
Performance Tuning
Guide
Version 7.8
August 2005

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2005 Siebel Systems, Inc.
All rights reserved.
Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way,
including but not limited to photocopy, photographic, magnetic, or other record, without the prior
agreement and written permission of Siebel Systems, Inc.

Siebel, the Siebel logo, UAN, Universal Application Network, Siebel CRM OnDemand, and other Siebel
names referenced herein are trademarks of Siebel Systems, Inc., and may be registered in certain
jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered trademarks of
their respective owners.

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are optional and
for which you may not have purchased a license. Siebel’s Sample Database also includes data related to
these optional modules. As a result, your software implementation may differ from descriptions in this
guide. To find out more about the modules your organization has purchased, see your corporate
purchasing agent or your Siebel sales representative.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, delivered
subject to the Department of Defense Federal Acquisition Regulation Supplement, are “commercial
computer software” as set forth in DFARS 227.7202, Commercial Computer Software and Commercial
Computer Software Documentation, and as such, any use, duplication and disclosure of the Programs,
Ancillary Programs and Documentation shall be subject to the restrictions contained in the applicable
Siebel license agreement. All other use, duplication and disclosure of the Programs, Ancillary Programs
and Documentation by the U.S. Government shall be subject to the applicable Siebel license agreement
and the restrictions contained in subsection (c) of FAR 52.227-19, Commercial Computer Software -
Restricted Rights (June 1987), or FAR 52.227-14, Rights in Data—General, including Alternate III (June
1987), as applicable. Contractor/licensor is Siebel Systems, Inc., 2207 Bridgepointe Parkway, San
Mateo, CA 94404.

Proprietary Information

Siebel Systems, Inc. considers information included in this
documentation and in Siebel Online Help to be Confidential
Information. Your access to and use of this Confidential Information
are subject to the terms and conditions of: (1) the applicable Siebel
Systems software license agreement, which has been executed and
with which you agree to comply; and (2) the proprietary and
restricted rights notices included in this documentation.

Contents
Performance Tuning Guide 1

Chapter 1: What’s New in This Release

Chapter 2: Siebel Architecture and Infrastructure
About Performance and Scalability 13

About Siebel Architecture and Infrastructure 14

About Siebel User Request Flow 18

Performance Tuning Terminology 19

Chapter 3: Tuning the Siebel Application Object Manager
for Performance

About the Application Object Manager 21

AOM Infrastructure 22

Performance Factors for AOM Deployments 23

Topology Considerations for AOM Deployments 26

Best Practices for AOM Tuning 26
Tuning AOM Components for CPU and Memory Utilization 27
Tuning Parameters for AOM Caches 31
Additional Parameters Affecting AOM Performance 32
Memory Consumers in AOM 33

Configuring Database Connection Pooling for AOMs 34
About Database Connections for AOM 34
Database Connection Pooling Usage Guidelines 35
Configuring Pooling for Default Database Connections 38
Configuring Pooling for Specialized Database Connections 40

Using Thread Pooling for AOM 42

Chapter 4: Tuning the Siebel Server Infrastructure
for Performance

Configuring SISNAPI Connection Pooling for AOM 45

Tuning Server Request Broker (SRBroker) 47
Performance Tuning Guide Version 7.8 3

Contents ■
Chapter 5: Tuning Siebel Web Client for Performance
About Siebel Clients 49

Performance Factors for Siebel Web Clients 50

Best Practices for Siebel Web Client Tuning 51
Providing Sufficient Web Server and Network Capacity 51
Testing Performance for Web Clients 52
Providing Sufficient Client Hardware Resources 53
Tuning System Components 53
Following Configuration Guidelines 54
Managing the Browser Cache 54
Specifying Static File Caching 55
Improving Performance Using View Layout Caching 57
Managing Performance Related to Message Bar 61
Configuring the Busy Cursor for Standard Interactivity Applications 61

Chapter 6: Tuning Siebel Communications Server for
Performance

About Siebel Communications Server 63

Session Communications Infrastructure 64

Performance Factors for Session Communications 66

Topology Considerations for Session Communications 67

Best Practices for Session Communications Tuning 68
Tuning the AOM Component 69
Tuning the CommSessionMgr Component 69
Conserving AOM Server Resources Through Caching 69
Improving Performance for Communications Configurations 70
Configuring Logging for Session Communications 71
Improving Availability for Session Connections 72
Improving Screen Pop Performance 73
Improving Screen Pop Performance for Siebel CTI Connect 74
Reviewing Performance Impact of Activity Creation 74
Performance for Siebel Universal Queuing 74

Siebel Email Response Infrastructure 76

Performance Factors for Siebel Email Response 77

Topology Considerations for Siebel Email Response 78

Best Practices for Siebel Email Response Tuning 78
Performance Tuning Guide Version 7.84

Contents ■
Chapter 7: Tuning Siebel Workflow for Performance
About Siebel Workflow 81

Monitoring Workflow Policies 82
Using the Policy Frequency Analysis View 82
Using Workflow Agent Trace Logs 82
Monitoring Workflow Policies Tables 83

Tuning Workflow Policies for Performance 84
Creating Workflow Policy Groups to Manage Siebel Server Load 84
Multiple Workflow Monitor Agents and Workflow Action Agents 84
Running Workflow Agents on Multiple Siebel Servers 85
Setting Optimal Sleep Interval for Workflow Policy Groups 85
Setting Optimal Action Interval for Workflow Monitor Agent and Workflow Action Agent

86

Tuning Workflow Processes 86
Minimizing Usage of Parameter Search Specification 86
Monitoring Conditions Based on Parent and Child Business Components 87
Configuring Siebel Business Applications for Workflow Performance 87
Monitoring Memory Overhead for Workflow Processes 88

Tuning Workflow Process Manager for Performance 89
Caching Business Services 89
Caching Sessions 90

Chapter 8: Tuning Siebel Configurator for Performance
Siebel Configurator Infrastructure 91

Performance Factors for Siebel Configurator 92

Topology Considerations for Siebel Configurator 93
Running Siebel Configurator in the AOM Component 93
Running Siebel Configurator on Dedicated Servers 93

Best Practices for Siebel Configurator Tuning 95
Tuning Siebel Configurator 95
Specifying the Siebel Configurator File System Location 96
Defining Customizable Product Models and Classes 96

Administering Siebel Configurator Caching 97
Default Caching Behavior for Siebel Configurator 97
Cache Management for Siebel Configurator 98
Parameters for Configuring Siebel Configurator Caching 100
Determining Rough Sizing for Caching Parameters 102
Refreshing the Siebel Configurator Cache 102
Performance Tuning Guide Version 7.8 5

Contents ■
Chapter 9: Tuning Siebel EAI for Performance
About Siebel Enterprise Application Integration 105

Best Practices for Siebel EAI Tuning 105
Improving IBM WebSphere MQ Transport Performance 106
Improving HTTP Inbound Transport Performance 108
EAI Siebel Adapter Performance 108
Virtual Business Component Performance 110
Improving Workflow Process Manager Performance 110
Other Best Practices for Siebel EAI 112

Chapter 10: Tuning Siebel EIM for Performance
About Siebel EIM 113

EIM Architecture Planning Requirements 114
Database Sizing Guidelines 114
Database Layout Guidelines (Logical and Physical) 115

EIM Usage Planning 116
Team Definition 116
Mapping Data into Siebel Applications 117
Testing EIM Processes 118

General Guidelines for Optimizing EIM 119
Recommended Sequence for Implementing EIM Processes 120

Troubleshooting EIM Performance 122
Optimizing SQL for EIM 122
Using the USE INDEX HINTS and USE ESSENTIAL INDEX HINTS Parameters 123
Example: Using the USE INDEX HINTS and USE ESSENTIAL INDEX HINTS Parameters

124
USE INDEX HINTS and USE ESSENTIAL INDEX HINTS: EIM Criteria for Passing Indexes to
the Database 125
Using the SQLPROFILE Parameter 126
Additional Indexes on EIM Tables 128
Creating Proper Statistics on EIM Tables 129
Dropping Indexes in Initial Runs 130
Controlling the Size of Batches 130
Controlling the Number of Records in EIM Tables 131
Using the USING SYNONYMS Parameter 131
Using the NUM_IFTABLE_LOAD_CUTOFF Extended Parameter 132
Disabling Docking: Transaction Logging 132
Disabling Triggers 132
Running EIM Tasks in Parallel 133
Performance Tuning Guide Version 7.86

Contents ■
Database Guidelines for Optimizing EIM 133
IBM DB2 UDB 133
Microsoft SQL Server 135
Oracle Databases 137
IBM DB2 UDB for z/OS 139
IBM DB2 Loading Process for EIM 140
General Recommendations for the IBM DB2 Loading Process 140

Data Management Guidelines for Optimizing EIM 142

Run Parameter Guidelines for Optimizing EIM 142

Monitoring the Siebel Server During an EIM Task 143

Chapter 11: Tuning Siebel Remote for Performance
About Siebel Remote 145

Tuning Siebel Remote Server Components 146
Increasing Throughput for the Database Extract Component 146
Tuning the Transaction Router Component 147

Tuning the Mobile Web Client in a Siebel Remote Deployment 148
Optimizing Parameters in the Application Configuration File 149
Best Practice for Synchronization 150
Choosing an Appropriate Routing Model 151

Chapter 12: Tuning Customer Configurations for
Performance

General Best Practices for Customer Configurations 153
Miscellaneous Configuration Guidelines 154
Analyzing Generated SQL for Performance Issues 156

Best Practices for Siebel Scripting 160
Using Declarative Alternatives to Siebel Scripting 160
Siebel Scripting Guidelines for Optimal Performance 161

Best Practices for Data Objects Layer 164
Multilingual LOVs Query and Cache Performance 164
Managing Database Indexes in Sorting and Searching 165
Reusing Standard Columns 167

Best Practices for Business Objects Layer 169
Using Cache Data Property to Improve Business Component Performance 169
Limiting the Number of Active Fields 170
Guidelines for Using Calculated Fields 170
Using Properties to Improve Picklist Performance 172
Performance Tuning Guide Version 7.8 7

Contents ■
Using Primary ID Fields to Improve Performance 172
How the Check No Match Property Impacts Performance 173

Best Practices for User Interface Objects Layer 173
Addressing Performance Issues Related to Grid Layout 173
Maintaining Performance When Using Applet Toggles 174

Chapter 13: Tuning Operating Systems for Performance
Tuning Microsoft Windows for Enhanced Siebel Server Performance 175

Tuning the Siebel Server for All UNIX Platforms 176

Tuning the Siebel Web Server Extension for All UNIX Platforms 177

Tuning Siebel Business Applications for AIX 177
Tuning the IBM HTTP Server for AIX 178
Tuning the Siebel Server for AIX 180
Tuning Kernel Settings for AIX 181

Tuning Siebel Business Applications for Solaris 183
Tuning the Sun Java System Web Server for Solaris 183
Tuning Kernel Settings for Solaris 184
Maximizing Siebel Server Performance for Solaris 185
Tuning AOM Instances for Solaris 185

Tuning Siebel Business Applications for HP-UX 187
Tuning the HP Apache Web Server for HP-UX 187
Tuning Kernel Settings for HP-UX 188
Setting Permissions for the HP-UX Scheduler 189

Chapter 14: Monitoring Siebel Application Performance
About Siebel Application Response Measurement 191

About Siebel ARM Architecture 191

About Siebel ARM Parameters and Variables 193

Enabling and Configuring Siebel ARM 195

Converting Siebel ARM Files 196
About Siebel ARM Files 197
About Siebel ARM Post-Processing Tool 198
Running Performance Aggregation Analysis 199
Running Call Graph Generation 199
Running User Session Trace 200
Running Siebel ARM Data CSV Conversion 201

Best Practices for Siebel ARM 201
Performance Tuning Guide Version 7.88

Contents ■
About Siebel ARM Data 202
About Performance Aggregation Analysis and Data 203
About Call Graph Generation Analysis and Data 211
About User Session Trace Analysis and Data 213
About Siebel ARM to CSV Conversion Data 215

Index
Performance Tuning Guide Version 7.8 9

Contents ■
Performance Tuning Guide Version 7.810

1 What’s New in This Release
What’s New in Performance Tuning Guide, Version 7.8
Table 1 lists changes described in this version of the documentation to support release 7.8 of the
software.

Table 1. New Features in Performance Tuning Guide, Version 7.8

Topic Description

“Configuring the Busy Cursor for
Standard Interactivity Applications”
on page 61

Describes how to prevent the appearance of the busy cursor.
This may improve network bandwidth usage and prevent the
appearance of JavaScript errors.

“Cache Management for Siebel
Configurator” on page 98

Describes how you can map products to a specific server or
component cache. This may optimize response times for the
mapped products.

“Parameters for Configuring Siebel
Configurator Caching” on page 100

Describes new parameters that allow you configure Snapshot
Mode caching at a finer level of granularity.

“Improving HTTP Inbound Transport
Performance” on page 108

Describes additional recommendations for setting the
Number of Sessions per SISNAPI Connection (alias
SessPerSisnConn) parameter.

“Tuning Siebel EIM for Performance”
on page 113

Describes recommended best practices for improving the
performance of Siebel Enterprise Integration Manager (Siebel
EIM) is included in this version of the guide.

“Tuning Siebel Remote for
Performance” on page 145

Describes recommended best practices for improving the
performance of Siebel Remote is included in this version of
the guide.

“Tuning Microsoft Windows for
Enhanced Siebel Server
Performance” on page 175

Describes how you can configure settings for your Microsoft
Windows operating system to optimize the performance of
Siebel applications.

“Tuning the IBM HTTP Server for
AIX” on page 178

Updated the recommendations for setting the number of
threads when tuning the IBM HTTP Server.
Performance Tuning Guide Version 7.8 11

What’s New in This Release ■
Performance Tuning Guide Version 7.812

2 Siebel Architecture and
Infrastructure
This chapter provides an overview of the Siebel Business Applications architecture and infrastructure
and provides introductory information about tuning the Siebel applications for performance and
scalability. It contains the following topics:

■ “About Performance and Scalability” on page 13

■ “About Siebel Architecture and Infrastructure” on page 14

■ “About Siebel User Request Flow” on page 18

■ “Performance Tuning Terminology” on page 19

Cross-references are provided to other chapters of this guide on how to configure specific areas of
Siebel Business Applications. Optimally tuning these areas achieves a balance between performance
and scalability.

For more information and details about the Siebel Business Applications architecture and
infrastructure, see the following documentation on the Siebel Bookshelf:

■ Deployment Planning Guide

■ Siebel Installation Guide for the operating system you are using

■ Siebel System Administration Guide

■ Configuring Siebel Business Applications

NOTE: Every implementation of Siebel Business Applications is unique. Your Siebel application
architecture, infrastructure, and configurations may differ depending on your business model.

About Performance and Scalability
Performance and scalability are defined as follows in the context of this guide:

■ Performance. A Siebel application’s ability to function, generally measured in response time or
throughput.

For example, measures of performance may include the time required to log into the Siebel
application or to display a Siebel view in the Siebel Web Client, or the volume of transactions
(sometimes referred to as requests) that a server component can process in a given time period.

Some typical inhibitors of performance are inadequate hardware, excessive network round trips,
heavy customizations, and poor networking infrastructure.
Performance Tuning Guide Version 7.8 13

Siebel Architecture and Infrastructure ■ About Siebel Architecture and Infrastructure
■ Scalability. A Siebel application’s ability to continue to perform well as volumes increase.

Scalability is generally measured in hardware terms—for example, maintaining acceptable
performance after adding new processors on existing machines (vertical scalability) or new
Siebel Server machines (horizontal scalability) to process an increased number of users.

Some typical inhibitors of scalability are an inflexible application module structure and an
inability to run parallel processes.

For further definitions of terminology related to performance and scalability, see “Performance Tuning
Terminology” on page 19.

About Siebel Architecture and
Infrastructure
Figure 1 on page 15 shows a generic representation of the architecture and infrastructure of a Siebel
Business Applications deployment. Your Siebel applications might be deployed differently. For
descriptions of individual entities included in this illustration, see Deployment Planning Guide, Siebel
System Administration Guide, and the Siebel Installation Guide for the operating system you are
using.
Performance Tuning Guide Version 7.814

Siebel Architecture and Infrastructure ■ About Siebel Architecture and Infrastructure
Figure 1. Generic Architecture of Siebel Business Applications
Performance Tuning Guide Version 7.8 15

Siebel Architecture and Infrastructure ■ About Siebel Architecture and Infrastructure
Siebel Architecture and Infrastructure Areas for Tuning
The following list provides details on tuning specific areas of the Siebel applications architecture and
infrastructure.

Performance in many of these areas can be monitored and analyzed using Siebel Application
Response Measurement (Siebel ARM), which is described in Chapter 14, “Monitoring Siebel Application
Performance.”

■ Siebel Application Object Managers (AOM). AOMs are Siebel Server components that reside
on a Siebel Server and support users accessing Siebel applications through the Siebel Web Client
and a Web server, or through external applications.

Running AOM components has significant performance and scalability implications. In general,
the goal for tuning an AOM is to maximize scalability with little or no performance degradation
as more users use the system.

Although AOM components can be tuned for optimal performance, capacity for this and all other
Siebel Server components is ultimately limited by Siebel Server machine resources such as CPU
and memory.

For details on tuning this area, see Chapter 3, “Tuning the Siebel Application Object Manager
for Performance.”

■ Siebel Web Client. The means for end users to access Siebel application features and data.
Siebel Web Client uses a Web browser.

The response time experienced by the Siebel Web Client end user is subject to the configuration
and tuning of Siebel Enterprise elements such as the AOM, network bandwidth and latency, Web
server, Siebel Database, and the Siebel application configuration (represented in the Siebel
repository file). It is also subject to local machine resources and settings, including browser
settings such as those for caching.

For details on tuning this area, see Chapter 5, “Tuning Siebel Web Client for Performance.” See also
Chapter 12, “Tuning Customer Configurations for Performance.”

■ Siebel Communications Server. Siebel Communications Server provides an infrastructure to
support several kinds of communications activities for Siebel application users, including session
communications (such as voice calls) and inbound and outbound communications (such as
email).

Siebel Communication Server processing may affect end user response time, and may demand
additional AOM resources to support user sessions. Performance and scalability is subject to
third-party server configuration and capacity and Siebel Server machine resources and
configuration.

For details on tuning this area, see Chapter 6, “Tuning Siebel Communications Server for
Performance.”
Performance Tuning Guide Version 7.816

Siebel Architecture and Infrastructure ■ About Siebel Architecture and Infrastructure
■ Siebel Workflow. Siebel Workflow is an interactive environment that automates business
processes such as automating escalation of events and notification of appropriate parties;
routing and assigning work; processing work; and enforcing authorization and transition rules.

Siebel Workflow processing may affect end user response time (for synchronous requests), and
may demand additional AOM resources to support user sessions. Performance and scalability is
subject to Siebel Server machine resources and configuration.

For details on tuning this area, see Chapter 7, “Tuning Siebel Workflow for Performance.”

■ Siebel Configurator. Siebel Configurator supports order management and product
configuration functions for Siebel applications.

Siebel Configurator processing may affect end user response time (for configuration sessions),
and may demand additional AOM resources to support user sessions. Performance and scalability
is subject to Siebel Server machine resources and configuration.

For details on tuning this area, see Chapter 8, “Tuning Siebel Configurator for Performance.”

■ Siebel Enterprise Application Integration (Siebel EAI). Siebel EAI provides components for
integrating Siebel Business Applications with external and internal applications, and provides
inbound and outbound interfaces to and from a Siebel application.

Siebel EAI processing may affect end user response time (for real-time interfaces), and may
demand additional AOM resources to support user sessions. Performance and scalability is
subject to Siebel Server machine resources and configuration.

For details on tuning this area, see Chapter 9, “Tuning Siebel EAI for Performance.”

■ Siebel Enterprise Integration Manager (Siebel EIM). Siebel EIM is a server component in
the Siebel EAI component group that transfers data between the Siebel database and other
corporate data sources.

For details on tuning this area, see Chapter 10, “Tuning Siebel EIM for Performance.”

■ Siebel Remote. Siebel Remote provides components that allow Siebel Mobile Web Clients
(typically operating remotely, in disconnected mode on a laptop) to connect to a Siebel Server
and exchange updated data and files, a process known as synchronization.

For details on tuning this area, see Chapter 11, “Tuning Siebel Remote for Performance.”

■ Siebel Tools. Siebel Tools is an integrated development environment for configuring aspects of
a Siebel application, including elements in the data objects, business objects, and user interface
objects layers. Siebel scripting languages are also managed in the Siebel Tools environment.

Siebel Tools configurations and scripting play a critical role in the performance and scalability of
a configured Siebel application. Customizations made through Siebel Tools partly determine the
degree to which performance and scalability of a particular deployment differs from the original
installation.

Appropriate configuration optimizes operations in the Siebel Database and does not add
unnecessary overhead to supporting user sessions. (Siebel Tools itself does not play a role in the
Siebel applications at run-time.)

For details on tuning this area, see Chapter 12, “Tuning Customer Configurations for Performance.”
Performance Tuning Guide Version 7.8 17

Siebel Architecture and Infrastructure ■ About Siebel User Request Flow
■ Operating systems. For details on tuning your Microsoft Windows or UNIX operating system,
see Chapter 13, “Tuning Operating Systems for Performance.”

About Siebel User Request Flow
Figure 2 illustrates how a user request is processed within the Siebel Business Applications
architecture and infrastructure (generically presented), and shows potential areas for performance
tuning. For a description of each portion of this data flow, see Siebel System Administration Guide
and other relevant documents on the Siebel Bookshelf.

A typical Siebel client request flows from the user’s Siebel Web Client through the system, and back
again, following the general flow outlined below.

Figure 2. Generic User Request Flow in Siebel Business Applications
Performance Tuning Guide Version 7.818

Siebel Architecture and Infrastructure ■ Performance Tuning Terminology
1 A user performs an action that initiates a request. For example, the user clicks a link in the Site
Map to navigate to a particular view. The request is generated by the Web browser and Siebel
Web Client framework.

2 The request goes through the network, using an existing or new HTTP connection. The request
may go through a network router, proxy server, cache engine, or other mechanism.

3 If present, Web server load balancing software evaluates the request and determines the best
Web server to forward the request to. It then forwards the request to a Web server.

4 The Web server receives the HTTP request, determines that it is a Siebel application request, and
forwards the request to the Siebel Web Server Extension (SWSE) installed on the Web server.

5 The SWSE parses the HTTP message and generates a SISNAPI message, based on the content
of the HTTP message. SWSE also parses the incoming cookie or URL to obtain the user session ID.

■ If using Siebel load balancing, SWSE forwards the request to a Siebel Server in round-robin
fashion.

■ If using a third-party HTTP load balancer, SWSE forwards the request to the load balancer.
The load balancer uses user-configured routing rules to forward the request to a Siebel
Server.

SISNAPI (Siebel Internet Session application programming interface) is a messaging format that
runs on top of the TCP/IP protocol. It is used for network communication between Application
Object Managers (AOMs) and SWSE.

6 On the Siebel Server, an AOM receives and processes the SISNAPI message. If a database query
is needed to retrieve the information, the AOM formulates the SQL statement and sends the
request to the Siebel Database over a database connection.

The database request goes through the database connection, using a protocol format that is
specific to the database connector.

7 The database executes the SQL statement and returns data back to the AOM. The AOM forwards
the message to the Web server that originated it. If using a third-party HTTP load balancer, the
message may go through the load balancer before reaching the Web server.

8 The SWSE on the Web server receives the SISNAPI message, and translates it back to HTTP. It
then forwards the HTTP message to the Web server. The message is now in the form of Web page
content.

9 The Web server load balancer, if present, then forwards the Web page content through the
original HTTP connection to the end user’s Web browser.

10 The Web browser and the Siebel Web Client framework process and display the return message.

Performance Tuning Terminology
Table 2 provides definitions of specific terms related to performance and tuning Siebel Business
Applications. For definitions of performance and scalability, see “About Performance and Scalability”
on page 13.
Performance Tuning Guide Version 7.8 19

Siebel Architecture and Infrastructure ■ Performance Tuning Terminology
For more information about some of these terms and concepts (including concurrent users and think
time) in the context of tuning Application Object Manager (AOM) components, see “Performance
Factors for AOM Deployments” on page 23.

Table 2. Performance Tuning Terminology

Term Definition

Concurrent
users

The number of application users actively using and accessing the Siebel
application, or a particular element such as an AOM process, at a particular
time.

Latency Delay experienced in network transmissions as network packets traverse the
network infrastructure.

Think time The wait time between user operations. For example, if a user navigates to the
Account screen and reviews data for 10 seconds before performing another
operation, the think time in this case is 10 seconds.

Average think time is a critical element in performance and scalability tuning,
particularly for AOM. When think time values are correctly forecasted, then
actual load levels will be close to anticipated loads.

Process An operating system (OS) process. For example, a Siebel Server component
such as AOM consists of multiple OS processes, referred to as multithreaded
processes.

Multithreaded
process (or
MT server)

A process running on a multithreaded Siebel Server component that supports
multiple threads (tasks) per process. AOM components run multithreaded
processes that support threads.

Task A concept for Siebel applications of a unit of work that can be done by a Siebel
Server component. Siebel tasks are typically implemented as threads.

Thread An operating system feature for performing a given unit of work. Threads are
used to implement tasks for most Siebel Server components. A multithreaded
process supports running multiple threads to perform work such as to support
user sessions.

Response time Amount of time the Siebel application takes to respond to a user request, as
experienced by the end user. Response time is an aggregate of time incurred by
all server processing and transmission latency for an operation. Response time
is based on processing related to the request and to processing for other
requests that may affect this user request.

Throughput Typically expressed in transactions per second (TPS), expresses how many
operations or transactions can be processed in a set amount of time.
Performance Tuning Guide Version 7.820

3 Tuning the Siebel Application
Object Manager
for Performance
This chapter describes the structure and operation of Siebel Application Object Manager (AOM)
components and the tuning that might be required for optimal operation. It contains the following
topics:

■ “About the Application Object Manager” on page 21

■ “AOM Infrastructure” on page 22

■ “Performance Factors for AOM Deployments” on page 23

■ “Topology Considerations for AOM Deployments” on page 26

■ “Best Practices for AOM Tuning” on page 26

■ “Configuring Database Connection Pooling for AOMs” on page 34

■ “Using Thread Pooling for AOM” on page 42

For more information about the Siebel Server and AOM infrastructure, and about the Siebel Web
Client, see the following documents on the Siebel Bookshelf:

■ Deployment Planning Guide

■ Siebel System Administration Guide

■ Siebel Installation Guide for the operating system you are using

About the Application Object Manager
The term Application Object Manager (AOM) refers to any of several Siebel Server components that
support users accessing Siebel applications through the Siebel Web Client and a Web server.

A different AOM component is provided for each base application among the Siebel Business
Applications or Siebel Industry Applications. For example:

■ Call Center Object Manager (SSCObjMgr_enu) is the AOM for Siebel Call Center in a U.S. English
environment.

■ Sales Object Manager (SSEObjMgr_enu) is the AOM for Siebel Sales in a U.S. English
environment.

■ eService Object Manager (eServiceObjMgr_enu) is the AOM for Siebel eService in a U.S. English
environment.

NOTE: Separate AOMs are provided for each installed language in which you may run your Siebel
applications. For example, Call Center Object Manager for French is SCCObjMgr_fra.

When configured appropriately, AOM components on your Siebel Servers can use memory and CPU
resources efficiently, and can communicate efficiently with the Siebel Database, the Siebel Web
Server Extension (SWSE), and other components in the Siebel Enterprise.
Performance Tuning Guide Version 7.8 21

Tuning the Siebel Application Object Manager for Performance ■ AOM Infrastructure
The multiprocess, multithreaded model for AOM components provides scalability to support
deployments with a wide range of concurrent Siebel application users.

The overall performance of the AOM contributes significantly to the response time as experienced by
your end users.

AOM Infrastructure
An AOM component is implemented as a multithreaded process on the Siebel Server. At runtime, a
parent process starts one or more multithreaded processes, according to the AOM configuration.

Each process can host multiple user sessions (as tasks), which in turn are implemented as threads
within the process. These threads may be dedicated to particular user sessions, or they may serve
as a pool that can be shared by multiple user sessions. (For each process, a few threads also start
that are dedicated to performing core functions for the process.)

As more users log into the system, additional processes may be instantiated to host these users.

■ In this chapter, the term thread is often used interchangeably with task, except when you are
using thread pooling. For details, see “Using Thread Pooling for AOM” on page 42.

■ The terms multithreaded server or MT server are alternative terms for multithreaded process (a
process that supports multiple threads). For example, the names of the AOM parameters
MaxMTServers and MinMTServers refer to multithreaded processes.

AOM components, which run in interactive mode, handle processing for Siebel Web Client sessions,
in which the application user interface (UI) resides. The AOM task manages Siebel business objects
and data objects and performs business logic for the client session.

Generally, each AOM task starts in response to a request from a Siebel Web Client running in a Web
browser, and ends when the client disconnects.

AOM Communications with Other Modules
Each AOM task uses Siebel Server infrastructure capabilities to communicate with the Siebel
Database, the Web server (through the SWSE), and other Siebel Enterprise Server components.

■ Communication with the Siebel Database uses database connections. Database connections can
also be managed and tuned for optimal performance. You can optionally configure connection
pooling for database connections.

For details on configuring database connection pooling, see “Configuring Database Connection
Pooling for AOMs” on page 34.

■ Communication with Siebel Connection Broker (SCBroker) uses mechanisms internal to the
operating system. SCBroker receives each SISNAPI connection request from the SWSE and
forwards the connection request to the AOM multithreaded process with the fewest running
tasks. Once the connection has been forwarded, requests flow directly from SWSE to AOM.

For more information about tuning SCBroker, see the load balancing sections in Siebel
Installation Guide for the operating system you are using and the Siebel System Administration
Guide.
Performance Tuning Guide Version 7.822

Tuning the Siebel Application Object Manager for Performance ■ Performance Factors
for AOM Deployments
■ Communication with the Siebel Web Server Extension uses SISNAPI (Siebel Internet Session
API), a messaging format that runs on top of the TCP/IP protocol. SISNAPI connections can be
configured to use encryption and authentication based on Secure Sockets Layer (SSL).

For details on tuning SISNAPI communications, see “Configuring SISNAPI Connection Pooling for
AOM” on page 45.

■ Communication with other Siebel Enterprise Server components (including other Siebel Servers)
also uses SISNAPI, going through Server Request Broker (SRBroker).

For more information about tuning SRBroker, see “Tuning Server Request Broker (SRBroker)” on
page 47.

About Tuning the AOM
Tuning activities directly or indirectly applicable to AOM components may involve any or all of the
following:

■ Configuring parts of your system using the Siebel Enterprise Server configuration utility.

■ Using the Siebel Server Manager to tune parameters for the Enterprise Server, the Siebel Server,
or the AOM component. These parameters are stored in the siebns.dat file in a directory on the
Siebel Gateway Name Server.

■ Selectively enabling component groups and components on each Siebel Server. Only enable the
component groups and components you need.

■ Tuning parameters in the eapps.cfg file on the Siebel Web Server Extension. This file is located
in the bin subdirectory of the Siebel Web Server Extension installation directory, on the Web
server machine.

■ Tuning parameters in the application configuration file, such as uagent.cfg for Siebel Call Center.
This file is located in the bin/language subdirectory of the Siebel Server installation directory.
Parameters in certain sections of this file, such as [SWE], are read by the relevant AOM, such as
SCCObjMgr_enu for Siebel Call Center in a U.S. English environment.

Some other chapters in this book discuss AOM tuning that relates to using other modules, such as
Siebel Communications Server or Siebel Configurator.

Performance Factors for AOM
Deployments
In planning to deploy AOMs, or in troubleshooting performance for existing AOM deployments, you
must consider several factors that determine or influence performance.

Factors that are central to the task of configuring the AOM are also called performance drivers.
Performance drivers for AOM include concurrent users and average think time. Other important
factors such as hardware resources will set limits on overall capacity or capacity per server.

Subsequent sections provide information and guidelines to help you achieve and maintain optimal
performance and scalability.
Performance Tuning Guide Version 7.8 23

Tuning the Siebel Application Object Manager for Performance ■ Performance Factors
for AOM Deployments
These factors are critical in initially configuring your AOMs, particularly when specifying values for
the AOM component parameters MaxTasks, MaxMTServers, and MinMTServers, which are discussed
in “Tuning AOM Components for CPU and Memory Utilization” on page 27.

Concurrent Users
The number of concurrent users is the total number of user sessions supported at any one time. It
also includes sessions supporting anonymous browser users. For planning and tuning purposes, you
must consider concurrent users (and total users) at multiple levels:

■ The entire deployment (enterprise)

■ Each Siebel Server

■ Each AOM component on each server

■ Each multithreaded process for each AOM component

The maximum number of concurrent users per Siebel Server—assuming, for example, that a
particular Siebel Server machine is dedicated to running AOM components—depends on the average
think time, on your hardware resources, and on the nature of your Siebel applications deployment.

In terms of configuration, the maximum number of concurrent users for the AOM is limited by the
value of the MaxTasks parameter. The effective maximum is also limited by the number of
multithreaded processes for this AOM and by your hardware resources.

Depending on the average think time and other factors, each multithreaded process (process within
the AOM) typically supports a maximum of about 100 concurrent users. Configure enough
multithreaded processes (using the MaxMTServers parameter) to support the maximum number of
concurrent users required for your peak loads.

NOTE: Some complex or specialized Object Manager components support fewer concurrent users.
For example, Object Managers for Siebel eCommunications (part of Siebel Industry Applications) and
Siebel Configurator typically support about 25 concurrent users. For more information about the
Object Manager for Siebel Configurator (Siebel Product Configuration Object Manager), see
Chapter 8, “Tuning Siebel Configurator for Performance.”

Think Time
The think time is the average elapsed time between operations performed by users in a Siebel
application. Think time includes the time required by users to conduct customer interactions, enter
data into the application, and work in other applications.

The assumed think time has a direct relationship to the number of concurrent tasks that a
multithreaded process can support.

Determine the average think time based on the usage patterns typical of your user base. After the
application has been configured, perform a clickstream analysis for your key processes, and try to
capture the time between the user actions (operations) that are represented by the clicks. Also use
the list statistics command in Siebel Server Manager to help you calculate average think time.
Performance Tuning Guide Version 7.824

Tuning the Siebel Application Object Manager for Performance ■ Performance Factors
for AOM Deployments
Consider the average time between each operation (such as clicking New) and each overall
transaction (such as performing all steps for creating a new contact). Mouse clicks do not equate to
operations if they do not send a request to the Siebel application infrastructure. Calculate the overall
average think time based on all of these factors.

The ratio of 100 (100 tasks per process), based on a 30-second think time, is assumed in the formula
for setting the MaxMTServers parameter. This formula is presented in “Tuning AOM Components for
CPU and Memory Utilization” on page 27.

The ratio of 100 is based on having approximately three users running operations at the exact same
time (100/30 = approximately 3.3). It is generally observed that each multithreaded process can
handle about three operations at the same time with minimal performance degradation.

With longer think times, one multithreaded process may support more than 100 concurrent tasks;
with shorter think times, fewer tasks. For example, if the think time is 15 seconds between user
operations, then about 50 tasks per process could be supported (15 * 3.3 = approximately 50, or
50/15 = approximately 3.3).

Nature of Siebel Application Deployment
Which Siebel applications and other modules you are using, how you have configured your Siebel
applications, how you have deployed your applications, and other such factors also affect AOM
performance and how many concurrent users you can support. Some of these factors include:

■ Will you support employee applications (such as Siebel Call Center), customer applications (such
as Siebel eService), partner applications (such as Siebel PRM), or some combination of these?
Typically, employee applications use high interactivity and customer applications use standard
interactivity.

■ Will you deploy your Siebel software in a global environment using multiple languages?

■ What degree and what kind of application configuration changes have you made, such as those
you do using Siebel Tools? For more information, see Chapter 12, “Tuning Customer Configurations
for Performance.”

The number of concurrent tasks you can support varies based on the level of customization or
the use of process automation for the application the AOM supports. Recommendations in this
guide generally assume that operations performed are fairly standard or typical. Depending on
your deployment and the modules used, some operations initiated by a single user action may
be relatively complex and demand more resources than most other operations.

■ Will you use specialized functionality such as offered by Siebel Configurator (for product
configuration) or Siebel CTI (computer telephony integration for call center agents)? How will you
deploy such functionality? What percentage of your user base will use such functionality? These
are only examples of such specialized functionality.
Performance Tuning Guide Version 7.8 25

Tuning the Siebel Application Object Manager for Performance ■ Topology
Considerations for AOM Deployments
Hardware Resources
Hardware resources for each Siebel Server machine, particularly CPU and memory, are a factor in
how many concurrent users can be supported for each AOM component. For example, a four-way
machine has twice the resources of a two-way machine and can potentially support twice as many
concurrent users. Key hardware resources for AOM performance include:

■ CPU. The CPU rating and the number of CPUs per server machine.

■ Memory. The amount of RAM, and whether it can accommodate users without excessive paging.

Disk I/O and network capacity are other important hardware factors, but they do not affect AOM
tuning. They do significantly affect performance for the Siebel Database and the Siebel File System.

The total number of machines you can devote to supporting AOM components will determine the total
number of concurrent users.

Topology Considerations for AOM
Deployments
Your Siebel applications can be deployed using a variety of topologies, or system layouts. Although
AOMs are only a part of the overall deployment, they play a direct and central role in supporting
Siebel application users.

You must determine on how many machines you will run Siebel Server, and on how many of these
you will run AOM components. In some cases, you may choose to run multiple components on the
same Siebel Server.

NOTE: AOM components are typically the major resource consumers for your Siebel Server
machines. Tuning considerations discussed in this chapter generally assume that you are not running
additional components on an AOM machine that will significantly contend for available resources.

For more information about topology considerations, see the Deployment Planning Guide.

Best Practices for AOM Tuning
Using your hardware resources optimally and configuring your system appropriately can help you to
achieve your performance goals. You should consider your resources and requirements carefully, and
test and monitor system performance on a continual basis.

Review information presented in Siebel System Administration Guide and other sources. All tuning
calculations must be done with some understanding of the overall system and the considerations
described in “Performance Factors for AOM Deployments” on page 23.
Performance Tuning Guide Version 7.826

Tuning the Siebel Application Object Manager for Performance ■ Best Practices for
AOM Tuning
Tuning AOM Components for CPU and Memory
Utilization
This section provides background information and guidelines for tuning your AOM components,
particularly for setting values for the parameters MaxTasks, MaxMTServers, and MinMTServers.

Settings for these parameters determine how well the system performs under specific user load and
operations. Parameter settings provide a means of controlling the server capacity through the Siebel
Server infrastructure, and directly impact the overall capacity for each server.

How you set the MaxTasks, MaxMTServers, and MinMTServers parameters is a direct function of the
factors described in “Performance Factors for AOM Deployments” on page 23, which determine the true
capacity of the server.

The art of tuning AOM components is to come up with the right parameter settings that allow the
server machines to host the largest number of users (scalability) with minimal impact on user
response time (performance).

About MaxTasks, MaxMTServers, and MinMTServers
The AOM parameters MaxTasks, MaxMTServers, and MinMTServers are described below. You
configure these parameters using Siebel Server Manager, which is described in detail in Siebel
System Administration Guide.

For background information about multithreaded processes, threads, and related concepts, see “AOM
Infrastructure” on page 22.

■ MaxTasks (Maximum Tasks). Specifies the total number of tasks (threads) that can run
concurrently on this AOM, for this Siebel Server. Beyond this number, no more tasks can be
started to handle additional requests.

■ MaxMTServers (Maximum MT Servers). Specifies the maximum number of multithreaded
processes that can run concurrently on this AOM. Beyond this number, no more multithreaded
processes can be started to handle additional requests.

■ MinMTServers (Minimum MT Servers). Specifies the default minimum number of
multithreaded processes that will start on this AOM when the parent process is started. The
parent process may be started either explicitly (using Siebel Server Manager) or automatically
(if the Siebel Server is started when the component state was last set to Running). Setting
MinMTServers to 0 effectively disables the AOM component.

As more users log in, new tasks start to handle these sessions, and new multithreaded processes are
started to support the additional tasks. The tasks and processes are added according to the AOM
load-balancing behavior, up to the maximum number of tasks and maximum number of
multithreaded processes. For details, see “Effect of AOM Parameter Settings” on page 28.

NOTE: MaxTasks, MaxMTServers, and MinMTServers are generic parameters that apply to many
different Siebel Server components. However, the specific behavior described in this chapter applies
to AOM components. For more information, see Siebel System Administration Guide.
Performance Tuning Guide Version 7.8 27

Tuning the Siebel Application Object Manager for Performance ■ Best Practices for
AOM Tuning
These parameters relate to one another in the following ways:

■ MaxMTServers and MinMTServers are typically set to the same value. Doing this avoids any
performance penalty for a user whose login causes a new multithreaded process to start.
MaxMTServers must be equal to or greater than MinMTServers.

Starting all multithreaded processes up front when the parent process is started is generally
acceptable. The memory overhead for running a multithreaded process itself, apart from the
overhead of its threads, is minimal.

■ The ratio MaxTasks/MaxMTServers determines the maximum number of threads (tasks) that can
run concurrently on a given multithreaded process. For more information, see the discussion of
think time under “Performance Factors for AOM Deployments” on page 23.

Effect of AOM Parameter Settings
This section illustrates how an AOM behaves given particular example settings for the MaxTasks,
MaxMTServers, and MinMTServers parameters. More realistic examples may be found in “Formulas
for Calculating AOM Parameter Values” on page 29.

For example, if MaxTasks = 500, and MaxMTServers = 5, then the ratio MaxTasks/MaxMTServers =
100. This means that, at most, 100 threads (tasks) can run in a multithreaded process on this AOM.

Typically, MinMTServers would be set the same as MaxMTServers. However, in this example, assume
MinMTServers = 4. In this case, four multithreaded processes start by default, which can handle a
total of 400 concurrent threads.

As users start the application on the server, the number of concurrent threads rises, and the following
occurs:

■ As the number of concurrent threads rises, but remains below 400, these threads are distributed
among the four multithreaded processes that started by default for this AOM. This is a form of
load balancing internal to the AOM component.

■ If the number of concurrent threads reaches 400, and a new request is received, a fifth
multithreaded process starts for this AOM. The AOM now distributes threads among five
multithreaded processes for this AOM.

■ If the AOM reaches 500 concurrent threads, no more client session requests can be handled,
because the existing multithreaded processes can start no more threads, and the AOM can start
no more multithreaded processes. The AOM can be said to be “maxed out.”

If AOM loads fall back, as users log out or session timeouts are enforced, then threads are freed up.
In some cases, a multithreaded process whose threads have completed may also time out and stop
running; this can happen only when MaxMTServers is greater than MinMTServers.
Performance Tuning Guide Version 7.828

Tuning the Siebel Application Object Manager for Performance ■ Best Practices for
AOM Tuning
Guidelines for Configuring AOM Parameters
This section provides formulas and guidelines for setting the MaxTasks, MaxMTServers, and
MinMTServers parameters for your AOM components.

NOTE: All elements in the two formulas shown in “Formulas for Calculating AOM Parameter Values” on
page 29 vary according to your deployment. The number of concurrent users an AOM can support
depends on factors such as the number of processors, session timeout settings, and the average
think time.

Typically, the AOM is the only component using significant resources on the Siebel Server machine.
If you run multiple server components, or run non-Siebel modules, then an AOM on this machine
may support fewer concurrent threads.

Follow these general steps to determine how to set these parameter values:

■ Determine the total number of concurrent users, based on the average think time and other
factors discussed earlier.

■ Determine the number of concurrent users that must be supported on a given Siebel Server
machine running AOM. In the formulas outlined below, this is the target number of users plus
the number of anonymous browser users, where applicable.

■ Determine how many Siebel Server machines are needed to support your concurrent users. This
is typically done by Siebel Expert Services or by platform vendors.

■ Plug your values into the formulas below, then adjust the values to meet any additional criteria.
In particular:

■ If your calculated value for MaxMTServers is not an integer, then round up the value to the
nearest integer.

■ After you adjust the value of MaxMTServers, if your calculated ratio for MaxTasks/
MaxMTServers is not an integer, then round up the value of MaxTasks until this ratio is an
integer.

■ Test your initial parameter settings, such as to gauge the actual number of anonymous browser
users required, then adjust settings further as necessary.

Formulas for Calculating AOM Parameter Values
Use the formulas below for calculating parameter values for your AOM components:

■ MaxTasks = target_number_of_users + anon_browser_users

■ MaxMTServers = (target_number_of_users + anon_browser_users)/100

■ MinMTServers = MaxMTServers

As necessary, after making your initial calculations, round up MaxMTServers to the nearest integer,
calculate the remainder (X) of MaxTasks/MaxMTServers, then increment MaxTasks by adding
(MaxMTServers - X). You do this to make sure that the ratio of MaxTasks/MaxMTServers is an integer.

NOTE: The figure of 100 in the MaxMTServers formula represents the ratio of concurrent tasks per
multithreaded process. The value of 100 is a rule of thumb only. For details, see below.
Performance Tuning Guide Version 7.8 29

Tuning the Siebel Application Object Manager for Performance ■ Best Practices for
AOM Tuning
Variables in the above formulas are described below:

■ target_number_of_users = The maximum number of concurrent user sessions your AOM will
support (for users who are logged into the application).

The maximum number of concurrent users is limited by the value of the MaxTasks parameter for
the AOM, by the number of multithreaded processes you are running (determined by
MaxMTServers and MinMTServers), and, effectively, by your hardware resources.

■ anon_browser_users = The number of sessions on the AOM dedicated to anonymous browser
users (threads that support users who do not log in).

■ For high interactivity applications (typically, employee applications like Siebel Call Center),
anonymous browser users are not supported, so this is not a factor.

■ For standard interactivity applications (typically, customer applications like Siebel eService),
anonymous browser users may be approximately 25% of the target number of users.

■ 100 = The approximate maximum number of concurrent threads each multithreaded process on
the AOM can support. The number 100 is a rule of thumb. Use the number that is appropriate
for your deployment.

NOTE: A ratio of 100 for threads per multithreaded process works for most AOM usage scenarios.
However, if your deployment involves a shorter think time than 30 seconds, or a heavier than
average load per thread, each multithreaded process will support fewer concurrent threads.
Conversely, a longer think time or a lighter average load will support more concurrent threads.
For more information about how the ratio of threads per multithreaded process relates to think
time, see “Performance Factors for AOM Deployments” on page 23.

Example Settings for AOM Parameters
Along with other factors such as think time, the calculation of MaxTasks, MaxMTServers, and
MinMTServers depends on your assumptions for target_number_of_users and anon_browser_users,
which are described in the previous section. Example settings follow for Siebel Call Center and Siebel
eService.

Example Settings for Siebel Call Center

For Siebel Call Center, assume (for example) a think time of 30 seconds, and assume that
target_number_of_users = 500. For this application, anon_browser_users is not a factor. Your
parameter values would be:

MaxTasks = 500

MaxMTServers = 500/100 = 5

MinMTServers = MaxMTServers = 5
Performance Tuning Guide Version 7.830

Tuning the Siebel Application Object Manager for Performance ■ Best Practices for
AOM Tuning
Example Settings for Siebel eService

For Siebel eService, assume (for example) a think time of 30 seconds, and assume that
target_number_of_users = 500. Depending on your implementation, anon_browser_users might be
about 25% of target_number_of_users (or 125). Your preliminary parameter values would be:

MaxTasks = (500 + 125) = 625

MaxMTServers = (500 + 125)/100 = 6.25 = 7 (round up)

MinMTServers = MaxMTServers = 7

Adjust the value of MaxTasks. The variable X = the remainder of (625/7) = 2. Increment MaxTasks
by (MaxMTServers - X): 625 + (7 - 2) = 625 + 5 = 630. Therefore, the final calculations for
parameter values would be:

MaxTasks = 630

MaxMTServers = MinMTServers =7

Tuning Parameters for AOM Caches
The AOM uses several caches, which affect memory usage for the AOM. Tuning AOM caches affects
AOM performance and memory usage. The following are some of the major caches used by AOM that
can be configured:

■ SQL cursor cache

■ SQL data caches

SQL Cursor Cache
The SQL cursor cache is configured using the DSMaxCachedCursors parameter. This cache can be
enabled on multithreaded components (such as AOM) with database connection pooling.

The value represents the number of SQL cursors per database connection. For an AOM for which the
Siebel Server machine is more likely to reach its CPU capacity before it reaches its memory capacity
(for example, for Siebel Employee Relationship Management), the default value of 16 for the
DSMaxCachedCursors parameter may be appropriate. (Such an application is sometimes referred to
as CPU-bound.)

For an AOM for which the Siebel Server machine is more likely to reach its memory capacity before
it reaches its CPU capacity (for example, for Siebel Call Center), you can set DSMaxCachedCursors
to a lower value, even to 0. (Such an application is sometimes referred to as memory-bound.)

In general, the value should reflect the CPU and memory resource availability on the Siebel Server
machine running a particular AOM component. The trade-off in setting this parameter is that
allocating memory to caching SQL cursors means they would need to be created less often, but at a
cost in memory.
Performance Tuning Guide Version 7.8 31

Tuning the Siebel Application Object Manager for Performance ■ Best Practices for
AOM Tuning
The memory requirement per cursor depends on factors such as the size of the query, type of
database connection, row size, and number or rows returned by the query. The utility of these cached
cursors depends on the uniqueness of the queries they represent. In general, most Siebel application
queries are unique and would not benefit from reusing a cached cursor.

Generally, when more users share a database connection, through connection pooling, you should
increase the number of cursors cached, provided that the required memory is available. For more
information about database connection pooling, see “Configuring Database Connection Pooling for
AOMs” on page 34.

SQL Data Caches
The SQL data caches are configured using the DSMaxCachedDatasetsPerProcess and
DSMaxCachedDataSets parameters. Two types of data caches are guided by these parameters:

■ Global data cache, which is useful in most cases. This cache is governed by
DSMaxCachedDatasetsPerProcess. The default value is 16.

■ Per-connection data cache (which can be enabled with, or without, database connection pooling).
This cache is governed by DSMaxCachedDataSets. The default value is 16.

For an CPU-bound AOM (for example, for Siebel Employee Relationship Management), the default
values for DSMaxCachedDatasetsPerProcess and DSMaxCachedDataSets may be appropriate.

For a memory-bound AOM (for example, for Siebel Call Center), you can set
DSMaxCachedDatasetsPerProcess and DSMaxCachedDataSets to a lower value, even to 0.

In general, the values should reflect the CPU and memory resource availability on the Siebel Server
machine running a particular AOM component. The trade-off in setting these parameters is that
allocating memory to caching SQL data sets means they would need to be created less often, but at
a cost in memory.

See also the discussion of the SQL cursor cache.

Additional Parameters Affecting AOM Performance
This section provides guidelines for setting additional parameters that affect AOM performance.

■ MemProtection. Setting the MemProtection parameter to FALSE for your AOM component may
improve performance.

When this parameter is TRUE (the default), each transaction issues a large number of serialized
mprotect statements, the total effect of which may degrade performance on your Siebel Server
machines.

The MemProtection parameter is hidden and must be set using the command-line version of the
Siebel Server Manager, as shown:
Performance Tuning Guide Version 7.832

Tuning the Siebel Application Object Manager for Performance ■ Best Practices for
AOM Tuning
change param MemProtection=False for comp component_alias_name server
siebel_server_name

where:

component_alias_name is the alias name of the AOM component you are configuring, such as
SCCObjMgr_deu for the German version of Call Center Object Manager.

siebel_server_name is the name of the Siebel Server for which you are configuring the
component.

In addition to improving performance, you may also improve scalability if you set the
MemProtection parameter to FALSE.

NOTE: Support for setting MemProtection to FALSE is restricted to the AIX and HP-UX platforms.

■ DSPreFetchSize and DSMaxCursorSize. These parameters should be set only for Siebel
implementations on IBM DB2 UDB for z/OS and OS/390. For more information on setting these
parameters, see Implementing Siebel Business Applications on DB2 UDB for z/OS.

For all other databases, these parameters should be set to -1.

■ EnableCDA. If an AOM component does not need to support Siebel Advisor or browser-based
Siebel Configurator, set this parameter to FALSE in the [SWE] section of the application
configuration file, such as uagent.cfg for Siebel Call Center.

Memory Consumers in AOM
In addition to the caches described earlier, this section discusses major memory consumers in AOM
components. For more information on some of these topics, see Chapter 12, “Tuning Customer
Configurations for Performance.”

■ Database client libraries. Database client libraries have their own caches, caching metadata,
connections, cursors, and data. Some of these caches can be reduced in size by using Siebel
database connection pooling, described in “Configuring Database Connection Pooling for AOMs” on
page 34.

■ Scripts. A script defined on a business component, applet, or business service is loaded into AOM
memory when the script is first invoked.

For Siebel eScript, garbage collection is performed according to settings that are optimized for
each release in order to use server memory and other resources appropriately.

■ Heavy configurations. Performance is affected when an application is heavily configured.

Other memory consumers in AOM are the following:

■ Navigation pattern. Numerous scenarios that can be used to navigate in the application can
make using global caches ineffective.

■ Session timeouts. Higher session timeout values mean more active sessions on the server at
a time, therefore more memory being used. Lower session timeout values may mean more
frequent logins.
Performance Tuning Guide Version 7.8 33

Tuning the Siebel Application Object Manager for Performance ■ Configuring
Database Connection Pooling for AOMs
■ Users per AOM. More users per AOM means more sharing of global resources between the
users. While the amount of memory used per user on this AOM is less, more memory is used
overall.

■ Number of applets on views. More applets configured on views means more business
components will be needed at a time, hence higher overall memory usage.

■ PDQ size. The list of items in the PDQ (predefined queries) list are maintained on the server for
the current business object. The higher the number of items in this list, the more memory it
consumes. The size of PDQ strings also determines memory usage.

Configuring Database Connection
Pooling for AOMs
This section describes database connection configuration options for AOMs, particularly database
connection pooling.

NOTE: Each customer must determine whether their RDBMS has a sufficient total number of
database connections for their needs. The total number of available connections is subject to
limitations deriving from RDBMS and operating system platforms and other factors. Before you
configure connection pooling, verify how many database connections are available for use by the
AOM. RDBMS performance and usage of database connections by non-Siebel components are outside
the scope of this section.

About Database Connections for AOM
This section provides an overview of database connections for AOM components, including nonpooled
connections and pooled connections. Subsequent sections provide guidelines and instructions for
configuring different types of database connection pooling.

About Nonpooled Database Connections
By default, AOM database connection pooling is disabled, and database connections have a direct
correspondence to the AOM sessions—that is, database connections are not pooled. No special AOM
configuration is required for using nonpooled database connections. When no pooling is configured,
database connections are closed when the user session terminates.

■ Nonpooled default database connections. With nonpooled database connections, during
session login, a database connection is established, using the user’s database credentials. (When
an external authentication system is used, such as LDAP, the user’s database credentials may
not be the same as the user’s Siebel credentials.)

This database connection becomes bound to the session, and is the default database connection
used for read, write, update, and delete operations.

In this book, such connections are called default database connections. These connections may
alternatively be pooled, as described later in this section.
Performance Tuning Guide Version 7.834

Tuning the Siebel Application Object Manager for Performance ■ Configuring
Database Connection Pooling for AOMs
■ Nonpooled specialized database connections. If, during a session, specialized functionality
is invoked that uses the external transaction management capabilities of the AOM, then a second
database connection is opened for this specialized use.

