationException or other
errors at commit time. For more information, see "Working With
Aggregates" on page 99-6.

Registering and Unregistering Objects

Using Advanced Unit of Work API 99-3

uow.registerNewObject(newPet);
uow.commit();

By using registerNewObject, the variable newPet should not be used after the
unit of work is committed. The new object is the clone and if you need the cache
version of the object, you need to query for it. If you needed a handle to the cache
version of the Pet after the unit of work has been committed, then you should use the
first approach described in "Associating a New Source to an Existing Target Object" on
page 98-6. In that example, the variable newPet is the cache version after the unit of
work is committed.

Associating New Objects With One Another
At commit time, TopLink can determine if an object is new or not. As described in
"Associating a New Target to an Existing Source Object" on page 98-3, if a new object is
reachable from a clone, you do not need to register it. TopLink effectively uses the
registerNewObject method on all new objects it can reach from registered objects.

When working with new objects, remember the following rules:

■ Only reachable or registered objects will be persisted.

■ New objects or objects that have been registered with registerNewObject are
considered to be working copies in the unit of work.

■ If you call registerObject with a new object, the clone, and the argument, is
considered the cache version.

Example 99–3 shows how to associate new objects with the registerNewObject
method.

Example 99–3 Associating New Objects with the registerNewObject Method

UnitOfWork uow = session.acquireUnitOfWork();
Pet newPet = new Pet();
newPet.setId(150);
newPet.setType("Horse");
newPet.setName("Ed");

PetOwner newPetOwner = new PetOwner();
newPetOwner.setId(250);
newPetOwner.setName("George");
newPetOwner.setPhoneNumber("555-9999");

VetVisit newVetVisit = new VetVisit();
newVetVisit.setId(350);
newVetVisit.setNotes("Talks a lot");
newVetVisit.setSymptoms("Sore throat");

newPet.getVetVisits().addElement(newVetVisit);
newVetVisit.setPet(newPet);
newPet.setPetOwner(newPetOwner);

uow.registerNewObject(newPet);
uow.commit();

However, after the unit of work commit, do not use the objects in the variables
newPet, newPetOwner, and newVetVisit because they are technically copies from
the unit of work.

Registering and Unregistering Objects

99-4 Oracle TopLink Developer’s Guide

If you need a handle to the cache version of these objects, query for them or use the
unit of work as shown in Example 99–4.

Example 99–4 Associating New Objects with the newObjectMethod and Retaining a
Handle to the Cache Objects

UnitOfWork uow = session.acquireUnitOfWork();
Pet newPet = new Pet();
Pet newPetClone = (Pet)uow.registerObject(newPet);
newPetClone.setId(150);
newPetClone.setType("Horse");
newPetClone.setName("Ed");

PetOwner newPetOwner = new PetOwner();
PetOwner newPetOwnerClone =

(PetOwner)uow.registerObject(newPetOwner);
newPetOwnerClone.setId(250);
newPetOwnerClone.setName("George");
newPetOwnerClone.setPhoneNumber("555-9999");

VetVisit newVetVisit = new VetVisit();
VetVisit newVetVisitClone =

(VetVisit)uow.registerObject(newVetVisit);
newVetVisitClone.setId(350);
newVetVisitClone.setNotes("Talks a lot");
newVetVisitClone.setSymptoms("Sore throat");

newPetClone.getVetVisits().addElement(newVetVisitClone);
newVetVisitClone.setPet(newPetClone);
newPetClone.setPetOwner(newPetOwnerClone);

uow.commit();

Using registerAllObjects
The registerAllObjects method takes a Collection of objects as an argument
and returns a Collection of clones. This lets you register many objects at once as
shown in Example 99–5.

Example 99–5 Using registerAllObjects

UnitOfWork uow = session.acquireUnitOfWork();
Collection toRegister = new Vector(2);
VetVisit vv1 = new VetVisit();
vv1.setId(70);
vv1.setNotes("May have flu");
vv1.setSymptoms("High temperature");
toRegister.add(vv1);

VetVisit vv2 = new VetVisit();
vv2.setId(71);

Note: You cannot use UnitOfWork methods registerObject,
registerNewObject, or registerExistingObject with an
aggregate object (see "Relational Aggregate Descriptors" on
page 24-2). Doing so will raise a ValidationException or other errors at
commit time. For more information, see "Working With Aggregates"
on page 99-6.

Registering and Unregistering Objects

Using Advanced Unit of Work API 99-5

vv2.setNotes("May have flu");
vv2.setSymptoms("Sick to stomach");
toRegister.add(vv2);

uow.registerAllObjects(toRegister);
uow.commit();

Using Registration and Existence Checking
When you register an object with the unit of work, TopLink runs an existence check to
determine whether or not the object exists. TopLink uses this information at commit
time to determine whether to perform an insert or an update operation. You can
specify the default existence checking policy for a project as a whole (see "Configuring
Existence Checking at the Project Level" on page 19-8) or on a per-descriptor basis
("Configuring Cache Existence Checking at the Descriptor Level" on page 25-43). By
default, TopLink uses the check cache existence checking policy. If you use any
existence checking policy other than check cache, then you can use the way you
register your objects to your advantage to reduce the time it takes TopLink to register
an object.

This section explains how to use one of the following existence checking policies to
accelerate object registration:

■ Check Database

■ Assume Existence

■ Assume Nonexistence

Check Database
If you configure a class’s descriptor with an existence checking policy of check
database, TopLink will check the database for existence for all instances of that class
registered in a unit of work. However, if you know that an object is new or existing,
rather than use the basic registerObject method, you can use
registerNewObject or registerExistingObject to bypass the existence check.
TopLink will not check the database for existence on objects that you have registered
with these methods. It will automatically perform an insert operation if
registerNewObject is called, or an update operation if
registerExistingObject is called.

Assume Existence
If you configure a class’s descriptor with an existence checking policy of assume
existence, TopLink will assume that all instances of that class registered with a unit of
work exist and TopLink will always perform an update operation to the database on
all such registered objects; even new objects that you registered with
registerObject method. However, if you use the registerNewObject method
on the new object, TopLink knows to perform an insert operation in the database even
though the existence checking policy says assume existence.

Assume Nonexistence
If you configure a class’s descriptor with an existence checking policy of assume
nonexistence then TopLink assumes that all instances of that class registered with a
unit of work do not exist and will always perform an insert operation on the database,
even on objects read from the database. However, if you use the
registerExistingObject method on existing objects, TopLink knows to perform
an update operation on the database.

Declaring Read-Only Classes

99-6 Oracle TopLink Developer’s Guide

Working With Aggregates
Aggregate mapped objects should never be registered in a TopLink unit of
work–doing so will generate an exception. Aggregate cloning and registration is
automatic based on the owner of the aggregate object. In other words, if you register
the owner of an aggregate, the aggregate is automatically cloned. When you get a
working copy of an aggregate owner, its aggregate is also a working copy.

When working with aggregates, you should always use an aggregate within the context
of its owner:

■ If you get an aggregate from a working clone owner, then the aggregate is a
working clone.

■ If you get an aggregate from a cache version owner, then the aggregate is the
cache version.

For more information about aggregate objects, see "Relational Aggregate Descriptors"
on page 24-2.

Unregistering Working Clones
The unit of work unregisterObject method lets you unregister a previously
registered object from a unit of work. An unregistered object will be ignored in the
unit of work, and any uncommitted changes made to the object up to that point will be
discarded.

In general, this method is rarely used. It can be useful if you create a new object, but
then decide to delete it in the same unit of work (which is not recommended).

Declaring Read-Only Classes
You can declare a class as read-only within the context of a unit of work. Clones are
neither created nor merged for such classes, thus improving performance. Such classes
are ineligible for changes in the unit of work.

When a unit of work registers an object, it traverses and registers the entire object tree.
If the unit of work encounters a read-only class, it does not traverse that branch of the
tree, and does not register objects referenced by the read-only class, so those classes
are ineligible for changes in the unit of work. The read-only classes are cached and
must not be changed by the user.

Configuring Read-Only Classes for a Single Unit of Work
For example, suppose class A owns a class B, and class C extends class B. You acquire
a unit of work in which you know only instances of class A will change: you know that
no class Bs will change. Before registering an instance of class B, use the following:

myUnitofWork.addReadOnlyClass(B.class);

You can then proceed with your transaction: registering class A objects, modifying
their working copies, and committing the unit of work.

At commit time, the unit of work will not have to compare backup clones with the
working clones for instances of class B (even if instances were registered explicitly or
implicitly). This can improve unit of work performance if the object tree is very large.

Note that if you register an instance of class C, the unit of work does not create or
merge clones for this object; any changes made to class C are not be persisted because
class C extends class B and class B was identified as read-only.

Writing Changes Before Commit Time

Using Advanced Unit of Work API 99-7

To identify multiple classes as read-only, add them to a Vector and use the following
code:

myUnitOfWork.addReadOnlyClasses(myVectorOfClasses);

Note that a nested unit of work inherits the set of read-only classes from the parent
unit of work. For more information on using a nested unit of work, see "Using a
Nested or Parallel Unit of Work" on page 99-15.

Configuring Default Read-Only Classes
To establish a default set of read-only classes for all units of work, use the project
method setDefaultReadOnlyClasses(Vector). After you call this method, all
new units of work include the Vector of read-only classes.

Read-Only Descriptors
When you declare a class as read-only, the read-only declaration extends to its
descriptors. You can declare a descriptor as read-only at development time, using
either Java code or TopLink Workbench. This option improves performance by
excluding the read-only descriptors from unit of work registration and editing.

To flag descriptors as read-only in Java code, call the setReadOnly method on the
descriptor as follows:

descriptor.setReadOnly();

To declare a descriptor as read-only in TopLink Workbench, select the Read Only
check box for the specific descriptor.

For more information, see "Configuring Read-Only Descriptors" on page 25-5.

Writing Changes Before Commit Time
By default, when you call the unit of work commit method, TopLink writes your
changes to the data source and commits your changes.

Alternatively, you can perform a two-stage or partial commit transaction by using the
unit of work writeChanges method prior to calling commit (either directly or by
way of an external transaction service).

When you call the unit of work writeChanges method, the unit of work commit
process begins, and all changes are written out to the data source. However, the data
source transaction is not committed, nor will changes be merged into the shared
session cache. To finalize your changes, the unit of work commit method must still be
called (either directly or by way of an external transaction service).

After you call the unit of work writeChanges method, any attempt to register objects
or execute object-level queries will throw an exception. You may execute report
queries, noncaching queries, and data read and modify queries.

If any exception is thrown, the transaction will be rolled back (or marked rollback
only) and you cannot recover the unit of work.

You can call this method only once. You cannot use this method to write out changes
in an incremental fashion.

You can use the unit of work writeChanges method to address a variety of
transaction issues, including the following:

Using Conforming Queries and Descriptors

99-8 Oracle TopLink Developer’s Guide

■ As an alternative to conforming (see "Using Unit of Work Method writeChanges
Instead of Conforming" on page 99-12)

■ To handle external transaction issues (see "Using the Unit of Work to Handle
External Transaction Timeouts and Exceptions" on page 99-23)

Using Conforming Queries and Descriptors
Because queries are executed on the database, querying though a unit of work will not,
by default, include new, uncommitted objects in a unit of work. The unit of work will
not spend time executing your query against new, uncommitted objects in the unit of
work unless you explicitly tell it to. If you have uncommitted changes, this can pose a
problem in a unit of work. Uncommitted changes not yet written to the database
cannot influence which result set gets returned.

Conforming is a query feature that lets you include new, changed, or deleted objects
in queries within a unit of work prior to committing. This lets you to query against
your relative logical or transaction view of the database.

Before you use conforming, be aware of its limitations (see "Guidelines for Using
Conforming" on page 99-8) and make sure that conforming is actually necessary. For
example, consider the alternative described in "Conforming Query Alternatives" on
page 99-12.

This section explains the following:

■ Guidelines for Using Conforming

■ Using Conforming Queries

■ Using Conforming Descriptors

■ Conforming Query Alternatives

Guidelines for Using Conforming
When using conforming, follow the guidelines that this section describes to ensure
that conforming queries return the correct results:

■ Ensure That the Query Supports Conforming

■ Consider how Conforming Affects Database Results

■ Register New Objects and Instantiate Relationships

Ensure That the Query Supports Conforming
Conforming is supported by the following queries:

■ ReadObjectQuery

■ ReadAllQuery

■ Expressions

■ EJB QL

■ Query by example

Note: By default, TopLink suppresses exceptions thrown during the
memory search stage of conforming. For more information on
handling exceptions during conforming, see "Exceptions During
Conforming" on page 99-34.

Using Conforming Queries and Descriptors

Using Advanced Unit of Work API 99-9

■ Query by selection object or primary key (only new or deleted objects apply)

Conforming is not supported by the following queries:

■ ReportQuery

■ DataReadQuery

■ DataReadQuery (deleted objects can be conformed)

■ StoredProcedureCall (deleted objects can be conformed)

■ EISCall (deleted objects can be conformed)

■ Expression or EJB QL queries that use database-specific functions, or subselects.

Consider how Conforming Affects Database Results
When conforming is used on a ReadAllQuery, the database result is first queried. If
the unit of work has not yet committed any changes to the database, this result will not
reflect the unit of work changes. The database results are then conformed in memory
using the following criteria:

■ Registered new objects that conform to the query are added.

■ Modified existing objects that no longer conform are removed.

■ Modified existing objects that conform are added.

■ Deleted objects are removed.

If the query uses ordering, ordering of conformed results is not maintained and
conformed instances are added to the front of the result. To apply ordering, store the
result in memory using Collections method sort, or a TreeSet result collection
class. When using conforming on a ReadObjectQuery, first query the unit of work
for a conforming object: if the conforming object is found, it is returned and the
database access is avoided; if the conforming object is not found, the database is
queried. If the unit of work has not yet committed any changes to the database, this
result does not reflect the unit of work changes. The database results are then
conformed in memory using the following criteria:

■ If the database result no longer conforms, null is returned.

■ If the database result has been deleted, null is returned.

Note: If new objects are not explicitly registered, they are not
conformed. Also, if removed object are not explicitly deleted, they are
not conformed.

Note: If the database result returns multiple results, only the first
result is considered, because it is an instance of the
ReadObjectQuery and only a single result is expected. If the first
result no longer conforms, null is returned, even if there were
potential valid conforming results.

If you expect the query to return multiple results, use a
ReadObjectQuery.

Using Conforming Queries and Descriptors

99-10 Oracle TopLink Developer’s Guide

Register New Objects and Instantiate Relationships
If a new object is only related to an existing object, and not explicitly registered,
queries for this object are not able to conform it. If you remove, but do not explicitly
delete a privately owned object, this object cannot be conformed.

If a query traverses relationships (uses joins) and the related objects are changed, the
query can only conform these objects if both of the following conditions are met:

■ The source objects have been registered in the unit of work.

■ The source objects’ relationship has been instantiated.

TopLink provides a conforming option that forces an instantiation of indirection.
However, you use this option with caution as it can cause an increased database
access.

Consider the example shown in Example 99–1. In this example, you have Employee
objects with an address attribute configured for indirection (see "Indirection" on
page 30-5) mapped by a one-to-one mapping to an Address object.

Figure 99–1 Conforming Example

You want to read all employees who live in Ottawa, but first, you need to modify
some of the Address objects to change city from Toronto to Ottawa. Jane Doe is one
such employee.

First, using the UnitOfWork, you read all Address objects and change some city
attributes (including Jane's) from Toronto to Ottawa. Then you run a conforming
query to get all employees who live in Ottawa. However, for the following reasons
Jane is not included in the results, even though she now lives in Ottawa:

■ Jane is not returned from the database because the transaction has not yet been
committed and in the database, her address still says Toronto.

■ Jane cannot be added to the conformed result in memory because she is not
registered in the UnitOfWork cache.

Conforming only recognizes explicit changes. In this example, Jane Doe’s Employee
object was only implicitly changed. In order to be considered explicitly changed, an
Employee must meet the following criteria:

■ be registered in the UnitOfWork

■ have its address attribute changed (in this example, indirection must be
triggered for the address attribute)

The correct way to handle this example would be as follows:

Using Conforming Queries and Descriptors

Using Advanced Unit of Work API 99-11

1. Using the UnitOfWork, read in all employees.

All these Employee objects are now registered with the UnitOfWork

2. Using the same UnitOfWork, access the employees’ addresses, instantiating the
indirect relationships.

3. Modify the employees’ addresses, changing some of the addresses to be in Ottawa.

4. Run the conforming query on employees with addresses inside Ottawa.

All employees with addresses in Ottawa are returned, including both employees
that were in Ottawa originally and employees whose addresses were changed in
this transaction.

5. Commit the transaction.

If you do not register all employees whose address may be changed, and instantiate
their address relationship, the conforming query will not include Jane.

An alternate approach is to use short transactions: the safest conforming query is one
made immediately after a commit. For example:

1. Using the UnitOfWork, read in all addresses outside of Ottawa.

2. Modify the addresses, changing some of the addresses to be in Ottawa

3. Commit the transaction.

4. Using the UnitOfWork, read in all employees inside Ottawa.

Using Conforming Queries
Assume that a single Pet of type Cat already exists on the database. Examine the code
shown in Example 99–6.

Example 99–6 Using Conforming Queries

UnitOfWork uow = session.acquireUnitOfWork();
Pet pet2 = new Pet();
Pet petClone = (Pet)uow.registerObject(pet2);
petClone.setId(200);
petClone.setType("Cat");
petClone.setName("Mouser");

ReadAllQuery readAllCats = new ReadAllQuery();
readAllCats.setReferenceClass(Pet.class);
ExpressionBuilder builder = new ExpressionBuilder();
Expression catExp = builder.get("type").equal("Cat");
readAllCats.setSelectionCriteria(catExp);

Vector allCats = (Vector)uow.executeQuery(readAllCats);

System.out.println("All 'Cats' read through UOW are: " + allCats);
uow.commit();

This produces the following output:

All 'Cats' read through UOW are: [Pet type Cat named Fluffy id:100]

If you tell the query readAllCats to include new objects:

readAllCats.conformResultsInUnitOfWork();

Using Conforming Queries and Descriptors

99-12 Oracle TopLink Developer’s Guide

The output would be:

All 'Cats' read through UOW are: [Pet type Cat named Fluffy id:100, Pet type Cat
named Mouser id:200]

Using Conforming Descriptors
TopLink’s support for conforming queries in the unit of work can be specified at the
descriptor level.

You can define a descriptor directly to always conform results in the unit of work so
that all queries performed on this descriptor conform its results in the unit of work by
default. You can specify this either within code or from TopLink Workbench.

You can configure a descriptor to always conform in the unit of work using TopLink
Workbench or Java code.

To configure a descriptor to always conform in the unit of work in Java code, use
Descriptor method setShouldAlwaysConformResultsInUnitOfWork, passing
in an argument of true.

To configure a descriptor to always conform in the unit of work using TopLink, see
"Configuring Unit of Work Conforming at the Descriptor Level" on page 25-6.

Conforming Query Alternatives
This section describes alternatives to conforming that may meet your needs without
the performance penalty imposed by conforming. This section describes the following:

■ Using Unit of Work Method writeChanges Instead of Conforming

■ Using Unit of Work Properties Instead of Conforming

Using Unit of Work Method writeChanges Instead of Conforming
Using UnitOfWork method writeChanges, you can write uncommitted changes to
the data source: you can execute report queries, noncaching queries, and data read and
modify queries against these changes (see Example 99–7).

Example 99–7 Using Unit of Work Method writeChanges

UnitOfWork uow = session.acquireUnitOfWork();
Pet pet = new Pet();
Pet petClone = (Pet)uow.registerObject(pet);
petClone.setId(100);
petClone.setName("Fluffy");
petClone.setType("Cat");

uow.writeChanges();

// Use uow to perform report, noncaching, and data read and modify queries
// against the changes made so far

uow.commit();

However, you can call writeChanges only once; any attempt to register objects or to
execute object-level queries will throw an exception.

For more information, see "Writing Changes Before Commit Time" on page 99-7

Merging Changes in Working Copy Clones

Using Advanced Unit of Work API 99-13

Using Unit of Work Properties Instead of Conforming
Sometimes, you need to provide other code modules with access to new objects
created in a unit of work. Conforming can be used to provide this access. However,
the following alternative is significantly more efficient.

Somewhere a unit of work is acquired from a session and is passed to multiple
modules for portions of the requisite processing:

UnitOfWork uow = session.acquireUnitOfWork();

In the module that creates the new employee, note the following:

Pet newPet = new Pet();
Pet newPetClone = (Pet)uow.registerObject(newPet);
uow.setProperty("NEW PET", newPet);

In other modules where newPet needs to be accessed for further modification, it can
simply be extracted from the unit of work’s properties:

Pet newPet = (Pet) uow.getProperty("NEW PET");
newPet.setType("Dog");

Conforming queries are ideal if you are not sure if an object has been created yet or the
criteria is dynamic.

However, for situations where the quantity of objects is finite and well known, using
unit of work properties is a simple and more efficient solution.

Merging Changes in Working Copy Clones
In a three-tier application, the client and server exchange objects using a serialization
mechanism such as RMI or CORBA. When the client changes an object and returns it
to the server, you cannot register this serialized object into a unit of work directly. On
the server, you must merge the serialized object with the original object in the session
cache.

Using the unit of work methods listed in Table 99–1, you can merge a deserialized
object into your session cache. Each method takes the serialized object as an argument
and returns the original object.

Before doing so, you must ensure that the source object is in your session cache.
Attempting to merge a deserialized object into a session cache that does not yet
contain the object will result in a descriptor exception (see "200: ATTEMPT_TO_
REGISTER_DEAD_INDIRECTION" on page 13-24). To avoid this, Oracle recommends
that you first read the object instance that the deserialized object represents. If you are
using a coordinated cache or your application is running in a cluster, the session you
merge into may not yet contain your original object. By performing a read operation
first, you guarantee that the object will be in the cache before you merge.

Table 99–1 Unit of Work Merge Methods

Method Purpose Used When

mergeClone Merges the serialized object and
all its privately owned parts
(excluding non-private
references from it to
independent objects) into the
working copy clone.

The client edits the object but not its
relationships, or marks its
independent relationships as
transient.

mergeCloneWithReferences Merges the serialized object and
all references into the working
copy clone.

The client edits the object and the
targets of its relationships and has not
marked any attributes as transient.

Resuming a Unit of Work After Commit

99-14 Oracle TopLink Developer’s Guide

Note that if your three-tier client is sufficiently complex, consider using the TopLink
remote session (see "Remote Sessions" on page 72-30). It automatically handles
merging and lets you use a unit of work on the client.

You can merge clones with both existing and new objects. Because clones do not
appear in the cache and may not have a primary key, you can merge new objects only
once within a unit of work. If you need to merge a new object more than once, call the
unit of work setShouldNewObjectsBeCached method, and ensure that the object
has a valid primary key; you can then register the object.

Example 99–8 shows one way to update the original object with the changes contained
in the corresponding serialized object (rmiClone) received from a client.

Example 99–8 Merging a Serialized Object

update(Object original, Object rmiClone) {
 original = uow.registerObject(original);
 uow.mergeCloneWithRefereneces(rmiClone);
 uow.commit();
}

For more information, see "Indirection, Serialization, and Detachment" on page 30-9.

Resuming a Unit of Work After Commit
At commit time, a unit of work and its contents expire: you must not use the unit of
work nor its clones even if the transaction failed and rolled back.

However, TopLink offers an API that lets you continue working with a unit of work
and its clones:

■ commitAndResume: Commits the unit of work, but does not invalidate it or its
clones.

■ commitAndResumeOnFailure: Commits the unit of work. If the commit
transaction succeeds, the unit of work expires. However, if the commit transaction
fails, this method does not invalidate the unit of work or its clones. This method
lets you modify the registered objects in a failed unit of work and retry the commit
transaction.

You should resume a unit of work only in an application that makes repeated changes
to the same, small dataset. Reusing the same unit of work while accessing different
datasets may result in poor performance.

shallowMergeClone Merges only serialized object
changes to attributes mapped
with direct mappings into the
working copy clone.

The client edits only the object's direct
attributes or has marked all of the
object's relationships as transient.

deepMergeClone Merges the serialized object and
everything connected to it (the
entire object tree where the
serialized object is the root) into
the working copy clone.

The client traverses all relationships
of the objects and makes changes.

Note: Use deepMergeClone with
caution. If two different copies of an
object are in the same tree, TopLink
will merge one set of changes over the
other. You should not have any
transient attributes in any of your
related objects.

Table 99–1 (Cont.) Unit of Work Merge Methods

Method Purpose Used When

Using a Nested or Parallel Unit of Work

Using Advanced Unit of Work API 99-15

Example 99–9 shows how to use the commitAndResume method.

Example 99–9 Using the commitAndResume Method

UnitOfWork uow = session.acquireUnitOfWork();
PetOwner petOwnerClone =

(PetOwner)uow.readObject(PetOwner.class);
petOwnerClone.setName("Mrs. Newowner");
uow.commitAndResume();
petOwnerClone.setPhoneNumber("KL5-7721");

uow.commit();

The commitAndResume call produces this SQL:

UPDATE PETOWNER SET NAME = 'Mrs. Newowner' WHERE (ID = 400)

Then, the commit call produces this SQL:

UPDATE PETOWNER SET PHN_NBR = 'KL5-7721' WHERE (ID = 400)

Reverting a Unit of Work
Under certain circumstances, you may want to abandon some or all changes to clones
in a unit of work, but not abandon the unit itself. The following options exist for
reverting all or part of the unit of work:

■ revertObject: Abandons changes to a specific working copy clone in the unit of
work

■ revertAndResume: Uses the backup copy clones to restore all clones to their
original states, deregister any new objects, and reinstate any deleted objects.

Using a Nested or Parallel Unit of Work
You can use a unit of work within another unit of work (nesting), or you can use two
or more units of work with the same objects in parallel.

Parallel Unit of Work
To start multiple units of work that operate in parallel, call the acquireUnitOfWork
method multiple times on the session. The units of work operate independently of one
another and maintain their own cache.

Nested Unit of Work
To nest units of work, call the acquireUnitOfWork method on the parent unit of
work. This creates a child unit of work with its own cache. If a child unit of work
commits, it updates the parent unit of work rather than the database. If the parent
does not commit, the changes made to the child are not written to the database.

TopLink does not update the database or the cache until the outermost unit of work is
committed. You must commit or release the child unit of work before you can commit
its parent.

Working copy clones from one unit of work are not valid in another units of work: not
even between an inner and outer unit of work. You must register objects at all levels of
a unit of work where they are used.

Example 99–10 shows how to use nested units of work.

Using a Unit of Work With Custom SQL

99-16 Oracle TopLink Developer’s Guide

Example 99–10 Using Nested Units of Work

UnitOfWork outerUOW = session.acquireUnitOfWork();
Pet outerPetClone = (Pet)outerUOW.readObject(Pet.class);

UnitOfWork innerUOWa = outerUOW.acquireUnitOfWork();
Pet innerPetCloneA =

(Pet)innerUOWa.registerObject(outerPetClone);
innerPetCloneA.setName("Muffy");

innerUOWa.commit();

UnitOfWork innerUOWb = outerUOW.acquireUnitOfWork();
Pet innerPetCloneB =

(Pet)innerUOWb.registerObject(outerPetClone);
innerPetCloneB.setName("Duffy");

innerUOWb.commit();
outerUOW.commit();

Using a Unit of Work With Custom SQL
You can execute native SQL or invoke a stored procedure within a unit of work by
using unit of work method executeNonSelectingCall or by executing a
DataModifyQuery. This makes the unit of work begin its database transaction early
and execute the call to the data immediately.

If you release the unit of work, it will roll back the database changes. If you commit
the unit of work and the commit succeeds, the unit of work will commit the changes to
the database.

You can execute a DataModifyQuery only in a unit of work or a database session.
You cannot execute a DataModifyQuery in a client or server session directly.

You can execute a DataReadQuery or use session method executeSelectingCall
in any session type because these do not modify data.

Example 99–11 illustrates using SQLCall with the unit of work method
executeNonSelectingCall.

Example 99–11 Using the executeNonSelectingCall Method

uow.executeNonSelectingCall(new SQLCall(mySqlString));

Controlling the Order of Delete Operations
"Deleting Objects" on page 98-7 explained that TopLink always properly arranges
(orders) the SQL based on the mappings and foreign keys in your object model and
schema. You can control the order of delete operations by the following:

■ Using the Unit of Work setShouldPerformDeletesFirst Method

■ Using the Descriptor addConstraintDependencies Method

WARNING: Allowing an unverified SQL string to be passed into
methods makes your application vulnerable to SQL injection
attacks.

Controlling the Order of Delete Operations

Using Advanced Unit of Work API 99-17

Using the Unit of Work setShouldPerformDeletesFirst Method
By default, TopLink does insert and update operations first, before delete operations,
to ensure that referential integrity is maintained. This is the preferred approach.

If you are forced to replace an object with unique constraints by deleting it and
inserting a replacement, you may cause a constraint violation if the insert operation
occurs before the delete operation. In this case, call
setShouldPerformDeletesFirst to perform the delete operation before the insert
operation.

Using the Descriptor addConstraintDependencies Method
The constraints used by TopLink to determine delete order are inferred from
one-to-one and one-to-many mappings. If you do not have such mappings, you can
add constraint knowledge to TopLink using the descriptor
addConstraintDependencies(Class) method.

