
Oracle® Application Server
Web Services Security Guide

10g (10.1.3.1.0)

B28976-01

September 2006

Oracle Application Server Web Services Security Guide 10g (10.1.3.1.0)

B28976-01

Copyright © 2006, Oracle. All rights reserved.

Primary Author: Thomas Pfaeffle

Contributor: Moushmi Banerjee, William Bathurst, Anirban Chattergee, Dheeraj Goswami, Ganesh Kirti,
Ramana Turlapati

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xi

Intended Audience.. xi
Documentation Accessibility ... xi
Related Documents .. xii
Conventions ... xiii

1 Introduction

Web Service Security Concepts ... 1-2
SOAP.. 1-2
Security Policies.. 1-3

Inbound Policy .. 1-3
Outbound Policy ... 1-3
Global Level Policy ... 1-4
Port-Level Policy ... 1-4
Operation-Level Policy .. 1-4

The Request Envelope ... 1-4
The Response Envelope... 1-5
XML Digital Signatures ... 1-5
XML Encryption ... 1-6
SAML ... 1-7
Message-Level Security ... 1-8
Transport-Level Security... 1-8
WS-Security... 1-8
Security Tokens .. 1-9

Username Token ... 1-9
X.509 Token.. 1-9
SAML Token.. 1-9
Keystore... 1-10

Web Services Security Support in OracleAS Web Services .. 1-10
Standards Supported by OracleAS Web Services Security... 1-10
Interceptor Framework .. 1-11

Service Security Interceptor.. 1-12
Client Security Interceptor.. 1-12

Architecture ... 1-13
Web Service Security Integration.. 1-13

iv

Integration with JAAS ... 1-13
Integration with Java Single Sign-On.. 1-14
Integration with Oracle Identity Management.. 1-14
Integration with External LDAP Servers.. 1-15
Integration with Oracle Access Manager ... 1-15

Tool Support for Web Service Security ... 1-15
Application Server Control Support for Web Service Security .. 1-16

Global- and Port-Level Keystore and Identity Certificates.. 1-16
Port- and Operation-Level Security Configuration .. 1-17
Port-Level and Operation-Level Inbound Policy Configuration...................................... 1-17
Port- and Operation-Level Outbound Policy Configuration .. 1-17
Web Services Agent ... 1-17

Oracle JDeveloper Support for Web Service Security.. 1-18
Oracle Web Services Manager... 1-18

When to Use Oracle WSM to Secure Web Services... 1-20

2 Configuring Web Service Security

Security Configuration Elements .. 2-3
Keystore Elements.. 2-5
Signature and Encryption Key Elements.. 2-6
Nonce Configuration Elements.. 2-6
Security Elements for Inbound Messages... 2-7

Username Token Elements for Inbound Messages.. 2-8
X.509 Token Elements for Inbound Messages .. 2-8
SAML Token Elements for Inbound Messages .. 2-9
Signature Verification Elements for Inbound Messages ... 2-9
Decryption Elements for Inbound Messages... 2-10

Security Elements for Outbound Messages .. 2-12
Username Token Elements for Outbound Messages.. 2-13
X.509 Token Elements for Outbound Messages .. 2-14
SAML Token Elements for Outbound Messages .. 2-15
Elements for Retrieving SAML Tokens from an External SAML Authority................... 2-16
Signature Elements for Outbound Messages... 2-17
Encryption Elements for Outbound Messages .. 2-18

3 Administering Web Services Security

Using Keystores .. 3-1
Creating a Keystore.. 3-2

How to Obtain a Trusted Certificate.. 3-2
How to Create and Use a Java Key Store .. 3-2
How to Create and Use an Oracle Wallet ... 3-4

Configuring a Keystore ... 3-6
Configuring Instance Keystores and Keys .. 3-6
Configuring Application Keystores and Keys.. 3-6

Replacing Cleartext Passwords by Using Password Indirection .. 3-6
Manually Removing Stale Indirect User Accounts ... 3-7

Integrating Security Tokens with Security Providers ... 3-7

v

Using a Username Token .. 3-8
How to Configure the Username Token for the Server Side ... 3-8

Configure the <verify-username-token> Element ... 3-8
Configure the Service to Not Require a Password... 3-9
Configure the Nonce Cache with a Digest Password... 3-10
Tools for Configuring the Username Token for the Server ... 3-10

How to Configure the Username Token for the Client Side .. 3-11
Configure the <username-token> Element.. 3-11
Pass the Username and Password with a Callback Handler... 3-11
Pass the User Name and Password with Stub Properties.. 3-13
Tools for Configuring the Username Token for the Client.. 3-13

Integrating Username Token with Security Providers (File-Based XML, LDAP, Custom, Oracle
Access Manager) 3-14