This database connection is also bound to the session, and is used for all externally controlled
transactions performed by the session. Siebel EAI components are an example of specialized
code that does external transaction management.

In this book, such connections are called specialized database connections. These connections
may alternatively be pooled, as described later in this section.

About Pooled Database Connections
Optionally, you can configure your AOM components to supporting pooling for the same two types of
database connections described previously for nonpooled database connections:

■ Pooled default database connections. These database connections can be pooled to support
sharing (multiplexing), persistence, or both features.

■ Shared connections support multiple user sessions at the same time, by multiplexing
(sharing) database operations for multiple sessions over the same database connection.
Using shared connections can support more users with a given number of connections.

■ Persistent connections are pooled, but are not necessarily shared. Using persistent
connections can enhance performance by avoiding the cost of creating database connections.
All shared connections are also persistent connections.

For details, see “Database Connection Pooling Usage Guidelines” on page 35 and “Configuring
Pooling for Default Database Connections” on page 38.

■ Pooled specialized database connections. These database connections are dedicated to a
single session at a time, and serve a specialized purpose. Pooling such connections provides
persistence, but such connections are never shared. By persistently pooling these connections,
you enhance performance by avoiding the cost of creating connections.

NOTE: If you configure pooling for default database connections, but not for specialized
database connections, then each specialized database connection is closed when the transaction
that required it completes.

For details, see “Database Connection Pooling Usage Guidelines” on page 35 and “Configuring
Pooling for Specialized Database Connections” on page 40.

Database Connection Pooling Usage Guidelines
Observe the following guidelines to help you determine if you should use database connection
pooling, or to guide your deployment of connection pooling.

For more information about configuring the AOM parameters for database connection pooling
mentioned below, see “Configuring Pooling for Default Database Connections” on page 38 and
“Configuring Pooling for Specialized Database Connections” on page 40.
Performance Tuning Guide Version 7.8 35

Tuning the Siebel Application Object Manager for Performance ■ Configuring
Database Connection Pooling for AOMs
When to Consider Using Database Connection Pooling
You should consider implementing database connection pooling if, and only if, one or more of the
following is true for your deployment:

■ The RDBMS cannot support the number of dedicated user connections you would require if using
nonpooled database connections. Pooling default database connections for shared use can reduce
the number of connections you require.

■ Memory resources are scarce on the Siebel Server machine on which the AOM is running. Pooling
default database connections for shared use can reduce AOM memory requirements per
concurrent user.

■ Your deployment uses external authentication such as LDAP (that is, authentication other than
database authentication), and creating new connections is slow on the database server. Pooling
database connections can speed up login or other operations by providing persistent pooling—
whether or not connections are also shared.

■ You are using a Siebel Server component that requires frequent logins for special-purpose
processing. Pooling database connections to provide persistent connection pooling (not sharing)
may provide a significant benefit for such components.

■ For Siebel Configurator, if you are using the component Siebel Product Configuration Object
Manager (alias eProdCfgObjMgr_enu in a U.S. English environment), it is highly
recommended to configure persistent connection pooling. For more information about Siebel
Configurator, see Chapter 8, “Tuning Siebel Configurator for Performance.”

NOTE: Separate Object Managers are provided for each installed language in which you may
run your Siebel applications. For example, Call Center Object Manager for French is
SCCObjMgr_fra.

■ For some other components, such as EAI Object Manager (when run in sessionless mode), it
may also be helpful to configure persistent connection pooling.

NOTE: If session caching is configured for a component (by setting the parameter
ModelCacheMax), persistent connection pooling may provide little benefit. For example, session
caching is typically configured for Workflow Process Manager. For more information about session
caching for Siebel Workflow, see “Caching Sessions” on page 90.

Guidelines for Using Database Connection Pooling
If you decide to use database connection pooling, observe the following guidelines:

■ Start with a low ratio of MaxTasks/MaxSharedDbConns, such as 2:1.

NOTE: If you plan to use a ratio higher than 3:1, it is recommended that you consult Siebel
Expert Services.
Performance Tuning Guide Version 7.836

Tuning the Siebel Application Object Manager for Performance ■ Configuring
Database Connection Pooling for AOMs
■ If you have short (aggressive) average think times in your user scenarios, use a smaller ratio of
MaxTasks/MaxSharedDbConns. Longer think times may support larger ratios.

For a 30-second think time, do not use a ratio higher than 10:1. For a 15-second think time, do
not use a ratio higher than 5:1. Other factors discussed in this section will also determine
practical limits.

For more information about think time, see “Performance Factors for AOM Deployments” on
page 23.

■ Minimize long-running queries. When multiple user sessions are assigned to a shared default
database connection, all database operations from these users go through this shared
connection. A database connection can process only one database operation at any particular
moment. Therefore, when database connections are shared by two or more users, one user’s
long-running query may block another user who shares that database connection.

For example, if a long-running query is run which takes, for example, three seconds, then, for
this duration, database requests from other users sharing the same database connection would
be queued (blocked) until the query operation completes.

A long-running query may continue to run on the RDBMS even if the user who initiated it has
killed the browser.

When using database connection pooling, it is critical to optimize database access in your
environment. If long-running queries cannot be avoided, monitor the overall database response
time and use a small MaxTasks/MaxSharedDbConns ratio to achieve a satisfactory response time.

Alternatively, long-running queries may be minimized or avoided by adjusting indexes to include
fields that may be sorted or queried by end users, by configuring the application user interface
so non-indexed fields are not exposed, or by training users to avoid operations that would
perform long-running queries. For more information about how indexing can affect Siebel
application performance, see “Managing Database Indexes in Sorting and Searching” on page 165.

■ Consider the cost of creating database connections. This cost will differ based on your
authentication method.

If your deployment uses database authentication, a database connection is created for each
login, for authentication purposes. Afterwards, this connection is released to the shared
connection pool, if the total number of connections is less than the maximum. Or, if the pool is
full, the connection is closed (terminated). Therefore, even when the pool is full and connections
are available, new connections are still created temporarily for each new session login. These
connections must be accounted for in determining the allocation of database connections.

With external authentication, however, you can use persistent connection pooling to reduce the
cost of creating database connections. With persistent connection pooling, database connections,
once created, are persistent, though such connections may or may not be shared. For pooled
default database connections where connections are persistent but not shared, set
MaxSharedDbConns = MaxTasks - 1.

For more information about authentication options, see Security Guide for Siebel Business
Applications.
Performance Tuning Guide Version 7.8 37

Tuning the Siebel Application Object Manager for Performance ■ Configuring
Database Connection Pooling for AOMs
■ In order to configure connection pooling for specialized database connections, you must also
configure pooling for default database connections, as follows:

■ If you do not configure connection pooling for shared database connections
(MaxSharedDbConns = -1 or 0), then each specialized database connection, once created, is
dedicated to the user session. The value of MinTrxDbConns is ignored.

■ If you configure connection pooling for shared database connections (MaxSharedDbConns
has a value greater than 0, and less than MaxTasks), then specialized database connections
are not dedicated to user sessions. Such connections are handled according to the setting of
MinTrxDbConns:

❏ If MinTrxDbConns = -1 or 0, then, after the transaction that required it has ended, each
specialized database connection is closed (deleted).

❏ If MinTrxDbConns has a value greater than 0, then, after the transaction that required it
has ended, each specialized database connection may return to the connection pool.

■ Siebel database connection pooling cannot be used simultaneously with MTS or the Multiplexing
features of Oracle Net9 or Net10.

Configuring Pooling for Default Database Connections
Default database connections can be used by most AOM operations.

Configuring Parameters for Pooling Default Connections
This section describes how to enable or disable pooling for default database connections using the
parameters MaxSharedDbConns (DB Multiplex - Max Number of Shared DB Connections) and
MinSharedDbConns (DB Multiplex - Min Number of Shared DB Connections).

■ To enable connection pooling, set MaxSharedDbConns and MinSharedDbConns to positive integer
values (at least 1) that are no higher than MaxTasks - 1. A connection will be shared by more
than one user session once the number of sessions within the multithreaded process exceeds the
maximum number of shared connections allowed per process.

■ MaxSharedDbConns controls the maximum number of pooled database connections for each
multithreaded process.

■ MinSharedDbConns controls the minimum number of pooled database connections the AOM
tries to keep available for each multithreaded process.

The setting of MinSharedDbConns must be equal to or less than the setting of
MaxSharedDbConns. Depending on your AOM usage patterns, you may set these to the same
value or set MinSharedDbConns to a lower value—if you determine this to be helpful in
conserving database connection resources.

■ To configure persistent and shared database connection pooling, set MaxSharedDbConns, using
the appropriate ratio of MaxTasks/MaxSharedDbConns. Depending on the ratio, a greater or
lesser degree of sharing will be in effect. Start with a 2:1 (or smaller) ratio for MaxTasks/
MaxSharedDbConns. With this example ratio, two user tasks will share the same database
connection.
Performance Tuning Guide Version 7.838

Tuning the Siebel Application Object Manager for Performance ■ Configuring
Database Connection Pooling for AOMs
■ To configure persistent but nonshared database connection pooling, set MaxSharedDbConns =
MaxTasks - 1.

■ To disable connection pooling, set MaxSharedDbConns and MinSharedDbConns to -1 (this is the
default value).

MaxSharedDbConns and MinSharedDbConns are defined per AOM component, on an enterprise basis
(these parameters are included in named subsystems of type InfraDatasources). The database
connections these parameters control are not shared across multithreaded processes. The actual
maximum number of database connections for each multithreaded process is determined by the ratio
MaxSharedDbConns/MaxMTServers.

NOTE: MaxSharedDbConns and MinSharedDbConns work differently than MinTrxDbConns, which
specifies the number of shared specialized database connections available for each multithreaded
process. For details, see “Configuring Pooling for Specialized Database Connections” on page 40.

Example Configuration for Pooling Default Connections
Assume, for example, the following parameter settings:

MaxTasks = 500
MaxMTServers = 5
MinMTServers = 5
MaxSharedDbConns = 250
MinSharedDbConns = 250

With these settings, the AOM component can support a maximum of 500 tasks (threads). Those 500
tasks would be spread over five multithreaded processes, each having 100 tasks. Each multithreaded
process would have a maximum of 50 shared database connections, each of which would serve up
to two tasks.

How Pooled Default Connections Are Assigned
When the AOM starts up, the shared connection pool is empty. When a user logs into the AOM, the
shared connection pool is checked to see if a connection is available. Shared database connections
may be assigned to a new user session in any of the following ways:

■ If a database connection is available in the pool that is not being used by another session
managed by the same AOM multithreaded process, assign the connection to the new session.
The connection is not removed from the pool.

■ If the number of connections in the pool is less than MaxSharedDbConns, create a new
connection, place it into the pool, and assign it to the new session.

■ Select the current connection in the pool that is shared by the fewest sessions (has the lowest
usage count), and assign it to the new session.

Once a shared connection is assigned to the new session, all database operations (read, write,
update, and delete) for the session go through the connection.
Performance Tuning Guide Version 7.8 39

Tuning the Siebel Application Object Manager for Performance ■ Configuring
Database Connection Pooling for AOMs
When the session terminates, the usage count for the database connection is decremented. If the
usage count has reached 0 (no sessions use this connection) and there are at least
MinSharedDbConns connections already in the pool, the connection is removed from the pool and
closed. Otherwise, it is left in the pool so the minimum number of shared connections is maintained.

When an AOM multithreaded process shuts down, any remaining connections in the pool that were
managed by this process are closed.

Scenario for Assigning Pooled Default Connections
Assuming, for example, the parameter settings described in “Example Configuration for Pooling
Default Connections” on page 39, shared database connections will be handled as in the following
scenario:

■ If 10 users log in, in sequence, each user is assigned a new database connection on the same
multithreaded process. (Each multithreaded process will have at most 10 shared database
connections.)

■ User 21–100, continuing to log in (in sequence), would reuse these connections.

■ Users 51–100, logging in (in sequence again), would reuse Connections 1–50. (Each database
connection will have at most a usage count of 10. Each multithreaded process would have at most
a thread count of 100.)

■ Once assigned a database connection, a user session is tied to that database connection for the
duration of the session. This mapping is maintained until the user logs out or the session times
out.

■ So, assuming 100 users have logged in, in sequential order, then Connection 1 is then used by
Users 1, 11, 21, 31, 41, 51, 61, 71, 81, and 91.

■ When a user logs out or session timed out, the usage count for Connection 1 decrements by 1.
(Connections with lower usage counts will be assigned to new user sessions, as needed.)

■ Once the usage count for a database connection reaches 0, it is closed if the number of database
connections is greater than MinSharedDbConns. If it is equal to or less than MinSharedDbConns,
then it is not closed.

For details, see “How Pooled Default Connections Are Assigned” on page 39.

Configuring Pooling for Specialized Database
Connections
Specialized database connections, which are not shared, are used primarily by specialized Siebel
components such as Siebel EAI that need transactions to span multiple AOM operations. These
connections are used for operations that use BEGIN TRANSACTION and END TRANSACTION.
Performance Tuning Guide Version 7.840

Tuning the Siebel Application Object Manager for Performance ■ Configuring
Database Connection Pooling for AOMs
Configuring Parameters for Pooling Specialized Connections
This section describes how to enable or disable specialized connection pooling using the parameter
MinTrxDbConns (DB Multiplex - Min Number of Dedicated DB Connections).

■ MinTrxDbConns controls the minimum number of specialized database connections for each
multithreaded process. The connections are not created until they are needed. The minimum
value is thus the minimum size of the pool of specialized connections once all the connections in
the pool have been created.

■ To enable specialized connection pooling, set MinTrxDbConns to a positive integer value (at
least 1). You must also configure pooling for default database connections.

■ To disable specialized connection pooling, set MinTrxDbConns to -1 (this is the default value).

■ There is no explicit limit to the maximum number of specialized connections. However,
effectively, there cannot be more specialized connections than sessions. On average, there will
be many fewer connections than sessions.

MinTrxDbConns is defined per AOM component, on an enterprise basis (this parameter is included in
named subsystems of type InfraDatasources). The database connections this parameter controls are
not shared across multithreaded processes. The actual minimum number of specialized database
connections for each multithreaded process is what you specify as the value for MinTrxDbConns.

NOTE: MinTrxDbConns works differently than MaxSharedDbConns and MinSharedDbConns, which
specify the number of shared database connections available for the entire AOM. For details, see
“Configuring Pooling for Default Database Connections” on page 38.

Example Configuration for Pooling Specialized Connections
Assume, for example, the following parameter setting, in addition to those described in “Example
Configuration for Pooling Default Connections” on page 39:

MinTrxDbConns = 5

With this setting, each multithreaded process would have a minimum of five specialized database
connections. If all five multithreaded processes are running on this AOM, there would be a minimum
of 25 specialized connections for this AOM.

How Pooled Specialized Connections Are Assigned
When the AOM starts up, the specialized connection pool is empty. When a request is made to start
a transaction, the AOM requests a database connection from the specialized connection pool. If one
is available, it is removed from the pool and given to the session for that session’s exclusive use.

When the transaction completes (such as by being committed or canceled), the session returns the
specialized connection to the pool. If the pool already contains more than the number of connections
specified by MinTrxDbConns, the specialized connection is closed; otherwise, it is retained in the
pool.
Performance Tuning Guide Version 7.8 41

Tuning the Siebel Application Object Manager for Performance ■ Using Thread Pooling
for AOM
Scenario for Assigning Pooled Specialized Connections
Assume, for example, that MinTrxDbConns is set to 2. Specialized connections will be handled as
follows:

■ User 1 starts Transaction 1. The specialized connection pool is empty, so a new connection is
created. Once Transaction 1 completes, this connection is returned to the pool.

■ User 2 starts Transaction 2. If Transaction 1 is still running, then a new specialized connection is
created. If Transaction 1 completed, then Transaction 2 uses the first database connection.

■ When two specialized connections have been created, they will remain in the pool until the AOM
terminates.

Using Thread Pooling for AOM
Optionally, you can configure your AOM components to use thread pooling. Enabling AOM thread
pooling as described in this section both pools and multiplexes (shares) multiple tasks across
threads.

Using AOM thread pooling can improve performance and scalability on multiple-CPU machines that
are under heavy load—for example, machines using eight or more CPUs that are running at more
than 75% CPU capacity.

NOTE: AOM thread pooling is not recommended for smaller server machines or for machines that
run under a relatively lower capacity.

About Thread Pooling for AOM
The pool size per multithreaded process for an AOM is determined by the combined settings of the
parameters UseThreadPool, ThreadAffinity, MinPoolThreads, and MaxPoolThreads.

AOM thread pooling reduces some of system resource usage devoted to creating and closing session
threads, as users log in and log out or are timed out. As when you are not using thread pooling,
session threads are created as needed as session requests demand. However, instead of being closed
when a session terminates, they are released to a pool, where they become available for use by a
subsequent session.

NOTE: Using thread pooling introduces its own overhead, however, such as in task context-
switching. For this reason, it is strongly recommended not to try to pool threads without also
multiplexing them (that is, do not set UseThreadPool = TRUE, but ThreadAffinity = TRUE).

Because ThreadAffinity = FALSE, threads are multiplexed, as can be done with certain types of
database connections or SISNAPI connections. At any given time, each thread may be dedicated to
one or more user session (task).

Configuring AOM Thread Pooling
To use thread pooling, you set the following parameters on the AOM:

■ UseThreadPool = TRUE (default is FALSE)
Performance Tuning Guide Version 7.842

Tuning the Siebel Application Object Manager for Performance ■ Using Thread Pooling
for AOM
■ ThreadAffinity = FALSE (default is FALSE)

■ MinPoolThreads = min_number_threads_in_pool (default is 0)

where min_number_threads_in_pool represents the minimum number of threads in the AOM
thread pool.

■ MaxPoolThreads = MinPoolThreads (default is 0)

NOTE: You must specify a value for MaxPoolThreads that is equal to or greater than the value of
MinPoolThreads. Other than this requirement, the specific value you provide does not matter.

To determine an appropriate value for MinPoolThreads and MaxPoolThreads, start slowly, monitor
system performance, then introduce more multiplexing, as may be appropriate for your deployment.
For example, start with a formula like this (based on two tasks per thread):

MinPoolThreads = MaxPoolThreads = (MaxTasks/MaxMTServers)/2

Subsequently, you may increase this to five tasks per thread, using this formula:

MinPoolThreads = MaxPoolThreads = (MaxTasks/MaxMTServers)/5

For example, if MaxTasks = 525, and MaxMTServers = 5, this would be:

MinPoolThreads = MaxPoolThreads = (525/5)/ 5 = 105/5 = 21

Or, if MaxTasks = 725, and MaxMTServers = 5, this would be:

MinPoolThreads = MaxPoolThreads = (725/5)/ 5 = 145/5 = 29

NOTE: Adjust values for think time, as necessary. If you cut your think time value in half, then
double the number of threads in the pool.
Performance Tuning Guide Version 7.8 43

Tuning the Siebel Application Object Manager for Performance ■ Using Thread Pooling
for AOM
Performance Tuning Guide Version 7.844

4 Tuning the Siebel Server
Infrastructure for Performance
This chapter describes the structure and operation of Siebel Application Object Manager (AOM)
components and the tuning that might be required for optimal operation. It contains the following
topics:

■ “Configuring SISNAPI Connection Pooling for AOM” on page 45

■ “Tuning Server Request Broker (SRBroker)” on page 47

For more information about the Siebel Server and AOM infrastructure, and about the Siebel Web
Client, see the following documents on the Siebel Bookshelf:

■ Deployment Planning Guide

■ Siebel System Administration Guide

■ Siebel Installation Guide for the operating system you are using

■ Siebel System Administration Guide

Configuring SISNAPI Connection
Pooling for AOM
This section provides information about how to manage SISNAPI connections for your Siebel Server.

SISNAPI (Siebel Internet Session application programming interface), a messaging format that runs
on top of the TCP/IP protocol, is used for network communication between AOM and Siebel Web
Server Extension (SWSE), installed on the Web server. SISNAPI connections can be configured to use
encryption and authentication based on Secure Sockets Layer (SSL).

Each multithreaded process for an AOM component uses a pool of SISNAPI connections managed by
the SWSE. The process multiplexes (shares) many client sessions over each connection.

Each client session request opens a new connection and adds it to the pool, until the number of
connections defined by the value of the parameter SessPerSisnConn have been created. Subsequent
requests are then multiplexed over the existing pooled connections. SISNAPI connections persist
until one of the following events occur:

■ Web server process terminates

■ AOM component terminates

■ Value of the parameter SISNAPI Connection Maximum Idle Time (alias ConnIdleTime) is reached

For more information on this parameter, see Siebel System Administration Guide.

■ Your firewall times out the connection

Multiplexing traffic over a set of SISNAPI connections helps to reduce the number of open network
connections.
Performance Tuning Guide Version 7.8 45

Tuning the Siebel Server Infrastructure for Performance ■ Configuring SISNAPI
Connection Pooling for AOM
The SISNAPI connection pool size per multithreaded process for an AOM is determined by the
combined settings of MaxTasks, MaxMTServers, and SessPerSisnConn.

SessPerSisnConn determines how many sessions can be multiplexed over a single SISNAPI
connection. By default, SessPerSisnConn is set to 20 for AOM components. This figure is suitable for
most deployments and generally does not need to be changed. You may set this differently,
depending on how you have calculated think time. For details, see “Performance Factors for AOM
Deployments” on page 23.

For more information about configuring MaxTasks and MaxMTServers, see “Tuning AOM Components
for CPU and Memory Utilization” on page 27.

The number of actual SISNAPI connections per multithreaded process for the AOM is determined by
the following formula:

(MaxTasks/MaxMTServers)/SessPerSisnConn = SISNAPI_conn_per_process

where SISNAPI_conn_per_process represents the number of SISNAPI connections per multithreaded
process.

Assume, for example, the following parameter values:

MaxTasks = 600

MaxMTServers = 5

SessPerSisnConn = 20

In this case, the formula would be:

(600/5)/20 = 120/20 = 6

Or, if MaxTasks = 540 and SessPerSisnConn is set to 18, the formula would be:

(540/5)/18 = 108/18 = 6

In each case, six SISNAPI connections will be created and pooled for each AOM multithreaded
process, from each SWSE. Each Web server and SWSE may potentially have its own set of six
connections, so the maximum total number of connections into an AOM process is six times the
number of Web servers. In the first example above, 20 sessions would be multiplexed over each
connection. In the second example, 18 would be multiplexed over each connection.

NOTE: In general, it is recommended that the figures used for the above formula be tailored to
produce an end result that is an integer. To achieve this, you may need to modify how you define
MaxTasks, MaxMTServers, and SessPerSisnConn.

Some Object Manager components are not AOM components. Configuration issues for such
components may differ from that applicable to AOM components. For information about the EAI
Object Manager, see Chapter 9, “Tuning Siebel EAI for Performance.”
Performance Tuning Guide Version 7.846

Tuning the Siebel Server Infrastructure for Performance ■ Tuning Server Request
Broker (SRBroker)
Tuning Server Request Broker
(SRBroker)
The Server Request Broker (SRBroker) component routes requests between Siebel Server
components, such as from an AOM to a batch component. SRBroker also handles requests between
batch components. SRBroker is used whether the components run on the same machine or on
different machines.

Server requests originating with an AOM component always go the SRBroker component to
determine what to do with the request:

■ If the destination component is running on the same Siebel Server, SRBroker passes the request
to this component. If multiple instances of the destination component are running, SRBroker
passes the request to each component instance in a round-robin fashion.

■ If the destination component is not running on the same Siebel Server, SRBroker passes the
request to SRBroker running on another machine. If the destination component runs on multiple
Siebel Servers, SRBroker passes the request to each server in round-robin fashion.

The default parameter values for SRBroker work well for most deployments. If necessary, adjust the
value of the MaxTasks parameter (the default value is 100). MaxTasks determines the maximum
number of SRBroker threads (tasks) that can run on the Siebel Server. As necessary, set MaxTasks
to a value equal to the number of batch components running on the Siebel Server, plus the number
of Siebel Servers in the enterprise, plus 10 (for overhead).

MaxMTServers and MinMTServers determine the maximum and minimum number of SRBroker
multithreaded processes that can run on the Siebel Server. Each multithreaded process can run a
maximum of MaxTasks/MaxMTServers threads. MaxMTServers and MinMTServers should be kept at
their default values of 1. Increasing this value will not increase performance, and will not have any
benefit.

CAUTION: Setting MaxTasks parameter values for SRBroker components in such a way that does
not meet the above guidelines may result in request failures. See the discussion of the
HonorMaxTasks parameter in the following section for more information about how requests
submitted to batch components may be handled. (HonorMaxTasks has no effect when set on the
SRBRoker or Server Request Processor (SRProc) components.)

For more information about SRBroker and SRProc components, see Siebel System Administration
Guide.

About HonorMaxTasks Parameter for Batch Components
By default, the HonorMaxTasks parameter for batch components, such as Workflow Process Manager,
is set to FALSE (this setting is recommended). With this setting, if requests are routed by SRBroker
to a batch component that has reached the maximum task capacity, the requests will be queued in
memory, and processed when tasks become available. Queuing such tasks minimizes the potential
of request failure on the batch component due to the MaxTasks value having been reached.

You may consider setting HonorMaxTasks to TRUE for batch components in the following scenarios:
Performance Tuning Guide Version 7.8 47

Tuning the Siebel Server Infrastructure for Performance ■ Tuning Server Request
Broker (SRBroker)
■ For batch components handling asynchronous requests, consider changing HonorMaxTasks to
TRUE if servers running these components have different resource levels and are therefore
configured with different MaxTasks values for these components. In this case, larger servers
would be forced to handle more requests. (However, if components are not running at maximum
task capacity, this effect may be hard to observe.)

■ If batch components are suffering from crash or hang issues, it may be undesirable to queue
requests in component memory. If HonorMaxTasks is TRUE, success or failure status of each
request will be correctly reported. (This optional usage is a temporary measure only. Work with
Siebel Technical Services to resolve any component crash or hang issues.)

See also “Tuning Workflow Process Manager for Performance” on page 89.
Performance Tuning Guide Version 7.848

5 Tuning Siebel Web Client for
Performance
This chapter describes configuration options that affect the performance and throughput of the Siebel
Web Client, and provides guidelines for tuning the client to achieve and maintain optimal
performance and scalability. It includes the following topics:

■ “About Siebel Clients” on page 49

■ “Performance Factors for Siebel Web Clients” on page 50

■ “Best Practices for Siebel Web Client Tuning” on page 51

For more information, see the following documents on the Siebel Bookshelf:

■ Deployment Planning Guide

■ Siebel Installation Guide for the operating system you are using

■ Siebel System Administration Guide

■ Security Guide for Siebel Business Applications

■ System Requirements and Supported Platforms on Siebel SupportWeb

The following sections in this book also relate to Siebel Web Client performance:

■ For performance considerations for Application Object Manager (AOM), see Chapter 3, “Tuning the
Siebel Application Object Manager for Performance.”

■ For performance considerations related to configuring Siebel applications, see Chapter 12,
“Tuning Customer Configurations for Performance.”

About Siebel Clients
A Siebel client is a computer that operates Siebel Business Applications, accessing data and services
by way of one or more servers. The Siebel clients allow users to access information managed by
Siebel applications. All Siebel deployments include one or more of the Siebel client types. You can
deploy a mixture of clients.

The Siebel Business Applications client type covered in this book is the Siebel Web Client. This client
runs in a standard third-party browser on the end user’s client computer, and does not require any
additional persistent software installed on the client.

Using HTTP, the browser connects to a Web server over a WAN, LAN, or VPN, or over the Internet.
Through the Web server, the Siebel client connects to an Application Object Manager (AOM)
component on a Siebel Server, which executes Siebel application business logic and accesses data.
Data is accessed from the Siebel Database and may also be accessed from other data sources using
virtual business components and a variety of integration methods.

Only the user interface layer of the Siebel Business Applications architecture resides on the client
computer.
Performance Tuning Guide Version 7.8 49

Tuning Siebel Web Client for Performance ■ Performance Factors for Siebel Web Clients
For more information about the Siebel Web Client and other client types, and about supported
browsers and browser settings, see the Siebel Installation Guide for the operating system you are
using and the Siebel System Administration Guide.

Performance Factors for Siebel Web
Clients
Some performance considerations for Siebel applications involve processing or tuning activities on
servers only, and do not affect Siebel client performance. However, many other such factors either
directly or indirectly affect Siebel client performance. This chapter highlights some of the factors
most directly related to the performance of the Siebel Web Client.

The performance of the Siebel client depends on many factors, some of which are summarized below.
For additional information on these topics, refer to applicable documents on the Siebel Bookshelf or
Siebel SupportWeb.

About Supporting Multiple Siebel Modules
Employee applications and customer applications have different requirements and characteristics
and may use different browsers and other related technologies.

■ Employee applications, such as Siebel Call Center, use high interactivity mode and run in
supported Microsoft Internet Explorer browsers only.

■ Customer applications, such as Siebel eService or Siebel eSales, use standard interactivity mode
and may run in a wider range of browsers and browser versions.

All Siebel applications have many architectural elements in common. Multiple applications can use
the same Siebel repository file (SRF). Each application uses its own AOM component. You may need
to define, configure, and test multiple instances of each application to verify that your requirements
are met in each usage scenario.

The performance of your Siebel applications will vary according to how you have configured the
applications using Siebel Tools or custom browser scripts. See “Following Configuration Guidelines” on
page 54.

Client performance will also vary according to which Siebel modules you deploy. The performance of
the Siebel client is highly dependent on feature functionality. Therefore, performance characteristics
of Siebel modules will differ.

Some modules add special processing requirements. For example, Siebel CTI uses the
Communications Session Manager (CommSessionMgr) component, and supports the
communications toolbar and displaying screen pops in the client. Server and local resources support
this functionality.

Supporting users who are dispersed in offices around the country or around the world introduces
special deployment factors that may affect performance.
Performance Tuning Guide Version 7.850

Tuning Siebel Web Client for Performance ■ Best Practices for Siebel Web Client Tuning
About Local Machine Resources
The resources available on each user’s local machine should meet or exceed the recommendations
outlined in System Requirements and Supported Platforms on Siebel SupportWeb. Some
performance enhancement measures depend directly on the available resources.

Best Practices for Siebel Web Client
Tuning
You should consider your hardware resources and requirements carefully prior to rolling out
configuration changes, to make sure that business requirements have been met and the client
performs as anticipated in the design phase.

Review guidelines presented elsewhere in this book, particularly in Chapter 12, “Tuning Customer
Configurations for Performance,” and in other relevant documents on the Siebel Bookshelf.

Ongoing testing and monitoring of your system performance is strongly recommended as database
characteristics change over time.

To maintain an optimally performing system over time, you must plan for growth or other changes
in your deployed application.

Activities you perform to achieve performance and scalability goals may include the following:

■ Adjusting your system topology

■ Configuring the Siebel application in Siebel Tools

■ Configuring Siebel Server components, particularly the AOM

■ Adjusting hardware resources available on local machines

■ Adjusting operating system settings on server or client machines

■ Adjusting Web server settings or network settings

■ Adjusting Web browser settings

■ Setting user preferences for Siebel applications

Providing Sufficient Web Server and Network Capacity
Make sure that your Web server is appropriately configured to meet your performance requirements.
See also “Specifying Static File Caching” on page 55.
Performance Tuning Guide Version 7.8 51

Tuning Siebel Web Client for Performance ■ Best Practices for Siebel Web Client Tuning
Make sure that your network capacity (bandwidth) meets your performance requirements. Several
factors impact decisions regarding network bandwidth:

■ Application configuration. Large, complex views will require bigger templates, more controls,
and more data to be sent from the Web server to the client. If bandwidth is an issue, it is
important to consider user scenarios to determine the optimal size and layout per view.

For example, for views used frequently, reduce the number of fields displayed. For the high
interactive client, the user can decide which columns are required in list applets. Rather than
assuming a specific set, let users adjust it as necessary. Provide the minimal number of columns
required in the base configuration.

For more information, see Chapter 12, “Tuning Customer Configurations for Performance.”

■ View layout caching. In high interactivity mode, administrators can determine the number of
views to be cached locally. If the hardware supports a greater number of views to be cached,
adjust the value accordingly.

When a view is cached, subsequent visits will require a data update, but the Web templates need
not be reloaded. This provides a substantial improvement in overall usability.

For more information, see “Improving Performance Using View Layout Caching” on page 57.

■ Login. The first login is generally the most expensive operation for the high interactivity client.
The client infrastructure caches the main components of the application on first login.
Subsequent logins require far fewer resources. Cached objects remain on the client computer
until the cache is cleared or a new version of the application configuration is available.

Testing Performance for Web Clients
Siebel Expert Services offers general guidance based on information known about the characteristics
of the configured Siebel application. However, customer testing is advised, because assumptions are
based on general data. Actual experience can vary due to use-case scenarios. Select a few of the
most common scenarios: those that represent the highest percentage of activity. Collect the overall
bandwidth used.

Make sure you are testing with warm views (already visited and cached) if this is how the application
will be used most of the time—if users log in and use the application for 4-8 hours at a time before
logging off and starting a new session.

When you estimate bandwidth required for several users sharing a low-bandwidth connection,
consider use-cases carefully and plan accordingly. Rather than planning for worst-case network-
performance scenarios (such as all users simultaneous pressing the Enter key or visiting a new view),
it is likely that very few users are actually using the network at the same time.

For more information about performance monitoring, see Chapter 14, “Monitoring Siebel Application
Performance.”
Performance Tuning Guide Version 7.852

Tuning Siebel Web Client for Performance ■ Best Practices for Siebel Web Client Tuning
Providing Sufficient Client Hardware Resources
For best client performance for high interactivity applications, provide sufficient or generous
hardware resources to your end users (typically, employees). Requirements may vary according to
your deployment.

The more memory that is available on your client machines, the greater the number of views that
can be cached. For more information, see:

■ “Managing the Browser Cache” on page 54

■ “Specifying Static File Caching” on page 55

■ “Improving Performance Using View Layout Caching” on page 57

The speed of the processors (CPU) on your client machines will affect how quickly the Siebel
application user interface is rendered.

For best performance for the high interactivity client, which is used by employee applications like
Siebel Call Center, it is generally recommended to include the latest supported version of Microsoft
Internet Explorer in your testing. More recent versions often include fixes and performance
enhancements.

For best performance for the standard interactivity client, which is used by customer applications like
Siebel eService, you must determine the minimum capabilities of customer environments, such as
browser to support, processor speed, or expected Internet connection speed. Customer applications
must support a wide range of customer environments. Accordingly, you should generally minimize
the complexity of such applications.

For Siebel client hardware and other platform requirements and recommendations, see System
Requirements and Supported Platforms on Siebel SupportWeb.

For information about browser settings for Siebel applications, see Siebel System Administration
Guide.

Tuning System Components
Overall end user performance is affected by the processing on the client as well as by everything
from the Web server to the Siebel Database Server and back. Explore all applicable areas for
opportunities to improve overall performance.

Most performance tuning involving Siebel Server components should focus on the AOM. For more
information, see Chapter 3, “Tuning the Siebel Application Object Manager for Performance.”

You can use Siebel ARM to monitor transactions through the Siebel infrastructure. Note areas which
require substantial time and resources, and investigate them further for tuning opportunities.

For example, a custom configuration may have resulted in an unintentionally complex SQL statement
for which the database instance has not been optimized. Small configuration adjustments in Siebel
Tools, or database tuning, may improve both client performance and application scalability on Siebel
Servers.

For more information about Siebel ARM, see Chapter 14, “Monitoring Siebel Application Performance.”
Performance Tuning Guide Version 7.8 53

Tuning Siebel Web Client for Performance ■ Best Practices for Siebel Web Client Tuning
Following Configuration Guidelines
For best performance by the Siebel client, you should carefully assess all customer configuration
initiatives. All configuration changes should be justifiable in terms of the cost of configuration itself,
and in terms of possible impact on performance.

Some application administration tasks may also affect application performance, and should also be
carefully assessed.

Follow guidelines presented in Chapter 12, “Tuning Customer Configurations for Performance,” or in
other books on the Siebel Bookshelf.

Managing the Browser Cache
Some types of Siebel application elements are stored in the browser cache, to improve performance
when users log in or access Siebel views.

NOTE: When measuring performance, you should take into account view layout caching or other
types of caching. For example, performance is better when a Siebel view layout is retrieved from a
cache than it is when the view layout is not cached and must be retrieved from the system. For more
information, see “Improving Performance Using View Layout Caching” on page 57.

Cache usage varies according to what browser is being used, what applications are running, and
application settings. For example, high interactivity applications use the browser cache more than
standard interactivity applications.

For high interactivity applications, it is generally recommended that users do not clear their browser
cache, including when the browser is closed. The following settings for Microsoft Internet Explorer
are recommended:

■ Choose Tools > Internet Options. Click the Advanced tab. In the Security options, uncheck the
setting Empty Temporary Internet Files Folder when browser is closed.

NOTE: If you do not use the above setting, then persistent view layout caching and preloading,
described in “Improving Performance Using View Layout Caching” on page 57, will not work.

■ Choose Tools > Internet Options. Click the Advanced tab. In the Security options, uncheck the
setting Do not save encrypted pages to disk.

NOTE: If you do not use the above setting, then persistent view layout caching and preloading,
described in “Improving Performance Using View Layout Caching” on page 57, will not work for
encrypted views (views encrypted using SSL).

■ Choose Tools > Internet Options. In the General tab, click Settings. For the option Check for
newer versions of stored pages, use the setting Automatically.

■ Browser caching is also subject to the size of the temporary Internet files folder. This setting is
located in Tools > Internet Options. In the General tab, click Settings, then specify the amount
of disk space to use for this folder.

NOTE: Setting the size of the temporary Internet files folder to 0 disables persistent view layout
caching and preloading, which are described in “Improving Performance Using View Layout
Caching” on page 57.
Performance Tuning Guide Version 7.854

Tuning Siebel Web Client for Performance ■ Best Practices for Siebel Web Client Tuning
For more information about browser settings for Siebel applications, see Siebel System
Administration Guide.

Caching in the browser is also subject to Web server settings controlling static file caching. For
details, see “Specifying Static File Caching” on page 55.

Specifying Static File Caching
Browser caching behavior is also subject to Web server settings for static file caching. Appropriate
settings allow files that are rarely updated, such as image files, JavaScript files, or style sheet files,
to be cached on the browser. Caching static files reduces network utilization and enhances Siebel
Web Client response time.

Caching for Siebel Web template files is described in the persistent view caching section in “Improving
Performance Using View Layout Caching” on page 57.

Because some static files may in fact be updated periodically, there is some risk that outdated
versions of static files may be served from the cache. Therefore, some appropriate content expiration
time should be specified. In general, setting an expiration time of 7 days may be appropriate.

If static files are rarely updated, you can specify a larger number, for less frequent expiration. If
static files are updated more often, you can specify a smaller number, for more frequent expiration.

Instructions follow for specifying static file caching on Microsoft Internet Information Services (IIS),
IBM HTTP Server (IHS), and Sun Java System Web Server. You must restart your Web server for the
settings to take effect. For details, refer to your third-party Web server vendor documentation.

For more information about supported Web servers and versions, see System Requirements and
Supported Platforms on Siebel SupportWeb.

Static File Caching for Microsoft IIS
For Microsoft IIS, follow the procedure below to specify static file caching and content expiration.

To specify static file caching on Microsoft IIS

1 On the Web server machine, choose Start > Settings > Control Panel > Administrative Tools.

2 Run Internet Service Manager.

3 In Internet Service Manager, right-click Default Web Site.

4 In Default Web Site Properties, click the HTTP Headers tab.

5 Check the Enable Content Expiration check box.

6 Select Expire After, and specify the value of 7 (to expire static files after 7 days), or another value
appropriate for your deployment.
Performance Tuning Guide Version 7.8 55

Tuning Siebel Web Client for Performance ■ Best Practices for Siebel Web Client Tuning
Static File Caching for IBM HTTP Server
For IBM HTTP Server (IHS), follow the procedure below to specify static file caching and content
expiration.

To specify static file caching on IBM HTTP Server

1 On the Web server machine, open the file httpd.conf for editing. This file is located in the Web
server installation directory.

2 Verify that the following line is included and not commented out:

LoadModule expires_module modules/mod_expires.so

3 Add the following lines, if not already present, to the file (below the line shown in Step 2). Or,
instead of 7 days, specify another value appropriate for your deployment.

##

ExpiresActive On

<IfModule mod_expires.c>

ExpiresByType image/gif "access plus 7 days"

ExpiresByType image/jpeg "access plus 7 days"

ExpiresByType application/x-javascript "access plus 7 days"

ExpiresByType text/css "access plus 7 days"

</IfModule>

##

4 Save the file.

Static File Caching for Sun Java System Web Server
For Sun Java System Web Server, follow the appropriate procedure to specify static file caching and
content expiration. For example, for Sun Java System Web Server 6.0, follow the steps below.

To specify static file caching on Sun Java System Web Server

1 From a browser, connect to the Web server administration page (for example, http://
web_server_name/8080).

2 Select the server, and click Manage.

3 Click the link for Class Manager, in the upper right area.

4 Among the horizontal tabs at the top, click Content Mgmt.

5 Click the link for Cache Control Directives, in the left tab area.
Performance Tuning Guide Version 7.856

Tuning Siebel Web Client for Performance ■ Best Practices for Siebel Web Client Tuning
6 Under Cache Control Response Directives, select Maximum Age (sec), and input 604800
(seconds) for a valid cache of 7 days.

7 Click Apply to apply the change.

Improving Performance Using View Layout Caching
View layout caching in the browser (also referred to as layout caching or view caching) improves the
performance of accessing views in a high interactivity application. It speeds up the rendering of views
in a Siebel application session by caching the following on the browser:

■ Static HTML (from the templates) used for interpreting the view.

■ Dynamic HTML generated on the client for rendering controls.

Appropriate caching settings can optimize client performance and network utilization for Siebel client
sessions. Caching behavior is subject to considerations described under “Managing the Browser
Cache” on page 54.

Two kinds of view layout caching are used for the Siebel Web Client. These types of caching work
together and should be configured as a system.

■ Caching in browser memory. For details, see “View Layout Caching in Memory” on page 57.

■ Persistent caching (in the browser cache directory on the local disk). For details, see
“Persistent View Layout Caching” on page 59.

NOTE: Whether views can be cached depends on the underlying requirements described in
“Determining If Views Are Available for Layout Caching” on page 61.

View Layout Caching in Memory
View layout caching in memory creates multiple HTML frames on a browser to store the layout for a
view. The number of these frames represents the view cache size. When a view is displayed, the
HTML frame containing the layout for that view will be sized to occupy all (100%) of the available
browser space, while the other frames will be hidden (that is, sized to occupy 0% of the space).

For information on setting the view cache size, see “Setting the View Cache Size” on page 58.

View layout caching uses the following logic:

■ If a user navigates to a view whose layout is already available in the browser memory cache, the
HTML frame containing that view will be made visible and the currently visible frame will be
hidden.

■ If a user navigates to a view whose layout is not in the browser memory cache, one of the
available HTML frames will be used to load the layout of the view into memory. The view layout
will be loaded from the persistent cache, if possible. The view layout in memory will be cached
subject to the View Cache Size setting.

■ If the view layout is not currently stored in the persistent cache, then it is loaded from the server.
It will also be stored in the persistent cache. The view layout in memory will be cached subject
to the View Cache Size setting.
Performance Tuning Guide Version 7.8 57

Tuning Siebel Web Client for Performance ■ Best Practices for Siebel Web Client Tuning
For more information, see “Persistent View Layout Caching” on page 59.

NOTE: The high interactivity framework separates the retrieval of the Siebel application user
interface from the server and the retrieval of database records. Database records to be displayed in
views are always retrieved from the server.

The memory cache contains the layouts of views that the user has visited and that are available for
view caching. When the view cache is full and another view is visited, the first view visited is removed
from the cache. The memory cache contents are thus managed on an LRU or least recently used
basis.

The HTML frames are loaded into memory when a user navigates to the view. To cache a startup view
(one that is cacheable), the user must visit the view twice—that is, visit it a second time after visiting
another view.

NOTE: Views specifically created as home page views, such as Home Page View (WCC) for Siebel
Call Center, are standard interactivity views and are not cacheable.

The view caching framework is designed so that if the frames containing cached views are deleted
(for example, by performing a browser refresh, which removes any previously cached views), the
framework begins reloading the layout cache, starting with the next cacheable view the user visits.

At startup, view layouts for recently visited views may be preloaded into the memory cache from the
persistent browser cache on disk. This behavior is specified using the parameter ViewPreloadSize.
For more information, see “Persistent View Layout Caching” on page 59 and “Preloading Cached Views
into Memory” on page 59.

Setting the View Cache Size
For browser memory caching, the size of the view layout cache is controlled by the View Cache Size
user preference setting for each user, as described below.

NOTE: Setting View Cache Size to 1 turns off view caching. This has the same effect as setting the
EnableViewCache parameter to FALSE, as described in “Disabling View Layout Caching” on page 60.

To set the size of the view layout cache

1 From the application-level menu, choose View > User Preferences.

2 From the Show drop-down list, choose Behavior.

3 In the View Cache Size field, select a value from the drop-down list, or type in a value.

The default value for View Cache Size is 10. This value specifies that 10 HTML frames are cached in
memory to represent Siebel view layouts. One of these frames is displayed at any one time.

■ Using a figure that is too low may not provide enough caching if your users access many views
and client machines have sufficient memory.

■ Using a figure that is too high may impair performance by using more memory than is available
on the machine.
Performance Tuning Guide Version 7.858

Tuning Siebel Web Client for Performance ■ Best Practices for Siebel Web Client Tuning
Persistent View Layout Caching
Persistent layout caching stores the layout of certain views in a local client’s browser cache on disk.
The stored layout is then reused for subsequent visits to this view, in the same session or in a
subsequent session. (For subsequent visits in the same session, the view layout is accessed from the
browser memory cache, if available.)

Persistent view layout caching helps improve performance by reducing the number of pages that
have to be generated from the server from session to session.

The parameter WebTemplateVersion determines whether the Siebel Web Engine will use a view
layout stored in the browser’s cache or build a new view layout. This parameter is located in the
[SWE] section of the application configuration file, such as uagent.cfg for Siebel Call Center. This file
is located on the Siebel Server machine (running AOM).

When you modify Web templates for Siebel views, add the WebTemplateVersion parameter to the
configuration file (if not already present), and set its value to 1. For example:

[SWE]
WebTemplateVersion = 1

Subsequently, each time you change any of the Web templates, increment the value of the parameter
by 1. Doing so forces loading view layouts from the Web templates on the server.

When a view is requested, the Siebel Web Engine includes in the URL a checksum value that
encapsulates the value of the WebTemplateVersion parameter.

■ If the parameter value and the value encapsulated in the URL match, then it is assumed that the
view layout for this view has not been updated. If it is available, the view layout stored in the
persistent cache can be used.

■ If no match is found, then a new view layout is loaded from the server. The Web template on the
server is presumably more current than the view layout stored in the browser’s persistent cache.

Preloading Cached Views into Memory
For recently visited views, view layouts that are cached in the persistent cache on the browser may
be preloaded into browser memory when the user logs in. The number of views that can be preloaded
depends on the content of the persistent cache and is limited by the setting of the View Cache Size
setting for each user.

For better performance at login time, it may be helpful to further limit the number of view layouts
that are preloaded into memory during startup. To do this, use the parameter ViewPreloadSize.

NOTE: ViewPreloadSize only affects a user session when it is set to a positive integer value lower
than the View Cache Size value. If the parameter is not set, the default behavior is to preload the
number of view layouts corresponding to the View Cache Size value, minus one. (One of the frames
specified using View Cache Size is reserved for the application startup view, where applicable.)
Performance Tuning Guide Version 7.8 59

Tuning Siebel Web Client for Performance ■ Best Practices for Siebel Web Client Tuning
ViewPreloadSize should be added to the [SWE] section of the application configuration file, such as
uagent.cfg for Siebel Call Center. This file is located on the Siebel Server machine (running AOM).
For example:

[SWE]
ViewPreloadSize = 5

If ViewPreloadSize is set to 0, then no view layouts are preloaded into memory. In scenarios where
users frequently log into the Siebel application, such as to access a single view, then log out again,
login performance may be more important than precaching multiple views. In this case, you may
choose to set this parameter to 0.

Disabling View Layout Caching
You can disable browser memory caching of view layouts for your application users by changing the
parameter EnableViewCache to FALSE in the [SWE] section of the application configuration file, such
as uagent.cfg for Siebel Call Center. For example:

[SWE]
EnableViewCache = FALSE

NOTE: In general, setting EnableViewCache to TRUE is recommended. If some users do not need
view layout caching, they can set View Cache Size to 1, as described in “Setting the View Cache Size”
on page 58.

Setting EnableViewCache to FALSE disables browser memory view layout caching only. It does not
disable persistent view layout caching.

Determining How the Current View Layout Was Loaded
If you are running an application and want to determine how the current view was retrieved, go to
the view, press SHIFT, and choose Help > About View. The Cache Mode identified for the current view
indicates how the application retrieved the view layout. Possible values include:

■ Not Cached. The view layout was not cached (and cannot be cached).

■ Memory. The view layout was retrieved from the browser memory cache.

■ Server. The view layout was retrieved from the Siebel Server and the Web server. If the view is
cacheable, and you visit another view and then return to this one, the Cache Mode value changes
to Memory.

■ Disk. The view layout was retrieved from the browser disk cache (persistent caching). If the view
is cacheable, and you visit another view and then return to this one, the Cache Mode value
changes to Memory.

The longer you go without clearing the cache, the more likely that a rarely visited view will be
retrieved from the persistent cache on the browser, rather than from the server.
Performance Tuning Guide Version 7.860

Tuning Siebel Web Client for Performance ■ Best Practices for Siebel Web Client Tuning
Determining If Views Are Available for Layout Caching
Not all Siebel views are available for layout caching. Views that contain applets that have dynamic
layouts or controls that are data-dependent cannot be cached. Only applets that support high
interactivity are available for view layout caching.

Layout caching is a feature of the C++ class that implements an applet. The ability to be cached is
determined by a property of each applet’s class object definition. Using Siebel Tools, check the value
of the High Interactivity Enabled property of a class object definition to determine whether applets
for this class support layout caching. For a view to be available for caching, the class objects for all
of the applets in the view must have High Interactivity Enabled values of 2 or 4 (available for
caching).

For detailed information about settings for the High Interactivity Enabled property for a class, see
Object Types Reference.

View layout caching is also disabled for a view in the following cases:

■ If personalization rules are defined for any of the applets

■ If any of the applets are dynamic toggle applets

■ If any of the applets are hierarchical list applets or explorer (tree) applets

■ If HTML frames are used within the view template (for example, for explorer views)

Managing Performance Related to Message Bar
Employee applications such as Siebel Call Center include a message bar feature. The message bar
requires network resources and local resources on the client machine to continually update the
displayed text.

■ If your deployment does not require it, turn off the message bar feature to save processing
resources.

■ If some of your users require the message bar, you can specify that users will be able to turn it
off from Tools > User Preferences > Message Broadcasting.

For more information about message broadcasting using the message bar, see Applications
Administration Guide.

Configuring the Busy Cursor for Standard Interactivity
Applications
When the parameter EnableSIBusyCursor is set to TRUE (default), the Siebel application cannot
accept new requests until it has finished serving the current request. An example of a new request
is a user’s attempt to drill down on a record.
Performance Tuning Guide Version 7.8 61

Tuning Siebel Web Client for Performance ■ Best Practices for Siebel Web Client Tuning
The default setting of this parameter helps prevent the occurrence of JavaScript errors as the user
cannot click on another link while a page is loading. Setting EnableSIBusyCursor to FALSE may
improve network bandwidth usage for Siebel applications that use standard interactivity mode. It
disables the appearance of the hourglass icon and allows the user to click on other links before the
current request has been served.

You set the value for EnableSIBusyCursor in the [SWE] section of your application configuration file.
Performance Tuning Guide Version 7.862

6 Tuning Siebel Communications
Server for Performance
This chapter describes some issues that affect the performance and throughput of selected
functionality for Siebel Communications Server and related modules, and provides guidelines for
tuning these modules to achieve and maintain optimal performance and scalability. It contains the
following topics:

■ “About Siebel Communications Server” on page 63

■ “Session Communications Infrastructure” on page 64

■ “Performance Factors for Session Communications” on page 66

■ “Topology Considerations for Session Communications” on page 67

■ “Best Practices for Session Communications Tuning” on page 68

■ “Siebel Email Response Infrastructure” on page 76

■ “Performance Factors for Siebel Email Response” on page 77

■ “Topology Considerations for Siebel Email Response” on page 78

■ “Best Practices for Siebel Email Response Tuning” on page 78

Functionality covered in this chapter includes session communications (typically, Siebel CTI) and
Siebel Email Response. Other communications-related modules are not covered.

For more information about topics in this chapter, see the following documents on the Siebel
Bookshelf:

■ Siebel Communications Server Administration Guide

■ Siebel Email Response Administration Guide

■ Siebel System Administration Guide

Also see documents for related modules:

■ Siebel Universal Queuing Administration Guide

■ Siebel Smart Answer Administration Guide

About Siebel Communications Server
Siebel Communications Server provides an infrastructure to support several kinds of communications
activities for Siebel application users.

For session communications performance tuning information, see “Session Communications
Infrastructure” on page 64 and subsequent sections.

For Siebel Email Response performance tuning information, see “Siebel Email Response
Infrastructure” on page 76 and subsequent sections.
Performance Tuning Guide Version 7.8 63

Tuning Siebel Communications Server for Performance ■ Session Communications
Infrastructure
■ Session communications. Supports interactive (session) communications for contact center
agents who use the multichannel communications toolbar to:

■ Make or receive voice calls using computer telephony integration supported by CTI
middleware, such as Siebel CTI Connect or third-party products

■ Receive inbound email messages (for Siebel Email Response)

■ Inbound communications. Supports integrating with third-party email servers and processing
inbound email (when using Siebel Email Response) or other inbound work items (when using
Siebel Universal Queuing).

■ Outbound communications. Supports integrating to a variety of third-party communications
systems, such as email servers or wireless messaging providers, to send outbound
communications.

■ Supports agents sending email replies using Siebel Email Response.

■ Supports the Send Email and Send Fax commands for Siebel application users. (Send Page
is also available, but uses the Page Manager server component.)

■ Supports users sending outbound communications content (email, fax, or page) using
communication requests. Requests can be created and submitted either programmatically or
manually through a user interface described in Siebel Communications Server Administration
Guide.

Many Siebel modules invoke business service methods through workflows to send outbound
communications.

Session Communications Infrastructure
Session communications refers to using Communications Server components to enable contact
center agents or other users to handle interactive communications work items. For example, Siebel
CTI supports this capability, enabling agents to handle voice calls using the communications toolbar.

It is important to understand the infrastructure that supports session communications in order to
prevent or address performance issues in this area.

Session communications performance is addressed in this section and in:

■ “Performance Factors for Session Communications” on page 66

■ “Topology Considerations for Session Communications” on page 67

■ “Best Practices for Session Communications Tuning” on page 68

Key Siebel Server Components
Session communications are supported in the Siebel Server environment primarily by the following
components:

■ Communications Session Manager (CommSessionMgr). This server component manages
interactive communications work items such as voice calls.
Performance Tuning Guide Version 7.864

Tuning Siebel Communications Server for Performance ■ Session Communications
Infrastructure
■ Application Object Manager (AOM). This server component manages application sessions for
end users who use the Siebel Web Client, including users who handle communications work items
(agents). Interactive communication requests from agents typically go through AOM.

For more information about AOM, see Chapter 3, “Tuning the Siebel Application Object Manager
for Performance.”