For example, suppose you have a composition of objects: A contains B (one-to-many,
privately owned) and B has a one-to-one, nonprivate relationship with C. You want to
delete A (and in doing so the included Bs) but before deleting the Bs, for some of them
(not all) you want to delete the associated object C.

There are two possible solutions:

1. Using deleteAllObjects Without addConstraintDependencies

2. Using deleteAllObjects With addConstraintDependencies

Using deleteAllObjects Without addConstraintDependencies
In the first option, you do not identify the one-to-many (A to B) relationship as
privately owned. When deleting an A object, you must delete all of its B objects, as
well as any C objects, as shown in the following example:

uow.deleteObject(existingA);
uow.deleteAllObjects(existingA.getBs());
// delete one of the Cs
uow.deleteObject(((B) existingA.getBs().get(1)).getC());

This option produces the following SQL:

DELETE FROM B WHERE (ID = 2)
DELETE FROM B WHERE (ID = 1)
DELETE FROM A WHERE (ID = 1)
DELETE FROM C WHERE (ID = 1)

Using deleteAllObjects With addConstraintDependencies
In the second option, keep the one-to-many (A to B) relationship privately owned and
add a constraint dependency from A to C, as shown in the following example:

session.getDescriptor(A.class).addConstraintDependencies(C.class);

Now the delete code would be:

uow.deleteObject(existingA);
// delete one of the Cs
uow.deleteObject(((B) existingA.getBs().get(1)).getC());

This option produces the following SQL:

Using Optimistic Read Locking With forceUpdateToVersionField

99-18 Oracle TopLink Developer’s Guide

DELETE FROM B WHERE (A = 1)
DELETE FROM A WHERE (ID = 1)
DELETE FROM C WHERE (ID = 1)

In both cases, the B object is deleted before A and C. The main difference is that the
second option generates fewer SQL statements, as it knows that it is deleting the entire
set of Bs related from A.

Using Optimistic Read Locking With forceUpdateToVersionField
If your descriptors are configured to use an optimistic version locking policy (see
"Optimistic Version Locking Policies" on page 23-18) or field locking policy (see
"Optimistic Field Locking Policies" on page 23-20), use the unit of work method
forceUpdateToVersionField to solve either or both of the following problems:

■ You want an OptimisticLockingException thrown at commit time if an
object you read in a transaction has changed since it was registered even though
you have not changed the object in your transaction (see "Forcing a Check of the
Optimistic Read Lock" on page 99-18).

■ You modify an object in a transaction in such a way that its version field is not
updated but you want to alert other threads of the change by way of the version
field (see "Forcing a Version Field Update" on page 99-19).

For example, you change a privately owned object that has its own database table
so the parent object’s version field is not, by default, updated. In this case, you can
use forceUpdateToVersionField to update the parent’s version field.

As an alternative to this approach, consider "Optimistic Version Locking Policies
and Cascading" on page 23-19.

To remove forceUpdateToVersionField configuration from an object before a
commit operation, use the unit of work method
removeForceUpdateToVersionField (see "Disabling forceUpdateToVersionField"
on page 99-20).

Forcing a Check of the Optimistic Read Lock
When you read an object with the unit of work, optimistic lock checking is not applied
to that object at commit time unless you change the object. However, there are times
when you want your transaction to fail if the state of an object has changed since it
was read, even though you have not modified the object.

Example 99–12 shows a transaction that updates a mortgage rate by multiplying the
central bank prime rate by 1.25. The transaction forces an optimistic read lock on the
central prime rate at commit time to ensure that the prime rate has not changed since
the transaction began. Note that in this example, the transaction does not increment
the version of the unchanged object (the central prime rate).

Example 99–12 Optimistic Read Lock with No Version Increment

try {
UnitOfWork uow = session.acquireUnitOfWork();
MortgageRate cloneMortgageRate = (MortgageRate)
uow.registerObject(mortgageRate);

CentralPrimeRate cloneCentralPrimeRate = (CentralPrimeRate)
uow.registerObject(CentralPrimeRate);

/* Change the Mortgage Rate */
cloneMortgageRate.setRate(cloneCentralPrimeRate.getRate() * 1.25);

Using Optimistic Read Locking With forceUpdateToVersionField

Using Advanced Unit of Work API 99-19

/* Optimistic read lock check on Central prime rate with no version update */
uow.forceUpdateToVersionField(cloneCentralPrimeRate, false);
uow.commit();

} catch(OptimisticLockException exception) {
/* Refresh the out-of-date object */
session.refreshObject(exception.getObject());
/* Retry… */

}

For another example that forces both optimistic locking and a version field update, see
Example 99–13 in "Forcing a Version Field Update" on page 99-19.

Forcing a Version Field Update
The unit of work considers an object changed when you modify its direct-to-field or
aggregate object mapping attribute. Adding, removing, or modifying objects related to
the source object does not render the source object changed for the purposes of the
unit of work. In other words, when a relationship is changed in a one-to-many or
one-to-one target foreign key mapping, by default, the version field (if any) of the
affected object is not changed.

If you configure a descriptor to refresh the cache only if the database version is newer
than the cache version (using descriptor method
onlyRefreshCacheIfNewerVersion), and such a relationship changes, you will
not be able to refresh the object at all. Because the version has not changed, the unit of
work method refreshObject and even a query with
refreshIdentityMapResults option set to true cannot refresh the object.

Using the unit of work method forceUpdateToVersionField passing in both the
unit of work copy clone and true value will ensure that the object’s version field is
updated when such a change is made. It will also ensure that changes to the object
before it is refreshed will result in optimistic locking exceptions, preventing the
writing of stale data (see "Forcing a Check of the Optimistic Read Lock" on
page 99-18).

Example 99–13 and Example 99–14 show transactions executing in separate threads
that access the same customer object concurrently. The unit of work method
forceUpdateToVersionField is used to ensure that changes to the customer object in
one thread are detected by the other threads.

Example 99–13 shows a transaction in which an invoice thread calculates an invoice for
a customer. Example 99–14 shows a transaction in which another thread, the service
thread, adds a service to the same customer or modifies the current service. In either
case, the service thread must inform the invoice thread, which adds the changes to the
invoice.

Example 99–13 Optimistic Read Lock with Version Increment: Service Thread

/* The following code represents the service thread. Notice that the thread forces
a version update */
try {

UnitOfWork uow = session.acquireUnitOfWork();
Customer cloneCustomer = (Customer uow.registerObject(customer);
Service cloneService = (Service uow.registerObject(service);
/* Add a service to customer */
cloneService.setCustomer(cloneCustomer);
cloneCustomer.getServices().add(cloneService);
/* Modify the customer version to inform other application that
the customer has changed */

Using Optimistic Read Locking With forceUpdateToVersionField

99-20 Oracle TopLink Developer’s Guide

uow.forceUpdateToVersionField(cloneCustomer, true);
uow.commit();

}
catch (OptimisticLockException exception) {

/* Refresh out-of-date object */
session.refreshObject(exception.getObject());
/* Retry… */

}

Example 99–14 Optimistic Read Lock with Version Increment: Invoice Thread

/* The following code represents the invoice thread, and calculates a bill for the
customer. Notice that it does not force an update to the version */

try {
UnitOfWork uow = session.acquireUnitOfWork();
Customer cloneCustomer = (Customer) uow.registerObject(customer);
Invoice cloneInvoice = (Invoice) uow.registerObject(new Invoice());
cloneInvoice.setCustomer(cloneCustomer);
/* Calculate service charge */
int total = 0;
for(Enumeration enum = cloneCustomer.getServices().elements();
enum.hasMoreElements();) {
total += ((Service) enum.nextElement()).getCost();
}
cloneInvoice.setTotal(total);
/* Force optimistic lock checking on the customer to guarantee a valid
calculation */

uow.forceUpdateToVersionField(cloneCustomer, false);
uow.commit();

}
catch(OptimisticLockException exception) {

/* Refresh the customer and its privately owned parts */
session.refreshObject(cloneCustomer);
/* If the customer's services are not privately owned then use a
ReadObjectQuery to refresh all parts */
ReadObjectQuery query = new ReadObjectQuery(customer);
/* Refresh the cache with the query's result and cascade refreshing
to all parts including customer's services */

query.refreshIdentityMapResult();
query.cascadeAllParts();
/* Refresh from the database */
query.dontCheckCache();
session.executeQuery(query);
/* Retry… */

}

Disabling forceUpdateToVersionField
The forceUpdateToVersionField configuration you apply to an object stays in
effect for the lifetime of your unit of work. After you commit your transaction,
forceUpdateToVersionField configuration no longer applies.

To remove forceUpdateToVersionField configuration from an object before
commit time, use the unit of work method removeForceUpdateToVersionField.
TopLink will not apply optimistic read locking to the object unless you change it in
this transaction (that is, unless you modify its direct-to-field or aggregate object
mapping attribute).

Integrating the Unit of Work With an External Transaction Service

Using Advanced Unit of Work API 99-21

Implementing User and Date Auditing With the Unit of Work
Auditing datasource changes is a common requirement: when a user commits a
change to the datasource, the application updates a field in the datasource to record
the user who made the change and the date.

For example, suppose each row in your database schema includes fields
lastUpdateBy (to record the user name of the user who commits a change) and
lastUpdateOn (to record the date of the change).

You can use UnitOfWork method setProperty to record the name of the user who
acquires the UnitOfWork and implement a descriptor event listener for
AboutToUpdateEvent descriptor events that extracts the property and updates the
lastUpdateBy and lastUpdateOn fields.

For more information, see the following:

■ "Acquiring a Unit of Work" on page 98-1

■ "Configuring a Domain Object Method as an Event Handler" on page 25-59

■ "Configuring a Descriptor Event Listener as an Event Handler" on page 25-62

Integrating the Unit of Work With an External Transaction Service
To support transactions managed by an application server’s external transaction
service, TopLink supports external connection pools and external transaction
controller classes for supported servers. This lets you incorporate external transaction
service support into your application, and use the unit of work with transactions
managed externally by the server. For more information, see "Unit of Work Transaction
Demarcation" on page 97-2.

To integrate a unit of work with an external transaction service, you must enable the
use of the following:

■ an external transaction controller (see "Configuring the Server Platform" on
page 74-14)

■ an external connection pool (see "Configuring External Connection Pooling" on
page 82-2)

After you configure external connection pool and external transaction controller
support, you use a unit of work in your TopLink application as you would typically,
with few exceptions. This section describes these exceptions as follows:

■ Acquiring a Unit of Work With an External Transaction Service

■ Using a Unit of Work When an External Transaction Exists

■ Using a Unit of Work When No External Transaction Exists

■ Using the Unit of Work to Handle External Transaction Timeouts and Exceptions

Acquiring a Unit of Work With an External Transaction Service
You use a unit of work to commit changes to a data source even when using an
external transaction service. To ensure that only one unit of work is associated with a
given transaction, use the getActiveUnitOfWork method to acquire a unit of work
as shown in Example 99–15.

Integrating the Unit of Work With an External Transaction Service

99-22 Oracle TopLink Developer’s Guide

The getActiveUnitOfWork method searches for an existing external transaction in
the following way:

■ If there is an active external transaction and a unit of work is already associated
with it, return this unit of work.

■ If there is an active external transaction with no associated unit of work, then
acquire a new unit of work, associate it with the transaction, and return it.

■ If there is no active external transaction in progress, return null.

If TopLink returns a unit of work that is not null, use it exactly as you would
typically: the only exception is that you do not call the commit method (see "Using a
Unit of Work When an External Transaction Exists" on page 99-22).

If TopLink returns a null unit of work, start an external transaction explicitly through
the UserTransaction interface.

Example 99–15 Using a Unit of Work With an External Transaction Service

// Read in any pet
Pet pet = (Pet)clientSession.readObject(Pet.class);
UnitOfWork uow = clientSession.getActiveUnitOfWork();
if (uow == null) {

throw new RuntimeException("No transaction started");;
}
Pet petClone = (Pet)uow.registerObject(pet);
petClone.setName("Furry");

Using a Unit of Work When an External Transaction Exists
When getActiveUnitOfWork returns a unit of work that is not null, you are
associated with an existing external transaction. Use the unit of work as usual.

As the external transaction was not started by the unit of work, issuing a commit on it
will not cause the external transaction to be committed. The unit of work will defer to
the application or container that began the transaction. When the external transaction
does get committed by the container, TopLink receives synchronization callbacks at
key points during the commit transaction.

The unit of work sends the required SQL to the database when it receives the
beforeCompletion callback.

The unit of work uses the Boolean argument received from the afterCompletion
callback to determine if the commit was successful (true) or not (false).

If the commit transaction was successful, the unit of work merges changes to the
session cache. If the commit transaction was unsuccessful, the unit of work discards
the changes.

Figure 99–2 shows the life cycle of a unit of work when an external transaction exists.

Note: Although there are other ways to commit changes to a data
source using an external transaction service, Oracle recommends using
the getActiveUnitOfWork method.

Integrating the Unit of Work With an External Transaction Service

Using Advanced Unit of Work API 99-23

Figure 99–2 Unit of Work When an External Transaction Exists

Using a Unit of Work When No External Transaction Exists
When the getActiveUnitOfWork method returns a null unit of work, there is no
existing external transaction. You must start a new external transaction.

Do this either by starting an external transaction explicitly using the
UserTransaction interface, or by acquiring a new unit of work using the
acquireUnitOfWork method on the server session.

Use the unit of work as usual.

Once the modifications to registered objects are complete, you must commit the
transaction either explicitly through the UserTransaction interface or by calling the
unit of work commit method.

The transaction synchronization callbacks are then invoked on, and the database
updates and cache merge occur based upon those callbacks.

Figure 99–3 Unit of Work When No External Transaction Exists

Using the Unit of Work to Handle External Transaction Timeouts and Exceptions
This section describes two common problems with external transactions:

■ External Transaction Commit Timeouts

getActiveUnitOfWork()

Send SQL

Commit
Use Unit of Work

Unit of Work

beforeCompletion()

afterCompletion(result)

Get existing
transaction

Associate with
transaction

If result true, merge
to session cache

Application Unit of Work Container Database
Session
Cache

External
Transaction

getActiveUnitOfWork()

acquireUnitOfWork()

Send SQL

Commit
transactioncommit() Request commit

Use Unit of Work

Unit of Work

null No transaction exists

beforeCompletion()

afterCompletion(result)

Associate with transaction

Request new transaction
Create new
transaction

If result true, merge
to session cache

Application Unit of Work Container
External

Transaction Database
Session
Cache

Integrating the Unit of Work With CMP

99-24 Oracle TopLink Developer’s Guide

■ External Transaction Commit Exceptions

External Transaction Commit Timeouts
When an external transaction is committed, the external transaction service expects
each transaction owner to commit its portion of the overall transaction within a finite
amount of time. If any individual transaction exceeds this timeout interval, the
external transaction service will fail the specific transaction and roll it back (or mark it
rollback only).

If your transaction is large and its commit transaction may exceed the external
transaction service timeout interval, use UnitOfWork method writeChanges to
write changes to the data source before committing the external transaction. This will
reduce the time it takes for your part of the global transaction to commit.

For more information about the UnitOfWork method writeChanges, including
restrictions and warnings, see "Writing Changes Before Commit Time" on page 99-7.

External Transaction Commit Exceptions
When you use the unit of work with an external transaction service, commit
exceptions may not be thrown until long after your application thread calls its
UnitOfWork method commit and returns. In this case, commit exceptions are thrown
to the client of the container-managed transaction (CMT) call, forcing the client to
handle this server-side failure.

You can use the UnitOfWork method writeChanges to write changes to the data
source before the external transaction commits. This allows your application thread to
catch and handle most exceptions that could be thrown at the time the external
transaction service commits the global transaction.

For more information about the UnitOfWork method writeChanges, including
restrictions and warnings, see "Writing Changes Before Commit Time" on page 99-7.

For more information on handling unit of work exceptions in general, see "Handling
Exceptions" on page 99-33.

Integrating the Unit of Work With CMP
All modifications to persistent beans should be carried out in the context of a
transaction.

Modifying entity beans without a transaction can lead to an inconsistent state,
potentially corrupting the values in the TopLink cache. Because of this, TopLink does
not support modifying a bean through its remote interface when no transaction is
active. If you attempt to do so, TopLink simply does not write changes to the database.

Although TopLink does not let you modify an entity bean through its remote interface
without a transaction, TopLink does let you invoke methods on its home interface that
change the state in the underlying database without a transaction. For example, you
may invoke remove and create methods on the home interface of an entity bean
without a transaction.

To integrate TopLink transactions and the unit of work with container-managed
persistence (CMP), you must consider the following:

■ CMP Transaction Attribute

■ Local Transactions

■ Nondeferred Changes

Integrating the Unit of Work With CMP

Using Advanced Unit of Work API 99-25

CMP Transaction Attribute
To ensure that all modifications to persistent beans are carried out in the context of a
transaction, transactional attributes must be properly specified in the bean deployment
descriptors.

The transaction may be either client-controlled or container-controlled.

Client-controlled transactions are started explicitly by your application by way of the
javax.transaction.UserTransaction interface.

Container-controlled transactions are started implicitly by the container to satisfy the
transaction attribute configuration when a bean method is invoked in the absence of a
client-controlled transaction.

Table 99–2 shows what transaction (if any) an EJB method invocation uses depending
on how its transaction attribute is configured and whether or not a client-controlled
transaction exists at the time the method is invoked.

Oracle recommends that you do not make modifications to entity beans under
conditions identified as "Use no transaction" in Table 99–2. Oracle also recommends
that you avoid using the Supports transaction attribute because it leads to a
nontransactional state whenever the client does not explicitly provide a transaction.

Depending on the EJB container you use, you may be able to write without a
container-controlled transaction (see "Integrating the Unit of Work With an External
Transaction Service" on page 99-21). In this case, TopLink automatically uses a
transaction of its own, referred to as a local transaction (see "Local Transactions" on
page 99-25).

Local Transactions
Some EJB containers (such as OC4J) support writing without an active JTA transaction.

If you execute a bean method outside a JTA transaction while the transaction attribute
(see "CMP Transaction Attribute" on page 99-25) is set to Supports, NotSupported,
or Never, TopLink performs the operation within a local unit of work and commits
the unit of work at the end of the method. This unit of work is referred to as a local
transaction.

The reason for this is because the update semantics in the EJB specification are left
undefined for these scenarios, and a proper transactional model demands that a
transaction be active before being able to modify data. TopLink also requires change
operations to occur within a unit of work to ensure that the session cache remains
consistent.

Table 99–2 EJB Transaction State by Transaction Attribute

Transaction
Attribute

Client-Controlled
Transaction Exists

Client-Controlled Transaction
Does Not Exist

NotSupported Use no transaction Use no transaction

Supports Use client-controlled transaction Use no transaction

Required Use client-controlled transaction Use container-controlled transaction

RequiresNew Use client-controlled transaction Use container-controlled transaction

Mandatory Use client-controlled transaction Exception raised

Never Exception raised Use no transaction

Database Transaction Isolation Levels

99-26 Oracle TopLink Developer’s Guide

Nondeferred Changes
Some EJB containers (such as OC4J) support nondeferred changes: the ability to
modify the data source immediately as you change the persistent fields of an entity
bean.

Using nondeferred changes, you can achieve backwards compatibility with the native
behavior of some EJB containers (such as OC4J) and you can accommodate advanced
applications that rely on the database and entity changes being synchronized for such
things as triggers or stored procedures based on transient state within the transaction,
deletion and creation of rows with the same primary key, or other complex queries
that depend on transient transaction state.

Nondeferred changes have the disadvantage of being the least efficient approach: they
produce the greatest number of data source interactions.

By default, TopLink defers all changes until commit time. This is the most efficient
approach that produces the least number of data source interactions.

For more information, see "Nondeferred Changes" on page 23-3.

Database Transaction Isolation Levels
Achieving a particular database transaction isolation level in a TopLink application is
more involved than simply using the DatabaseLogin method
setTransactionIsolation.

In a typical TopLink application and in J2EE applications that require persistence in
general, a variety of factors affect when database transaction isolation levels apply and
to what extent a particular database transaction isolation can be achieved.

This section describes these factors and provides guidelines on configuring and using
TopLink to achieve each database transaction isolation level to the extent possible
given these factors.

This section includes the following:

■ General Factors Affecting Transaction Isolation Level

■ Read Uncommitted Level

■ Read Committed Level

■ Repeatable Read Levels

■ Serializable Read Levels

General Factors Affecting Transaction Isolation Level
This section describes some of the important factors and variables that may affect the
degree to which your TopLink application can achieve a particular database
transaction isolation level. These factors include the following:

■ External Applications

■ TopLink Coordinated Cache

■ DatabaseLogin Method setTransactionIsolation

■ Reading Through the Write Connection

■ Managing Cache Access

■ CMP and External Transactions

Database Transaction Isolation Levels

Using Advanced Unit of Work API 99-27

External Applications
In many cases, your TopLink application is not the only application that can update to
the database. External, non-TopLink applications, can also update the database at any
time.

In this case, your TopLink application must use the ObjectLevelReadQuery
method refreshIdentityMapResult (see "Refreshing the Cache" on page 93-35) or
Descriptor methods alwaysRefreshCache and disableCacheHits (see
"Configuring Cache Refreshing" on page 25-27).

For more information, see "Managing Cache Access" on page 99-29.

If the external application can update a version field in the database, your TopLink
application could use alwaysRefreshCache in conjunction with Descriptor
method onlyRefreshCacheIfNewerVersion to ensure that refresh operations are
performed only when required. Another, recommended way to achieve this, is to use
the descriptor isolated cache option (see "Cache Isolation" on page 87-9), as well as
cache invalidation (see "Cache Invalidation" on page 87-8).

TopLink Coordinated Cache
Consider multiple TopLink applications (each running on its own application server
instance) configured to use a distributed, coordinated cache (as described in
"Understanding Cache Coordination" on page 87-10). A TopLink application instance
first commits changes to its own cache before the change is distributed to other caches.
Because cache coordination is not instantaneous, there is a possibility that one
TopLink application instance may read an older version of an object from its cache
before a cache coordination message is received.

To provide your TopLink application with the most up-to-date version of an object use
the descriptor isolated cache option (see "Cache Isolation" on page 87-9), as well as
cache invalidation (see "Cache Invalidation" on page 87-8).

You can also avoid stale data by using Descriptor methods alwaysRefreshCache
and disableCacheHits. For more information on the disableCacheHits method,
see "Managing Cache Access" on page 99-29.

DatabaseLogin Method setTransactionIsolation
Use the DatabaseLogin method setTransActionIsolation to configure the
database transaction isolation level that TopLink applies to any database connection it
obtains, for example:

databaseLogin.setTransactionIsolation(DatabaseLogin.TRANSACTION_SERIALIZABLE);

This method sets the transaction isolation level used for both database read and write
operations on the database connections obtained from either an internal or external
connection pool (see "Connection Pools" on page 72-3), for both internal transactions
and external transactions as in the case of CMP.

However, with TopLink, by default read operations use a different database
connection than write operations, typically obtained from an external connection pool,
or may use the cache, bypassing the database entirely. Thus, with TopLink, by default,
read operations are always performed outside the transaction or unit of work, even if

Caution: Using Descriptor methods alwaysRefreshCache and
disableCacheHits will result in frequent database hits. Use only
when absolutely necessary.

Database Transaction Isolation Levels

99-28 Oracle TopLink Developer’s Guide

you perform the read operation within a transaction or unit of work. Although
database transaction isolation applies to both read and write connections, the read is
not performed as part of the transaction. Therefore, the read operation overrides the
transaction isolation set on the database.

Depending on the level of transaction isolation you are trying to achieve, you may
require that the same transaction isolation be applied to both read and write
operations. You must take special action to make TopLink use the same connection for
both read and write operations. For more information, see "Reading Through the Write
Connection" on page 99-28.

Reading Through the Write Connection
Recall that TopLink, by default, performs read operations with a different database
connection than used for write operations ("DatabaseLogin Method
setTransactionIsolation" on page 99-27). However, from the perspective of database
transaction isolation, there is a one-to-one relationship between transaction and
database connection: that is, all database operations (including read operations) must
use the same database connection in order to achieve a particular database transaction
isolation level.

In general, when TopLink performs a read operation, if a write connection already
exists, TopLink will use the write connection for the read operation. This is called
"reading through the write connection." If a write connection does not yet exist,
TopLink will acquire another connection and use that for the read operation.

You can configure TopLink to allocate a write connection early using any of the
following:

■ Pessimistic Locking Query

■ Unit of Work Method beginTransactionEarly

■ ConnectionPolicy Method setShouldUseExclusiveConnection

For more information, see "CMP and External Transactions" on page 99-30.

Pessimistic Locking Query When you use pessimistic locking
(ObjectLevelReadQuery methods acquireLocks or
acquireLocksWithoutWaiting or Session method refreshAndLockObject),
TopLink does the following:

■ Allocates a write connection used for both read and write operations.

■ Always reads from the database.

■ Always updates the cache with the database version.

Unit of Work Method beginTransactionEarly This method is advanced API. If you call
beginTransactionEarly on an instance of a unit of work, all read operations
should be performed through that instance of the unit of work.

Caution: Depending on the database transaction isolated level
reading through the write connection may lock the object being read.
This will affect performance and reduce concurrency. Oracle
recommends that you do not use these advanced techniques unless
strict database transaction isolation is absolutely necessary.

Database Transaction Isolation Levels

Using Advanced Unit of Work API 99-29

This method starts a database transaction immediately: any objects you read will lock
data in the database before commit time, reducing concurrency.

ConnectionPolicy Method setShouldUseExclusiveConnection Client sessions can access the
data source using a connection pool or an exclusive connection. To use an exclusive
connection, acquire your client session using a ConnectionPolicy (see "Acquiring a
Client Session That Uses Exclusive Connections" on page 75-7).

If you are using isolated client sessions (see "Isolated Client Sessions" on page 72-19),
you can use exclusive connections for reading isolated data. In this case, you can
configure TopLink to acquire an exclusive connection from the write connection pool
and use it for both writing and reading isolated data. However, TopLink still acquires
a shared connection from the read connection pool for reading nonisolated data.

For more information, see "Exclusive Write Connections" on page 74-19.

Managing Cache Access
By default, TopLink uses the shared session cache as much as possible. Doing so
increases concurrency and improves performance. However, to achieve a particular
transaction isolation level, you may need to avoid the cache using some or all the
following:

■ Isolated Client Session Cache

■ ReadObjectQuery

■ ReadAllQuery

■ Descriptor Method disableCacheHits

■ DatabaseQuery Method dontMaintainCache

Isolated Client Session Cache This method always goes to the database for the initial
read operation of an object whose descriptor is configured as isolated. By avoiding the
shared session cache, you do not need to use the more complicated descriptor and
query APIs to disable cache hits or always refresh. For more information about
isolated client sessions, see "Isolated Client Sessions" on page 72-19. This is particularly
useful for achieving serializable transaction isolation (see "Serializable Read Levels" on
page 99-30).

ReadObjectQuery This API goes to the database unless it is a primary key-based query,
in which case it will go to the cache first. For information on how to avoid the cache
entirely in this case, see "Descriptor Method disableCacheHits" on page 99-29.

ReadAllQuery This API always goes to the databases. For information on how to avoid
the cache entirely in this case, see the description of the Descriptor method
alwaysRefreshCache in "Cache Refresh API" on page 87-14.

Descriptor Method disableCacheHits This API allows for cache hits on primary key,
read-object queries to be disabled. This can be used with the Descriptor method
alwaysRefreshCache to ensure queries always go to the database.

DatabaseQuery Method dontMaintainCache This is a query-level means of preventing
objects from being added to the shared session cache. Using an isolated client session
(see "Isolated Client Session Cache" on page 99-29) is a simpler approach to achieving
the same ends.

Database Transaction Isolation Levels

99-30 Oracle TopLink Developer’s Guide

CMP and External Transactions
In general, the transaction isolation information in this section applies to both CMP
and non-CMP applications, with the following exception:

For application servers other than OC4J, when using a TopLink application with CMP,
Oracle recommends that you configure your container to use separate read and write
connection pools, and to associate only the write connections with an external
transaction. This means the read connections do not participate in the transaction.

However, because TopLink treats EJB finders as just another type of query, you can
use your descriptor configuration to exploit the options described in "Reading
Through the Write Connection" on page 99-28. For example, if you configure a
descriptor to use pessimistic locking (see "Configuring Locking Policy" on page 25-64),
then when its finder is invoked it will allocate a write connection early and both read
and write operations will use the same connection.

Refer to "Externally Managed Transactional Data Sources" on page 81-1 for more
information on external transactions with transactional data sources.

Read Uncommitted Level
Oracle does not recommend using this transaction isolation level.

In general, a read uncommitted operation is not necessary. Using TopLink, a
transaction isolation of read committed gives you better performance than read
uncommitted but with greatly improved data integrity.

Read Committed Level
Using the unit of work guarantees that you will read only committed data in the
shared session cache or committed data in the database.

Repeatable Read Levels
To achieve repeatable read operations, you must use a unit of work, you must register
all objects in the unit of work (both objects you intend to modify and objects you
intend only to read), and you must use ObjectLevelReadQuery method
conformResultsInUnitOfWork or Descriptor method
alwaysConformResultsInUnitOfWork.

By doing so, each time you query a registered object, you will get the version of the
object as it currently is in your unit of work.