Using Oracle Access Manager as a Security Provider for Username Token Authentication ..
3-14

Preventing Replay Attacks with Nonces ... 3-16
Using an X.509 Token.. 3-17

How to Configure an X.509 Token for the Server Side.. 3-17
Configure the <verify-x509-token> Element ... 3-17
Configure the Keystore ... 3-18
Map the X.509 Certificates to Valid Users .. 3-18
Tools for Configuring the X.509 Token on the Server .. 3-18

How to Configure X.509 Token for the Client Side.. 3-19
Configure the <x509-token> Element .. 3-19
Configure the Keystore with a Signature Key ... 3-19
Authenticate an X.509 Token with a Subject Key Identifier .. 3-19
Sign the X.509 Token ... 3-20
Tools for Configuring the X.509 Token on the Client... 3-20

Integrating X.509 Token with Security Providers (XML, LDAP, Oracle Access Manager) . 3-21
Using Oracle Access Manager as a Security Provider for X.509 Token Authentication 3-21

Using a SAML Token.. 3-23
How to Configure a SAML Token for the Server Side .. 3-23

Configure the <verify-saml-token> Element ... 3-24
Configure the Keystore ... 3-24
Map the SAML Assertion Subject ... 3-25
Set Options for the SAMLLoginModule... 3-25

How to Configure a SAML Token for the Client-Side... 3-26
Configure the <saml-token> Element... 3-27
Providing a Static SAML Client Configuration... 3-28
Configuring a SAML Assertion Subject by Using a Stub Property 3-29
Configuring a SAML Assertion Subject by Identity Propagation 3-30
Writing a SAML Token Callback Handler ... 3-30
Retrieving a SAML Token from an External SAML Authority... 3-31
Configure the Keystore ... 3-31
Combining Static and Dynamic SAML Configuration .. 3-31

Integrating SAML Token with Security Providers (XML, LDAP, Oracle Access Manager) 3-32

vi

Using Oracle Access Manager as a Security Provider for SAML Token Authentication.........
3-32
Authenticating SAML Tokens with an External LDAP Provider..................................... 3-34
Configuring Single Sign-on Using SAML .. 3-35

Configuring XML Encryption ... 3-37
Configuring Encryption for Outbound Messages.. 3-37
Configuring Encryption for Inbound Elements.. 3-38
Encrypting the Body of a SOAP Message.. 3-38
Decrypting the Body of a SOAP Message ... 3-39
Encrypting Elements of a SOAP Message ... 3-39
Decrypting Elements of a SOAP Message... 3-40
Encrypting a Message with a Signature Key .. 3-40
Accepting Multiple Keys to Decrypt Messages.. 3-40

Configuring XML Signature ... 3-41
Configuring Signature for Outbound Messages .. 3-42
Configuring Signature for Inbound Messages.. 3-42
Signing the Body of a SOAP Message.. 3-42
Signing Elements of a SOAP Message .. 3-43
Verifying a Signature on a Specific Element ... 3-43
Using the Subject Key Identifier for Signing... 3-43
Preventing Replay Attacks with Timestamps... 3-44

Adding Timestamps .. 3-44
Verifying TimeStamps... 3-44

Adjusting the Clock Skew Between a Client and a Web Service Application 3-45
Combining Tokens, Encryption, and Signature in a Configuration ... 3-46

4 Building Secure Web Services

Assembling a Secure Web Service .. 4-1
Assembling Security into a Web Service Top Down ... 4-2
Assembling Security into a Web Service Bottom Up.. 4-6

Creating a Server-Side Security Configuration File ... 4-10
Defining a Server-Side, Port Level Security Configuration for Username Token................. 4-11
Defining a Server-Side, Operation-Level Security Configuration for Username Token...... 4-12
Defining a Server-Side, Port-Level Security Configuration to Verify XML Signature and
Decryption 4-12
Defining a Server-Side, Operation-Level Security Configuration for XML Signature and
Decryption 4-13

Creating a Client-Side Security Configuration File ... 4-14
Defining a Client-Side, Port Level Security Configuration for Username Token 4-15
Defining a Client-Side, Port-Level Security Configuration for XML Signature and Encryption...
4-16
Creating Users For Authentication... 4-17

Adding User Entries by Using Application Server Control .. 4-17
Client JAR Files ... 4-17
Adding Transport-Level Security to a Web Service .. 4-18

Adding Basic Authentication ... 4-18
Adding Digest Authentication ... 4-19
Adding Client Certification Authentication.. 4-19

vii

Adding Transport-Level Security for Web Services Based on EJBs .. 4-19
Accessing Web Services That Require a Username and Password .. 4-21