■ Server Request Broker (SRBroker). This server component handles communications between
the AOM and certain other Siebel Server components, including CommSessionMgr.

For example, when a Siebel CTI agent makes a call through the communications toolbar, the
request goes from AOM to CommSessionMgr by way of SRBroker.

SRBroker is used whether CommSessionMgr runs on the same machine as the AOM, or on a
different machine. For more information about such scenarios, see “Topology Considerations for
Session Communications” on page 67.

For more information about SRBroker, see “Tuning Server Request Broker (SRBroker)” on page 47.

Other Siebel Server Components
You may also be using the following components in your Siebel Server environment and
communications infrastructure:

■ Communications Configuration Manager (CommConfigMgr). Optionally used to cache
communications configuration data.

■ Communications Inbound Receiver (CommInboundRcvr). For details, see “Siebel Email
Response Infrastructure” on page 76.

■ Communications Inbound Processor (CommInboundProcessor). For details, see “Siebel
Email Response Infrastructure” on page 76.

■ Communications Outbound Manager (CommOutboundMgr). Sends outbound email or
other types of messages.

Siebel Product Modules
In addition to Siebel CTI or Siebel Email Response, you may be using the following Siebel product
modules for session communications:

■ Siebel CTI Connect. This module consists of CTI middleware, communications driver, and
sample communications configuration data. Siebel CTI Connect is based on third-party CTI
middleware—Intel NetMerge, formerly Dialogic CT Connect. For Siebel CTI Connect, consult Intel
documentation provided on the Siebel Business Applications Third-Party Bookshelf.

■ Siebel Universal Queuing. This module routes communications work items to agents.

For more information, see “Performance for Siebel Universal Queuing” on page 74.
Performance Tuning Guide Version 7.8 65

Tuning Siebel Communications Server for Performance ■ Performance Factors for
Session Communications
■ Siebel Smart Answer. This module analyzes the content of email and search requests and
returns an automatic response or suggests one or more responses to the user for approval.

Siebel Smart Answer is based on third-party products from Banter. See Siebel Smart Answer
Administration Guide and consult Banter documentation provided on the Siebel Business
Applications Third-Party Bookshelf.

For more information, see “Performance for Siebel Smart Answer” on page 80.

Third-Party Product Modules
You may be using third-party product modules—for example, CTI middleware, driver, and
configuration; routing products; predictive dialers; interactive voice response modules; email
servers; fax servers; and so on. For information about supported email servers, see System
Requirements and Supported Platforms on Siebel SupportWeb.

NOTE: If you are not using Siebel CTI Connect, then, to use Siebel CTI, you must obtain a third-
party CTI middleware package and work with your vendor to integrate this module.

Performance Factors for Session
Communications
This section describes factors that drive or affect performance for session communications
deployments.

Depending on your deployment, your agents may be handling phone calls (Siebel CTI), email
messages (Siebel Email Response), work items of other communications channels, or a combination
of these.

■ Inbound calls processed per hour. The number of inbound calls (or other types of work items)
processed per hour (or some other time period) by your communications infrastructure.

■ Outbound calls processed per hour. The number of outbound calls processed per hour (or
some other time period) by your communications infrastructure. (For outbound predictive dialer
calls, only the calls that are answered and processed by Communications Server are relevant
here.)

■ Number of user communications actions per minute (load). The average number of
communications-related user actions per minute, and the average think time between such user
actions. Communications-related actions typically refers to actions performed using the
communications toolbar.

Longer think times mean less load on the Siebel Database and Siebel Server. Think time is an
important factor in overall system load. Estimation of think time should approximate actual user
usage.

For more information about think time and AOM tuning, see Chapter 3, “Tuning the Siebel
Application Object Manager for Performance.”
Performance Tuning Guide Version 7.866

Tuning Siebel Communications Server for Performance ■ Topology Considerations for
Session Communications
■ Number of concurrent communications users (agents). The number of concurrent users of
session communications features—typically, contact center agents. This figure will be some
percentage of the total number of concurrent users on the AOM.

You also need to understand how agents work with these features, the average number of
inbound and outbound work items per agent, and how these factors relate to your organization’s
service goals. Some agents receive a large number of work items from ACD queues or Siebel
Universal Queuing, or initiate a large number of work items. Supervisors or other users may be
defined as agents but may receive only escalated work items, for example.

For more information about concurrent users and AOM tuning, see Chapter 3, “Tuning the Siebel
Application Object Manager for Performance.”

■ Volume of customer data. The total volume of customer data.

Data volume affects how quickly data can be retrieved for various purposes, such as to perform
lookups for screen pops, route work items, or populate the customer dashboard. In many cases,
data volume directly affects response times seen by agents. The volume of data should be
realistic and the database needs to be tuned to reflect real-world conditions.

These and many other factors—such as the average call time, average time between calls for an
agent, and so on—will affect system performance as experienced by contact center agents. An agent
will be concerned with general response time, screen pop response time, and other perceived
measures of performance.

Third-Party Product Considerations
Review information presented in applicable third-party documentation for any requirements that
affect your deployment. For example:

■ Some CTI middleware software may place limitations on the number of agents that may be
served at a single contact center site.

■ Integration with ACD queues, predictive dialers, or other modules may affect your configurations,
affect network traffic, or have other impacts.

■ The capacity of your telephony link (between the ACD switch and the CTI middleware) may affect
performance.

Topology Considerations for Session
Communications
Generally, Siebel Communications Server components for session communications, such as
CommSessionMgr, should be run on the same Siebel Server machines as those running AOMs. In
some cases, however, you must run CommSessionMgr on a different machine than the AOMs. These
options are described in detail below.

CTI middleware generally runs on servers located at each contact center facility.
Performance Tuning Guide Version 7.8 67

Tuning Siebel Communications Server for Performance ■ Best Practices for Session
Communications Tuning
Running CommSessionMgr on AOM Machines
Generally, Siebel Communications Server components for session communications should be run on
the same Siebel Server machines as those running AOMs. Such a topology allows the AOM load-
balancing mechanism to indirectly balance Communications Server load. CommSessionMgr loads are
fairly light and do not, in themselves, present a reason to run this component on dedicated machines.

Set the Enable Communication parameter to TRUE for all AOMs to which your agents will connect. If
you are using Siebel Server load balancing, then all AOMs to which requests are distributed should
be configured the same way.

Running CommSessionMgr on Dedicated Machines
Sometimes you must run CommSessionMgr on a different machine than the AOM components.

CommSessionMgr must run on the same machine where the communications driver for your CTI
middleware is running. If your driver requires a particular operating system platform, then you must
install Siebel Server and run CommSessionMgr on a machine of this platform. (Communications
drivers are required to be able to run on one of the supported Siebel Server platforms, as described
in System Requirements and Supported Platforms on Siebel SupportWeb.)

If your AOM components (Call Center Object Manager) run on machines using a different platform,
then you set several parameters in the communications configuration, including CommSessionMgr
and RequestServer, in order to designate the machine where CommSessionMgr is running. All
communications session requests from an AOM supporting users for this communications
configuration will be routed to the CommSessionMgr component on the dedicated machine.

For related information, see “Tuning the CommSessionMgr Component” on page 69. For more
information about these parameters, see Siebel Communications Server Administration Guide.

Best Practices for Session
Communications Tuning
Using your hardware resources optimally, and configuring your system appropriately, can help you
to achieve your performance goals. You should consider your resources and requirements carefully,
and test and monitor system performance on a continual basis.

Review information presented in Siebel Communications Server Administration Guide, Siebel System
Administration Guide, Siebel CTI Connect or relevant third-party documentation, and other sources.

Activities you perform to achieve performance and scalability goals may include, but are not limited
to, the following:

■ Adjusting your system topology. For more information, see “Topology Considerations for Session
Communications” on page 67.

■ Configuring the AOM component. For more information, see “Tuning the AOM Component” on
page 69.

■ Configuring CommSessionMgr and related components. For more information, see “Tuning the
CommSessionMgr Component” on page 69.
Performance Tuning Guide Version 7.868

Tuning Siebel Communications Server for Performance ■ Best Practices for Session
Communications Tuning
■ Modifying communications configurations, communications driver settings, and so on. Many of
the activities described in the sections that follow are of this nature.

To maintain an optimally performing system over time, you must plan for changes in the volume of
incoming communications, number of users, and so on. Verify that your CTI middleware can support
an anticipated increase in the volume of incoming communications and in the number of users. Then
additional hardware may be required to run more AOM components and CommSessionMgr
components to support the increase in volume of communications and in number of users.

Tuning the AOM Component
CommSessionMgr and CommConfigMgr components use a small percentage of the resources of the
Siebel Server on which it runs. AOM performance has the greatest effect on overall system
performance, even when CommSessionMgr or CommConfigMgr components are present.

AOM memory requirements for agent sessions depend on many factors. AOM memory usage for an
agent using session communications is greater than for other users (those who are not defined as
agents in a communications configuration).

AOM tuning also depends on your communications configuration caching methods. See also
“Conserving AOM Server Resources Through Caching” on page 69.

For more information about AOM tuning, see Chapter 3, “Tuning the Siebel Application Object Manager
for Performance.”

Tuning the CommSessionMgr Component
For the CommSessionMgr component, the MaxTasks parameter determines the maximum number of
communications events that can be processed at one time.

Generally, the default values are appropriate for the MaxTasks, MinMTServers, and MaxMTServers
parameters, particularly if CommSessionMgr runs on each AOM machine.

If you use a dedicated Siebel Server machine to run the CommSessionMgr component, then it may
be appropriate to set these parameters to higher values to optimize usage of server resources such
as CPU and memory. See also “Topology Considerations for Session Communications” on page 67.

Conserving AOM Server Resources Through Caching
You can use two caching mechanisms to make communications configuration data load faster for
each agent session and to reduce demand on server resources on the AOM.

These caching mechanisms may be used together or separately. For more information, see Siebel
Communications Server Administration Guide.
Performance Tuning Guide Version 7.8 69

Tuning Siebel Communications Server for Performance ■ Best Practices for Session
Communications Tuning
■ CommConfigCache parameter (AOM). Setting the CommConfigCache parameter on the AOM
to TRUE caches communications configuration data when the first agent logs in. Configuration
data is cached until the AOM is restarted. For agents associated with the same communications
configuration, each agent session uses the same cached data. See also “Tuning the AOM
Component” on page 69.

■ Performance is improved for subsequent agent logins, because the configuration data is
loaded from the cache rather than from the database.

■ AOM scalability is also improved because configuration data is shared in AOM memory across
agent sessions, therefore conserving server resources even as the number of agent sessions
increases.

■ CommConfigMgr server component and CommConfigManager parameter (AOM). The
CommConfigMgr server component caches communications configuration data when the first
agent logs in. Setting the CommConfigManager parameter on the AOM to TRUE enables this
server component.

■ Performance is improved for subsequent agent logins, because the configuration data is
loaded from the cache rather than from the database.

■ Using the CommConfigMgr component to cache data speeds up the login process and reduces
memory usage per agent session because the component uses configuration data that was
already cached on the AOM component.

■ Although it is not required to use the CommConfigMgr component in conjunction with the
CommConfigCache parameter for AOM, if you use them together, communications
configuration data gets cached at the enterprise level rather than only for the AOM. Overall
performance may be enhanced compared to using each of these mechanisms separately.

Improving Performance for Communications
Configurations
When you deploy session communications, you create communications configurations, define
employees as agents, and associate each agent with one or more configurations. How you do these
things affects performance and scalability.

In a deployment supporting a large number of agents across multiple physical sites, you must
determine criteria for grouping your agents within configurations.

For example, some dialing filters you define, using the parameter DialingFilter.RuleN, may be
appropriate for agents at a specific place, such as within the same country or area code. Other dialing
filters may be suitable for a different set of agents.

In addition, some switch, teleset, or CTI middleware settings are reflected in your communications
configuration, and may differ between physical locations.

It may be helpful to define a communications configuration to apply to users at a single location only.
In addition to simplifying the process of defining communications configurations, telesets, or other
elements, this approach can help you reduce demand on server resources such as AOM memory or
CPU.
Performance Tuning Guide Version 7.870

Tuning Siebel Communications Server for Performance ■ Best Practices for Session
Communications Tuning
If call transfers or similar functions are to be supported between contact centers, additional
configuration issues apply.

For more information about defining communications configurations and agents, see Siebel
Communications Server Administration Guide.

Configuring Logging for Session Communications
Logging data may be analyzed as part of performance monitoring or tuning, as described in
Chapter 14, “Monitoring Siebel Application Performance.”

Higher levels of logging provide more data to help you resolve system errors or performance issues;
this is appropriate for system testing. For production systems, however, logging levels should be
reduced to improve performance.

Log-related parameters applicable to session communications are summarized below. The AOM
component logs activity related to the user’s client session, including usage of the communications
toolbar, screen pops, and so on. The CommSessionMgr logs activity related to this component, such
as commands and events for the communications driver.

The logging for AOM and CommSessionMgr are written to separate files for each user. Typically
(though not necessarily), these logging mechanisms both write into the same set of files. This makes
it easier to monitor or troubleshoot issues related to session communications for a particular user
session.

For details on these logging parameters, see Siebel Communications Server Administration Guide.

AOM Logging Parameters
AOM parameters that log session communications activity include:

■ CommLogFile. Specifies the name of the log file (default value is SComm.log). A separate log
file is created for each agent session, in the form SComm_username.log.

■ CommLogDebug. Specifies whether log files should contain extra detail. Setting to FALSE
provides better performance.

■ CommMaxLogKB. Specifies the maximum size of log files.

■ CommReleaseLogHandle. Specifies that the log file handle should be released periodically. The
default setting of TRUE provides better performance.

CommSessionMgr Logging Parameters
CommSessionMgr parameters that log session communications activity include:

■ LogFile. Specifies the name of the log file (default value is SComm.log). A separate log file is
created for each agent session, in the form SComm_username.log.

■ LogDebug. Specifies whether log files should contain extra detail. Setting to FALSE provides
better performance.
Performance Tuning Guide Version 7.8 71

Tuning Siebel Communications Server for Performance ■ Best Practices for Session
Communications Tuning
■ MaxLogKB. Specifies the maximum size of log files.

■ ReleaseLogHandle. Specifies that the log file handle should be released periodically. The
default setting of TRUE provides better performance.

Siebel CTI Connect Driver Logging Parameters
Siebel CTI Connect communications driver parameters that log session communications activity
include:

■ Driver:DriverLogFile. Specifies the name of the log file (ctc.log by default). A single log file is
created for the driver session (for all users). Siebel CTI Connect events are also logged.

■ Service:ServiceLogFile. Specifies the name of the log file (ctc_{@Username}.log by default).
A separate log file is created for each agent session, in the form ctc_username.log. Siebel CTI
Connect events for each agent session are also logged.

■ LogDebug. Specifies whether log files should contain extra detail. Setting to FALSE provides
better performance.

■ MaxLogKB. Specifies the maximum size of log files.

■ ReleaseLogHandle. Specifies that the log file handle should be released periodically. The
default setting of TRUE provides better performance.

Improving Availability for Session Connections
When agents log into the Siebel application after experiencing browser failure or a dropped
connection, session communications may sometimes remain unavailable.

Session communications availability can be considered a performance issue. In addition to affecting
agent productivity, loss of availability of session communications wastes server resources that could
support other functions.
Performance Tuning Guide Version 7.872

Tuning Siebel Communications Server for Performance ■ Best Practices for Session
Communications Tuning
You can improve session communications availability using the following mechanisms:

■ Push Keep Alive driver. Using the Push Keep Alive communications driver pushes empty
messages (heartbeat messages) to agents at regular intervals. In this manner, it helps keep the
communications push channel alive. This feature can help in environments where enforced
timeouts sometimes cause communications session connections to be dropped.

For example, many customers deploy some kind of network appliance to load-balance Web
servers. By default, such network appliances may time out connections to browsers, causing
communication interruptions for agents. The Push Keep Alive driver generates periodic traffic so
connections do not time out due to inactivity.

To use the Push Keep Alive driver, you create a driver profile, and specify a heartbeat interval
(such as 180 seconds) using the PushKeepAliveTimer driver parameter. Then you add this profile
to your communications configurations.

ChannelCleanupTimer parameter (communications configuration). The
ChannelCleanupTimer parameter for communications configurations reduces reconnection delays
related to session timeouts. This parameter allows the system to identify when a connection is
no longer functioning—for example, due to dropped connections or browser failure.

NOTE: If you are using the Push Keep Alive driver, you must also use the ChannelCleanupTimer
parameter.

■ CommMaxMsgQ and CommReqTimeout parameters (AOM). In addition to setting general
application timeouts, setting the AOM parameters CommMaxMsgQ and CommReqTimeout can
also help you manage agent connections effectively.

■ Backup Communications Session Manager (CommSessionMgr) component. A backup
CommSessionMgr component can be specified using communications configuration parameters.
The backup CommSessionMgr component runs on another Siebel Server machine and can be
accessed without agent interruption in case the primary CommSessionMgr component fails and
does not restart.

For more information about using these features, see Siebel Communications Server Administration
Guide.

Improving Screen Pop Performance
Screen pop response time as experienced by contact center agents is an important indicator of
acceptable performance. A screen pop is the display of a view and, optionally, specific records, in
response to a communications event. Such events are typically received from CTI middleware—for
example, an incoming call is ringing, or the agent has answered the call.

Screen pop behavior is determined by call-handling logic that applies to a particular call based on
data attached to the call. Behavior for individual agents is also affected by user settings in the
Communications section of the User Preferences screen.
Performance Tuning Guide Version 7.8 73

Tuning Siebel Communications Server for Performance ■ Best Practices for Session
Communications Tuning
Screen pop performance is affected by the relative complexity of your communications configuration
elements, such as event handlers and event responses, and by scripts or business services that may
be invoked. Query specifications, database performance, and network capacity and latency also
affect screen pop performance. For related information, see “Improving Performance for
Communications Configurations” on page 70.

For more information about Siebel Web Client response time, see Chapter 5, “Tuning Siebel Web Client
for Performance.”

Improving Screen Pop Performance for Siebel CTI
Connect
If you are using Siebel CTI Connect, you can use another method to improve screen pop
performance. For general considerations, see “Improving Screen Pop Performance” on page 73.

A screen pop triggered by an agent answering a call generally involves a small lag time from when
the agent answers the call to when the CTI middleware connects the agent with the caller. For Siebel
CTI Connect, you can reduce this lag time.

The Siebel CTI Connect communications driver for Siebel CTI Connect includes the EventAnswerCall
device event. This event is triggered whenever the AnswerCall device command is invoked by the
Siebel CTI Connect driver—typically, when an agent answers a call using the communications toolbar.
The EventAnswerCall event occurs before Siebel CTI Connect sends the corresponding TpAnswered
event, and thus provides extra time in which to generate the screen pop.

To use this feature, create an event handler definition based on the EventAnswerCall device event.
This event handler invokes an event response that generates a screen pop and invokes the
appropriate event logs.

For more information, including examples, see Siebel Communications Server Administration Guide.

Reviewing Performance Impact of Activity Creation
By default, for each communications work item, an activity record is created in the S_EVT_ACT table
and related tables.

As you plan your deployment, you must consider how or whether such records are created, review
the indexing and layout of applicable database tables, and review the performance impact of
generating activity records.

Performance for Siebel Universal Queuing
Siebel Universal Queuing routes communications work items to agents.

For more information about this module, see Siebel Universal Queuing Administration Guide.
Performance Tuning Guide Version 7.874

Tuning Siebel Communications Server for Performance ■ Best Practices for Session
Communications Tuning
Siebel Universal Queuing supports a standard interface using XML/HTTP messages, and its
integration into the rest of Siebel Business Applications also goes through this interface. The most
important factor in Siebel Universal Queuing performance is the incoming rate of the work items,
such as email messages or voice calls.

An email message, for example, that is assigned by Siebel Universal Queuing goes through the
following components in the Siebel architecture:

■ Email server

■ CommInboundRcvr server component (with workflow processes—using real-time processing)

■ CommInboundProcessor server component (with workflow processes—using nonreal-time
processing)

■ CommSessionMgr server component

■ Siebel Universal Queuing

■ HTTP transport adapter (including EAI Object Manager)

■ Call Center Object Manager (AOM)

As the volume of work items increases, the following components and parameters need to be tuned
to handle the load:

■ EAI Object Manager. As the rate of incoming work items increases, you may need to increase
the MaxTasks parameter. This ensures there are enough tasks in the EAI Object Manager to
handle inbound XML messages.

Check the EAI Object Manager log files. If you see error messages relating to running out of
tasks, increase the MaxTasks parameter accordingly. Also set MaxMTServers and MinMTServers
parameters. For more information, see Chapter 9, “Tuning Siebel EAI for Performance.”

■ Call Center Object Manager. Set the MaxTasks parameter for the AOM, according to the
concurrent user load. For details, see Chapter 3, “Tuning the Siebel Application Object Manager
for Performance.”

■ Siebel Universal Queuing. Increase the MaxConnections parameter as the number of inbound
messages increases.

Siebel Universal Queuing performs better when the Siebel Universal Queuing process has affinity to
a particular processor. To do this, select the Siebel Universal Queuing process (QUQConnector.exe
process) and assign it to a particular CPU on the server. Adding more CPUs does not necessarily
increase Siebel Universal Queuing throughput.

From a deployment perspective, it was found that running Siebel Universal Queuing on a smaller but
dedicated server will help increase its throughput.

You may also want to consider running CommInboundRcvr or CommInboundProcessor on separate
or dedicated servers, because inbound message processing can be resource intensive. The HTTP
adapter also uses the Web server, which typically resides on a different server from the Siebel Server.

For HTTP adapter performance tuning, see Chapter 9, “Tuning Siebel EAI for Performance.”
Performance Tuning Guide Version 7.8 75

Tuning Siebel Communications Server for Performance ■ Siebel Email Response
Infrastructure
Siebel Email Response Infrastructure
Siebel Email Response uses Communications Server components to enable contact center agents to
read and respond to inbound email messages.

It is important to understand the infrastructure that supports Siebel Email Response communications
in order to prevent or address performance issues in this area.

Siebel Email Response performance is addressed in this section and in:

■ “Performance Factors for Siebel Email Response” on page 77

■ “Topology Considerations for Siebel Email Response” on page 78

■ “Best Practices for Siebel Email Response Tuning” on page 78

Key Server Components
Siebel Email Response is supported in the Siebel Server environment primarily by the following
components:

■ Communications Inbound Receiver (CommInboundRcvr). Receives and queues inbound
work items, and queues them for processing by Communications Inbound Processor. Work items
may include email messages (for Siebel Email Response) or voice work items that are to be
routed using Siebel Universal Queuing (for Siebel CTI).

■ For nonreal-time work items, such as email messages for most deployments of Siebel Email
Response, Communications Inbound Receiver queues work items it has received for further
processing by Communications Inbound Processor.

■ For real-time work items, such as phone calls for Siebel CTI or email messages for some
deployments of Siebel Email Response, Communications Inbound Receiver processes work
items it has received. Communications Inbound Processor is not used.

■ Communications Inbound Processor (CommInboundProcessor). Processes inbound work
items that were queued by Communications Inbound Receiver.

■ Communications Outbound Manager (CommOutboundMgr). Sends outbound email or
other types of messages.

■ Siebel File System Manager (FSMSrvr). Writes to and reads from the Siebel File System. This
component stores inbound messages prior to processing and stores attachments to inbound and
outbound email messages.
Performance Tuning Guide Version 7.876

Tuning Siebel Communications Server for Performance ■ Performance Factors for
Siebel Email Response
Other Siebel Components or Modules
In addition to Siebel Email Response, you may be using the following Siebel components or modules:

■ Siebel Smart Answer. This module analyzes the content of email and search requests and
returns an automatic response or suggests one or more responses to the user for approval.

Siebel Smart Answer is based on third-party products from Banter. See Siebel Smart Answer
Administration Guide and consult Banter documentation provided on Siebel Business Applications
Third-Party Bookshelf.

For more information, see “Performance for Siebel Smart Answer” on page 80.

■ Siebel Assignment Manager. This module may be used for routing email messages to agents.

■ Siebel Universal Queuing and session communications components. If you are using
Siebel Universal Queuing to route email work items, then additional session communications
components apply. The communications toolbar is enabled in the Siebel application to support
accepting new work items.

For more information, see “Session Communications Infrastructure” on page 64 and “Performance
for Siebel Universal Queuing” on page 74.

Third-Party Email Server
Siebel Email Response works in conjunction with your third-party email server. Review information
presented in documentation for your email server for any requirements that affect your deployment.
For information about supported email servers, see System Requirements and Supported Platforms
on Siebel SupportWeb.

Performance Factors for Siebel Email
Response
This section describes factors that drive or affect performance for Siebel Email Response
deployments.

■ Inbound email messages processed per hour. The number of inbound email messages
processed per hour (or some other time period) by your communications infrastructure.

Requirements for processing outbound messages are relatively minor and are tied to inbound
message volume. However, other usage of the CommOutboundMgr component or of the email
system must also be considered. For example, the Send Email command may be configured to
send email through CommOutboundMgr.

■ Volume of customer data. The total volume of customer data, including templates or
categories, literature items, and so on. Template format (HTML or plain text) is a related factor.

If you are deploying Siebel Smart Answer, you must also consider the size of the knowledge base.

Other factors include the size and complexity of inbound email messages and outbound replies.
Performance Tuning Guide Version 7.8 77

Tuning Siebel Communications Server for Performance ■ Topology Considerations for
Siebel Email Response
Also relevant are user settings in the Outbound Communications section of the User Preferences
screen, such as whether a reply contains the original message (Include Original Message in Reply
setting), or whether HTML or plain text is an agent’s default message format (Default Message
Format setting).

NOTE: Siebel Email Response coverage in this book focuses on inbound and outbound email
processing. In a multichannel environment, or when Siebel Universal Queuing is deployed, session
communications performance issues also apply. Using Siebel Smart Answer, especially for auto-
response capabilities, reduces the number of agents needed to handle incoming email and reduces
corresponding demand on session-related computing resources such as AOM or CommSessionMgr.

Topology Considerations for Siebel
Email Response
Processing inbound email messages makes more demands on server resources, particularly CPU
usage levels, than processing outbound messages.

Processing of inbound messages associated with a single response group must be handled on a single
machine.

If inbound message volume warrants it and if multiple server machines are available to run
CommInboundRcvr, CommInboundProcessor, and other components, then you should consider
running CommInboundRcvr and CommInboundProcessor on separate machines (or machines) from
other Communications Server components. Topology options for these component are different for
real-time and nonreal-time processing.

For more information about CommInboundRcvr and CommInboundProcessor, see Siebel
Communications Server Administration Guide and Siebel Email Response Administration Guide.

CommOutboundMgr and Siebel Smart Answer (Smart Answer Manager) may be run together on a
different machine (or machines), as appropriate.

Combining processing of messages for multiple email accounts in a single response group can make
processing of inbound messages more efficient. However, if message volume is expected to grow,
then limiting the number of email accounts processed by each response group will give you more
flexibility to distribute processing across multiple servers, and thereby avoid processing bottlenecks.

Best Practices for Siebel Email Response
Tuning
Using your hardware resources optimally, and configuring your system appropriately, can help you
to achieve your performance goals. You should consider your resources and requirements carefully,
and test and monitor system performance on a continual basis.

Review information presented in Siebel Email Response Administration Guide, Siebel
Communications Server Administration Guide, Siebel Smart Answer Administration Guide, relevant
third-party documentation, and other sources.
Performance Tuning Guide Version 7.878

Tuning Siebel Communications Server for Performance ■ Best Practices for Siebel
Email Response Tuning
Configuring CommInboundRcvr Threads
Each CommInboundRcvr task runs multiple threads to process inbound email. To determine the
number of threads, set the parameters MinThreads and MaxThreads. If extra CPU capacity exists on
a given server machine, you can run more threads for each applicable CommInboundRcvr task.

Managing Email Processing Directories
By default, CommInboundRcvr temporarily writes the content of inbound email messages into
subdirectories of the Siebel Server installation directory, until the messages can be processed by the
applicable response group and workflow process.

You can use parameters for the Internet SMTP/POP3 Server communications driver to specify
alternative directory locations for incoming email, processed email, sent email, and email messages
representing certain other processing statuses. You can also set certain driver parameters to specify
whether to save or delete processed email messages, for example.

■ You must consider the resource requirements for temporary email processing directories when
you set up your system.

■ Do not delete messages from incoming or queued email directories. Email messages written to
processed or sent directories may subsequently be deleted or saved, according to your needs.

■ Because of the frequency by which CommInboundRcvr processing writes to temporary email
processing directories, the disk should be defragmented regularly.

For more information about email processing directories, see Siebel Communications Server
Administration Guide and Siebel Email Response Administration Guide.

Reviewing Performance Impact of Activity Creation
For each email work item, an activity record is created in the S_EVT_ACT table and related tables.

Attachments to such activity records, for inbound and outbound messages, are stored in the Siebel
File System.

As you plan your deployment, you must consider how such records are created and managed, review
the indexing and layout of applicable database tables, and review the performance impact of
generating activity records.

In addition, you must consider the resource requirements for the Siebel File System for storing
activity attachments.

The FSMSrvr server component should generally run on the same Siebel Server machines where you
are running CommInboundRcvr and CommOutboundMgr.

NOTE: Because of the frequency by which Siebel Email Response processing writes to the Siebel File
System, the disk should be defragmented regularly.

For more information about activity attachments stored for inbound email, see Siebel
Communications Server Administration Guide and Siebel Email Response Administration Guide.
Performance Tuning Guide Version 7.8 79

Tuning Siebel Communications Server for Performance ■ Best Practices for Siebel
Email Response Tuning
Configuring Logging for Siebel Email Response
Logging data may be analyzed as part of performance monitoring or tuning, as described in
Chapter 14, “Monitoring Siebel Application Performance.”

Higher levels of logging provide more data to help you resolve system errors or performance issues;
this is appropriate for system testing. For production systems, however, logging levels should be
reduced to improve performance.

An applicable parameter for the Internet SMTP/POP3 Server communications driver is LogDebug. For
details, see Siebel Communications Server Administration Guide.

Applicable event log levels for Siebel Email Response include those for task execution, workflow step
execution, workflow process execution, and workflow performance.

Performance for Siebel Smart Answer
Siebel Smart Answer analyzes the content of email and search requests and returns an automatic
response or suggests one or more responses to the user for approval. Smart Answer has an internal
AI (artificial intelligence) engine that reads inbound message content and determines the nature
(category) of the message.

Key performance factors to consider are the following:

■ Complexity of the inbound message. If inbound messages are complex or large in size, then
Smart Answer will have to process more text. This will impact Smart Answer performance.
Therefore, if the format of inbound messages is subject to your control, consider that smaller or
simpler messages will allow Smart Answer to perform better.

■ The number of categories in the knowledge base (KB) file. As the number of categories
increases, Smart Answer has to look through more data to determine a category. It is
recommended to keep a reasonable number of categories in the KB file.

■ Whether Smart Answer runs in standalone or master/slave mode. Smart Answer supports
a multiserver mode where several instances of Smart Answer can be running at the same time
across multiple servers. However, one node is designated as a master node that “learns” from
the email it reads and provides feedback to the KB. Smart Answer in slave mode, however, simply
processes the email messages without providing feedback to the KB.

■ Number of Smart Answer instances. By default, MaxMTServers is set to 1, which should be
enough for most deployments.

■ Placement of Smart Answer relative to CommInboundRcvr or CommInboundProcessor.
Both Smart Answer and CommInboundRcvr or CommInboundProcessor process the text of
inbound email messages, and both take up significant server resources. Therefore, as inbound
email volume, the number of categories, or the complexity of inbound messages increases, you
may want to consider running CommInboundRcvr, CommInboundProcessor, and Smart Answer
on separate physical servers.
Performance Tuning Guide Version 7.880

7 Tuning Siebel Workflow for
Performance
This chapter provides guidelines for tuning workflow processes and policies to achieve and maintain
optimal performance and scalability. It contains the following topics:

■ “About Siebel Workflow” on page 81

■ “Monitoring Workflow Policies” on page 82

■ “Tuning Workflow Policies for Performance” on page 84

■ “Tuning Workflow Processes” on page 86

■ “Tuning Workflow Process Manager for Performance” on page 89

For more information on Siebel Workflow, see the following documents on the Siebel Bookshelf:

■ Siebel Business Process Designer Administration Guide

■ Configuring Siebel Business Applications

■ Siebel System Administration Guide

About Siebel Workflow
Siebel Workflow is an interactive software tool that automates business processes.

Workflow processes are designed and administered using the Business Process Designer, a graphical
user interface provided through Siebel Tools. Designing, planning, creating, and testing individual
workflow processes using the Business Process Designer are described in detail in Siebel Business
Process Designer Administration Guide.

Workflow Policies and Workflow Processes are two components of Siebel Workflow that are designed
and created when automating a business process. These components are defined as follows:

■ Workflow Processes. The representation of a business process. A workflow process comprises
one or more steps that indicate when a business process starts and ends and includes
information about individual activities within the business process.

■ Workflow Policies. A systematic expression of a business rule. A workflow policy contains one
or more policy conditions and one or more policy actions. If all the policy conditions for a
workflow policy are true, then the policy action occurs when all the policy conditions are met. A
workflow policy is contained by one workflow policy group and is related to one workflow policy
object. A workflow policy contains additional properties that govern its behavior.
Performance Tuning Guide Version 7.8 81

Tuning Siebel Workflow for Performance ■ Monitoring Workflow Policies
Monitoring Workflow Policies
You need to monitor Workflow Policies regularly to check that all events are handled correctly and
that the Siebel Server uses its resources optimally. Purging your log files periodically prevents them
from becoming too large. Workflow Policies use the General Events event for logging. To see
informational messages, set the log level to 3. To see debugging information, set the log level to 4.

You can monitor Workflow Policies using the following views, log files, and tables:

■ Policy Frequency Analysis view. For details, see “Using the Policy Frequency Analysis View” on
page 82.

■ Workflow Agent trace logs. For details, see “Using Workflow Agent Trace Logs” on page 82.

■ Workflow Policies tables. For details, see “Monitoring Workflow Policies Tables” on page 83.

Using the Policy Frequency Analysis View
The Policy Frequency Analysis view provides a list of all executed policies. The Policy Frequency
Analysis view is available to analyze how frequently policies are executed over time.

This view displays a log of all the policies executed, as evidenced by a Workflow Monitor Agent
process. The policy maker can monitor Workflow Agent process activity to determine if the current
policies are adequate, if new policies need to be created, or if policies need to be refined.

The Policy Frequency Analysis view lets you view Policy Log data in a graphical format. The log
information is generated by Siebel Server components for Workflow Policies. You access the Policy
Frequency Analysis view from the Siebel client by choosing Navigate > Site Map > Administration -
Business Process > Policy Frequency Analysis.

The Policy Frequency Analysis view contains the following fields:

■ Policy. The name of the policy that was executed.

■ Workflow Object. The name of the assigned workflow policy object.

■ Object Identifier. The ID of the workflow policy object for which the policy was executed.

■ Object Values. Identifying information for the row that executed the policy.

■ Event. The date and time of the policy execution event.

Using Workflow Agent Trace Logs
Workflow Agent trace logs include the following:

■ Workflow Monitor Agent task log. Workflow Monitor Agent provides detailed information
about its processing in its trace file.
Performance Tuning Guide Version 7.882

Tuning Siebel Workflow for Performance ■ Monitoring Workflow Policies
■ Workflow Action Agent task log. Workflow Action Agent provides detailed information about
its processing in its trace file.

Setting tracing on the Workflow Action Agent task is required only when the parameter Use
Action Agent for Workflow Monitor Agent is set to TRUE. In this case, Workflow Action Agent must
be started manually. (It also must be started manually when you use email consolidation.)

Use Action Agent is FALSE by default: Workflow Action Agent is started automatically by Workflow
Monitor Agent.

■ Email Manager and Page Manager trace logs.

■ Run Email Manager and Page Manager components with Trace Flag set to 1 for detailed
reporting on email activity.

■ Query S_APSRVR_REQ for status information on email and page requests that were logged
by Workflow Action Agent.

Monitoring Workflow Policies Tables
Workflow Policies use three database tables for processing and tracking requests:

■ S_ESCL_REQ

■ S_ESCL_STATE

■ S_ESCL_ACTN_REQ

Monitor these tables to verify that policies are being processed correctly.

When a trigger fires against a Workflow Policy condition, a record is inserted in the escalation request
table, S_ESCL_REQ. Records in this table identify rows in the database that could trigger a Workflow
Policy to take action. After the workflow Monitor Agent processes a request, it removes the row from
this table.

The S_ESCL_STATE time-based table identifies all the rows that have been executed (all conditions
are true) and are waiting for the time duration element to expire.

The S_ESCL_ACTN_REQ table identifies all the rows that are awaiting action execution. These rows
have violated the policy; and the time duration element, if any, has expired.

If one of these tables (S_ESCL_REQ, S_ESCL_STATE, and S_ESCL_ACTN_REQ) becomes very large,
this could indicate that the number of policies being monitored is too large, and new Workflow
Policies processes need to be created to share the load and improve performance.

If rows are being monitored, but are not being removed from a table after the time interval is met,
this could indicate that a policy was deactivated without removing the database triggers. The triggers
are continuing to send data that is not being acted on by a Workflow Policies process. These tables
will become very large if you do not restart Generate Triggers.

If you expire or delete any active Workflow Policies, confirm that no outstanding records remain in
the S_ESCL_REQ, S_ESCL_STATE, or S_ESCL_ACTN_REQ tables.
Performance Tuning Guide Version 7.8 83

Tuning Siebel Workflow for Performance ■ Tuning Workflow Policies for Performance
Maintain the S_ESCL_REQ, S_ESCL_ACTN_REQ, and S_ESCL_STATE tables by adjusting parameters
related to storage, access, and caching. Refer to the database documentation for additional
information on properly adjusting such parameters. Also, make sure the database administrator
(DBA) is aware of these key tables.

Tuning Workflow Policies for
Performance
Workflow Policies can be tuned to optimize your resources while also meeting the policy’s timing
requirements by grouping similar policies and assigning these policy groups to Siebel Servers that
can handle the workload. Performance tuning can be handled in several interrelated ways.

Creating Workflow Policy Groups to Manage Siebel
Server Load
Workflow policy groups allow you to group policies with similar polling intervals. This distributes the
load to allow efficient processing. For example, if you have very critical policies that must be
responded to within minutes of the policy trigger event and you have other policies that need a
response within a day, you can assign them to different workflow policy groups.

The advantage of selective grouping is that a Workflow Agent’s polling resources are focused on a
smaller number of policies, which helps make monitoring and action execution more effective.

Multiple Workflow Monitor Agents and Workflow Action
Agents
Each Workflow Agent combination monitors the policies within its assigned workflow policy group. If
you are a high-volume call center or you have a large number of policies that need very short polling
intervals, you may want to create multiple groups with Workflow Agent processes to run in parallel.
A single Workflow Agent process that is monitoring and handling a large number of events may
become slow to respond and not meet the time interval commitments set by the policy.

Running multiple Workflow Monitor Agent and Workflow Action Agents in parallel:

■ Focuses a component’s polling resources on a smaller number of workflow policies.

■ Allows faster throughput by shortening the time between when the workflow policy event is
triggered and when the component notices the event.
Performance Tuning Guide Version 7.884

Tuning Siebel Workflow for Performance ■ Tuning Workflow Policies for Performance
Running Workflow Agents on Multiple Siebel Servers
You can run Workflow Agent processes on different Siebel Servers to ease the workload on each
Siebel Server. You can then adjust the polling interval for each group so that polling for noncritical
policies does not prevent efficient processing of critical policies.

By distributing workflow policy processes across Siebel Servers:

■ High-maintenance policies can be grouped on a Siebel Server with sufficient resources to handle
the workflow CPU requirements.

■ Low-maintenance policies can be run on a Siebel Server that shares resources with other Siebel
processes.

Setting Optimal Sleep Interval for Workflow Policy
Groups
By creating groups with similar polling intervals, you can assign the workflow policy group to a
Workflow Agent process with a polling rate that matches the workflow policy group. Different polling
intervals can be assigned to each workflow policy group using the Sleep Time parameter.

For more information about Workflow Policies server administration, see Siebel Business Process
Designer Administration Guide.

After Workflow Agents process all requests, the agent processes sleep for the interval specified by
this argument before processing begins again. Set the sleep intervals as large as is possible, but at
an interval that still meets your business requirements.

NOTE: Setting sleep intervals at values that are too small can put undue stress on the entire
infrastructure. Make sure the sleep interval is as large as possible within the context of the business
process.

Adjust the sleep interval for each Workflow Agent process to meet the requirements of each workflow
policy group.

For example, workflow policy group A contains accounts that require a response to a Severity 1
service request within 10 minutes. Workflow policy group B contains policies that require a customer
follow-up call within 14 days.

Workflow policy group A is very time-critical, so you could set the sleep interval to 60 seconds so
that the assigned Workflow Policies instance polls frequently. Workflow policy group B is not as time-
critical, so you could set the sleep interval to 48 hours and the Workflow Policy instance can still meet
its commitments.

Another example where optimal configuration of the Sleep Time parameter may be required is in the
case of multiple users who may need to update the same record. If you have, for example, a workflow
policy that monitors service requests and you have multiple users that retrieve and modify open
service request records, you need to set the sleep time parameter so that users will have enough
time to update the text fields.
Performance Tuning Guide Version 7.8 85

Tuning Siebel Workflow for Performance ■ Tuning Workflow Processes
If the sleep interval is not set high enough, you may encounter an error message stating “The
selected record has been modified by another user since it was retrieved. Please continue.” In this
case, you will lose your changes as the new field values for this record are displayed.

NOTE: If you find that Workflow Policies runs significantly slower during a certain time period,
investigate what other processes may be contending for CPU resources on the Siebel Server. You may
discover that the Siebel Server has certain time periods with high activity that interfere with the
ability of the Workflow Policies process to monitor or act. Arrange the Workflow Policies processes on
the Siebel Servers so that the polling periods are compatible with the resources available.

Setting Optimal Action Interval for Workflow Monitor
Agent and Workflow Action Agent
For each Workflow Monitor Agent or Workflow Action Agent component, you can set the Action
Interval parameter, which determines when actions for a given policy are re-executed on a given
base table row. This setting limits the number of times actions are executed if a row keeps going in
and out of a matching condition.

You set the Action Interval parameter for Workflow Monitor Agent (rather than Workflow Action
Agent) if you have set the parameter Use Action Agent to TRUE for Workflow Monitor Agent. Use
Action Agent is FALSE by default.

For example, if a service request severity is set to critical and triggers a policy, you do not want to
re-execute the policy action if it is changed and has been reset to critical during this interval.

Tuning Workflow Processes
In order to improve performance when running workflow processes, you can follow the guidelines
explained in the following sections:

■ “Minimizing Usage of Parameter Search Specification” on page 86

■ “Monitoring Conditions Based on Parent and Child Business Components” on page 87

■ “Configuring Siebel Business Applications for Workflow Performance” on page 87

■ “Monitoring Memory Overhead for Workflow Processes” on page 88

NOTE: This performance tuning information is provided as general guidelines for tuning and
optimizing performance of workflow processes. Every implementation of Siebel applications is
unique, so every use of workflow processes is also unique.

Minimizing Usage of Parameter Search Specification
Although the server component parameter Search Specification (alias SearchSpec) is a feature of
Siebel Workflow, it is recommended that you minimize your use of this parameter with workflow
processes that are frequently invoked.
Performance Tuning Guide Version 7.886

Tuning Siebel Workflow for Performance ■ Tuning Workflow Processes
Minimizing SearchSpec use, especially for frequently invoked processes, improves Workflow engine
performance during runtime because the engine does not have to construct the SearchSpec string.

It is important, however, that you do not completely avoid using SearchSpec. Not using this
parameter can indicate actions taking place on the current row in some cases, and on all rows in
other cases. For specific guidelines, note the following:

■ For Siebel operations, minimize usage of SearchSpec.

■ For batch process requests, use SearchSpec on the business object to limit the number of rows
processed.

Indexing Fields in SearchSpec
If you determine that SearchSpec does need to be used, make sure that all the fields being used are
properly indexed. Proper indexing of the fields helps Siebel Workflow and the underlying database
to efficiently build queries.

Monitoring Conditions Based on Parent and Child
Business Components
When a condition is being evaluated at a decision step or any other step using a combination of
parent and child business components, it is recommended that you closely benchmark the expression
or the condition. In some cases, this will require spooling the SQL. For more information, see
“Analyzing Generated SQL for Performance Issues” on page 156.

NOTE: The query plan of the SQL might show an extended and poorly performing query. In such
cases, it is better to break the conditions up into multiple decision steps and evaluate the conditions
separately.

Configuring Siebel Business Applications for Workflow
Performance
In some cases, you may need to perform a comparison between different objects.

Assume, for example, a service request is assigned to a candidate depending on the industry of the
account associated with it. In this case, it is necessary to perform a query against Account to fetch
the appropriate industries, or to check an industry against all the industries with which the account
is associated.

If the workflow process in this example is going to be evaluated frequently, consider exposing
Account Industry on Service Request by the appropriate configuration in order to enhance workflow
performance.
Performance Tuning Guide Version 7.8 87

Tuning Siebel Workflow for Performance ■ Tuning Workflow Processes
Monitoring Memory Overhead for Workflow Processes
Overhead and performance and scalability characteristics varies depending on whether you are
running workflows locally in the AOM or in Workflow Process Manager (WfProcMgr), and also on
where you run WfProcMgr. The performance and scalability characteristics also depend on whether
you are using asynchronous mode for workflow process requests.

For more information, see Deployment Planning Guide and Siebel Business Process Designer
Administration Guide.

Running Workflows Locally in AOM
A workflow instance—that is, one run of a workflow definition—can run within an AOM. In this case,
the workflow runs locally, within the current thread that the logged-in user is using. This means that
if N users are connected and they all need to run a workflow definition, the definition would run in
that user thread.

In this mode, Workflow adds a fixed overhead (100–200 KB) to the user session memory (sometimes
referred to as the model) plus memory taken up by other objects (such as business components)
contained in the tasks within that workflow.

In general, this option provides the best performance, but is suitable only where scalability is not an
important factor.

Running Workflows in Workflow Process Manager
The workflow itself runs within a separate component, which uses a fixed set of resources
(parameters MaxMTServers, MaxTasks) to schedule the workflow. The Workflow Process Manager
(component alias WfProcMgr) is a multithreaded process that runs multiple workflows and is more
scalable because it uses a pool of threads and models.

Generally, the mode of the workflow used depends on what the application is trying to achieve. It is
generally recommended that you try to schedule a workflow task in the WfProcMgr, especially if the
results of a run are not immediately needed.

You can optionally run WfProcMgr on the same Siebel Server (colocating) as the AOM where the
workflow is invoked, or run it on dedicated Siebel Server machines. Compared to running workflows
locally, running workflows in WfProcMgr may reduce performance, but improve scalability. Running
WfProcMgr on dedicated Siebel Servers typically provides the best scalability, while colocating
WfProcMgr and AOM may provide better performance.
Performance Tuning Guide Version 7.888

Tuning Siebel Workflow for Performance ■ Tuning Workflow Process Manager for
Performance
About Asynchronous Mode for Workflow Process Requests
For all Workflow Processes deployment options described previously, workflow process requests can
be handled synchronously or using asynchronous mode. Using asynchronous mode comes with the
following pros and cons:

Tuning Workflow Process Manager for
Performance
This section provides general approaches to tune and optimize performance of Workflow Process
Manager.

It is imperative to remember that every implementation of Siebel applications is unique, and so every
use of workflow processes is also unique. It is in your best interest to test, continually monitor, and
tune your workflow processes to achieve optimal throughput.

You can follow the guidelines explained in the following sections:

■ “Caching Business Services” on page 89

■ “Caching Sessions” on page 90

NOTE: The information provided in this section should be considered general background
information. No attempt is made to detail the many variables that affect tuning at specific sites. This
section is not a substitute for specific tuning recommendations made by Siebel Technical Services.

Caching Business Services
Business services invoked through Workflow Process Manager should have the Cache property set to
TRUE. This feature makes it possible for the Workflow engine to not reload and reparse the business
service, and therefore enhances the performance of workflows that invoke business services.

NOTE: Predefined Siebel business services that have the Cache property set to FALSE should not be
reset to TRUE.

PROS

■ All user threads are not loaded.

■ More scalable as long as:

■ There are maximum N simultaneously
connected users.

■ There are maximum X simultaneous
running workflows.

■ If X is smaller than N, then a WfProcMgr
with X tasks can handle a much larger
pool (N) of users.

CONS

■ On error, you must look at the log files because
there is no automatic notification.

■ The SRBroker could have a timeout or retry
feature.

■ Slightly more latency. Additional cost (minimal)
of one request per response.
Performance Tuning Guide Version 7.8 89

Tuning Siebel Workflow for Performance ■ Tuning Workflow Process Manager for
Performance
Caching Sessions
The parameter OM - Model Cache Maximum (alias ModelCacheMax) for Workflow Process Manager
determines the size of the cache for model objects—also known as cached sessions. Cached sessions
maintain database connections and session data for locale, user preferences, and access control.

NOTE: Session caching applies only to noninteractive Object Manager-based server components like
Workflow Process Manager. It does not apply to AOM or EAI Object Manager components.

This feature maintains and reuses existing sessions rather than creating a new session each time
one is requested. Using this feature can improve login performance for Workflow Process Manager.

Each model in the cache creates two database connections for the life of the model (one connection
for insert, update, and delete operations; the other connection for read-only operations).

The default value is 10. A value of 0 disables this parameter. The maximum value is 100. In general,
you should set ModelCacheMax to a value approximately equal to the number of concurrent sessions
the Workflow Process Manager component is expected to support.

NOTE: When component sessions use multiple user IDs, session caching provides less benefit
relative to its cost. The benefit is greatest for component sessions using the same user ID.

See also Siebel System Administration Guide.
Performance Tuning Guide Version 7.890

8 Tuning Siebel Configurator for
Performance
This chapter describes some issues that affect the performance and throughput of server-based
deployments of Siebel Configurator, and provides guidelines for tuning this module to achieve and
maintain optimal performance and scalability. It contains the following topics:

■ “Siebel Configurator Infrastructure” on page 91

■ “Performance Factors for Siebel Configurator” on page 92

■ “Topology Considerations for Siebel Configurator” on page 93

■ “Best Practices for Siebel Configurator Tuning” on page 95

■ “Administering Siebel Configurator Caching” on page 97

Siebel Configurator provides product configuration and solution-computing capabilities, and can be
deployed as a server-based or browser-based module.

NOTE: This chapter covers Siebel Configurator server-based deployments only. For additional
information, see Product Administration Guide.

Siebel Configurator is one of the Siebel Order Management modules. These modules work together
to support various phases in conducting commerce, including online selling.

For more information about Siebel Configurator, see the following documents on the Siebel
Bookshelf:

■ Product Administration Guide

■ Siebel System Administration Guide

Also see documents for related Siebel Order Management modules:

■ Pricing Administration Guide

■ Siebel Order Management Guide

■ Siebel eSales Administration Guide

■ Siebel Advisor Administration Guide

Siebel Configurator Infrastructure
Siebel Configurator uses several infrastructure elements to manage configuration sessions. Siebel
Configurator is supported in the Siebel Server environment by the following components:

■ Application Object Manager (AOM). Siebel Configurator functions may be performed within
the AOM, such as Call Center Object Manager (alias SCCObjMgr_enu in a U.S. English
environment) for Siebel Call Center.
Performance Tuning Guide Version 7.8 91

Tuning Siebel Configurator for Performance ■ Performance Factors for Siebel
Configurator
■ Siebel Product Configuration Object Manager (alias eProdCfgObjMgr_enu in a U.S.
English environment). An optional component, suitable for some Siebel Configurator
deployments, that processes configuration requests for user sessions submitted from an AOM
component. Typically, this component is run on a separate Siebel Server machine than the one
running the AOM. For more information, see “Topology Considerations for Siebel Configurator” on
page 93.

NOTE: For more information about elements of the internal architecture of Siebel Configurator,
including Instance Broker (Complex Object Instance Service business service) and Object Broker
(Cfg Object Broker business service), see Product Administration Guide.

Performance Factors for Siebel
Configurator
In planning Siebel Configurator server-based deployments, or in troubleshooting performance for
existing deployments, you must consider several key factors that determine or influence
performance.

Subsequent sections provide information and guidelines to help you achieve and maintain optimal
performance and scalability.

Performance contexts to consider include response times for:

■ Loading customizable products. This is the time elapsed from the moment a user clicks
Customize in a quote or order until the user interface for the customizable product has been
loaded and displayed to the user.

■ Responding to user selections. This is the time elapsed from the moment a selection is made
by the user until Siebel Configurator returns a response such as an update to the customizable
product or a conflict message.

The factors below, particularly customizable product size and complexity, are relevant in both of
these contexts.

Some of the key performance factors for server-based deployments of Siebel Configurator include:

■ Number of concurrent configuration users. The number of concurrent users who access
customizable product models. This figure will be some percentage of the total number of
concurrent users on the AOM.

More specifically, you would be concerned with the total number of configuration sessions per
hour, and the average length of those sessions.

■ Size and complexity of product models. The total size and complexity of each customizable
product model, particularly where multiple hierarchical levels, many constraints, and a complex
user interface are defined.

A major potential performance factor is custom scripting attached to update events on applicable
business components, such as Quote, Quote Item, Quote Item Attribute, Order, Order Item, and
Order Item Attribute.
Performance Tuning Guide Version 7.892

Tuning Siebel Configurator for Performance ■ Topology Considerations for Siebel
Configurator
■ Number of product models. The number of customizable product models accessed by users.
It is assumed that each user accesses no more than one customizable product model at one time.
A given group of concurrent users may access multiple models, however, each of which must be
separately cached.

Topology Considerations for Siebel
Configurator
This section describes considerations for defining the topology for Siebel Configurator server-based
deployments. There are two major topology approaches to deploying Siebel Configurator:

■ Running Siebel Configurator in the AOM component.

■ Running Siebel Configurator on one or more dedicated Siebel Servers. (Such servers are
sometimes referred to as remote servers, because they are remote to the machine on which AOM
is running. In general, this section uses the term dedicated servers.)

These approaches are described in the subsections that follow.

The optimal deployment approach for Siebel Configurator, and the optimal number of server
machines you require for this module, depends on factors such as those described in “Performance
Factors for Siebel Configurator” on page 92.

Running Siebel Configurator in the AOM Component
You can run Siebel Configurator in the AOM component, such as for Siebel Call Center.

If a small number of concurrent users require configuration sessions, or there are a small number of
customizable product models, then this deployment option may yield reasonable performance and
make the most effective use of your hardware resources.

With this option, you set all parameters for managing Siebel Configurator caching on each applicable
AOM. For details, see “Administering Siebel Configurator Caching” on page 97.

Running Siebel Configurator on Dedicated Servers
You can run Siebel Configurator on one or more dedicated Siebel Server machines using a server
component other than the AOM. This component is Siebel Product Configuration Object Manager
(alias eProdCfgObjMgr_enu in a U.S. English environment).

Possible variations on this general topology option include:

■ Running one eProdCfgObjMgr_enu component with one AOM component

■ Running multiple eProdCfgObjMgr_enu components with one AOM component

■ Running one eProdCfgObjMgr_enu component with multiple AOM components
Performance Tuning Guide Version 7.8 93

Tuning Siebel Configurator for Performance ■ Topology Considerations for Siebel
Configurator
If a large number of concurrent users require configuration sessions, or there are a large number of
customizable product models, then this deployment option (using one or more dedicated servers)
may yield the best performance and make the most effective use of your hardware resources.