Serializable Read Levels
To achieve serializable transaction isolation with TopLink, Oracle recommends that
you use an isolated client session (see "Isolated Client Sessions" on page 72-19) as
follows:

1. Configure the database transaction isolation as serializable.

Note: OC4J always uses the same connection pool for reading and
writing: it uses JTA connections from that pool for writing, and
non-JTA connections from the pool for reading.

Troubleshooting a Unit of Work

Using Advanced Unit of Work API 99-31

2. Configure objects as isolated (see "Configuring Cache Isolation at the Project
Level" on page 19-16 or "Configuring Cache Isolation at the Descriptor Level" on
page 25-37).

3. Use the UnitOfWork method beginTransactionEarly (see "Unit of Work
Method beginTransactionEarly" on page 99-28).

If you are only concerned about the write aspect of serializable, optimistic locking is
sufficient.

To prevent phantom read transactions (that is, when a transaction detects that new
records that have been added to the database after the transaction started), use the
ReadQuery method cacheQueryResults.

Troubleshooting a Unit of Work
This section examines common unit of work problems and debugging techniques,
including the following:

■ Avoiding the Use of Post-Commit Clones

■ Determining Whether or Not an Object Is the Cache Object

■ Dumping the Contents of a Unit of Work

■ Handling Exceptions

■ Validating a Unit of Work

Avoiding the Use of Post-Commit Clones
A common unit of work error is holding on to clones after commit time. Typically the
clones are stored in a static variable and the developer incorrectly believes that this
object is the cache copy. This leads to problems when another unit of work makes
changes to the object and what the developer believes is the cache copy is not updated
(because a unit of work updates only the cache copy, not old clones).

Consider the error in Example 99–16. In this example you get a handle to the cache
copy of a Pet and store it in the static CACHE_PET. We get a handle to a working copy
clone and store it in the static CLONE_PET. In a future unit of work, the Pet is
changed.

Developers who incorrectly store global references to clones from units of work often
expect them to be updated when the cache object is changed in a future unit of work.
Only the cache copy is updated.

Example 99–16 Incorrect Use of Handle to Clone

// Read a Pet from the database, store in static
CACHE_PET = (Pet)session.readObject(Pet.class);

// Put a clone in a static. This is a bad idea and is a common error
UnitOfWork uow = session.acquireUnitOfWork();

CLONE_PET = (Pet)uow.readObject(Pet.class);
CLONE_PET.setName("Hairy");

uow.commit();
//Later, the pet is changed again
UnitOfWork anotherUow = session.acquireUnitOfWork();

Pet petClone = (Pet)anotherUow.registerObject(CACHE_PET);
petClone.setName("Fuzzy");

anotherUow.commit();

Troubleshooting a Unit of Work

99-32 Oracle TopLink Developer’s Guide

// If you incorrectly stored the clone in a static and thought it should be
// updated when it is later changed, you would be wrong: only the cache copy is
// updated; NOT OLD CLONES
System.out.println("CACHE_PET is" + CACHE_PET);
System.out.println("CLONE_PET is" + CLONE_PET);

The two System.out calls produce the following output:

CACHE_PET isPet type Cat named Fuzzy id:100
CLONE_PET isPet type Cat named Hairy id:100

Determining Whether or Not an Object Is the Cache Object
In "Modifying an Object" on page 98-2, it was noted that it is possible to read any
particular instance of a class by executing:

session.readObject(Class);

There is also a readObject method that takes an object as an argument: this method
is equivalent to doing a ReadObjectQuery on the primary key of the object passed
in. For example, the following code is equivalent to the code in the subsequent
example:

session.readObject(pet);

The following is equivalent to the preceding code:

ReadObjectQuery query = new ReadObjectQuery();
query.setReferenceClass(Pet.class);
ExpressionBuilder builder = new ExpressionBuilder();
Expression exp = builder.get("id").equal(pet.getId());
query.setSelectionCriteria(exp);
session.executeQuery(query);

Also note that primary key-based queries, by default, will return what is in the cache
without going to the database. As a result, you can use very quick and simple method
for accessing the cache copy of an object as shown in Example 99–17.

Example 99–17 Testing If an Object Is the Cache Object

//Here is a test to see if an object is the cache copy
boolean cached = CACHE_PET == session.readObject(CACHE_PET);
boolean cloned = CLONE_PET == session.readObject(CLONE_PET);
System.out.println("Is CACHE_PET the Cache copy of the object: " + cached);
System.out.println("Is CLONE_PET the Cache copy of the object: " + cloned);

This code produces the following output:

Is CACHE_PET the Cache copy of the object: true
Is CLONE_PET the Cache copy of the object: false

Dumping the Contents of a Unit of Work
The unit of work has several debugging methods to help you analyze performance or
track down problems with your code. The most useful is
printRegisteredObjects, which prints all the information about known objects in
the unit of work. Use this method to see how many objects are registered and to make
sure objects you are working on are registered.

Troubleshooting a Unit of Work

Using Advanced Unit of Work API 99-33

To use this method, you must have log messages enabled for the session that the unit
of work is from. Session log messages are disabled by default. To enable log messages,
use the session logMessages method. To disable log messages, use the session
dontLogMessages method as shown in Example 99–18.

Example 99–18 Dumping the Contents of a Unit of Work

session.logMessages(); // Enable log messages
UnitOfWork uow = session.acquireUnitOfWork();

Pet petClone = (Pet)uow.readObject(Pet.class);
petClone.setName("Mop Top");

Pet pet2 = new Pet();
pet2.setId(200);
pet2.setName("Sparky");
pet2.setType("Dog");
uow.registerObject(pet2);

uow.printRegisteredObjects();
uow.commit();
session.dontLogMessages(); // Disable log messages

This example produces the following output:

UnitOfWork identity hashcode: 32373
Deleted Objects:

All Registered Clones:
Key: [100] Identity Hash Code:13901 Object: Pet type Cat named Mop Top id:100
Key: [200] Identity Hash Code:16010 Object: Pet type Dog named Sparky id:200

New Objects:
Key: [200] Identity Hash Code:16010 Object: Pet type Dog named Sparky id:200

Handling Exceptions
This section explains how to handle the following:

■ Exceptions at Commit Time

■ Exceptions During Conforming

Exceptions at Commit Time
TopLink exceptions are instances of RuntimeException, which means that methods
that throw them do not have to be placed in a try-catch block.

However, the unit of work commit method is one that should be called within a
try-catch block to deal with problems that may arise.

Example 99–19 shows one way to handle unit of work exceptions:

Example 99–19 Handling Unit of Work Commit Exceptions

UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet)uow.registerObject(newPet);
petClone.setName("Assume this name is too long for a database constraint");
// Assume that the name argument violates a length constraint on the database.
// This will cause a DatabaseException on commit
try {

uow.commit();
} catch (TopLinkException tle) {

Troubleshooting a Unit of Work

99-34 Oracle TopLink Developer’s Guide

System.out.println("There was an exception: " + tle);
}

This code produces the following output:

There was an exception: EXCEPTION [ORACLEAS TOPLINK-6004]:
oracle.toplink.exceptions.DatabaseException

See "Database Exceptions (4002 – 4018)" on page 13-27 for more information on
DatabaseException.

If you use optimistic locking, you must catch exceptions at commit time because the
exception raised is the indication that there was an optimistic locking problem.
Optimistic locking allows all users to access a given object, even if it is currently in use
in a transaction or unit of work. When the unit of work attempts to change the object,
the database checks to ensure that the object has not changed since it was initially read
by the unit of work. If the object has changed, the database raises an exception, and the
unit of work rolls back the transaction. For more information, see "Locking and the
Unit of Work" on page 97-12.

If you are using an external transaction service, exceptions may be thrown long after
your UnitOfWork code has returned. Using UnitOfWork method writeChanges,
you can catch and handle most exceptions before the external transaction is
committed. For more information, see "External Transaction Commit Exceptions" on
page 99-24.

Exceptions During Conforming
You can conform query results in a unit of work across one-to-many relationships and
a combination of both one-to-one and one-to-many relationships. Example 99–20
illustrates a query across two levels of relationships, one-to-many and one-to-one.

Example 99–20 Querying Across Two Levels of Relationship

Expression exp =
bldr.anyOf("managedEmployees").get("address").get("city").equal("Perth");

By default, any exceptions thrown during conforming are suppressed. However, you
can use the UnitOfWork method setShouldThrowConformExceptions to make
the unit of work throw all conforming exceptions. This method takes one int
argument with the following values:

■ 0–do not throw conform exceptions (default)

■ 1–throw all conform exceptions

For more information on customizing exception handling when using conforming and
in-memory queries, see "Handling Exceptions Resulting From In-Memory Queries" on
page 93-33.

Validating a Unit of Work
The unit of work validates object references at commit time. If an object registered in a
unit of work references other unregistered objects, this violates object transaction
isolation, and causes TopLink validation to raise an exception.

Although referencing unregistered objects from a registered object can corrupt the
session cache, there are applications in which you want to disable validation. TopLink
offers the following APIs to toggle validation:

■ dontPerformValidation: disables validation

Troubleshooting a Unit of Work

Using Advanced Unit of Work API 99-35

■ performFullValidation: enables validation

Validating the Unit of Work Before Commit Time
If the unit of work detects an error when merging changes into the session cache, it
throws a QueryException. Although this exception specifies the invalid object and
the reason it is invalid, it may still be difficult to determine the cause of the problem.

In this case, you can use the validateObjectSpace method to test registered
objects and provide the full stack trace of all traversed objects. This may help you
more easily find the problem. You can call this method at any time on a unit of work.

Troubleshooting a Unit of Work

99-36 Oracle TopLink Developer’s Guide

Glossary-1

Glossary

This glossary contains terms and abbreviations that you should be familiar with when
using Oracle TopLink.

attribute

A variable of a class or object. In TopLink, an attribute describes all instance variables
of a class. Every attribute contains a single mapping. Attributes store primitive data
such as integers, and simple Java types such as String or Date.

authentication

The means by which a data source validates a user’s identity and determines whether
or not the user has sufficient privileges to perform a given action.

bean class

The implementation of the bean. The bean is accessed from the client using the home
and remote interfaces.

bean-managed persistence (BMP)

A scheme for persisting entity beans that requires the developer to manually code the
methods that perform the persistence.

Compare to container-managed persistence (CMP).

branch class

Has a persistent superclass and also has subclasses. By default, queries performed on
the branch class return instances of the branch class and any of its subclasses.
However, the branch class can be configured so that queries on it return only instances
of itself without instances of its subclasses.

Compare to leaf class.

class

A category of objects. Classes allow data and method to be grouped together.

class indicator field

A field in the table of the root class that indicates which subclass should be
instantiated

client session broker

A collection of client sessions, one from each server session associated with the session
broker.

Glossary-2

connection pool

A collection of reusable connections to a single data source.

container-managed persistence (CMP)

A scheme for persisting entity beans that uses information supplied by the developer
or deployer to perform the persistence

Compare to bean-managed persistence (BMP).

custom SQL

Refers to any non-TopLink-generated SQL used through TopLink. This includes
hard-coded SQL and stored procedure calls.

data definition language (DDL)

The data definition part of the structured query language (SQL). TopLink Workbench
can generate DDL creation scripts that can be used to create tables on the desired
database.

database session

A database session provides a client application with a single data store connection,
for simple, standalone applications in which a single connection services all data store
requests for one user.

default mapping

A relational persistence framework term that refers to making the framework
automatically generate the object descriptor metadata (including such things as
mappings, login data, database platform, locking, and foreign keys). Default mapping
is available for TopLink projects using EJB 2.0 CMP applications with OC4J.

dependent class path (IBM WebSphere)

Location where nonbean classes are specified. TopLink requires that the bean classes
be included here since they are referenced by the project.

deployment descriptor

A set of XML files that provide the additional required information to install an EJB
within its server. Typically, this incudes security, transaction, relationship, and
persistence information.

Compare with TopLink descriptors.

descriptors

An TopLink object that describes how an object’s attributes and relationships are to be
represented in relational database table(s). An "TopLink descriptor" is not the same as
a deployment descriptor, although it plays a similar role.

direct access

By default, TopLink accesses public attributes directly when writing the attributes of
the object to the database or reading the attributes of the object from the database.

Compare to method access.

direct mapping

There are two basic ways of storing object attributes directly in a table:

Glossary-3

■ The information can be stored directly if the attribute type is comparable to a
database type.

■ If there is no database primitive type that is logically comparable to the attribute’s
type, it must be transformed on its way to and from the database

TopLink provides five classes of direct mappings.

Compare to relationship mapping.

Enterprise Java Beans (EJB)

EJB are server-side domain objects that fit into a standard component-based
architecture for building enterprise applications with Java. They are objects that
become distributed, transactional, and secure components. TopLink Workbench uses
three types of EJB: session beans, entity beans, and message-driven beans.

expressions

The TopLink equivalent of an SQL conditional clause. TopLink expressions are
specified using the Expression and ExpressionBuilder classes.

entity beans

EJB that represent a persistent data object. TopLink uses two schemes for persisting
entity beans: bean-managed persistence (BMP) and container-managed persistence
(CMP).

fetch group

A performance enhancement that defines a subset of object attributes to be loaded
initially and ensures that all other attributes are loaded on demand.

hub

A common connection point for devices in a network.

identity map

Used to cache objects for performance and to maintain object identity.

See also object identity.

independent relationship

A relationship in which the source and target are public objects that exist
independently; the destruction of one object does not necessarily imply the destruction
of the other.

Compare to private relationship.

indirection

An indirection object is one that acts as a stand-in for another object. In TopLink,
indirection is implemented through value holders, which delay database access
through acting as substitute for any object relationships.

inheritance

Describes how a child class inherits the characteristics of its parent class. TopLink
supports multiple approaches to database implementations that preserve the
inheritance relationship.

in-memory query

A query that is run against the shared session cache.

Glossary-4

instantiate

Create an instance of a Java class.

J2C

The J2EE Connector architecture (J2C) adapter is a way to persist Java objects to a
nonrelational data source, such as XML.

J2SE

The Java 2 Platform, Standard Edition (J2SE) is the core Java technology platform. It
provides software compilers, tools, runtimes, and APIs for writing, deploying, and
running applets and applications in Java.

J2EE

The Java 2 Platform, Enterprise Edition (J2EE) is an environment for developing and
deploying enterprise applications. J2EE includes a set of services, APIs, and protocols
for developing multitiered web-based applications.

J2EE Containers

A J2EE container is a run-time environment for Enterprise Java Beans (EJB) that
includes such basic functions as security, life cycle management, transaction
management, and deployment services. J2EE containers are usually provided by a
J2EE server, such as Oracle Containers for J2EE.

Java Messaging Service (JMS)

The JMS API is a protocol for communication that provides asynchronous
communication between components in a distributed computing environment.

Java Naming and Directory Interface (JNDI)

The JDBC specification recommends using a JNDI naming service to acquire a
connection to a database. TopLink supports acquiring a database connection in this
fashion. To take advantage of this feature, construct and configure an instance of
oracle.toplink.jndi.JNDIConnector and pass it to the project login object
using the setConnector method.

Java Transaction API (JTA)

The Java Transaction API (JTA) specifies the interfaces between a transaction manager,
a resource manager, an application server, and transactional applications involved in a
distributed transaction system.

leaf class

Has a persistent superclass in the hierarchy but does not have subclasses; queries
performed on the leaf class can return only instances of the leaf class.

Compare to branch class.

locking policy

A mechanism that ensures one user does not overwrite another users’s work. TopLink
descriptors support optimistic and pessimistic locking policies.

mappings

Describe how individual Java objects and attributes relate to a data source.

Glossary-5

message-driven beans

An EJB that processes asynchronous Java Messaging Service (JMS) messages. For
TopLink clients, a message-driven bean is simply a JMS consumer with no
conversational state and no home or remote interfaces.

method access

The application registers accessor methods for the attribute.

Compare to direct access.

named query

A TopLink query that is created and stored, by name, in a session for later retrieval
and execution

object identity

Ensures that each object is represented by one and only one instance in the application;
that is, multiple retrievals of the same object return references to the same object
instance, not multiple copies of the same object. Violating object identity can corrupt
the object model.

See also identity map.

optimistic locking

Also known as write locking; allows unlimited read access to objects. A client can
write an object to the database only if the object has not changed since it was last read.

Compare to pessimistic locking.

packet

A piece of a message transmitted over a packet-switching network. One of the key
features of a packet is that it contains the destination address in addition to the data.

packet time-to-live

A number of hops that session data packets can take before expiring. The default is 2.

See also packet.

persist

In object technology, the storage of an Java object by a data source.

pessimistic locking

Objects are locked before they are edited, which ensures that only one client is editing
the object at any given time.

Compare to optimistic locking.

primary key

A field (or combination of fields) that uniquely identifies a record in the data source.

private relationship

A relationship in which the target object is considered to be a private component of the
source object; the target object cannot exist without the source and is accessible only
through the source object; furthermore, if the source object is destroyed, the target
object is destroyed as well.

Compare to independent relationship.

Glossary-6

query manager

An object, owned by a descriptor, that controls the way the descriptor accesses the
database. The query manager generates its own default SQL to access the database in a
transparent manner.

query optimization

TopLink supports two forms of query optimization: joining and batch reading. Their
purpose is to optimize database access through reducing the number of database calls
required to read a group of objects.

relationship

In TopLink, a reference between two TopLink-enabled objects.

relationship mapping

Persistent objects use relationship mappings to store references to instances of other
persistent classes. The appropriate mapping class is chosen primarily by the
cardinality of the relationship. TopLink provides five classes of relationship mappings.

Compare to direct mapping.

Remote Method Invocation (RMI)

A set of protocols that enable Java objects to communicate remotely with other Java
objects.

remote session

A remote session is a client-side session that communicates over RMI with a
corresponding client session and server session on the server side. Remote sessions
handle object identity and marshalling and unmarshalling between client side and
server side.

service channel

A name of the TopLink coordinated cache channel to which sessions subscribe in
order to participate in the same coordinated cache.

session beans

EJB that represent a business operation, task, or process. TopLink can use session
beans to make the regular Java objects they access persistent, or to wrap other legacy
applications.

stale data

An artifact of caching, in which an object in the cache is not the most recent version
committed to the data source.

TopLink session broker

A mechanism that enables client applications to transparently access multiple
databases through a single TopLink session.

unit of work

A transactional TopLink session that allows for a transaction to occur at the object
level not only the database level. Changes to objects are not visible globally until the
unit of work is committed.

value holder

A wrapping object used by TopLink to delay database access.

Index-1

Index

A
access

data access, 81-1
direct, 32-32
modifiers, 4-42
optimizing data access, 11-14
remote sessions, 72-32

access method
direct, 32-14
generating, 4-30
mappings, 32-15
method, 32-14
specifying, 32-32

access modifiers, classes, 4-42
acquiring

client sessions, 75-6
sessions, at runtime, 72-5
unit of work, 98-1

activating descriptors, 4-10
Add Named Query dialog, 25-12, 25-18, 25-20
Add New Class dialog, 4-40, 4-53
Add New Table button, 4-22
Add or Refresh Class button, 4-50
addConstraingDependencies(), 99-17
address

multicast group, 88-4
multicast port, 88-5

Add/Update Existing Tables from Database
button, 4-23

advanced properties for descriptors, 19-7
After Load tab, 25-81
aggregate collection relational mappings

and EJB, 33-11
configuring, 41-1
understanding, 33-10

aggregate descriptors
about, 23-5
aggregate object mapping, 23-5
EIS projects, 23-8
EJB 3.0, 23-6
inheritance, 23-17
relational projects, 23-5
XML projects, 23-8

aggregate object relational mappings
aggregate descriptors, and, 23-5

configuring, 43-1
understanding, 33-12

aggregation, isolated client sessions, 72-24
AllFieldsLockingPolicy, 23-20
allows none, 25-18, 95-15
allows null, 25-18, 95-15
amending descriptors, 2-21, 23-5, 25-81

see also after load
announcement delay, 88-11
Ant, integrating with Oracle TopLink

Workbench, 4-53
any collection XML mappings

configuring, 69-1
understanding, 62-29

any object XML mappings
configuring, 68-1
understanding, 62-27

application development
deploying, 10-1
mapping, 2-21
querying, 2-13, 71-2
troubleshooting, 15-1

application layer, remote sessions, 72-31
application servers

EJB support, customizing, 7-25
integrating with Oracle TopLink, 7-1
logging, 72-9
optimization, 11-30
setter parameter type checking, 7-25
single-object finder return type checking, 7-25,

7-26
software requirements, 7-2
target platforms, 2-5
unknown primary key class support, 7-25

architectures
application, 1-4
BMP, 1-6, 2-31
cache, 87-1
choosing, 2-3
CMP, 1-5, 2-27
EIS, 2-4, 53-5
EJB entity beans, 1-5, 1-6, 2-27, 2-31
EJB session bean facade, 1-5, 2-25
locking, 2-11
optimistic locking, 2-11
Oracle TopLink, 1-1

Index-2

pessimistic locking, 2-11
selecting, 2-5
session brokers, 72-26
sessions, 72-2
three-tier, 1-4, 2-22
two-tier, 1-6, 2-24
unit of work, 97-1
web services, 1-6, 2-35

arguments, binding in query, 26-6
array

dimensionality, 4-45, 4-49
object-relational mappings, 46-2

AsOfClause, 96-2
asynchronous change propagation, 88-2
AttributeChangeTrackingPolicy

about, 97-8
OC4J CMP integration, 97-8
OC4J EJB 3.0 CMP integration, 97-8
other application servers, 97-8

attributes
adding to descriptors, 4-44
array dimensionality, 4-45, 4-49
changes, tracking, 25-75
final, 4-45, 4-48
in TopLink Workbench, Navigator window, 4-9
lazy loading. see fetch groups
static, 4-45, 4-48
transforming, 32-29, 32-31, 33-15
transient, 4-45, 4-48
unmapping, 31-6
volatile, 4-45, 4-48

Attributes tab, 4-44, 4-48
Attunity Connect platform, 81-3
auditing

authentication, 81-6
unit of work, 99-21

authentication
about, 81-5
auditing, 81-6
proxy authentication, 81-5
simple JDBC authentication, 81-5
three-tier architecture, 81-5
two-tier architecture, 81-5

Automap, 31-2
automapping descriptors

about, 31-2
see also mappings

automatic table generation
about, 30-4
configuring, 8-12

B
Base64 encoded strings, 32-25
batch options

mappings, 34-7
writing, 11-15

batch reading
in query objects, 94-10
read optimization, and, 11-20

batch writing
about, 11-15, 11-26, 83-11
dynamic, 11-15
dynamic, setMaxBatchWritingSize(), 11-15
MySQL4 platform, 83-9
non-parameterized, 11-15
parameterized, 11-15
setMaxBatchWritingSize(), 11-15

BEA WebLogic
deploying to, 10-2
deployment exceptions, 15-3
modifying persistence descriptor, 8-14
setting classpath, 7-15
setting shared library, 7-15
transport layer, 72-31
using a security manager, 7-20

@Bean fetch=lazy, 30-9
beans

session beans, 2-26
stateful beans, 2-26
stateless beans, 2-26

bidirectional relationships
about, 33-2
generating, 4-31
in one-to-one mappings, 32-34
target keys, 33-5
with indirection, 32-35

bindAllParameters() method, 20-7
bindings

arguments, 26-6
input paramters, 94-20
JAXB, 17-10
LOB mappings, 31-3
see parameter binding

BLOB
mapping to, 31-2

BMP
and EJB 1.1, 2-32
and EJB 2.0, 2-32
and TopLink, 2-31
deployment files, 8-9
descriptors, 23-3, 25-46
packaging for deployment, 9-5

boolean logic in expressions, 95-3
branch classes, 23-13
buttons. see toolbars
bye array binding, LOB mappings, 31-3
Byte array Base64, 32-25

C
cache

about, 2-13, 2-18, 87-1
architecture, 87-1
configuring, 87-6, 96-20
coordination, 87-9, 88-1, 89-1, 90-1
descriptor level, 25-35
disabling during read query, 93-34
distributed, 87-9
expiration, 19-19, 25-42, 96-21

Index-3

expression limitations, 93-31
identity maps, using, 72-29
in-memory queries, 93-30, 93-31
internal query object cache, 93-36, 93-37, 96-20,

96-21
invalidation, 19-19, 25-42, 87-7, 87-8
isolated client sessions, 72-24
isolation, 87-6, 87-9
object cache, 93-36
object cascading refresh, 93-35
object refresh, 93-35
optimizing, 11-13
project level, 19-13
queries, 87-6, 93-29
query cache, 93-36
readObject method, and, 94-2
refreshing, 25-27, 87-8, 93-35
restrictions, 93-37
service channel, 88-3
sessions, 72-3, 72-33, 87-2
stale data, 87-6
storing query results, 93-36, 96-20
type and size, 19-13, 25-35
unit of work cache, 87-2

cache coordination
about, 87-9
application server clustering, and, 7-4
avoiding stale data, 87-7
CMP projects, 8-11
EJB Entity Beans with BMP architecture,

and, 2-33
explicit query refreshes, 87-7
JMS, 89-1
orion-ejb-jar.xml, 8-11
packet time-to-live, 88-15
permissions, 7-23
RMI, 90-1

cache invalidation, avoiding stale data, 87-7
cache synchronization. see cache coordination
cacheAllStatements(), 20-7
cacheQueryResults(), 25-25
cache-synchronization property, 8-11
Caching tab, 25-36, 25-38, 25-40, 25-44
calendar, 34-3
call

call queries, 93-17
EIS, 94-24
EJBQLCall, 94-24
SQLCall, 94-19
StoredFunctionCall, 94-23
StoredProcedureCall, 94-21

Call object, queries, 93-3
cascading

object refresh, 93-35
optimistic version locking, 23-19
write queries, compared to non-cascading, 93-15,

94-14
catalog, database, 4-22
catchExcpetions(), 74-19
change policy

about, 25-73
attribute change tracking, configuring, 25-75
deferred change detection, configuring, 25-73
empty transaction, 97-6
object change tracking, configuring, 25-73
unit of work, 97-6

change tracking
attribute, configuring, 25-75
deferred, configuring, 25-73
object, configuring, 25-73

changed items, displaying in TopLink Workbench
Navigator window, 4-9

ChangedFieldsLockingPolicy, 23-21
changing package names, 4-52
checkDatabase(), 74-18
checking in/out projects, 6-3
checkInstantiationPolicy(), 74-19
Choose a Schema Context dialog box, 28-3, 29-2
Choose Query Key dialog box, 95-14
Choose Relationships to Generate dialog box, 4-30
Choose Root Element dialog box, 28-4, 29-5
class extraction method

about, 23-15
inheritance, 23-15

class indicator
about, 23-14
class extraction method, 23-15
class indicator field, 23-14, 38-1

class loader
host application, 2-5
loading session, 75-4

class modifiers, 4-42
Class tab, 4-41, 4-42, 4-43
classes

access modifiers, 4-42
adding and refreshing, 4-50
branch, 23-13
creating, 4-40, 4-52
CursoredStream, optimizing, 96-18
Database Exception, 94-25
DatabaseMapping, 30-25
default null values, 32-36
DeleteObjectQuery, 94-13
ExpressionBuilder, 95-16
generating from database, 4-30
InsertObjectQuery, 94-13
InsertObjectQuery, 97-12
interfaces, 4-43
leaf, 23-13
merging files, 6-5
methods, adding, 4-47
naming, 4-41
non-descriptor classes, 4-51
object model, 2-16
Performance Profiler, 11-3
persistent requirements, 2-12
preferences, 4-16
refreshing, 4-50
removing, 4-51
root, 23-13

Index-4

troubleshooting, 14-25
unit of work, 97-12
UpdateObjectQuery, 94-13, 94-14
ValueHolderInterface, 2-12, 30-7, 33-9
VariableOneToOneMapping, 33-6
see also specific class name

classpath
adding, 19-3
BEA WebLogic, 7-15
configuring, 4-2, 7-15, 7-21
connector.jar, 4-2
custom Collection class, 4-3
DRIVER_CLASSPATH, Oracle TopLink

Workbench, 4-2
IBM WebSphere, 7-21
J2C adapter, 4-2
JDBC driver, 4-2, 4-23
JDBC_CLASSPATH, 4-2
Oracle TopLink Workbench DRIVER_

CLASSPATH, 4-2
relative, 19-3
setting for BEA WebLogic, 7-15
troubleshooting, 14-25
xdb.jar file, 4-3

client sessions
about, 72-1, 72-14, 72-26
acquiring, 75-6
configuration, 79-1
example, 72-16
shared resources, 72-15

client-controlled transactions, 99-25
client-server architecture. See two-tier
CLOB

mapping to, 31-2
clones

copying methods, 25-72
merging changes, 99-13
post-commit, avoiding, 99-31
unit of work, 97-2, 97-9

Cloudscape platform, 81-3
clustering, integrating TopLink with, 7-4
CMP

and EJB 1.1, 2-27
and EJB 2.x, 2-27
and EJB 3.0, 2-27
and TopLink, 2-27
CMPPolicy, 23-3, 25-46
deploying, 8-9, 10-2
descriptors, inheritance, 23-4
external transactions, 97-3
isolated client sessions, 72-25
local transaction, 99-25
non-deferred write, 99-26
OC4J persistence, 7-5
packaging for deployment, 9-4
setter parameter type checking, 7-25
single-object finder return type checking, 7-26
transaction attribute, 99-25
unit of work, 97-3, 99-24
unknown primary key class support, 7-25

code generation, optimizing, 11-8
collapsing items in Navigator window, 4-9
collection class

specifying, 94-9
specifying in query objects, 94-9

collections
persistent requirements for mappings, 2-12
query results, 93-8

comments
descriptors, 25-8, 25-9
mappings, 32-18
projects, 19-20

commit
and Java Transaction API, 97-10
failure, resuming after, 99-14
resuming unit of work after, 99-14