HTTP Authentication Properties ... 4-21
WS-Security Username Token Authentication Field Values .. 4-21
Passing Authentication Information Programatically.. 4-21
Passing Authentication Information Statically.. 4-23

Propagating Identities from a Web Service to an EJB.. 4-25
Ant Tasks and WebServicesAssembler ... 4-26
Getting an Authenticated User Identity in a Web Service Application 4-26

Getting an Authenticated Subject with the AccessControlContext API 4-27
Getting an Authenticated Principal with the ServiceLifeCycle API.. 4-27

Performing JAAS Provider Authorization on a Web Service ... 4-28
WS-Security and XML APIs .. 4-29
Development Decisions ... 4-29

5 Secure Web Service Usage Scenarios

Non-Secured Web Services... 5-1
Basic Web Service... 5-1
Complex Business Process .. 5-2
Intermediary ... 5-2
Federated... 5-2

HTTP-Based Security .. 5-3
Secure Sockets Layer.. 5-3
HTTP Basic Authentication and Digest Authentication... 5-3

Basic Authentication... 5-4
Digest Authentication .. 5-4

WS-Security ... 5-4
Web Services Security Authentication .. 5-5

Username Token Profile... 5-5
X.509 Token Profile ... 5-6
SAML Token Profile ... 5-7

XML Signature .. 5-8
XML Encryption.. 5-8
Gateways .. 5-9
Identity Management ... 5-10
Interoperability.. 5-10

6 Troubleshooting

General Errors ... 6-2
Keystore-Related Errors .. 6-2
Message Integrity Errors ... 6-4
Message Confidentiality Errors... 6-6
Authentication Errors .. 6-6

A OracleAS Web Services Security Schema

Hierarchy of a Security Configuration.. A-1

viii

Elements and Attributes of the Security Schema.. A-2
<add-timestamp>.. A-2
<attribute>.. A-3
<confirmation-method>... A-3
<decrypt> ... A-4
<encrypt> ... A-5
<encryption-key>.. A-5
<encryption-method>... A-6
<encryption-methods>... A-7
<inbound>.. A-7
<key-store> .. A-7
<keytransport-method> ... A-8
<keytransport-methods> ... A-9
<nonce-config>.. A-9
<outbound> ... A-10
<recipient-key>.. A-10
<saml-authority>... A-11
<saml-token> ... A-11
<security>... A-12
<signature> .. A-13
<signature-key>... A-13
<signature-method> ... A-13
<signature-methods> ... A-14
<subject-confirmation-method> ... A-15
<subject-confirmation-methods>.. A-15
<tbe-element> .. A-15
<tbe-elements> .. A-16
<tbs-element> .. A-17
<tbs-elements>... A-18
<use-cert-request>... A-18
<username-token> .. A-19
<verify-saml-token> ... A-20
<verify-signature> .. A-20
<verify-timestamp> .. A-21
<verify-username-token> .. A-21
<verify-x509-token>.. A-22
<x509-token> ... A-22

Oracle Web Services Security Schema Listing .. A-23
Security Configuration Listing ... A-29

B Security Threats and Solutions

C Third Party Licenses

Apache ... C-1
The Apache Software License ... C-2

Apache SOAP ... C-6
Apache SOAP License .. C-6

ix

JSR 110 ... C-9
Jaxen ... C-9

The Jaxen License .. C-10
SAXPath .. C-10

The SAXPath License.. C-10
W3C DOM .. C-11

The W3C License... C-11

Index

x

xi

Preface

This book describes the different security strategies that can be applied to a Web
service in Oracle Application Server Web Services. The strategies that can be employed
are username token, X.509 token, SAML token, XML encryption, and XML signature.
The book describes the configuration options available for the client and the service,
for inbound messages and outbound messages. It also describes how to configure
these options for a number of different scenarios.

Intended Audience
This book is intended for software developers and architects who want to add security
to Web services. It is expected that the reader has some experience with Web
technology, OracleAS Web Services, the J2EE environment, and Java and XML
programming principles.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

xii

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information on OC4J, Web services, and security, see the following manuals:

■ Oracle Application Server Web Services Developer’s Guide

This book describes how to use the WebServicesAssembler tool to assemble Web
services from a variety of resources: Java classes, EJBs, database resources, JMS
destinations, and J2SE 5.0 Annotations. You can also assemble REST-style Web
services. The Developers Guide also describes how to assemble J2SE and J2EE clients
to access these services. This book includes descriptions of the message formats
and datatypes supported by OracleAS Web Services.

■ Oracle Application Server Advanced Web Services Developer’s Guide

This book describes topics beyond basic Web service assembly. For example, it
describes how to diagnose common interoperability problems and how to use
custom serialization of Java value types.