With this option, you set some parameters for managing Siebel Configurator caching on each
applicable AOM, and some on each applicable dedicated Siebel Configurator server. For details, see
“Administering Siebel Configurator Caching” on page 97.

Configuring AOM for Dedicated Siebel Configurator Deployments
When you designate one or more dedicated server machines to run the Siebel Product Configuration
Object Manager (alias eProdCfgObjMgr_enu in a U.S. English environment) component, then you
must configure any AOM components from which users will initiate configuration sessions to route
configuration requests to these machines.

The AOM forwards each configuration session request to the dedicated Siebel Configurator server
with the fewest concurrent users.

Table 3 lists server parameters for managing dedicated Siebel Configurator deployments. Using
Server Manager, set these parameters on each AOM (do not set them on the dedicated Siebel
Configurator server machine).

Table 3. Server Parameters for Dedicated Siebel Configurator Server Deployment

Parameter Name
Display
Name

Data
Type

Default
Value Description

eProdCfgRemote Product
Configurator-
Use remote
service

Boolean FALSE Set this parameter to TRUE if you are
running the eProdCfgObjMgr_enu
component on one or more dedicated
servers.

Set this parameter to FALSE for Siebel
Configurator deployments using AOM
only.

eProdCfgServer Product
Configurator-
Remote
Server Name

Text When you have not enabled explicit
product mapping for products to a
Siebel Configurator server, set this
parameter to the names of the
dedicated machines on which you are
running eProdCfgObjMgr. Otherwise,
set the value of this parameter to NULL.

eProdCfgTimeOut Product
Configurator-
Time out of
connection

Integer 20 Sets the length of time, in milliseconds,
that the AOM tries to connect to a
dedicated Siebel Server running
eProdCfgObjMgr.

After the timeout has been reached, an
error is returned to the user.
Performance Tuning Guide Version 7.894

Tuning Siebel Configurator for Performance ■ Best Practices for Siebel Configurator
Tuning
Best Practices for Siebel Configurator
Tuning
Using your hardware resources optimally, and configuring your system appropriately, can help you
to achieve your performance goals. You should consider your resources and requirements carefully,
and test and monitor system performance on a continual basis.

Review information presented in Product Administration Guide, Siebel System Administration Guide,
and other sources.

Activities you perform to achieve performance and scalability goals may include:

■ Adjusting your system topology. For more information, see “Topology Considerations for Siebel
Configurator” on page 93.

■ Configuring Siebel Server server components for Siebel Configurator.

■ Designing and deploying your customizable product models. For more information, see “Defining
Customizable Product Models and Classes” on page 96.

This section applies to deployments using Siebel Web Client.

Tuning Siebel Configurator
How you configure your Siebel Server components for Siebel Configurator server deployments, for
appropriate tuning, depends in part upon which deployment method you use, as described in
“Topology Considerations for Siebel Configurator” on page 93.

■ If you deploy Siebel Configurator on the AOM, then your Siebel Configurator tuning calculations
must be made in combination with your AOM tuning calculations.

■ If you deploy Siebel Configurator using the Product Configurator Object Manager
(eProdCfgObjMgr) server component on a dedicated Siebel Server machine, then your Siebel
Configurator tuning calculations will be only indirectly related to your AOM tuning calculations
and will be determined primarily by configuration-related concurrent users and request loads.

In particular, note that, for a dedicated Siebel Configurator server, the MaxTasks parameter should
generally be set much lower than for an AOM. By default, the ratio of MaxTasks to MaxMTServers is
20:1 for eProdCfgObjMgr.

In addition, depending on request load, MaxTasks should generally be set lower for an AOM running
Siebel Configurator than for an AOM that is not running Siebel Configurator.

You can follow this general procedure to determine how to set these parameters:

■ Determine what percentage of users for your Siebel application are also users of Siebel
Configurator. For example, for every 100 users, 60 work with Quotes.

■ Calculate what percentage of time these users spend using Siebel Configurator. For example, out
of the 60 users mentioned previously, only 30 are concurrently using Siebel Configurator.

■ Maintain the default ratio of 20:1 for MaxTasks/MaxMTServers.
Performance Tuning Guide Version 7.8 95

Tuning Siebel Configurator for Performance ■ Best Practices for Siebel Configurator
Tuning
If you deploy Siebel Configurator using eProdCfgObjMgr on a dedicated Siebel Server machine and
database connection (login and log out) is slow, it is recommended that you do the following:

■ Enable database connection pooling

To enable connection pooling, set the parameters, MaxSharedDbConns and MinSharedDbConns,
to positive integer values (at least 1) that are no higher than MaxTasks - 1.

This pools all user connections without sharing and avoids the creation and deletion of a new
database connection for each eProdCfgObjMgr session.

■ Use third-party user authentication

Using third-party user authentication, such as LDAP, rather than database authentication avoids
creating an additional database connection for authentication. For more information about
authentication options, see the Security Guide for Siebel Business Applications.

For more information about database connection pooling, see “Configuring Database Connection
Pooling for AOMs” on page 34.

Specifying the Siebel Configurator File System Location
Siebel Configurator uses a file system directory to cache all configuration related object definitions.
The server parameter, Product Configurator - FS location (alias eProdCfgCacheFS), specifies the
location. Specify a value for this parameter to reference a server directory path which has write
permission. For example, \\MyServer\SibFS\SiebConfig.

NOTE: The value for the directory that you specify must be network-accessible.

It is recommended that you do not specify a top-level directory. For example, if the directory SibFS
is a top-level directory, then specify a sub-directory such as SiebConfig.

If you do not specify a value for eProdCfgCacheFS, then Siebel Configurator attempts to use the
Siebel File System. If the Siebel File System uses the File System Manager (alias FSMSrvr)
component, Siebel Configurator does not cache object definitions to the file system. For more
information about the Siebel File System, see Siebel System Administration Guide.

Defining Customizable Product Models and Classes
This section describes some guidelines about creating customizable products and classes in a manner
that will optimize performance:

■ To maintain good performance, do not make your customizable products or classes any larger or
more complex than absolutely necessary.

■ Complexity is a function of the number of hierarchical levels and constraints built into the
customizable product models and of the structure of the class.

■ For defining class relationships, use specific classes as much as possible. For example, avoid
defining class relationships without specifying classes, or use a subclass rather than a parent
class if it is so defined.
Performance Tuning Guide Version 7.896

Tuning Siebel Configurator for Performance ■ Administering Siebel Configurator
Caching
■ Minimize the complexity of user interface elements you associate with your customizable product
models.

■ Generally, using interactive or automatic pricing updates for customizable products is
recommended. If performance is adversely affected, consider switching to manual pricing
updates.

■ When creating rules, using the Set Preference template allows you to create soft constraints that
guide the Siebel Configurator engine in producing solutions, but which the engine can ignore if
needed to avoid conflicts or performance problems.

■ By default, when you add a customizable product to a quote, for example, default products and
selections will be included, and Siebel Configurator may be invoked to create this default
instance. If the customizable product default selections are large and complex, and if users are
required to immediately customize the product, then turning off the Default Instance Creation
feature will enhance performance with no loss of functionality.

For more information on these issues, see Product Administration Guide.

Administering Siebel Configurator
Caching
Siebel Configurator supports a number of types of caching of customizable product information, to
optimize response time for configuration-session users. Caching options include:

■ Caching in memory

Siebel Configurator caches versions of customizable products, product classes, and attribute
definition objects in memory. When the size limit for this cache is reached, the versions of the
objects that were least recently used are discarded. For more information, see “Default Caching
Behavior for Siebel Configurator” on page 97.

■ Caching in the Siebel Configurator File System

This directory caches versions of the customizable products, product classes, and attribute
definition objects that were loaded into memory. This is default behavior. For more information,
see “Default Caching Behavior for Siebel Configurator” on page 97.

■ In addition to the above caching options, you can also specify which server or component caches
versions of customizable products, product classes, and attribute definition objects.

The specified cache can be updated at regular intervals. Using these options can improve
response times to requests for a specific customizable product. For more information, see “Cache
Management for Siebel Configurator” on page 98.

NOTE: The memory resources for your Siebel Configurator server machine must be sufficient to
support your caching requirements.

Default Caching Behavior for Siebel Configurator
The default caching behavior for Siebel Configurator is as follows:
Performance Tuning Guide Version 7.8 97

Tuning Siebel Configurator for Performance ■ Administering Siebel Configurator
Caching
■ When a user starts a configuration session, Siebel Configurator looks for new cache update
requests that affect objects in the cache. If there are new cache update requests that affect
objects currently in the cache, Siebel Configurator updates or removes these objects.

■ Siebel Configurator looks to see if the requested customizable product is cached in memory.

■ If the customizable product is not already cached in memory, Siebel Configurator looks in the
Configurator File System.

NOTE: The location of the Configurator File System is specified by the value of the Product
Configurator - FS location parameter (alias eProdCfgCacheFS). If no value is specified for
eProdCfgCacheFS, Siebel Configurator looks in the Siebel File System. For more information
about the Configurator File System, see “Specifying the Siebel Configurator File System Location”
on page 96.

■ If the customizable product is not in the Configurator File System, it is loaded from the Siebel
database. The product is added to the memory cache and to the Configurator File System.

■ Thereafter, when a configuration session starts, the customizable product is loaded from the
memory cache or the Configurator File System.

■ Before loading the customizable product from the Configurator File System, the system checks
the Siebel database to make sure each item in the product is the current version.

■ If the cached product has changed in the database, the current version of the item is loaded from
the database. This makes sure that the most recent version of a customizable product and its
contents are loaded.

■ When the product administrator releases a new version of a customizable product, the changes
are written to the Siebel database and a cache update request is posted for the modified
customizable product. The memory cache and the Configurator File System are not updated with
the changes until the next configuration session is requested for the customizable product.

NOTE: It is recommended that you avoid the use of start or end dates in rules for customizable
products. The arrival of a date does not cause the customizable product to be refreshed in the cache.

Cache Management for Siebel Configurator
When a user starts a configuration session, Siebel Configurator loads the requested customizable
product into memory. You can specify a cache (server or component) to serve requests for frequently
requested customizable products to improve response times. This requires that you select the setting
Explicit Product Mappings Only on the specified cache. The specified cache loads the customizable
products that are mapped to it into memory before any user requests are received.

You can also specify a time interval so that the specified cache updates the customizable products it
holds at regular intervals. This reduces the possibility that a user request requires the retrieval of
data from the database and the loading of a revised customizable product. To specify the time
interval, you set values for the following parameters on the eProdCfgObjMgr_enu component:

■ Server Session Loop Sleep Time (alias ServerSessionLoopSleepTime)

■ Product Configurator - Cache Engine Objects (alias eProdCfgCacheEngineObjects)

For more information on these parameters, see Table 4 on page 100.
Performance Tuning Guide Version 7.898

Tuning Siebel Configurator for Performance ■ Administering Siebel Configurator
Caching
Requests for other customizable products that are not mapped to a specific cache are served by a
cache that has the setting Explicit Product Mappings Only disabled.

The following procedure describes how to configure product caching by mapping a product to a cache
that has the setting Explicit Product Mappings Only enabled.

To configure product caching

1 From the application-level menu, choose Navigate > Site Map > Administration - Product >
Cache Administration.

The Cache Administration view appears.

2 In the Cache applet, select a cache.

NOTE: Only one cache can be active at a time.

3 In the Cache Type field, select a value as described in the following list:

■ Server

Select Server as the cache type to route configuration requests to the Siebel Servers
associated with the cache.

■ Component

Select Component as the cache type to route configuration requests to the components
associated with the cache. These components can span multiple Siebel Servers depending on
where components are active.

NOTE: If you select Component as the cache type, you must set the same value for the
component parameter Enable internal load balancing (alias EnableVirtualHosts) on both the
AOM and on the eProdCfgObjMgr component. For example, if EnableVirtualHosts is set to
TRUE on the AOM component, then it must also be set to TRUE on the eProdCfgObjMgr
component.

4 In the Components applet, specify a Siebel Server name or a component name to associate with
the cache that you selected in Step 2.

The value that you specify depends on the value that you selected for Cache Type in Step 2. For
example, if you set Cache Type equal to Server, you enter the name of a Siebel Server. If you set
Cache Type equal to Component, you enter the name the name of a component.

5 If you want a server cache or component cache to only serve products that are mapped to that
server cache or component cache, then select Explicit Product Mappings Only.

6 In the Product applet, select the product(s) that you want to associate with the component that
you selected in Step 4.

7 In the Cache applet, click Validate.

The application validates that the Siebel Server or component names that you select are valid
for the cache type that you specified.

8 If the configuration that you created validates correctly, click Release to enable the cache that
you selected cache instances of the products that are mapped to it.
Performance Tuning Guide Version 7.8 99

Tuning Siebel Configurator for Performance ■ Administering Siebel Configurator
Caching
Parameters for Configuring Siebel Configurator Caching
Siebel Configurator caching is enabled by default (eProdCfgSnapshotFlg is set to TRUE). Other
parameters must be sized following guidelines such as those described in “Determining Rough Sizing
for Caching Parameters” on page 102.

Table 4 lists the server parameters for configuring Siebel Configurator caching. Set these parameters
on the AOM component for an AOM deployment of Siebel Configurator. For a dedicated Siebel
Configurator server deployment, set these parameters on the AOM and on the eProdCfgObjMgr
component.

For information on how to configure server parameters, see the Siebel System Administration Guide.

Table 4. Server Parameters for Configuring Siebel Configurator Cache Behavior

Parameter Alias
Parameter
Name

Data
Type

Default
Value Description

eProdCfgCacheFS Product
Configurator - FS
location

String Specifies the location of the
Configurator File System. If
no value is specified for
eProdCfgCacheFS,
Configurator looks in the
Siebel File System. For
more information about the
Configurator File System,
see “Specifying the Siebel
Configurator File System
Location” on page 96.

eProdCfgAttrSnapshotFlg Product
Configurator -
Collect and Use
the snapshots of
the
ISS_ATTR_DEF Ob

Boolean TRUE Set to TRUE to enable
caching for attribute
definitions. This caches
attribute definitions in
memory. It is strongly
recommended that you do
not change this parameter.

eProdCfgNumOfCachedAtt
rs

Product
Configurator -
Number of
Attribute
Definitions Cached
in Memory

Integer 100 Sets the number of
attribute definitions kept in
memory at any given time
during configuration.

eProdCfgClassSnapshotFlg Product
Configurator -
Collect and Use
the snapshots of
ISS_CLASS_DEF
Ob

Boolean TRUE Set to TRUE to enable
caching for product class
definitions. It is strongly
recommended that you do
not change this parameter.
Performance Tuning Guide Version 7.8100

Tuning Siebel Configurator for Performance ■ Administering Siebel Configurator
Caching
eProdCfgNumOfCachedCla
sses

Product
Configurator -
Number of Class
Definitions Cached
in Memory

Integer 100 Sets the number of class
definitions kept in memory
at any given time during
configuration.

eProdCfgProdSnapshotFlg Product
Configurator -
Collect and Use
the snapshots of
ISS_PROD_DEF
Ob

Boolean TRUE Set to TRUE to enable
caching for product
definitions. This caches
product definitions in
memory. It is strongly
recommended that you do
not change this parameter.

eProdCfgNumOfCachedPro
ducts

Product
Configurator -
Number of Product
Definitions Cached
in Memory

Integer 1000 Sets the number of product
definitions kept in memory
at any given time during
configuration.

eProdCfgSnapshotFlg Product
Configurator-
Collect and use
snapshots of the
Cfg objects

Boolean TRUE Set to TRUE to turn on
Siebel Configurator caching.
It is strongly recommended
that you do not change this
parameter.

eProdCfgNumbOfCachedC
atalogs

Product
Configurator-
Number of cached
catalogs

Integer 10 Sets the maximum number
of Model Manager catalogs
that can be cached in
memory.

NOTE: This parameter
provides the functionality
provided by the parameter
eProdCfgNumbOfCachedFac
tories in previous releases.

eProdCfgNumbofCachedW
orkers

Product
Configurator-
Number of
workers cached in
memory

Integer 50 Sets the maximum number
of workers that can be
cached in memory. This
number applies to all Model
Manager catalogs.

eProdCfgCacheEngineObje
cts

Product
Configurator -
Cache Engine
Objects

Boolean TRUE Set to TRUE to enable
content cache and pre-
caching.

Table 4. Server Parameters for Configuring Siebel Configurator Cache Behavior

Parameter Alias
Parameter
Name

Data
Type

Default
Value Description
Performance Tuning Guide Version 7.8 101

Tuning Siebel Configurator for Performance ■ Administering Siebel Configurator
Caching
Determining Rough Sizing for Caching Parameters
To help you determine how to set the Siebel Configurator caching parameters, a general suggestion
is to measure the incremental memory required for a customizable product.

Requirements for Model Manager and Worker caching are more relevant than those for object
caching. Object caching has a small requirement, and applies to multiple users. Model Manager
caching applies to multiple users (using the same customizable product). Worker caching also applies
to multiple users.

You can try this on a Siebel Developer Web Client (a Mobile Web Client using a dedicated database
connection) by checking the memory used by the siebel.exe process before and after you click
Customize for a customizable product included in a quote or order, and again after you have further
configured the customizable product (to reach maximum likely memory usage).

For example, X may be the before-loading memory size, Y may be the after-loading size, and Z may
be the memory size after additional product configuration.

Of the incremental memory observed, consider the following breakdown:

■ The size of a Model Manager for a customizable product is about 75% of the incremental memory
required to instantiate the product (that is, 75% of Y – X).

■ The size of a Worker for a customizable product varies during runtime, generally increasing as
user selections are made. This size may be approximated by subtracting the Model Manager size
from the difference of Z less X.

Refreshing the Siebel Configurator Cache
Siebel administrators or product administrators can refresh the Siebel Configurator cache in a
number of ways. The following sections describe procedures to refresh the Siebel Configurator cache
with changes for customizable products, product classes, and attribute definitions.

ServerSessionLoopSleepTi
me

ServerSessionLoo
pSleepTime

Integer 300 Specify an interval time (in
seconds) to refresh cached
products that are mapped
to a Configurator server
cache or component cache
using the explicit product
mapping setting.

NOTE: eProdCfgCacheEngi
neObjects must be set to
TRUE.

Table 4. Server Parameters for Configuring Siebel Configurator Cache Behavior

Parameter Alias
Parameter
Name

Data
Type

Default
Value Description
Performance Tuning Guide Version 7.8102

Tuning Siebel Configurator for Performance ■ Administering Siebel Configurator
Caching
Refreshing the Siebel Configurator Cache with Product Changes
While editing a product record, a product administrator can select Refresh Product Cache to refresh
the Siebel Configurator cache with changes for all the customizable products that contain the
product.

In other words, when a product administrator changes a product record, the product record can serve
as a filter to selectively update the Siebel Configurator cache.

The next time a user requests the customizable product, the user receives a freshly instantiated
version reflecting the product change and the cache is refreshed with this version. For example, you
could change the product description or part number and then refresh the cache.

To refresh the cache with product changes

1 From the application-level menu, choose Navigate > Site Map > Administration - Product.

2 Select the record for a customizable product that has been changed or that is to be refreshed.

3 Click the Menu button in the Products list, then choose Refresh Product Cache.

Refreshing the Siebel Configurator Cache with Product Class Changes
While editing a product class record, a product administrator can select Refresh Cache to refresh the
customizable products in the Siebel Configurator cache that contain products from the product class.

In other words, the product administrator can use a product class as a filter to selectively refresh
customizable products in the cache.

If you have a customizable product that is affected by the product class change in the Siebel
Configurator cache, the changes are not propagated to the cached version of the product. The next
user that requests the customizable product receives the cached version, which does not reflect the
class changes. To make sure users receive the class changes immediately, select Refresh Cache.

The next time a user requests the customizable product, the user receives a freshly instantiated
version reflecting the product change and the cache is refreshed with this version. This new instance
reflects the changes you made to the product class.

To refresh the cache with class changes

1 From the application-level menu, choose Navigate > Site Map > Administration - Product >
Product Classes.

The Product Classes list applet appears.

2 Select a product class and modify it or its attribute definitions as needed.

3 From the menu in the Product Classes list, choose Refresh Cache.
Performance Tuning Guide Version 7.8 103

Tuning Siebel Configurator for Performance ■ Administering Siebel Configurator
Caching
Refreshing the Siebel Configurator Cache with Attribute Definition
Changes
While editing an attribute definition record, a product administrator can select Refresh Cache to
selectively refresh customizable products in the cache.

If you have a customizable product that is affected by an attribute definition change is in the Siebel
Configurator cache, the changes are not propagated to the cached version of the product. The next
user that requests the customizable product receives the cached version, which does not reflect the
attribute definition changes. To make sure users receive the attribute definition changes
immediately, refresh the cache.

The next time a user requests the customizable product, the user receives a freshly instantiated
version reflecting the attribute definition change and the cache is refreshed with this version. This
new instance will reflect the changes you made to the attribute definition.

To refresh the cache with attribute definition changes

1 From the application-level menu, choose Navigate > Site Map > Administration - Product >
Attribute Definitions.

The Attribute Definitions list applet appears.

2 Select an attribute definition and modify it as needed.

3 From the menu in the Attribute Definitions list, choose Refresh Cache.
Performance Tuning Guide Version 7.8104

9 Tuning Siebel EAI for
Performance
This section discusses tuning for Siebel Enterprise Application Integration (Siebel EAI) that might be
required for optimal performance. It contains the following topics:

■ “About Siebel Enterprise Application Integration” on page 105

■ “Best Practices for Siebel EAI Tuning” on page 105

For more information about Siebel EAI, see the following documents on the Siebel Bookshelf:

■ Overview: Siebel Enterprise Application Integration

■ Integration Platform Technologies: Siebel Enterprise Application Integration

■ Transports and Interfaces: Siebel Enterprise Application Integration

■ Business Processes and Rules: Siebel Enterprise Application Integration

■ XML Reference: Siebel Enterprise Application Integration

About Siebel Enterprise Application
Integration
Siebel EAI provides components for integrating Siebel Business Applications with external
applications and technologies within your company. Siebel EAI works with technologies, standards,
or applications that include XML, HTTP, Java/J2EE, and various third-party middleware products and
application integration solutions.

Siebel EAI provides bidirectional real-time and batch solutions for integrating Siebel applications with
other applications. Siebel EAI is designed as a set of interfaces that interact with each other and with
other Siebel components.

Best Practices for Siebel EAI Tuning
This section describes best practices for maintaining acceptable performance using Siebel EAI.

General guidelines are followed by recommendations specific to Siebel EAI features such as IBM
WebSphere MQ (formerly MQSeries) Transport adapter, HTTP Inbound Transport adapter, EAI Siebel
Adapter, virtual business components, and Workflow Process Manager used with Siebel EAI.

Follow these general guidelines to improve overall performance for data integration and throughput
of Siebel Business Applications:

■ Try to minimize round trips between systems. For example, if an integration needs to request
three pieces of data, do not send a request for one piece of data, wait for the response, and then
send the next request. If you need multiple pieces of data, gather the data in a single request.
Performance Tuning Guide Version 7.8 105

Tuning Siebel EAI for Performance ■ Best Practices for Siebel EAI Tuning
■ Try to keep processing in a single session wherever possible, to avoid having to make calls
between server components.

■ Within a session, try to minimize the nesting of calls between components such as workflow,
scripting, and the EAI Siebel Adapter. For example, use a workflow process to sequence the
calling of business services and keep scripting code in self-contained steps. Workflow
subprocesses can be used to package together commonly called sequences of services.

■ Use alternatives to scripting, where possible. If you use scripting, use it minimally and
economically and apply documented guidelines. For more information, see “Best Practices for
Siebel Scripting” on page 160.

■ Configure business components, business services, caching, and other application functionality
that supports integration processing to obtain optimal performance. For more information, see
other sections in this chapter and see Chapter 12, “Tuning Customer Configurations for
Performance.”

■ Perform capacity planning for all servers that support integration processing. Siebel Expert
Services may be consulted for sizing reviews.

■ Try to represent the incoming external data in the same code page and encoding that the Siebel
application uses internally (UCS-2). This eliminates the need to use the Transcode business
service in your workflow process, thus improving performance.

The following sections discuss specific technologies and what you can do to improve performance in
each area.

Improving IBM WebSphere MQ Transport Performance
The performance of an IBM WebSphere MQ queue is highly dependent on the disk performance of
the queue manager machine and the layout of the queue’s files on the disk. You should test your
queue with stand-alone utilities so that you have an upper boundary for the performance that can
be expected in a live application.

To achieve higher throughput, consider the following options:

■ Run multiple MQ Receiver tasks. Run multiple MQ Receiver tasks in parallel on the same
machine or across several machines. The optimal number of MQ Receiver tasks depends on the
transaction type.

NOTE: This guide refers to MQ Receiver, where the actual Siebel Server component you are using
may be MQSeries Server Receiver (alias MqSeriesSrvRcvr) or MQSeries AMI Receiver (alias
MqSeriesAMIRcvr).

The default number of MQ Receiver tasks is 1. You can set this to 10 or more, depending on the
nature of your transactions and on available server capacity.

Adding MQ Receivers is generally most helpful for handling CPU-bound transactions, where the
dequeuing rate is low and MQ contention is not experienced.

Sometimes contention is still experienced after adding MQ Receiver tasks, such as when multiple
MQ Receivers connect to the same MQ queue manager or queue. See the next item for more
information.
Performance Tuning Guide Version 7.8106

Tuning Siebel EAI for Performance ■ Best Practices for Siebel EAI Tuning
■ Run multiple MQ queue managers. If you experience diminishing returns from adding MQ
Receiver tasks, you may benefit from running additional MQ queue managers. Doing so can help
to reduce contention of MQ resources stored in physical folders on disk.

■ Turn off persistent queuing if it is unneeded. Performance issues for nonCPU-bound
transactions or for persistent queuing are often related to MQ contention, which is not helped by
adding receivers. If you do not require persistent queuing, turn it off.

Persistent queuing is significantly slower than normal queuing for WebSphere MQ. If you do not
use this feature, however, messages will be lost if the queue manager goes down.

■ Set Maximum Number of Channels parameter. Set the Maximum Number of Channels
parameter in the WebSphere MQ queue manager to be greater than or equal to the maximum
number of simultaneous clients you have running.

In addition, there are specific actions you can take to improve WebSphere MQ Transport performance
for outbound and inbound transports, as detailed below.

Inbound Messages
For inbound WebSphere MQ messages, run multiple MQ Receivers in parallel to increase throughput.
See additional comments earlier in this topic for details.

Outbound Messages (Send, SendReceive)
Caching of WebSphere MQ Transport business services can improve outbound performance by
eliminating the need to connect to the queue for each message. Caching is disabled by default
because it is not usable in every situation. Follow these tips to enable caching:

■ Cache in client sessions only. Do not use caching if your transport will be called within the
Workflow Process Manager (WfProcMgr) component. The threading model of this component is
not compatible with the WebSphere MQ APIs.

■ To enable caching for a business service, set the Cache property to TRUE in Siebel Tools, then
recompile the SRF file.

■ If you need to call the WebSphere MQ Transport in Workflow Process Manager and in a client
session, make a separate copy of the service (one cached and one uncached) for each situation.

■ Caching occurs on a per-queue basis and only one connection is kept open at a time. If a single
session is going to talk to multiple queues, consider making a copy of the transport for each
outbound queue.

NOTE: See your IBM WebSphere MQ documentation for performance and sizing guidelines.

Performance Events
You can get detailed performance tracing of the WebSphere MQ Transport by setting the
EAITransportPerf event to level 5.
Performance Tuning Guide Version 7.8 107

Tuning Siebel EAI for Performance ■ Best Practices for Siebel EAI Tuning
You can set this event level for multiple Siebel Server components that play a role in Siebel EAI
functionality, including Workflow Process Manager (WfProcMgr), EAI Object Manager (EAIObjMgr),
MQ Receiver, or other components. For example, you can use srvrmgr to set the event level for MQ
Receiver:

change evtloglvl EAITransportPerf=5 for comp MqSeriesSrvRcvr

Improving HTTP Inbound Transport Performance
The HTTP Inbound Transport supports two modes, session mode and sessionless mode:

■ In session mode, the session stays live until a logoff call is made

■ In sessionless mode, login and logoff occur automatically for each request

You should use session mode whenever possible, because the time required to log into the
application is usually significantly longer than the time required to process an average request.

You can also use the SessPerSisnConn component parameter to control the number of sessions
sharing the same physical SISNAPI connection between the Web server and the EAI Object Manager.

Setting this parameter to 1 provides a dedicated physical connection for each Siebel session. The
default value is 20, to allow up to 20 sessions to share the same SISNAPI connection. For the EAI
Object Manager, it is recommended that you set SessPerSisnConn to 1. If setting SessPerSisnConn
to 1 results in an excessive number of sessions, consider increasing the value of SessPerSisnConn
or provide additional hardware resources.

You can change this parameter using srvrmgr at the Enterprise or Server level. For example, to set
the parameter at the Enterprise level for the EAI Object Manager, you enter the following command:

change param SessPerSisnConn=1 for compdef eaiobjmgr_enu

For more information about configuring SessPerSisnConn, see “Configuring SISNAPI Connection
Pooling for AOM” on page 45.

EAI Siebel Adapter Performance
Use the techniques described here to improve the EAI Siebel Adapter performance and throughput.

Reviewing Scripting
Avoid scripting events on business components used by the EAI Siebel Adapter. Perform any scripting
task either before or after the EAI Siebel Adapter call, rather than within it.

For general scripting guidelines, see also “Best Practices for Siebel Scripting” on page 160.
Performance Tuning Guide Version 7.8108

Tuning Siebel EAI for Performance ■ Best Practices for Siebel EAI Tuning
Disabling Logging
You should disable logging for performance-critical processes that are functioning correctly to gain
about 10% faster performance. You can disable logging for the EAI Object Manager (or other
applicable server components, such as MQ Receiver) by setting the BypassHandler server parameter
to TRUE.

Minimizing Integration Object Size
The size of an integration object and its underlying business components can have an impact on the
performance of the EAI Siebel Adapter. To minimize this impact, you can:

■ Consider copying business objects and business components and modifying them to remove any
elements (such as scripts, joins, multi-value fields, user properties, and so on) that you do not
require in the Siebel EAI context. Base your integration objects on these relatively streamlined
object definitions. Verify that user keys on your integration objects make effective use of indexes
when queries are performed.

■ Inactivate unneeded integration components and integration component fields in your
integration objects. Activate only the components and fields needed for message processing,
according to your business needs.

■ Inactivate unneeded fields for each underlying business component. For fields that are
unneeded, if Force Active is set to TRUE, set it to FALSE. Setting Force Active to FALSE prevents
the EAI Siebel Adapter from processing these fields. If you do not inactivate these fields, the
adapter processes them even when they are not actually included in the integration object.

For more information, see “Limiting the Number of Active Fields” on page 170.

Analyzing SQL Produced by EAI Siebel Adapter
Requests to the EAI Siebel Adapter eventually generate SQL to be executed against the Siebel
Database. By setting the event SQL to level 4 in the component running in the EAI Siebel Adapter,
you can get a trace of the SQL statements being executed, along with timings for each statement,
in milliseconds.

You can get timings for each EAI Siebel Adapter operation by setting the event EAISiebAdptPerf to 4
or 5. Do this to correlate the EAI Siebel Adapter calls with their associated SQL.

After you have this information, look through the logs to find any SQL statements taking significantly
longer than average. To improve the performance of such statements, look at the business
component (perhaps eliminating unnecessary joins and fields) or at the physical database schema
(perhaps adding indexes).

NOTE: The overall timing across operations (equivalent to the TotalTimeForProcess event) cannot be
determined by adding the individual logged values associated with the EAISiebAdptPerf event,
because the EAI Siebel Adapter requires some additional overhead. Overhead is greater when
EAISiebAdptPerf is set to a high value. Set this event to a lower value for a production system for
optimal performance.
Performance Tuning Guide Version 7.8 109

Tuning Siebel EAI for Performance ■ Best Practices for Siebel EAI Tuning
Running EAI Siebel Adapter in Parallel
A common technique to improve throughput is to run multiple instances of the EAI Siebel Adapter in
parallel.

For the MQ Receiver, you do this by running multiple receiver tasks. For more information, see
“Improving IBM WebSphere MQ Transport Performance” on page 106.

For the EAI Object Manager, you do this by setting the MaxTasks, MaxMTServers, and MinMTServers
parameters, in order to run more threads (tasks) on more multithreaded processes for the EAI Object
Manager component. Also start multiple simultaneous HTTP sessions. There is little interaction
between each instance of the EAI Siebel Adapter.

If the Siebel Database Server is large enough, almost linear scalability of the EAI Siebel Adapter is
possible until either the limits of the CPU or the memory limits of the Siebel Server are reached.

CAUTION: If two sessions attempt to simultaneously update or insert the same record, one will
succeed and one will produce an error. Therefore, when running the EAI Siebel Adapters in parallel,
you need to prevent the simultaneous update of the same record in multiple sessions. You can
prevent this by either partitioning your data or retrying the EAI Siebel Adapter operation where the
error occurs.

Caching Business Objects
The EAI Siebel Adapter caches business objects by default. The default cache size is five objects.
Using caching, subsequent runs on the adapter are significantly faster because the business objects
do not need to be re-created for each run.

Use the BusObjCacheSize parameter on the EAI Siebel Adapter to change the size of the cache, if
required. However, the five-object cache size is enough for most purposes. Making this number too
large creates an unnecessarily large memory footprint.

Virtual Business Component Performance
Because users must wait for the virtual business component (VBC) response to display the GUI
component for the integration on their screens, this type of integration is especially sensitive to
latency.

To improve virtual business component performance when your integration has multiple requests,
put the requests for a given system in a single batch.

Improving Workflow Process Manager Performance
This section discusses some performance issues for the Workflow Process Manager component.

For more information about Siebel Workflow performance, see Chapter 7, “Tuning Siebel Workflow for
Performance.” Also see Siebel Business Process Designer Administration Guide.
Performance Tuning Guide Version 7.8110

Tuning Siebel EAI for Performance ■ Best Practices for Siebel EAI Tuning
Workflow Process Manager is a task-based server component. A new thread is created for each
request. However, sessions for Object Manager components (such as EAI Object Manager or AOMs)
that may invoke workflow processes are cached and reused for subsequent requests. When sizing a
system, you need to look at the maximum number of workflow tasks you expect to have active at a
given time. This determines the maximum number of Object Manager sessions Siebel applications
create. In general, it is recommended that, where possible, you create small workflow processes. If
you cannot avoid creating a large workflow process, then divide the workflow process into sub-
processes.

The exact CPU and memory consumption of each task depends on the actions performed in your
workflow processes. To estimate CPU and memory consumption in your production environment, run
a single task, measure its resource consumption, and make an estimation based on your maximum
concurrent sessions. Take session caching into account when making these measurements.

If you need a large number of sessions, you may want to run Workflow Process Manager on multiple
Siebel Server machines. You can then use Siebel Server load balancing to load-balance requests
across the Siebel Servers. If you plan to run a significant number of tasks per server (such as 100
or more), you may also want to run multiple multithreaded processes.

If you are going to run several different types of workflows, you should run each type in a separate
process. This makes it easier to monitor the overall CPU and memory usage of each process type.

The number of multithreaded processes and the number of tasks per process are controlled through
the parameters MaxMTServers (Maximum MT Servers), MinMTServers (Minimum MT Servers), and
MaxTasks (Maximum Tasks).

NOTE: These parameters are per Siebel Server. For example, MaxMTServers refers to how many
multithreaded processes to run on each Siebel Server machine. For details, see Siebel System
Administration Guide.

Performance Events
You can get performance tracing of workflows by setting the event WfPerf for the component in which
your workflow is running. Setting the event to level 4 gives timing for the execution of the overall
process. Setting the event to level 5 provides timing for each step as well.

You can set this event level for any Siebel Server component that invokes a workflow process as part
of Siebel EAI functionality. For example, to set this event level for the MQ Receiver using srvrmgr,
enter the following:

change evtloglvl WfPerf=5 for comp MqSeriesSrvRcvr

These events can be useful not just for measuring workflow performance but also for measuring the
performance of business services executed within these workflows.
Performance Tuning Guide Version 7.8 111

Tuning Siebel EAI for Performance ■ Best Practices for Siebel EAI Tuning
Other Best Practices for Siebel EAI
Review the following issues for applicability to your deployment, for optimizing Siebel EAI
performance:

■ Check disks on the machine. Do a preliminary test on the queue manager you are using to
see how many sends and corresponding receivers it can support per second (use multiple
drivers). Queue vendors such as IBM WebSphere MQ provide test programs you can use to drive
these and determine how much the queue itself can scale. The speed of the disks on the machine
is important.

■ Optimize messages. In the messages, reference only the columns you require.

■ Create smaller business components. Messages might use only a small portion of the actual
business components.

Create copies of the business components you are using. In the copies, keep active all fields used
by the optimized integration object or otherwise used for correctly processing of messages (like
the visibility fields or status fields). Deactivate all other fields. Also deactivate the join definitions
and multi-value links (MVLs) that are not needed for processing of the messages.

The original business components are often large and complex and contain elements you will not
need for your integration purposes. Use the smaller business components and business objects
and links created when creating the optimized integration object.

Business components may have fields with Force Active set to TRUE. Check this property for
fields in the business components, using Siebel Tools. If the fields are not needed, set Force
Active to FALSE.

■ Set user property All Mode Sort to FALSE. Set the user property All Mode Sort to FALSE for
optimized business components (if not already set). Do this only for the smaller business
components created for use with Siebel EAI, because this user property changes the order in
which rows are retrieved—which might not be appropriate or normal clients. For more
information about All Mode Sort, see Siebel Developer’s Reference.

■ Optimize database queries. Review queries generated by the receiver process and verify that
they are optimized.

■ Turn off logging. Turn off server-side logging that you do not require.
Performance Tuning Guide Version 7.8112

10 Tuning Siebel EIM for
Performance
This chapter covers recommended best practices for improving the performance of EIM and is
organized into the following sections:

■ “About Siebel EIM” on page 113

■ “EIM Architecture Planning Requirements” on page 114

■ “EIM Usage Planning” on page 116

■ “General Guidelines for Optimizing EIM” on page 119

■ “Troubleshooting EIM Performance” on page 122

■ “Database Guidelines for Optimizing EIM” on page 133

■ “Data Management Guidelines for Optimizing EIM” on page 142

■ “Run Parameter Guidelines for Optimizing EIM” on page 142

■ “Monitoring the Siebel Server During an EIM Task” on page 143

About Siebel EIM
Siebel Enterprise Integration Manager (EIM) is a server component in the Siebel EAI component
group that transfers data between the Siebel database and other corporate data sources. This
exchange of information is accomplished through intermediary tables called EIM tables. (In earlier
releases, EIM tables were known as interface tables.) The EIM tables act as a staging area between
the Siebel application database and other data sources.

EIM is your primary method of loading mass quantities of data into the Siebel database. You should
use EIM to perform bulk imports, updates, merges, and deletes of data.

In the Siebel application database, there are application tables (known as base tables), which Siebel
applications use. For data to come from other corporate data sources (external databases) into
Siebel application tables, the data must go through EIM tables. So the data exchanges between the
Siebel database and external databases occurs in two parts:

1 Load data into EIM tables.

2 Run Siebel EIM to import the data from the EIM tables into the Siebel base tables.

NOTE: While the first part of this data-exchange process involves the intermediary tables that
are called EIM tables, only the second part of the process involves the functionality of Siebel EIM.
Performance Tuning Guide Version 7.8 113

Tuning Siebel EIM for Performance ■ EIM Architecture Planning Requirements
When data is entered through the Siebel user interface, the application references properties set at
the business component object type. However, when data is entered into Siebel base tables through
EIM, EIM references properties set at the table object type.

NOTE: You must use EIM to perform bulk imports, exports, merges, and deletes, because Siebel
Systems does not support using native SQL to load data directly into Siebel base tables (the tables
targeted to receive the data). You should also be aware that EIM translates empty strings into NULL.

EIM Architecture Planning Requirements
You must consider the size and complexity of the implementation before executing any single item
with the Siebel application. Aspects that have a direct impact on how the production application will
perform may not be your highest priority when you initially begin your Siebel implementation.
However, the decisions made during the initial phases of an implementation have a far reaching
impact, not only on performance and scalability but also on the overall maintenance of the Siebel
application.

It is strongly recommended to have a Siebel certified principal consultant or architecture specialist
from Expert Services involved in designing the most effective logical and physical architecture for
your organization. This includes capacity planning and system sizing, physical database layout, and
other key architecture items.

Database Sizing Guidelines
One of the most important factors to determine about the database is its overall size. During the
planning phase, you need to allocate space for system storage, rollback segments and containers,
temporary storage space, log files, and other system files required by the relational database
management system (RDBMS), as well as space for the Siebel application data and indexes. If you
allocate too little space for the system, performance will be affected and, in extreme cases, the
system itself may be halted. If you allocate too much space, it may cause inefficiency.

The space needed by the database depends on the total number and types of supported users. It is
recommended that you consult your vendor RDBMS technical documentation for more information
on these requirements.

The space required for Siebel data and indexes depends on the functionality being implemented and
the amount and nature of data supporting this functionality.

The process for making accurate database size calculations is a complex one involving many
variables. Use the following guidelines:

■ Determine the total number, and types, of users of Siebel Business Applications (for example,
500 sales representatives and 75 sales managers).

■ Determine the functionality that you will implement and the entities required to support them.
Typically, the largest entities are as follows:

■ Accounts

■ Activities
Performance Tuning Guide Version 7.8114

Tuning Siebel EIM for Performance ■ EIM Architecture Planning Requirements
■ Contacts

■ Forecasts

■ Opportunities

■ Service Requests

■ Estimate the average number of entities per user (for example, 100 accounts per sales
representative) and calculate an estimated total number of records per entity for the total user
base.

■ Using standard sizing procedures for the specific database, and Siebel Data Model Reference,
calculate the average record size per entity and multiply by the total number of records. Typically,
these entities span multiple physical tables, all of which must be included in the row size
calculation. This determines the estimated data sizes for the largest entities.

■ You must add additional space for the storage of other Siebel application data. A rough guideline
for this additional amount would be one-half the storage required for these key entities.

■ Indexes typically require approximately the same amount of space as data.

■ Be sure to allow for a margin of error in the total size calculation.

■ Be sure to factor growth rates into the total size calculation.

Database Layout Guidelines (Logical and Physical)
The overall performance of Siebel Business Applications is largely dependent on the input/output (I/
O) performance of the database server. To achieve optimal I/O performance, it is critical that the
tables and indexes in the database be arranged across available disk devices in a manner that evenly
distributes the I/O load.

The mechanism for distributing database objects varies by RDBMS, depending on the manner in
which storage space is allocated. Most databases have the ability to assign a given object to be
created on a specific disk. These objects, and guidelines for some of them, are provided in the
following list.

A redundant array of independent disks, or RAID, can provide large amounts of I/O throughput and
capacity, while appearing to the operating system and RDBMS as a single large disk (or multiple
disks, as desired, for manageability). The use of RAID can greatly simplify the database layout
process by providing an abstraction layer above the physical disks while ensuring high performance.
Regardless of the implemented RDBMS and the chosen disk arrangement, be sure that you properly
distribute the following types of database objects:

■ Database log or archive files.

■ Temporary workspace used by the database.
Performance Tuning Guide Version 7.8 115

Tuning Siebel EIM for Performance ■ EIM Usage Planning
■ Tables and Indexes: In most implementations, the tables and corresponding indexes in the
following list tend to be some of the more heavily used and should be separated across devices.
In general, the indexes listed below should be on different physical devices from the tables on
which they are created.

NOTE: If you plan on making extensive use of EIM, put the key EIM tables (based on the unique
business requirements) and their corresponding indexes on different devices from the Siebel
base tables and indexes, because all of them are accessed simultaneously during EIM operations.

EIM Usage Planning
This section provides a number of general guidelines for effective and efficient implementations of
EIM, regardless of the size of the overall Siebel implementation. It cannot be emphasized enough
that taking a strategic perspective to implementing EIM is crucial not only to being able to use EIM,
but to the overall success of the Siebel implementation.

Team Definition
Based on customer experience, it is recommended that a team of individuals is assigned to manage
and maintain the EIM processes required for your organization. You should consider using individuals
with the following skill sets:

■ For small to medium-sized Siebel application implementations:

■ A database administrator with a detailed understanding of not only the RDBMS used by your
organization, but also the Siebel Data Model. This individual would be responsible for
identifying the actual data to be loaded into the EIM tables and making sure that the physical
layout of the database provides optimal performance. This person would also be responsible
for the task of mapping the data into the Siebel base tables. For more information on
performing this task, see the Siebel Enterprise Integration Manager Administration Guide.

■ S_ACCNT_POSTN ■ S_PARTY_REL

■ S_OPTY ■ S_PARTY

■ S_ADDR_ORG ■ S_SRV_REQ

■ S_OPTY_POSTN ■ S_EVT_ACT

■ S_CONTACT ■ S_OPTY

■ S_POSTN_CON ■ S_ORG_EXT

■ S_DOCK_TXN_LOG
Performance Tuning Guide Version 7.8116

Tuning Siebel EIM for Performance ■ EIM Usage Planning
■ A system administrator with a strong background in the systems used by your organization.
This individual would be responsible for developing scripts unique to your organization to
automate the loading of data into the EIM tables, and to execute EIM in order to process the
data into the Siebel base tables.

NOTE: Your organization may have one individual with both these skill sets and so you might
rather dedicate only a single individual to these tasks. If this is the case, consider having a
backup person, so that when this primary individual is unavailable, the backup person is capable
of performing what needs to be done to keep the Siebel implementation operational.

■ For larger to very large-sized Siebel implementations:

■ A database administrator with a detailed understanding of not only the RDBMS used by your
organization, but also the Siebel Data Model. This individual would be responsible for
identifying the actual data to be loaded into the EIM tables and to make sure that the physical
layout of the database provides optimal performance. This team member would also be
responsible for the crucial task of mapping the data into the Siebel base tables. For more
information on performing this task, see the Siebel Enterprise Integration Manager
Administration Guide.

■ A system administrator with a strong background in the systems (both the database server
and application server) used by your organization. This individual would be responsible for
developing scripts unique to your organization to automate the loading of data into the EIM
tables, and to execute EIM in order to process the data into the Siebel base tables.

■ A business analyst with a strong understanding of the Siebel Data Model and its intended
usage in the Siebel implementation. This individual would act as a liaison between the
business and technical members of the EIM team.

Mapping Data into Siebel Applications
EIM uses EIM table mappings to map columns from EIM tables to Siebel base tables. Siebel
predefined EIM mappings are fixed and cannot be remapped.

NOTE: EIM uses only EIM table mappings to determine table relationships. EIM does not use
configuration logic in the Siebel repository to determine table relationships.

Using Siebel Tools, you can view:

■ EIM table mappings to Siebel base tables

■ Column mappings to Siebel base table columns

■ Siebel base table mappings to EIM tables

Some base tables may not be mapped to a corresponding EIM table. In such cases, use Siebel Visual
Basic (VB) to load data into these base tables and inform Siebel Technical Services regarding the
missing mapping. For information on using Siebel VB, see Siebel VB Language Reference.
Performance Tuning Guide Version 7.8 117

Tuning Siebel EIM for Performance ■ EIM Usage Planning
If you have licensed Database Extensibility and created extensions, you can use the Column Mapping
screen to specify mappings to the new fields. Database extensibility and EIM support mappings
between columns in extension tables and EIM tables only if these columns share the same base table.
To map EIM table extensions to base table extensions, you must specify which column the extended
field will point to in the base table. For more information on Database Extensibility, see Configuring
Siebel Business Applications.

To map data into a Siebel application

1 Determine which Siebel base table columns need to be populated for the Siebel implementation,
along with the external data that will be loaded into these base tables.

2 Determine which EIM table and columns will be used to import from the source to the destination.

3 Analyze this external data to determine which attributes need to be stored and the relationship
this data has to other entities.

To facilitate this, you can request an EIM Data Mapping and Design review from Siebel Expert
Services. This review can be used to make sure that the EIM mappings are correct and will
accomplish intended goals.

Testing EIM Processes
This issue, fully and completely testing the EIM processes, tends to be overlooked. Testing is more
than simply mapping the data and then running an EIM process using the default EIM configuration
file. Complete testing requires you to run a large number of identical EIM jobs with similar data. This
allows you to not only find any areas that you may have overlooked, but it also provides some insight
into the optimal sizing of the EIM batches and exposure to scenarios that may occur in a production
environment.

Before using EIM, a database administrator must populate the EIM tables with data to be processed
by EIM. Then, you can invoke EIM to process this data, with EIM making multiple passes through the
tables to complete the specified process.

EIM reads a special configuration file that specifies the EIM process to perform (import, merge,
delete, or export) and the appropriate parameters. The EIM configuration file (the default file is
default.ifb) is an ASCII text file of extension type .IFB that resides in the admin subdirectory under
the Siebel server directory. Before running an EIM process, you must edit the contents of the EIM
configuration file to define the processes that EIM will perform.

The EIM log file can contain information at different levels of detail depending on the values of three
flags—the Error flag, the SQL flag, and the Trace flag. For more information on these flags, see Siebel
Enterprise Integration Manager Administration Guide. Some of the recommended settings are
described in the following list:

■ As a starting point, it is recommended to set the Error Flag=1, the SQL flag = 1, and the Trace
Flag=1. This setting will show errors and unused foreign keys. The setting Trace Flags=1 will
provide a summary (after each batch) of the elapsed time after EIM updates primary child
relationships in the Siebel database tables as necessary and runs optional miscellaneous SQL
statements.
Performance Tuning Guide Version 7.8118

Tuning Siebel EIM for Performance ■ General Guidelines for Optimizing EIM
■ Set Error flag = 1, SQL flag = 8, and Trace flag = 3. These settings will produce a log file with
SQL statements that include how long each statement took, which is useful for optimizing SQL
performance.

■ Set Error flag = 0, SQL flag = 0, and Trace flag = 1. These settings will produce a log file showing
how long each EIM step took, which is useful when figuring out the optimal batch size as well as
monitoring for deterioration of performance in a particular step.

General Guidelines for Optimizing EIM
The following guidelines are recommended for improving EIM performance:

■ Verify that all indexes exist for the tables involved. Keep in mind, however, that for large loads
you should drop most of the indexes from the target tables to increase the speed of the process,
rebuilding those indexes afterward when the process is finished.

■ Limit tables and columns to be processed using ONLY BASE TABLES/COLUMNS configuration
parameters to minimize EIM processing.

■ Consider disabling the Docking: Transaction Logging system preference during the EIM run.
Switching off transaction logging improves performance; however, this benefit must be balanced
with the need for mobile users to reextract afterward.

■ Altering batch sizes to find the optimal batch size for a given business component typically helps
resolve performance issues. The batch size is dependent upon the quantity of data and which
type of EIM process you are running.

NOTE: Although the limit of rows you can process is directly related to the capabilities of your
database server, executing batches greater than 100,000 rows is strongly discouraged.

■ For EIM delete processes that use the DELETE EXACT parameter, use a batch size of 20,000 rows
or less.

■ Try using batch ranges (BATCH = x–y). This allows you to run with smaller batch sizes and avoid
the startup overhead on each batch. The maximum number of batches that you can run in an
EIM process is 1,000.

■ Perform regular table maintenance on EIM tables. Frequent insert or delete operations on EIM
tables can cause fragmentation. Consult your database administrator to detect and correct
fragmentation in the EIM tables.

■ Delete batches from EIM tables on completion. Leaving old batches in the EIM table wastes space
and could adversely affect performance.

■ Run independent EIM jobs in parallel.

■ Set the USING SYNONYMS parameter to FALSE in the .IFB file to indicate that account synonyms
do not need to be checked.

■ If no other strategy appears to be successful, use the SQLPROFILE parameter to identify slow-
running steps and queries. For more information, see “Using the SQLPROFILE Parameter” on
page 126.
Performance Tuning Guide Version 7.8 119

Tuning Siebel EIM for Performance ■ General Guidelines for Optimizing EIM
Recommended Sequence for Implementing EIM
Processes
The following sequence is recommended for implementing EIM processes:

1 Customize and test the .IFB file to meet the business requirements.

2 Tune the .IFB parameters.

3 Separate the EIM processes.

4 Set the database parameters, making sure the basic requirements are met, including the
hardware, the settings, and no or minimal fragmentation.

Before you start optimizing EIM processes, make sure there are no network problems or server
performance problems that can affect the results. Siebel Expert Services recommends using at least
100 MB network segments and network-interface cards (NICs) to connect the Siebel server and
Siebel database server. In addition, Siebel Expert Services recommends using a network switch or
similar technology, rather than a hub, to maximize throughput.

Optimizing the .IFB File
When you have finished coding and testing the .IFB file to meet your business requirements, the next
step is to optimize the .IFB file. The selected parameters in each section of the .IFB file determine
the focus of each EIM task. The following recommendations are provided for each section of the .IFB
file:

■ ONLY BASE TABLES or IGNORE BASE TABLES. These parameters specify and restrict the
selected base tables for the EIM process. A single EIM table (sometimes referred to as an
interface table) is mapped to multiple user or base tables. For example, the table EIM_ACCOUNT
is mapped to S_PARTY, S_ORG_EXT, and S_ADDR_ORG, as well as others. The default
configuration is to process all base tables for each EIM table.

NOTE: Siebel Expert Services strongly recommends that you always include these parameters
in every section of the .IFB file, and list only those tables and columns that are relevant for a
particular EIM task.

■ ONLY BASE COLUMNS or IGNORE BASE COLUMNS. These parameters specify and restrict the
selected base columns for the EIM process. The default is to process all base columns for each
base table. It is likely that you are not using every column in a base table, and these parameters
will make sure that EIM is only processing the desired columns in the table. You will see an
additional performance increase if you exclude those columns that are defined as foreign keys
(FKs) and are not used by the Siebel configuration; this is because EIM does not need to perform
the interim processing (using SQL statements) to resolve the values for these FKs. Set the EIM
Task parameter Error Flags = 1 to see which FKs are failing to be resolved by EIM (you may have
missed excluding that FK with this parameter).

NOTE: Do not use the IGNORE BASE COLUMNS parameter for merge processes or export
processes. This parameter should only be used for import processes and delete processes.
Performance Tuning Guide Version 7.8120

Tuning Siebel EIM for Performance ■ General Guidelines for Optimizing EIM
Checking .IFB File Optimization

One method to find out if the .IFB file is optimized is to check the status of the records being
processed in the EIM tables. This indicates if there are tables or columns that are being processed
unnecessarily. The following query can be used to check the status of records in an EIM table:

select count(*), IF_ROW_STAT from EIM Table

where IF_ROW_BATCH_NUM = ?

group by IF_ROW_STAT;

If many rows have a status of PARTIALLY IMPORTED it is likely that further tuning can be done by
excluding base tables and columns that are not necessary. For example, two tests were run to
IMPORT 5000 accounts from EIM_ACCOUNT table. The first test included all of the base tables while
the second test only focused on the four necessary tables by including the following line in the .IFB
file:

ONLY BASE TABLES = S_ORG_EXT, S_ADDR_ORG, S_ACCNT_POSTN, S_ORG_TYPE

The first test took 89 minutes to import (excluding the Updating Primaries step), while the second
test only took 2 minutes to import (excluding the Updating Primaries step).

Separating EIM Processes by Operation
Wherever possible, divide the EIM batches into insert-only transactions and update-only
transactions. For example, assume that you are loading 50,000 records into an EIM table as part of
a weekly process. 10,000 records represent new data and 40,000 records represent updates to
existing data.