Communication Exceptions, 13-65
composite collection EIS mappings

configuring, 58-1
example, 53-8
understanding, 53-7

composite collection XML mappings
configuration, 67-1
configuring, 67-1
understanding, 62-25

composite descriptors
about, 23-5
composite object mapping, 23-8
EIS projects, 23-8
XML projects, 23-8

composite direct collection EIS mappings
configuring, 56-1
understanding, 53-6

composite direct collection XML mappings
configuring, 65-1
understanding, 62-14

composite EIS descriptors, 24-5
composite object EIS mappings

composite descriptors, and, 23-8
configuring, 57-1
understanding, 53-7

composite object mappings
composite descriptors, and, 23-8

composite object XML mappings
configuration, 66-1
configuring, 66-1
understanding, 62-21

composite primary key, 33-9
concrete class. see container policy
concurrency

about, 2-18
exceptions, 13-25
server session, 72-18

Concurrency Exceptions, 13-25
configurations

about, 73-2
creating, 73-2
development environment, 6-1
new, 73-2
Oracle JDeveloper, 6-1

Index-5

session, 73-2, 73-4, 73-6, 73-9
conforming

about, 99-8
alternatives, UnitOfWork method

writeChanges, 99-12
alternatives, UnitOfWork properties, 99-13
descriptors, and, 99-12
queries, alternatives to, 99-12

ConnectBy, 96-7
connection policy

configuring, 74-19
exclusive connections, 74-19
lazy connection acquisition, 74-20

connection pool
about, 81-7
connection count, 86-1
ConnectionPolicy, 72-20
external, 81-8
internal, 81-7, 81-8, 81-9
lazy connection allocation, 72-19, 75-9
named, 81-9
parameter binding, 11-16
prepared statement caching, 11-16
read, 81-8
sequence, 17-5, 81-8
server session, 72-18
sessions, and, 72-3
size, 86-1
write, 81-8

Connection Specifications tab, 21-3
Connection tab, 21-3
connections

about, 81-6
connection pool, 81-7
exclusive write connection, 74-19
lazy acquisition, 74-20
reading through the write connection, 99-28

connector.jar, 4-2, 17-7
container configuration file, 8-5
container policy

about, 32-26
custom Collection class, 4-3
sorting, in memory, 32-26

container-controlled transactions, 99-25
context

JAXB path, 17-13
menus, 4-5
schema, 28-2, 29-2

Context.SECURITY_CREDENTIALS, 88-9
Context.SECURITY_PRINCIPAL, 88-9
Conversion Exception, 13-26
Converter tab

object type mappings, 32-22
converters

custom, 33-3
object type, 32-22

coordinated announcement delay, 88-11
coordinated cache, 8-11

configuring, 88-1
naming service, 88-7

service channel, 88-3
copy policy

about, 25-71
method, 25-72
setting, 25-72

copying project objects, 6-6
Copying tab, 25-72
CORBA

Oracle TopLink transport layer support, 72-31
Transaction Service see OTS

Create New Project button, 18-2
Create New Project dialog box, 18-2
Create New Session dialog, 73-4, 73-6, 73-8
Create Project from JAXB dialog, 18-6
Create Project from OC4J dialog, 7-9
creating

configurations, 73-2
expressions, 95-13
sessions, 73-4, 73-6, 73-8, 85-1

Crimson XML parser, 7-3
cursored streams

example, 96-18
optimizing, 96-18
remote sessions, 72-32
usage example, 72-32

cursors
as query results, 93-8
traversing scrollable, 96-16

Custom Calls tab, 28-6
custom SQL

Custom SQL tab, 26-7
unit of work, 99-16

customization
about, 12-1
data types, 12-1
EIS, 12-1
mapping extensions, 12-1
overview, 2-15
XML, 12-1

D
data access

about, 81-1
authentication, 81-5
connection pool, 81-7
connections, 81-6
optimizing, 11-14, 11-15
platforms, 81-3

data level queries
example, 95-13
in expressions, 95-12

data source platform
about, 81-3
Attunity Connect database, 81-3
Cloudscape database, 81-3
databases, 81-3
DB2 database, 81-3
EIS, 81-4
HSQL database, 81-3

Index-6

Informix database, 81-3
J2C adapter, 81-4
JDBC drivers, 81-3
Microsoft Access database, 81-3
MySQL4 database, 81-3
Oracle database, 81-3
Oracle8 database, 81-3
Oracle9 database, 81-3
PointBase database, 81-3
SQLAnyWhere database, 81-3
SQLServer database, 81-3
SybasePlatform database, 81-3

data sources
configuring, 82-1
nontransactional, 81-1
transactional, 81-1
troubleshooting, 14-25

Database Exceptions, 13-27, 94-25
database fields, configuring, 34-2
database functions, in expressions, 95-3
database login

parameter binding, 83-9
prepared statement caching, 83-9

Database Preferences, 4-17
database queries

about, 93-10, 94-4
fetch groups, 93-13
join reading, 93-12
object level modify query, 93-14, 93-15
object level read query, 93-11, 93-13
partial object query, 93-11
read all query, 93-11
read object query, 93-11
report query, 93-15

database schema
tables, 4-22

database sessions
about, 72-2, 72-29
cache, 72-33
configuration, 80-1
creating, 73-8

database tables
about, 4-21
adding to database, 4-22
creating, 4-22
descriptors and classes, generating, 4-30
EJB entity generation, 4-31
fields, 4-25
generating, 4-29, 4-30, 4-32
importing, 4-22
Java source generation, 18-15
JDBC driver classpath, 4-23
properties, 4-25
references, 4-26, 4-28
removing, 4-24
renaming, 4-24
schema, 4-22
SQL generation, 4-29
TopLink Workbench, Navigator window, 4-9

DatabaseException class, 94-25

DatabaseLogin, 81-2
DatabaseMapping class, 30-25
DatabaseQuery, 93-3
DatabaseRow, 33-15
databases

catalog, 4-22
common problems, 14-25
connect to, 4-21
creating reference tables on, 4-27
custom drivers, 4-18
disconnect from, 4-21
drivers, 4-18
exceptions, 94-25
fields, configuring, 34-2
for project, 18-3
Java type conversion, 5-3
linking, 72-28
log out of, 4-22
logging into, 4-22, 20-7
logins, 83-1
mapping. See mappings
platform, 18-3, 20-2, 21-2, 83-1, 84-1
preferences, 4-17
schema, 4-22
schema manager, 5-1
tables, 4-21
TopLink Workbench, Navigator window, 4-9
troubleshooting, 14-25
type conversion, schema manager, 5-3
using with Oracle TopLink Workbench, 4-21

DatabaseSession class
logging SQL and messages, 72-10

DB2
platform, 81-3
schema manager type conversion, 5-3

DBase platform, 81-3
default mapping

about, 30-4
automatic table generation, and, 30-4
configuring, 8-12
default table generator, 5-6

Default Mapping Exception, 13-69
default table generator

default mapping, 5-6
table creator, creating, 5-4

defaults
login level null values, 82-5
mapping level null values, 32-12
null values, 32-12, 32-36, 82-5
optimization, 11-8
root, 29-5
see also preferences

DefaultSequence, 83-6
deferred change detection

configuring, 25-73
DeferredChangeDetectionPolicy, 97-7
Delete All Interaction tab, 60-3
deleteObject(), 26-8
DeleteObjectQuery, 94-13
deletes

Index-7

controlling order, 99-16
delete operation, 94-4
queries, EIS mappings, 60-3

demarcation of unit of work transactions, 97-2
dependent objects

non-deferred write, 23-4
deploy tool

about, 10-5
troubleshooting, 10-6
using with WebSphere Studio Application

Developer, 10-5
deploying

about, 2-15, 10-1
application server requirements, 7-1
BEA WebLogic, 10-2
CMP applications, 10-2, 10-4
database login, 20-7
entity beans overview, 2-15
generating XML for, 8-3
hot deployment, 10-4
IBM WebSphere, 10-3
Java applications, 10-1
JSP and Servlet applications, 10-1
modifying BEA WebLogic persistence

descriptor, 8-14
non-CMP applications, 10-4
packaging, 9-1
Session Bean applications, 10-1
troubleshooting, 15-1

deployment descriptors, 23-3
deployment exceptions

BEA WebLogic deployment, 15-3
IBM WebSphere deployment, 15-12

deployment files
BMP applications, 8-9
CMP applications, 8-9
creating, 8-1
descriptors, 23-3
EJB 3.0, 8-2, 9-1
JARs, troubleshooting, 15-1
Java applications, 8-8
JSP and Servlet applications, 8-8
Session Bean applications, 8-9
XML, generating, 8-3

deployment XML, exporting, 18-14
DeploymentXMLGenerator, 8-3
Descriptor Event Listener, 25-62
Descriptor Event Manager

about, 23-8
Descriptor Event Listener, 25-62
domain object methods, 25-59
event types, 25-59
handlers, 23-8, 25-59, 25-62
handlers, Descriptor Event Listener, 25-62
understanding, 23-8

descriptor events
about, 23-8
Descriptor Event Listener, 25-62
domain object methods, 25-59
handlers, 23-8, 25-59, 25-62

types of, 25-59
understanding, 23-8

Descriptor Exceptions, 13-2, 13-29
Descriptor Info tab, 25-3, 25-6, 25-7, 26-2, 26-4, 28-2,

28-4, 29-2, 29-4, 29-5, 29-6
DescriptorEventListener, 25-62
descriptors

about, 16-2, 23-1
advanced properties, default, 19-7
aggregate, 23-5, 24-2
aggregate, EJB 3.0 and, 23-6
aggregate, relational projects and, 23-5
amending, 2-21, 23-5, 25-81
API, 23-23
architecture, 23-2
attributes, adding, 4-44
automapping, 31-2
automatically mapping, 31-2
BMP, 23-3, 25-46
cache refreshing, 25-27
change policy, 25-73
child inheritance, 25-51
class, 24-2
CMP, 23-3, 25-46
CMPPolicy, 23-3, 25-46
comments, 25-8, 25-9
composite, 23-5, 23-8, 24-5
composite EIS, 24-5
configuring, 25-1
conforming, 99-8
creating, 24-1, 24-2, 24-5
custom EIS interactions for basic persistence, 28-6
custom SQL queries for basic persistence, 26-6
deactivating, 4-10
default mappings, 30-4
default root, 28-4
deployment information, 23-3
Descriptor Event Listener, 25-62
domain object methods, 25-59
EIS, 23-12, 24-5, 28-1
EIS projects, 23-8
EJB, 23-3, 25-46
EJB information, 23-3, 25-46
errors, 4-10, 4-11, 14-3
event handlers, 23-8, 25-59, 25-62
events, 23-8, 25-59
existence checking, 11-13, 25-43
fetch groups, 25-79
files, merging, 6-5
generating from database, 4-30
hierarchy, inheritance, 23-23
history policy, 25-76
identity maps, 19-14, 25-35, 25-38, 25-40
in Java, 23-23
inactive, 4-10
inheritance, 23-3, 23-12, 25-51, 25-52
instantiation, 11-13
interface, 24-2, 25-31, 25-33
mapping, 25-3, 26-2, 30-4, 31-1, 31-2
merging, 6-5

Index-8

named queries, 25-10
nondescriptor classes, 4-51
object-relational, 23-11, 27-1
optimizing, 11-13
parent inheritance, 25-52
projects, 16-2, 23-1
query key interfaces, 25-31
query timeout, 25-24, 25-26
read only, 25-5
registering with sessions, 72-13, 74-2, 74-3, 74-10
relational, 23-11, 24-2, 26-1
removing, 4-51
returning policy, 25-67
root EIS, 24-5
root element, 29-5
schema context, 28-2, 29-2, 29-3
sequencing, 23-9, 26-3
TopLink Workbench, Navigator window, 4-9
types of, 23-1
validating, 24-6
XML, 23-12, 29-1
XML projects, 23-8

detachment indirection, 30-10
developing applications with Oracle TopLink, 2-1
development environments

about, 3-2
configuring, 6-1
database logins, 20-7

development process
about, 2-1
additional support, 2-3
stages of, 2-2
with Oracle TopLink, 2-1

development tools
about, 3-1
profiler, 11-2
schema manager, 5-1

dimensionality, array, 4-45, 4-49
direct access

about, 19-4, 32-14
specifying, 32-32

direct collection relational mappings
configuring, 42-1
example, 33-11
understanding, 33-11

direct collections
session broker limitations, 72-28

direct EIS mappings
configuring, 55-1
understanding, 53-5

direct field
in direct collection mappings, 42-2

direct key fields, 44-2
direct map relational mappings

configuring, 44-1
direct keys, 44-2
direct value, 44-1
understanding, 33-12

direct mappings
generating deprecated, 19-12

with EJB, 33-4
direct value fields, 44-1
direct XML mappings

configuring, 64-1
understanding, 62-5

directionality in mappings, 33-2
direct-to-field mappings

ObjectTypeMapping deprecated, 33-3
SerializedObjectMapping deprecated, 33-3
type conversions, 34-3
TypeConversionMapping deprecated, 33-3

direct-to-field relational mappings
configuring, 35-1
options, 35-1
timestamp support, 34-3
understanding, 33-4

direct-to-XMLType relational mappings
configuring, 36-1
understanding, 33-4

Discovery Exception, 13-70
DMS profiler

about, 11-4, 72-12
accessing with JMX, 11-7
and JMX
nouns, 11-4, 72-12
selecting, 74-11, 74-14, 74-17, 74-20
sensors, 11-4, 72-12

document information in XML schemas, 4-34, 4-36,
4-38

documentation
hosted, 4-14
See also Help

does exist write object, 11-27
dontOptimizeDataConversion(), 11-15
doPrivileged(), 7-4
DRIVER_CLASSPATH

Oracle TopLink Workbench environment, 4-2
drivers, custom database, 4-18
dynamic batch writing

about, 11-15
setMaxBatchWritingSize(), 11-15

dynamic fetch groups, querying with, 96-4

E
Editor window, about, 4-4, 4-10
EIS

about, 17-8
architecture, 2-4
call, 94-24
custom interactions for basic persistence, per

descriptor, 28-6
indexed records, configuring, 28-5
interactions, 28-6, 93-5, 94-24
mapped records, configuring, 28-5
mappings, 17-8, 53-2
projects, 18-3
queries, 93-5
record format, configuring, 28-5
XML records, configuring, 28-5

Index-9

EIS descriptors
composite, 24-5
configuring, 28-1
default root, 28-4
locking policy, 25-64
root descriptor, 24-5
schema context, 28-2
setDataTypeName, 28-5
understanding, 23-12

EIS mappings
about, 53-1, 53-2
architecture, 53-5
composite collection, 53-7, 58-1
composite direct collection, 53-6, 56-1
composite object, 53-7, 57-1
configuring, 54-1
direct, 53-5, 55-1
jaxb:class support, 53-3
list support, 53-3
one-to-many, 53-12, 60-1
one-to-many, key on source, 53-13
one-to-many, key on target, 53-15
one-to-one, 53-8, 59-1
one-to-one, key on source, 53-9
one-to-one, key on target, 53-10
transformation, 53-17, 61-1
types of, 53-1
union support, 53-3
xsd:list, 53-3
xsd:union, 53-3

EIS projects
configuring, 21-1
connector.jar, 17-7
indexed records, 17-9
mapped records, 17-9
sequencing, 17-5
understanding, 17-7
XML records, 17-9

EIS queries, 93-5
EIS record types, supported, 53-2
EISLogin, 81-2
EJB

descriptors, 18-10
isolated client sessions, 72-25
setter parameter type checking, 7-25
single-object finder return type checking, 7-25
unknown primary key class support, 7-25

EJB 1.1
and BMP, 2-32
and CMP, 2-27

EJB 1.x
indirection, 30-9
serialization, 30-9

EJB 2.x
and BMP, 2-32
and CMP, 2-27
default mapping, 30-4
indirection, 30-9
serialization, 30-9

EJB 3.0

<J2EE-Container>-jar.xml file, 8-6
and CMP, 2-27
attribute change tracking policy, OC4J CMP

integration, 7-5, 97-8
Bean annotation, fetch=lazy, 30-9
default mapping, 30-4
deployment files, 8-2, 9-1
deployment files, OC4J CMP integration, 7-5
detachment, 30-10
Embedded annotation, 23-6
packaging for deployment, 9-1
packaging, OC4J CMP integration, 7-5
projects.xml file, 8-3, 8-5
serialization, 30-10
sessions.xml file, 8-5
toplink-ejb.xml file, 8-7
value holder indirection, 30-9

EJB descriptors, opening projects with, 18-10
EJB entities

CMP hot deployment, 10-4
deployment overview, 2-15
EJB 2.x indirection, 30-9
EJB 3.0 indirection, 30-9
generating, 4-31
hot deployment, 10-4
inheritance, 23-4, 23-17
inserting after ejbCreate, 23-4
inserting after ejbPostCreate, 23-4
mapping, 19-6
non-CMP hot deployment, 10-4
non-deferred write, understanding, 23-3, 99-26
sequencing, 17-21

EJB entity beans
and EJB 1.1, 2-27, 2-32
and EJB 2.x, 2-27, 2-32
and EJB 3.0, 2-27
with BMP architecture, 1-6, 2-31
with CMP architecture, 1-5, 2-27

EJB finders
about, 93-24
Call finders, 93-26
creating, 96-8
DatabaseQuery finders, about, 93-26
default finders, about, 93-26
default finders, creating, 96-8
EJB QL finders, about, 93-27
ejb-jar.xml options, 96-9
ejbSelect method, 93-28
ejbSelect, creating, 96-15
ejbSelect, using, 96-15
expression finders, about, 93-27
named query finders, about, 93-27
predefined, about, 93-24
primary key finders, about, 93-27
redirect finders, about, 93-28
redirect finders, using, 96-12
single-object finder return type checking, 7-25
SQL finders, about, 93-28

EJB Info tab, 25-46
EJB JAR XML Exception, 13-77

Index-10

EJB Preferences, 4-16
EJB QL

exceptions, 13-63
queries, 26-6, 93-5
query language, 93-5

EJB session bean facade architecture
about, 1-5, 2-25
understanding, 2-25

EJB Session Beans, 72-31
ejbc

about, 10-2
troubleshooting, 10-3

ejbCreate, 23-4
ejb-jar.xml file

about, 8-5, 18-15
configuring, 8-5
corresponding to Oracle TopLink Workbench

functions, 18-15
EJB finder options, 96-9
location, 19-7
managing, 6-6
preferences, 4-16
synchronization under EJB 2.0, 8-5
updating from, 18-16
writing, 18-16

ejbPostCreate, 23-4
@Embeddable, 23-6
@Embedded, 23-6
empty unit of work transactions, 97-6
encrypting login passwords, 18-13
enhanced validation exceptions, 8-4
Enterprise Information Systems. see EIS
entity beans

deployment, 2-15
descriptor information, 23-3
direct mappings, 33-4
indirection, EJB 2.x, 30-9
indirection, EJB 3.0, 30-9
sequencing with, 17-21

Entity Manager Setup Exception, 13-80, 13-81
EntityManagerSetupException, 13-80, 13-81, 13-83
environment

configuring, 4-2
JAVA_HOME, 4-2
JDBC_CLASSPATH, 4-2
proxy, 4-13, 4-14, 18-16

error codes
1-176, 13-2
1-99, 14-1
100-199, 14-3
200-399, 14-3
400-599, 14-13
500-699, 14-17
700-799, 14-23
800-899, 14-23
12000-12004, 13-65
18001-18002, 13-69
22001-22004, 13-70
22101-22105, 13-71
3001-3007, 13-26

4002-4018, 13-27
5001-5008, 13-29
6001-6098, 13-31
7001-7104, 13-43
72000-72023, 13-77, 13-80, 13-81, 13-83
8001-8010, 13-63
9000-9009, 13-64

errors
about, 13-1
codes and descriptions, 13-1, 14-1
descriptors, 4-10, 4-11
migration, 7-13
Oracle TopLink Workbench, 14-1

Event Manager, 72-5
events

about, 23-8
client session, 72-6
database access, 72-6
Descriptor Event Listener, 25-62
domain object methods, 25-59
handlers, 23-8, 25-59, 25-62
listeners, sessions, 72-7
session, 72-5
session manager, 72-6
sever session, 72-6
types of, 25-59
unit of work, 72-6

examples
composite collection EIS mapping, 53-8
context menu, 4-5
cursored streams, 96-17
direct collection mappings, 33-11
direct-to-field mappings, 33-4
exception handler, 74-13
indirection, 30-6
inheritance, 23-12
Oracle TopLink Workbench, 4-3
performance optimization, 11-23, 11-25
proxy indirection in code, 32-9
READALL finders, 96-10
report query, 94-6
scrollable cursors, 96-17
serialized mapping, 30-10
stored procedure call, 94-22, 94-23
transformation mapping, 33-15
transformation XML mapping, 53-18, 62-31
Unit of Work, 97-6, 98-7
write, write all, 94-3

exception handler
about, 72-12
example, 74-13
selecting, 74-12

exceptions
chained, 72-11
communication exceptions, 13-65
conversion exceptions, 13-26
database exceptions, 13-27, 94-25
Default mapping exception, 13-69
descriptor exceptions, 13-2
discovery exceptions, 13-70

Index-11

EJB JAR XML exceptions, 13-77, 13-80, 13-81,
13-83

EJB QL exceptions, 13-63
enhanced validation, 8-4
java.security.AccessControlException,

15-12, 15-13
JMS processing exceptions, 13-69
Migration utility exception, 13-74
optimistic locking, 13-29
query exceptions, 13-31
remote command manager exceptions, 13-71
selecting exception handler, 74-12
session loader exceptions, 13-64
Transaction exception, 13-73
validation exceptions, 13-43
XML conversion exception, 13-74

exclusive connections
about, 99-29
internal read connection pool, 86-6
isolated sessions, 72-20, 74-19
named queries, 25-24

existence checking, 99-5
descriptors, 25-43
projects, 19-8

expanding items in Navigator window, 4-9
expiration of objects in the cache, 19-19, 25-42
explicit query refreshes, cache coordination, 87-7
exporting

deployment XML, 18-14
Java model, 18-14
Java source, 18-14
preferences, 4-12
projects, 18-13

Expression Builder, 95-13, 95-15
Expression Builder dialog box, 95-13
Expression class, 95-1
ExpressionMath class, 95-1
expressions

about, 93-3, 95-1
allows none, 25-18, 95-15
allows null, 25-18, 95-15
building, 95-13
comparing with SQL, 95-1
components, 95-2
creating, 95-13
data level queries, 95-12
database functions, 95-3
in relationships, 95-6
in-memory queries, limitations, 93-31
mathematical functions, 95-4
multiple, 95-10
one-to-one mappings, 95-5
outer joins, 94-11
parallel expressions, 95-11
parameterized, 95-8
platform functions, 95-16
query keys, 95-10
subqueries and subselects, 95-10
user-defined functions, 95-5, 95-16
using Boolean logic, 95-3

XML Type functions, 95-5
see also queries

external
applications, 99-27
connection pools, 81-8
controller, transaction, 97-1
JDBC pools, 2-33
transactions, 97-1

external transaction controller
configuration, sessions, 74-14
session, 97-2

F
factory name, JMS connection, 89-2
failure, resuming unit of work after commit, 99-14
features of Oracle TopLink, 1-4
fetch groups

about, 23-5, 25-79
configuring, 25-79, 96-3
default, 25-79, 96-3
disabling, 96-3
dynamic, 96-4
object level read query, 93-13
read optimization, and, 25-79
size, 11-18
static, 96-3

field references, 34-8
Field uses XML Schema "type" attribute

option, 30-12
fields in database tables, 4-25
Fields tab, 43-2
field-to-object attribute transformation, 32-29, 32-31
files

JAXB-specific, 17-10
TopLink-specific, 17-11
see also specific file name

final attributes, 4-45, 4-48
findAll, using, 93-26
finders

caching options, 93-37
disabling cache, 93-38
managing large result sets, 96-18
refreshing results, 93-38
see also EJB finders

flashback queries
about, 93-18
historical client sessions, 78-1

forceUpdateToVersionField(), 99-18
foreign keys

about, 2-17, 34-8
configuring in EIS mappings, 59-1
EIS mappings, 60-1
multiple tables, 26-14
one-to-many mappings, 33-7
one-to-one mappings, 32-34, 33-5
parameterized expressions, 95-8
references, 14-15, 14-23
target, 33-5, 34-9
troubleshooting, 14-15, 14-23

Index-12

full identity map, 87-3

G
garbage collection, managing, 98-8
General Preferences dialog, 4-13
Generate Classes and Descriptors dialog, 4-30
Generate EJB Entity Classes and Descriptors

dialog, 4-31
generating

access method, 4-30
deployment JARs, troubleshooting, 15-1
deprecated direct mappings, 19-12
see also exporting

getCatalogs(), 4-22
getField(), 95-12
getImportedKeys(), 4-22
getParameter, 95-8
getPrimaryKeys(), 4-22
getTable(), 95-12
getTables(), 4-22
getTableTypes(), 4-22
getValue(), 30-7
getValue() method, 30-7

H
hard cache weak identity map

about, 87-4
when to use, 87-5

help
about, 4-12
displaying, 4-12

Help button., 4-12
Help Preferences, 4-14, 4-16
hierarchical queries

about, 93-18
described, 96-6

hints, Oracle Hints in queries, 93-18
historical client sessions

about, 72-1, 72-25
cache, 72-33
limitations of, 72-25

historical queries, 96-2
about, 93-21
see also AsOfClause

history policy, configuring, 25-76
holders, value, 30-7
host URL, JMS topic, 89-3
hosted

documentation, 4-14
XSD files, 8-2, 8-4

hot deployment
about, 10-4
CMP applications, 10-4
non-CMP applications, 10-4

HSQL platform, 81-3

I
IBM Informix Database native sequencing, 17-19

IBM WebSphere
deploy tool, 10-5
deploying to, 10-3
deployment exceptions, 15-12
setting classpath, 7-21

identity
about, 2-17, 87-3
cache, and, 87-3
using cache to preserve, 87-3
see also identity map

identity map cache
disabling during a write query, 94-15
refresh in read query, 93-35

identity maps
about, 25-35, 25-38, 25-40, 72-29
cascading refresh during read query, 93-36
descriptors, 19-14, 25-35
example, 93-36
full, 87-3
guidelines for choosing type, 87-4
hard cache weak identity map, 87-4, 87-5
isolated client sessions, 72-24
no identity map, 87-4
refreshing during read query, 93-35
soft cache weak identity map, 87-4, 87-5
soft cache weak identity map and read

optimization, 11-19
specifying, 25-35, 25-38, 25-40
weak, 87-3
weak identity map and read optimization, 11-19

Identity tab. see Caching tab
impedance mismatch, solving, 1-2
Implementors tab, 25-34
Import Tables from Database dialog, 4-23
importing

classes, 4-16
preferences, 4-12

inactive descriptors
about, 4-10
mapping to, 34-6, 54-3

independent relationships, 32-16
indexed records, 53-2
indirection

about, 2-19, 30-5
bidirectional relationships, 32-35
choosing the correct type, 32-4
configuring, 32-3
EJB, 30-9
EJB 2.x CMP, 30-9
EJB 3.0 CMP, 30-9
example, 30-6
many-to-many mappings, 33-9
nontransparent, 2-12
one-to-many mappings, 32-34
proxy indirection, 30-8
remote sessions, 72-32
serialization, 30-9
transparent, 2-12, 30-8
value holder, 30-7
ValueHolderInterface, 2-12

Index-13

see also proxy indirection, transparent indirection
Informix platform, 81-3
inheritance

about, 2-18, 23-3, 23-12
aggregate classes, 23-17
aggregate collection mappings, 33-10
branch classes, 23-13
child descriptors, 25-51
class extraction, 23-15
class indicator, 23-14, 23-15
descriptors, 23-3, 23-12, 25-51, 25-52
finding subclasses, 23-14
instantiating subclasses, 23-14
isolated client sessions, 72-24
leaf classes, 23-13, 96-4
primary keys, 23-16
queries, 93-22
querying on hierarchy, 96-4
relational parent, 25-52
root class, 23-13, 25-51, 25-53
root class subclasses, finding in inheritance, 23-14
supporting with multiple tables, 23-16
supporting with one table, 23-16
transformed to relational model, 11-11
using with EJB, 23-4, 23-17

inheritance hierarchies
descriptors, 23-23
querying on, 96-4

Inheritance tab, 25-51, 25-53
inherited subclasses, mapping, 25-58
in-memory query

about, 87-6
check cache using exact primary key, 93-30
check cache using primary key, 93-30
check database if not in cache, 93-30
conform results in unit of work, 93-31
expression limitations, 93-31
supported, 93-31
using, 93-30

inner join, 95-6
insert operation, 94-3, 94-4
insertObject(), 26-7
instantiation policy

about, 25-70
setting, 25-70

Instantiation tab, 25-70
integrity checker, 24-6

about, 72-12
configuring, 74-18

interactions
about, 94-24
creating, 28-6

interface alias
about, 26-10
creating, 26-11

Interface Alias tab, 26-11
interfaces

classes, implementing, 4-43
customizing, 4-13
descriptors, 24-2, 25-31, 25-33

queries, 93-22
query keys, 25-31
querying on, 96-4

internal connection pool
about, 81-7
named, 81-9
read, 81-8
sequence, 81-8
write, 81-8

internal query object cache
about, 93-36
configuring, 96-20, 96-21
expiration, 96-21
restrictions, 93-37

internal transactions, 97-1
invalidation of objects in the cache, 19-19, 25-42, 87-8
IP address for multicast group, 88-4
isolated client sessions

about, 72-1, 72-19, 77-1
configuration, 77-1
life cycle, 72-22
limitations of, 72-24
session event handlers, 72-21
with Oracle Virtual Private Database