This book also describes how to employ the Web Service Invocation Framework
(WSIF), the Web Service Provider API, message attachments, and management
features (reliability, logging, and auditing). It also describes alternative Web
service strategies, such as using JMS as a transport mechanism.

■ Oracle Application Server Web Services Java API Reference

The Reference provides the output of the Javadoc tool for the OracleAS Web
Services Java API.

■ Oracle Containers for J2EE Security Guide

This book describes security features and implementations particular to OC4J.
This includes information about using JAAS (the Java Authentication and
Authorization Service) and other Java security technologies.

■ Oracle Containers for J2EE Services Guide

This book provides information about standards-based Java services supplied
with OC4J, such as JTA, JNDI, JMS, JAAS, and the Oracle Application Server Java
Object Cache.

■ Oracle Containers for J2EE Configuration and Administration Guide

This book discusses how to configure and administer applications for OC4J,
including use of the Oracle Enterprise Manager 10g Application Server Control
Console, use of standards-compliant MBeans provided with OC4J, and, where
appropriate, direct use of OC4J-specific XML configuration files.

■ Oracle Containers for J2EE Deployment Guide

This book covers information and procedures for deploying an application to an
OC4J environment. This includes discussion of the deployment plan editor that
comes with Oracle Enterprise Manager 10g.

■ Oracle Containers for J2EE Developer’s Guide

xiii

This discusses items of general interest to developers writing an application to run
on OC4J—issues that are not specific to a particular container such as the servlet,
EJB, or JSP container. (An example is class loading.)

Available from the Oracle Server Technologies group:

■ Oracle Database Advanced Security Administrator's Guide

From the Oracle Application Server core documentation group:

■ Oracle Application Server Security Guide

■ Oracle Application Server Administrator’s Guide

■ Oracle Application Server Certificate Authority Administrator’s Guide

■ Oracle Application Server Single Sign-On Administrator’s Guide

■ Oracle Application Server Enterprise Deployment Guide

For Oracle Identity Management and Oracle Access Manager:

■ Oracle Identity Management Infrastructure Administrator’s Guide

■ Oracle Identity Management Guide to Delegated Administration

■ Oracle Identity Management Application Developer’s Guide

■ Oracle Access Manager Identity and Common Administration Guide

■ Oracle Access Manager Customization Guide

■ Oracle Access Manager Deployment Guide

■ Oracle Access Manager Developer Guide

■ Oracle Access Manager Integration Guide

■ Oracle Access Manager Installation Guide

■ Oracle Access Manager Introduction

■ Oracle Access Manager Schema Description

■ Oracle Access Manager Upgrade Guide

Oracle Web Services Manager is a comprehensive solution for managing service
oriented architectures. It allows IT managements to centrally define policies that
govern Web services operations such as access policy, logging policy, and content
validation, and then wrap these policies around services, with no modification to
existing Web services required.

■ Oracle Web Services Manager Quick Start Guide

■ Oracle Web Services Manager Installation Guide

■ Oracle Web Services Manager User and Administrator Guide

■ Oracle Web Services Manager Deployment Guide

■ Oracle Web Services Manager Extensibility Guide

Conventions
The following text conventions are used in this document:

xiv

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Introduction 1-1

1
Introduction

This chapter introduces essential Web service security concepts, standards, and
specifications. It is divided into the following sections:

■ Web Service Security Concepts

■ Web Services Security Support in OracleAS Web Services

■ Tool Support for Web Service Security

Historically, the majority of Web services have been based on the same enabling
technology that underlies the Web, namely HTTP. As a result, common technologies
that secure Web applications, such as basic authentication and SSL, work equally well
with Web services. These security technologies have been effective for years for all
sorts of online business transactions, and they work equally well for Web services.

SSL, however, does have limitations. SSL for Web services is an all-or-nothing
proposition: it often secures the entire wire protocol rather than just the SOAP message
sent over the protocol. It doesn't let developers apply different levels of security to
different parts of a document. Because of its point-to-point structure, SSL doesn't
support chained services or workflow applications where user credentials can be
passed through each stop in a transaction chain. This leaves the messages unsecured at
each intermediary checkpoint. SSL also does not support the concept of an audit trail.

The answer to providing both message- and transport-level security lies with the
OASIS standard, WS-Security, released as a full industry-recognized recommendation
in April 2004. WS-Security defines a mechanism for adding transport independence
and different levels of security to SOAP messages.

■ WS-Security offers multiple ways to authenticate. In WS-Security, it is easy to
associate different identities with service requests. These identities can be used to
enforce authorization after authentication.

■ WS-Security offers support for SOAP traffic involving intermediaries.

■ WS-Security is transport-independent, which gives greater transport flexibility.

■ WS-Security is targeted security. For example, you can sign or encrypt the whole
message body, or just a single XML element of the body payload.