By default, EIM can determine which records are to be added and which records are to be updated
in the base tables, however, EIM will need to perform additional processing (through SQL
statements) to make these determinations. If you were able to divide the 50,000 records into
different batch numbers based on the type of transaction, you could avoid this additional processing.

In addition, the columns being processed as part of the update activity might be less than those for
the insert activity (resulting in an additional performance increase). To illustrate this, the .IFBs in
the preceding example can be coded with the following sections:

■ .IFB for mixed transactions:

[Weekly Accounts]

TYPE = IMPORT

BATCH = 1-10

TABLE = EIM_ACCOUNT

ONLY BASE TABLES = S_ORG_EXT

IGNORE BASE COLUMNS = S_ORG_EXT.?

■ .IFB for separate insert or update transactions:

[Weekly Accounts – New]
Performance Tuning Guide Version 7.8 121

Tuning Siebel EIM for Performance ■ Troubleshooting EIM Performance
TYPE = IMPORT

BATCH = 1-2

TABLE = EIM_ACCOUNT

ONLY BASE TABLES = S_ORG_EXT

IGNORE BASE COLUMNS = S_ORG_EXT.?

INSERT ROWS = TRUE

UPDATE ROWS = FALSE

[Weekly Accounts – Existing]

TYPE = IMPORT

BATCH = 3-10

TABLE = EIM_ACCOUNT

ONLY BASE TABLES = S_ORG_EXT

ONLY BASE COLUMNS = S_ORG_EXT.NAME, S_ORG_EXT.LOC, S_ORG_EXT.?

INSERT ROWS = FALSE

UPDATE ROWS = TRUE

Troubleshooting EIM Performance
Before troubleshooting EIM performance, verify that there are no performance bottlenecks on the
Siebel Server machine or network.

Optimizing SQL for EIM
During this process, you need to be able to run several similar batches. If you do not have enough
data with which to experiment, you may need to back up and restore the database between runs, so
that you can continue processing the same batch.

First, you should run an EIM job with the following flag settings: Error flag = 1, SQL flag = 8, and
Trace flag = 3. This will produce a log file that contains SQL statements and shows how long each
statement took. Identify SQL statements that are taking too long (on a run of 5000 rows in a batch,
look for statements that took longer than one minute). These are the statements that you want to
concentrate on, and you should consult an experienced database administrator at this point. The
process of optimizing the SQL for EIM involves the following:

■ Use the respective database vendor’s utility or a third-party utility to analyze the long-running
SQL statements.
Performance Tuning Guide Version 7.8122

Tuning Siebel EIM for Performance ■ Troubleshooting EIM Performance
■ Based on the review of the data access paths, review the SQL statements for proper index usage.
There may be cases where an index is not used at all or the most efficient index is not being
chosen. This may require a thorough analysis.

■ Based on this analysis, use a systematic approach to tuning these long-running statements. You
should perform one change at a time and then measure the results of the change by comparing
them to the initial benchmarks. For example, you may find that dropping a particular index to
improve the performance of one long-running statement might negatively impact the
performance of other SQL statements.

The decision on whether to drop the index should be based on the impact to the overall process
as opposed to the individual long-running SQL statement. For this reason, it is important that
one change be implemented at a time in order to measure the impact of the change.

■ After repetitively going through and optimizing each long-running SQL statement, the focus can
be shifted to other tuning measures, such as increasing the number of records processed in the
EIM table at a time and the running of parallel EIM tasks.

Using the USE INDEX HINTS and USE ESSENTIAL INDEX
HINTS Parameters
Perform testing with the .IFB file parameters USE INDEX HINTS and USE ESSENTIAL INDEX HINTS,
trying both settings (TRUE and FALSE). The default value for USE INDEX HINTS is FALSE. The default
value for USE ESSENTIAL INDEX HINTS is TRUE.

NOTE: If your configuration file has more than one process section, you must specify USE INDEX
HINTS within each one.

If these parameters are set to FALSE, EIM does not generate hints during processing. By setting the
value to FALSE, you may realize performance gains if the TRUE setting means that hints are being
generated that direct the database optimizer to use less than optimal indexes. EIM processing should
be tested with both the TRUE and FALSE settings to determine which one provides better
performance for each of the respective EIM jobs.

NOTE: The USE INDEX HINTS parameter is only applicable for Oracle database platforms. The USE
ESSENTIAL INDEX HINTS parameter is only applicable for Microsoft SQL Server and Oracle database
platforms.

These two parameters work for different queries, so you need to enable both to get all of the index
hints on Oracle database platforms.

Further information is provided as follows:

■ “Example: Using the USE INDEX HINTS and USE ESSENTIAL INDEX HINTS Parameters” on page 124

■ “USE INDEX HINTS and USE ESSENTIAL INDEX HINTS: EIM Criteria for Passing Indexes to the
Database” on page 125
Performance Tuning Guide Version 7.8 123

Tuning Siebel EIM for Performance ■ Troubleshooting EIM Performance
Example: Using the USE INDEX HINTS and USE
ESSENTIAL INDEX HINTS Parameters
The following example illustrates the results achieved for an SQL statement with index hints and
without index hints. This example was performed on the Microsoft SQL Server platform.

UPDATE dbo.S_ASSET5_FN_IF

SET T_APPLDCVRG__RID =

(SELECT MIN(BT.ROW_ID)

FROM dbo.S_APPLD_CVRG BT (INDEX = S_APPLD_CVRG_U2)

WHERE (BT.COVERAGE_CD = IT.CVRG_COVERAGE_CD AND

BT.TYPE = IT.CVRG_TYPE AND

BT.ASSET_ID = IT.T_APPLDCVRG_ASSETI AND

(BT.ASSET_CON_ID = IT.T_APPLDCVRG_ASSETC OR

(BT.ASSET_CON_ID IS NULL AND IT.T_APPLDCVRG_ASSETC IS NULL)) AND

(BT.INSITEM_ID = IT.T_APPLDCVRG_INSITE OR

(BT.INSITEM_ID IS NULL AND IT.T_APPLDCVRG_INSITE IS NULL))))

FROM dbo.S_ASSET5_FN_IF IT

WHERE (CVRG_COVERAGE_CD IS NOT NULL AND

CVRG_TYPE IS NOT NULL AND

T_APPLDCVRG_ASSETI IS NOT NULL AND

IF_ROW_BATCH_NUM = 10710001 AND

IF_ROW_STAT_NUM = 0 AND

T_APPLDCVRG__STA = 0)

SET STATISTICS PROFILE ON

GO

SET STATISTICS IO ON

GO

select

(SELECT MIN(BT.ROW_ID)

FROM dbo.S_APPLD_CVRG BT (INDEX = S_APPLD_CVRG_U2)

SQL User Name CPU Reads Writes Duration Connection ID SPID

SADMIN 549625 38844200 141321 626235 516980 9
Performance Tuning Guide Version 7.8124

Tuning Siebel EIM for Performance ■ Troubleshooting EIM Performance
WHERE (BT.COVERAGE_CD = IT.CVRG_COVERAGE_CD AND

BT.TYPE = IT.CVRG_TYPE AND

BT.ASSET_ID = IT.T_APPLDCVRG_ASSETI AND

(BT.ASSET_CON_ID = IT.T_APPLDCVRG_ASSETC OR

(BT.ASSET_CON_ID IS NULL AND IT.T_APPLDCVRG_ASSETC IS NULL)) AND

(BT.INSITEM_ID = IT.T_APPLDCVRG_INSITE OR

(BT.INSITEM_ID IS NULL AND IT.T_APPLDCVRG_INSITE IS NULL))))

FROM dbo.S_ASSET5_FN_IF IT

WHERE (CVRG_COVERAGE_CD IS NOT NULL AND

CVRG_TYPE IS NOT NULL AND

T_APPLDCVRG_ASSETI IS NOT NULL AND

IF_ROW_BATCH_NUM = 10710001 AND

IF_ROW_STAT_NUM = 0 AND

T_APPLDCVRG__STA = 0)

With hints:

Table 'S_APPLD_CVRG'. Scan count 1, logical reads 394774, physical reads 0, read-ahead
reads 280810.

Table 'S_ASSET5_FN_IF'. Scan count 1, logical reads 366, physical reads 0, read-ahead
reads 0.

Without hints:

Table 'S_APPLD_CVRG'. Scan count 1268, logical reads 10203, physical reads 697, read-
ahead reads 0.

Table 'S_ASSET5_FN_IF'. Scan count 1, logical reads 366, physical reads 0, read-ahead
reads 0.

USE INDEX HINTS and USE ESSENTIAL INDEX HINTS:
EIM Criteria for Passing Indexes to the Database
This topic explains how EIM determines which indexes to include on the hint clause passed to the
database when using the USE INDEX HINTS and USE ESSENTIAL INDEX HINTS parameters. When
determining which indexes to pass on to the database as index hints, EIM takes the following steps:

1 Before generating a query, EIM makes a list of columns for which it has determined that an index
is needed.

2 EIM then checks all of the indexes in the repository to find the index with the most matching
columns.
Performance Tuning Guide Version 7.8 125

Tuning Siebel EIM for Performance ■ Troubleshooting EIM Performance
EIM uses the following selection criteria in choosing indexes:

■ Unique indexes have priority over non-unique indexes.

■ Required columns have priority over non-required columns.

If a new index is created and it is declared in the repository, then there is a chance that EIM will
choose it and pass it to the database on a hint.

NOTE: On Oracle databases, EIM uses the Oracle rule-based optimizer (RBO) mode. When you
specify an INDEX hint, the RBO mode knows that it must use the index specified in the hint. In this
case, the RBO mode does not perform a full table scan, nor does it use any other index. For more
information about optimizer modes for Oracle databases, see the Upgrade Guide.

Using the SQLPROFILE Parameter
The inclusion of this parameter greatly simplifies the task of identifying the most time-intensive SQL
statements. By inserting the following statement in the header section of the .IFB file, the most time-
intensive SQL statements will be placed in the file:

SQLPROFILE = c:\temp\eimsql.sql

Below is an example of the file eimsql.sql.

Start of the file – list of most time-intensive queries:

EIM: Integration Manager v6.0.1.2 [2943] ENU SQL profile dump (pid 430).

Top 34 SQL statements (of 170) by total time:

Batch Step Pass Total Rows Per Row What

-------- -------- -------- -------- -------- -------- -----------------

106 10 401 1334.48 5000 0.27 update implicit primaries to child

106 9 114 242.56 5000 0.05 copy

…list of queries continues

Statistics by step and by pass

Statements per step by total time:

Step Stmts Total Min Max Avg %

-------- -------- -------- -------- -------- -------- --------

10 15 2627.27 0.00 1334.48 175.15 83.73

9 11 329.52 0.00 242.56 29.96 10.50
Performance Tuning Guide Version 7.8126

Tuning Siebel EIM for Performance ■ Troubleshooting EIM Performance
...list of statistics continues...

SQL statements:

batch 106, step 10, pass 401: "update implicit primaries to child":

(total time 22:14m (1334s), 5000 rows affected, time/row 0.27s)

UPDATE siebel.S_CONTACT BT

SET PR_BL_PER_ADDR_ID =

(SELECT VALUE(MIN(ROW_ID), 'No Match Row Id')

FROM siebel.S_ADDR_PER CT

WHERE (CT.PER_ID = BT.ROW_ID)),

LAST_UPD = ?,

LAST_UPD_BY = ?,

MODIFICATION_NUM = MODIFICATION_NUM + 1

WHERE (ROW_ID IN (

SELECT T_ADDR_PER_PER_ID C1

FROM siebel.EIM_CONTACT

WHERE(

T_ADDR_PER_PER_ID IS NOT NULL AND

IF_ROW_BATCH_NUM = 106 AND

T_ADDR_PER__STA = 0 AND

T_ADDR_PER__EXS = 'N' AND

T_ADDR_PER__UNQ = 'Y' AND

T_ADDR_PER__RID IS NOT NULL)

GROUP BY T_ADDR_PER_PER_ID)

AND

(PR_BL_PER_ADDR_ID IS NULL OR PR_BL_PER_ADDR_ID = 'No Match Row Id'))

**

...list of SQL statements continues...
Performance Tuning Guide Version 7.8 127

Tuning Siebel EIM for Performance ■ Troubleshooting EIM Performance
Additional Indexes on EIM Tables
An examination of the data access path will assist you in determining whether additional indexes are
necessary to improve the performance of the long-running SQL. In particular, look for table scans
and large index range scans. In the following example, after evaluating the inner loop of the nested
select, it was recommended to add an index on all T2 columns:

Inner loop:

(SELECT MIN(ROW_ID)

FROM siebel.EIM_ACCOUNT T2

WHERE (T2.T_ADDR_ORG__EXS = 'Y' AND

T2.T_ADDR_ORG__RID = T1.T_ADDR_ORG__RID AND

T2.IF_ROW_BATCH_NUM = 105 AND

T2.IF_ROW_STAT_NUM = 0 AND

T2.T_ADDR_ORG__STA = 0))

The index was created to consist of T2 columns used in the WHERE clause with ROW_ID at the end
of the index. This influenced the database optimizer to choose this index for index-only access. Since
the query wants the minimum (ROW_ID), the very first qualifying page in the index will also contain
the lowest value.

NOTE: Having the ROW_ID column as the leading index column would also be a good strategy. Since
the ROW_ID is unique, the index is likely to be more selective.

Adding Indexes to Improve Performance of S_ORG_EXT
Table S_ORG_EXT has indexes on many columns, but not all columns. If you have a large number of
records (several million accounts) in S_ORG_EXT, you may get a performance improvement in
deleting and merging by adding an index to one or more of the following:

■ PR_BL_OU_ID

■ PR_PAY_OU_ID

■ PR_PRTNR_TYPE_ID

■ PR_SHIP_OU_ID

Before implementing any additional indexes, first discuss this with qualified support personnel.
Performance Tuning Guide Version 7.8128

Tuning Siebel EIM for Performance ■ Troubleshooting EIM Performance
Creating Proper Statistics on EIM Tables
Use of the .IFB file parameter UPDATE STATISTICS is only applicable to the DB2 database platform.
This parameter can control whether EIM dynamically updates the statistics of EIM tables. The default
setting is TRUE. This parameter can be used to create a set of statistics on the EIM tables that you
can save and then reapply to subsequent runs. After you have determined this optimal set of
statistics, you can turn off the UPDATE STATISTICS parameter in the .IFB file (UPDATE STATISTICS
= FALSE) thereby saving time during the EIM runs.

To determine the optimal set of statistics, you need to run several test batches and RUNSTATS
commands with different options to see what produces the best results.

Before and after each test, you should execute db2look utility in mimic mode to save the statistics
from the database system catalogs. For example, if you are testing EIM runs using EIM_CONTACT1
in database SIEBELDB, the following command generates UPDATE STATISTICS commands in the file
EIM_CONTACT1_mim.sql:

db2look -m -a -d SIEBELDB -t EIM_CONTACT1 -o
EIM_CONTACT1_mim.sql

The file EIM_CONTACT1_mim.sql contains SQL UPDATE statements to update database system
catalog tables with the saved statistics.

You can experiment with running test EIM batches after inserting the RUNSTATS commands provided
in “DB2 Version 7 Options” and “DB2 Version 8 Options.” After you find the set of statistics that works
best, you can apply that particular mim.sql file to the database.

NOTE: Do not forget to save statistics with db2look between runs.

DB2 Version 7 Options
The following RUNSTATS commands can be used with DB2 version 7:

db2 runstats on table SIEBELDB.EIM_CONTACT1 with distribution and detailed indexes
all shrlevel change

db2 runstats on table SIEBELDB.EIM_CONTACT1 and indexes all shrlevel change

db2 runstats on table SIEBELDB.EIM_CONTACT1 with distribution and indexes all
shrlevel change

db2 runstats on table SIEBELDB.EIM_CONTACT1 and detailed indexes all shrlevel change

DB2 Version 8 Options
The syntax for DB2 V8 commands provides more options, as follows:

■ shrlevel change

■ allow write access

■ allow read access

The clauses allow read access and shrlevel change provide the greatest concurrency.
Performance Tuning Guide Version 7.8 129

Tuning Siebel EIM for Performance ■ Troubleshooting EIM Performance
Dropping Indexes in Initial Runs
Typically, the EIM initial load is a very database-intensive process. Each row that is inserted into the
base table requires modifications on the data page and the index pages of all the affected indexes.
However, most of these indexes are never used during an EIM run. Index maintenance is a very time-
consuming process for most database managers and should be avoided as much as possible.

Therefore, the goal is to determine any indexes that are unnecessary for EIM and that can be dropped
for the durations of the EIM run. You can create these indexes later in batch mode by using parallel
execution strategies available for the respective database platform. Using this approach can save a
significant amount of time.

NOTE: Under normal operations, using parallel execution strategies is not recommended.

■ Target Table Indexing Strategy. For a target base table (such as S_ORG_EXT) you only need
to use the Primary Index (Px, for example P1), and the Unique Indexes (Ux, for example U1),
and then drop the remaining indexes for the duration of the EIM import. Past experience has
determined that the Fx and Mx indexes can be dropped after an extensive SQL analysis of sample
EIM runs.

■ Nontarget Table Indexing Strategy. For child tables (such as S_ADDR_ORG) you only need
to use the Primary Index (Px), the Unique Indexes (Ux), and the Foreign Key Indexes (needed
for setting primary foreign keys in the parent table). Past experience has determined that the Fx
and Mx indexes can be dropped after an extensive SQL analysis of sample EIM runs.

NOTE: Testing should always be performed when dropping indexes (or adding indexes) to make sure
that expected results are achieved.

Controlling the Size of Batches
After tuning the long-running SQL statements, further tests can be run to determine the optimal
batch size for each entity to be processed. The correct batch size varies and is influenced by the
amount of buffer cache available. Optimal batch ranges have been observed to range anywhere
between 500 and 15,000 rows. You should run several tests with different batch sizes to determine
the size that provides the best rate of EIM transactions per second. Using the setting Trace Flag = 1
while running EIM helps in this task because you are then able to see how long each step takes and
how many rows were processed by the EIM process.

NOTE: You should also monitor this throughput rate when determining degradation in parallel runs
of EIM.

Recommended Number of Rows for a Single Batch
For an initial load, you can use 30,000 rows for a large batch. For ongoing loads, you can use 20,000
rows for a large batch. You should not exceed 100,000 rows in a large batch.
Performance Tuning Guide Version 7.8130

Tuning Siebel EIM for Performance ■ Troubleshooting EIM Performance
Furthermore, for Microsoft SQL Server and Oracle environments, you should limit the number of
records in the EIM tables to those that are being processed. For example, if you have determined
that the optimal batch size for your implementation is 19,000 rows per batch and you are going to
be running eight parallel EIM processes, then you should have 152,000 rows in the EIM table. Under
no circumstances should you have more than 250,000 rows in any single EIM table because this
reduces performance.

The restrictions mentioned in the example above do not apply to DB2 environments. As long as an
index is being used to access the EIM tables, the numbers of rows in the EIM tables does not matter
in DB2 environments.

NOTE: The number of rows you can load in a single batch may vary depending on your physical
machine setup and on which table is being loaded. To reduce demands on resources and improve
performance, you should generally try to vary batch sizes to determine the optimal size for each
entity to be processed. In some cases, a smaller batch size can improve performance. But for simpler
tables such as S_ASSET, you may find that loads perform better at higher batch sizes than for more
complex tables such as S_CONTACT.

Controlling the Number of Records in EIM Tables
You should determine the number of records that can reside at one time in an EIM table while still
maintaining an acceptable throughput rate during EIM processing. One observed effect of increasing
the number of records in an EIM table is reduced performance of EIM jobs. This is often caused by
object fragmentation or full table scans and large index range scans.

NOTE: In a DB2 environment, EIM table size is not an important factor that impacts performance,
because it is easy to correct table scans and non-matching index scans. So a large number of records
in an EIM table is not likely to reduce performance in a DB2 environment.

After addressing any object fragmentation and after the long-running SQL statements have been
tuned, it is likely that you can increase the number of records that can reside in the EIM tables during
EIM processing. When loading millions of records, this can result in a significant time savings because
it reduces the number of times that the EIM table needs to be staged with a new data set.

When performing large data loads (millions of records) it is recommended that you perform initial
load tests with fewer records in the EIM table. For example, while identifying and tuning the long-
running SQL, you should start with approximately 50,000 records. After tuning efforts are complete,
you should run additional tests while gradually increasing the number of records. For example you
can incrementally increase the number of records to 100,000, then 200,000, and so on until you have
determined the optimal number of records to load.

Using the USING SYNONYMS Parameter
The USING SYNONYMS parameter controls the queries of account synonyms during import
processing. This parameter is also related to the S_ORG_SYN table. When set to FALSE, this
parameter saves processing time because queries that look up synonyms are not used. The default
setting is TRUE. You should only set this parameter to FALSE when account synonyms are not
needed.
Performance Tuning Guide Version 7.8 131

Tuning Siebel EIM for Performance ■ Troubleshooting EIM Performance
Using the NUM_IFTABLE_LOAD_CUTOFF Extended
Parameter
Setting this extended parameter to a positive value will reduce the amount of time taken by EIM to
load repository information. This is because when you set this parameter to a positive value, only
information for the required EIM tables is loaded. For more information on this parameter, see the
Siebel Enterprise Integration Manager Administration Guide.

NOTE: While this parameter is especially important for merge processes, it can also be used for any
of the other types of processes.

Here is an example of using this parameter while running on Microsoft Windows from the server
command line mode:

run task for comp eim server siebserver with config=account2.ifb,
ExtendedParams="NUM_IFTABLE_LOAD_CUTOFF=1", traceflags=1

Disabling Docking: Transaction Logging
Typically, a disabled Docking: Transaction Logging setting is only used during initial data loads. The
value of the system preference, Docking: Transaction Logging, is set from the System Preferences
view within the Siebel application. This setting indicates whether or not the Siebel application logs
transactions for the purpose of routing data to Siebel Mobile Web Clients.

The default for this parameter is TRUE. If there are no Siebel Mobile Web Clients, you can set this
system preference to FALSE. If you have Siebel Mobile Web Clients, then this parameter must be set
to TRUE in order to route transactions to the Siebel Mobile Web Clients. However, during initial data
loads, you can set this parameter to FALSE to reduce transaction activity to the Siebel docking tables.
After the initial loads are complete, set the parameter back to TRUE.

NOTE: For incremental data loads, Docking: Transaction Logging should remain set to TRUE if there
are mobile clients. If this setting is changed for incremental data loads then you will need to perform
a reextract of all of the mobile clients.

Disabling Triggers
Disabling database triggers, by removing them through the Server Administration screens, can also
help improve the throughput rate. This can be done by running the Generate Triggers server task
with both the REMOVE and EXEC parameters set to TRUE. Be aware that components such as
Workflow Policies and Assignment Manager will not function for the new or updated data. Also,
remember to reapply the triggers after completing the EIM load.
Performance Tuning Guide Version 7.8132

Tuning Siebel EIM for Performance ■ Database Guidelines for Optimizing EIM
Running EIM Tasks in Parallel
Running EIM tasks in parallel is the last strategy you should adopt in order to increase the EIM
throughput rate. In other words, do not try this until all long-running SQL statements have been
tuned, the optimal batch size has been determined, the optimal number of records to be processed
at a time in the EIM table has been determined, and the database has been appropriately tuned.
Before running tasks in parallel, check the value of the Maximum Tasks parameter. This parameter
specifies the maximum number of running tasks that can be run at a time for a service. For more
information about this parameter, see the Siebel System Administration Guide.

NOTE: UPDATE STATISTICS must be set to FALSE in the .IFB file when running parallel EIM tasks on
the IBM DB2 platform.

Database Guidelines for Optimizing EIM
The following section describes EIM tuning tips for the database platforms supported by Siebel
applications (DB2, Microsoft SQL Server, and Oracle).

IBM DB2 UDB
■ Use the IBM DB2 load replace option when loading EIM tables and, if possible, turn off table

logging.

■ Use separate tablespaces for EIM tables and the base tables.

■ Use large page sizes for EIM and the larger base tables. Previous experience has determined that
a page size of 16 KB or 32 KB provides good performance. The larger page sizes allow more data
to be fitted on a single page and also reduces the number of levels in the index B-tree structures.

■ Similarly, use large extent sizes for both EIM and the large base tables.

■ Consider using DMS containers for all Siebel tablespaces. Using raw devices or volumes will
further help to improve performance.

■ Make sure that the tablespace containers are equitably distributed across the logical and physical
disks and across the input/output (I/O) controllers of the database server.

■ Use separate bufferpools for EIM tables and the target base tables. Since initial EIM loads are
quite large and there are usually no online users, it is recommended to allocate a significant
amount of memory to the EIM and the base table bufferpools.

■ Reorganize the tables if data on disk is fragmented. Use the reorgchk utility with current statistics
to find the fragmented tables or indexes.

■ Periodically make sure that table and index statistics are collected. Do not use RUNSTATS with
the DETAILED option.

■ Use IBM DB2 snapshot monitors to make sure performance is optimal and to detect and resolve
any performance bottlenecks.

■ Log retain can be turned OFF during the initial load. However, you should turn it back on before
moving into a production environment.
Performance Tuning Guide Version 7.8 133

Tuning Siebel EIM for Performance ■ Database Guidelines for Optimizing EIM
■ For the EIM tables and the base tables involved, alter the tables to set them to VOLATILE. This
makes sure that indexes are preferred over table scans.

■ Consider the following settings for DB2 registry values:

■ Consider the following settings for the DB2 database manager configuration parameters:

■ Consider the following settings for the database parameters:

Registry Value Setting

DB2_CORRELATED_PREDICATES
=

YES

DB2_HASH_JOIN = NO

DB2_RR_TO_RS = YES

DB2_PARALLEL_IO = “*”

DB2_STRIPPED_CONTAINERS = When using RAID devices for tablespace containers

Registry Value Setting

INTRA_PARALLEL = NO (may be used during large index creation)

MAX_QUERYDEGREE = 1 (may be increased during large index creation)

SHEAPTHRES = 100,000 (depends upon available memory, SORTHEAP setting, and
other factors)

Registry Value Setting

CATALOGCACHE_SZ = 6400

DFT_QUERYOPT = 3

LOCKLIST = 5000

LOCKTIMEOUT = 120 (between 30 and 120)

LOGBUFSZ = 512

LOGFILESZ = 8000 or higher

LOGPRIMARY = 20 or higher

LOGRETAIN = NO (only during initial EIM loads)

MAXLOCKS = 30

MINCOMMIT = 1

NUM_IOCLEANERS = Number of CPUs in the database server

NUM_IOSERVERS = Number of disks containing DB2 containers
Performance Tuning Guide Version 7.8134

Tuning Siebel EIM for Performance ■ Database Guidelines for Optimizing EIM
Microsoft SQL Server
The following sections describe EIM tuning tips for the Microsoft SQL Server database platform.

Fixing Table Fragmentation
Table and index fragmentation occurs on tables that have many insert, update, and delete activities.
Because the table is being modified, pages begin to fill, causing page splits on clustered indexes. As
pages split, the new pages may use disk space that is not contiguous, hurting performance because
contiguous pages are a form of sequential input/output (I/O), which is faster than nonsequential I/O.

Before running EIM, it is important to defragment the tables by executing the DBCC DBREINDEX
command on the table’s clustered index. This applies especially to those indexes that will be used
during EIM processing, which packs each data page with the fill factor amount of data (configured
using the FILLFACTOR option) and reorders the information on contiguous data pages. You can also
drop and recreate the index (without using the SORTED_DATA option). However, using the DBCC
DBREINDEX command is recommended because it is faster than dropping and recreating the index,
as shown in the following example:

DBCC SHOWCONTIG scanning '**S_GROUPIF' table...

Table: '**S_GROUPIF' (731969784); index ID: 1, database ID: 7

TABLE level scan performed.

Pages Scanned................................: 739

Extents Scanned..............................: 93

Extent Switches..............................: 92

Avg. Pages per Extent........................: 7.9

Scan Density [Best Count:Actual Count].......: 100.00% [93:93]

Logical Scan Fragmentation: 0.00%

Extent Scan Fragmentation: 1.08%

Avg. Bytes Free per Page.....................: 74.8

Avg. Page Density (full).....................: 99.08%

DBCC execution completed. If DBCC printed error messages, contact the system
administrator.

SORTHEAP = 10240 (This setting is only for initial EIM loads. During production,
set it to between 64 and 256.)

STAT_HEAP_SZ = 8000

Registry Value Setting
Performance Tuning Guide Version 7.8 135

Tuning Siebel EIM for Performance ■ Database Guidelines for Optimizing EIM
To determine whether you need to rebuild the index because of excessive index page splits, look at
the Scan Density value displayed by DBCC SHOWCONTIG. The Scan Density value should be at or
near 100%. If it is significantly below 100%, rebuild the index.

Purging an EIM Table
When purging data from the EIM table, use the TRUNCATE TABLE statement. This is a fast, nonlogged
method of deleting all rows in a table. DELETE physically removes one row at a time and records
each deleted row in the transaction log. TRUNCATE TABLE only logs the deallocation of whole data
pages and immediately frees all the space occupied by that table’s data and indexes. The distribution
pages for all indexes are also freed.

Parallel Data Load for EIM tables Using bcp
Microsoft SQL Server allows data to be bulk copied into a single EIM table from multiple clients in
parallel, using the bcp utility or BULK INSERT statement. You should use the bcp utility or BULK
INSERT statement when the following conditions are true:

■ The SQL Server is running on a computer with more than one processor.

■ The data to be bulk copied into the EIM table can be partitioned into separate data files.

These recommendations can improve the performance of data load operations. Perform the following
tasks, in the order in which they are presented, to bulk copy data into SQL Server in parallel:

1 Set the database option truncate log on checkpoint to TRUE using sp_dboption.(*)

2 Set the database option select into/bulkcopy to TRUE using sp_dboption.

In a logged bulk copy all row insertions are logged, which can generate many log records in a
large bulk copy operation. These log records can be used to both roll forward and roll back the
logged bulk copy operation.

In a nonlogged bulk copy, only the allocations of new pages to hold the bulk copied rows are
logged. This significantly reduces the amount of logging that is needed and speeds the bulk copy
operation. Once you do a nonlogged operation you should immediately back up so transaction
logging can be restarted.

3 Make sure that the table does not have any indexes, or if the table has an index, make sure it is
empty when the bulk copy starts.

4 Make sure you are not replicating the target table.

5 Make sure the TABLOCK hint is specified using bcp_control with eOption set to BCPHINTS.

NOTE: Using ordered data and the ORDER hint will not affect performance because the clustered
index is not present in the EIM table during the data load.

6 After data has been bulk copied into a single EIM table from multiple clients, any clustered index
on the table should be recreated using DBCC DBREINDEX.
Performance Tuning Guide Version 7.8136

Tuning Siebel EIM for Performance ■ Database Guidelines for Optimizing EIM
TempDB
This is the database that Microsoft SQL Server uses for temporary space needed during execution of
various queries. Set the initial size of the TEMPDB to a minimum of 100 MB, and configure it for auto-
growth, which allows SQL Server to expand the temporary database as needed to accommodate user
activity.

Configuration Parameters
Additional parameters have a direct impact on SQL Server performance and should be set according
to the following guidelines:

■ SPIN COUNTER. This parameter specifies the maximum number of attempts that Microsoft SQL
Server will make to obtain a given resource. The default settings should be adequate in most
configurations.

■ MAX ASYNC I/O. This parameter configures the number of asynchronous inputs/outputs (I/Os)
that can be issued. The default is 32, which allows a maximum of 32 outstanding reads and 32
outstanding writes per file. Servers with nonspecialized disk subsystems do not benefit from
increasing this value. Servers with high-performance disk subsystems, such as intelligent disk
controllers with RAM caching and RAID disk sets, may gain some performance benefit by
increasing this value because they have the ability to accept multiple asynchronous I/O requests.

■ MAX DEGREE OF PARALLELISM. This option is used to configure Microsoft SQL Server’s use of
parallel query plan generation. Set this option to 1 to disable parallel query plan generation. This
setting is mandatory to avoid generating an unpredictable query plan.

■ LOCKS. This option is used to specify the number of locks that Microsoft SQL Server allocates
for use throughout the server. Locks are used to manage access to database resources such as
tables and rows. This option should be set to 0 to allow Microsoft SQL Server to dynamically
manage lock allocation based on system requirements.

■ AUTO CREATE STATISTICS. This option allows SQL Server to create new statistics for database
columns as needed to improve query optimization. This option should be enabled.

■ AUTO UPDATE STATISTICS. This allows Microsoft SQL Server to automatically manage
database statistics and update them as necessary to achieve proper query optimization. This
option should be enabled.

Oracle Databases
This section provides EIM tuning tips for the Oracle database platform.

Avoiding Excessive Table Fragmentation
Before running EIM, you should consult with an experienced DBA in order to evaluate the amount of
space necessary to store the data to be inserted in the EIM tables and the Siebel base tables. Also,
for example with Oracle, you can make sure that the extent sizes of those tables and indexes are
defined accordingly.
Performance Tuning Guide Version 7.8 137

Tuning Siebel EIM for Performance ■ Database Guidelines for Optimizing EIM
Avoiding excessive extensions and keeping a small number of extents for tables and indexes is
important because extent allocation and disallocation activities (such as truncate or drop commands)
can be demanding on CPU resources.

To check if segment extension is occurring in an Oracle database
■ Use the SQL statement that follows to identify objects with greater than 10 extents.

NOTE: Ten extents is not a target number for segment extensions.

SELECT segment_name,segment_type,tablespace_name,extents

FROM dba_segments

WHERE owner = (Siebel table_owner)

and extents > 10;

To reduce fragmentation, the objects can be rebuilt with appropriate storage parameters. Always be
careful when rebuilding objects because of issues such as defaults or triggers on the objects.

Purging an EIM Table
When purging data from an EIM table, use the TRUNCATE command as opposed to the DELETE
command. The TRUNCATE command releases the data blocks and resets the high water mark while
the DELETE command does not, which causes additional blocks to be read during processing. Also,
be sure to drop and recreate the indexes on the EIM table to release the empty blocks.

Disabling Archive Logging
It is recommended that Archive Logging be disabled during initial data loads. You can enable this
feature to provide for point-in-time recovery after completing the data loads.

FREELIST Parameter
Multiple EIM processes can be executed against an EIM table provided they all use different batches
or batch ranges. The concern is that you may experience contention for locks on common objects.
To run multiple jobs in parallel against the same EIM table, you should make sure that the FREELIST
parameter is set appropriately for the tables and indexes used in the EIM processing.

This includes EIM tables and indexes, as well as base tables and indexes. The value of this parameter
specifies the number of block IDs that will be stored in memory which are available for record
insertion. Generally, you should set this to at least half of the intended number of parallel jobs to be
run against the same EIM table (for example, a FREELIST setting of 10 should permit up to 20 parallel
jobs against the same EIM table).

This parameter is set at the time of object creation and the default for this parameter is 1. To check
the value of this parameter for a particular object, the following query can be used:

SELECT SEGMENT_NAME, SEGMENT_TYPE, FREELISTS
Performance Tuning Guide Version 7.8138

Tuning Siebel EIM for Performance ■ Database Guidelines for Optimizing EIM
FROM DBA_SEGMENTS

WHERE SEGMENT_NAME=’OBJECT NAME TO BE CHECKED’;

To change this parameter, the object must be rebuilt. Again, be careful when rebuilding objects
because of issues such as defaults or triggers on the objects.

To rebuild an object

1 Export the data from the table with the grants.

2 Drop the table.

3 Recreate the table with the desired FREELIST parameter.

4 Import the data back into the table.

5 Rebuild the indexes with the desired FREELIST parameter.

Caching Tables
Another method to improve performance is to put small tables that are frequently accessed in cache.
The value of BUFFER_POOL_KEEP determines the portion of the buffer cache that will not be flushed
by the LRU algorithm. This allows you to put certain tables in memory, which improves performance
when accessing those tables. This also makes sure that after accessing a table for the first time, it
will always be kept in the memory. Otherwise, it is possible that the table will get pushed out of
memory and will require disk access the next time used.

Be aware that the amount of memory allocated to the keep area is subtracted from the overall buffer
cache memory (defined by DB_BLOCK_BUFFERS). A good candidate for this type of operation is the
S_LST_OF_VAL table. The syntax for keeping a table in the cache is as follows:

ALTER TABLE S_LST_OF_VAL CACHE;

Updating Tables
When there are 255 or more NVL functions in an update statement, Oracle updates the wrong data
due to hash keys overflow. This is an Oracle-specific issue. To avoid this problem, use less than 255
NVL functions in the update statement.

IBM DB2 UDB for z/OS
For DB2 configuration settings, you can find a listing (from the JCL) of the Database Manager
Configuration Parameters (DSNZPARM) in Implementing Siebel Business Applications on DB2 UDB
for z/OS.

Further IBM DB2 information is provided in the following sections:

■ “IBM DB2 Loading Process for EIM” on page 140

■ “General Recommendations for the IBM DB2 Loading Process” on page 140
Performance Tuning Guide Version 7.8 139

Tuning Siebel EIM for Performance ■ Database Guidelines for Optimizing EIM
IBM DB2 Loading Process for EIM
Figure 3 illustrates the load process for IBM DB2.

For more information, see the Siebel Enterprise Integration Manager Administration Guide.

General Recommendations for the IBM DB2 Loading
Process
The following general recommendations apply when performing the IBM DB2 loading process for
EIM:

■ Use the ONLY/IGNORE BASE TABLES parameters or ONLY/IGNORE BASE COLUMNS parameters
in the .IFB files to reduce the amount of processing performed by EIM. By using the IGNORE
BASE COLUMNS option, you allow foreign keys to be excluded, which reduces both processing
requirements and error log entries for keys which cannot be resolved. Remember that the key
words ONLY and IGNORE are mutually exclusive. For example, the following settings exclude the
options IGNORE BASE TABLES and ONLY BASE COLUMNS:

ONLY BASE TABLES = S_CONTACT

IGNORE BASE COLUMNS = S_CONTACT.PR_MKT_SEG_ID

The preceding example also causes the foreign key PR_MKT_SEG_ID to be forced to a nonmetal.

■ Import parents and children separately. Wherever possible, load data such as accounts,
addresses, and teams at the same time, using the same EIM table.

Figure 3. IBM DB2 Loading Process for EIM
Performance Tuning Guide Version 7.8140

Tuning Siebel EIM for Performance ■ Database Guidelines for Optimizing EIM
■ Use batch sizes that allow all of the EIM table data in the batch to be stored in the database cache
(approximately 2,000 records, 5000 for DB2/390). EIM can be configured through the use of an
extended parameter to use a range of batches, you should remember to put the variable name
into the .IFB file.

■ Multiple EIM processes can be executed against an EIM table, provided they all use different
batches or batch ranges. However, the main limit to EIM performance is not the application server
but the database. Contention for locks on common objects may occur if multiple EIM streams are
executed simultaneously for the same base table. Multiple EIM job streams can run concurrently
for different base tables, for example, S_ORG_EXT and S_ASSET.

■ Run EIM during periods of minimum user activity, outside of business hours, if possible. This
reduces the load for connected users and makes sure that the maximum processing capacity is
available for the EIM processes.

■ Set the system preference (in Administration - Application > System Preferences) for Docking:
Transaction Logging to FALSE during the initial database load. This reduces transaction activity
to the Siebel docking tables, which are used for synchronizing mobile clients.

■ Disable the database triggers by removing them through the Server Administration screens.
Doing this can also help to improve the throughput rate. Remember to reapply the triggers after
the EIM load has completed, because the lack of triggers will mean that components, such as
Workflow Policies and Assignment Manager, will not function for the new or updated data.

■ Remember to make sure that the required columns ROW_ID, IF_ROW_STAT, and
IF_ROW_BATCH_NUM are correctly populated in the EIM table to be processed. The most
efficient time to do this is when populating the EIM table from the data source or staging area,
after cleansing the data.

■ Unless there are specific processing requirements, make sure the EIM table is empty before
loading data into it for EIM processing. Always make sure that suitable batch numbers are being
used to avoid conflicts within the EIM table. If you are using an automated routine, truncating
the EIM table between loads from the data source helps to preserve performance.

■ When running Siebel applications on an IBM DB2 database, EIM can sometimes stop responding
when updating the S_LST_OF_VAL base table. This is due to a data issue. The BU_ID column in
the S_LST_OF_VAL base table may have only one or very few distinct values. That makes the
DB2 optimizer perform a table scan through all rows in the S_LST_OF_VAL table when most or
all rows have the same BU_ID column value.

To avoid this problem and speed up the query, you should modify the statistics data by running
the following SQL statements:

update sysibm.sysindexes set firstkeycard=1000 where name='S_LST_OF_VAL_M2';

update sysibm.syscolumns set colcard = 1000 where tbname='S_LST_OF_VAL' and
name='BU_ID';

NOTE: Depending on the data with which you are working, you may need to run other SQL
statements beforehand.
Performance Tuning Guide Version 7.8 141

Tuning Siebel EIM for Performance ■ Data Management Guidelines for Optimizing EIM
Data Management Guidelines for
Optimizing EIM
The following recommendations apply when performing the EIM loading process:

■ The EIM mapping chart shows that many of the EIM table columns derive their values not from
legacy database fields but from unvarying literal strings. Avoid filling up the EIM tables with this
type of information, because it slows down the movement of real legacy data from the EIM tables
to the base tables.

■ EIM offers an alternative method for populating base table columns with unvarying literal strings,
namely by using the DEFAULT COLUMN statement. This approach allows you to specify default
literals that must be imported into the base tables without having to retrieve them from the EIM
tables. For example, the EIM mapping chart shows Default Organization as the constant value
for CON_BU in EIM_CONTACT, which in turn will move into BU_ID in S_CONTACT. The same result
can be achieved with the setting DEFAULT COLUMN = CON_BU, Default Value in the .IFB file.
There are many other opportunities for moving literal strings from the EIM tables to the .IFB file.

Run Parameter Guidelines for
Optimizing EIM
The following recommendations are for setting run parameters when performing the EIM loading
process:

■ Do not set TRIM SPACES to FALSE. Using the TRIM SPACES parameter causes trailing spaces to
be stored in the Siebel base table. This can lead to inefficient use of disk space since Siebel
applications use VarChar on virtually all text columns longer than a single character. Setting TRIM
SPACES to FALSE can also waste valuable bufferpool space for the tablespace data.

■ Use either the IGNORE BASE TABLES parameter or the ONLY BASE TABLES parameter to limit the
number of tables being inserted into or updated. The ONLY BASE TABLES parameter is preferable
because the list is usually shorter and it is self-documenting. Using these parameters improves
performance because it limits the number of tables EIM attempts to load and they also save
space for tables that will not be used by the user interface.

■ Use either the IGNORE BASE COLUMNS parameter or the ONLY BASE COLUMNS parameter to
limit the number of tables being inserted into or updated. The ONLY BASE COLUMNS parameter
is preferable because the list is usually shorter and it is self-documenting. Using these
parameters improves performance because they limit the number of foreign keys EIM attempts
to resolve.

■ Set the USING SYNONYMS parameter to FALSE in the .IFB file. This logical operator indicates to
EIM that account synonyms do not require processing during import, which reduces the amount
of processing. Do not set the USING SYNONYMS parameter to FALSE if you plan to use multiple
addresses for accounts. Otherwise, EIM will not attach addresses to the appropriate accounts.

■ Suppress inserts when the base table is already fully loaded and the table is the primary table
for an EIM table used to load and update other tables. The command format is INSERT ROWS =
table name, FALSE.
Performance Tuning Guide Version 7.8142

Tuning Siebel EIM for Performance ■ Monitoring the Siebel Server During an EIM Task
■ Suppress updates when the base table is already fully loaded and does not require updates such
as foreign key additions, but the table is the primary table for an EIM table used to load and
update other tables. The command format is UPDATE ROWS = table name, FALSE.

Monitoring the Siebel Server During an
EIM Task
When monitoring the Siebel server, the assumption is that you have allocated sufficient processor
and memory resources for running the EIM task on the Siebel application servers and Siebel
database servers.

If you are using Microsoft Windows 2000 as the operating system for the Siebel Server, the Microsoft
Windows Performance Monitor can be used to verify the amount of processor and memory being used
by the hardware.

If you are using Sun Solaris or IBM AIX as operating systems for the Siebel Server, you can use
vmstat and iostat to verify the amount of processor and memory being used by the hardware.
Performance Tuning Guide Version 7.8 143

Tuning Siebel EIM for Performance ■ Monitoring the Siebel Server During an EIM Task
Performance Tuning Guide Version 7.8144

11 Tuning Siebel Remote for
Performance
This chapter discusses tuning for Siebel Remote that may enhance performance. It contains the
following topics:

■ “About Siebel Remote” on page 145

■ “Tuning Siebel Remote Server Components” on page 146

■ “Tuning the Mobile Web Client in a Siebel Remote Deployment” on page 148

For more information about Siebel Remote, see the Siebel Remote and Replication Manager
Administration Guide on the Siebel Bookshelf. Siebel SupportWeb also contains documents such as
Troubleshooting Steps and Technical Notes that address performance issues for Siebel Remote.

About Siebel Remote
Siebel Remote allows Mobile Web Clients (typically operating remotely, in disconnected mode on a
laptop) to connect to a Siebel Server and exchange updated data and files, a process known as
synchronization. Siebel Remote supports mobile computing by allowing field personnel to share
current information with members of virtual teams of other mobile and connected users across the
organization.

Siebel Remote uses the following components to manage the exchange of data and files:

■ Database Extract (alias DbXtract)

■ Generate New Database (alias GenNewDb)

■ Parallel Database Extract (alias PDbXtract)

■ Synchronization Manager (alias SynchMgr)

■ Transaction Merger (alias TxnMerge)

■ Transaction Processor (alias TxnProc)

■ Transaction Router (alias TxnRoute)

For more information about each of these components, see the Siebel Remote and Replication
Manager Administration Guide.

The section, “Tuning Siebel Remote Server Components” on page 146, discusses how you can
configure some of these components to optimize the performance of your Siebel Remote deployment.
Performance Tuning Guide Version 7.8 145

Tuning Siebel Remote for Performance ■ Tuning Siebel Remote Server Components
Tuning Siebel Remote Server
Components
This section describes how you can improve the performance of certain components on the Siebel
Remote Server. It includes the following sub-sections:

■ “Increasing Throughput for the Database Extract Component” on page 146

■ “Tuning the Transaction Router Component” on page 147

Increasing Throughput for the Database Extract
Component
You can increase throughput by running multiple concurrent instances of the Database Extract
component. Each instance of the Database Extract component requires a temporary table. This table
is called S_DOCK_INITM_N where N equals the value of the parameter TS Table Number (alias
TSTableNum). TS Table Number specifies the number of the temporary table that serves the
Database Extract component. For example, if TS Table Number equals 1, then temporary table 1
(S_DOCK_INITM_1) serves the instance of the Database Extract component that is currently
executing.

By default, 48 temporary tables are available for use. If you require additional tables, you create
them using Siebel Tools.

The recommended number of temporary tables to use depends on the database platform in use. For
example:

■ Microsoft SQL Server and IBM DB2 Universal Database

Use one temporary table for each instance of the Database Extract component that you execute.
For example, if you execute 11 instances of the Database Extract component, then use 11
temporary tables.

■ Oracle Enterprise Server

The number of temporary tables that you use depends on the size of the shared pool that this
database server can access. If the size of the shared pool is less than 300 MB, it is recommended
that you use one temporary table and execute one instance of the Database Extract component.
If the size of the shared pool is greater than 600 MB, then using one temporary table for each
instance of the Database Extract component may increase throughput.

For more information about the Database Extract component, see Siebel Remote and Replication
Manager Administration Guide. For more information about performance issues for the Database
Extract component, see Troubleshooting Steps 15 on Siebel SupportWeb.
Performance Tuning Guide Version 7.8146

Tuning Siebel Remote for Performance ■ Tuning Siebel Remote Server Components
Tuning the Transaction Router Component
This section describes how to resolve or avoid performance issues for the Transaction Router
component that arise from the following sources:

■ Visibility-Related Transactions

■ Docking Rules and Data Distribution

■ Slow-Running Queries

■ Increasing Transaction Router Throughput

For further information on Transaction Router performance issues, consult the following documents
on Siebel SupportWeb:

■ Troubleshooting Steps 8

This document describes how to diagnose and resolve Transaction Router performance issues.

■ Troubleshooting Steps 38

This document describes how to monitor and manage the transaction backlog for a Siebel Remote
implementation.

Visibility-Related Transactions
If you diagnose the root cause of the Transaction Router performance issue to be visibility-related
transactions, consider the following two possible solutions:

■ Reextract all mobile users and regional nodes

For more information, see the Siebel Remote and Replication Manager Administration Guide.

■ Allow the Transaction Router component tasks to continue processing until they clear the backlog

Once the Transaction Router has processed all visibility-related transactions, the backlog should
be processed more quickly. Starting additional Transaction Router tasks can also improve
performance, but do not start more tasks than the Siebel Server or database engine can support.

Docking Rules and Data Distribution
If you diagnose the root cause of the Transaction Router performance issue to be docking rule related
transactions, log a service request with Siebel Technical Support and provide the following pieces of
information:

■ RDBMS trace of the Transaction Router task

■ Transaction Router log files

■ .dx files the Transaction Router is processing from the
SIEBEL_ROOT\siebsrvr\Docking\txnproc directory

■ The results from executing the visrule script

For more information about the visrule script, see Troubleshooting Steps 8 on Siebel
SupportWeb.
Performance Tuning Guide Version 7.8 147

Tuning Siebel Remote for Performance ■ Tuning the Mobile Web Client in a Siebel Remote
Deployment
Slow-Running Queries
If you diagnose the root cause of the Transaction Router performance issue to be slow-running
queries, consult your database administrator to determine the following:

■ All indexes are present and valid on the tables involved in the poor performing queries.

To determine if all indexes are valid and present, see the Siebel Data Model Reference.

■ Check if the tables and indexes involved in the poor-performing queries require de-
fragmentation.

Increasing Transaction Router Throughput
The following factors can impact throughput for the Transaction Router component:

■ Large batch sizes for Siebel Enterprise Manager (Siebel EIM)

It is recommended that, where possible, you reduce the size of the batch that Siebel EIM
processes when it imports data. In addition, it is recommended that you log transactions to the
Siebel File System rather than the Master Transaction Log (S_DOCK_TXN_LOG).

For more information, see the Siebel Enterprise Integration Manager Administration Guide.

■ Large batch size for Siebel Assignment Manager

The batch file size for Siebel Assignment Manager can also impact the performance of the
Transaction Router component. For information, see the Siebel Assignment Manager
Administration Guide.

In both cases described above, you need to decide if an increase in throughput for the Transaction
Router component is more important than a decrease in throughput for the Siebel EIM and Siebel
Assignment Manager components before you make changes.

Tuning the Mobile Web Client in a Siebel
Remote Deployment
This section discusses how you can optimize the performance of a Mobile Web Client in a Siebel
Remote deployment. It includes the following topics:

■ “Optimizing Parameters in the Application Configuration File” on page 149

■ “Best Practice for Synchronization” on page 150

■ “Choosing an Appropriate Routing Model” on page 151

For additional information about performance tuning for Mobile Web Clients, see Chapter 5, “Tuning
Siebel Web Client for Performance.”
Performance Tuning Guide Version 7.8148

Tuning Siebel Remote for Performance ■ Tuning the Mobile Web Client in a Siebel Remote
Deployment
Optimizing Parameters in the Application Configuration
File
This section discusses how you can modify values for the parameters specified in your Siebel
application configuration file to optimize the performance of a Mobile Web Client.

DockTxnsPerCommit
The value of this parameter specifies the number of transactions that Siebel Remote applies to the
local database before performing a commit. If you have an environment where a large number of
transactions are constantly being created, adjusting the value of DockTxnsPerCommit upwards might
improve response time. In such a scenario, test a variety of values (for example, 1000, 2000, 3000)
and determine which value is best for your environment.

The DockTxnsPerCommit parameter appears in the [Local] section of your application configuration
file. The default value is 500.

AutoStopDB
Make sure that AutoStopDB is set to FALSE so that the SQL Anywhere database engine continues to
execute after the user exits the Siebel application. This reduces the time required to restart the
Siebel application at a later time. If AutoStopDB is set to TRUE, the SQL Anywhere database engine
automatically closes down when you exit a Siebel application.

You set the AutoStopDBIn parameter in the [Local] section of your application configuration file.
The default value is FALSE.

Allocating Memory to the SQL Anywhere Database Engine Cache
The amount of memory (especially cache) made available to the SQL Anywhere database engine is
one of the major factors that can influence performance. The SQL Anywhere database engine uses
memory for many purposes, but one of the major uses is to hold data that is accessed repeatedly,
so that is does not have to retrieve data from the database each time it is needed.

You can configure how much memory is available to the cache by setting a value for the -c command
line option in the ConnectString parameter of the siebel.cfg file. For example, the following entry:

-c15m -ch25m

allocates a minimum of 15 MB of memory to the cache. The value for the parameter (ch) indicates
that the amount of memory allocated to the cache can be increased upwards to a maximum of 25 MB.

By default, the values for these parameters are expressed as a percentage of the total memory
available. For example, the following entry:

-c5p -ch7p

specifies that a minimum of 5% of available memory be allocated to the cache memory and a
maximum of 7%.

Allocating more memory to the memory cache of the SQL Anywhere database engine reduces the
amount of memory that is available to other applications on the local machine.
Performance Tuning Guide Version 7.8 149

Tuning Siebel Remote for Performance ■ Tuning the Mobile Web Client in a Siebel Remote
Deployment
As a guideline, use the difference between 80% of total machine memory and the amount of memory
used by all applications on the machine during regular use. For example, if a local machine that has
512 MB of memory available uses 328 MB during regular use (after all applications including Siebel
applications are loaded), then you can allocate 82 MB of memory to the cache of the SQL Anywhere
database engine.

You should also conduct tests to determine an upper limit for the amount of memory that you can
allocate to the SQL Anywhere database engine cache.

CAUTION: Do not increase the amount of memory allocated to the cache to a level that it results in
paging. Paging is where memory utilization exceeds the total available memory and can cause
reduced performance.

Sort Collation
The parameter SortCollation should be set to binary to optimize the retrieval of data from the local
database. The SortCollation parameter is not a default part of the application configuration file.
You have to manually add it to the configuration file of your Siebel application. You set the value of
SortCollation in the [Local] section of your application configuration file.

For more information about this parameter, refer to the Siebel System Administration Guide. To
determine the current status of SortCollation, see Alert 801 on Siebel SupportWeb.

Best Practice for Synchronization
This section lists some points that may help you optimize data synchronization between your Siebel
Mobile Web Client and Siebel Remote Server. Note the following points:

■ Synchronize frequently

Synchronizing frequently reduces the number of transactions to transmit and commit for each
synchronization session. The longer a user waits between synchronization sessions, the more
data there is to send.

■ Enable TrickleSync on the Siebel Mobile Web Client

Each time a Siebel Mobile Web Client connects to your Siebel Enterprise network, TrickleSync
performs database synchronization. For more information, see Siebel Remote and Replication
Manager Administration Guide.

■ Use time-based filters to prevent sending data from server to client that is older than a specific
date.