(VPD), 72-21
isolated session

cache, 72-33
ConnectionPolicy, 72-20
exclusive connections, 72-20
supported databases, 72-21

isolation
cache, 87-6
transaction levels, 97-2
unit of work transactions, 97-4

Iterator interface, 96-16

J
J2C adapters

about, 81-4
configuring for Oracle TopLink Workbench, 4-2
EISLogin, 81-2
selecting, 81-4
with EIS, 18-3

<J2EE-Container>-ejb-jar.xml file, 8-5
<J2EE-Container>-jar.xml file

EJB 3.0, 8-6
J2EE

parameter binding, 11-16
prepared statement caching, 11-16
web applications, 1-4

Java
database tables, 18-15
exporting to, 18-14
integration with any datasource, 1-2
iterators, 96-16
object model, 2-11

Java applications
deploying, 10-1
deployment files, 8-8

Index-14

packaging for deployment, 9-1
Java Cryptography Extension, 18-13
Java Management Extensions. see JMX
Java Naming and Directory Interface. See JNDI
Java Object Builder, 72-4
Java streams

described, 96-17
optimizing, 96-18
support for, 96-17

Java Transaction API
and unit of work commit, 97-10
and unit of work rollback, 97-11
see also JTA

Java Transaction Service see JTA
JAVA_HOME, 4-2
java.security.AccessControlException, 15

-12, 15-13
java.util.Collection interface, 32-26
java.util.Map interface, 32-26
java.util.Set interface, 32-26
javax.ejbEntityBean interface, 4-31
JAXB

creating projects from, 18-6
files, 17-10
generating project from the command line, 18-8
jaxb:class, and EIS mappings, 53-3
jaxb:class, and XML mappings, 62-4
proxy configuration, 18-8
tljaxb.cmd, 18-8
tljaxb.sh, 18-8
typesafe enumeration converter, 32-25
understanding, 17-10
validation, 17-14
XML projects, 17-10

JAXB typesafe enumeration converter
configuring, 32-25
understanding, 30-24

JAXBContext, 17-13
JCE. see Java Cryptography Extension
JConnect, 11-14
JDBC

adaptor for EIS, 53-5
database gateway for EIS, 53-5
driver classpath, 4-23
JConnect, 11-14
Sybase JConnect, 11-14

JDBC drivers
about, 81-3
configuring for Oracle TopLink Workbench, 4-2
fetch size, 11-14, 11-18
general properties, 11-14
mapping LOBs, 31-3
selecting, 81-3

JDBC pools
external with EJB Entity Beans with BMP

architecture, 2-33
JDBC_CLASSPATH, 4-2
JDeveloper. See Oracle JDeveloper
JMS

connection factory name, 89-2

coordinated cache, 89-1
Processing Exceptions, 13-66, 13-69
topic host URL, 89-3
topic name, 89-1

JMX
about
and DMS profiler
DMS profiler, 11-7

JNDI naming service, 88-7
joining

about, 93-12
expressions, and, 95-6
mappings, and, 37-1
one-to-many, about, 94-12
one-to-many, when not to use, 93-12
one-to-one mappings, 37-1, 94-12
optimizing reads, 11-20
queries, and, 94-11, 94-12
QueryManager expressions, 96-4
read queries, 11-20, 94-11

JSP and Servlet applications
deploying, 10-1
deployment files, 8-8
packaging for deployment, 9-2

JTA
about, 97-3
and unit of work, 97-3
isolated client sessions, 72-25
unit of work, 97-1

JTA/JTS
using with EJB Entity Beans with BMP

architecture, 2-33
just-in-time reading. see indirection

K
Key Converter tab, 44-3
key pairs

database table reference, 4-28
troubleshooting, 14-15, 14-23

keys
about, 2-17
foreign, 2-17, 32-34, 33-5
foreign, target, 33-5
inheritance, 23-16
multiple tables, 26-13
primary, 23-16, 26-13, 32-2, 33-6, 33-9, 38-3
read-only settings, 32-2
reference key field, 33-11, 33-12
variable class relationships, 33-6, 38-3

L
language, specifying, 4-3
large result sets, managing in finders, 96-18
lazy attribute loading and read optimization, 25-79
lazy connection

acquisition, 74-20
allocation, 72-19, 75-9

lazy loading. see indirection

Index-15

lazy reading. see indirection
leaf classes, 23-13, 96-4
life cycle of unit of work, 97-5
LOB

mapping to, 31-2
local

documentation, 4-14
transactions, 99-25

locked files, 6-6
locking policy

AllFieldsLockingPolicy, 23-20
ChangedFieldsLockingPolicy, 23-21
configuring, 25-64
field locking, 23-20
optimistic, 23-9, 23-19, 23-20
optimistic version locking, 23-18
OptimisticLockException, 23-19, 23-21
pessimistic locking policy, 23-9, 23-22
SelectedFieldsLockingPolicy, 23-21
stale data, and, 87-6
three-tier architectures, optimistic locking

and, 23-22
three-tier architectures, pessimistic locking

and, 23-23
TimestampLockingPolicy, 23-18
understanding, 23-9, 23-18
version locking, 23-19
VersionLockingPolicy, 23-18

Locking tab, 25-65
log into database, 4-22
Log Out of Database, 4-22
log out of database, 4-22
logging

application server, 72-9
chained exceptions, 72-11
java.util.logging, 72-9
log level, 72-10
Oracle Enterprise Manager 10g, 72-11
output, 72-10
permissions, 7-24
sessions, 72-7, 74-4, 74-5
TopLink native logging, 72-8
types, 72-8

Logging tab, 74-5
login

CMP deployment, 17-3
database, 20-5, 20-7, 83-1
deployment, 17-3
development, 17-4
platforms, and, 17-4
projects, and, 17-3, 71-1, 81-2
role in project, 17-3, 81-2
session, 17-3, 74-4
session role, non-CMP, 17-3

logMessages method, 72-7
look and feel, specifying, 4-13

M
Manage Non-Descriptor Classes dialog, 4-51

management, source control, 6-3
manager, session events, 72-5
many-to-many mappings

relation table, 33-9
relation tables, 40-1
session broker limitations, 72-28

many-to-many relational mappings
configuring, 40-1
EJB, 33-9
understanding, 33-8

mapped records, 53-3
mapping extensions

custom data types, 12-1
JAXB typesafe enumeration converter, 30-24,

32-25
object type converter, 30-12, 32-22
serialized object converter, 30-10, 32-18
simple type translator, 30-12, 32-23
transformation mappings, 30-14
type conversion converter, 30-11, 32-20

mappings
about, 2-16, 2-17, 16-1, 16-2, 30-1, 31-1
access types, 32-15
aggregate collection mappings and EJB, 33-11
anyType mapping, 63-3
as part of the application development

process, 2-21
automatic, 31-2
batch options, 34-7
class hierarchy, 30-25
comments, 32-18
configuring, 31-1, 32-1
database field, 34-4
default mapping, 30-4
deprecated, generating, 19-12
direct access, 11-13, 32-14
directionality, 33-2
EIS mappings, 17-8, 30-27, 53-1, 54-1
EJB 2.0 entities, 19-6
errors, 14-13
example, 30-3
extensions, about, 30-10
hierarchy, 30-25
inactive descriptors, 34-6, 54-3
indirection, 11-13, 30-5, 32-3
isolated client sessions, 72-24
manually configuring, 31-1
many-to-many, 33-9
many-to-many, with EJB, 33-9
method access, 32-14, 32-32
null values, 32-12, 32-36
object-relational, 46-1, 47-1
one-to-many object, with EJB, 33-8
one-to-one with EJB, 33-6
optimizing, 11-13
OX mappings, 30-27
projects, and, 16-2
read only, 32-2, 32-3
relation tables, 40-1, 40-2
relational, 33-1, 34-1

Index-16

removing, 31-6
to tables, 25-3, 26-2
TopLink Workbench, Navigator window, 4-9
types of, 30-1
XML mappings, 62-1, 63-1

mathematical functions, in TopLink
expressions, 95-4

menu bar, 4-5
menus

about, 4-4, 4-5
context menus, 4-5
menu bar, 4-5

merging
changes in clones, 99-13
Oracle TopLink Workbench project files, 6-4
project files, 6-4

messages, error, 13-1, 14-1
metadata

about, 2-13, 2-19
advantages, 2-20
creating, 2-20, 2-21
mapping and configuration, 16-1
project metadata, 2-20
session metadata, 2-21

Metalink, 2-3
method access

about, 19-4, 32-14
setting, 32-32

methods
adding, 4-47
getValue(), 30-7
setValue(), 30-7
wrapper policy, 25-79
see also specific method name

Microsoft Access
platform, 81-3
schema manager type conversion, 5-3

Microsoft SQL Database native sequencing, 17-19
migrating

error messages, 7-13
OC4J persistence to TopLink, 7-5
Oracle TopLink Workbench projects, 18-10
troubleshooting, 7-13

Migration Utility Exception, 13-74
model source, exporting, 18-14
modifiers, class, 4-42
multicast group address, coordinated cache, 88-4
multicast port, coordinated cache, 88-5
multiple sessions, 72-28, 75-2
multiple tables

about, 26-13
specifying for descriptors, 26-13

multiplicity in relationships, resolving, 7-14
multi-processing, 11-29
Multitable Info tab, 25-50, 26-13
mutable mappings, 32-33
.mwp file, 4-1, 18-2
MySQL4

batch writing, 83-9
platform, 81-3

primary key restrictions, 17-15
schema manager type conversion, 5-3

N
named connection pools, 81-9
named queries

about, 25-10, 74-21, 93-16
configuring, 25-10, 74-21
descriptor level, 25-10
exclusive connections, 25-24
options, advanced, 25-24
parameter binding, 25-22
prepared statement caching, 25-22
redirect query, 93-16
session level, 74-21
using, 94-18
when not to use, 93-17
when to use, 93-16

namespaces
about, 17-5, 17-22
configuring, 4-37

naming service
coordinated cache, 88-7
JNDI, 88-7
RMI, 88-9

native sequencing
IBM Informix Database, 17-19
Microsoft SQL Database, 17-19
Microsoft SQL Server, 5-6
non-Oracle database, 17-19
Oracle Database, 17-18, 17-20
Oracle Database SEQUENCE object, 17-19
Sybase Database, 5-6, 17-19

Navigator window
about, 4-4, 4-9
attribute and mapping, 4-9
database, 4-9
database tables in, 4-21
descriptor, 4-9
example, 4-9
package, 4-9
project, 4-9
unsaved or changed item, 4-9

NCHAR, 30-12
NCLOB, 30-12
neediness warnings. See troubleshooting
nested table object-relational mappings

configuring, 52-1
understanding, 46-3

nested unit of work, 97-9, 99-15
new projects, 18-2
New Reference dialog box, 4-27
New Session button, 73-4, 73-6, 73-8
New Sessions Configuration, 73-2
New Table dialog box, 4-22
newInstance method, 99-2
no identity map, 87-4
non-cascading write queries

compared to cascading, 93-15, 94-14

Index-17

creating using dontCascadeParts ()
method, 93-15, 94-14

non-deferred write
configuring, 99-12
dependent objects, 23-4
understanding, 23-3, 99-7, 99-26

nonintrusive persistence, 2-19
nonpersistent projects, 17-2
nonrelational projects, 17-2
nontransactional data sources, 81-1
nontransparent indirection, 2-12
nouns

DMS profiler, 11-4, 72-12
null values

default, 32-12, 32-36, 82-5
in expressions, 95-14
login level, 82-5
mapping level, 32-12

NVARCHAR2, 30-12

O
object array object-relational mappings

configuring, 51-1
understanding, 46-2

object cache, 93-36
object cache, sessions, 72-3
object change tracking

configuring, 25-73
object identity, 72-29

about, 2-17, 87-3
cache, and, 87-3
using cache to preserve, 87-3
see also identity map

object indirection
read optimization, as, 11-19

object level modify query
about, 93-14, 93-15

object level read query
about, 93-11, 93-13
fetch groups, 93-13
join reading, 93-12
partial object query, 93-11
read all query, 93-11
read object query, 93-11

object model
about, 2-16
generating with tljaxb.cmd, 18-8
optimization, 11-8
Oracle TopLink requirements, 2-11

object type converter
about, 12-1, 30-12
configuring, 32-22

object type mappings
configuring, 32-22

ObjectLevelChangeTrackingPolicy, 97-7
object-relational descriptors

configuring, 27-1
locking policy, 25-64
understanding, 23-11

object-relational mappings
about, 46-1
array, understanding, 46-2
configuring, 47-1
nested table, 46-3, 52-1
object array, 46-2, 51-1
overview, 2-16
reference, 46-2, 49-1, 50-1
structure, 46-2, 48-1

object-relational projects
about, 17-6
sequencing, 17-5

objects
cascading refresh in cache, 93-35
creating and registering, 99-2
query, 94-6
refreshing in cache, 93-35
registering and unregistering, 99-1

ObjectTypeMapping
see ObjectTypeConverter

OC4J. See Oracle Containers for J2EE
one-to-many EIS mappings

configuring, 60-1
key on source, 53-13
key on target, 53-15
understanding, 53-12

one-to-many relational mappings
configuring, 39-1
understanding, 33-7

one-to-one EIS mappings
configuring, 59-1
key on source, 53-9
key on target, 53-10
understanding, 53-8

one-to-one relational mappings
configuring, 37-1
expressions, 95-5
joining, 37-1
understanding, 33-5
with EJB, 33-6

online help, 4-14
Open Project button, 18-10
opening projects, 18-10
operators

boolean logic, 95-3
optimistic locking

about, 23-9
application architecture, 2-11
cascading locking policy, 23-19, 25-67
database exception, 94-25
exceptions, 13-29
field locking policy, about, 23-20
rollbacks, 23-20
version locking policy, 23-18, 23-19, 25-67
with forceUpdateToVersionField()

method, 99-18
optimistic locking policy

field locking, about, 23-20
version locking, 23-18, 23-19, 25-67

OptimisticLockException, 23-19, 23-21

Index-18

optimization
about, 11-1
application bottlenecks, 11-2
application server, 11-30
batch reading, 11-17
batch writing, 11-15
CMP partial object queries, 11-17
code generation, 11-8
data access, 11-14, 11-15
data format, 11-15
database, 11-30
descriptors, 11-13
DMS profiler, 11-4, 72-12
existence checking, 11-13
fetch groups, 11-17
fetch size, JDBC, 11-18
general, 11-8
inheritance, 23-16
instantiation, 11-13
JDBC driver, 11-14, 11-18
join reading, 11-17
mappings, 11-13
named queries, 11-17
object model, 11-8
overview, 2-15
parameter binding, 11-15
partial object queries, 11-17
prepared statement caching, 11-15
profiler, 11-4, 72-12

optimization
TopLink Profiler, 11-2

queries, 11-17
reading, 11-19
ReadQuery method setMaxRows, 11-18
schema, 11-8
setMaxRows, 11-18
understanding, 11-1
unit of work, 11-30
writing, 11-26

Oracle
development support, 2-3
remote session support, 72-31

Oracle Containers for J2EE
creating projects from, 7-9
migrating to TopLink, 7-5

Oracle Database
date and timestamp mappings, 34-3
native sequencing, 17-20

Oracle Database
SEQUENCE object, 17-19

platform, 81-3
schema manager type conversion, 5-3

Oracle extensions
hierarchical queries, 96-6
Oracle Hints, 96-6

Oracle Hints, using with TopLink queries, 96-6
Oracle JDeveloper

configuring with Oracle TopLink, 6-1
TopLink sessions, 6-3

Oracle TopLink

about, 1-1, 4-1
application architectures, 1-4
architectures, 1-1
deploy tool for IBM WebSphere, 10-5
development, 2-1, 3-1
features, 1-4
integrating with application server, 7-1, 7-2
mapping types, 30-1
optimization, 11-1
packaging your application, 9-1
public source, 12-2
runtime components, 3-2
understanding, 1-1

Oracle TopLink Sessions Editor. see sessions
Oracle TopLink Workbench

about, 4-1
Ant integration, 4-53
classpath, 4-2
creating projects, 18-1
development process, 4-1
DRIVER_CLASSPATH, 4-2
environment, 4-2
error messages, 14-1, 14-3
JDBC_CLASSPATH, 4-2
parts of, 4-3
preferences, 4-12
project, 4-1, 18-2
proxy, 4-13, 4-14, 18-16
sample, 4-3
table creator, creating, 5-4
upgrading projects, 18-10

Oracle Virtual Private Database (VPD)
isolated client sessions, 72-21
proxy authentication, 72-22, 81-6, 83-13

oracle.sql.TimeStamp, 34-3
order

query keys, 34-8
relational mappings, 34-8

OrderSibling, 96-7
orion-ejb-jar.xml file

about, 8-9
entity-deployment attribute pm-name, 8-10
modifying for Oracle TopLink, 8-9
persistence-manager attribute

class-name, 8-10
persistence-manager attribute

descriptor, 8-10
persistence-manager attribute name, 8-10
persistence-manager subentry

forpm-properties
cache-synchronizations, 8-11
customization-class, 8-11
db-platform-class, 8-11
default-mapping, 8-11
project-class, 8-11
remote-relationships, 8-11
session-name, 8-11

OTN (Oracle Technology Network), 1-4, 2-3
OTS (Object Transaction Service)

about, 97-3

Index-19

unit of work, 97-3
outer joins

in expressions, 94-11
inheritance, 25-49

output parameter event in stored procedures, 94-23
OX mappings

about, 30-27
extensions, simple type translator, 30-13, 30-14
read conversions, 30-13
write conversions, 30-14

P
package names

generating, 4-30
renaming, 4-52
TopLink Workbench, Navigator window, 4-9
see also classes

packaging for deployment
about, 9-1
BMP applications, 9-5
CMP applications, 9-4
EJB 3.0, 9-1
Java applications, 9-1
JSP and Servlet applications, 9-2
Session Bean applications, 9-3

packet time-to-live cache coordination, 88-15
parallel

expressions, 95-11
unit of work, 97-9

parameter binding
about, 11-15
byte arrays, 11-16
configuring, 20-7, 25-22, 83-9, 94-17
database login level, 83-9
descriptor level, 25-22
external connection pools, 11-16
internal connection pools, 11-16
J2EE, 11-16
named queries, 25-22
optimizing, 11-15
project level, 20-7
queries, 94-17
streams, 11-16
strings, 11-16
trouble shooting, 11-16

parameterized batch writing
about, 11-15
setMaxBatchWritingSize(), 11-15

parameterized expressions
about, 95-8
example, 95-9

parameterized SQL
enabling on queries, 94-17
Oracle TopLink optimization features, 11-27
See also parameter binding

parser conflicts, XML, 7-3
partial object reading optimization, 11-20
passwords, encryption, 18-13
performance optimization

about, 11-1
application bottleneck, 11-2
examples, 11-20
JConnect method isClosed, 11-14
using Performance Profiler, 11-2

Performance Profiler
about, 11-2
class, 11-3

persistence
about, 2-19
BEA WebLogic deployment, 8-14
by reachability, 98-6
components of, 2-12
descriptor, 8-13
implementation options, 2-12
manager, 7-4
OC4J, 7-5
projects, 17-2
types, 19-5
using a persistence layer, 2-14

persistence manager
default, 7-4
migration, 7-4
restrictions, 7-4

persistent classes
project, 4-32
requirements, 2-11, 2-12
types, 19-7

pessimistic locking
about, 23-9, 23-22
application architecture, 2-11
policy, 23-22

phantom reads, preventing, 99-31
platforms

Attunity Connect database, 81-3
Cloudscape database, 81-3
data source, 81-3
database, 18-3, 20-2, 21-2, 81-3, 83-1, 84-1
DB2 database, 81-3
EIS, 81-4
functions in expressions, 95-16
HSQL database, 81-3
Informix database, 81-3
J2C adapter, 81-4
JDBC drivers, 81-3
Microsoft Access database, 81-3
MySQL4 database, 81-3
Oracle database, 81-3
Oracle8 database, 81-3
Oracle9 database, 81-3
parser, XML, 7-2
PointBase database, 81-3
projects, and, 17-4
server, 74-15
session configuration, 74-15
SQLAnyWhere database, 81-3
SQLServer database, 81-3
SybasePlatform database, 81-3
XML parser, 7-2
see also target platforms

Index-20

PointBase platform, 81-3
pop-up menus. see context menus
ports

multicast group, 88-5
permissions, 7-23, 7-24

post-commit clones, avoiding, 99-31
Potential EJB Descriptors dialog box, 18-10
pre-allocating sequence numbers, 17-20, 20-4, 83-5,

84-2
preferences

class import, 4-16
database, 4-17
EJB, 4-16
general, 4-13
help, 4-14
importing and exporting, 4-13
Oracle TopLink Workbench, 4-12
sessions, 4-18, 4-19

Preferences - Class dialog, 4-16
Preferences - EJB dialog, 4-16
Preferences - General dialog, 4-13
Preferences - Help dialog, 4-14
Preferences - Mappings dialog, 4-15
Preferences dialog, 4-13
prepared statement caching

about, 11-15
configuring, 20-7, 25-22, 83-9, 94-17
database login level, 83-9
descriptor level, 25-22
external connection pools, 11-16
internal connection pools, 11-16
J2EE, 11-16
named queries, 25-22
optimizing, 11-15
project level, 20-7
queries, 94-17
query level, 94-17

preserving XML documents, 29-6
primary key

about, 2-17
cache, 93-34
composite, 33-9
inheritance, 23-16
multiple tables, 26-13
primkey in ejb-jar.xml file, 18-15
queries with compound, 93-34
read-only settings, 32-2
restrictions, 17-15
setting, 4-26, 25-3, 26-2
unit of work, 97-11
unknown, 25-47
variable class relationships, 33-6, 38-3

private relationships, 32-16
Problems window

about, 4-4, 4-11
sample, 4-11
see also error messages

profiler
about, 74-10
development tool, 11-2

DMS, 11-4, 72-12
Oracle TopLink, 11-2, 11-3, 72-12
selecting, 74-11, 74-14, 74-17, 74-20

Project - Multiple Projects tab, 74-10
Project Status Report dialog box, 18-13
projects

about, 16-1, 17-1, 17-2, 18-2
architecture, 17-2
cache type and size, 19-13, 25-35
comments, 19-20
configuring, 19-1
copying objects, 6-6
creating, 7-9, 18-1, 18-2, 18-3, 18-6
deployment login, and, 17-3
deployment overview, 2-15
descriptors, 16-2
development login, and, 17-4
direct access to mapped fields, 19-4
EIS, 17-7, 17-9, 21-1
errors, 14-3
existence checking, 19-8
exporting, 18-13, 18-14
for sessions, 74-9
indexed records, 17-9
Java, 18-3
JAXB, 18-6
locked, 6-6
login, 17-3, 71-1, 81-2
login, and, 17-3
mapped field access, default, 19-4
mapped records, 17-9
mapping projects, creating, 18-2
mappings, 16-2, 18-2
merging, 6-4
metadata, 2-20
method access to mapped fields, 19-4
model, exporting, 18-14
.mwp file, 4-1
nondescriptor classes, 4-51
non-persistent, 17-2
nonrelational, 17-2
object-relational, types supported, 17-6
OC4J, creating from, 7-9
open, 18-10
Oracle TopLink Workbench, 18-2
packages, renaming, 4-52
persistence type, 17-2, 19-7
platforms, and, 17-4
prior TopLink versions, 18-10
recently opened, 18-10
relational, 17-2, 17-6, 20-1
renaming, 18-12
reopening, 18-10
saving, 18-11
sequencing, 17-4, 17-5, 20-3, 83-4
session login, and, 17-3
sharing, 6-6
status report, 18-12
team development, 6-3
TopLink Workbench, Navigator window, 4-9

Index-21

types of, 17-1, 18-2, 23-1
updating from ejb-jar.xml, 18-16
upgrading from 2.x or 3.x, 18-10
writing ejb-jar.xml file, 18-16
XML, 17-9, 22-1
XML records, 17-9

projects.xml file
about, 8-2
EJB 3.0, 8-3, 8-5
schema, 8-2
XSD file, 8-2

propagation mode, cache, 88-2
proxies. see wrapper policy
proxy authentication

about, 81-5
applications, 81-5
Oracle Virtual Private Database, 72-22, 81-6,

83-13
session events, 72-6
use cases, 81-5

proxy indirection
about, 30-8
example, 32-9
restrictions, 30-8

proxy settings, preferences, 4-13
public source code, 12-2

Q
qualified names, database tables, 4-23, 4-24
queries

about, 93-1
application development process, 2-13, 71-2
building, 93-6
cache, 93-29
Call queries, 93-3, 93-17
cascading, 93-15, 94-14
concepts, 93-2
conforming, 99-8
database queries, 93-10, 94-4
DatabaseQuery, 93-3
descriptor query manager, 93-3
EIS interactions, 93-5
EJB finders, 93-24
EJB QL query language, 93-5
ejb-jar.xml file, 25-10, 26-6, 28-6
executing, 93-6
expressions, 93-3
fetch groups, 93-13
flashback queries, 78-1, 93-18
hierarchical queries, Oracle extensions, 93-18
hints, Oracle extensions, 93-18
historical, 93-21, 96-2
interface and inheritance queries, 93-22
joining, 93-12
languages, about, 93-4
named queries, 93-16
object level modify query, 93-14, 93-15
object level read query, 93-11, 93-13
on inheritance hierarchies, 96-4

on interfaces, 96-4
optimizing, 11-17
Oracle database features, 96-5
Oracle extensions, 93-18, 93-19
parameter binding, 94-17
partial object query, 93-11
performance, 11-17
prepared statement caching, 94-17
query keys, 93-4
read all query, 93-11
read object query, 93-11
redirect queries, 93-20
remote sessions, 72-32
report, 11-21, 93-8
report query, 93-15
results, 93-8
returning policy, 93-17
session queries, 93-9, 94-1
SQL query language, 93-4
stored functions, Oracle extensions, 93-19
subqueries, 95-10
summary queries, 93-3
timeout, 25-24, 25-26, 94-10
types, 93-1
UpdateAll, 93-14
XML query language, 93-5

Queries tab, 25-26, 25-28
query by example, 94-6
query cache, 93-36
Query Exception, 13-31
query keys

about, 25-30, 25-33, 93-4
adding, 25-31, 25-34
and expressions, 95-10
creating, 25-31, 25-34
direct mappings, 25-30
generating, 25-30
in expressions, 95-10
interface descriptors, 25-31, 25-33
Java implementation, 25-31
modifying, 25-31
order, 34-8
relationship mappings, 25-31
specifying, 25-31, 25-34
unmapped attributes, 25-30, 25-31

Query Keys tab, 25-31
query object query. See DatabaseQuery
query objects

batch reading, 94-10
cache expiration, 96-21
caching results, 93-36, 96-20
examples, 94-5
ordering for ReadAll queries, 94-9
report query, 11-21
specifying collection class, 94-9

query results
about, 93-8
caching, 93-36
collections, 93-8
cursors, 93-8

Index-22

reports, 93-8
streams, 93-8

query timeout example, 94-10
QueryManager

about, 23-8
joining expressions, 96-4

QuerySequence, 83-8

R
read access

providing in sessions, 72-16
read all operation, 94-2
read conversions

simple type translator, 30-13
read only

descriptors, 25-5
files, 6-6
mappings, 32-2, 32-3

read operation, 94-2
read optimization

about, 11-19
batch reading, 11-20
fetch groups, 25-79
joining, 11-20
lazy attribute loading, 25-79
object indirection, 11-19
partial object reading, 11-20
report query, 11-20
soft cache weak identity map, 11-19
unit of work, 11-19
weak identity map, 11-19

read queries
cascading refresh of identity maps, 93-36
identity map cache refresh, 93-35
refreshing identity maps, 93-35