If there is a need to apply integrity and confidentiality at a fine-grained level instead of
applying to the entire SOAP message, XML signature and encryption can be used to
protect the SOAP body, header block, or portions of either. If the SOAP message needs
to be protected beyond the transport session, message-level security can be used. If
there is a need to use different forms of authentication, then message-level security
authentication tokens can be used, such as username token, X.509 token, or SAML
token.

Web Service Security Concepts

1-2 Web Services Security Guide

Web Service Security Concepts
The concepts fundamental to security are authentication, message integrity, and message
confidentiality.

■ Authentication — "Who is trying to access my services?" Applications need to know
whom they're serving.

■ Message integrity —"Was the message lost, destroyed, or modified in transit, either
accidentally or deliberately?" Applications must validate messages.

■ Message confidentiality—"Can anybody else read this message?" Applications may
need to encrypt data between endpoints, revealing data to only applications that
need to see it.

A number of Web services and security-related terms and concepts are used
throughout this book. They are described in the following sections.

■ SOAP

■ Security Policies

■ The Request Envelope

■ The Response Envelope

■ XML Digital Signatures

■ XML Encryption

■ SAML

■ Message-Level Security

■ Transport-Level Security

■ WS-Security

■ Security Tokens

SOAP
The SOAP protocol is an XML-based standard for Web service request and response
messages, which are normally transmitted over the HTTP or HTTPS (HTTP with SSL)
protocols. WS-Security is an XML-based extension to the SOAP description, designed
to fit within the SOAP message context. To see this, one must first understand the
anatomy of a SOAP message.

In the XML schema definition for SOAP, the <Envelope> element is the root element
of a SOAP message. A SOAP message can also have headers, a body, or a fault
element. Example 1–1 illustrates the contents the SOAP <Envelope> element.

Example 1–1 Contents of the SOAP <Envelope> Element

<env:Envelope>
 <env:Header>
 </env:Header>
 <env:Body>
 .
 .
 .
 </env:Body>
<env:Envelope>

Web Service Security Concepts

Introduction 1-3

Although Web services developers are primarily concerned with the contents of the
SOAP body, most security-related elements appear in the SOAP header. The body
itself can be encrypted, in which case it contains ciphertext.

Security Policies
A Web service security policy determines the security mechanism that is applied to a
SOAP message. Security policies can be applied to the Web service on the server side
and to the Web service client. Oracle Application Server Web Services Security
recognizes the following types and levels of security policies.

■ Inbound Policy

■ Outbound Policy

■ Global Level Policy

■ Port-Level Policy

■ Operation-Level Policy

Inbound Policy
An inbound policy determines the security mechanisms applied to the inbound SOAP
message. The decrypt value and the verify-username-token value are two
examples of inbound policies. The decrypt value represents a policy which is used for
decrypting the inbound SOAP message. The verify-username-token value
represents a policy; this indicates that the incoming SOAP request is carrying a
username token which must be verified and authenticated.

To configure an inbound policy, you can use Application Server Control, Oracle
JDeveloper, or create the configuration manually. The security configuration appears
as subelements beneath an <inbound> element. The <inbound> element and its
configuration can appear in the oracle-webservcies.xml file for a Web service
application and <generated_name>_Stub.xml file for a Web service client.

Outbound Policy
An outbound policy determines the security mechanisms applied to the outbound
SOAP message. The <encrypt> value and the <username-token> value are two
examples of outbound policies. The <encrypt> value represents a policy, which is
used for encrypting the outbound SOAP message. The <username-token> value
represents a policy, which indicates that a username token must be included in the
outgoing SOAP message.

To configure an outbound policy, you can use Application Server Control, Oracle
JDeveloper, or create the configuration manually. The security configuration appears
as subelements beneath an <outbound> element. The <outbound> element and its
configuration can be used in the oracle-webservcies.xml file for a Web service
application and <generated_name>_Stub.xml file for a Web service client.

Note: This example illustrates a SOAP request envelope. There is
also a response envelope, which can contain a SOAP fault element.

See Also:

"Security Elements for Inbound Messages" on page 2-7 for more
information about the contents of the <inbound> element.

Web Service Security Concepts

1-4 Web Services Security Guide

Global Level Policy
A global-level security policy is a security policy that is applied to all of the Web
services deployed in an OC4J instance. Global-level policies can be configured only on
the server side.

You can configure the following items at the global level:

■ Keystore, signature and encryption keys

■ Nonce configuration

■ Inbound policy

■ Outbound policy

Port-Level Policy
In the Web service context, a port is analogous to an application. A port-level security
policy is a security policy that is applied to all operations defined in that Web service.
Port-level policies can be configured on the server and the client side.