■ Disable Docking objects
Performance Tuning Guide Version 7.8150

Tuning Siebel Remote for Performance ■ Tuning the Mobile Web Client in a Siebel Remote
Deployment
Choosing an Appropriate Routing Model
One way to increase performance is to reduce the volume of data transmitted to the remote users.
This can be best achieved by choosing the appropriate routing model. If none of the supplied routing
models are appropriate, contact Siebel Expert Services, who will help you to develop a routing model
that is appropriate to your environment.
Performance Tuning Guide Version 7.8 151

Tuning Siebel Remote for Performance ■ Tuning the Mobile Web Client in a Siebel Remote
Deployment
Performance Tuning Guide Version 7.8152

12 Tuning Customer Configurations
for Performance
This chapter discusses how you can avoid common performance-related problems in Siebel
applications that stem from customer configuration done using Siebel Tools or Siebel scripting
languages. It contains the following topics:

■ “General Best Practices for Customer Configurations” on page 153

■ “Best Practices for Siebel Scripting” on page 160

■ “Best Practices for Data Objects Layer” on page 164

■ “Best Practices for Business Objects Layer” on page 169

■ “Best Practices for User Interface Objects Layer” on page 173

Application development information is also available in the following books on the Siebel Bookshelf
and in Siebel Tools Online Help:

■ Configuring Siebel Business Applications

■ Using Siebel Tools

■ Siebel Developer’s Reference

■ Object Types Reference

■ Siebel Object Interfaces Reference

■ Siebel eScript Language Reference

■ Siebel VB Language Reference

General Best Practices for Customer
Configurations
This section provides some general best practices for customer configuration using Siebel Tools.

Using your hardware resources optimally, and configuring your system appropriately, can help you
to achieve your performance goals. You should consider your resources and requirements carefully,
and test and monitor system performance on a continual basis.

The Siebel application architecture has been designed and tuned for optimal performance, making
use of features such as database indexes, data caching, RDBMS cursors, efficient SQL generation,
native database APIs, and so on. However, custom configurations may have various potential
performance pitfalls, the impact of which may be amplified in environments with large databases and
wide data distribution across servers. Follow guidelines presented here and in other documentation
to avoid such problems.

In addition to the topics in this section, see also:
Performance Tuning Guide Version 7.8 153

Tuning Customer Configurations for Performance ■ General Best Practices for Customer
Configurations
■ “Best Practices for Siebel Scripting” on page 160

■ “Best Practices for Data Objects Layer” on page 164

■ “Best Practices for Business Objects Layer” on page 169

■ “Best Practices for User Interface Objects Layer” on page 173

Review information presented in Configuring Siebel Business Applications and other documentation
on the Siebel Bookshelf, and other sources.

Miscellaneous Configuration Guidelines
The following are some miscellaneous configuration guidelines for maintaining optimal performance:

■ Avoid using sort specifications on non-indexed columns or joined columns. For more
information, see “Managing Database Indexes in Sorting and Searching” on page 165 and other
relevant topics.

■ Avoid the use of case insensitivity. Use of case-insensitive queries can significantly increase
the possibility of performance issues due to the additional complexity required at the database
level to support case-insensitive database operations.

Prior to enabling case insensitivity, a thorough review of business requirements and performance
criteria is highly recommended. In addition, if the feature is enabled, a performance test should
be conducted with a full copy of the production database. The severity of the performance impact
increases with the complexity of the configuration and the size of the production database.

It is also recommended that Siebel Expert Services be engaged to optimize the configuration and
review requirements. Case insensitivity is a database platform constraint and should also be
reviewed with the database platform vendor.

For more information about configuring case insensitivity for an application or for specified fields,
see the Applications Administration Guide.

■ Limit the use of case insensitivity for queries. Case-sensitive searches perform better than
case-insensitive queries. Siebel applications are case-sensitive by default. You can enable case
insensitivity either for the entire application or for specified fields. In general, the larger the
database, and the larger the number of records returned by a case-insensitive query, the more
that overall database performance is affected. Overall performance is also affected by the
number of users who perform case-insensitive queries. End users can also force case-sensitive
or case-insensitive queries.

For more information about configuring case sensitivity for an application or for specified fields,
see the Applications Administration Guide.

■ Avoid overly complex user interface configuration. In general, do not include a large
number of applets per view (generally include no more than four applets), or a large number of
fields per applet.

■ Limit the number of business components in a view. An excessive number of different
business components used in applets in a view can slow down the display of data upon entry into
that view. This is because each of the applets must be populated with data.
Performance Tuning Guide Version 7.8154

Tuning Customer Configurations for Performance ■ General Best Practices for Customer
Configurations
■ Limit the number of virtual business components in a view. Avoid using more than two
virtual components in a single view.

■ Limit the number of fields in business components or applets. There is no set limit on the
number of fields in a business component, or number of list columns in a list applet. However, a
business component with too many active fields will have degraded performance. Also, in some
database systems it is possible to generate a query that is too large to be processed. See also
“Limiting the Number of Active Fields” on page 170.

In particular, reduce the number of fields displayed in the master applet on related views. The
information is static and may not be necessary. Additional space will be available on the view for
supporting data without users needing to scroll. (This will also provide a usability benefit.)

End users can reduce or increase the number of fields displayed in a list applet, by using the
Columns Displayed menu option. However, it is best to provide an optimal default number of
visible fields for each applet. It is also best to provide the minimum required total number of
fields, including those that are hidden by default.

■ Limit the number of required fields. Required fields are always retrieved from database
queries. Consequently, limiting the number of required fields (fields for which the Required user
property is TRUE) in your business components can improve performance. See also “Limiting the
Number of Active Fields” on page 170.

■ Limit the number of records returned. To limit the number of records returned for a business
component, you can add a search specification to the business component or to applicable
applets or links, or you can define a default predefined query on the view.

■ Limit the number of joins, extension tables, and primary ID fields in a business
component. Joins degrade performance by causing an extra row retrieval operation in the joined
table for each row retrieval in the main table. Extension tables and primary ID fields also use
joins, although implied rather than explicitly defined, adding a row retrieval operation for each.

The more joins, extension tables, and primary ID fields defined in a business component, the
higher the number of row retrievals required in tables other than the main table, with a
corresponding performance degradation.

■ Limit the use of Link Specification property in fields. TRUE settings in the Link Specification
property in fields may also slow performance. If TRUE, the field’s value is passed as a default
value to a field in the detail business component through a link.

This is necessary if the master business component has a link relationship (in the current
business object) with one or more detail business components, and these detail business
components utilize the “Parent:” expression in the Pre Default Value, Post Default Value, or
Calculated Value properties in any fields. The master business component must pass the field
value to any detail records displayed.

As with the Force Active property, fields with the Link Specification property set to TRUE will be
retrieved every time the business component is queried.
Performance Tuning Guide Version 7.8 155

Tuning Customer Configurations for Performance ■ General Best Practices for Customer
Configurations
■ Use inner joins rather than outer joins. Inner joins may be used for joined tables, with a
resulting savings in overhead, provided you are guaranteed that all foreign key references are
valid.

For example, when the join is from a detail business component to its master, you are guaranteed
of the existence of the master. You can configure the join as an inner join by setting the Outer
Join Flag property of the Join object definition to FALSE. This improves the performance of
queries that use the join. In general, avoid using double outer joins.

■ Configure Cascade Delete appropriately for many-to-many links. The Cascade Delete
property in a Link object definition must be correctly configured for use in a many-to-many link,
or the first insertion or deletion in the association applet will be abnormally slow. A link object
definition used in a many-to-many relationship is one that contains a non-NULL value for the
Inter Table property. The Cascade Delete property in such a link must be set to None.

■ Remove unneeded sort buttons. Remove sort buttons from list columns in list applets where
this capability is not required.

■ Reduce the need to scroll in a view. Whenever possible, design views that do not require
scrolling. (This will also provide a usability benefit.)

■ Provide tuned PDQs. Provide tuned PDQs (predefined queries) that address most user
requirements. Doing so reduces the likelihood of users creating undesirably complex queries. You
may also provide guidance to end users on constructing appropriate queries.

■ Cache business services. Cache business services that should be accessible at all times in a
user session. To do this, set the Cache parameter to TRUE for each applicable Business Service
object definition. Caching of business services has an impact on memory, as the services are
cached per session. Make sure that only frequently accessed business services in a session are
marked cacheable.

■ Avoid calculated fields that do Counts and Sums. Reduce, where possible, the use of
calculated fields that do Counts and Sums. If such fields are active, they will cause performance
degradation.

Analyzing Generated SQL for Performance Issues
Performance troubleshooting is an iterative process. You need to consider performance implications
during design and development. Note any changes to potentially troublesome areas, such as MVGs,
business component sort and search specifications, joins, extension tables, or indexes.

Then you test the application to determine bottlenecks, using realistic data volumes and distribution
in your test environment. Focus your testing effort on the slowest, most important, and most highly
configured views.

If a performance problem is detected in testing or production, your next step is to analyze the SQL
statements being generated by Siebel applications. This is one of the most useful diagnostic tools
available to you for performance analysis.
Performance Tuning Guide Version 7.8156

Tuning Customer Configurations for Performance ■ General Best Practices for Customer
Configurations
Specifying SQL Spooling in Siebel Developer Web Client
After making configuration changes in Siebel Tools, spool the SQL that is generated by the Siebel
application during runtime. You do this to troubleshoot configuration-related performance issues.

To spool the generated SQL into a trace file, start the Siebel application in the Siebel Developer Web
Client (connecting to the Siebel Database) using the command-line option /s sql_trace_file.

For more information about installing and running the Siebel Developer Web Client, see the Siebel
Installation Guide for the operating system you are using.

The SQL trace file contains all of the unique SQL statements generated during the current session,
and identifies the amount of time spent processing each one. The trace file may be opened in a text
editor for examination after the session has ended. The SQL trace file, which is simply a text file
holding the spooled SQL from the session, is overwritten during every new session.

You can specify the /s sql_trace_file option by modifying properties for the Start menu item or
desktop shortcut from which the Siebel application is invoked. The following example shows a
command line for spooling generated SQL from Siebel Call Center using the Siebel Developer Web
Client:

“D:\Program Files\siebel\7.8\web client\bin\siebel.exe
/c D:\Program Files\siebel\7.8\web client\bin\enu\uagent.cfg /s siebel_sql.txt”

If you do not specify a path, the SQL trace file is created in the Siebel client root bin directory, such
as “D:\Program Files\siebel\7.8\web client\bin".

■ For the purpose of spooling SQL, you can create shortcuts for Siebel Developer Web Client to run
customer applications such as Siebel eService. For example, the shortcut would point to the
application configuration file eservice.cfg.

■ You can enable SQL spooling for an Application Object Manager (AOM) component by setting the
Object Manager SQL Log (ObjMgrSqlLog) parameter to 4 at the component level. For more
information, see Siebel System Administration Guide.

■ You can also programmatically start and stop SQL spooling though the Siebel Object Interfaces
by using the TraceOn and TraceOff methods on the Application object. For more information
about these methods, see Siebel Object Interfaces Reference.

Troubleshooting Performance Using SQL Trace Files
As described, you can generate SQL trace files related to your configuration changes, such as for a
particular view you have configured. Analyze the contents of the SQL trace file to identify any
possible performance issues.

As you look through the SQL trace file, you should be aware of factors such as:

■ The number and complexity of SQL statements.

■ Execution times for SQL statements. This is the SQL execution time plus the time it takes to
return rows. It does not include time for client-side processing.

■ Selection criteria in the WHERE clauses, indicating search specifications.
Performance Tuning Guide Version 7.8 157

Tuning Customer Configurations for Performance ■ General Best Practices for Customer
Configurations
■ Sorting criteria in the ORDER BY clauses, indicating sort specifications. (In general, it is better
for a query to first filter data using WHERE clauses, in order to reduce the volume of data to be
then sorted. Applying sorting criteria that match users’ needs reduces the likelihood of users
performing their own sort operations, which would require additional system resources.)

■ The use of joins.

NOTE: If the same SQL statement is executed repeatedly, the Siebel application displays the entire
statement for the first query. For each subsequent iteration of the same query, only the bind
variables are displayed. You can recognize a query that is repeated by the specific set of bind
variables it uses.

SQL statements are displayed for all queries, including housekeeping queries. These are queries that
are necessary for system operation, such as looking up the user’s login to obtain responsibilities, and
determining today’s alarms in the calendar. You will also see queries to the S_LST_OF_VAL table to
populate picklists. Queries that populate views are also present in the SQL trace file, and should be
easily distinguishable based on the tables they access.

Troubleshooting Performance Using SQL Query Plans
If you identify a problematic query in the SQL trace file, you can obtain more information about it
using the database query tool provided with the RDBMS, such as SQL*Plus for Oracle.

Copy and paste the SQL statement from the trace file into the database query tool, execute the query
against the Siebel Database, then generate a query plan. A query plan is a detailed reporting of
various statistics about the query you executed. For an example of generating a query plan against
an SQL Anywhere database, see “Example of Obtaining Query Plan” on page 160.

Use query plans to check:

■ The use of indexes

■ The use of temporary tables

■ The use of sequential table scans

Finally, compare your results with a standard application (that is, not custom-configured) in order to
identify any potentially slow queries.

You can resolve many performance issues either by modifying search specifications or sort
specifications, or by creating new indexes on the base table.

CAUTION: Only specially trained Siebel Systems personnel can modify existing Siebel indexes. This
restriction is enforced so that performance in other modules (such as Siebel EIM) is not adversely
affected by any index modifications you make to improve query performance through the user
interface. For more information, see “Managing Database Indexes in Sorting and Searching” on
page 165.

Consider any potential performance implications before modifying search specification and sort
specification properties for a business component. By spooling out the SQL into trace files, you can
analyze which indexes are likely to be used when your application queries the business component
through each applet.
Performance Tuning Guide Version 7.8158

Tuning Customer Configurations for Performance ■ General Best Practices for Customer
Configurations
Run your query plans against datasets that are comparable to the production dataset. You will not
obtain useful results analyzing the performance of a query against a 30-record test dataset when the
production database has 200,000 records.

You may find it useful to prioritize the views to examine, as follows:

■ First priority. Views that are known to have the biggest performance bottlenecks.

■ Second priority. Views that are accessed most frequently.

■ Third priority. Views that are the most highly configured (as compared to the standard Siebel
application).

Comparison with the standard Siebel application provides you with a benchmark for evaluation. It is
often very useful to obtain a trace file from the standard Siebel application, following a preselected
route through the views. Then you obtain a separate trace file from the custom-configured
application, following the same route as closely as possible. The two trace files are compared, noting
differences in the bullet items listed previously.

NOTE: When you review a query plan, keep track of the business object to which each query applies,
You can tell where each new business object is being opened by searching for the S_APP_QUERY
statement. The business object that was accessed is represented using the bind variable statements
beneath the query.

Bind variables are the values that determine which records are brought back. The RDBMS substitutes
the value of a bind variable into an SQL statement when the same SQL statement is being reused,
generally in place of each occurrence of a question mark or series of question marks. For example,
a business object bind variable is used in an S_APP_QUERY statement because the purpose of this
statement is to open the business object.

Watch for the following indications of potential problems:

■ Unnecessary fields are being accessed, especially ones not exposed in the user interface and not
needed for calculated fields, or used for passing values to detail records.

■ Unnecessary joins are occurring, particularly to tables that are not being accessed.

■ Unnecessary multiple joins are being made to the same table. This can indicate duplicate join or
Multi Value Link (MVL) object definitions, or joins using the same foreign key.

■ Multiple short queries similar to the following:

...FROM

SIEBEL.S_ADDR_PER T1

When a short query appears many times, this generally indicates that an MVG without a primary join
is being accessed by a list applet. The system is running a secondary query for each master record
to obtain its detail records. The secondary queries are the short queries appearing in the log file.
This is usually your best diagnostic indicator of the need for a primary join.

When a short query appears only once, it indicates the same situation, but accessed in a form applet.
In either case, the cure is a primary join, as explained in “Using Primary ID Fields to Improve
Performance” on page 172.
Performance Tuning Guide Version 7.8 159

Tuning Customer Configurations for Performance ■ Best Practices for Siebel Scripting
Example of Obtaining Query Plan
The following procedure shows an example of obtaining a query plan when running against a local
SQL Anywhere database using the Siebel Mobile Web Client.

To obtain a query plan for an SQL statement in your trace file

1 Execute the Interactive SQL (dbisqlc.exe) program, located in the Siebel client installation
directory (Siebel Mobile).

2 In order to analyze an SQL statement from the SQL trace file, copy the SQL statement and paste
it into the Interactive SQL program’s Command pane.

3 Replace bind variable references with the corresponding bind variable values.

4 Click the Execute button.

The query runs against the local SQL Anywhere database. The Statistics pane provides analysis
information.

SQL Queries Against Database Data
The database that underlies Siebel applications can be queried to obtain information on a read-only
basis.

CAUTION: Update queries should never be directly performed on the Siebel Database. All data
manipulation and restructuring should be performed through Siebel Tools or through the Siebel
application.

Best Practices for Siebel Scripting
This section provides guidelines for Siebel scripting using Siebel eScript or Siebel VB, or for using
declarative alternatives in place of scripts.

Using Declarative Alternatives to Siebel Scripting
Often, customers use scripts for data validation, responses to data changes, or other purposes that
may best be addressed through declarative means: by defining properties or specifying business
service method invocation using Siebel Tools.

Scripting is often unnecessary and should be minimized or avoided because it may introduce
performance problems, add risk and complexity, require greater maintenance, and duplicate
functionality already available in Siebel applications.

For example, the Validation field property, which allows for common VB expressions and comparison
operators, can be used to perform field validation or string manipulation of data entered through the
user interface or through Siebel Object Interfaces.

Expressions for the Validation property can include methods such as LoginId(), LoginName(),
LookupValue() ParentFieldValue(), PositionId(), PositionName(), Today(), and so on.
Performance Tuning Guide Version 7.8160

Tuning Customer Configurations for Performance ■ Best Practices for Siebel Scripting
The Force Case field property may also be useful in a data-validation context, such as to ensure that
personal names entered have initial capital letters.

For more information on supported expressions and operators, see Siebel Developer’s Reference.

Setting the Auto Primary property on MVL object definitions can also help you achieve results that
you might otherwise use scripting for. For example, if your business requirement is to assign the first
record in an MVG as the primary record (for example, primary address or primary owner), then set
Auto Primary to the value Default.

For more information about using Primary ID fields, see “Using Primary ID Fields to Improve
Performance” on page 172 and see Configuring Siebel Business Applications.

Scripting can be used in combination with declarative methods, such as to present customized error
messages that guide users to enter data appropriately for each field subject to validation rules.

Functionality such as custom responses to data changes, which may often be handled through
scripting, may best be addressed through declarative means. Such mechanisms, many of which may
be used in combination, include:

■ User properties on applets, business components, fields, controls, list columns, and other object
definitions (for example: Required, Pre-Default, Post Default, Search Spec, Type Field, or
Type Value)

■ Siebel Workflow

■ State model

■ Siebel Personalization

■ Run-time events

■ Named methods

■ Business services

■ Visibility configuration

For more scripting guidelines, see Configuring Siebel Business Applications. For more information on
many of the these topics, consult the Siebel Bookshelf.

Siebel Scripting Guidelines for Optimal Performance
This section provides guidelines for appropriate use of Siebel scripting using Siebel eScript or
Siebel VB.

For more information about these and other guidelines, see:

■ Siebel eScript Language Reference

■ Siebel VB Language Reference

■ Siebel Object Interfaces Reference

■ Configuring Siebel Business Applications
Performance Tuning Guide Version 7.8 161

Tuning Customer Configurations for Performance ■ Best Practices for Siebel Scripting
The following are some guidelines for appropriate use of Siebel scripting:

■ Use declarative alternatives. Generally, you should try all other possibilities before using
scripting to accomplish a functional requirement. See also “Using Declarative Alternatives to Siebel
Scripting” on page 160.

■ Use browser scripts for simple client-side functions such as field validation. Browser
scripts are best used to perform simple procedural logic on the client side, such as performing
field validation, or displaying blocking messages or alerts to users. Some such uses, particularly
field validation, can reduce server round trips. Using more complex browser scripts, however,
may reduce performance.

For example, using Set/Get Profile attribute calls, or invoking multiple business service methods,
may require more server round trips and lead to performance problems. Adding extra
functionality to scripts that display messages may have a similar effect.

NOTE: Setting the Immediate Post Changes field property has a similar effect on server round
trips. Use this property only for constrained picklists and calculated fields that must be updated
dynamically.

■ Do not return large result sets from server business services to browser scripts.
Browser scripts that invoke server scripts should return simple values or a single record, and
should not return large result sets.

■ Minimize scripting on field-level or control-level events. Field-level or control-level events
are fired more often than most other types of events. Consequently, invoking scripts from such
events can dramatically impact scalability. Avoid scripting frequent events, or simplify scripts on
these events. Examples of such events include BusComp_PreGetFieldValue(),
WebApplet_PreCanInvokeMethod(), and WebApplet_ShowControl().

■ Use simple scripts on applet-level and business component-level events. Scripts written
on events for applets or business components—for example, for Change Record events—should
be very simple, because such events are fired often. Complex or I/O-intensive operations in such
events will adversely affect performance.

■ Caching data in Siebel eScript scripts. Executing the same SQL statements from various
locations in a Siebel eScript script can generate an excessive number of script API calls and a
redundant number of business component queries. In order to reduce the performance impact
(assuming data does not change between invocations), you can cache a limited set of data within
your scripts. (In some cases, you may not want to cache data at the script level, such as if the
data that needs to be cached is too complex or too large.)

■ Declare your variables. Declaring your variables and specifying their data type, as appropriate,
may use less memory and improve performance.

■ Destroy any created objects when you no longer need them (Siebel eScript).
Theoretically, the Siebel eScript interpreter takes care of object cleanup, complex code involving
many layers of object instantiation may in some cases cause the interpreter not to release
objects in a timely manner. Destroying or releasing objects helps to minimize the impact on
resources such as server memory.

Explicit destruction of Siebel objects should occur in the procedure in which they are created. To
destroy an object in Siebel eScript, set it to NULL, or set the variable that contains it to another
value. The best practice is to destroy objects in reverse order of creation—that is, destroy child
objects before you destroy parent objects.
Performance Tuning Guide Version 7.8162

Tuning Customer Configurations for Performance ■ Best Practices for Siebel Scripting
■ Verify your script is defined on the appropriate method. A script that is not defined on the
right method may have a performance impact. For example, if special code needs to be run at
the record level when an insert or update is done, it is better to invoke a script from
BusComp_WriteRecord() rather than BusComp_SetFieldValue(). The reason for this is that
SetFieldValue events are fired much more often than WriteRecord events. Limit your use of
specialized invocation methods.

■ Verify your script is implemented in the right view. A script that is not implemented in the
right view may cause significant performance impact. Verify that this script is implemented in
the right place in the configuration, based on data manipulations, navigation requirements, and
business requirements in general.

■ Avoid redundant repository object settings. Do not perform unnecessary object validation.
Each method invocation you perform has a performance cost. Details on this issue regarding field
activation, for example, are provided below.

■ Use the ActivateField() method sparingly (Siebel eScript). Do not activate a field if you will
not use it. Use the ActivateField() method sparingly. Using this method increases the number of
columns retrieved by a query, and can lead to multiple subqueries involving joins. These
operations can use a significant amount of memory, and can degrade application performance.

Do not perform any unnecessary field activation (for fields that are already active). Each method
invocation you perform has a performance cost.

■ Do not activate system fields, because they are already activated by default. Such fields
include Created, Created By, Updated, and so on.

■ Do not activate any other fields that are already active. Check the Force Active field property
in Siebel Tools to see if you need to activate it.

■ Use the ExecuteQuery() method sparingly (Siebel eScript). Removing calls to execute a
business component, using the method ExecuteQuery(), can yield significant performance
benefit. It is better practice to use shared variables to share values of specific business
component records across scripts than to separately invoke ExecuteQuery() in each script.

■ Use SetSearchSpec() method rather than NextRecord() method (Siebel eScript). You
can improve performance by using the SetSearchSpec() method to get a specific record, rather
than using the NextRecord() method to go through a list of retrieved methods until a specific
record is found.

■ Use ForwardOnly cursor mode (Siebel eScript). Use the ForwardOnly cursor mode for
ExecuteQuery() unless ForwardBackward is required. Using ForwardBackward uses a significant
amount of memory, which can degrade application performance.

■ Use appropriate error handling. Appropriate error handling can help maintain optimal
performance. Although error handling is important, it also has a performance cost. Additional
guidelines for using error handling in scripts are provided in Technical Note 514, located on Siebel
SupportWeb.

■ Avoid nested query loops. Nested query loops may involve a large number of subqueries and
may significantly impact performance. Use this technique very sparingly. Implement a nested
query loop in the correct order in order to minimize the number of iterations. Be aware that a
nested query loop may be invoked implicitly, depending on how your script is written.
Performance Tuning Guide Version 7.8 163

Tuning Customer Configurations for Performance ■ Best Practices for Data Objects
Layer
■ Use the this object reference (Siebel eScript). The special object reference this is eScript
shorthand for “this (the current) object.” You should use it in place of references to active
business objects and components.

For example, in a business component event handler, you should use this in place of
ActiveBusComp(), usage of which may have a significant performance impact. Refer to the
following example:

function BusComp_PreQuery()
{
this.ActivateField("Account");
this.ActivateField("Account Location");
this.ClearToQuery();
this.SetSortSpec("Account(DESCENDING)," +
" Account Location(DESCENDING)");
this.ExecuteQuery();
return (ContinueOperation);
}

■ Use the Switch construct (Siebel eScript). The Switch construct directs the program to
choose among any number of alternatives you require, based on the value of a single variable.
Using this construct offers better performance than using a series of nested If statements, and
is easier to maintain.

■ Use the Select Case construct (Siebel VB). The Select Case construct directs the program to
choose among any number of alternatives you require, based on the value of a single variable.
Using this construct offers better performance than using a series of nested If statements, and
provides other benefits.

■ Test your custom scripts. Make sure your scripts are fully tested and optimized, and are no
more complex than required to meet your business needs.

Best Practices for Data Objects Layer
This section describes best practices for configuring selected elements in the data objects layer for
optimal performance.

Multilingual LOVs Query and Cache Performance
Multilingual List of Values (MLOV) fields are implemented below the business component level. Fields
that point to MLOVs with enabled target columns return display values that match the current
language setting for the session.

For display, the underlying language-independent code is converted to its corresponding display
value using a Siebel application lookup. For searching and sorting, however, a database join to the
list of values table (S_LST_OF_VAL) is performed. Make sure that any configuration directly involving
the S_LST_OF_VAL table is compatible with your Siebel application MLOV functionality.
Performance Tuning Guide Version 7.8164

Tuning Customer Configurations for Performance ■ Best Practices for Data Objects
Layer
When a view with MLOVs is displayed for the first time, a separate query on the S_LST_OF_VAL table
is made for each field that has an MLOV. The query obtains all the display values for that MLOV and
writes the values to the LOV cache in memory. When the view is subsequently displayed during the
same session, the values are obtained from the cache rather than by issuing another query.

NOTE: Displaying multiple records in a list applet that contains one or more MLOV fields will cause
memory consumption to increase, and can produce poor performance. The problem manifests
particularly when multiple fetches are performed against a given logical result set—that is, you scroll
through records. It may also manifest when client-side export is performed to automate this
behavior, or anytime the NextRecord method is invoked repeatedly on the business component. It is
generally recommended to use MLOV fields sparingly in list applets, or to disable client-side export
from list applets containing MLOVs.

For more information on configuring MLOVs, see Configuring Siebel Business Applications and Global
Deployment Guide.

Managing Database Indexes in Sorting and Searching
A database index is a data structure in the RDBMS that is associated with a table. It provides
references to all records in the table for quick lookup and filtering, and is sorted in a particular order
for sorting in that order quickly. The Siebel Database Server uses an index to efficiently retrieve and
sort the result set of a query.

Indexes provided in the Siebel Data Model are tuned for optimal performance of standard Siebel
applications. When you add new business components with custom sorting or filtering requirements,
you need to make sure that a database index is present that supports the requirement and delivers
the result set efficiently. You may need to add new indexes.

You add indexes using the Index and Index Column object types. The index is added in the database
as a result of its being created in Siebel Tools and database extensions being applied.

NOTE: The addition of custom indexes does not always improve performance and may reduce
performance in some cases. The incremental value of an index depends in large part on the
heterogeneity and distribution of the data.

When data is heterogeneous, all or most of the values are unique (such as with row ID values, which
are unique). The less heterogeneous the data—that is, the more repeated instances of values
(homogeneity)—the less benefit the index offers relative to its costs.

For Boolean fields, indexes generally offer little value. Some performance benefit may be found when
querying for the least commonly represented values. Little or no benefit is found when querying on
more commonly represented values or values that are evenly distributed. Similar guidelines apply
for other homogeneous data, such as fields that are constrained to a list of values.

Indexing generally improves performance of SELECT operations. However, it may significantly reduce
performance for batch UPDATE and INSERT operations, such as are performed by Siebel EIM.

You should discuss any custom index requirements with Siebel Expert Services.
Performance Tuning Guide Version 7.8 165

Tuning Customer Configurations for Performance ■ Best Practices for Data Objects
Layer
Sort Specification
The Sort Specification property for a business component, picklist, or predefined query orders the
records retrieved in a query, and serves as the basis for the ORDER BY clause in the resulting SQL
issued. An index needs to be present that supports the order specified in the sort specification.
Otherwise, the RDBMS engine physically sorts the entire result set in a temporary table.

The index needs to include the base columns for all of the fields, and to use them in the same order.
There can be more columns specified in the index than are used in the sort specification, but the
reverse is not true.

For example, the sort specification Last Name, First Name in the Contact business component is
supported by at least one index on the S_CONTACT base table. One of these indexes is called
S_CONTACT_U1, and it contains the LAST_NAME, FST_NAME, MID_NAME, PR_DEPT_OU_ID,
OWNER_PER_ID, and CONFLICT_ID columns, in that order. If you wanted a sort specification that
ordered contacts in first-name order, you would need to create a custom index.

Do not sort on joined columns, because indexes cannot be used.

Search Specification
The Search Specification property for a business component, applet, link, or picklist selectively
retrieves rows from the underlying table that meet the criterion specified in the property. The search
specification is the basis for the WHERE clause in the resulting SQL issued. An index needs to be
present that supports the criterion. Otherwise, the RDBMS may scan through all rows in the table
rather than only those to be returned by the query.

The index needs to contain all the columns referenced by fields in the search specification.

In Sales Rep views such as My Accounts or where organization access control is implemented, if the
user queries or sorts columns that are denormalized to the intersection table (for example, NAME
and LOC in S_ORG_EXT), performance is likely to be good. The Siebel application uses the
intersection to determine visibility to records in the base table, and indexes can be used on the
intersection table to improve performance.

For related information, see “Reusing Standard Columns” on page 167.

NOTE: If a query or sort includes columns that are not denormalized to the intersection table,
performance is likely to degrade, because indexes are not used.
Performance Tuning Guide Version 7.8166

Tuning Customer Configurations for Performance ■ Best Practices for Data Objects
Layer
Reusing Standard Columns
The architecture and data model of your application has been tuned for best performance. This
optimization is achieved by using proper indexes, data caching, and efficient SQL generation, and
also by denormalizing columns on certain tables. These denormalized columns are indexed so that
the application can improve the performance of complex SQL statements by using these columns for
search or sort operations instead of the columns of the original tables.

NOTE: Do not remap existing fields, especially those based on User Key columns, to other columns
in the same table.

CAUTION: Do not use custom denormalized columns without the assistance of Siebel Expert
Services. Denormalized columns can improve performance by allowing indexes to be placed directly
on an intersection table, rather than on its master or detail table. However, if this is configured
improperly, the data in the denormalized column can become out of sync with its source. This can
result in a number of problems ranging from inconsistent sorting to corrupt data.

Example: Reusing NAME and LOC in S_ORG_EXT Table
The columns NAME and LOC of the S_ORG_EXT table are denormalized into ACCNT_NAME and
ACCNT_LOC in the S_ACCNT_POSTN table.

When sorting accounts by name and location in views where the Visibility Applet Type property is set
to Sales Rep, the Siebel application uses the denormalized columns ACCNT_NAME and ACCNT_LOC
of the S_ACCNT_POSTN table. Doing so allows the use of an index.

If the account name and location were stored in extension columns (for example, X_NAME and
X_LOC), these columns would have to be used for sorting instead of NAME and LOC. Even if these
extension columns were indexed, the application could not use an existing index to create the
necessary joins and sort the data, because the index is on S_ORG_EXT and not on S_ACCNT_POSTN.
Therefore, the result would be a significant decrease in performance.

Query Plan for My Accounts View
The first SQL statement is generated by the standard My Accounts view. The query plan shows that
the database uses numerous indexes to execute the statement.

SELECT

T1.LAST_UPD_BY,

T1.ROW_ID,

T1.CONFLICT_ID,

.

.

.

T10.PR_EMP_ID,

T2.DUNS_NUM,

T2.HIST_SLS_EXCH_DT,
Performance Tuning Guide Version 7.8 167

Tuning Customer Configurations for Performance ■ Best Practices for Data Objects
Layer
T2.ASGN_USR_EXCLD_FLG,

T2.PTNTL_SLS_CURCY_CD,

T2.PAR_OU_ID

FROM

SIEBEL.S_PARTY T1

INNER JOIN SIEBEL.S_ORG_EXT T2 ON T1.ROW_ID = T2.PAR_ROW_ID

INNER JOIN SIEBEL.S_ACCNT_POSTN T3 ON (T3.POSITION_ID = ?, 0.05)

AND T2.ROW_ID = T3.OU_EXT_ID

INNER JOIN SIEBEL.S_PARTY T4 ON (T4.ROW_ID = T3.POSITION_ID, 0.05)

LEFT OUTER JOIN SIEBEL.S_PRI_LST T5 ON T2.CURR_PRI_LST_ID = T5.ROW_ID

LEFT OUTER JOIN SIEBEL.S_INVLOC T6 ON T2.PR_FULFL_INVLOC_ID =

T6.ROW_ID

LEFT OUTER JOIN SIEBEL.S_ORG_EXT T7 ON T2.PAR_OU_ID = T7.PAR_ROW_ID

LEFT OUTER JOIN SIEBEL.S_ORG_EXT_SS T8 ON T1.ROW_ID = T8.PAR_ROW_ID

LEFT OUTER JOIN SIEBEL.S_INT_INSTANCE T9 ON T8.OWN_INST_ID =

T9.ROW_ID

LEFT OUTER JOIN SIEBEL.S_POSTN T10 ON T2.PR_POSTN_ID = T10.PAR_ROW_ID

LEFT OUTER JOIN SIEBEL.S_USER T11 ON T10.PR_EMP_ID = T11.PAR_ROW_ID

LEFT OUTER JOIN SIEBEL.S_ADDR_ORG T12 ON T2.PR_ADDR_ID = T12.ROW_ID

LEFT OUTER JOIN SIEBEL.S_INDUST T13 ON T2.PR_INDUST_ID = T13.ROW_ID

LEFT OUTER JOIN SIEBEL.S_ASGN_GRP T14 ON T2.PR_TERR_ID = T14.ROW_ID

LEFT OUTER JOIN SIEBEL.S_POSTN T15 ON T3.POSITION_ID = T15.PAR_ROW_ID

LEFT OUTER JOIN SIEBEL.S_USER T16 ON T15.PR_EMP_ID = T16.PAR_ROW_ID

LEFT OUTER JOIN SIEBEL.S_ORG_SYN T17 ON T2.PR_SYN_ID = T17.ROW_ID

LEFT OUTER JOIN SIEBEL.S_ORG_BU T18 ON T2.BU_ID = T18.BU_ID AND

T2.ROW_ID = T18.ORG_ID

LEFT OUTER JOIN SIEBEL.S_PARTY T19 ON T18.BU_ID = T19.ROW_ID

LEFT OUTER JOIN SIEBEL.S_ORG_EXT T20 ON T18.BU_ID = T20.PAR_ROW_ID

WHERE

((T2.INT_ORG_FLG != 'Y' OR T2.PRTNR_FLG != 'N') AND (T3.ACCNT_NAME >= ?))

ORDER BY

T3.POSITION_ID, T3.ACCNT_NAME

Query plan :
T3(S_ACCNT_POSTN_M1),T2(S_ORG_EXT_P1),T1(S_PARTY_P1),T15(S_POSTN_U2),T10(S_POSTN_U2),T4(S_PARTY_P1),T12(S
_ADDR_ORD_P1),T13(S_INDUST_P1),T7(S_ORG_EXT_U3),T16(S_USER_U2),T11(S_USER_U2),T17(S_ORG_SYN_P1),T6(S_INVL
OC_P1),T5(S_PRI_LST_P1),T14(S_ASGN_GRP_P1),T18(S_ORG_BU_U1),T19(S_PARTY_P1),T20(S_ORG_EXT_U3),T8(S_ORG_EX
T_SS_U1),T9(se)
Performance Tuning Guide Version 7.8168

Tuning Customer Configurations for Performance ■ Best Practices for Business Objects
Layer
Query Plan for My Accounts View—Different ORDER BY Clause
The second SQL statement generated in My Accounts, below, has a different ORDER BY clause. Even
though the columns NAME and LOC of S_ORG_EXT are indexed, the database cannot use this index.
Performance decreases from the use of a temporary table. The same behavior occurs if the ORDER
BY clause uses the columns X_NAME and X_LOC instead of NAME and LOC.

The following example shows a different ORDER BY clause than the previous example query plan.

WHERE

((T2.INT_ORG_FLG != 'Y' OR T2.PRTNR_FLG != 'N') AND

(T3.ACCNT_NAME >= ?))

ORDER BY

T3.ACCNT_NAME, T3.POSITION_ID

Query plan : TEMPORARY TABLE
T3(S_ACCNT_POSTN_M1),T2(S_ORG_EXT_P1),T1(S_PARTY_P1),T15(S_POSTN_U2),T10(S_POSTN_U2),T4(S_PARTY_P1),T12(S
_ADDR_ORG_P1),T13(S_INDUST_P1),T7(S_ORG_EXT_U3),T16(S_USER_U2),T11(S_USER_U2),T17(S_ORG_SYN_P1),T6(S_INVL
OC_P1),T5(S_PRI_LST_P1),T14(S_ASGN_GRP_P1),T18(S_ORG_BU_U1),T19(S_PARTY_P1),T20(S_ORG_EXT_U3),T8(S_ORG_EX
T_SS_U1),T9(se)

Best Practices for Business Objects
Layer
This section describes best practices for configuring selected elements in the business objects layer
for optimal performance.

Using Cache Data Property to Improve Business
Component Performance
To cache on the AOM the content of a business component for subsequent use in the same user
session, the property Cache Data property should be set to TRUE for the business component.

Setting Cache Data to TRUE is appropriate for semi-static data that may be subject to repetitive
queries, but that is unlikely to change during the user session.

For some business components, Cache Data is set to TRUE by default. This is done, for example, for
the PickList Generic and Internal Product business components. (See “Using Properties to Improve
Picklist Performance” on page 172.)

Cache Data should be FALSE for business components representing transactional data that may
change within a user session.
Performance Tuning Guide Version 7.8 169

Tuning Customer Configurations for Performance ■ Best Practices for Business Objects
Layer
Limiting the Number of Active Fields
Field object definitions are instantiated for each business component when the business component
is instantiated, such as by a user navigating to a view containing an applet based on the business
component. All such instantiated fields are included in the SELECT statements in generated SQL that
is issued to the Siebel Database—even fields that are not represented in the user interface with a
corresponding list column or other field control.

The set of fields that is instantiated includes those for which the Force Active property is set to TRUE.
The Force Active setting of TRUE indicates to the system that it must obtain data for the field every
time the business component is accessed, even if the field is not displayed in the current applet; this
adds the field to the SQL query each time.

When Force Active is set to TRUE, there is an associated performance cost. Force Active affects
performance more significantly when fields are based upon MVLs or joins, because the Siebel
application has to create the relationships in the SQL query to retrieve data for these columns.

In most cases, the Force Active property is not required. In general, do not set Force Active to TRUE
unless strictly necessary.

Use Force Active only when the field must be included in generated queries, but the field does not
appear in the user interface.

Guidelines for Using Calculated Fields
Calculated fields provide a convenient way to access and display data in the user interface that is not
directly stored in a table. However, calculated fields have a cost associated with them. Consequently,
it is important to use them appropriately to fulfill your requirements, and not to misuse them.

Each calculated field is evaluated whenever the business component is queried to provide a value for
the field. Extensive use of calculated fields, or usage in certain contexts, may impact performance.
Some guidelines are as follows:

■ Use calculated fields sparingly. Be sure there is a valid business case for their usage.

■ Minimize the complexity of the expressions defined in your calculated fields.
Performance Tuning Guide Version 7.8170

Tuning Customer Configurations for Performance ■ Best Practices for Business Objects
Layer
■ Minimize the use of calculated fields that perform Sum, Count, Min, or Max calculations, such as
for detail records in an MVG business component. In particular, avoid using such fields in list
applets, or in More Info form applets. The cost of using such expressions may be significant
depending on the number of detail records.

Whenever data is totaled there are performance implications. It is important to limit the number
of records being totaled. For example, totaling the line items in a Quote or Expense report is not
resource-consuming. However, summing the expected revenue for all Opportunities is resource-
consuming.

The latter occurs when you generate a chart. However, charts tend not to be generated
frequently. Accessing the Opportunities list view for routine searches and data entry is done
frequently.

CAUTION: Never put a sum([MVfield]) in a list column. This requires that a separate query be
executed for each record in the list, which is a significant performance issue.

■ Avoid defining calculated fields using complex expressions that provide different values
depending on the current language.

■ Avoid using a calculated field to store a literal value; use business component user properties for
this purpose instead.

■ Avoid using a calculated field to directly copy the value of another field.

■ Avoid including calculated fields in search specifications, particularly if the calculated fields use
functions that are not supported by the underlying RDBMS.

■ If the RDBMS supports the function, it will have algorithms for performing the calculations
efficiently and will return the calculated values with the result set. However, if functions such
as EXISTS, Max, or Count are included, then multiple subqueries may be performed,
impacting performance.

■ If the function is not supported in the RDBMS, the Siebel application may have to rescan the
entire result set to perform the desired calculation, considerably increasing the time it takes
to obtain the results of the query.

In the first case, the calculations can take place before the results are returned, while, in the
second case, they have to be performed in memory (on the Application Object Manager or client).

NOTE: Even if the calculated field is supported at the RDBMS level, there may be other reasons
why a search specification on a calculated field may result in poor performance, such as the lack
of an index (for example, when using the LIKE function) supporting the search specification. See
“Managing Database Indexes in Sorting and Searching” on page 165.
Performance Tuning Guide Version 7.8 171

Tuning Customer Configurations for Performance ■ Best Practices for Business Objects
Layer
Using Properties to Improve Picklist Performance
To cache the content of certain picklists for subsequent use in the same user session, the property
Cache Data property should be set to TRUE for the PickList Generic business component. By default,
this property is TRUE.

NOTE: Picklists based on PickList Generic display LOV data, which is unlikely to change during the
user session and are thus suitable for caching. Picklists based on other business components display
data that could change during a user’s session and is thus generally unsuitable for caching.

Also set the Long List property to TRUE for each applicable Pick List object definition. When Long List
is TRUE, the focus is not maintained on the current picklist record, thus improving performance for
picklists with many records. The default setting of Long List varies for each Pick List object definition.

Using Primary ID Fields to Improve Performance
MVGs configured without Primary ID fields require separate queries to display each parent record
and each set of child records. For example, for a list applet that displays 10 records and two MVGs
per record, a total of 21 queries would be required to populate the applet: one query to populate the
parent records and 20 additional queries (two per parent record) to populate the MVGs. The number
of queries executed is many times the number actually required.

You can avoid unnecessary queries by configuring a Primary ID field on the master business
component. The Primary ID field serves as a foreign key from a parent record to one primary child
record in the detail business component. This allows the application to perform a single query using
a SQL join to display values for the parent record and the primary child record in the applet. In other
words, it defers having to perform additional queries for the MVG until the user opens the MVG and
displays a list of all child records.

List applets receive the most performance benefit from using Primary ID fields because list applets
typically access a large number of records and each record may have one or more MVGs associated
with it. The Primary ID field avoids having to submit queries for each MVG for every parent record.

Form applets can also benefit from Primary ID fields, even though in form applets only one parent
record is accessed at a time. A Primary ID field allows the application to submit a single query for
each new parent record displayed, rather than having to perform multiple queries for every MVG on
the form applet. This can improve performance as the user moves from one record to another.

In some circumstances, configuring a Primary ID field is not desirable or feasible:

■ When Microsoft SQL Server is being used, and the creation of the primary join would create a
double-outer-join situation prohibited by the Microsoft software

■ When the only purpose of the multi-value field is to sum detail record values

For information on how to configure Primary ID fields, see Configuring Siebel Business Applications.
Performance Tuning Guide Version 7.8172

Tuning Customer Configurations for Performance ■ Best Practices for User Interface
Objects Layer
How the Check No Match Property Impacts Performance
In most cases, the Check No Match property of a Multi Value Link object definition (used to
implement Primary ID fields) should be set to FALSE. Setting the Check No Match property to TRUE
could negatively impact performance, especially in situations where most parent records do not have
child records defined in an MVG.

The Check No Match property defines whether a separate query should be used to populate an MVG
when no child record is found through a primary join.

■ When Check No Match is set to FALSE, the application does the following:

■ If a parent record’s Primary ID field is invalid or has the value of NULL, a secondary query is
performed to determine if there are child records in the MVG. If there are no child records,
the Primary ID field is set to the value NoMatchRowId.

■ If a parent record’s Primary ID field has the value NoMatchRowId, the application does not
perform a secondary query, because NoMatchRowId indicates that there are no child records
in the MVG. Avoiding these extra SQL queries improves performance.

NOTE: NoMatchRowId is not a permanent setting—the Primary ID field can be updated after
it is set to NoMatchRowId.

■ When Check No Match is set to TRUE, a separate SQL query is executed for each parent record
in which the primary join did not find a primary child record. Doing this ensures that the multi-
value field does not appear blank unless there are no child records. But executing these extra
SQL queries decreases performance.

It is appropriate to set the Check No Match property to TRUE in the following cases:

■ When the multi-value group allows records to be added without having to go through the MVG.
For example, account addresses might actually be inserted through the Business Address multi-
value group on the Contact business component instead of the Account business component.

■ When records can be added to a detail business component through Siebel EIM.

For more information about configuring Multi Value Link object definitions, see Configuring Siebel
Business Applications.

Best Practices for User Interface Objects
Layer
This section describes best practices for configuring selected elements in the user interface objects
layer for optimal performance.

Addressing Performance Issues Related to Grid Layout
The grid layout feature allows developers to create effective and usable form applets for Siebel views.
However, performance may be adversely affected by certain applet design choices.
Performance Tuning Guide Version 7.8 173

Tuning Customer Configurations for Performance ■ Best Practices for User Interface
Objects Layer
Typically, such performance problems relate to the alignment of user interface controls such as labels
and fields, and stem from the total number of cells in the grid-based form applet, including spacer
cells. Performance impact will depend on the number of user interface elements, the applet size, and
other factors.

You can optimize user interface performance by:

■ Making stacked sets of labels or fields the same width. Doing so may reduce the number of
adjacent spacer cells you require.

■ Aligning stacked sets of labels consistently.

■ Making labels the same height as the adjacent fields.

■ Eliminating horizontal or vertical spacer cells you deem unnecessary.

NOTE: Weigh all optional measures against possible usability concerns. Judicious use of spacing in
your view layouts is generally appropriate for optimal usability.

For more information about using the grid layout feature, see Configuring Siebel Business
Applications.

Maintaining Performance When Using Applet Toggles
Applet toggles are a useful feature where multiple applets based on different business components
occupy the same location in a view. Which applet displays at one time depends on a field value in a
parent applet (dynamic toggle) or on a user selection (static toggle).

Dynamic toggle applets are based on the same business component, while static toggle applets may
be based on different business components.

In general, when configuring applet toggles for your Siebel application, particularly dynamic toggles,
you can reduce memory and CPU usage for user application sessions by minimizing the number of
applet toggles and fields per applet.

It is important to be aware of potential performance impact of using applet toggles, particularly
dynamic toggles:

■ When a user selects a record in a parent applet for a dynamic applet toggle, the business
component and fields for all of the applet toggles are instantiated and cached in memory, and all
of these fields are queried.

This query is used to populate other applet toggles that may be displayed when the user changes
the relevant field value in the parent record. However, each time the user selects a different
record in the parent applet, all of the fields in the toggle business component are required.

Also note that view layout caching is not performed for views containing dynamic applet toggles.

■ When a user navigates to a view containing a static applet toggle, the business component and
fields for the default displayed applet is instantiated and cached in memory, and these fields are
queried. Other business components are instantiated and cached, and other queries performed,
when the user navigates to the other applets in the toggle.

In each case, cached objects remain in memory until the user navigates to a different screen.
Performance Tuning Guide Version 7.8174

13 Tuning Operating Systems for
Performance
This chapter describes tuning steps designed to improve the performance and scalability of your
Siebel Enterprise installation. This chapter contains the following topics:

■ “Tuning Microsoft Windows for Enhanced Siebel Server Performance” on page 175

■ “Tuning the Siebel Server for All UNIX Platforms” on page 176

■ “Tuning the Siebel Web Server Extension for All UNIX Platforms” on page 177

■ “Tuning Siebel Business Applications for AIX” on page 177

■ “Tuning Siebel Business Applications for Solaris” on page 183

■ “Tuning Siebel Business Applications for HP-UX” on page 187

Before doing any of the procedures in this chapter, you must have completed the minimum necessary
configuration steps described in the chapters about installing the Siebel Gateway Name Server and
the Siebel Server contained in the Siebel Installation Guide for the operating system you are using.

For additional information about tuning and monitoring, see System Monitoring and Diagnostics
Guide for Siebel Business Applications and Siebel System Administration Guide.

NOTE: Settings provided in this appendix are based on a controlled lab environment using a
standard Siebel application, such as Siebel Call Center for Siebel Industry Applications. The degree
of performance gained by using these settings at your site depends on your implementation. Contact
your vendor for additional tuning recommendations for your supported operating system platform.

Tuning Microsoft Windows for Enhanced
Siebel Server Performance
This section describes how you can configure settings for your Microsoft Windows operating system
to optimize the performance of Siebel applications.

Maximizing Data Throughput
Changing the setting for data throughput from Maximize data throughput for file sharing (default) to
Maximize data throughput for network applications may result in the following benefits:

■ Better Symmetrical Multi-Processing (SMP) scalability

■ Improved networking performance

■ Allocation of more physical memory for your Siebel applications

For more information on these settings, refer to Microsoft’s documentation.
Performance Tuning Guide Version 7.8 175

Tuning Operating Systems for Performance ■ Tuning the Siebel Server for All UNIX
Platforms
Turning on the 4GT RAM Tuning Feature
You can expand the per-process address limit from 2 GB to 3 GB. This reduces the amount of physical
RAM available to the operating system from 2 GB to 1 GB. The difference (1 GB) is allocated to your
applications. This feature is referred to as 4GT RAM Tuning. For information on how to configure this
setting, refer to Microsoft’s documentation.

NOTE: Each Siebel process (Application Object Manager) cannot use more than 2 GB of RAM.

Tuning the Siebel Server for All UNIX
Platforms
For all Siebel Server machines running on supported UNIX platforms, setting the environment
variables described in this section can help you manage your server resources appropriately and stay
within appropriate CPU-usage limits.

Environment Variable for Siebel Assert Creation
For Siebel Server machines or Web server machines, the environment variable SIEBEL_ASSERT_MODE
determines whether assert files are created. With the default setting of 0, the creation of assert files
is disabled, which conserves disk space and improves performance.

This variable should be set to a non-zero value only if you are performing system diagnostics, and it
should only be set in consultation with Siebel Technical Services.

For more information about this variable, see System Monitoring and Diagnostics Guide for Siebel
Business Applications.

Environment Variable for Operating System Resource Limits
Set the environment variable SIEBEL_OSD_MAXLIMITS using one of the following methods (define the
variable in the applicable profile for the Siebel Server):

■ C Shell:

setenv SIEBEL_OSD_MAXLIMITS 1

■ Korn Shell or Bourne Shell:

SIEBEL_OSD_MAXLIMITS=1;export SIEBEL_OSD_MAXLIMITS

Setting this variable to 1 specifies that operating system maximum values for resources will apply.
Such resources may include coredumpsize, cputime, filesize, descriptors, maxmemory, and others.

Environment Variable for Operating System Latches
If the total number of tasks on the Siebel Server is greater than 500, you should set the environment
variables described here in order to manage these loads. SIEBEL_OSD_NLATCH controls named latches
and SIEBEL_OSD_LATCH controls unnamed latches. Latches, which are similar to mutexes (mutual
exclusion objects), are used for communication between processes.
Performance Tuning Guide Version 7.8176

Tuning Operating Systems for Performance ■ Tuning the Siebel Web Server Extension
for All UNIX Platforms
If SIEBEL_OSD_NLATCH and SIEBEL_OSD_LATCH are not defined, the values are 5000 and 1000,
respectively. If these values are sufficient or the total number of tasks on the Siebel Server is less
than 500, you do not need to set these variables.

NOTE: Before changing these variables, stop the Siebel Server using the stop_server command,
then run the cleansync utility. For more information about this utility, see Siebel SupportWeb.

Set SIEBEL_OSD_NLATCH and SIEBEL_OSD_LATCH on the Siebel Server machine based on the following
formulas (define the variables in the applicable profile for the Siebel Server):

■ SIEBEL_OSD_NLATCH = 7 * (cumulative MaxTasks for all components) + 1000

■ SIEBEL_OSD_LATCH = 1.2 * (cumulative MaxTasks for all components)

Assume, for example, that you have enabled two multithreaded server components on the same
Siebel Server: SCCObjMgr_enu and WfProcMgr. For SCCObjMgr_enu, MaxTasks = 500 and, for
WfProcMgr, MaxTasks = 100. In this example, parameter values should be as follows:

■ SIEBEL_OSD_NLATCH = 5200 = 7 * [500 + 100] + 1000

■ SIEBEL_OSD_LATCH = 720 = 1.2 * [500 + 100]

Tuning the Siebel Web Server Extension
for All UNIX Platforms
You must tune the Siebel Web Server Extension (SWSE) to run Siebel applications on UNIX platforms.

To tune the SWSE for UNIX platforms

1 In the SWSE installation directory, navigate to the bin subdirectory.

2 Using a text editor such as vi, open the eapps.cfg file for editing.

3 Set the appropriate AnonUser user names and passwords. This will depend on your user
authentication strategy. For more information, see Security Guide for Siebel Business
Applications.

4 Set GuestSessionTimeout to 60.

NOTE: This configuration is appropriate for application scenarios where users browse without
logging in.

5 Restart the Web server for these changes to take effect.

Tuning Siebel Business Applications for
AIX
This section provides instructions for configuring and tuning Web servers, OS settings, and Siebel
Enterprise components so you can run Siebel applications on AIX.
Performance Tuning Guide Version 7.8 177

Tuning Operating Systems for Performance ■ Tuning Siebel Business Applications for
AIX
Tuning the IBM HTTP Server for AIX
This section describes recommended values for environment variables that are optimized for
scalability and performance on IBM HTTP Server (IHS) Web server. You can further adjust these
settings at your discretion to optimize the performance of your Web server.