ReadAll finders
executing, 96-10

ReadAll queries
ordering in query objects, 94-9

readAllObjects()
about, 26-8
example, 94-2

reading
ejb-jar.xml, 18-16
just-in-time reading, 30-8
whole XML documents, 36-1

reading through the write connection, 99-28
read-locking, 23-9
readObject()

example, 94-2
recently opened projects, 18-10
redirect queries

about, 93-20, 96-1
creating, 96-1
finders, 96-13
using, 96-12

reference key field, 33-11, 33-12
reference object-relational mappings

configuring, 49-1, 50-1

understanding, 46-2
ReferenceMapping class, 46-2
references

database tables, 4-26, 4-28
foreign keys, 14-15, 14-23

Refresh from Database button, 4-24
refresh policy

cache, 87-8
EJB finders, 87-8

refreshing
cache, 25-27
classes, 4-50
refreshObject(), 94-2
remote sessions, 72-32
sessions, 75-5

registering objects, 99-1
registerNewObject method, 99-2
reimporting schemas, 4-35
relation tables

about, 33-9
many-to-many mappings, 40-1
mappings, 40-2

relational descriptors
associated table, 26-2
configuring, 26-1
locking policy, 25-64
understanding, 23-11

relational mappings
about, 33-1
aggregate collection, 33-10, 41-1
aggregate object, 33-12, 43-1
configuring, 34-1
converters, 33-3
direct collection, 33-11, 42-1
direct map, 33-12, 44-1
direct-to-field, 33-4, 35-1
direct-to-XMLType, 33-4, 36-1
many-to-many, 33-8, 40-1
one-to-many, 33-7, 39-1
one-to-one, 33-5, 37-1
options, 34-1
order, 34-8
transformation, 33-3, 33-15, 45-1
variable one-to-one, 33-6, 38-1

relational projects
about, 17-2
configuring, 20-1
object-relational databases, 17-6
relational databases, 17-6
understanding, 17-6

relationships
about, 2-17
bidirectional, 4-31, 32-34, 33-5
expressions, 95-6
in ejb-jar.xml file, 18-16
unexpected multiplicity, 7-14

relative locations
about, 19-2
classpath, 19-3

Remote Command Manager Exception, 13-71

Index-23

remote connection using RMI, example, 73-10
remote sessions

about, 72-2, 72-30
application layer, 72-31
creating, 73-10
limitations of, 72-31
securing access, 72-32
server layer, 72-31
transport layer, 72-31
unit of work, 72-32

Remove Class button, 4-51
Remove Table button, 4-24
removing sessions from brokers, 79-1
Rename dialog, 4-24
renaming

packages, 4-52
projects, 18-10, 18-12

reopening projects, 18-10
report query

about, 93-15
query objects, 11-21
read optimization, and, 11-20
using, 11-21, 93-8

reports
project status, 18-12
query results, 93-8
see also status reports

resuming unit of work
after commit, 99-14
after commit failure, 99-14

returning policy
configuring, 25-67
SQLCall, 93-17

Returning tab, 25-68
RMI

coordinated cache, 90-1
naming service, 88-9
remote session support, 72-31

rollback
and Java Transaction API, 97-11
overview, 97-11
with optimistic locking, 23-20

root class
about, 23-13
inheritance, 23-13

root EIS descriptor, 24-5
root element, descriptor, 29-5
runtime

acquiring sessions, 72-5
components, 3-2
services, configuring sessions, 74-14
troubleshooting, 15-14

S
Save All button, 18-11
Save button, 18-11
saving projects, 19-2
schema context

descriptors without, 29-3

EIS descriptors, 28-2
XML descriptors, 29-2

Schema Document Info tab, 4-36, 4-38
schema manager

about, 5-1
automatic table creation, 5-6
creating a table creator, 5-4
DB2, 5-3
default table generator, 5-4
Java table creator, 5-4
MS Access, 5-3
MySQL, 5-3
Oracle, 5-3
Oracle TopLink Workbench table creator, 5-4
sequencing, 5-3, 5-6
Sybase, 5-3
table creator, 5-2, 5-4, 5-6
table definition, 5-2
type conversion, 5-3
usage, 5-1

Schema Structure tab, 4-34
schemas

about, 2-17
context for EIS descriptors, 28-2
context for XML descriptor, 29-2
data storage, 2-17
database, 4-22
default root for EIS descriptors, 28-4
details, 4-34
document information, 4-36, 4-38
errors, 14-23
importing, 4-35
optimizing, 11-8
properties, 4-35
reimporting, 4-35
schema manager, 5-1
structure, 4-34
XML schemas, 4-33

SCM. see source control management
scripts

SQL, generating, 4-29
see also SQL

scrollable cursor
traversing, 96-16
using for ReadAllQuery, 96-16

security
cache coordination, permissions, 7-23
data source access, permissions, 7-24
disabling doPrivileged(), 7-25
doPrivileged(), 7-4
EJB, permissions, 7-24
enabling doPrivileged(), 7-25
J2EE application, permissions, 7-24
java.util.logging, permissions, 7-24
loading project.xml, permissions, 7-23
loading sessions.xml, permissions, 7-23
logging, permissions, 7-24
password encryption, 18-13
permissions by feature, 7-23
permissions when doPrivileged()

Index-24

disabled, 7-24
port permissions, 7-23, 7-24
SecurityManager integration, 7-4
system properties, permissions, 7-23
understanding permissions, 7-22
with BEA WebLogic, 7-20

Select Classes dialog box, 4-50
SelectedFieldsLockingPolicy, 23-21
sensors, DMS profiler, 11-4, 72-12
SEQ_COUNT column in sequence table, 17-20
sequence connection pools, 81-8
sequence numbers, write optimization

features, 11-27
SEQUENCE objects in Oracle native

sequencing, 17-19
sequencing

and relational projects, 17-14
BEA WebLogic, 17-22
BEA WebLogic single column sequence

table, 17-17, 20-3, 83-4
configuring, 17-15
connection pools, 81-8
default, 83-6
DefaultSequence class, 83-6
descriptors, 23-9, 26-3
entity beans, 17-21
IBM WebSphere, 17-22
isolated client sessions, 72-24
Java configuration, 17-15
Microsoft SQL Server, 5-6
native, 17-18, 17-19, 17-20
non-Oracle database native, 17-19
Oracle Database native, 17-18, 17-20
Oracle TopLink Workbench configuration, 17-15
overriding default, 83-6
platform default, 83-6
preallocation, 11-29, 17-20
QuerySequence class, 83-8
schema manager, 5-6
SEQ_COUNT, 17-20
sequence type, configuring, 20-3, 83-4
sessions, and, 72-13
stored procedures, 17-18, 83-7
Sybase Database, 5-6
table, 17-16
table, default column and table names, 17-17
unary table, 17-17
with stored procedures, 83-7

serialization
descriptor exceptions, 99-13
EJB 1.x, 30-9
EJB 2.x, 30-9
EJB 3.0, 30-10
indirection, 30-9
merging into session cache with unit of

work, 99-13
serialized object converter

about, 12-2, 30-10
configuring, 32-18

serialized object mappings, 32-19

SerializedObjectMapping. see
SerializedObjectConverter

server layer, 72-31
server platform

external transaction controller, 74-14
runtime services, 74-14
session configuration, 74-14
session event listener, 74-17

Server Platform tab, 74-15
server sessions

about, 72-1, 72-14, 72-15
cache, 72-33
connection options, 72-18

service channel, coordinated cache, 88-3
session beans

about, 2-26
deploying, 8-9, 9-3, 10-1
model, 2-24, 2-26
remote session support for, 72-31

session brokers
about, 72-2, 72-26
adding sessions to, 79-1
alternatives, 72-28
architecture, 72-26
configuration, 79-1
limitations of, 72-28
renaming, 79-1
two-phase commits, 72-27
two-stage commits, 72-27

session configuration file
about, 73-1
loading alternative, 75-4
preferences, 4-18, 4-19
see also sessions.xml file

session customizer, 72-4
Session Event Manager, 72-5
session events

example, 72-5, 72-6
isolated sessions, and, 72-5
manager, 72-5
proxy authentication, and, 72-6

Session Loader Exceptions, 13-64
Session Manager

about, 75-1, 75-2
acquiring, 75-2, 75-3
defaults, 75-3
destroying sessions, 75-11
J2EE defaults, 75-3
sessions, acquiring, 72-5
storing sessions, 75-10

sessions
about, 2-13, 71-1, 72-1, 72-2, 73-1
acquiring at runtime, 72-5, 75-1
adding to session brokers, 79-1
additional mapping projects, 74-9
API, 72-33
application server logging, 72-9
architecture, 72-2
cache, 72-33, 87-2
client, 72-14

Index-25

configuring, 74-1, 74-17
connection policy, 74-19
creating, 2-21, 73-1, 73-4, 73-6, 73-8, 85-1
customization, 72-4
database sessions, 72-29, 73-8
destroying in Session Manager, 75-11
errors, 14-23
event listeners, 72-7, 74-17
events, 72-6
external transaction controller, 74-14, 97-2
historical client sessions, 72-25
in sessions.xml file, 72-4
isolated client sessions, 72-19, 77-1
loading with alternative class loader, 75-4
logging, 72-7, 72-9, 72-10, 74-4, 74-5
logging into, 75-10
logging out of, 75-10
logins, 74-4
management of, 75-1
metadata, about, 2-21
multiple sessions, 72-28, 75-2
named queries, 74-21
object cache, 72-3
optimizing, 11-13
preferences, 4-18, 4-19
queries, 93-6, 93-9, 94-1
refreshing, 75-5
registering descriptors, 72-13, 74-2, 74-3, 74-10
remote sessions, 72-30, 73-10
sequencing, about, 72-13
server, 72-14
server platform, 74-14, 74-15
SQL and messages, 72-10
storing in Session Manager, 75-10
three-tier architecture, 72-14
transformation mappings, 33-15
types, 72-1
unit of work, 72-1, 72-19

sessions.xml file
about, 8-4
acquiring, 72-5
CMP applications, 8-4, 72-4
configuring with JDeveloper, 6-3
creating, 73-1
default location, 72-5
EJB 3.0, 8-5
loading alternative configuration file, 75-4
non-CMP applications, 8-4
schema, 8-4
sessions, 72-4
XSD file, 8-4

setAdditionalJoinExpression(), 96-5
setenv.cmd file, 4-2
setenv.sh file, 4-2
setMaxBatchWritingSize(), 11-15
setMultipleTableJoinExpression(), 96-5
setShouldPerformDeletesFirst(), 99-17
Settings tab, 25-26, 25-28
setValue() method, 30-7
shared library

setting for BEA WebLogic, 7-15
shared library for BEA WebLogic, 7-15
simple type translators

about, 12-2, 30-12
configuring, 32-23
in Java, 32-25
read conversions, 30-13
write conversions, 30-14

soft cache weak identity map
about, 87-4
when to use, 87-5

sorting, in memory, 32-26
source code, public, 12-2
source control management

projects, 6-3
with Oracle TopLink Workbench, 6-3
see also team development

source table, reference, 4-28
source.jar, 12-2
splash screen, 4-13
SQL

call, 94-19
comparing with expressions, 95-1
custom queries for basic persistence, per

descriptor, 26-6
EJBQLCall, 94-24
generating from database tables, 4-29
parameter binding, 11-15
parameterized, 11-27, 94-17
prepared statement caching, 11-15
queries, 93-4
scripts with binding arguments, 26-6
SQLCall, 94-19
StoredFunctionCall, 94-23
StoredProcedureCall, 94-21
unit of work, 99-16

SQL Creation Script dialog box, 4-29
SQL DISTINCT, 11-24
SQL Exception, 13-27
SQLAnyWhere platform, 81-3
SQLCall

about, 93-17
binding input parameters, 94-20
input parameters, 94-20
input-output parameters, specifying, 94-21
output parameters, 94-20
Returning Policy, 93-17
using, 94-19

SQLServer platform, 81-3
stages of development with Oracle TopLink, 2-2
stale data

cache, 87-6, 87-7
coordination, cache, 87-7
invalidating the cache, 87-7
locking policy, and, 87-6
per-class cache configuration, 87-7
per-query cache refresh, 87-7

StartWith, 96-7
stateful

beans, 2-26

Index-26

comparing with stateless, 2-26
stateless

comparing with stateful, 2-26
static attributes, 4-45, 4-48
static fetch groups, querying with, 96-3
status report, generating, 18-12
stored functions

about, 93-19
using, 94-23

stored procedures
output parameter event, 94-23
queries, 94-21
sequencing, and, 17-18, 83-7

streams
as query results, 93-8
cursored, 72-32, 96-18

string bindings, CLOB mappings, 31-4
structure object-relational mappings

configuring, 48-1
understanding, 46-2

StructureMapping class, 46-2
subqueries

multiple expressions, 95-10
subselects in expressions, 95-10

subselects, in expressions, 95-10
summary queries, 93-3
superclass, 4-41
Sybase

database schema manager type conversion, 5-3
native sequencing, 17-19
platform, 81-3

synchronous change propagation, 88-2
system properties

oracle.j2ee.security.usedoprivileged, 7-25
oracle.j2ee.toplink.security.usedoprivileged, 7-25
toplink.cts.collection.checkParameter

s, 7-25
toplink.xml.platform, 7-3

T
table creator

about, 5-2
creating, 5-4
using, 5-6

Table Creator dialog, 5-4
table generation. see automatic table generation
table sequence

about, 17-16
default column and table names, 17-17

tables
adding database, 4-22
associating with relational descriptors, 26-2
database, 4-21
defining schema, 5-2
errors, 14-17
generating, automatic, 30-4
import filter, 4-23
mapping to descriptors, 25-3, 26-2
merging files, 6-5

multiple, 26-13
primary key, 4-26
references, 34-8
relation tables for mappings, 40-2
TableDefinition class, 5-2
see also database tables

target foreign keys
about, 33-5, 34-9
configuring, 34-9

target platforms
about, 2-5
choosing, 2-3

target tables
in direct collection mappings, 42-1
reference, 4-28

team development, 6-3
technical support, 2-3
three-tier architecture

about, 1-4, 2-22
authentication, 81-5
migrating to scalable architecture, 72-29
overview, 2-22
sessions, 72-14

timestamp support
about, 34-3
direct to field mappings, 34-3
Oracle Database, 34-3
TIMESTAMP timezone, 34-4

TimestampLockingPolicy, 23-18
timezone, with TIMESTAMP, 34-4
tljaxb.cmd file, 18-8
toolbars, 4-4, 4-6
topic name, 89-1
TopLink. see Oracle TopLink
TopLink expressions. see expressions
TopLink profiler

about, 11-2
selecting, 74-11, 74-14, 74-17, 74-20

TopLink Workbench. see Oracle TopLink Workbench
toplink-ejb-jar.xml file, 8-6, 16-2
toplink-ejb.xml file, 8-7
Transaction Exception, 13-73
transactional data sources, 81-1
transactions

client-controlled, 99-25
CMP, 97-3, 99-25
container-controlled, 99-25
demarcation, 97-2
external transaction controller, 74-14, 97-2
external, integrating, 97-2, 99-21
isolated client sessions, 72-25
isolation, 97-2, 97-4
JTA, 97-3
JTS, 97-3
local, 99-25
local, CMP, 99-25
OTS, 97-3
overview, 2-14, 71-3, 97-1
see also unit of work

transformation EIS mappings

Index-27

configuring, 61-1
understanding, 53-17

transformation mappings
about, 30-14
attribute transformation, 32-29, 32-31
mutable, 32-33

transformation relational mappings
configuring, 45-1
understanding, 33-15

transformation XML mappings
configuring, 70-1
understanding, 62-31

transient attributes, 4-45, 4-48
transparent indirection

about, 30-8
persistent class requirements, 2-12

transport layer, 72-31
troubleshooting

BEA WebLogic deployment, 15-3
data sources, 14-25
deploy tool, 10-6
deployment, 15-1
ejbc, 10-3
IBM WebSphere deployment, 15-12
migration from OC4J persistence, 7-13
Oracle TopLink Workbench, 14-1
unit of work, 99-31, 99-35

two-phase commits, 72-27
two-stage commits, 72-27
two-tier architecture

about, 1-6, 2-24
authentication, 81-5
understanding, 2-24

type conversion
automatic, 34-2
NCHAR, 30-12
NCLOB, 30-12
NVARCHAR2, 30-12
oracle.sql.TimeStamp, 34-3
schema manager, 5-3
String to TIMESTAMP, 30-12
TIMESTAMP to String, 30-12

type conversion converter
about, 12-2, 30-11
configuring, 32-20
provided by direct-to-field mappings, 34-3

TypeConversionMapping
see TypeConversionConverter

types of mappings, 30-1
typesafe enumeration, in EIS mappings, 53-3

U
unary table sequence

about, 17-17
BEA WebLogic single column sequence

table, 17-17, 20-3, 83-4
undeployment, 10-4
unexpected relationship multiplicity, 7-14
unidirectional relationships, 33-2

unit of work
about, 97-1, 97-2, 97-4
acquiring, 98-1
API, 97-11
architecture, 97-1
auditing, 99-21
benefits of, 97-4
cache, 87-2
change policy, 97-6
clones, 97-9
CMP integration, 97-3
commit and Java Transaction API, 97-10
commit, writing changes before, 99-7, 99-12,

99-24
conform results of in-memory query, 93-31
creating objects, 98-2
deleting objects, 98-7
example, 97-6
external transaction controller, 74-14, 97-2
external transactions, 97-2, 99-21
integrating with CMP, 99-24
isolation, 97-4
JTA integration, 97-3
JTS integration, 97-3
life cycle, 97-5
modifying objects, 98-2
mutable mappings, 32-33
nested, 97-9, 99-15
newInstance method, 99-2
optimization, 11-30, 97-11
OTS integration, 97-3
parallel, 97-9, 99-15
pre-commit validation, 99-35
primary keys, 97-11
proxy indirection, 30-8
queries, 97-12
read optimization, 11-19
read-only classes, 99-6, 99-7
registerNewObject method, 99-2
remote sessions, 72-32
resuming, 99-14
reverting, 99-15
rollback, 97-11
sessions, 72-1, 72-19
transaction demarcation, 97-2
transactions, 97-4

unit of work
demarcation, 97-2

troubleshooting, 99-31
validating objects, 99-34
with custom SQL, 99-16
write optimization, 11-26
writing changes before commit, about, 99-7
writing changes before commit, and external

transaction exceptions, 99-24
writing changes before commit, and external

transaction timeouts, 99-24
writing changes before commit, as alternative to

conforming, 99-12
unmapping, 31-6

Index-28

unregistering objects, 99-1
unsaved items, displaying in TopLink Workbench

Navigator window, 4-9
update

operation, 94-3, 94-4
projects from prior versions, 18-10

UpdateAll query, 93-14
updateObject(), 26-8
Use XML Schema "type" attribute,

configuring, 32-23
useBatchWriting(), 83-11
user-defined functions, in expressions, 95-16

V
validating

descriptors, 24-6
JAXB, 17-14
projects, 18-12
unit of work, 99-34

Validation Exceptions, 13-43
Value Converter tab, 44-4
value holders

about, 30-7
ValueHolder class, 30-7

ValueHolderInterface class, 2-12, 30-7, 33-9
variable one-to-one relational mappings

class indicator, 38-1
configuring, 38-1
primary key, unique, 38-3
understanding, 33-6

VariableOneToOneMapping class, 33-6
Varray in Oracle database. see array mappings
version control, 6-6
Version Control Assistance dialog box, 6-6
VersionLockingPolicy, 23-18
volatile attributes, 4-45, 4-48
VPD. see Oracle Virtual Private Database

W
warning icon, 4-10, 4-11
weak identity map, 87-3
web browser, specifying, 4-14
web services architecture, 1-6, 2-35
WebLogic. see BEA WebLogic
weblogic-ejb-jar.xml file

described, 8-5
modifying for Oracle TopLink, 8-13
unsupported tags, 8-15

WebSphere. see IBM WebSphere
welcome screen, 4-14
wildcard, 63-3
wrapper policy

about, 25-78
implementing in Java, 25-79

write
conversions, simple type translator, 30-14
write all operation, 94-3

write query

disabling identity map cache, 94-15
non-cascading, 94-14
objects, 94-13
overview, 94-13

write-locking, 23-9
writing

batch, 11-26, 83-11
ejb-jar.xml file, 18-16
optimization, 11-26
sessions write access, 72-17

X
xdb.jar file, 4-3
XML

descriptor, schema context, 29-2
generating deployment, 8-3
mappings, concepts, 62-2
preserving data, 29-6
projects, 18-3
query language, 93-5
reading whole documents, 36-1
records, 53-3
schemas, 4-33

XML Conversion Exception, 13-74
XML descriptors

configuring, 29-1
schema context, 29-2
understanding, 23-12

XML mappings
about, 62-1
any collection, 62-29, 69-1
any object, 62-27, 68-1
any type support, 62-4
composite collection, 62-25, 67-1
composite direct collection, 62-14, 65-1
composite object, 62-21, 66-1
concepts, 62-2
configuring, 63-1
default conversion pairs, customizing, 62-11
direct, 62-5, 64-1
extensions, 62-4
jaxb:class support, 62-4
list support, 62-3
reference descriptor, configuring, 63-2
transformation, 62-31, 70-1
types of, 62-1
union support, 62-3
xsd:list, 62-3
xsd:union, 62-3

XML parser platform
about, 7-2
configuring, 7-3
creating, 7-3
Crimson, 7-3
default, 7-3
limitations, 7-3
parser conflicts, 7-3
toplink.xml.platform system property, 7-3
used by, application server, 7-2

Index-29

used by, Oracle TopLink, 7-2
XML Platform Exception, 13-83
XML projects

configuring, 22-1
JAXB support, 17-10
sequencing, 17-5
understanding, 17-9

XML queries, 93-5
XML schema

jaxb:class, and EIS mappings, 53-3
jaxb:class, and XML mappings, 62-4
jaxb:class, understanding, 30-20
type, 32-23
xs:any, understanding, 62-4
xs:anyType, understanding, 62-4
xsd:list, understanding, 30-17
xsd:union, understanding, 30-17
see also schemas

XML Type functions, 95-5
XMLMarshalException, 13-81
XMLPlatformException, 13-83
XPath

by name, 30-16
by position, 30-15
mapping Java attributes, 32-10
support in OX mappings, 30-15
support in XML mappings, 53-3, 62-3

XSD file
projects.xml file, 8-2
sessions.xml file, 8-4

Z
zero-argument constructors

editing, 4-16

Index-30

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	Part I Part I Building a TopLink Application
	1 Understanding TopLink
	What is TopLink?
	Solving the Object-Persistence Impedance Mismatch
	TopLink Key Features
	TopLink Application Architectures

	2 Understanding TopLink Application Development
	Developing Your Application With TopLink
	Typical Development Stages
	Oracle Development Support

	Designing Your Application With TopLink
	Understanding TopLink Usage
	Relational Database Usage
	Object-Relational Database Usage
	Oracle XML Database (XDB) Usage
	Enterprise Information System (EIS) Usage
	XML Usage

	Understanding Target Platforms

	Selecting an Architecture With TopLink
	Tiers
	Three Tier
	J2EE or Non-J2EE
	Client

	Two Tier

	Service Layer
	EJB Session Beans
	Stateful
	Stateless

	EJB Entity Beans
	Container-Managed Persistence (CMP)
	Bean-Managed Persistence (BMP)

	EJB 3.0 JPA Entities
	Plain Old Java Objects (POJO)

	Data Access
	Data Type
	Multiple Data Sources
	Isolating Data Access
	Historical Data Access

	Caching
	Cache Type
	Refreshing
	Cache Coordination
	Protocol
	Synchronization

	Locking
	Optimistic Locking
	Pessimistic Locking

	Building and Using the Persistence Layer
	Implementation Options
	Persistent Class Requirements
	Persistence Layer Components
	Mapping Metadata
	Session Metadata
	Cache
	Queries and Expressions
	Transactions

	Using the Persistence Layer

	Deploying the Application
	Understanding Deployments
	TopLink in a J2EE Application

	Optimizing and Customizing the Application
	Troubleshooting the Application
	Understanding Object Persistence
	Application Object Model
	Data Storage Schema
	Primary Keys and Object Identity
	Mappings
	Foreign Keys and Object Relationships
	Inheritance
	Concurrency
	Caching
	Nonintrusive Persistence
	Indirection

	Understanding TopLink Metadata
	Advantages of the TopLink Metadata Architecture
	Creating Project Metadata
	Descriptors and Mappings
	Amending Descriptors

	Data Source Login Information

	Creating Session Metadata
	Deploying Metadata

	Understanding the Three-Tier Architecture
	Example Implementations
	Advantages and Disadvantages
	Variation Using Remote Sessions
	Technical Challenges

	Understanding the Two-Tier Architecture
	Example Implementations
	Advantages and Disadvantages
	Technical Challenges

	Understanding the EJB Session Bean Facade Architecture
	Example Implementation
	Advantages and Disadvantages
	Understanding Session Beans
	Technical Challenges
	Unit of Work Merge

	Understanding the EJB Entity Beans With CMP Architecture
	Example Implementation
	Advantages and Disadvantages
	Technical Challenges
	External JDBC Pools
	JTA/JTS Integration
	Cache Coordination
	Maintaining Bidirectional Relationships
	Managing Dependent Objects
	Managing Collections of EJBObject Objects

	Understanding the EJB Entity Beans With BMP Architecture
	Example Implementations
	Advantages and Disadvantages
	Technical Challenges
	External JDBC Pools
	JTA/JTS Integration
	Cache Coordination

	Understanding the EJB 3.0 JPA Entity Architecture
	Example Implementations
	Advantages and Disadvantages

	Understanding the Web Services Architecture
	Example Implementations
	Advantages and Disadvantages
	Technical Challenges

	Part II Part II Using TopLink Development Tools
	3 Understanding TopLink Development Tools
	Development Environment
	TopLink Run-Time Environment

	4 Using TopLink Workbench
	Understanding TopLink Workbench
	Configuring the TopLink Workbench Environment
	Working With TopLink Workbench
	Using the Menus
	Menu Bar Menus
	Context Menus

	Using the Toolbars
	Standard Toolbar
	Context Toolbar

	Using the Navigator
	Using the Editor
	Using the Problems Window
	Using the Online Help

	Working With TopLink Workbench Preferences
	General Preferences
	Help Preferences
	Mappings Preferences
	Class Preferences
	EJB Preferences
	Database Preferences
	Sessions Configuration Preferences
	New Names Preferences
	Platform Preferences

	Working With Databases
	Working With Database Tables in the Navigator Window
	Logging In and Out of a Database
	Creating New Tables
	Importing Tables From a Database
	Removing Tables
	Renaming Tables
	Refreshing Tables From the Database

	Working With Database Tables in the Editor Window
	Working With Column Properties
	Setting a Primary Key for Database Tables
	Creating Table References
	Creating Field Associations

	Generating Data From Database Tables
	Generating SQL Creation Scripts
	Generating Classes and Descriptors From Database Tables
	Generating EJB Entity Beans and Descriptors From Database Tables
	Generating Tables on the Database

	Working With XML Schemas
	Working With XML Schemas in the Navigator
	Working With XML Schema Structure
	Importing an XML Schema
	Configuring XML Schema Reference
	Using TopLink Workbench
	Using Java

	Configuring XML Schema Namespace
	Using TopLink Workbench
	Using Java

	Working With Classes
	Creating Classes
	Using TopLink Workbench

	Configuring Classes
	Configuring Class Information
	Using TopLink Workbench

	Configuring Class Modifiers
	Using TopLink Workbench

	Configuring Class Interfaces
	Using TopLink Workbench

	Adding Attributes
	Using TopLink Workbench

	Configuring Attribute Modifiers
	Using TopLink Workbench

	Configuring Attribute Type Information
	Using TopLink Workbench

	Configuring Attribute Accessing Methods
	Using TopLink Workbench

	Adding Methods
	Using TopLink Workbench

	Configuring Method Modifiers
	Using TopLink Workbench

	Configuring Method Type Information
	Using TopLink Workbench

	Configuring Method Parameters
	Using TopLink Workbench

	Importing and Updating Classes
	Using TopLink Workbench

	Managing Nondescriptor Classes
	Renaming Packages
	Using TopLink Workbench

	Integrating TopLink Workbench With Apache Ant
	Configuring Ant to Use TopLink Workbench Tasks
	Library Dependencies
	Declaring TopLink Workbench Tasks

	Understanding TopLink Workbench Ant Task API
	Creating TopLink Workbench Ant Tasks
	mappings.validate
	Parameters
	Parameters Specified as Nested Elements
	Examples

	session.validate
	Parameters
	Parameters Specified as Nested Elements
	Examples

	mappings.export
	Parameters
	Parameters Specified as Nested Elements
	Examples

	classpath
	Parameters
	Parameters Specified as Nested Elements
	Examples

	ignoreerror
	Parameters
	Parameters Specified as Nested Elements
	Examples

	ignoreerrorset
	Parameters
	Parameters Specified as Nested Elements
	Examples

	loginspec
	Parameters
	Parameters Specified as Nested Elements
	Examples

	5 Using the Schema Manager
	Understanding the Schema Manager
	Schema Manager Java and Database Type Conversion
	Sequencing

	Creating a Table Creator
	Using TopLink Workbench During Development
	Using the Default Table Generator at Run Time
	Using Java
	Creating a TableCreator Class
	Creating a TableDefinition Class
	Adding Fields to a TableDefinition
	Defining Sybase and Microsoft SQL Server Native Sequencing

	Creating Tables With a Table Creator
	Automatic Database Table Creation

	6 Using an Integrated Development Environment
	Configuring TopLink for Oracle JDeveloper
	Using TopLink Mappings
	Using TopLink Sessions

	Configuring TopLink Workbench With Source Control Management Software
	Using a Source Control Management System
	Merging Files
	Merging Project Files
	Merging Table, Descriptor, and Class Files

	Sharing Project Objects
	Managing the ejb-jar.xml File
	Working With Locked Files

	Part III Part III Deploying a TopLink Application
	7 Integrating TopLink With an Application Server
	Application Server Support
	Application Server Integration Concepts
	Software Requirements
	XML Parser Platform Configuration
	Configuring XML Parser Platform
	Creating an XML Parser Platform
	XML Parser Limitations