You can configure the following items at the port level:

■ Keystore, signature and encryption keys

■ Nonce configuration

■ Inbound policy

■ Outbound policy

Operation-Level Policy
An operation-level security policy is a security policy that is applied to a particular
operation of a Web service. Operation-level policies can be configured on the server
and the client side.

You can configure the following items at the operation level:

■ Inbound policy

■ Outbound policy

The Request Envelope
A request envelope contains the information required to process a remote call. Each
request message contains a message header and a message body. The header stores
processing information such as message routing, requirements information, and
security information. The body of the message stores the information required to
process the call; this information is also known as the payload.

The payload contains the following items:

■ Name of the service called

■ Location of the service

■ Parameter name and data passed to the service

See Also:

"Security Elements for Outbound Messages" on page 2-12 for more
information about the contents of the <outbound> element.

Web Service Security Concepts

Introduction 1-5

The Response Envelope
SOAP response envelope format-type is identical to the request. The only difference is
that the IN parameter is replaced by an OUT parameter. The application's output is
included in the SOAP body.

XML Digital Signatures
The XML signature specification describes digital signature processing rules and
syntax. XML signatures provide integrity, message authentication, and/or signer
authentication services for data of any type, whether located within the XML that
includes the signature or elsewhere.

An XML signature contains the basic hash of the signed document, along with
information that tells the recipient of the document what data was signed and which
algorithms were used. An XML signature can be included inside the document to
which the signature applies, or it can exist in a separate document. An XML signature
can be applied to document subsets, or even to non-XML data.

XML Signature supports various types of signature, including:

■ enveloped—the XML signature is embedded within the signed document.

■ enveloping—the signed data is embedded within the XML signature.

■ detached—the signature corresponds to data external to the signature element.

XML Signatures and Web Services
For a Web service, XML digital signatures ensure the validity and identity of SOAP
messages sent between Web service clients and services. They are similar in concept to
a handwritten signature, where only one person, the signer, can produce the signature.
Signature validation is performed in two steps.

1. Compute the message digests of all SOAP message elements to be signed, then
place the digests in the <SignedInfo> element of the message signature.

2. Compute the message digest of the <SignedInfo> element, then sign this digest
with the signer's private key. Place the key used for signing in the <KeyInfo>
element.

The signed SOAP message then is transmitted and verified at the Web service
endpoint by the signer's public key. The following steps illustrate how verification
works.

1. Recalculate the value of the <SignedInfo> element using the digest algorithm
specified in the <SignatureMethod> element. Use the public key to verify that

Note: The structure of the request and response envelopes might
differ based on whether the service supports the RPC-encoded and/or
document-literal message format. For more information on supported
message formats, see "Oracle Application Server Web Services
Messages" in the Oracle Application Server Web Services Developer’s
Guide.

See Also:

The "XML Signature Syntax and Processing" specification for more
information about XML Signature.

http://www.w3.org/TR/xmldsig-core

Web Service Security Concepts

1-6 Web Services Security Guide

the value of the <SignatureValue> element is correct for the digest of the
<SignedInfo> element.

2. Recalculate the digests of the references contained within the <SignedInfo>
element and compare them to the digest values expressed in each <Reference>
element's corresponding <DigestValue> element.

Example 1–2 illustrates the XML representation of signed data. The body of the SOAP
message is signed with the RSA-SHA1 algorithm.

Example 1–2 XML Representation of Signed Data

<dsig:Signature xmlns="http://www.w3.org/2000/09/xmldsig#"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
 <dsig:SignedInfo>
 <dsig:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <dsig:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#*rsa-sha1*"/>
 <dsig:Reference URI="*#body*">
 <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <dsig:DigestValue>p5vhdagV0tjJafczbLB/I4aonlg=</dsig:DigestValue>
 </dsig:Reference>

 </dsig:SignedInfo>
 <dsig:SignatureValue>QKEJpRGwwRApPFWfA1R/6K4JFwCxyH2Ur0mdzTnzmpf
 8DNvDVB9xdF9PVsQ68vEey8afbrL/Qwujghoq3gF22VlEBPj
 TDrRTZ9JgnRVbOt/M/SacHP/BZn9gSfLySpJaQIj7x
 MUbm5s29JiUvjQ0oR0/Skn+8f+KeQD0QEmbWX8=
 </dsig:SignatureValue>
 <dsig:KeyInfo>
 <wsse:SecurityTokenReference xmlns="http://docs.oasis-open.org/wss/2004/01/
 oasis-200401-wss-wssecurity-secext-1.0.xsd"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/
 01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 wsu:Id="_str"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/
 01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:Reference xmlns="http://docs.oasis-open.org/wss/2004/
 01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/
 01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 URI="#_bst"/>
 </wsse:SecurityTokenReference>
 </dsig:KeyInfo>
</dsig:Signature>

XML Encryption
The XML encryption specification describes a process for encrypting data and
representing the result in XML. The data can be arbitrary; for example, it can be an
XML document, an XML element, or XML element content. The result of encrypting
data is an XML encryption element which contains (by using one of its children's
content) or identifies (by using a URI reference) the cipher data. The standard allows
selected parts of a document to be encrypted, while the document as a whole remains
valid XML.