The following environment variables are set in Webserver_Root/bin/startapa, where
Webserver_Root is the root directory in which your Web server is installed:

export AIXTHREAD_SCOPE=S
export AIXTHREAD_MNRATIO=1:1
export AIXTHREAD_MUTEX_DEBUG=OFF
export AIXTHREAD_RWLOCK_DEBUG=OFF
export AIXTHREAD_COND_DEBUG=OFF
export CORE_NAMING=Siebel
export YIELDLOOPTIME=number_of_CPUs_on_Web_server_machine
export SPINLOOPTIME=1000
export MALLOCMULTIHEAP=heaps:number_of_CPUs_on_Web_server_machine,considersize
export MALLOCTYPE=buckets
export LDR_CNTRL=IGNOREUNLOAD@LOADPUBLIC@PREREAD_SHLIB@MAXDATA=0x60000000

For the MALLOCMULTIHEAP and YIELDLOOPTIME parameters, the values should include the number of
CPUs on the Web server machine. For example, if there are two CPUs, these parameters should be
defined as follows:

export MALLOCMULTIHEAP=heaps:2,considersize
export YIELDLOOPTIME=2
Performance Tuning Guide Version 7.8178

Tuning Operating Systems for Performance ■ Tuning Siebel Business Applications for
AIX
To set the number of threads for IBM HTTP Server

1 Using a text editor, set values for parameters in the workers.c section of the file
Web_server_install/conf/httpd.conf, where Web_server_install is the root directory in
which your Web server is installed. Set the parameter values as follows:

where:

N = A value 1 or 1.2 * maximum number of concurrent users (threads). The value for the
applicable parameters can be set equal to or less than 1.2 * the number of concurrent users the
Web server must support.

High values for the MaxClients or ThreadLimit parameters can increase memory usage. If you
want to reduce memory usage, it is recommended that you reduce the values that you set for
these parameters.

By default, the Web server provides persistent connections. Consider setting the KeepAlive
parameter equal to Off to stop the Web server providing persistent connections. This frees
connections for reuse. However, doing this can incur a cost as memory will be used to close and
set up new TCP/IP connections.

Alternatively, you can reduce the value for the KeepAliveTimeout parameter so that a thread is
reused more quickly.

2 In the file httpd.conf, also set the following values:

■ The value for ServerName must match the Primary Internet Address you used in installing
SWSE.

■ Change the values for User and Group to a valid machine user and group:

❏ Ideally, the user ID should have no privileges that allow access to files other than those
used by the Siebel application. This user should, however, have full access rights (read,
write, execute) to the SWSE installation directory and its subdirectories.

❏ It is recommended that the group should be created specifically for running this server.

CAUTION: For security reasons, it is recommended that you do not use root for User or
Group.

■ The value for UseCanonicalName is recommended to be set to Off. It must be set to Off if
you are load-balancing your Web servers.

ThreadLimit N

StartServers 1

ServerLimit 1

MaxClients N

MinSpareThreads 1

MaxSpareThreads N

ThreadsPerChild N

MaxRequestsPerChild 0
Performance Tuning Guide Version 7.8 179

Tuning Operating Systems for Performance ■ Tuning Siebel Business Applications for
AIX
■ If you are not using the CGI functionality of IHS, you may want to comment out the line that
loads the CGI module. Doing so will make tracking IHS processes simpler, because there will
be always one child process. The line is as follows:

LoadModule cgid_module modules/mod_cgid.so

Tuning the Siebel Server for AIX
AIX provides several environment variables that can be tuned to optimize Siebel Server performance.
These environment variables and their values are used as start parameters when the Siebel Server
is started. Table 5 on page 180 and Table 6 on page 180 describe each of these environment variables
and their recommended settings.

Table 5. Environment Variables Used for Optimization in $SIEBEL_ROOT/siebenv

Environment Variable Value Description

AIXTHREAD_SCOPE S Controls contention scope. S signifies system-based
contention scope (1:1).

AIXTHREAD_MNRATIO 1:1 Controls the M:N ratio of number of kernel threads that
should be employed to handle runnable pthreads.

AIXTHREAD_MUTEX_DEBUG OFF Maintains a list of active mutexes for use by the
debugger.

AIXTHREAD_RWLOCK_DEBUG OFF Maintains a list of read-write locks for use by the
debugger.

AIXTHREAD_COND_DEBUG OFF Maintains a list of condition variables for use by the
debugger.

Table 6. Environment Variables Used for Optimization in $SIEBEL_ROOT/bin/siebmtshw

Environment
Variable Value Description

SPINLOOPTIME 1000 Controls the number of times to retry a busy lock
before yielding to another processor.

YIELDLOOPTIME 4 Controls the number of times to yield the
processor before blocking on a busy lock (only
for libpthreads). Set this variable, at the
minimum, to the number of CPUs.
Performance Tuning Guide Version 7.8180

Tuning Operating Systems for Performance ■ Tuning Siebel Business Applications for
AIX
Tuning Kernel Settings for AIX
There are a number of AIX kernel settings you can tune for optimal Siebel Server or Web server
performance under AIX. These include the Virtual Memory Management and TCP settings. You must
have root privileges to modify these settings. (On AIX 5.2, kernel settings can alternatively be tuned
using vmo rather than vmtune.)

For more information about AIX kernel settings, refer to your operating system vendor’s
documentation.

MALLOCTYPE buckets Malloc buckets provide an optional buckets-
based extension of the default allocator. This
feature improves malloc performance for
applications that issue large numbers of small
allocation requests.

When malloc buckets are enabled, allocation
requests that fall within a predefined range of
block sizes are processed by malloc buckets. All
other requests are processed in the usual
manner by the default allocator.

MALLOCMULTIHEAP heaps:n Controls the number of heaps within the process
private segment. n should be equal to the
number of processors on the server.

LDR_CNTRL IGNOREUNLOAD@LOADPUBLIC
@PREREAD_SHLIB@MAXDATA=
0x60000000

The LOADPUBLIC option directs the system loader
to load all modules requested by an application
into the global shared library segment. Set
LDR_CNTRL in the environment of the user, or,
preferably, in the shell script that launches the
executable needing the extra memory.

The MAXDATA value reserves six 256-MB
segments for all executables launched from this
environment, and overrides the default
executable setting. The default depends on the
executable. With the default value, a Siebel
component can support a maximum value of
5000 for the MaxTasks parameter. With this value,
MaxTasks can be set as high as 9000.

Depending on the environment, you may reserve
up to a maximum of seven segments. If it is not
possible to use that many segments, the Siebel
Server will terminate very early.

Table 6. Environment Variables Used for Optimization in $SIEBEL_ROOT/bin/siebmtshw

Environment
Variable Value Description
Performance Tuning Guide Version 7.8 181

Tuning Operating Systems for Performance ■ Tuning Siebel Business Applications for
AIX
To change the kernel settings using vmtune

1 Using a text editor such as vi, open the /etc/rc.net file for editing.

2 Modify the vmtune settings, as follows:

if [-f /usr/samples/kernel/vmtune] ; then

/usr/samples/kernel/vmtune -p 5 -P 8 -f 720 -F 768 -b 200 -s 1

In providing values for minfree (-f for vmtune) and maxfree (-F for vmtune), use the following
formulas:

■ minfree = number_of_CPUs * 120 = 6 * 120 = 720

■ maxfree = number_of_CPUs * (120 + maxpgahead) = 6 * (120 + 8) = 768

where:

number_of_CPUs = the number of CPUs on the AIX server you are tuning (for example, 6)

maxpgahead = the value of the maxpgahead (-R for vmtune) parameter: for example, 8)

3 Modify the network options, as follows:

if [-f /usr/sbin/no] ; then

/usr/sbin/no -a rfc1323=1

/usr/sbin/no -a tcp_sendspace=24576

/usr/sbin/no -a tcp_recvspace=24576

/usr/sbin/no -a rfc2414=1

/usr/sbin/no -a tcp_init_window=3

/usr/sbin/no -a use_isno=0

/usr/sbin/no -a tcp_nagle_limit=0

4 Check the settings for all User Limits (ulimit) and make sure that they are set to -1 (unlimited),
as follows:

ulimit –a

NOTE: To change the set limits, update the /etc/security/limits file by changing all ulimit
parameter values to –1 (unlimited).

5 Save your changes and exit the editor.

6 Restart the server machine to have the new settings take effect.
Performance Tuning Guide Version 7.8182

Tuning Operating Systems for Performance ■ Tuning Siebel Business Applications for
Solaris
Tuning Siebel Business Applications for
Solaris
This section provides instructions for configuring and tuning Web servers, OS settings, and Siebel
Enterprise components so you can run Siebel applications on Solaris.

Tuning the Sun Java System Web Server for Solaris
If you have a busy Web server, some of your users might experience difficulty connecting to your
Web server. To address this issue, change the tcp_conn_req_max_q and tcp_conn_req_max_q0
default values, using the ndd command. For details on how to use the ndd command, see “Tuning
AOM Instances for Solaris” on page 185.

NOTE: To avoid losing the new settings when the machine is rebooted, add them to /etc/init.d.

You also should tune the Sun Java System Web Server for optimal performance using the following
procedure.

To tune the Sun Java System Web Server

1 Using a text editor such as vi, open the file Webserver_Root/config/magnus.conf, where
Webserver_Root is the root path of the Sun Java System Web Server.

2 Set the parameter RqThrottle to 1200.

The RqThrottle parameter specifies the maximum number of simultaneous transactions the Web
server can handle. The default value is 512. By changing this value to 1024, you can minimize
latencies for the transactions that are performed.

3 Add or modify the MaxKeepAliveConnections parameter, setting its value to 1000. The default
value is 200.

4 Save your modifications to the magnus.conf file.

5 Restart the Web server.

After making the changes above to the Sun Java System Web Server parameters, change the
following parameters on the workstation hosting the Sun Java System Web Server.

6 Open the /etc/system file for editing.

7 Set the following Solaris system parameters:

Parameter Scope
Default
Value

Tuned
Value Comments

rlim_fd_max /etc/system 1024 8192 Process open file descriptors limit; should
account for the expected load (for the
associated sockets, files, and pipes, if
any).

rlim_fd_cur /etc/system 64 8192
Performance Tuning Guide Version 7.8 183

Tuning Operating Systems for Performance ■ Tuning Siebel Business Applications for
Solaris
8 Restart the workstation hosting the Sun Java System Web Server.

Tuning Kernel Settings for Solaris
To run Siebel Servers or Web servers in a Solaris environment, you need to set Solaris kernel
parameters to specific recommended values for particular releases of Solaris servers. To learn the
specific parameter recommendations for Siebel Servers or Web servers running on Solaris, contact
Siebel Technical Services.

There are a number of Solaris kernel parameter settings that significantly affect performance of
Siebel applications in general, and the Siebel Server in particular. These include parameters that
govern elements such as file descriptors, stack size, memory, and semaphores.

Solaris kernel parameters reside in the configuration file /etc/system. To change the settings for
these parameters, you must manually edit this file, save your changes, and reboot the system.

Normally, the Solaris kernel memory parameter settings are relatively low. However, for large
memory-model applications like the Siebel Server applications, it is recommended that you increase
the values assigned to several of these parameters.

CAUTION: If you use the default Solaris kernel parameters, or lower, to run a Siebel Server in a
Solaris environment, then there is a risk of serious performance problems, resulting in SIGABRT or
SIGSEV errors, for some Siebel Server components.

To tune the Solaris kernel settings for Siebel Server

1 Using an editor such as vi, open the /etc/system file for editing.

2 Add or modify the following lines, which are general settings:

set rlim_fd_cur = 8192
set rlim_fd_max = 8192

3 Add or modify the following lines, which are shared memory settings. In the first line, select
either Solaris 32-bit or 64-bit, respectively:

set shmsys:shminfo_shmmax = 0xffffffff [or] 0xffffffffffffffff
set shmsys:shminfo_shmmni = 1024
set shmsys:shminfo_shmseg = 1024

4 Add or modify the following lines, which are message queue settings:

set msgsys:msginfo_msgmax = 4096

5 Add or modify the following lines, which are semaphore settings:

set semsys:seminfo_semaem = 16384
set semsys:seminfo_semopm = 100
set semsys:seminfo_semmni = 4096
set semsys:seminfo_semmns = 16384
set semsys:seminfo_semmnu = 4096
set semsys:seminfo_semume = 2500
set semsys:seminfo_semmsl = 500
Performance Tuning Guide Version 7.8184

Tuning Operating Systems for Performance ■ Tuning Siebel Business Applications for
Solaris
6 Save your changes and exit the editor.

7 Restart the server machine to have the new settings take effect.

Maximizing Siebel Server Performance for Solaris
To gain the maximum CPU performance for your Siebel Server when running on Solaris, use the
Multiple Page Size Support (MPSS) with optimal configuration of 4 MB heap size and 64 KB stack size,
as outlined in the following procedure.

To set up MPSS with optimal configuration of 4 MB heap size and 64 KB stack size

1 Using an editor such as vi, open the /etc/system file for editing.

2 Add the following line to the file:

set kernel_cage_enable=1

3 Reboot the server.

4 Create a configuration file (mpss.cfg) for MPSS configuration with the following line in the file:

sieb*:4M:64K

where 4M is the heap size (4 MB) and 64K is the stack size (64 KB).

5 Add the following lines to the $Siebel_Root/siebsrvr/bin/siebmtshw file:

LD_PRELOAD=/usr/lib/mpss.so.1

MPSSCFGFILE=Full path, including the file name, to the MPSS configuration file created in Step 4.

MPSSERRFILE=Full path, including the file name, to the MPSS error log you want to be generated
in case of any errors.

export LD_PRELOAD MPSSCFGFILE MPSSERRFILE

Tuning AOM Instances for Solaris
Solaris machines running more than 50 Application Object Manager instances (multithreaded
processes for AOM) may experience a situation where one or more of the processes do not start
correctly, while the rest start and function normally. The log files for the processes that do not start
will indicate that they have not started correctly. If you experience these symptoms, change the
tcp_conn_req_max_q and tcp_conn_req_max_q0 default values, using the ndd command.

NOTE: To avoid losing the new settings when the machine is rebooted, add them to /etc/init.d.

To change TCP values

1 Log in as root.
Performance Tuning Guide Version 7.8 185

Tuning Operating Systems for Performance ■ Tuning Siebel Business Applications for
Solaris
2 Issue the ndd command:

NOTE: The responses are noted in bold.

ndd /dev/tcp

name to get/set ? tcp_conn_req_max_q

value ? 1024

name to get/set ? tcp_conn_req_max_q0

value? 4096

3 Add the following lines to the /etc/system file, using any text editor such as vi:

set tcp:tcp_conn_req_max_q = 1024

set tcp:tcp_conn_req_max_q0 = 4096

4 To make sure that the above parameters are automatically set, when the machine is rebooted,
enter these commands in a script that will be executed every time that the machine is rebooted.
To do this, use the following steps:

a Log in as a superuser.

b Create a script that will be executed each time the system is rebooted.

c Add the script to the /etc/init.d directory, as follows:

#cp script /etc/init.d

#chmod 0744 /etc/init.d/script

#chown root:sys /etc/init.d/script

d Create links to the rc2.d directory.

#cd /etc/init.d

#ln script /etc/rc2.d/Snnscriptdefinition

where:

nn is a number.

scriptdefinition is the name you appended to the file name to define what it is doing.

For example, if the system finds a file called S23tcpparams during system startup, it will
execute that file once, after executing any files that have a lower number in their name.

e Verify that the script has links in the specified directories:

#ls /etc/init.d/ /etc/rc2.d/

For more details on how to set up Run Control scripts, see the Sun Microsystems site:

http://docs.sun.com/db/doc/816-4552/6maoo30jh?q=run+control+scripts&a=view

5 Restart the Siebel Server as the Siebel install owner.
Performance Tuning Guide Version 7.8186

Tuning Operating Systems for Performance ■ Tuning Siebel Business Applications for
HP-UX
Tuning Siebel Business Applications for
HP-UX
This section provides instructions for configuring and tuning Web servers, OS settings, and Siebel
Enterprise components so you can run Siebel applications on HP-UX.

Tuning the HP Apache Web Server for HP-UX
This section provides recommended initial settings for HP Apache Web Server environment variables.
You can further modify these settings at your discretion to optimize the performance of your Web
server.

The default ThreadLimit for the HP Apache Web Server is 64, but it can be set it to a much higher
number. The highest setting depends on the kernel settings. ThreadsPerChild and MaxClients are
related directives.

■ ThreadLimit = 20000 is the maximum value supported by the HP Apache Web Server. You can
reset this to the number your system supports.

NOTE: The ThreadLimit directive must be executed before other directives.

■ ThreadsPerChild = Number of threads per child. Cannot exceed ThreadLimit.

■ MaxClients = Maximum connection. Cannot exceed ThreadsPerChild.

To set the number of threads for HP Apache Web Server

1 Using a text editor, set values for parameters in the workers.c section of the file
Web_server_install/conf/httpd.conf, where Web_server_install is the root directory in
which your Web server is installed. Set the parameter values as follows:

where:

N = A value similar to 1.2 or 1.5 * maximum number of concurrent users (threads). The value
for the applicable parameters must be greater than the number of concurrent users the Web
server must support. However, setting parameter values higher than what is described here will
consume additional memory unnecessarily.

NOTE: If you are not using multiplex sessions, make sure the kernel parameter

ThreadLimit N

StartServers 1

ServerLimit 1

MaxClients N

MinSpareThreads 1

MaxSpareThreads N

ThreadsPerChild N

MaxRequestsPerChild 0
Performance Tuning Guide Version 7.8 187

Tuning Operating Systems for Performance ■ Tuning Siebel Business Applications for
HP-UX
max_thread_proc is set to a number greater than 2N.

2 Change the values for User and Group to a valid machine user and group:

■ Ideally, the user ID should have no privileges that allow access to files other than those used
by the Siebel application. This user should, however, have full access rights (read, write,
execute) to the SWSE installation directory and its subdirectories.

■ It is recommended that the group should be created specifically for running this server.

CAUTION: For security reasons, it is recommended not to use root for User or Group.

3 Set MaxKeepAliveRequests to 0.

Tuning Kernel Settings for HP-UX
Modify the HP-UX kernel parameters to values like those shown below (suggested guidelines). Use
the HP-UX System Administration Manager (SAM) tool to make these changes.

nproc 4096 - 4096
ksi_alloc_max 32768 - (NPROC*8)
max_thread_proc 4096 – 4096
maxdsiz 0x90000000 - 0X90000000
maxdsiz_64bit 2147483648 - 2147483648
maxfiles 4000 - 4000
maxssiz 401604608 - 401604608
maxssiz_64bit 1073741824 - 1073741824
maxtsiz 0x40000000 - 0X40000000
maxusers 128 - 128
msgmap 4098 - (NPROC+2)
msgmni 4096 - (NPROC)
msgtql 4096 - (NPROC)
ncallout 8000 - 8000
nclist 2148 - (100+16*MAXUSERS)
ncsize 35840 - (8*NPROC+2048+VX_NCSIZE)
nfile 67584 - (16*NPROC+2048)
ninode 34816 - (8*NPROC+2048)
nkthread 7184 - (((NPROC*7)/4)+16)
nproc 4096 - 4096
nsysmap 8192 - ((NPROC)>800?2*(NPROC):800)
nsysmap64 8192 - ((NPROC)>800?2*(NPROC):800)
semmap 1026 - 1026
semmni 1024 - 1024
semmns 16384 - ((NPROC*2)*2)
semmnu 2048 - 2048
semume 256 - 256
shmmax 0x40000000 Y 0X40000000
shmmni 1024 - 1024
shmseg 1024 Y 1024
vps_ceiling 64 - 64
Performance Tuning Guide Version 7.8188

Tuning Operating Systems for Performance ■ Tuning Siebel Business Applications for
HP-UX
Setting Permissions for the HP-UX Scheduler
Siebel Business Applications will have better performance on HP-UX if you make the following
changes, which allow the Siebel Server to execute the HP-UX scheduler upon startup. You must have
root privileges to make these changes.

To set permissions for the HP-UX scheduler

1 Add the following line to the /etc/privgroup file, creating it if necessary:

-g RTSCHED

2 Save the file and exit.

3 Execute the following command:

setprivgrp -f /etc/privgroup

4 Verify that global RTSCHED permissions are set by executing the following command:

getprivgrp

If the command is successful, the system will respond:

global privileges: RTSCHED
Performance Tuning Guide Version 7.8 189

Tuning Operating Systems for Performance ■ Tuning Siebel Business Applications for
HP-UX
Performance Tuning Guide Version 7.8190

14 Monitoring Siebel Application
Performance
This section describes how to monitor performance using the Siebel Application Response
Measurement (Siebel ARM) feature. This chapter contains the following topics:

■ “About Siebel Application Response Measurement” on page 191

■ “About Siebel ARM Parameters and Variables” on page 193

■ “Enabling and Configuring Siebel ARM” on page 195

■ “Converting Siebel ARM Files” on page 196

■ “Best Practices for Siebel ARM” on page 201

■ “About Siebel ARM Data” on page 202

About Siebel Application Response
Measurement
The Siebel Application Response Measurement (Siebel ARM) feature captures timing data useful for
monitoring the performance of the Siebel application.

When enabled, Siebel ARM records and saves data in binary file format. The Siebel ARM post-
processing tool, accessed from the command line, converts binary files to a readable format and
includes different types of analysis options. Review the Siebel ARM post-processing tool output to
monitor the performance of the Siebel application.

■ For further information on Siebel ARM architecture, see “About Siebel ARM Architecture” on
page 191.

■ For further information on enabling and configuring Siebel ARM, see “Enabling and Configuring
Siebel ARM” on page 195.

■ For further information on converting binary Siebel ARM files, see “Converting Siebel ARM Files”
on page 196.

■ For further information on Siebel ARM output data, see “About Siebel ARM Data” on page 202.

About Siebel ARM Architecture
Siebel ARM is a framework for capturing critical performance data in Siebel Business Applications.
Siebel ARM captures response times at key monitoring points within the Siebel Server infrastructure.
These Siebel ARM monitoring points are classified in the following distinct areas within the Siebel
infrastructure:

■ Web Server Time. Time duration a request has spent on the Web server.
Performance Tuning Guide Version 7.8 191

Monitoring Siebel Application Performance ■ About Siebel Application Response
Measurement
■ Infra-Network Time. Time duration between a request from the Web server and the Siebel
Server (including the network time).

■ Siebel Server Time. Time duration for the request to be processed by the Siebel Server and
Database Server (time between Server Thread (SMI) and any database-layer calls).

■ Database Time. Time for any Siebel Database-layer calls.

■ Application-Specific Time. Time duration spent in application-specific areas of the
infrastructure.

The Siebel ARM feature monitors system performance in the infrastructure and application-specific
areas in the following list. The following areas are listed as they appear in Siebel ARM output; the
name in parenthesis after the area name represents the area symbol, which also appears in Siebel
ARM output. For further information on Siebel ARM output, see “About Siebel ARM Data” on page 202.

Each of the previous areas contain one or more subareas, which further define the timing and
performance of their respective area. The amount of areas and subareas present in Siebel ARM files
is dependent on the granularity level. This level is configured by the parameter SARM Granularity
Level. For more information on this parameter, see “About Siebel ARM Parameters and Variables” on
page 193.

■ SARM Framework (SARM) ■ Siebel Repository (SRF)

■ Web Engine (SWE) ■ Assignment Manager (AM)

■ Build Web Page (SWEPAGE) ■ Fulfillment Engine (FSFULFILL)

■ Web Server Plugin (SWSE) ■ Preventative Maintenance Engine
(FSPREVMNT)

■ Database Connector (DBC) ■ Siebel Loyalty (LOY)

■ Application Server (INFRA) ■ Handheld Sync (HHSYNC)

■ Workflow (WORKFLOW) ■ SmartScript (SMARTSCRIPT)

■ eScripts (SCRIPT) ■ Siebel Anywhere (SIEBANYWHERE)

■ Request Manager (SRM) ■ Communications Channel Manager (CSMM)

■ Request Broker (SRB) ■ Communications Server Service (CSS)

■ File System Manager (FSM) ■ Customer/Order Management - Configurator
(COMCFG)

■ Business Service (BUSSRVC) ■ EAI Transports (EAITRANSP)

■ Email Response (EMR) ■ MWC Profiler (MWC)1

1. MWC = Mobile Web Client

■ Security / Authentication
(SEC)

■ Communications Outbound Manager (COM)

■ Object Manager (OBJMGR) ■ Universal Inbox (UINBOX)
Performance Tuning Guide Version 7.8192

Monitoring Siebel Application Performance ■ About Siebel ARM Parameters and
Variables
About Siebel ARM Parameters and
Variables
The following parameters on the Siebel Server and environment variables on the Web server enable
and configure the Siebel ARM feature. The Siebel ARM parameters and environment variables are
equivalent in function and similar in naming convention.

See Table 7 on page 193 for a listing of each Siebel ARM parameter and its equivalent environment
variable. Descriptions of each parameter and environment variable follow the table.

For details on enabling Siebel ARM using these parameters and variables, see “Enabling and
Configuring Siebel ARM” on page 195.

SARM Granularity Level
Specifies the amount of response measurement detail logged to Siebel ARM files and effectively
enables or disables the Siebel ARM feature. This parameter or environment variable has the following
settings:

■ 0 (OFF). This setting is the default value and disables Siebel ARM.

■ 1 (ARM). This setting captures general application performance and is based on the application
response measurement (ARM) standard. At this level, Siebel ARM collects information such as
process and component boundaries, third-party software calls, database measurements,
workflow execution, and script performance. Use this level for general performance monitoring.

■ 2 (Detail). This setting captures the information at level 1 as well as detailed information such
as steps of workflow execution, construction of large objects, reading of large files, and crossing
significant architectural areas. Use this level for problem diagnostics.

Table 7. Siebel ARM Parameters and Environment Variables

Parameter Display Name Parameter Alias Environment Variable Name

SARM Granularity Level SARMLevel SIEBEL_SARMLevel

SARM Buffer Size SARMBufferSize SIEBEL_SARMBufferSize

SARM Period SARMPeriod SIEBEL_SARMPeriod

SARM Max Number of files SARMMaxFiles SIEBEL_SARMMaxFiles

SARM Data File Size SARMFileSize SIEBEL_SARMFileSize
Performance Tuning Guide Version 7.8 193

Monitoring Siebel Application Performance ■ About Siebel ARM Parameters and
Variables
SARM Buffer Size
The Siebel ARM framework uses a buffered data generation mechanism. Siebel ARM collects data and
stores it in memory. After the in-memory data size reaches a threshold defined by SARM Buffer Size
Siebel ARM outputs the stored data to file on a physical disk. The SARM Buffer Size parameter or
environment variable is specified in bytes. The default value is 5,000,000 bytes (approximately 5
MB). The valid settings range from 100,000 bytes to 50,000,000 bytes.

NOTE: Siebel ARM also outputs stored data to file based on elapsed time, which is defined by the
parameter or environment variable SARM Period. The setting of this parameter may determine the
size of the data saved to file rather than the threshold value defined by SARM Buffer Size.

For example, if SARMBufferSize is 5 MB and there are five instances (processes) of the component,
then the total memory used is 25 MB.

SARM Period
Siebel ARM collects data and stores it in memory. The time period specified by the SARM Period
parameter or environment variable determines when Siebel ARM outputs the stored data to file on a
physical disk regardless of the value set for SARM Buffer Size. The parameter is specified in minutes,
and has a default value of 3 minutes. The valid settings for this parameter range from 1 minute to
60 minutes.

NOTE: Only use SARM Period to output Siebel Server performance data based on elapsed time.
Siebel ARM outputs Web server performance data based only on the SARM Buffer Size value.

See the description for SARM Buffer Size for information on outputting data from memory based on
size of data in memory.

SARM Max Number of Files
Specifies the maximum number of Siebel ARM files created per component instance. The default
value is four, and there is no Siebel-specified upper limit to the number of files Siebel ARM creates.
(The parameter or environment variable SARM Data File Size configures how large a file becomes
before a new file is stored on the physical disk.)

The number of active Siebel ARM files per component process is 1 plus the value of SARM Max
Number of Files. That is, Siebel ARM removes the oldest file for that process only after the SARM Max
Number of Files-plus-1 file reaches SARM Data File Size.

See the description for SARM Data Size for an example on how to calculate memory usage using
these parameters or environment variables.

SARM Data File Size
Specifies how large a file becomes before Siebel ARM stores data in a new file on the physical disk.
The parameter is specified in bytes. The default value is 15000000 bytes (15 MB), and there is no
Siebel-specified upper limit to file size.

Until the specified size is reached, Siebel ARM continues to append file segments to the current file.
When the file limit is reached, Siebel ARM creates a new file. (The parameter or environment variable
SARM Max Number of files configures the number of files maintained by Siebel ARM.)
Performance Tuning Guide Version 7.8194

Monitoring Siebel Application Performance ■ Enabling and Configuring Siebel ARM
When Siebel ARM reaches the file number specified by SARM Max Number of Files (that is, there are
SARM Max Number of Files of size SARM Data File Size), Siebel ARM removes the first (that is, the
oldest) file when the next file reaches the SARM Data File Size limit. Therefore, the maximum amount
of disk space used is approximately SARM Max Number of Files + 1 times SARM Data File Size bytes.
This amount of memory is per-process (per component instance).

For example, if SARM Data File Size is 15 MB, SARM Max Number of Files is 4, and there are 5
instances (processes) of the component, then the maximum amount of disk space consumed is
approximately 375 MB—that is, 15MB per file, times 5 files per process, times 5 processes (instances
of component).

Enabling and Configuring Siebel ARM
Enabling and configuring Siebel Application Response Measurement (Siebel ARM) involves two tasks:

■ Setting Siebel ARM parameters on the Siebel Server.

■ Setting Siebel ARM environment variables on the Web server.

By default, Siebel ARM is disabled.

Setting Siebel ARM Parameters on the Siebel Server
Perform the following procedure to enable and configure Siebel ARM on the Siebel Server.

NOTE: If the Siebel ARM parameters are not visible, make sure the parameter Show Advanced
Objects (alias ShowAdvancedObjects) is set to TRUE for the server component Server Manager (alias
ServerMgr).

To enable and configure Siebel ARM on the Siebel Server

1 Set the parameter SARM Granularity Level (alias SARMLevel) to a value of 1 or 2 to enable Siebel
ARM on the Siebel Server. For further information on this parameter and its settings, see “About
Siebel ARM Parameters and Variables” on page 193.

You can enable Siebel ARM at either the enterprise, Siebel Server, or server component level.

2 Set the other Siebel ARM-related parameters to configure the Siebel ARM file characteristics on
the Siebel Server. For further information on these parameters, see “About Siebel ARM Parameters
and Variables” on page 193.

You can configure Siebel ARM at the Siebel Server or server component level.

For further information on setting Siebel Server parameters using the Server Manager GUI or
command-line interface, and for background information on parameter administration, see Siebel
System Administration Guide.

Setting Siebel ARM Environment Variables on the Web Server
Perform the following procedure to enable and configure Siebel ARM on the machine hosting the Web
server.
Performance Tuning Guide Version 7.8 195

Monitoring Siebel Application Performance ■ Converting Siebel ARM Files
To enable and configure Siebel ARM on the Web server

1 Set the environment variable SIEBEL_SARMLevel to a value of 1 or 2 to enable Siebel ARM on
the machine hosting the Web Server. For further information on this parameter and its settings,
see the description for SARM Granularity Level in “About Siebel ARM Parameters and Variables” on
page 193.

2 Set the other Siebel ARM-related environment variables to configure the Siebel ARM file
characteristics on the machine hosting the Web server. For further information on these
parameters, see “About Siebel ARM Parameters and Variables” on page 193.

For further information on setting environment variables on both Windows and UNIX, see Siebel
System Administration Guide.

Converting Siebel ARM Files
Running the Siebel ARM post-processing tool converts binary Siebel ARM files into readable output
for analysis.

For further description of the Siebel ARM post-processing tool, see “About Siebel ARM Post-Processing
Tool” on page 198. For further information on Siebel ARM files, see “About Siebel ARM Files” on
page 197.

To run the Siebel ARM post-processing tool, use the executable program sarmanalyzer.exe on
Microsoft Windows, or sarmanalyzer on UNIX. Use one or more command-line flags depending on
the desired type of output analysis.

The Siebel ARM post-processing tool runs on both Microsoft Windows and UNIX platforms and can
convert binary Siebel ARM files created on either platform.

For a particular type of analysis output, see the following sections on running the Siebel ARM post-
processing tool:

■ “Running Performance Aggregation Analysis” on page 199

■ “Running Call Graph Generation” on page 199

■ “Running User Session Trace” on page 200

■ “Running Siebel ARM Data CSV Conversion” on page 201

For a listing of flags used with the Siebel ARM post-processing tool, see Table 8. For descriptions of
the types of analysis output, see “About Siebel ARM Post-Processing Tool Output” on page 198.

Table 8. Siebel ARM Post-Processing Tool Flags

 Flag Description

-help Use this flag with the Siebel ARM post-processing tool to list and describe the available
flags.

-f Use this flag with a Siebel ARM file argument to run a performance aggregation
analysis. For details, see “Running Performance Aggregation Analysis” on page 199.
Performance Tuning Guide Version 7.8196

Monitoring Siebel Application Performance ■ Converting Siebel ARM Files
About Siebel ARM Files
When enabled, the Siebel ARM feature saves binary Siebel ARM files in the:

■ Siebel Server log subdirectory on Windows: SIEBSRVR_ROOT\log

■ Siebel Server log subdirectory on UNIX: SIEBSRVR_ROOT/enterprises/EnterpriseServerName/
SiebelServerName/log

■ Siebel Web Server Extension log subdirectory: SWSE_ROOT\log.

For information on the Siebel ARM feature, see “About Siebel Application Response Measurement” on
page 191.

The Siebel ARM feature names the binary data files as in the following example:

T200401081744_P001768_N0006.sarm

where:

■ T = Constant value, indicating timing convention information follows.

■ 200401081744 = Indicates date and time of Siebel ARM file. This example indicates this file
was saved on January 8th, 2004 at 17:44.

-o Use this flag to name the output path and file resulting from the analysis of the Siebel
ARM binary file. Make sure to include the correct file extension based on the selected
analysis, that is, either XML or CSV.

-d Use this flag and the arguments XML or CSV to indicate the type of output file format:
extensible markup language (XML) or a comma-delimited list (CSV).

-a Use this flag with the arguments AREA or DETAILS when running a performance
aggregation analysis. For further information on this analysis, see “Running
Performance Aggregation Analysis” on page 199.

-i Use this flag with a directory argument when running a user session trace analysis. For
further information on this analysis, see “Running User Session Trace” on page 200.

-s Use this optional flag to denote a start time for a user session trace. The format of the
time argument is as follows: yyyy-mm-dd hh:mm:ss. Use this flag with the -e flag to
create a time range.

-e Use this optional flag to denote an end time for a user session trace. The format of the
time argument is as follows: yyyy-mm-dd hh:mm:ss. Use this flag with the -s flag to
create a time range.

-p Use this optional flag to split large Siebel ARM files into smaller sizes. Use a value of 0
to 50 as the flag argument, which denotes the size in MB of the reduced files. The
default value is 14 MB. The Siebel ARM post-processing tool uses the default value if
the flag argument is 0. The split files are suffixed with _Snnnn, where nnnn is the split
sequence number.

Table 8. Siebel ARM Post-Processing Tool Flags

 Flag Description
Performance Tuning Guide Version 7.8 197

Monitoring Siebel Application Performance ■ Converting Siebel ARM Files
■ P = Constant value, indicating process ID information follows.

■ 001768 = Indicates the process ID on which Siebel ARM collects data.

■ N = Constant value, indicating Siebel ARM ID information follows.

■ 0006 = Indicates Siebel ARM log ID number for the listed process ID. Starts at 0000 and
increments until it reaches 9999, at which point it wraps around to 0000.

■ .sarm = Siebel ARM file extension.

To analyze the data contained in the binary Siebel ARM files, you must convert the Siebel ARM files
using the Siebel ARM post-processing tool—a command-line program—into readable output.

For more information on the Siebel ARM post-processing tool, see “About Siebel ARM Post-Processing
Tool” on page 198. For more information on running the Siebel ARM post-processing tool, see
“Converting Siebel ARM Files” on page 196.

NOTE: The Siebel ARM feature creates an empty Siebel ARM file on the Web server before populating
it with data. It begins storing data to these files after the feature reaches the value of the SARM Data
File Size parameter. For details on this process, see parameter descriptions in “About Siebel ARM
Parameters and Variables” on page 193.

About Siebel ARM Post-Processing Tool
The Siebel ARM post-processing tool parses the files created by the Siebel ARM feature and generates
extensible markup language (XML) analytic results or comma-separated value (CSV) results. Run the
Siebel ARM post-processing tool manually at the command-line. For details on how to run the Siebel
ARM post-processing tool, see “Converting Siebel ARM Files” on page 196.

This command-line utility resides in the bin subdirectory (BIN) of the Siebel Server root directory as
the executable program sarmanalyzer.exe on Microsoft Windows or sarmanalyzer on UNIX.

Monitoring the Siebel application can result in large Siebel ARM files. In some cases, the Siebel ARM
post-processing tool cannot allocate enough memory to convert extremely large binary Siebel ARM
files. In this situation, use the -p flag with the Siebel ARM post-processing tool to split the Siebel
ARM file into smaller files. For information on this flag, see Table 8 on page 196.

About Siebel ARM Post-Processing Tool Output
The Siebel ARM post-processing tool produces output in either XML or CSV formats based on the type
of conversion analysis. See the following sections for details on output for each analysis:

■ “About Call Graph Generation Analysis and Data” on page 211

■ “About User Session Trace Analysis and Data” on page 213

■ “About User Session Trace Analysis and Data” on page 213

■ “About Siebel ARM to CSV Conversion Data” on page 215

For details on how to run the Siebel ARM post-processing tool for various output formats, see
“Converting Siebel ARM Files” on page 196.
Performance Tuning Guide Version 7.8198

Monitoring Siebel Application Performance ■ Converting Siebel ARM Files
Running Performance Aggregation Analysis
Use the following procedure to obtain performance aggregation analysis output.

For a description of the performance aggregation analysis and output, see “About Performance
Aggregation Analysis and Data” on page 203.

To run a performance aggregation analysis

1 Navigate to the bin subdirectory within the Siebel Server root directory.

2 Run the Siebel ARM post-processing tool using the following command:

sarmanalyzer -o output_file_name.xml -a aggregate_argument -f sarm_file_name.sarm

where:

output_file_name.xml = The name and path of the XML output file.

aggregate_argument = Either AREA or DETAILS depending on which area you want the Siebel
ARM post-process tools to aggregate data from. For further information, see “About Performance
Aggregation Analysis and Data” on page 203.

sarm_file_name.sarm = The name and path of the binary Siebel ARM file. Use a comma delimited
list to aggregate data from more than one Siebel ARM file.

3 Review the XML output in the file named output_file_name.xml. For further information on
analyzing the performance aggregation analysis XML output, see “About Performance Aggregation
Analysis and Data” on page 203.

For further information on running the Siebel ARM post-processing tool and running the Siebel ARM
post-processing tool for other types of analyses, see “Converting Siebel ARM Files” on page 196.

Running Call Graph Generation
Use the following procedure to obtain call graph generation analysis output.

For a description of the call graph generation analysis and output, see “About Call Graph Generation
Analysis and Data” on page 211.

To run a call graph generation analysis

1 Navigate to the bin subdirectory within the Siebel Server root directory.

2 Run the Siebel ARM post-processing tool using the following command:
Performance Tuning Guide Version 7.8 199

Monitoring Siebel Application Performance ■ Converting Siebel ARM Files
sarmanalyzer -o output_file_name.xml -d xml -f sarm_file_name.sarm

where:

output_file_name.xml = The name and path of the XML output file.

-d xml = Identifies the call graph generation analysis.

sarm_file_name.sarm = The name and path of the binary Siebel ARM file.

3 Review the XML output in the file named output_file_name.xml. For further information on
analyzing the call graph analysis XML output, see “About Call Graph Generation Analysis and Data”
on page 211.

For further information on running the Siebel ARM post-processing tool and running the Siebel ARM
post-processing tool for other types of analyses, see “Converting Siebel ARM Files” on page 196.

Running User Session Trace
Use the following procedure to obtain user session trace analysis output. Before running this
analysis, manually collect Siebel Server and Web server Siebel ARM files and store in a common
directory. Use this directory as an argument with the Siebel ARM post-processing tool.

For a description of the user session trace analysis and output, see “About User Session Trace Analysis
and Data” on page 213.

TIP: To reduce the amount of data logged, use the time frame parameters (-s start time and -e end
time).

To run a user session trace analysis

1 Navigate to the bin subdirectory within the Siebel Server root directory.

2 Run the Siebel ARM post-processing tool using the following command:

sarmanalyzer -o output_file_name.xml -u user_name -i SARM_File_Directory -s
start_time -e end_time

where:

■ output_file_name.xml = The name and path of the XML output file.

■ user_name = The User ID of the session you want to trace.

■ SARM_File_Directory = The directory containing the Siebel ARM files of the Web Server and
the Siebel Server.

■ start_time = Optionally set this variable to define a start time of a time range for the user
session trace. The argument format is as follows: yyyy-mm-dd hh:mm:ss.

■ end_time = Optionally set this variable to define the end time of a time range for the user
session trace. The argument format is as follows: yyyy-mm-dd hh:mm:ss.
Performance Tuning Guide Version 7.8200

Monitoring Siebel Application Performance ■ Best Practices for Siebel ARM
3 Review the XML output in the file named output_file_name.xml. For further information on
analyzing user session trace XML output, see “About User Session Trace Analysis and Data” on
page 213.

For further information on running the Siebel ARM post-processing tool and running the Siebel ARM
post-processing tool for other types of analyses, see “Converting Siebel ARM Files” on page 196.

Running Siebel ARM Data CSV Conversion
Use the following procedure to obtain a comma-separated value (CSV) analysis output.

For a description of the CSV conversion analysis and output, see “About Siebel ARM to CSV Conversion
Data” on page 215.

To run a Siebel ARM data to CSV conversion analysis

1 Navigate to the bin subdirectory within the Siebel Server root directory.

2 Run the Siebel ARM post-processing tool using one of the following commands:

sarmanalyzer -o output_file_name.csv -d csv -f sarm_file_name.sarm

where:

output_file_name.csv = The name and path of the CSV output file.

-d csv = Identifies the Siebel ARM data CSV conversion analysis.

sarm_file_name.sarm = The name and path of the binary Siebel ARM file or files.

3 Review the CSV output in the file named output_file_name.csv. For further information on
analyzing CSV data, see “About Siebel ARM to CSV Conversion Data” on page 215.

NOTE: Running a CSV conversion can create large output files that, in some cases, cannot be
read by third-party software. Use the -p flag to split large Siebel ARM files. For more information
on this flag, see Table 8 on page 196.

For further information on running the Siebel ARM post-processing tool and running the Siebel ARM
post-processing tool for other types of analyses, see “Converting Siebel ARM Files” on page 196.

Best Practices for Siebel ARM
Review the following information as recommendations of best practice when converting Siebel ARM
files.

■ Set the Siebel ARM granularity level to level 1 for monitoring production deployments; set the
Siebel ARM granularity to level 2 for diagnostic purposes.

■ Set the SARM Max Number of files parameter to 0 in order to disable Siebel ARM file creation.
This scenario may be useful when enabling Siebel ARM for use with other third-party ARM tools.
Performance Tuning Guide Version 7.8 201

Monitoring Siebel Application Performance ■ About Siebel ARM Data
■ Make sure the Siebel ARM feature has flushed data to the Siebel ARM file before converting the
file. The Siebel ARM feature creates an empty Siebel ARM file before data is flushed to the file.
For details on this process, see the descriptions for SARM Data File Size and SARM Period in
“About Siebel ARM Parameters and Variables” on page 193.

■ Change the value of the SARM Memory Size Limit (alias SARMMaxMemory) or SARM Period (alias
SARMPeriod) to a lower setting if the Siebel ARM files remain empty on a consistent basis. For
details on this process, see the descriptions for SARM Data File Size and SARM Period in “About
Siebel ARM Parameters and Variables” on page 193.

■ Make sure the Siebel ARM file name and path name, as necessary, are correct when referencing
the Siebel ARM files in the commands.

■ Split large Siebel ARM files using the -p flag with the Siebel ARM post-processing tool if the Siebel
ARM post-processing tool cannot convert the Siebel ARM file or the output file is too large. For
further information on the -p flag, see Table 8 on page 196.

■ Concatenate Siebel ARM files to increase the amount of performance data for a given process.
For example, as the Siebel ARM feature can save numerous Siebel ARM binary files for each
process, concatenate these files to view performance data for multiple requests for this process.
(For details on the number of files saved, see the description for SARM Max Number of Files in
“About Siebel ARM Parameters and Variables” on page 193.)

TIP: Use a third-party utility to concatenate Siebel ARM files on Windows. Use the command
cat list_of_files > filename.sarm to concatenate Siebel ARM files on UNIX.

NOTE: Only concatenate Siebel ARM files of the same process.

■ Gather performance analysis data on your Siebel application before customizing the application.
These baseline measurements provide a good reference when monitoring the performance of
your Siebel application after any customizations.

■ Run a user session trace analysis if there are performance problems for an individual user during
a particular session. The user trace session trace data identifies each request the user made and
identifies which request required the longest time when compared to a base line.

■ Use the performance aggregation data to diagnose performance at a given point in time or for a
certain process. Reviewing the data by group can diagnose the area that is performing poorly.
After reviewing a high-level view of the performance data, extrapolate a more detailed review by
running the comma-separated value analysis. For details on running this analysis, see “Running
Siebel ARM Data CSV Conversion” on page 201.

■ Compile performance aggregation data over a period of time to determine a trend analysis.

About Siebel ARM Data
Running the Siebel ARM post-processing tool produces output files of either extensible markup
language (XML) or comma-separated value (CSV) format depending on the type of Siebel ARM file
conversion.

For details on converting Siebel ARM files and running the Siebel ARM post-processing tool, see
“Converting Siebel ARM Files” on page 196.
Performance Tuning Guide Version 7.8202

Monitoring Siebel Application Performance ■ About Siebel ARM Data
Use an XML editor or Web browser to view the XML output files, which result from a number of types
of analyses. Values of timing measurements are included among the XML tags.

Use third-party software—for example, a spreadsheet program—to view the output files that result
from the conversion of Siebel ARM files to CSV files. Tags and values of timing measurements are
included.

Siebel ARM records all timings included in both the XML and CSV output in milliseconds.

For details on analyzing Siebel ARM output specific to each type of data analysis, see the following
sections:

■ “About Performance Aggregation Analysis and Data” on page 203

■ “About Call Graph Generation Analysis and Data” on page 211

■ “About User Session Trace Analysis and Data” on page 213

■ “About Siebel ARM to CSV Conversion Data” on page 215

For a scenario of analyzing Siebel ARM post-processing tool output, see “About Siebel ARM Post-
Processing Tool” on page 198.

About Performance Aggregation Analysis and Data
Performance aggregation analysis is a compilation of the data contained in a Siebel ARM binary file.
Siebel ARM files group performance data based on the instrumented areas.

For information and a listing of instrumented areas, see “About Siebel ARM Architecture” on page 191.

For details on creating this format of Siebel ARM output, see “Running Performance Aggregation
Analysis” on page 199.

Running a performance aggregation analysis of a Siebel ARM file results in an extensible markup
language (XML) output file. This file contains timing data for the instrumented areas.

The amount of information contained in the performance aggregation analysis XML output is
dependent on the argument used for the -a flag when performing the analysis (either AREA or
DETAILS) and the setting for the SARM Granularity Level parameter. For information on this
parameter, see “About Siebel ARM Parameters and Variables” on page 193.

The performance aggregation XML output file contains the following tag schema when the -a flag
argument is set to DETAILS. If the -a flag argument is set to AREA when running the analysis, the
tag schema is the same minus the <NumberOfSubAreas> and <SubArea> information.

<Area>
<Name>
<Symbol>
<NumberOfSubAreas>
<Invocations>

<Recursive>
<NonRecursive>

<ResponseTime>
<Total>
<Average>
<StandardDeviation>
Performance Tuning Guide Version 7.8 203

Monitoring Siebel Application Performance ■ About Siebel ARM Data
+<Maximum>
+<Minimum>

<ExecutionTime>
<Total>
<Calls>
<Average>
<Maximum>
<Minimum>
<PercentOfResponse>

<RecursiveTime>
<Total>
<Calls>
<Average>
<Maximum>
<Minimum>
<PercentOfResponse>

<InclusiveMemory>
<Total>
<Average>
<StandardDeviation>
+<MaxAllocated>
+<MaxDeallocated>

<ExclusiveMemory>
<Total>
<Average>
<StandardDeviation>
+<MaxAllocated>
+<MaxDeallocated>

<SubArea>
<Name>
<Symbol>
<NumberOfInstances>
+<Invocations>
+<ResponseTime>
+<ExecutionTime
+<Memory>
+<Instance>
+<Parents>
+<Children>

<Parents>
<NumberOfParents>
<ParentArea>

<Name>
<Symbol>
+<InvocationsFromParents>
+<ResponseTime>
+<Memory>

<Children>
<NumberOfChildren>
<ChildArea>

<Name>
<Symbol>
+<InvocationsOfChild>
Performance Tuning Guide Version 7.8204

Monitoring Siebel Application Performance ■ About Siebel ARM Data
+<ResponseTime>
+<Memory>

For descriptions on each of the tags, see Table 9.

Table 9. Performance Aggregation Analysis Tags

Tag Description

Area Specifies performance data captured for a specific area of the Siebel ARM
architecture. There may be one or more areas captured with performance
data. For further information on Siebel ARM areas, see “About Siebel ARM
Architecture” on page 191.

Name Name of the area containing performance data. For a listing of area names,
see “About Siebel ARM Architecture” on page 191.

Symbol Symbol of the area containing performance data. For a listing of symbol
names, see“About Siebel ARM Architecture” on page 191.

NumberOfSubAreas A count of subareas within the area that contain data. This figure also
indicates the number of <SubArea> tags appearing under the particular <Area>
tag.

Invocations Number of times this area was called during the monitoring period.

■ Recursive – One of the key features of Siebel ARM is the capability to
handle recursion. An example of a recursive call is if a workflow step calls
an Application Object Manager (AOM) function, which also invokes
another workflow step. When accounting for the number of times the
workflow layer is called, Siebel ARM uses two metrics: Recursive and
NonRecursive. In the previous example, Recursive is 1 and NonRecursive
is also 1. When calculating the response time, only the root-level call is
accounted for, that is, the first workflow call to the AOM function. When
calculating execution time, both calls are accounted for.

■ Nonrecursive – Number of times an instrumentation area is called. This
tag helps identify how fast it takes a layer to respond to a request.
Performance Tuning Guide Version 7.8 205

Monitoring Siebel Application Performance ■ About Siebel ARM Data
ResponseTime Specifies the time spent for a request to enter and exit an instrumentation
area (layer) including calls to other child areas. Also called inclusive time in
other commercial profiling tools. Other tags in this area include:

■ Total – Total time spent by requests through this instrumentation area
(layer).

■ Average – Average response time for a request.

■ StandardDeviation – The standard deviation value of request times
through this area.

■ +<Maximum> – The maximum time spent by a request in this area. Expand
this tag to review further details on the specific Siebel ARM node where
this time was spent. For further information on Siebel ARM node tags, see
“About Call Graph Generation Analysis and Data” on page 211.

■ +<Minimum> – The minimum time spent by a request in this area. Expand
this tag to review further details on the specific Siebel ARM node where
this time was spent. For further information on Siebel ARM node tags, see
“About Call Graph Generation Analysis and Data” on page 211.

ExecutionTime Specifies the total time spent in a particular instrumentation area, not
including the time spent in the descendant layers. It is also called exclusive
time in other commercial profiling tools. Other tags in this area include:

■ Total – Total time spent for a request to enter and exit an
instrumentation area (layer).

■ Calls – Total number of calls including both recursive and non-recursive
calls.

■ Average – Average time spent for a request to enter and exit an
instrumentation area (layer).

■ Maximum – Maximum time for a request to enter and exit an
instrumentation area (layer).

■ Minimum – Minimum time for a request to enter and exit an
instrumentation area (layer).

■ PercentageofResponse – Percentage of the total response time spent in
the area.

Table 9. Performance Aggregation Analysis Tags

Tag Description
Performance Tuning Guide Version 7.8206

Monitoring Siebel Application Performance ■ About Siebel ARM Data
RecursiveTime Specifies the total time spent in recursive calls within this area. That is, the
time spent in this area when it calls itself.

Other tags in this area include:

■ Total – Total time spent for recursive requests.

■ Calls – Number of recursive calls.

■ Average – Average time spent for a recursive request.

■ Maximum – Maximum time spent by a recursive request.

■ Minimum – Minimum time spent by a recursive request.

■ PercentageofResponse – Percentage of the total response time spent
recursively in the area.

InclusiveMemory Specifies amount of memory used by requests that enter this area and any
child or descendent areas. The memory value is recorded in bytes.

Other tags in this area include:

■ Total – Total memory usage by requests in this area.

■ Average – Average memory usage by requests in this area.

■ StandardDeviation – The standard deviation value of memory usage in
this area.

■ +<MaxAllocated> – Expand this tag to reveal further data on Siebel ARM
node where maximum memory was allocated.

■ +<MaxDeallocated> – Expand this tag to reveal further data on Siebel
ARM node where memory was deallocated.

NOTE: For further information on Siebel ARM node tags, see “About Call
Graph Generation Analysis and Data” on page 211.

Table 9. Performance Aggregation Analysis Tags

Tag Description
Performance Tuning Guide Version 7.8 207

Monitoring Siebel Application Performance ■ About Siebel ARM Data
ExclusiveMemory Specifies amount of memory used by requests that enter only this area. The
memory value is recorded in bytes.

Other tags in this area include:

■ Total – Total memory usage by request in this area.

■ Average – Average memory usage bya request in this area.

■ StandardDeviation – The standard deviation value of memory usage in
this area.

■ +<MaxAllocated> – Expand this tag to reveal further data on Siebel ARM
node where maximum memory was allocated.

■ +<MaxDeallocated> – Expand this tag to reveal further data on Siebel
ARM node where memory was deallocated.

NOTE: For further information on Siebel ARM node tags, see “About Call
Graph Generation Analysis and Data” on page 211.

Table 9. Performance Aggregation Analysis Tags

Tag Description
Performance Tuning Guide Version 7.8208

Monitoring Siebel Application Performance ■ About Siebel ARM Data
SubArea Specifies performance data captured for a specific subarea of the given area.
There may be one or more subareas captured with performance data under a
given area.

■ Name – Name of the subarea containing performance data.

■ Symbol – Symbol of the subarea containing performance data.

■ NumberOfInstances – A count of instances within the subarea that contain
data. This figure also indicates the number of <Instance> tags appearing
under the particular <SubArea> tag. An instance is a further level of detail
defining the subarea.

■ Invocations – Number of times this subarea was called during the
monitoring period.

■ +<ResponseTime> – Specifies the time spent for requests to enter and exit
the subarea. Expand this tag to review further timing details. These tags
are the same as those defined for the area ResponseTime tag.

■ +<ExecutionTime> – Specifies the time spent in the subarea. Expand this
tag to review further timing details. These tags are the same as those
defined for the area ExecutionTime tag.

■ +<InclusiveMemory> – Specifies amount of memory used by requests
that enter this subarea and any child or descendent areas. The memory
value is recorded in bytes. Expand this tag to review further memory
details. The expanded tags are the same as those defined for the area
InclusiveMemory tag.

■ +<ExclusiveMemory> – Specifies amount of memory used by requests
that enter only this subarea. The memory value is recorded in bytes.
Expand this tag to review further memory details. The expanded tags are
the same as those defined for the area ExclusiveMemory tag.

■ +<Instance> – An instance is another level of detail defining the subarea.
Expand this tag to review further the instance’s details. These tags are the
same as those defined for the area tag.

■ +<Parents> – Specifies the parents of the subarea; that is, those areas
that called the subarea. Expand this tag to review further parent subarea
details. These tags are the same as those defined for the area Parents
tag.