	Security Permissions
	Persistence Manager Migration
	Clustering

	Oracle Containers for J2EE (OC4J)
	CMP Integration
	Migrating OC4J Orion Persistence to OC4J TopLink Persistence
	Overview
	Using the TopLink Migration Tool From TopLink Workbench
	Using the TopLink Migration Tool From the Command Line
	Post-Migration Changes
	EJB 3.0 Persistence Manager Customization
	EJB 2.1 Persistence Manager Customization
	Session Event Listener

	Troubleshooting Your Migration

	JTA Integration

	BEA WebLogic Server
	Classpath
	CMP Integration
	Migrating BEA WebLogic Persistence to OC4J TopLink Persistence
	Overview
	Using the TopLink Migration Tool From TopLink Workbench
	Using the TopLink Migration Tool From the Command Line

	JTA Integration
	Security Manager

	IBM WebSphere Application Server
	Classpath
	Configuring Classpath for IBM WebSphere Application Server 4.0
	Configuring Classpath for IBM WebSphere Application Server 5.0 and Later

	CMP Integration
	JTA Integration
	Clustering on IBM WebSphere Application Server

	Understanding Security Permissions
	Permissions Required by TopLink Features
	System Properties
	Loading project.xml or sessions.xml Files
	Cache Coordination
	Accessing a Data Source by Port
	Logging With java.util.logging
	J2EE Application Deployment

	Permissions Required When doPrivileged is Disabled
	Disabling doPrivileged Operation

	Configuring Miscellaneous EJB Options
	Setter Parameter Type Checking
	Unknown Primary Key Class Support
	Single-Object Finder Return Type Checking

	8 Creating TopLink Files for Deployment
	Understanding TopLink Deployment File Creation
	project.xml File
	XSD File Format
	Non-CMP Applications and Project Metadata
	CMP Applications and Project Metadata
	Creating project.xml With TopLink Workbench
	Creating project.xml Programatically

	sessions.xml File
	XSD File Format
	Non-CMP Applications and Session Metadata
	CMP Applications and Session Metadata

	ejb-jar.xml File
	<J2EE-Container>-ejb-jar.xml File
	OC4J and the orion-ejb-jar.xml File
	BEA WebLogic Server and the weblogic-ejb-jar.xml File

	toplink-ejb-jar.xml File
	OC4J and the toplink-ejb-jar.xml File
	BEA WebLogic Server and the toplink-ejb-jar.xml File
	IBM WebSphere Application Server and the toplink-ejb-jar.xml File

	Java Applications
	JavaServer Pages and Servlet Applications
	Session Bean Applications
	CMP Applications
	BMP Applications
	Configuring the orion-ejb-jar.xml File for OC4J
	Configuring persistence-manager Entries
	Configuring pm-properties
	Configuring cache-synchronization Properties
	Configuring default-mapping Properties

	Configuring the weblogic-ejb-jar.xml File for BEA WebLogic Server
	Configuring persistence-descriptor Entries
	Unsupported weblogic-ejb-jar.xml File Tags

	9 Packaging a TopLink Application
	Java Applications
	JavaServer Pages and Servlet Applications
	TopLink Domain JAR

	Session Bean Applications
	TopLink Domain JAR
	EJB JAR

	CMP Applications
	EJB JAR

	BMP Applications
	TopLink Domain JAR
	EJB JAR

	Packaging With TopLink Metadata File Resource Paths

	10 Deploying a TopLink Application
	Java Applications
	JavaServer Pages and Servlets
	Session Bean Applications
	CMP Applications
	Deploying a CMP Application to OC4J
	Deploying a CMP Application to BEA WebLogic Server
	Troubleshooting ejbc

	Deploying a CMP Application to IBM WebSphere Application Server 4.0
	Starting the Entity Bean

	BMP Applications
	Hot Deployment of EJB
	Hot Deployment in a CMP Application
	Hot Deployment in a non-CMP Application

	Using the WebSphere Deploy Tool
	Using the Deploy Tool on its Own
	Using the Deploy Tool With WebSphere Studio Application Developer
	Troubleshooting

	Part IV Part IV Optimizing and Customizing a TopLink Application
	11 Optimization
	Understanding Optimization
	Sources of Application Performance Problems
	Measuring TopLink Performance With the TopLink Profiler
	Configuring the TopLink Performance Profiler
	Accessing the TopLink Profiler Results

	Measuring TopLink Performance With the Oracle Dynamic Monitoring System (DMS)
	Configuring the Oracle DMS Profiler
	OC4J Applications
	Non-OC4J Applications

	Accessing Oracle DMS Profiler Data Using JMX
	Accessing Oracle DMS Profiler Data Using the DMS Spy Servlet

	General Performance Optimization
	Schema Optimization
	Schema Case 1: Aggregation of Two Tables into One
	Schema Case 2: Splitting One Table Into Many
	Schema Case 3: Collapsed Hierarchy
	Schema Case 4: Choosing One out of Many

	Mapping and Descriptor Optimization
	Session Optimization
	Cache Optimization
	Data Access Optimization
	JDBC Driver Properties Optimization
	Data Format Optimization
	Batch Writing
	Parameterized SQL (Binding) and Prepared Statement Caching

	Query Optimization
	Parameterized SQL and Prepared Statement Caching
	Named Queries
	Batch and Join Reading
	Partial Object Queries and Fetch Groups
	JDBC Fetch Size
	Cursored Streams and Scrollable Cursors
	Read Optimization Examples
	Reading Case 1: Displaying Names in a List
	Partial Object Reading
	Report Query
	Fetch Groups

	Reading Case 2: Batch Reading Objects
	Reading Case 3: Using Complex Custom SQL Queries
	Reading Case 4: Using View Objects
	Reading Case 5: Inheritance Views

	Write Optimization Examples
	Writing Case: Batch Writes
	Cursors
	Batch Writing and Parameterized SQL
	Sequence Number Preallocation
	Multiprocessing

	Unit of Work Optimization
	Application Server and Database Optimization

	12 Customization
	Overview
	Creating Custom Data Types
	Using Public Source

	Part V Part V Troubleshooting a TopLink Application
	13 TopLink Exception Reference
	Descriptor Exceptions (1 - 201)
	Concurrency Exceptions (2001 - 2009)
	Conversion Exceptions (3001- 3008)
	Database Exceptions (4002 - 4018)
	Optimistic Lock Exceptions (5001 - 5009)
	Query Exceptions (6001 - 6129)
	Validation Exceptions (7001 - 7200)
	EJB QL Exceptions (8001 - 8010)
	Session Loader Exceptions (9000 - 9010)
	Communication Exceptions (12000 - 12003)
	EIS Exceptions (17007 - 17025), 90000, 91000
	JMS Processing Exceptions (18001 - 18004)
	Default Mapping Exceptions (20001 - 20008)
	Discovery Exceptions (22001 - 22004)
	Remote Command Manager Exceptions (22101 - 22111)
	Transaction Exceptions (23001 - 23015)
	XML Conversion Exceptions (25501)
	Migration Utility Exceptions (26001 - 26020)
	EJB JAR XML Exceptions (72000 - 72023)
	Entity Manager Setup Exceptions (28001 - 28007)
	XML Marshal Exceptions (25001 - 25020)
	XML Platform Exceptions (27001 - 27006, 27101 - 27103, 27201 - 27202)

	14 TopLink Workbench Error Reference
	Miscellaneous Errors (1 - 89, 106 - 133)
	Project Errors (100 - 102)
	Descriptor Errors (200 - 399)
	Mapping Errors (400 - 483)
	Table Errors (500 - 610)
	XML Schema Errors (700 - 706)
	Session Errors (800 - 812)
	Common Classpath Problems
	Data Source Problems
	Database Connection Problems

	15 Troubleshooting Application Deployment
	Generating Deployment JAR Files
	Common J2SE Deployment Exceptions
	Classpath Exceptions
	Communication Exceptions
	Descriptor Validation Exceptions

	Common BEA WebLogic Server Deployment Exceptions
	Common BEA WebLogic Server 6.1 Exceptions
	Development Exceptions
	Deployment and Run-Time Exceptions

	Common BEA WebLogic 7.0 Exceptions
	Development Exceptions
	Deployment Exceptions

	Common BEA WebLogic 8.1 Exceptions
	Development Exceptions
	Deployment Exceptions

	Common IBM WebSphere Application Server Exceptions
	Problems at Run Time
	Common TopLink for IBM WebSphere Deploy Tool Exceptions

	Part VI Part VI Mapping and Configuration Overview
	16 Understanding TopLink Mapping and Configuration Concepts
	Mapping and Configuration Concepts
	Projects
	Descriptors
	Mappings

	Part VII Part VII Projects
	17 Understanding Projects
	TopLink Project Types
	Project Concepts
	Project Architecture
	Relational and Nonrelational Projects
	Persistent and Nonpersistent Projects
	Projects and Login
	Non-CMP Session Role: Session Login
	CMP Deployment Role: Deployment Login
	Development Role: Development Login

	Projects and Platforms
	Projects and Sequencing
	Configuring how to Obtain Sequence Values
	Configuring Where to Write Sequence Values

	XML Namespaces

	Relational Projects
	Building Relational Projects for a Relational Database
	Building Relational Projects for an Object-Relational Database

	EIS Projects
	Building EIS Projects With XML Records
	Building EIS Projects With Indexed or Mapped Records

	XML Projects
	TopLink Support for Java Architecture for XML Binding (JAXB)
	Understanding JAXB-Specific Generated Files
	Content and Element Interfaces
	Implementation Classes
	Object Factory Class
	JAXB Properties File

	Understanding TopLink-Specific Generated Files
	TopLink Sessions XML File
	TopLink Project XML File
	TopLink Workbench Project
	Typesafe Enumeration Converter Amendment Method DescriptorAfterLoads Class

	Using TopLink JAXB Compiler Generated Files at Run Time
	Using the TopLink XML Context
	Using the JAXB Context

	JAXB Validation

	Understanding the Project API
	Project Inheritance Hierarchy

	Understanding Sequencing in Relational Projects
	Sequencing Configuration Options
	Sequencing Types
	Table Sequencing
	Default Versus Custom Sequence Table

	Unary Table Sequencing
	Query Sequencing
	Default Sequencing
	Native Sequencing With an Oracle Database Platform
	Understanding the Oracle SEQUENCE Object
	Using SEQUENCE Objects

	Native Sequencing With a Non-Oracle Database Platform

	Sequencing and Preallocation Size
	Sequencing With Entity Beans WIth Container-Managed Persistence

	Understanding XML Namespaces
	TopLink Workbench Namespace Resolution
	Element and Attribute Form Options
	Element Form Default Qualified and Attribute Form Default Unqualified
	Element and Attribute Form Default Unqualified
	Element and Attribute Form Default Qualified

	TopLink Runtime Namespace Resolution

	18 Creating a Project
	Project Creation Overview
	Using TopLink Workbench
	Creating New TopLink Workbench Projects

	Using Java

	Creating a Project for an Existing Object and Data Model
	Using TopLink Workbench

	Creating a Project From an Existing Object Model
	Using TopLink Workbench

	Creating a Project From an Existing Data Model
	Using TopLink Workbench

	Creating an XML Project From an XML Schema
	Using TopLink Workbench
	Using the Command Line

	Creating a Project by Migrating an EAR to OC4J
	Creating a Project From an OC4J EJB CMP EAR at Deployment Time
	Working With Projects
	Opening Existing Projects
	Saving Projects
	Saving Projects With a New Name or Location

	Generating the Project Status Report

	Exporting Project Information
	Exporting Deployment XML Information
	Exporting Model Java Source
	Exporting Project Java Source
	Exporting Table Creator Files

	Working With the ejb-jar.xml File
	Writing to the ejb-jar.xml File
	Reading From the ejb-jar.xml File

	19 Configuring a Project
	Configuring Common Project Options
	Configuring Project Save Location
	Using TopLink Workbench

	Configuring Project Classpath
	Using TopLink Workbench

	Configuring Mapped Field Access at the Project Level
	Using TopLink Workbench

	Configuring Persistence Type
	Using TopLink Workbench

	Configuring Default Descriptor Advanced Properties
	Using TopLink Workbench

	Configuring Existence Checking at the Project Level
	Using TopLink Workbench

	Configuring Project Deployment XML Options
	Using TopLink Workbench

	Configuring Model Java Source Code Options
	Using TopLink Workbench

	Configuring Deprecated Direct Mappings
	Using TopLink Workbench

	Configuring Cache Type and Size at the Project Level
	Using TopLink Workbench

	Configuring Cache Isolation at the Project Level
	Using TopLink Workbench

	Configuring Cache Coordination Change Propagation at the Project Level
	Using TopLink Workbench

	Configuring Cache Expiration at the Project Level
	Using TopLink Workbench

	Configuring Project Comments
	Using TopLink Workbench

	20 Configuring a Relational Project
	Relational Project Configuration Overview
	Configuring Relational Database Platform at the Project Level
	Using TopLink Workbench

	Configuring Sequencing at the Project Level
	Using TopLink Workbench
	Using Java

	Configuring Login Information
	Using TopLink Workbench

	Configuring Development and Deployment Logins
	Using TopLink Workbench
	Logging in to the Database

	Configuring Named Query Parameterized SQL and Statement Caching at the Project Level
	Using TopLink Workbench

	Configuring Table Generation Options
	Using TopLink Workbench

	Configuring Table Creator Java Source Options
	Using TopLink Workbench

	Configuring Project Java Source Code Options
	Using TopLink Workbench

	21 Configuring an EIS Project
	EIS Project Configuration Overview
	Configuring EIS Data Source Platform at the Project Level
	Using TopLink Workbench

	Configuring EIS Connection Specification Options at the Project Level
	Using TopLink Workbench

	22 Configuring an XML Project
	XML Project Configuration Overview

	Part VIII Part VIII Descriptors
	23 Understanding Descriptors
	Descriptor Types
	Descriptor Concepts
	Descriptor Architecture
	Descriptors and Inheritance
	Descriptors and EJB
	Nondeferred Changes
	Creating a New Entity Bean and ejbCreate / ejbPostCreate Methods
	Inheritance

	Fetch Groups
	Amendment and After-Load Methods
	Descriptors and Aggregation
	Aggregate and Composite Descriptors in Relational Projects
	Relational Aggregates and Nesting
	Relational Aggregates and Inheritance
	Relational Aggregates and EJB

	Root and Composite Descriptors in EIS Projects
	Composite Descriptors in XML Projects

	Descriptor Event Manager
	Descriptor Query Manager
	Descriptors and Sequencing
	Descriptors and Locking
	Default Root Element

	Relational Descriptors
	Object-Relational Descriptors
	EIS Descriptors
	XML Descriptors
	Understanding Descriptors and Inheritance
	Specifying a Class Indicator
	Using Class Indicator Fields
	Using Class Extraction Methods
	Specifying Expressions for Only-Instances and With-All-Subclasses

	Inheritance and Primary Keys (Relational and EIS Only)
	Single and Multi-Table Inheritance (Relational Only)
	Single Table Inheritance
	Multitable Inheritance
	Inheritance View

	Aggregate and Composite Descriptors and Inheritance
	Inheritance and EJB

	Understanding Descriptors and Locking
	Optimistic Version Locking Policies
	Optimistic Version Locking Policies and Cascading
	Optimistic Locking and Rollbacks
	Optimistic Field Locking Policies
	Pessimistic Locking Policy
	Locking in a Three-Tier Application
	Optimistic Locking in a Three-Tier Application
	Pessimistic Locking in a Three-Tier Application

	Understanding the Descriptor API
	Descriptor Inheritance Hierarchy

	24 Creating a Descriptor
	Descriptor Creation Overview
	Creating a Relational Descriptor
	Using TopLink Workbench
	Relational Class Descriptors
	Relational Aggregate Descriptors
	Relational Interface Descriptors

	Using Java

	Creating an Object-Relational Descriptor
	Using Java

	Creating an EIS Descriptor
	Using TopLink Workbench
	EIS Root Descriptors
	EIS Composite Descriptors

	Using Java

	Creating an XML Descriptor
	Using TopLink Workbench
	Using Java

	Validating Descriptors
	Generating Java Code for Descriptors

	25 Configuring a Descriptor
	Configuring Common Descriptor Options
	Configuring Primary Keys
	Using TopLink Workbench
	Using Java
	Relational Projects
	EIS Projects

	Configuring Read-Only Descriptors
	Using Read-Only Entity Beans
	Using TopLink Workbench
	Using Java

	Configuring Unit of Work Conforming at the Descriptor Level
	Using TopLink Workbench
	Using Java

	Configuring Descriptor Alias
	Using TopLink Workbench
	Using Java

	Configuring Descriptor Comments
	Using TopLink Workbench

	Configuring Named Queries at the Descriptor Level
	Using TopLink Workbench
	Adding Named Queries
	Configuring Named Query Type and Parameters
	Configuring Named Query Selection Criteria
	Configuring Read All Query Order
	Configuring Named Query Optimization
	Configuring Named Query Attributes
	Adding Report Query Attributes

	Configuring Named Query Group/Order Options
	Adding Ordering Attributes

	Creating an EIS Interaction for a Named Query
	Configuring Named Query Options
	Configuring Named Query Advanced Options

	Using Java

	Configuring Query Timeout at the Descriptor Level
	Using TopLink Workbench
	Using Java

	Configuring Cache Refreshing
	Using TopLink Workbench
	Using Java

	Configuring Query Keys
	Using TopLink Workbench
	Using Java

	Configuring Interface Query Keys
	Using TopLink Workbench
	Using Java

	Configuring Cache Type and Size at the Descriptor Level
	Using TopLink Workbench
	Using Java

	Configuring Cache Isolation at the Descriptor Level
	Using TopLink Workbench
	Using Java

	Configuring Unit of Work Cache Isolation at the Descriptor Level
	Using Java

	Configuring Cache Coordination Change Propagation at the Descriptor Level
	Using TopLink Workbench
	Using Java

	Configuring Cache Expiration at the Descriptor Level
	Using TopLink Workbench
	Using Java

	Configuring Cache Existence Checking at the Descriptor Level
	Using TopLink Workbench
	Using Java

	Configuring a Descriptor With EJB Information
	Using TopLink Workbench
	Using Java
	Configuring CMP Information
	Configuring BMP Information

	Configuring Reading Subclasses on Queries
	Using TopLink Workbench
	Using Java

	Configuring Inheritance for a Child (Branch or Leaf) Class Descriptor
	Using TopLink Workbench
	Using Java

	Configuring Inheritance for a Parent (Root) Descriptor
	Using TopLink Workbench
	Using Java

	Configuring Inheritance Expressions for a Parent (Root) Class Descriptor
	Using Java

	Configuring Inherited Attribute Mapping in a Subclass
	Using TopLink Workbench
	Using Java

	Configuring a Domain Object Method as an Event Handler
	Using TopLink Workbench
	Using Java

	Configuring a Descriptor Event Listener as an Event Handler
	Using Java

	Configuring Locking Policy
	Using TopLink Workbench
	Using Java
	Configuring an Optimistic Locking Policy
	Configuring Optimistic Locking Policy Cascading
	Configuring a Pessimistic Locking Policy

	Configuring Returning Policy
	Using TopLink Workbench
	Using Java

	Configuring Instantiation Policy
	Using TopLink Workbench
	Using Java

	Configuring Copy Policy
	Using TopLink Workbench
	Using Java

	Configuring Change Policy
	Using Java
	Configuring Deferred Change Detection Policy
	Configuring Object Change Tracking Policy
	Configuring Attribute Change Tracking Policy

	Configuring a History Policy
	Using Java
	Configuring Write Responsibility

	Configuring Wrapper Policy
	Using Java

	Configuring Fetch Groups
	Using Java

	Configuring Amendment Methods
	Using TopLink Workbench

	26 Configuring a Relational Descriptor
	Relational Descriptor Configuration Overview
	Configuring Associated Tables
	Using TopLink Workbench
	Using Java

	Configuring Sequencing at the Descriptor Level
	Using TopLink Workbench
	Using Java
	Configuring a Sequence by Name
	Configuring the Same Sequence for Multiple Descriptors
	Configuring the Platform Default Sequence

	Configuring Custom SQL Queries for Basic Persistence Operations
	Using TopLink Workbench
	Using Java

	Configuring Interface Alias
	Using TopLink Workbench
	Using Java

	Configuring a Relational Descriptor as a Class or Aggregate Type
	Using TopLink Workbench
	Using Java

	Configuring Multitable Information
	Using TopLink Workbench
	Using Java

	27 Configuring an Object-Relational Descriptor
	Object-Relational Descriptor Configuration Overview
	Configuring Field Ordering
	Using Java

	28 Configuring an EIS Descriptor
	EIS Descriptor Configuration Overview
	Configuring Schema Context for an EIS Descriptor
	Using TopLink Workbench
	Choosing a Schema Context

	Using Java

	Configuring Default Root Element
	Using TopLink Workbench
	Choosing a Root Element

	Using Java

	Configuring Record Format
	Using Java

	Configuring Custom EIS Interactions for Basic Persistence Operations
	Using TopLink Workbench
	Using Java

	Configuring an EIS Descriptor as a Root or Composite Type
	Using TopLink Workbench
	Using Java

	29 Configuring an XML Descriptor
	XML Descriptor Configuration Overview
	Configuring Schema Context for an XML Descriptor
	Using TopLink Workbench
	Choosing a Schema Context

	Using Java

	Configuring for Complex Type of anyType
	Using TopLink Workbench

	Configuring Default Root Element
	Using TopLink Workbench
	Choosing a Root Element

	Configuring Document Preservation
	Using TopLink Workbench
	Using Java

	Part IX Part IX Mappings
	30 Understanding Mappings
	Mapping Types
	Mapping Concepts
	Mapping Architecture
	Example Mapping
	Automatic Mappings
	Automapping With TopLink Workbench at Development Time
	Default Mapping in CMP Projects Using OC4J at Run Time
	JAXB Project Generation at Development Time

	Indirection
	Value Holder Indirection
	Transparent Indirect Container Indirection
	Proxy Indirection
	Proxy Indirection Restrictions

	Indirection and EJB
	CMP

	Indirection, Serialization, and Detachment
	CMP

	Method Accessors and Attribute Accessors
	Mapping Converters and Transformers
	Serialized Object Converter
	Type Conversion Converter
	Object Type Converter
	Simple Type Translator
	Default Read Conversions
	Default Write Conversions

	Transformation Mappings

	Mappings and XPath
	XPath by Position
	XPath by Path and Name
	XPath by Name
	Self XPath

	Mappings and xsd:list and xsd:union Types
	Mapping an xsd:union Type
	Mapping an xsd:list Type
	Mapping a List of Unions
	Mapping a Union of Lists
	Mapping a Union of Unions

	Mappings and the jaxb:class Customization
	all, choice, or sequence Structure
	group Structure
	sequence or choice Structure Containing a group
	group Structure Containing a sequence or choice
	group Structure Containing a group
	Limitations of jaxb:class Customization Support

	Mappings and JAXB Typesafe Enumerations

	Understanding the Mapping API
	Relational Mappings
	Object-Relational Mappings
	XML Mappings
	EIS Mappings

	31 Creating a Mapping
	Mapping Creation Overview
	Creating Mappings Manually During Development
	Using TopLink Workbench

	Creating Mappings Automatically During Development
	Using TopLink Workbench

	Creating Mappings Automatically During Deployment
	Creating Mappings to Oracle LOB Database Objects
	Using the Oracle JDBC OCI Driver or Server Driver
	Using the Oracle JDBC Thin Driver

	Removing Mappings
	Using TopLink Workbench

	32 Configuring a Mapping
	Configuring Common Mapping Options
	Configuring Read-Only Mappings
	Using TopLink Workbench
	Using Java

	Configuring Indirection
	Using TopLink Workbench
	Using Java
	Configuring ValueHolder Indirection
	Configuring ValueHolder Indirection With Method Accessing
	Configuring ValueHolder Indirection With EJB 3.0 on OC4J
	Configuring IndirectContainer Indirection
	Configuring Proxy Indirection

	Configuring XPath
	Using TopLink Workbench
	Choosing the XPath

	Configuring a Default Null Value at the Mapping Level
	Using TopLink Workbench
	Using Java

	Configuring Method Accessing
	Using TopLink Workbench
	Using Java

	Configuring Private or Independent Relationships
	Using TopLink Workbench
	Using Java

	Configuring Mapping Comments
	Using TopLink Workbench

	Configuring a Serialized Object Converter
	Using TopLink Workbench
	Using Java

	Configuring a Type Conversion Converter
	Using TopLink Workbench
	Using Java

	Configuring an Object Type Converter
	Using TopLink Workbench
	Using Java

	Configuring a Simple Type Translator
	Using TopLink Workbench
	Using Java

	Configuring a JAXB Typesafe Enumeration Converter
	Using Java

	Configuring Container Policy
	Using TopLink Workbench
	Using Java

	Configuring Attribute Transformer
	Using TopLink Workbench
	Using Java

	Configuring Field Transformer Associations
	Using TopLink Workbench
	Specifying Field-to-Transformer Associations

	Using Java

	Configuring Mutable Mappings
	Using TopLink Workbench
	Using Java

	Configuring Bidirectional Relationship
	Using TopLink Workbench

	Configuring the Use of a Single Node
	Using TopLink Workbench
	Using Java

	Part X Part X Relational Mappings
	33 Understanding Relational Mappings
	Relational Mapping Types
	Relational Mapping Concepts
	Directionality
	Converters and Transformers
	Using a Direct Mapping
	Using a Converter Mapping
	Using a Transformation Mapping

	Relational Mappings and EJB

	Direct-to-Field Mapping
	Direct-to-XMLType Mapping
	One-to-One Mapping
	One-to-One Mappings and EJB

	Variable One-to-One Mapping
	One-to-Many Mapping
	One-to-Many Mappings and EJB

	Many-to-Many Mapping
	Many-to-Many Mappings and EJB

	Aggregate Collection Mapping
	Aggregate Collection Mappings and Inheritance
	Aggregate Collection Mappings and EJB
	Implementing Aggregate Collection Mappings

	Direct Collection Mapping
	Direct Map Mapping
	Aggregate Object Mapping
	Aggregate Object Mappings with a Single Source Object
	Aggregate Object Mappings With Multiple Source Objects
	Implementing an Aggregate Object Relationship Mapping

	Transformation Mapping

	34 Configuring a Relational Mapping
	Configuring Common Relational Mapping Options
	Configuring a Database Field
	Using TopLink Workbench

	Configuring Reference Descriptor
	Using TopLink Workbench

	Configuring Batch Reading
	Using TopLink Workbench
	Using Java

	Configuring Query Key Order
	Using TopLink Workbench

	Configuring Table and Field References (Foreign and Target Foreign Keys)
	Using TopLink Workbench

	35 Configuring a Relational Direct-to-Field Mapping
	Relational Direct-to-Field Mapping Configuration Overview

	36 Configuring a Relational Direct-to-XMLType Mapping
	Relational Direct-to-XMLType Mapping Overview
	Configuring Read Whole Document
	Using TopLink Workbench

	37 Configuring a Relational One-to-One Mapping
	Relational One-to-One Mapping Configuration Overview
	Configuring Joining at the Mapping Level
	Using TopLink Workbench

	38 Configuring a Relational Variable One-to-One Mapping
	Relational Variable One-to-One Mapping Configuration Overview
	Configuring Class Indicator
	Using TopLink Workbench

	Configuring Unique Primary Key
	Understanding Unique Primary Key
	Using TopLink Workbench
	Using Java

	Configuring Query Key Association
	Using TopLink Workbench

	39 Configuring a Relational One-to-Many Mapping
	Relational One-to-Many Mapping Configuration Overview

	40 Configuring a Relational Many-to-Many Mapping
	Relational Many-to-Many Mapping Configuration Overview
	Configuring a Relation Table
	Using TopLink Workbench

	41 Configuring a Relational Aggregate Collection Mapping
	Relational Aggregate Collection Mapping Configuration Overview

	42 Configuring a Relational Direct Collection Mapping
	Relational Direct Collection Mapping Configuration Overview
	Configuring Target Table
	Using TopLink Workbench

	Configuring Direct Value Field
	Using TopLink Workbench

	43 Configuring a Relational Aggregate Object Mapping
	Relational Aggregate Object Mapping Configuration Overview
	Configuring Aggregate Fields
	Using TopLink Workbench

	Configuring Allowing Null Values
	Using TopLink Workbench

	44 Configuring a Relational Direct Map Mapping
	Relational Direct Map Mapping Configuration Overview
	Configuring Direct Value Field
	Using TopLink Workbench

	Configuring Direct Key Field
	Using TopLink Workbench

	Configuring Key Converters
	Using TopLink Workbench

	Configuring Value Converters
	Using TopLink Workbench

	45 Configuring a Relational Transformation Mapping
	Relational Transformation Mapping Configuration Overview

	Part XI Object-Relational Mappings
	46 Understanding Object-Relational Mappings
	Object-Relational Mapping Types
	Object-Relational Structure Mapping
	Object-Relational Reference Mapping
	Object-Relational Array Mapping
	Object-Relational Object Array Mapping
	Object-Relational Nested Table Mapping

	47 Configuring an Object-Relational Mapping
	Configuring Common Object-Relational Mapping Options
	Configuring Reference Class
	Using Java