XML encryption supports different encryption types such as:

■ symmetric key encryption

Web Service Security Concepts

Introduction 1-7

■ public key encryption

XML Encryption and Web Services
For a Web service, XML encryption provides security for applications that require a
secure exchange of data. While SSL was considered the standard way to secure data
exchanges, it has limitations. For example, assume that a document visits several web
services before hitting its eventual endpoint. By using XML encryption, the document
can be encrypted while at rest, or in transport. It is also possible to encrypt only
portions of a document, instead of the whole document.

Example 1–3 illustrates credit card data represented in XML.

Example 1–3 XML Representation of Credit Card Data

 <PaymentInfo xmlns='http://example.org/paymentv2'>
 <Name>John Smith</Name>
 <CreditCard Limit='5,000' Currency='USD'>
 <Number>4019 2445 0277 5567</Number>
 <Issuer>Example Bank</Issuer>
 <Expiration>04/02</Expiration>
 </CreditCard>
 </PaymentInfo>

Example 1–4 illustrates the same XML snippet with the credit card number, spending
limit, issuing bank, and expiration date encrypted and represented by a cipher value.

Example 1–4 XML Representation of Encrypted Credit Card Data

 <PaymentInfo xmlns='http://example.org/paymentv2'>
 <Name>John Smith</Name>
 <EncryptedData Type='http://www.w3.org/2001/04/xmlenc#Element'
 xmlns='http://www.w3.org/2001/04/xmlenc#'>
 <CipherData>
 <CipherValue>A23B45C56</CipherValue>
 </CipherData>
 </EncryptedData>
 </PaymentInfo>

SAML
The Security Assertion Markup Language (SAML) is an XML-based framework for
exchanging security information. This security information is expressed in the form of
assertions about subjects, either human or computer, that have identities in some
security domain. One example of a subject is a person, who is identified by his or her
email address in a particular Internet DNS domain. Assertions convey information
about authentication acts performed by subjects, attributes of subjects, as well as
authorization decisions about whether subjects are allowed to access certain resources.

SAML provides a flexible and extensible framework for business and Web services to
exchange security information, such as authentication, authorization, and attributes,
about their users. For example, SAML allows one service to vouch for a user's

See Also:

"XML Encryption Syntax and Processing" specification for more
information about XML Encryption.

 http://www.w3.org/TR/xmlenc-core

Web Service Security Concepts

1-8 Web Services Security Guide

authentication to another service. This allows useful activities, such as single sign-on
to multiple services.

SAML allows one service to inform another service whether a user is allowed to access
a given resource. This allows policy enforcement to be decoupled from resource
services.

SAML allows attribute information about a user, such as work-site address, to be
communicated between services as the user moves from one site to another.

Message-Level Security
Oracle's Web Services Security model supports end-to-end security by using
message-level security. This means that in addition to the connection, the SOAP
message itself is secure even when it is transferred across multiple intermediaries. The
SOAP message is digitally signed and encrypted. You can apply signature and
encryption at a granular level by specifying which elements you want to sign and
encrypt. The client and the application can authenticate each other by passing various
authentication tokens such as username token, X.509 token, or SAML token.

Transport-Level Security
Existing technologies such as SSL/TLS can be used to secure the transport channel.
SSL allows two applications to securely connect over a network and authenticate each
other. It also enables you to encrypt the data exchanged between the applications. In
Oracle's Web Services Security model, this transport security mechanism can be used
to provide point-to-point security, data integrity, and data confidentiality.

WS-Security
The Web Services Security (WS-Security) specification describes enhancements to
SOAP 1.1 that increase the protection and confidentiality of messages. These
enhancements include functionality to secure Simple Object Access Protocol (SOAP)
messages through XML digital signature, confidentiality through XML encryption,
and credential propagation through security tokens. The goal of the enhancements is
to provide greater overall protection for communications over Web services.

WS-Security provides this protection by defining mechanisms for associating tokens
with messages. It is completely extensible in that it can support multiple token
formats.

The specification includes descriptions of how to include the following security tokens
and keys:

■ binary security tokens using X.509 and Kerberos ticket

■ text-based tokens, such as the username token

■ signature and encryption keys

There are no restrictions on the types of credentials that you can include with a
message.