■ +<Children> – Specifies the children of the subarea; that is, those areas
called by the subarea. Expand this tag to review further parent subarea
details. These tags are the same as those defined for the area Children
tag.

Table 9. Performance Aggregation Analysis Tags

Tag Description
Performance Tuning Guide Version 7.8 209

Monitoring Siebel Application Performance ■ About Siebel ARM Data
Parents Specifies the parents of the subarea; that is those areas that called the given
area. This information helps identify the caller or callers of an area and the
total time and number of calls the area contributed to its parent’s response
time. Other tags in this area include:

■ NumberOfParents – A count of parent areas calling the given area.

■ ParentArea – Specifies performance data captured for a specific parent
area of the Siebel ARM architecture. There may be one or more parent
areas captured with performance data.

■ Name – Name of the parent area calling the given area.

■ Symbol – Symbol of the parent area calling the given area.

■ +<InvocationsFromParents> – Number of times the given area was called
by the parent area. Expand this tag for further timing details.

■ +<ResponseTime> – Specifies the time spent for a request to enter and
exit the parent area. Expand this tag for futher parent area response time
details.

■ +<Memory> – Specifies the amount of memory used by parent area.
Expand this tag to review further parent subarea details.

Children Specifies the areas called by a parent area; that is, those areas called by the
given area. Expanding an area’s children information determines response
time break downs within each of the children. Other tags in this area include:

■ NumberOfChildren – A count of child areas called by the given area.

■ ChildArea – Specifies performance data captured for a specific child area
of the Siebel ARM architecture. There may be one or more child areas
captured with performance data.

■ Name – Name of the child area called by the given area.

■ Symbol – Symbol of the child area called by the given area.

■ +<InvocationsOfChild> – Number of times the child area was called by
the given area. Expand this tag for further timing details.

■ +<ResponseTime> – Specifies the time spent for a request to enter and
exit the child area. Expand this tag for futher child area response time
details.

■ +<Memory> – Specifies the amount of memory used by child area. Expand
this tag to review further child subarea details.

Table 9. Performance Aggregation Analysis Tags

Tag Description
Performance Tuning Guide Version 7.8210

Monitoring Siebel Application Performance ■ About Siebel ARM Data
About Call Graph Generation Analysis and Data
A call graph generation analysis constructs a map of call references. Each node in the call map
represents an instrumentation instance, that is, response times for an individual request through an
instrumented area.

For information on instrumented areas, see “About Siebel ARM Architecture” on page 191.

For details on creating this format of Siebel ARM output, see “Running Call Graph Generation” on
page 199.

Running a call graph generation analysis of a Siebel ARM file results in an extensible markup
language (XML) output file. For a given Siebel ARM file, the Siebel ARM post-processing tool
constructs a map with call references. Each node in the call map represents an instrumentation
instance. Use this option to generate an XML file containing all the calls made by each component (if
that component captures response time data).

The XML output file contains the following tag schema, which records the details of the calls. For
descriptions on each of the tags, see Table 10.

<SarmNode>
<SarmID>
<TypeLevel>
<RootID>
<ParentSARMID>
<ParentTimeID>
<ParentProcID>
<AreaCodeSymbol>
<AreaDescription>
<SubAreaCodeSymbol>
<SubAreaDescription>
<Count>
<Duration>
<PooledMemoryUsage>
<PooledMemoryCalls>
<SystemMemoryUsage>
<SystemMemoryCalls>
<AppInt1>
<AppInt2>
<AppString1>
<AppString2>
Performance Tuning Guide Version 7.8 211

Monitoring Siebel Application Performance ■ About Siebel ARM Data
+<ChildNode>
</SarmNode>

Table 10. Call Graph Generation Analysis Tags

Tag Description

SarmNode Data contained within this tag represents an instance of a Siebel
ARM node, which is an instrumented area of the Siebel ARM
architecture. Each Siebel ARM node can have zero to many nodes
as its descendants.

SarmID A unique number representing the Siebel ARM node.

TypeLevel The granularity level at which Siebel ARM records the Siebel ARM
node information. For further information on granularity level,
“About Siebel ARM Parameters and Variables” on page 193

RootID The SarmID of the root Siebel ARM node.

ParentSARMID The parent SarmNode from which the request traveled.

ParentTimeID A unique ID number that generates from the starting time of the
corresponding parent Siebel ARM node.

ParentProcID The parent process ID, that is, the OS (operating system) process
ID for the Siebel component.

AreaCodeSymbol Symbol of the instrumentation area within the Siebel architecture.
For information on Siebel architecture areas, see “About Siebel ARM
Architecture” on page 191.

AreaDescription Name of the instrumentation area within the Siebel architecture.
For information on Siebel architecture areas, see “About Siebel ARM
Architecture” on page 191.

SubAreaCodeSymbol Symbol of the subarea within an area of the Siebel architecture. For
information on Siebel architecture areas, see “About Siebel ARM
Architecture” on page 191.

SubAreaDescription Name of the subarea within an area of the Siebel architecture. For
information on Siebel architecture areas, see “About Siebel ARM
Architecture” on page 191.

Count Number of times Siebel ARM accesses this Siebel ARM Node.

SubArea Detailed instrumentation within an area of the Siebel architecture.
For example, Siebel ARM captures response time for invoking a
method (Invoke Method) or executing a step (Step Execution)
within a Workflow execution.

StartTime Internal representation of the Siebel ARM record timestamp.

Duration Total time to execute the instrumented area.
Performance Tuning Guide Version 7.8212

Monitoring Siebel Application Performance ■ About Siebel ARM Data
Performance Tuning Guide Version 7.8 213

About User Session Trace Analysis and Data
Running a user session trace analysis using Siebel ARM files from the Web server and the Siebel
Server results in an extensible markup language (XML) output file. The XML output file contains
detailed information on each of the SWE requests made by the user identified when running the
Siebel ARM file conversion.

If the user logs onto the system multiple times, the output shows that there are multiple sessions.
The SWE requests are grouped into specific login sessions and sorted by the time the requests were
made. For further details on the Siebel ARM architecture, see “About Siebel ARM Architecture” on
page 191.

For details on creating this format of Siebel ARM output, see “Running User Session Trace” on
page 200.

The XML output file contains the following tag schema, which records the details of user session
trace. The user session trace data also contains the tag schema of the performance aggregation
analysis.

For details on those tags, see “About Performance Aggregation Analysis and Data” on page 203.

PooledMemoryUsage Amount of memory consumed from or released to the Siebel High
Performance memory allocator.

PooledMemoryCalls The number of calls made to the High performance memory
allocator.

SystemMemoryUsage Amount of memory consumed from or released to the operating
system.

SystemMemoryCalls The number of calls made to the operating system.

UserInt1 Context information captured at the point of instrumentation. The
value depends on the instrumented area.

UserInt2 Context information captured at the point of instrumentation. The
value depends on the instrumented area.

UserString Context information captured at the point of instrumentation. The
value depends on the instrumented area. For example, name of the
method invoked or workflow process initialized.

AppInt1 and AppInt2 Context integer value captured at the point of instrumentation. The
value depends on the instrumented area.

AppString1 and AppString2 Context string value captured at the point of instrumentation. The
value depends on the instrumented area. For example, name of the
method invoked or workflow process initialized.

+<ChildNode> Expand this tag to reveal performance details on descendent nodes
of the given node. The descendent nodes are defined the same as
the parent node, that is, the tag definitions are the same as above.

Table 10. Call Graph Generation Analysis Tags

Tag Description

Monitoring Siebel Application Performance ■ About Siebel ARM Data
<UserID>
<Session>

<SessionID>
<UserActionID>

<ID>
<SWERequest>

<ReqID>
<TotalServerTime>
<WebServerTime>
<NetworkTime>
<SiebServerTime>
<DatabaseTime>
<DatabaseCalls>
+<SiebsrvrDetail>

For descriptions on each of the tags specific to the user session trace analysis, see Table 11. For
descriptions of the tags that are also a part of the performance aggregation analysis, see Table 9 on
page 205.

Table 11. User Session Trace Tag Descriptions

Tag Description

UserID User login name. For example, SADMIN.

Session Specifies performance data captured for a specific user session contained
within this tag.

SessionID Refers to a unique user session ID in hexadecimal format. The first
component of the Session ID refers to the Server ID, the second refers to
the Process ID, and the last section to the Task ID. For example:

!1.2b40.182b

Server ID = !1

Process ID = 2b40 (2b40 is 11072 in decimal format and represents the
Operating System Process ID number.)

Task ID = 182b (182b is 6187 in decimal format and represents the task ID
number.)

UserActionID Data contained within this tag represents a specific individual action or
request of the user.

ID Number that identifies the specific user action or request in sequence for
that particular user session.

SWERequest Specifies performance timing data for the specific user action or request.

ReqID An incremental numeric ID number corresponding to a Siebel Web Server
Extension (SWSE) plug-in request.

TotalServerTime Total request time on the servers (includes Web server, Siebel Server, and
network time).
Performance Tuning Guide Version 7.8214

Monitoring Siebel Application Performance ■ About Siebel ARM Data
About Siebel ARM to CSV Conversion Data
CSV format is a comma-separated file without any interpretation or aggregation.The CSV file
contains data organized under column headers. Use third-party software tools to view this output,
for example, a spread sheet.

For details on creating this format of Siebel ARM output, see “Running Siebel ARM Data CSV
Conversion” on page 201.

For a listing and description of these column headers, see the definitions of the tags for the call graph
analysis in “About Call Graph Generation Analysis and Data” on page 211. Information can be reviewed
and organized by these columns. See Figure 4 for an example of CSV data.

WebServerTime Total time spent on the Web server for a given request.

NetworkTime Total time spent between the Web server and the Siebel Server. This time
may also include some Siebel infrastructure time routing the request to the
handling Siebel Server task.

SiebServerTime Time spent on the Siebel Server.

DatabaseTime The time spent on the network when communicating to the database.

DatabaseCalls Number of calls to the Siebel Server database connector layer.

+<SiebsrvrDetail> Response time and execution time for each of the architectural areas of
instrumentation for a given session. For further information on these tags,
see “About Performance Aggregation Analysis and Data” on page 203 and
“About Call Graph Generation Analysis and Data” on page 211.

Figure 4. Example of CSV Data

Table 11. User Session Trace Tag Descriptions

Tag Description
Performance Tuning Guide Version 7.8 215

Monitoring Siebel Application Performance ■ About Siebel ARM Data
Performance Tuning Guide Version 7.8216

Index
Symbols
.IFB file

checking optimization 121
optimizing 120
using to test performance 123

Numerics
4GT 176

A
action interval, setting for Workflow Action

Agent 86
action interval, setting for Workflow Monitor

Agent 86
activity records

session communications and
performance 74

Siebel Email Response and
performance 79

agents, concurrent communications
users 66

AIX
tuning IBM HTTP Server 177
tuning kernel settings 181
tuning Siebel Server 180

All Mode user property, setting for
performance 112

AOM
See Siebel Application Object Manager (AOM)

AOM component, tuning 69
applets

applet toggles, and performance 174
as memory consumer 34
grid layout, and performance 173

application configuration, network
capacity 51

architecture
general flow, steps 18
generic, graphic 14
Siebel ARM, high-level representation 191
Siebel ARM, monitoring points 191
tuning architecture and infrastructure 16
user request flow, processing flow 18

architecture planning
database layout 115
database sizing guidelines 114

requirements 114
archive logging, disabling 138
asynchronous Workflow mode, pros and

cons 88

B
base tables

loading data directly 113
batches

controlling size 130
best practices

AOM component, tuning 69
business objects layer 169
CommSessionMgr component, tuning 69
communications configurations, improving

performance 70
conserving AOM server resources 69
customer configurations 153
data objects layer 164
session communications tuning 68
Siebel ARM files, converting 201
Siebel Configurator tuning 95
Siebel EAI tuning 105
Siebel Email Response tuning 78
Siebel Web Client tuning 51
user interface objects layer 173

bind variables, and potential
problems 159

browser caching
behavior 55
managing 54
view layout caching 57

business components
Cache Data Property, and

performance 169
monitoring conditions 87

business objects layer, best practices
Cache Data Property, and

performance 169
calculated fields guidelines 170
Check No Match property, and

performance 173
Primary ID fields, and performance 172
properties, using to improve picklist

performance 172
setting Force Active property to FALSE 170

business objects, caching by EAI Siebel
Performance Tuning Guide Version 7.8 217

Index ■ C
Adapter 110
business services, invoking through

Workflow Process Manager 89

C
Cache Data Property, and

performance 169
caching

caching persistent view layout 59
disabling view layout caching 60
managing browser cache 54
memory preloading cached views 59
retrieving current view layout 60
setting view layout cache size 58
Siebel Configurator default behavior 97
Siebel Configurator, types supported 97
SQL cursor cache 31
SQL data caches 31
through Workflow Process Manager 89
tuning AOM caches 31
view layout caching 57
view layout caching in memory 57
views, caching 61
WebSphere MQ Transport, improving

outbound performance 107
calculated fields, guidelines 170
Call Center Object Manager, and Siebel

Universal Queuing 75
Call Center, parameter example

settings 30
call references

call graph generation analysis
tags 211

call graph generation data, about 211
call graph generation, running 199

ChannelCleanupTimer parameter 72
Check No Match property, and

performance 173
child business component, monitoring

conditions 87
client, providing hardware resources 53
columns

reusing standard columns 167
reusing standard columns example 167

CommConfigCache parameter (AOM) 69
CommConfigManager parameter

(AOM) 69
CommConfigMgr

server component 65, 69
CommInboundProcessor

running 75
server component 65, 76

CommInboundRcvr

configuring threads 79
running 75
server component 65, 76

CommLogDebug parameter (AOM) 71
CommLogFile parameter (AOM) 71
CommMaxLogKB parameter (AOM) 71
CommMaxMsgQ parameter (AOM) 72
CommOutboundMgr

server component 65, 76
CommReleaseLogHandle parameter

(AOM) 71
CommReqTimeout parameter (AOM) 72
CommSessionMgr

component tuning, best practices 69
logging parameters 71
running on AOM machine 67
server component 64

communications
See Siebel Communications Server

communications configuration
performance 70
session communications, configuring

logging 71
Communications Configuration Manager

server component 65
Communications Inbound Processor

server component 65, 76
Communications Inbound Receiver

server component 65, 76
Communications Outbound Manager

server component 65, 76
Communications Server

See Siebel Communications Server
Communications Session Manager

server component 64
components 145
concurrent communications users, and

performance 66
concurrent users, defined 20
configuration

Siebel Web Client guidelines 54
configuration parameters, MS SQL

server 137
Configurator

See Siebel Configurator
Configurator cache

refreshing cache with attribute definition
changes 104

refreshing cache with product changes 103
refreshing cache with product class

changes 103
Configurator memory caching

determining caching parameters rough
size 102
Performance Tuning Guide Version 7.8218

Index ■ D
connection pooling
assigning 39
assigning shared connections scenario 40
assigning specialized database connection

pooling 41
configuring SISNAPI connection pooling 45
configuring specialized database connection

pooling 41
multiplexing 38
shared connection pooling, configuration

example 39
specialized connection pooling scenario 42
specialized database connection

pooling 40
specialized database connection pooling

example 41
specialized database connections 35

converting
ARM files, best practices 201
Siebel ARM files 196

CPU
hardware resource defined 26
tuning guidelines for AOM components 27

CSV conversion
data, about 215
running 201

CTI middleware 65
customer configurations, best practices

accessible views, limiting 153
analyzing SQL for performance 156
business components in a view 154
business components or applets fields,

limiting 155
cache business services 156
Cascade Delete, configuring 156
extension tables, limiting 155
inner joins, using 155
joins, limiting 155
Link Specification property in fields,

limiting 155
number of records returned, limiting 155
number of required fields, limiting 155
primary ID, limiting 155
providing tuned PDQs 156
reducing scrolling 156
removing unneeded buttons 156
screen tabs, limiting 153
Siebel scripting performance

guidelines 161
Siebel scripting, declarative

alternatives 160
specifying SQL spooling in Siebel Developer

Web Client 157
SQL queries against the database 160

SQL query plan example 160
SQL query plans, using to

troubleshoot 158
SQL trace files, using to troubleshoot 157
user interface configuration 154

customer data, volume and
performance 66

D
data management recommendations 142
data objects layer, best practices

database indexes, sorting and
searching 165

multilingual LOVs query and cache
performance 164

reusing standard columns 167
reusing standard columns example 167

data, customer data volume and
performance 66

database authentication, and database
connections 39

database client libraries, as memory
consumers 33

database connections
AOM assumptions 34
assigning shared connections 39
assigning shared connections scenario 40
assigning specialized database connection

pooling 41
configuring shared database connection

pooling 38
configuring SISNAPI connection pooling 45
configuring specialized database connection

pooling 41
nonpooled database connections 34
pooled database connections 35
shared connection pooling, configuration

example 39
specialized connection pooling scenario 42
specialized database connection

pooling 40
specialized database connection pooling

example 41
Database Extract

increasing throughput 146
database indexes

Search specification property 166
Sort specification property 166
sorting and searching 165

Database Time, defined 191
databases

layout 115
planning guidelines 114
Performance Tuning Guide Version 7.8 219

Index ■ E
DB2 databases
optimization tips 133
version 8 options 129
versions 6 and 7 options 129

DbXtract
See Database Extract

dedicated server
AOM, configuring for Siebel Configurator

deployments 94
running CommSessionMgr 67
running Siebel Configurator 93

deleting
note, using EIM 113

Driver:DriverLogFile parameter (Siebel CTI
Connect driver) 72

DSMaxCursorSize parameter (AOM) 33
DSPreFetchSize parameter (AOM) 33

E
EAI Object Manager

caution, running two sessions in
parallel 110

disabling logging 108
EAI Siebel Adapter, running in parallel 110
and Siebel Universal Queuing 75

EAI Siebel Adapter performance
analyzing SQL produced by EAI 109
caching business objects 110
caution, running two sessions in

parallel 110
disabling logging 108
minimizing integration object size 109
reviewing scripting 108
running in parallel 110

EIM processes
implementing sequence 120
separating by operation 121
testing 118

EIM tables
about 113
caching tables 139
controlling records 131
creating proper statistics 129
disabling archive logging 138
fixing fragmentation 135
fixing Oracle db tables 137
indexes 128
purging MS SQL tables 136
purging Oracle database table 138
rebuilding an object 139
setting FREELIST parameter 138
updating tables 139
using parallel data load 136

EIM usage planning
mapping into Siebel applications 117
term definition 116
testing EIM processes 118

email processing directories,
managing 79

Email Response
See Siebel Email Response

employee applications, and message
bar 61

EnableCDA parameter (AOM) 33
EnableSIBusyCursor 61
EnableViewCache parameter, disabling view

layout caching 60
Enterprise Application Integration

See Siebel EAI, tuning for performance
eProdCfgObjMgr server component 36,

91
escalation action request table 83
escalation request table 83
escalation state table 83
eService, parameter example settings 31
EXEC, disabling triggers 132
exporting data

note, using EIM 113

F
File System Manager

server component 76
files

Siebel ARM files, about and example 197
Siebel ARM files, converting 196

first login, and network consideration 51
Force Active property

setting to FALSE 170
fragmentation

fixing MS SQL server 135
fixing Oracle db tables 137

FREELIST parameter, setting 138
FSMSrvr

server component 76

G
graphical format, viewing log data 82
grid layout, and performance 173

H
hardware resources, and performance 26
heartbeat messages, using Push Keep Alive

communications driver 72
high interactivity applications

settings 54
view layout caching 57
Performance Tuning Guide Version 7.8220

Index ■ I
HP-UX
setting maximum thread limits 187
tuning Apache Web Server 187
tuning kernel settings 188
tuning scheduler 189
tuning SWSE 177

HTTP Inbound Transport, improving
performance 108

I
IBM AIX. See AIX
IBM DB2

loading process 140
performance tuning 140

IBM DB2 UDB for z/OS 139
IBM HTTP Server

specifying static file caching 56
tuning for AIX 177

IBM WebSphere MQ Transport, improving
performance

outbound messages and caching 107
queue, testing and options 106
running inbound WebSphere MQ

messages 107
setting performance tracing 107

IFB file
checking optimization 121
optimizing 120
using to test performance 123

importing
note, using EIM 113

inbound calls processed per hour 66
inbound communications, about 63
inbound email messages processed per

hour 77
indexes

caching tables 139
disabling archive logging 138
dropping for performance 130
on EIM tables 128
rebuilding an object 139
setting FREELIST parameter 138
updating tables 139

Infra-Network Time, defined 191
Internet SMTP/POP3 Server

communications driver 79

K
kernel settings

tuning for AIX 181
tuning for HP-UX 188
tuning for Solaris 184

L
latency, defined 20
layout caching

See view layout caching
LogDebug parameter

(CommSessionMgr) 71
LogDebug parameter (Siebel CTI Connect

driver) 72
LogFile parameter (CommSessionMgr) 71
logging parameters

AOM 71
CommSessionMgr 71
Siebel CTI Connect driver 72

logging, configuring for Siebel Email
Response 80

logical database layout 115
logs

Workflow Agent trace logs, using 82

M
mapping guidelines 117
MaxConnections parameter, for Universal

Queuing 75
Maximize data throughput for network

applications 175
MaxLogKB parameter

(CommSessionMgr) 71
MaxLogKB parameter (Siebel CTI Connect

driver) 72
MaxMTServers parameter

calculation formula 29
configuring 27
configuring guidelines 29
example settings 30
formula variables 29
settings, effects 28

MaxTasks parameter
calculation formula 29
configuring 27
configuring guidelines 29
example settings 30
for CommSessionMgr component 69
formula variables 29
settings, effects 28

memory
AOM memory consumers 33
Configurator memory caching, parameters for

configuring 100
determining Configurator Cache memory

rough size 102
guidelines for tuning AOM components 27
hardware resources defined 26
preloading cached views 59
Performance Tuning Guide Version 7.8 221

Index ■ N
running workflows in Workflow Process
Manager 88

running workflows locally 88
using view layout caching 57

MemProtection parameter (AOM) 32
merging data

note, using EIM 113
message bar, managing performance 61
Microsoft

IIS, specifying static file caching 55
Internet Explorer, recommended

settings 54
MinMTServers parameter

calculation formula 29
configuring 27
configuring guidelines 29
example settings 30
formula variables 29
settings, effects 28

MinTrxDbConns parameter, setting 41
MLOV query and cache performance 164
Mobile Web Client

sizing for caching parameters 102
tuning in a Siebel Remote deployment 148

MS SQL server
configuration parameters 137
fixing table fragmentation 135
purging tables 136
using parallel data load 136
using TempDB 137

MT server
See multithreaded process

multilingual LOVs query and cache
performance 164

multithreaded process
defined 20
and threads 22

multithreaded server
See multithreaded process

N
navigation and memory 33
network capacity

application configuration 51
first login 51
view layout caching 51

nonpooled database connections 34
NUM_IFTABLE_LOAD_CUTOFF

extended parameter 132

O
Object Manager, tuning instances for

Solaris 185

object, rebuilding 139
optimizing

EIM implement sequence 120
general guidelines 119
IBM DB2 UDB 133
MS SQL server 135
Oracle database 137

Oracle database server
avoiding excessive table

fragmentation 137
disabling archive logging 138
Oracle optimizer mode 137
purging tables 138
rebuilding an object 139
setting FREELIST parameter 138
updating tables 139

outbound calls processed per hour 66
outbound communications, about 63

P
parallel data load, using for tables 136
parallel, running tasks 133
parameters

Siebel ARM 193
Siebel Server Siebel ARM parameters 193

parent business component, monitoring
conditions 87

performance
about and example 13
about IBM DB2 UDB for z/OS 139
architecture planning requirements 114
batches, controlling size 130
caching tables 139
communications configurations,

improving 70
controlling records in tables 131
creating proper statistics 129
data management recommendations 142
database layout 115
database sizing guidelines 114
disabling archive logging 138
disabling triggers 132
dropping indexes 130
EIM implementing sequence 120
EIM tables indexes 128
EIM usage planning 116
IBM DB2 UDB optimization 133
IBM DB2, loading process 140
IBM DB2, performance tuning 140
monitoring the Siebel server 143
MS SQL configuration parameters 137
MS SQL server 135
NUM_IFTABLE_LOAD_CUTOFF 132
Performance Tuning Guide Version 7.8222

Index ■ R
optimizing guidelines 119
optimizing SQL 122
Oracle databases 137
purging MS SQL tables 136
purging Oracle database tables 138
rebuilding an object 139
recommended run parameters 142
running tasks in parallel 133
screen pop performance, improving 73
session communications 66
session communications, best practices 68
setting FREELIST parameter 138
Siebel Application Object Manager (AOM),

context 15
Siebel Communications Server, about

tuning 16
Siebel Configurator, about tuning 17
Siebel CTI, improving screen pop

performance 74
Siebel EAI, about tuning 17
Siebel Tools, about tuning 17
Siebel Universal Queuing 74
Siebel Web Client, about tuning 16
Siebel Workflow, about tuning 16
SQLPROFILE, using 126
terminology 19
testing Siebel Web Client 52
third-party product 67
updating tables 139
USE ESSENTIAL INDEX HINTS 123
USE INDEX HINTS 123
using parallel data load 136
USING SYNONYMS Parameter 131
using TempDB 137
Workflow Action Agent, setting action

interval 86
Workflow Agents, running on multiple

servers 85
Workflow Monitor Agent and Workflow Action

Agent 84
Workflow Monitor Agent, setting action

interval 86
workflow policy groups, managing Siebel

Server load 84
workflow policy groups, setting sleep

interval 85
performance aggregation analysis

data, about 203
running 199
tags 205

performance drivers, and deploying
Application Object Manager 23

performance tracing
WebSphere MQ Transport 107

workflows 111
persistent view layout caching and

preloading
logic 59
note, disabling 54
note, settings 54

physical database layout 115
picklists, improving performance 172
policies, viewing all logs executed 82
Policy Frequency Analysis view 82
pooled database connections 35
predefined queries (PDQ), as memory

consumer 34
Primary ID fields, and performance 172
process, defined and example 20
properties, improving picklist

performance 172
purging EIM tables

MS SQL 136
Oracle database 138

Push Keep Alive communications
driver 72

R
RAID

performance tuning 115
RDBMS

See database connections
records

controlling in tables 131
ReleaseLogHandle parameter

(CommSessionMgr) 71
ReleaseLogHandle parameter (Siebel CTI

Connect driver) 72
REMOVE, disabling triggers 132
repositories

improving loading 132
resources

local machine resources 51
server resources, conserving 69

response time, defined 20
rows

recommended for single batch 130
run parameters, recommended 142

S
S_ESCL_ACTN_REQ table 83
S_ESCL_REQ table 83
S_ESCL_STATE table 83
S_ORG_EXT, improving performance 128
scalability, about and example 13
scheduler, tuning HP-UX 189
screen pop performance
Performance Tuning Guide Version 7.8 223

Index ■ S
improving 73
Siebel CTI, improving 74

scripting
declarative alternatives, using 160
performance guidelines 161

scripts, as memory consumers 33
Search Specification parameter

minimizing usage 86
recommended indexing fields 87

Search Specification property, managing
database indexes 166

SearchSpec parameter
minimizing usage 86
recommended indexing fields 87

Server Request Broker
server component and example 64
tuning 47

Service:ServiceLogFile parameter (Siebel
CTI Connect driver) 72

session communications
about 63
activity creation, performance impact 74
best practices 68
Communications Configuration

Manager 65
communications configuration, improving

performance 70
Communications Inbound Processor 65
Communications Inbound Receiver 65
Communications Outbound Manager 65
Communications Session Manager 64
configuring logging 71
performance factors 66
screen pop performance, improving 73
Siebel CTI Connect, improving screen pop

performance 74
Siebel Email Response 76
Siebel product modules 65
Siebel Universal Queuing, performance 74
third-party product modules 66
topology 67

session connections, improving
availability 72

session timeouts and memory 33
SessPerSisnConn parameter, about 45
shared database connections

assigning 39
configuring pooling 38
pooled database connection 35

Siebel Application Object Manager (AOM)
about and example 21
assigning shared connections 39
assigning shared connections scenario 40
assigning specialized database connection

pooling 41
cache tuning 31
component tuning best practice 69
concurrent users and performance 24
configuring shared connection pooling 38
configuring SISNAPI connection pooling 45
configuring specialized database connection

pooling 41
configuring thread pooling 42
conserving server resources 69
context 15
database connections, assumptions 34
deployments, topology considerations 26
hardware resources and performance 26
infrastructure 22
logging parameters 71
memory consumers 33
modules, communicating 22
nonpooled database connections 34
parameter settings, effects 28
parameter values, calculation formulas 29
parameter values, formula variables 29
parameter, example settings 30
parameters, configuring 27
parameters, configuring guidelines 29
parameters, relationship to each other 27
performance drivers 23
pooled database connections 35
running CommSessionMgr on same

machine 67
running Siebel Configurator in 93
server component defined 64
shared connection pooling, configuration

example 39
Siebel application deployment 25
Siebel Configurator elements 91
Siebel Configurator, configuring for dedicated

deployments 94
specialized connection pooling example 41
specialized connection pooling scenario 42
specialized database connection

pooling 40
think time and performance 24
tuning activities 23
tuning for CPU and memory utilization 27
tuning Server Request Broker 47
using thread pooling 42

Siebel Application Response Measurement
See Siebel ARM

Siebel applications, mapping into
guidelines 117

Siebel ARM
architecture monitoring points 191
architecture, high-level
Performance Tuning Guide Version 7.8224

Index ■ S
representation 191
ARM data CSV conversion, running 201
ARM to CSV conversion data, about 215
call graph generation analysis tags 211
call graph generation data, about 211
converting ARM files, best practices 201
data, about 202
enabling and configuring process 195
files, about and example 197
files, converting 196
parameters and variables 193
performance aggregation analysis

tags 205
performance aggregation data, about

data 203
Siebel Server Siebel ARM parameters 193
user session trace data tag 214
user session trace data, about 213
using to monitor transactions 53

Siebel ARM post-processing tool
about 198
ARM data CSV conversion, running 201
ARM to CSV conversion data, about 215
call graph generation analysis tags 211
call graph generation data, about 211
call graph generation, running 199
data, about 202
output 198
performance aggregation data tags 205
performance aggregation data, about

data 203
running 196
running performance aggregation

analysis 199
Siebel ARM files 197
user session trace data, about 213
user session trace tags 214
user session trace, running 200

Siebel Assignment Manager 77
Siebel Business applications

configuring for Workflow performance 87
maximizing Siebel Server performance for

Solaris 185
setting maximum thread limits 187
tuning for Solaris 183
tuning HP Apache Web Server for HP-

UX 187
tuning HP-UX scheduler 189
tuning kernel setting for AIX 181
tuning kernel setting for HP-UX 188
tuning kernel settings for Solaris 184
tuning Object Manager instances for

Solaris 185
tuning Siebel Server for AIX 180

tuning Siebel Web Server Extension for
Solaris 177

Siebel Call Center, parameter example
settings 30

Siebel Client, defined 49
Siebel Collaboration 65
Siebel Communications Server

communications supported activities 63
component topology 67
tuning architecture and infrastructure 16

Siebel Configurator
AOM, configuring for dedicated

deployments 94
best practices 95
caching, default behavior 97
caching, types of 97
components 91
customizable products and classes 96
determining rough size of Configurator

cache 102
memory caching parameters 100
performance factors 92
running AOM component in 93
running dedicated servers 93
topology considerations 93
tuning 95
tuning, about 17

Siebel CTI Connect
driver logging parameters 72
improving screen pop performance 74
Siebel product module 65

Siebel CTI Connect driver logging
parameters 72

Siebel Database, communicating with 22
Siebel Developer Web Client, specifying SQL

spooling 157
Siebel EAI, tuning

about 105
All Mode Sort user property, setting 112
best practices 105
checking disks 112
creating business components 112
EAI Siebel Adapter performance 108
HTTP Inbound Transport performance 108
IBM WebSphere MQ Transport

performance 106
improving Workflow Process Manager

performance 110
optimizing database queries 112
optimizing messages 112
tuning, about 17
turn off logging 112
virtual business component

performance 110
Performance Tuning Guide Version 7.8 225

Index ■ S
Siebel Email Response
activity creation and performance 79
CommInboundRcvr threads,

configuring 79
email processing directories, managing 79
inbound email processed per hour 77
infrastructure 76
key server components 76
logging, configuring 80
Siebel Assignment Manager 77
Siebel Smart Answer, module 77
Siebel Smart Answer, performance 80
Siebel Universal Queuing and session

components 77
third-party email server 77
topology 78
tuning best practices 78
volume of customer data 77

Siebel Enterprise Application Integration
See Siebel EAI, tuning

Siebel eService, parameter example
settings 31

Siebel File System
Siebel Configurator component 91

Siebel Internet Session application
programming interface

See SISNAPI connection pooling
Siebel modules, supporting multiple

modules 50
Siebel Product Configuration Object

Manager 36, 91
Siebel product modules

Siebel Collaboration 65
Siebel CTI Connect 65
Siebel Smart Answer 65
Siebel Universal Queuing 65

Siebel Remote
about 145
increasing throughput for Database

Extract 146
routing model 151
server components 145
server components, tuning 146
synchronization 150
tuning mobile web client 148

Siebel scripting
declarative alternatives, using 160
performance guidelines 161

Siebel Server
communications components 64
Communications Configuration

Manager 65
Communications Inbound Processor 65
Communications Inbound Receiver 65

Communications Outbound Manager 65
Communications Session Manager 64
maximizing performance for Solaris 185
Siebel ARM parameters 193
Siebel product modules 65
third-party product modules 66
tuning for AIX 180
tuning kernel setting for Solaris 184
Workflow Agents, running on multiple

servers 85
workflow policy groups, creating to

manage 84
Siebel Server Time, defined 191
Siebel server, monitoring 143
Siebel Smart Answer 65

module 77
Siebel Email Response, performance 80

Siebel Tools, about tuning 17
Siebel Universal Queuing

CommInboundProcessor, running 75
CommInboundRcvr, running 75
components and parameters 75
and MaxConnections parameter 75
performance 74
Siebel Email Response, infrastructure 77
Siebel product module 65

Siebel user request flow
processing flow 18
steps 18

Siebel Web Client, tuning
about 16
best practices 51
client hardware resources 53
configuration guidelines 54
disabling view layout caching 60
IBM HTTP Server, static file caching 56
local machine resources 51
managing browser cache 54
memory, preloading cached views 59
message bar, managing performance 61
Microsoft IIS, static file caching 55
persistent view layout caching 59
retrieving current view layout 60
setting view layout cache size 58
Siebel Client, defined 49
static file caching 55
Sun Java System Web Server, static file

caching 56
supporting multiple Siebel modules 50
testing performance 52
tuning system components 53
view layout caching 57
views, and layout caching 61
Web server and network capacity 51
Performance Tuning Guide Version 7.8226

Index ■ T
Siebel Web Engine (SWE)
user session trace, running 200

Siebel Web Server Extension
communicating with 22
tuning for Solaris 177

Siebel Workflow, tuning
about 81
architecture and infrastructure 16
components 81
configuring 87
escalation action request table 83
escalation request table 83
escalation state table 83
monitoring memory overhead 88
parent and child business components,

monitoring 87
performance tracing 111
Policy Frequency Analysis view, using 82
Search Specification parameter, minimizing

usage 86
Siebel Server load, creating workflow policy

groups 84
tuning Workflow Process Manager 89
work policy groups, setting sleep

interval 85
Workflow Action Agent, setting action

interval 86
Workflow Agents, running on multiple

servers 85
Workflow Monitor Agent and Workflow Action

Agent 84
Workflow Monitor Agent, setting action

interval 86
workflow policies, monitoring 82
workflow policies, using logs and files 82

Siebel Configurator
and database connection pooling 36

SISNAPI connection pooling,
configuring 45

sleep interval, setting for workflow policy
groups 85

Smart Answer
See Siebel Smart Answer

Solaris
maximizing Siebel Server performance for

Solaris 185
tuning kernel settings 184
tuning Object Manager instances 185
tuning Siebel Business applications 183
tuning Sun Java System Web Server 183
tuning SWSE 177

Solaris, maximizing Siebel Server
performance 185

Sort Specification property, managing

database indexes 166
specialized database connections 35
SQL

note, support 113
time-intensive statements 126

SQL cursor cache 31
SQL data caches 31
SQL, analyzing for performance

about 156
Siebel Developer Web Client, specifying SQL

spooling 157
SQL queries against the database 160
SQL query plan example 160
SQL query plans, using to

troubleshoot 158
SQL trace files, using to troubleshoot 157

SQL, poorly performing query 87
SQL, produced by EAI 109
SQLPROFILE, using 126
SRBroker (Server Request Broker)

server component and example 64
tuning 47

standard column
reusing 167
reusing example 167

standard interactivity client, and best
performance 53

static file caching
about specifying 55
specifying on IBM HTTP Server 56
specifying on Microsoft IIS 55
specifying on Sun Java System Web

Server 56
Sun Java System Web Server

specifying static file caching 56
tuning for Solaris 183

Sun Solaris. See Solaris
synonyms

USING SYNONYMS Parameter 131

T
tables

caching 139
updating 139

task
defined 20
used interchangeably with thread 22

TempDB, using 137
term definition, guideline 116
terminology 19
testing EIM processes 118
testing performance

Siebel Web Client 52
Performance Tuning Guide Version 7.8 227

Index ■ U
think time and performance 24
think time, defined and example 20
third-party products

email server 77
performance 67
product modules 66

thread
defined 20
used interchangeably with task 22

thread pooling for AOM
configuring 42
note, handling overhead 42
note, recommendation 42
using 42

throughput, defined 20
tools

See Siebel Tools
Transaction Router

increasing throughput 148
tuning 147

transactions per second (TPS), throughput
defined 20

TrickleSync 150
triggers, disabling 132
troubleshooting

about IBM DB2 UDB for z/OS 139
batches, controlling size 130
caching tables 139
controlling in tables 131
creating proper statistics 129
data management recommendations 142
disabling archive logging 138
disabling triggers 132
dropping indexes 130
EIM tables indexes 128
IBM DB, loading process 140
IBM DB2 UDB optimization 133
monitoring the Siebel server 143
MS SQL configuration parameters 137
MS SQL server 135
NUM_IFTABLE_LOAD_CUTOFF 132
optimizing SQL 122
Oracle database 137
purging MS SQL tables 136
purging Oracle database tables 138
rebuilding an object 139
recommended run parameters 142
running tasks in parallel 133
setting FREELIST parameter 138
SQL query plan example 160
SQL query plans, using to

troubleshoot 158
SQL trace files, using to troubleshoot 157
SQLPROFILE, using 126

updating tables 139
USE ESSENTIAL INDEX HINTS 123
USE INDEX HINTS 123
using parallel data load 136
USING SYNONYMS Parameter 131
using TempDB 137

tuning system components 53

U
Universal Queuing

See Siebel Universal Queuing
UNIX, performance tuning

maximizing Siebel Server
performance 185

setting maximum thread limits 187
Siebel Web Server Extension for

Solaris 177
tuning Business applications for

Solaris 183
tuning HP-UX scheduler 189
tuning IBM HTTP Server for AIX 177
tuning kernel setting for HP-UX 188
tuning kernel settings for AIX 181
tuning kernel settings for Solaris 184
tuning Object Manager instances for

Solaris 185
tuning Siebel Server Extension for AIX 180
tuning Web server for HP-UX 187

UPDATE STATISTICS parameter
running tasks in parallel 133

USE ESSENTIAL INDEX HINTS 123
USE INDEX HINTS parameter

using 123
user communications actions per

second 66
user interface objects layer, best practices

applet toggles, and performance 174
grid layout, and performance 173

user per AOM, as memory consumer 33
user request flow

processing flow 18
steps 18

user session trace analysis
data, about 213
running 200
tag descriptions 214

USING SYNONYMS parameter
using 131

V
variables

Siebel ARM 193
view caching
Performance Tuning Guide Version 7.8228

Index ■ W
See view layout caching
view layout caching

about 57
caching persistent view layout 59
disabling view layout caching 60
memory, preloading cached views 59
network capacity 51
retrieving current view layout 60
setting cache size 58
view layout caching in memory 57
views, caching 61

ViewPreloadSize parameter, setting 59
views, and layout caching 61
virtual business component performance,

improving 110
virtual memory management 181
vmtune values, changing 181
volume of customer data 77

W
Web client

See Siebel Web Client
Web server

tuning IBM HTTP Server for AIX 177
Web Server Time, defined 191
WebSphere MQ Transport, improving

performance
outbound messages and caching 107
queue, testing and options 106
running inbound WebSphere MQ

messages 107
setting performance tracing 107

WebTemplateVersion parameter, and
persistent layout caching 59

Windows
IIS, specifying static file caching 55
Internet Explorer, recommended

settings 54
workflow

See Siebel Workflow
Workflow Action Agent

defining 84
setting action interval 86

Workflow Agent
process, monitoring 82
running on multiple servers 85
trace logs, using 82

Workflow Monitor Agent
defining 84
policies, viewing all policies executed 82
setting action interval 86

workflow policies
about 81
log and files 82
monitoring 82

workflow policy groups
optimal sleep interval, setting 85
using to manage Siebel Server load 84
Workflow Monitor Agent and Workflow Action

Agent 84
Workflow Process Manager

caching business services 89
performance issues 110
tuning 89
using to monitor memory overhead 88
workflow, performance tracing 111

workflow processes
about 81

workflow processes, tuning
configuring Siebel Business

applications 87
monitoring memory overhead 88
parent and child business components,

monitoring 87
Search Specification parameter, minimizing

usage 86
Workflow Process Manager 89
Performance Tuning Guide Version 7.8 229

Index ■ W
Performance Tuning Guide Version 7.8230

	Contents
	1 What’s New in This Release
	What’s New in Performance Tuning Guide, Version 7.8

	2 Siebel Architecture and Infrastructure
	About Performance and Scalability
	About Siebel Architecture and Infrastructure
	Siebel Architecture and Infrastructure Areas for Tuning

	About Siebel User Request Flow
	Performance Tuning Terminology

	3 Tuning the Siebel Application Object Manager for�Performance
	About the Application Object Manager
	AOM Infrastructure
	AOM Communications with Other Modules
	About Tuning the AOM

	Performance Factors for AOM Deployments
	Concurrent Users
	Think Time
	Nature of Siebel Application Deployment
	Hardware Resources

	Topology Considerations for AOM Deployments
	Best Practices for AOM Tuning
	Tuning AOM Components for CPU and Memory Utilization
	About MaxTasks, MaxMTServers, and MinMTServers
	Effect of AOM Parameter Settings
	Guidelines for Configuring AOM Parameters
	Formulas for Calculating AOM Parameter Values
	Example Settings for AOM Parameters
	Example Settings for Siebel Call Center
	Example Settings for Siebel eService

	Tuning Parameters for AOM Caches
	SQL Cursor Cache
	SQL Data Caches

	Additional Parameters Affecting AOM Performance
	Memory Consumers in AOM

	Configuring Database Connection Pooling for AOMs
	About Database Connections for AOM
	About Nonpooled Database Connections
	About Pooled Database Connections

	Database Connection Pooling Usage Guidelines
	When to Consider Using Database Connection Pooling
	Guidelines for Using Database Connection Pooling

	Configuring Pooling for Default Database Connections
	Configuring Parameters for Pooling Default Connections
	Example Configuration for Pooling Default Connections
	How Pooled Default Connections Are Assigned
	Scenario for Assigning Pooled Default Connections

	Configuring Pooling for Specialized Database Connections
	Configuring Parameters for Pooling Specialized Connections
	Example Configuration for Pooling Specialized Connections
	How Pooled Specialized Connections Are Assigned
	Scenario for Assigning Pooled Specialized Connections

	Using Thread Pooling for AOM
	About Thread Pooling for AOM
	Configuring AOM Thread Pooling

	4 Tuning the Siebel Server Infrastructure for�Performance
	Configuring SISNAPI Connection Pooling for AOM
	Tuning Server Request Broker (SRBroker)
	About HonorMaxTasks Parameter for Batch Components

	5 Tuning Siebel Web Client for Performance
	About Siebel Clients
	Performance Factors for Siebel Web Clients
	About Supporting Multiple Siebel Modules
	About Local Machine Resources

	Best Practices for Siebel Web Client Tuning
	Providing Sufficient Web Server and Network Capacity
	Testing Performance for Web Clients
	Providing Sufficient Client Hardware Resources
	Tuning System Components
	Following Configuration Guidelines
	Managing the Browser Cache
	Specifying Static File Caching
	Static File Caching for Microsoft IIS
	Static File Caching for IBM HTTP Server
	Static File Caching for Sun Java System Web Server

	Improving Performance Using View Layout Caching
	View Layout Caching in Memory
	Setting the View Cache Size
	Persistent View Layout Caching
	Preloading Cached Views into Memory
	Disabling View Layout Caching
	Determining How the Current View Layout Was Loaded
	Determining If Views Are Available for Layout Caching

	Managing Performance Related to Message Bar
	Configuring the Busy Cursor for Standard Interactivity Applications

	6 Tuning Siebel Communications Server for Performance
	About Siebel Communications Server
	Session Communications Infrastructure
	Key Siebel Server Components
	Other Siebel Server Components
	Siebel Product Modules
	Third-Party Product Modules

	Performance Factors for Session Communications
	Third-Party Product Considerations

	Topology Considerations for Session Communications
	Running CommSessionMgr on AOM Machines
	Running CommSessionMgr on Dedicated Machines

	Best Practices for Session Communications Tuning
	Tuning the AOM Component
	Tuning the CommSessionMgr Component
	Conserving AOM Server Resources Through Caching
	Improving Performance for Communications Configurations
	Configuring Logging for Session Communications
	AOM Logging Parameters
	CommSessionMgr Logging Parameters
	Siebel CTI Connect Driver Logging Parameters

	Improving Availability for Session Connections
	Improving Screen Pop Performance
	Improving Screen Pop Performance for Siebel CTI Connect
	Reviewing Performance Impact of Activity Creation
	Performance for Siebel Universal Queuing

	Siebel Email Response Infrastructure
	Key Server Components
	Other Siebel Components or Modules
	Third-Party Email Server

	Performance Factors for Siebel Email Response
	Topology Considerations for Siebel Email Response
	Best Practices for Siebel Email Response Tuning
	Configuring CommInboundRcvr Threads
	Managing Email Processing Directories
	Reviewing Performance Impact of Activity Creation
	Configuring Logging for Siebel Email Response
	Performance for Siebel Smart Answer

	7 Tuning Siebel Workflow for Performance
	About Siebel Workflow
	Monitoring Workflow Policies
	Using the Policy Frequency Analysis View
	Using Workflow Agent Trace Logs
	Monitoring Workflow Policies Tables

	Tuning Workflow Policies for Performance
	Creating Workflow Policy Groups to Manage Siebel Server Load
	Multiple Workflow Monitor Agents and Workflow Action Agents
	Running Workflow Agents on Multiple Siebel Servers
	Setting Optimal Sleep Interval for Workflow Policy Groups
	Setting Optimal Action Interval for Workflow Monitor Agent and Workflow Action Agent

	Tuning Workflow Processes
	Minimizing Usage of Parameter Search Specification
	Indexing Fields in SearchSpec

	Monitoring Conditions Based on Parent and Child Business Components
	Configuring Siebel Business Applications for Workflow Performance
	Monitoring Memory Overhead for Workflow Processes
	Running Workflows Locally in AOM
	Running Workflows in Workflow Process Manager
	About Asynchronous Mode for Workflow Process Requests

	Tuning Workflow Process Manager for Performance
	Caching Business Services
	Caching Sessions

	8 Tuning Siebel Configurator for Performance
	Siebel Configurator Infrastructure
	Performance Factors for Siebel Configurator
	Topology Considerations for Siebel Configurator
	Running Siebel Configurator in the AOM Component
	Running Siebel Configurator on Dedicated Servers
	Configuring AOM for Dedicated Siebel Configurator Deployments

	Best Practices for Siebel Configurator Tuning
	Tuning Siebel Configurator
	Specifying the Siebel Configurator File System Location
	Defining Customizable Product Models and Classes

	Administering Siebel Configurator Caching
	Default Caching Behavior for Siebel Configurator
	Cache Management for Siebel Configurator
	Parameters for Configuring Siebel Configurator Caching
	Determining Rough Sizing for Caching Parameters
	Refreshing the Siebel Configurator Cache
	Refreshing the Siebel Configurator Cache with Product Changes
	Refreshing the Siebel Configurator Cache with Product Class Changes
	Refreshing the Siebel Configurator Cache with Attribute Definition Changes

	9 Tuning Siebel EAI for Performance
	About Siebel Enterprise Application Integration
	Best Practices for Siebel EAI Tuning
	Improving IBM WebSphere MQ Transport Performance
	Inbound Messages
	Outbound Messages (Send, SendReceive)
	Performance Events

	Improving HTTP Inbound Transport Performance
	EAI Siebel Adapter Performance
	Reviewing Scripting
	Disabling Logging
	Minimizing Integration Object Size
	Analyzing SQL Produced by EAI Siebel Adapter
	Running EAI Siebel Adapter in Parallel
	Caching Business Objects

	Virtual Business Component Performance
	Improving Workflow Process Manager Performance
	Performance Events

	Other Best Practices for Siebel EAI

	10 Tuning Siebel EIM for Performance
	About Siebel EIM
	EIM Architecture Planning Requirements
	Database Sizing Guidelines
	Database Layout Guidelines (Logical and Physical)

	EIM Usage Planning
	Team Definition
	Mapping Data into Siebel Applications
	Testing EIM Processes

	General Guidelines for Optimizing EIM
	Recommended Sequence for Implementing EIM Processes
	Optimizing the .IFB File
	Checking .IFB File Optimization

	Separating EIM Processes by Operation

	Troubleshooting EIM Performance
	Optimizing SQL for EIM
	Using the USE INDEX HINTS and USE ESSENTIAL INDEX HINTS Parameters
	Example: Using the USE INDEX HINTS and USE ESSENTIAL INDEX HINTS Parameters
	USE INDEX HINTS and USE ESSENTIAL INDEX HINTS: EIM Criteria for Passing Indexes to the Database
	Using the SQLPROFILE Parameter
	Additional Indexes on EIM Tables
	Adding Indexes to Improve Performance of S_ORG_EXT

	Creating Proper Statistics on EIM Tables
	DB2 Version 7 Options
	DB2 Version 8 Options

	Dropping Indexes in Initial Runs
	Controlling the Size of Batches
	Recommended Number of Rows for a Single Batch

	Controlling the Number of Records in EIM Tables
	Using the USING SYNONYMS Parameter
	Using the NUM_IFTABLE_LOAD_CUTOFF Extended Parameter
	Disabling Docking: Transaction Logging
	Disabling Triggers
	Running EIM Tasks in Parallel

	Database Guidelines for Optimizing EIM
	IBM DB2 UDB
	Microsoft SQL Server
	Fixing Table Fragmentation
	Purging an EIM Table
	Parallel Data Load for EIM tables Using bcp
	TempDB
	Configuration Parameters

	Oracle Databases
	Avoiding Excessive Table Fragmentation
	Purging an EIM Table
	Disabling Archive Logging
	FREELIST Parameter
	Caching Tables
	Updating Tables

	IBM DB2 UDB for z/OS
	IBM DB2 Loading Process for EIM
	General Recommendations for the IBM DB2 Loading Process

	Data Management Guidelines for Optimizing EIM
	Run Parameter Guidelines for Optimizing EIM
	Monitoring the Siebel Server During an EIM Task

	11 Tuning Siebel Remote for Performance
	About Siebel Remote
	Tuning Siebel Remote Server Components
	Increasing Throughput for the Database Extract Component
	Tuning the Transaction Router Component
	Visibility-Related Transactions
	Docking Rules and Data Distribution
	Slow-Running Queries
	Increasing Transaction Router Throughput

	Tuning the Mobile Web Client in a Siebel Remote Deployment
	Optimizing Parameters in the Application Configuration File
	DockTxnsPerCommit
	AutoStopDB
	Allocating Memory to the SQL Anywhere Database Engine Cache
	Sort Collation

	Best Practice for Synchronization
	Choosing an Appropriate Routing Model

	12 Tuning Customer Configurations for Performance
	General Best Practices for Customer Configurations
	Miscellaneous Configuration Guidelines
	Analyzing Generated SQL for Performance Issues
	Specifying SQL Spooling in Siebel Developer Web Client
	Troubleshooting Performance Using SQL Trace Files
	Troubleshooting Performance Using SQL Query Plans
	Example of Obtaining Query Plan
	SQL Queries Against Database Data

	Best Practices for Siebel Scripting
	Using Declarative Alternatives to Siebel Scripting
	Siebel Scripting Guidelines for Optimal Performance

	Best Practices for Data Objects Layer
	Multilingual LOVs Query and Cache Performance
	Managing Database Indexes in Sorting and Searching
	Sort Specification
	Search Specification

	Reusing Standard Columns
	Example: Reusing NAME and LOC in S_ORG_EXT Table
	Query Plan for My Accounts View
	Query Plan for My Accounts View—Different ORDER BY Clause

	Best Practices for Business Objects Layer
	Using Cache Data Property to Improve Business Component Performance
	Limiting the Number of Active Fields
	Guidelines for Using Calculated Fields
	Using Properties to Improve Picklist Performance
	Using Primary ID Fields to Improve Performance
	How the Check No Match Property Impacts Performance

	Best Practices for User Interface Objects Layer
	Addressing Performance Issues Related to Grid Layout
	Maintaining Performance When Using Applet Toggles

	13 Tuning Operating Systems for Performance
	Tuning Microsoft Windows for Enhanced Siebel Server Performance
	Maximizing Data Throughput
	Turning on the 4GT RAM Tuning Feature

	Tuning the Siebel Server for All UNIX Platforms
	Environment Variable for Siebel Assert Creation
	Environment Variable for Operating System Resource Limits
	Environment Variable for Operating System Latches

	Tuning the Siebel Web Server Extension for All UNIX Platforms
	Tuning Siebel Business Applications for AIX
	Tuning the IBM HTTP Server for AIX
	Tuning the Siebel Server for AIX
	Tuning Kernel Settings for AIX

	Tuning Siebel Business Applications for Solaris
	Tuning the Sun Java System Web Server for Solaris
	Tuning Kernel Settings for Solaris
	Maximizing Siebel Server Performance for Solaris
	Tuning AOM Instances for Solaris

	Tuning Siebel Business Applications for HP-UX
	Tuning the HP Apache Web Server for HP-UX
	Tuning Kernel Settings for HP-UX
	Setting Permissions for the HP-UX Scheduler

	14 Monitoring Siebel Application Performance
	About Siebel Application Response Measurement
	About Siebel ARM Architecture

	About Siebel ARM Parameters and Variables
	SARM Granularity Level
	SARM Buffer Size
	SARM Period
	SARM Max Number of Files
	SARM Data File Size

	Enabling and Configuring Siebel ARM
	Setting Siebel ARM Parameters on the Siebel Server
	Setting Siebel ARM Environment Variables on the Web Server

	Converting Siebel ARM Files
	About Siebel ARM Files
	About Siebel ARM Post-Processing Tool
	About Siebel ARM Post-Processing Tool Output

	Running Performance Aggregation Analysis
	Running Call Graph Generation
	Running User Session Trace
	Running Siebel ARM Data CSV Conversion

	Best Practices for Siebel ARM
	About Siebel ARM Data
	About Performance Aggregation Analysis and Data
	About Call Graph Generation Analysis and Data
	About User Session Trace Analysis and Data
	About Siebel ARM to CSV Conversion Data

	Index