	Configuring Attribute Name
	Using Java

	Configuring Field Name
	Using Java

	Configuring Structure Name
	Using Java

	48 Configuring an Object-Relational Structure Mapping
	Object-Relational Structure Mapping Configuration Overview

	49 Configuring an Object-Relational Reference Mapping
	Object-Relational Reference Mapping Configuration Overview

	50 Configuring an Object-Relational Array Mapping
	Object-Relational Array Mapping Configuration Overview

	51 Configuring an Object-Relational Object Array Mapping
	Object-Relational Object Array Mapping Configuration Overview

	52 Configuring an Object-Relational Nested Table Mapping
	Object-Relational Nested Table Mapping Configuration Overview

	Part XII Part XII EIS Mappings
	53 Understanding EIS Mappings
	EIS Mapping Types
	EIS Mapping Concepts
	EIS Record Type
	Indexed Records
	Mapped Records
	XML Records

	XPath Support
	xsd:list and xsd:union Support
	jaxb:class Support
	Typesafe Enumeration Support
	Composite and Reference EIS Mappings
	Composite EIS Mappings
	Reference EIS Mappings

	EIS Mapping Architecture

	EIS Direct Mapping
	EIS Composite Direct Collection Mapping
	EIS Composite Object Mapping
	EIS Composite Collection Mapping
	EIS One-to-One Mapping
	EIS One-to-One Mappings With Key on Source
	EIS One-to-One Mappings With Key on Target

	EIS One-to-Many Mapping
	EIS One-to-Many Mappings With Key on Source
	EIS One-to-Many Mappings With Key on Target

	EIS Transformation Mapping

	54 Configuring an EIS Mapping
	Configuring Common EIS Mapping Options
	Configuring Reference Descriptors
	Using TopLink Workbench

	Configuring Selection Interaction
	Using TopLink Workbench

	55 Configuring an EIS Direct Mapping
	EIS Direct Mapping Configuration Overview

	56 Configuring an EIS Composite Direct Collection Mapping
	EIS Composite Direct Collection Mapping Configuration Overview

	57 Configuring an EIS Composite Object Mapping
	EIS Composite Object Mapping Configuration Overview

	58 Configuring an EIS Composite Collection Mapping
	EIS Composite Collection Mapping Configuration Overview

	59 Configuring an EIS One-to-One Mapping
	EIS One-to-One Mapping Configuration Overview
	Configuring Foreign Key Pairs
	Using TopLink Workbench

	60 Configuring an EIS One-to-Many Mapping
	EIS One-to-Many Mapping Configuration Overview
	Configuring Foreign Key Pairs
	Using TopLink Workbench

	Configuring Delete All Interactions
	Using TopLink Workbench

	61 Configuring an EIS Transformation Mapping
	EIS Transformation Mapping Configuration Overview

	Part XIII Part XIII XML Mappings
	62 Understanding XML Mappings
	XML Mapping Types
	XML Mapping Concepts
	Mapping to Simple and Complex Types
	Mapping Order
	XPath Support
	xsd:list and xsd:union Support
	xs:any and xs:anyType Support
	jaxb:class Support
	Typesafe Enumeration Support
	Mapping Extensions

	XML Direct Mapping
	Mapping to a Text Node
	Mapping to a Simple Text Node
	Mapping to a Text Node in a Simple Sequence
	Mapping to a Text Node in a Subelement
	Mapping to a Text Node by Position

	Mapping to an Attribute
	Mapping to a Specified Schema Type
	Mapping to a List Field With an XML Direct Mapping
	Mapping to a Union Field With an XML Direct Mapping
	Mapping to a Union of Lists With an XML Direct Mapping
	Mapping to a Union of Unions With an XML Direct Mapping
	Mapping With a Simple Type Translator

	XML Composite Direct Collection Mapping
	Mapping to Multiple Text Nodes
	Mapping to a Simple Sequence
	Mapping to a Sequence in a Subelement

	Mapping to Multiple Attributes
	Mapping to a Single Text Node With an XML Composite Direct Collection Mapping
	Mapping to a Single Attribute With an XML Composite Direct Collection Mapping
	Mapping to a List of Unions With an XML Composite Direct Collection Mapping
	Mapping to a Union of Lists With an XML Composite Direct Collection Mapping
	Specifying the Content Type of a Collection With an XML Composite Direct Collection Mapping

	XML Composite Object Mapping
	Mapping Into the Parent Record
	Mapping to an Element
	Mapping to Different Elements by Element Name
	Mapping to Different Elements by Element Position

	XML Composite Collection Mapping
	XML Any Object Mapping
	XML Any Collection Mapping
	XML Transformation Mapping

	63 Configuring an XML Mapping
	Configuring Common XML Mapping Options
	Configuring Reference Descriptor
	Using TopLink Workbench

	Configuring Maps to Wildcard
	Using TopLink Workbench

	64 Configuring an XML Direct Mapping
	XML Direct Mapping Configuration Overview

	65 Configuring an XML Composite Direct Collection Mapping
	XML Composite Direct Collection Mapping Configuration Overview

	66 Configuring an XML Composite Object Mapping
	XML Composite Object Mapping Configuration Overview

	67 Configuring an XML Composite Collection Mapping
	XML Composite Collection Mapping Configuration Overview

	68 Configuring an XML Any Object Mapping
	XML Any Object Mapping Configuration Overview

	69 Configuring an XML Any Collection Mapping
	XML Any Collection Mapping Configuration Overview

	70 Configuring an XML Transformation Mapping
	XML Transformation Mapping Configuration Overview

	Part XIV Part XIV Using TopLink Overview
	71 Understanding the Persistence Layer
	Overview of the Persistence Layer
	Sessions
	Data Access
	Cache
	Queries and Expressions
	Transactions

	Part XV TopLink Sessions
	72 Understanding TopLink Sessions
	Session Types
	Session Concepts
	Session Architecture
	Object Cache
	Connection Pools
	Query Mechanism
	Java Object Builder

	Session Configuration and the sessions.xml File
	Session Customization
	Acquiring a Session at Run Time With the Session Manager
	Managing Session Events With the Session Event Manager
	Session Event Manager Events
	Session Event Listeners

	Logging
	Log Types
	TopLink Native Logging
	java.util Logging
	Server Logging

	Log Output
	Log Level
	Logging SQL
	Logging Chained Exceptions
	Viewing TopLink Log Messages From the Application Server Control Console

	Profiler
	TopLink Profiler
	Oracle Dynamic Monitoring System (DMS)

	Integrity Checker
	Exception Handlers
	Registering Descriptors
	Sessions and CMP
	Sessions and Sequencing

	Server and Client Sessions
	Three-Tier Architecture Overview
	Advantages of the TopLink Three-Tier Architecture
	Shared Resources
	Providing Read Access
	Providing Write Access
	Security and User Privileges
	Concurrency
	Connection Allocation

	Unit of Work Sessions
	Isolated Client Sessions
	Isolated Client Sessions and Oracle Virtual Private Database (VPD)
	VPD With Oracle Database Proxy Authentication
	VPD Without Oracle Database Proxy Authentication
	Isolated Client Session Life Cycle

	Isolated Client Session Limitations

	Historical Sessions
	Historical Session Limitations

	Session Broker and Client Sessions
	Session Broker Architecture
	Committing a Transaction with a Session Broker
	Committing a Session with a JTA Driver: Two-Phase Commits
	Committing a Session Without a JTA Driver: Two-Stage Commits

	Session Broker Session Limitations
	Many-to-Many Join Tables and Direct Collection Tables

	Session Broker Alternatives
	Database Linking
	Multiple Sessions

	Database Sessions
	Remote Sessions
	Architectural Overview
	Application Layer
	Transport Layer
	Server Layer

	Remote Session Concepts
	Securing Remote Session Access
	Queries
	Refreshing
	Indirection
	Cursored Streams
	Unit of Work

	Sessions and the Cache
	Server and Database Session Cache
	Isolated Session Cache
	Historical Session Cache

	Understanding the Session API

	73 Creating Sessions
	Session Creation Overview
	Creating a Sessions Configuration
	Using TopLink Workbench

	Configuring a Sessions Configuration
	Using TopLink Workbench

	Creating a Server Session
	Using TopLink Workbench
	Using Java

	Creating Session Broker and Client Sessions
	Using TopLink Workbench
	Using Java

	Creating Database Sessions
	Using TopLink Workbench
	Using Java

	Creating Remote Sessions
	Using Java
	Server
	Client

	74 Configuring a Session
	Configuring Common Session Options
	Configuring a Primary Mapping Project
	Using TopLink Workbench
	Using Java

	Configuring a Session Login
	Configuring Logging
	Using TopLink Workbench
	Using Java
	Using Session Logging API
	Configuring a Session to use java.util.logging Package
	logging.properties
	Formatters
	Namespace

	Configuring Logging in a CMP Application

	Configuring Multiple Mapping Projects
	Using TopLink Workbench
	Using Java

	Configuring a Performance Profiler
	Using TopLink Workbench
	Using Java

	Configuring an Exception Handler
	Using TopLink Workbench
	Using Java

	Configuring Customizer Class
	Using TopLink Workbench

	Configuring the Server Platform
	Using TopLink Workbench
	Using Java

	Configuring Session Event Listeners
	Using TopLink Workbench
	Using Java

	Configuring the Integrity Checker
	Using Java

	Configuring Connection Policy
	Using TopLink Workbench
	Using Java

	Configuring Named Queries at the Session Level
	Using Java

	75 Acquiring and Using Sessions at Run Time
	Session Acquisition Overview
	Understanding the Session Manager
	Multiple Sessions

	Acquiring the Session Manager
	Acquiring a Session From the Session Manager
	Loading a Session From sessions.xml Using Defaults
	Loading a Session From sessions.xml With an Alternative Class Loader
	Loading a Session From an Alternative Session Configuration File
	Loading a Session Without Logging In
	Reloading and Refreshing Session Configuration
	Refreshing a Session When the Class Loader Changes

	Acquiring a Client Session
	Acquiring an Isolated Client Session
	Acquiring a Client Session That Uses Exclusive Connections
	Acquiring a Client Session That Uses Connection Properties
	Acquiring a Client Session That Uses a Named Connection Pool
	Acquiring a Client Session That Does Not Use Lazy Connection Allocation

	Acquiring a Historical Session
	Logging In to a Session
	Using Session API
	Logging Out of a Session
	Storing Sessions in the Session Manager Instance
	Destroying Sessions in the Session Manager Instance

	76 Configuring Server Sessions
	Server Session Configuration Overview
	Configuring Internal Connection Pools
	Configuring External Connection Pools

	77 Configuring Exclusive Isolated Client Sessions for Virtual Private Database
	Exclusive Isolated Client Session Configuration Overview
	PostAcquireExclusiveConnection Event Handler
	Using Java

	PreReleaseExclusiveConnection Event Handler
	Using Java

	NoRowsModifiedSessionEvent Event Handler
	Using Java

	ValidationException Handler

	78 Configuring Historical Sessions
	Historical Session Configuration Overview
	Configuring Historical Sessions Using an Oracle Platform
	Configuring Historical Sessions Using a TopLink HistoryPolicy

	79 Configuring Session Broker and Client Sessions
	Session Broker and Client Session Configuration Overview
	Removing, Renaming, or Adding Sessions
	Using TopLink Workbench

	80 Configuring Database Sessions
	Database Session Configuration Overview
	Configuring External Connection Pools

	Part XVI Part XVI Data Access
	81 Understanding Data Access
	Data Access Concepts
	Externally Managed Transactional Data Sources
	Data Source Login Types
	DatabaseLogin
	EISLogin

	Data Source Platform Types
	Database Platforms
	EIS Platforms

	Authentication
	Simple JDBC Authentication
	Oracle Database Proxy Authentication
	Auditing

	Connections
	Connection Pools
	Internal Connection Pools
	External Connection Pools
	Default (Write) and Read Connection Pools
	Sequence Connection Pools
	Application-Specific Connection Pools

	Understanding Data Access API
	Login Inheritance Hierarchy
	Platform Inheritance Hierarchy

	82 Configuring a Data Source Login
	Configuring Common Data Source Login Options
	Configuring User Name and Password
	Using TopLink Workbench

	Configuring Password Encryption
	Using Java

	Configuring External Connection Pooling
	Using TopLink Workbench

	Configuring Properties
	Using TopLink Workbench
	Using Java

	Configuring a Default Null Value at the Login Level
	Using Java

	83 Configuring a Database Login
	Database Login Configuration Overview
	Configuring a Relational Database Platform at the Session Level
	Using TopLink Workbench

	Configuring Database Login Connection Options
	Using TopLink Workbench

	Configuring Sequencing at the Session Level
	Using TopLink Workbench
	Using Java
	Using the Platform Default Sequence
	Configuring Multiple Sequences
	Configuring Query Sequencing

	Configuring a Table Qualifier
	Using TopLink Workbench

	Configuring JDBC Options
	Using TopLink Workbench
	Using Java

	Configuring Advanced Options
	Using TopLink Workbench

	Configuring Oracle Database Proxy Authentication
	Using Java

	84 Configuring an EIS Login
	EIS Login Configuration Overview
	Configuring an EIS Data Source Platform at the Session Level
	Using TopLink Workbench

	Configuring EIS Connection Specification Options at the Session Level
	Using TopLink Workbench

	85 Creating an Internal Connection Pool
	Internal Connection Pool Creation Overview
	Using TopLink Workbench

	86 Configuring an Internal Connection Pool
	Internal Connection Pool Configuration Overview
	Configuring Connection Pool Sizes
	Using TopLink Workbench

	Configuring Properties
	Using TopLink Workbench
	Using Java

	Configuring a Nontransactional Read Login
	Using TopLink Workbench

	Configuring Connection Pool Connection Options
	Using TopLink Workbench

	Configuring Exclusive Read Connections
	Using TopLink Workbench

	Part XVII Cache
	87 Understanding the Cache
	Cache Architecture
	Session Cache
	Unit of Work Cache

	Cache Concepts
	Cache Type and Object Identity
	Full Identity Map
	Weak Identity Map
	Soft and Hard Cache Weak Identity Maps
	No Identity Map
	Guidelines for Configuring the Cache and Identity Maps
	Understanding the Internals of Soft and Hard Cache Weak Identity Map

	Querying and the Cache
	Handling Stale Data
	Configure a Locking Policy
	Configure the Cache on a Per-Class Basis
	Force a Cache Refresh When Required on a Per-Query Basis
	Configure Cache Invalidation
	Configure Cache Coordination

	Explicit Query Refreshes
	Refresh Policy
	EJB Finders and Refresh Policy

	Cache Invalidation
	Cache Coordination
	Cache Isolation
	Cache Locking and Transaction Isolation
	Cache Optimization

	Understanding Cache Coordination
	When to use Cache Coordination
	Coordinated Cache Architecture
	Session
	Descriptor
	Unit of Work

	Coordinated Cache Types
	JMS Coordinated Cache
	RMI Coordinated Cache
	CORBA Coordinated Cache

	Custom Coordinated Cache

	Understanding the Cache API
	Object Identity API
	Cache Refresh API
	Cache Invalidation API
	Cache Coordination API

	88 Configuring a Coordinated Cache
	Configuring Common Coordinated Cache Options
	Configuring the Synchronous Change Propagation Mode
	Using TopLink Workbench

	Configuring a Service Channel
	Using TopLink Workbench

	Configuring a Multicast Group Address
	Using TopLink Workbench

	Configuring a Multicast Port
	Using TopLink Workbench

	Configuring a Naming Service Type
	Configuring JNDI Naming Service Information
	Using TopLink Workbench

	Configuring RMI Registry Naming Service Information
	Using TopLink Workbench

	Configuring an Announcement Delay
	Using TopLink Workbench

	Configuring Connection Handling
	Using TopLink Workbench

	Configuring Context Properties
	Using TopLink Workbench

	Configuring a Packet Time-to-Live
	Using TopLink Workbench

	89 Configuring a JMS Coordinated Cache
	JMS Coordinated Cache Configuration Overview
	Configuring a Topic Name
	Using TopLink Workbench

	Configuring a Topic Connection Factory Name
	Using TopLink Workbench

	Configuring a Topic Host URL
	Using TopLink Workbench

	90 Configuring an RMI Coordinated Cache
	RMI Coordinated Cache Configuration Overview

	91 Configuring a CORBA Coordinated Cache
	CORBA Coordinated Cache Configuration Overview

	92 Configuring a Custom Coordinated Cache
	Custom Coordinated Cache Configuration Overview
	Configuring Transport Class
	Using TopLink Workbench

	Part XVIII Part XVIII Queries
	93 Understanding TopLink Queries
	Query Types
	Query Concepts
	Call
	DatabaseQuery
	Data-Level and Object-Level Queries
	Summary Queries
	Descriptor Query Manager
	TopLink Expressions
	Query Keys
	Query Languages
	SQL Queries
	EJB QL Queries
	XML Queries
	EIS Interactions
	Query-by-Example

	Building Queries
	Executing Queries
	Handling Query Results
	Collection Query Results
	Report Query Results
	Stream and Cursor Query Results

	Session Queries
	Read-Object Session Queries
	Create, Update, and Delete Object Session Queries

	Database Queries
	Object-Level Read Query
	ReadObjectQuery
	ReadAllQuery
	Partial Object Queries
	Join Reading and Object-Level Read Queries
	Avoiding Join-Reading Duplicate Data

	Fetch Groups and Object-Level Read Queries

	Data-Level Read Query
	DataReadQuery
	DirectReadQuery
	ValueReadQuery

	Object-Level Modify Query
	WriteObjectQuery
	UpdateObjectQuery
	InsertObjectQuery
	DeleteObjectQuery
	UpdateAllQuery
	Object-Level Modify Queries and Privately Owned Parts

	Data-Level Modify Query
	Report Query

	Named Queries
	Call Queries
	SQL Calls
	SQLCall
	StoredProcedureCall
	StoredFunctionCall
	Oracle Extensions
	Hints
	Hierarchical Queries
	Flashback Queries
	Stored Functions

	EJB QL Calls
	Enterprise Information System (EIS) Interactions
	IndexedInteraction
	MappedInteraction
	XMLInteraction
	XQueryInteraction
	QueryStringInteraction

	Redirect Queries
	Historical Queries
	Using an ObjectLevelReadQuery With an AsOfClause
	Using an ObjectLevelReadQuery With Expression Operator asOf
	Using an ObjectLevelReadQuery in a Historical Session

	Interface and Inheritance Queries
	Descriptor Query Manager Queries
	Configuring Named Queries
	Configuring Default Query Implementations
	Configuring Additional Join Expressions

	EJB Finders
	Predefined Finders
	Predefined CMP Finders
	Predefined BMP Finders

	Default Finders
	Call Finders
	DatabaseQuery Finders
	Named Query Finders
	Primary Key Finders
	Expression Finders
	EJB QL Finders
	SQL Finders
	Redirect Finders
	The ejbSelect Method

	Queries and the Cache
	Configuring the Cache
	Using In-Memory Queries
	Configuring Cache Usage for In-Memory Queries
	Expression Options for In-Memory Queries
	Handling Exceptions Resulting From In-Memory Queries

	Primary Key Queries and the Cache
	Disabling the Identity Map Cache Update During a Read Query
	Refreshing the Cache
	Object Refresh
	Cascading Object Refresh
	Refreshing the Identity Map Cache During a Read Query

	Caching Query Results in the Session Cache
	Caching Query Results in the Query Cache
	Internal Query Cache Restrictions

	Caching and EJB Finders
	Caching Options
	Disabling Cache for Returned Finder Results
	Refreshing Finder Results

	Understanding the Query API

	94 Using Basic Query API
	Using Session Queries
	Reading Objects With a Session Query
	Reading an Object With a Session Query
	Reading All Objects With a Session Query
	Refreshing an Object With a Session Query

	Creating, Updating, and Deleting Objects With a Session Query
	Writing a Single Object to the Database With a Session Query
	Writing All Objects to the Database With a Session Query
	Adding New Objects to the Database With a Session Query
	Modifying Existing Objects in the Database With a Session Query
	Deleting Objects in the Database With a Session Query

	Using DatabaseQuery Queries
	Reading Objects Using a DatabaseQuery
	Basic DatabaseQuery Read Operations
	Reading Objects Using Partial Object Queries
	Reading Objects Using Report Queries
	Reading Objects Using Query-By-Example
	Specifying Read Ordering
	Specifying a Collection Class
	Specifying the Maximum Rows Returned
	Configuring Query Timeout at the Query Level
	Using Batch Reading
	Using Join Reading
	Using TopLink Workbench
	Using Java

	Creating, Updating, and Deleting Objects With a DatabaseQuery
	Write Query Overview
	UpdateAll Queries
	Noncascading Write Queries
	Disabling the Identity Map Cache During a Write Query

	Reading Data With a DatabaseQuery
	Using a DataReadQuery
	Using a DirectReadQuery
	Using a ValueReadQuery

	Updating Data With a DatabaseQuery
	Specifying a Custom SQL String in a DatabaseQuery
	Specifying a Custom EJB QL String in a DatabaseQuery
	Using Parameterized SQL and Statement Caching in a DatabaseQuery

	Using Named Queries
	Using SQL Calls
	Using an SQLCall
	Specifying a SQLCall Input Parameter
	Specifying a SQLCall Output Parameter
	Specifying a SQLCall Input / Output Parameter

	Using a StoredProcedureCall
	Specifying an Input Parameter
	Specifying an Output Parameter
	Specifying an Input / Output Parameter
	Using an Output Parameter Event

	Using a StoredFunctionCall

	Using EJB QL Calls
	Using EIS Interactions
	Handling Exceptions
	Handling Collection Query Results
	Handling Report Query Results

	95 Understanding TopLink Expressions
	Understanding the Expression Framework
	Expressions Compared to SQL

	Expression Components
	Boolean Logic
	Database Functions and Operators
	Mathematical Functions
	XMLType Functions
	Platform and User-Defined Functions
	Expressions for One-to-One and Aggregate Object Relationships
	Expressions for Joining and Complex Relationships
	Understanding Joins
	Using TopLink Expression API For Joins

	Parameterized Expressions
	Expression Method getParameter
	Expression Method getField

	Query Keys and Expressions
	Using Multiple Expressions
	Subselects and Subqueries
	Parallel Expressions

	Data Queries and Expressions
	getField
	getTable

	Creating an Expression
	Using TopLink Workbench
	Adding Arguments

	Using Java

	Creating and Using a User-Defined Function
	Making a User-Defined Function Available to a Specific Platform
	Making a User-Defined Function Available to All Platforms
	Using a User-Defined Function

	96 Using Advanced Query API
	Using Redirect Queries
	Creating a Redirect Query

	Using Historical Queries
	Using Queries With Fetch Groups
	Configuring Default Fetch Group Behavior
	Querying With a Static Fetch Group
	Querying With a Dynamic Fetch Group

	Querying on Interfaces
	Querying on an Inheritance Hierarchy
	Appending Additional Join Expressions
	Using Java

	Using Queries on Variable One-to-One Mappings
	Using Oracle Database Features
	Oracle Hints
	Hierarchical Queries
	startWith Parameter
	connectBy Parameter
	orderSibling Parameter

	Using EJB Finders
	Creating a Finder
	ejb-jar.xml Finder Options

	Using DatabaseQuery Finders
	Using Named Query Finders
	Using Primary Key Finders
	Using EJB QL Finders
	Using SQL Finders
	Using Redirect Finders
	Using the ejbSelect Method

	Handling Cursor and Stream Query Results
	Cursors and Java Iterators
	Traversing Data With Scrollable Cursors

	Java Streams
	Cursored Stream Support

	Optimizing Streams
	Using Cursors and Streams With EJB Finders
	Building the Query
	Executing the Finder From the Client

	Using Queries and the Cache
	Caching Results in a ReadQuery
	Configuring Cache Expiration at the Query Level

	Part XIX Part XIX Transactions
	97 Understanding TopLink Transactions
	Unit of Work Architecture
	Unit of Work Transaction Context
	Unit of Work Transaction Demarcation
	JTA Controlled Transactions
	OTS Controlled Transactions
	CMP Controlled Transactions

	Unit of Work Transaction Isolation

	Unit of Work Concepts
	Unit of Work Benefits
	Unit of Work Life Cycle
	Unit of Work and Change Policy
	Deferred Change Detection Policy
	Object-Level Change Tracking Policy
	EJB CMP

	Attribute Change Tracking Policy
	Plain Java Objects or Other Application Servers
	EJB CMP on OC4J

	Change Policy Mapping Support

	Clones and the Unit of Work
	Nested and Parallel Units of Work
	Nested Unit of Work
	Parallel Unit of Work

	Commit and Rollback Transactions
	Commit Transactions
	Commit and JTA

	Rollback Transactions
	Rollback and JTA

	Primary Keys
	Unit of Work Optimization

	Understanding the Unit of Work API
	Unit of Work as Session
	Reading and Querying Objects with the Unit of Work
	Reading Objects with the Unit of Work
	Querying Objects with the Unit of Work

	Locking and the Unit of Work

	Example Model Object and Schema

	98 Using Basic Unit of Work API
	Acquiring a Unit of Work
	Creating an Object
	Modifying an Object
	Associating a New Target to an Existing Source Object
	Associating Without Reference to the Cache Object
	Associating With Reference to the Cache Object

	Associating a New Source to an Existing Target Object
	Associating an Existing Source to an Existing Target Object
	Deleting Objects
	Using privateOwnedRelationship
	Explicitly Deleting From the Database
	Understanding the Order in Which Objects Are Deleted

	99 Using Advanced Unit of Work API
	Registering and Unregistering Objects
	Creating and Registering an Object in One Step
	Using registerNewObject
	Registering a New Object With registerNewObject
	Associating New Objects With One Another

	Using registerAllObjects
	Using Registration and Existence Checking
	Check Database
	Assume Existence
	Assume Nonexistence

	Working With Aggregates
	Unregistering Working Clones

	Declaring Read-Only Classes
	Configuring Read-Only Classes for a Single Unit of Work
	Configuring Default Read-Only Classes
	Read-Only Descriptors

	Writing Changes Before Commit Time
	Using Conforming Queries and Descriptors
	Guidelines for Using Conforming
	Ensure That the Query Supports Conforming
	Consider how Conforming Affects Database Results
	Register New Objects and Instantiate Relationships

	Using Conforming Queries
	Using Conforming Descriptors
	Conforming Query Alternatives
	Using Unit of Work Method writeChanges Instead of Conforming
	Using Unit of Work Properties Instead of Conforming

	Merging Changes in Working Copy Clones
	Resuming a Unit of Work After Commit
	Reverting a Unit of Work
	Using a Nested or Parallel Unit of Work
	Parallel Unit of Work
	Nested Unit of Work

	Using a Unit of Work With Custom SQL
	Controlling the Order of Delete Operations
	Using the Unit of Work setShouldPerformDeletesFirst Method
	Using the Descriptor addConstraintDependencies Method
	Using deleteAllObjects Without addConstraintDependencies
	Using deleteAllObjects With addConstraintDependencies

	Using Optimistic Read Locking With forceUpdateToVersionField
	Forcing a Check of the Optimistic Read Lock
	Forcing a Version Field Update
	Disabling forceUpdateToVersionField

	Implementing User and Date Auditing With the Unit of Work
	Integrating the Unit of Work With an External Transaction Service
	Acquiring a Unit of Work With an External Transaction Service
	Using a Unit of Work When an External Transaction Exists
	Using a Unit of Work When No External Transaction Exists
	Using the Unit of Work to Handle External Transaction Timeouts and Exceptions
	External Transaction Commit Timeouts
	External Transaction Commit Exceptions

	Integrating the Unit of Work With CMP
	CMP Transaction Attribute
	Local Transactions
	Nondeferred Changes

	Database Transaction Isolation Levels
	General Factors Affecting Transaction Isolation Level
	External Applications
	TopLink Coordinated Cache
	DatabaseLogin Method setTransactionIsolation
	Reading Through the Write Connection
	Pessimistic Locking Query
	Unit of Work Method beginTransactionEarly
	ConnectionPolicy Method setShouldUseExclusiveConnection

	Managing Cache Access
	Isolated Client Session Cache
	ReadObjectQuery
	ReadAllQuery
	Descriptor Method disableCacheHits
	DatabaseQuery Method dontMaintainCache

	CMP and External Transactions

	Read Uncommitted Level
	Read Committed Level
	Repeatable Read Levels
	Serializable Read Levels

	Troubleshooting a Unit of Work
	Avoiding the Use of Post-Commit Clones
	Determining Whether or Not an Object Is the Cache Object
	Dumping the Contents of a Unit of Work
	Handling Exceptions
	Exceptions at Commit Time
	Exceptions During Conforming

	Validating a Unit of Work
	Validating the Unit of Work Before Commit Time

	Glossary
	attribute
	authentication
	bean class
	bean-managed persistence (BMP)
	branch class
	class
	class indicator field
	client session broker
	connection pool
	container-managed persistence (CMP)
	custom SQL
	data definition language (DDL)
	database session
	default mapping
	dependent class path (IBM WebSphere)
	deployment descriptor
	descriptors
	direct access
	direct mapping
	Enterprise Java Beans (EJB)
	expressions
	entity beans
	fetch group
	hub
	identity map
	independent relationship
	indirection
	inheritance
	in-memory query
	instantiate
	J2C
	J2SE
	J2EE
	J2EE Containers
	Java Messaging Service (JMS)
	Java Naming and Directory Interface (JNDI)
	Java Transaction API (JTA)
	leaf class
	locking policy
	mappings
	message-driven beans
	method access
	named query
	object identity
	optimistic locking
	packet
	packet time-to-live
	persist
	pessimistic locking
	primary key
	private relationship
	query manager
	query optimization
	relationship
	relationship mapping
	Remote Method Invocation (RMI)
	remote session
	service channel
	session beans
	stale data
	TopLink session broker
	unit of work
	value holder

	Index