Oracle Web Services Security provides support for WS-Security, including XML
signature and encryption, and credential propagation through username, X.509, and
SAML token profiles.

Web Service Security Concepts

Introduction 1-9

Security Tokens
OracleAS Web Services Security supports the use of the following security tokens.

■ Username Token

■ X.509 Token

■ SAML Token

Username Token
The usename token carries basic authentication information. The username-token
element propagates user name and password information to authenticate the message.
The information provided in the token and the trust relationship provide the basis for
establishing the identity of the user.

X.509 Token
X.509 certificate with the user's credentials can be passed in the SOAP message.It can
be used to sign the SOAP message for encryption and decryption only. For signature,
the X.509 token can be used only for signature verification.

SAML Token
SAML security tokens are composed of assertions: one or more statements about a
user, such as an authentication or attribute statement. SAML tokens are attached to
SOAP messages by placing assertion elements inside the header.

See Also:

See the following Web site for more information on WS-Security and
its specification.

http://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=wss

See Also:

See the following Web site for more information on the username
token profile.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-username-token-profile-1.0.pdf

See Also:

See the following Web site for more information on the X.509 token
profile.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-x509-token-profile-1.0.pdf

See Also:

See the following Web site for more information on the SAML token
profile.

http://docs.oasis-open.org/wss/oasis-wss-saml-token-
profile-1.0.pdf

Web Services Security Support in OracleAS Web Services

1-10 Web Services Security Guide

Keystore
A keystore is used to store certificates, including the certificates of all trusted parties,
for use by a program. Through its keystore, an entity, such as OC4J (for example) can
authenticate other parties, as well as authenticate itself to other parties. Oracle HTTP
Server has what is called a wallet for the same purpose.

OracleAS Web Services Security implementation supports the Java Key Store (JKS) and
the Oracle Wallet and PKCS#12 keystore types. You can use Oracle Wallet or JKS as
your keystore for storing private keys, public keys, and trusted CA certificates.

Oracle Wallet contains a user private key, a user certificate and a set of trust points
(that is, the list of root certificates the user trusts). It implements the storage and
retrieval of credentials for use with various cryptographic services. Oracle Wallet files
are actually PKCS#12 files, which can be parsed, created, and otherwise, manipulated
with the orapki tool, Oracle Wallet Manager, and Open SSL.

Web Services Security Support in OracleAS Web Services
This section contains the following topics.

■ Standards Supported by OracleAS Web Services Security

■ Interceptor Framework

■ Architecture

■ Web Service Security Integration

Standards Supported by OracleAS Web Services Security
OracleAS Web Services Security is defined by the following specifications and
standards.

■ Web Services Security (WS-Security) defines an open security standard.

http://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=wss

■ XML Digital Signature defines how to verify the integrity of an XML object.

http://www.w3.org/TR/xmldsig-core

■ XML Encryption defines encrypting XML messages.

http://www.w3.org/TR/xmlenc-core

■ SAML tokens assert that the SAML user or subject has already been
authenticated.

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1
.0.pdf

■ X.509 tokens can be used to authenticate the user based on the trust relationship.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-
token-profile-1.0.pdf

■ Username tokens propagate user name and password information.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-usern
ame-token-profile-1.0.pdf

Web Services Security Support in OracleAS Web Services

Introduction 1-11

■ Web Service Interoperability (WS-I) is a Web service organization that creates,
promotes, and supports generic protocols for the interoperable exchange of
messages between Web services.

http://www.ws-i.org

The following Web Services Interoperability Organization (WS-I) document
presents a full discussion of security challenges and threats in today's Web services
environment.

http://www.ws-i.org/Profiles/BasicSecurity/SecurityChallenges
-1.0.pdf.

Interceptor Framework
In OracleAS Web Services, all WS-Security features, including digital signatures,
encryption, and authentication, are implemented using a prebuilt JAX-RPC handler
called an interceptor. Whenever a Web service client requests that a message be sent,
the SOAP message is "intercepted" by the JAX-RPC handler. The interceptor adds the
authentication, signature, and encryption WS-Security elements to the SOAP message,
then forwards the message to the receiving Web service.

Each receiving Web service also has interceptors that can decrypt, verify signatures,
and authenticate the incoming message.

Figure 1–1 illustrates the actions of the framework. The numbers in the illustration
correspond to the following steps.

1. A Web service client sends a message to a Web service. The client interceptor adds
the authentication, signature, and encryption WS-Security elements to the
outbound SOAP message, then forwards the modified message to the receiving
Web service.

2. The service interceptor intercepts the message and decrypts, verifies, and
authenticates the message.

3. When sending a response message, the service interceptor in the Web service adds
a WS-Security header with integrity and confidentiality.

4. The client interceptor interprets the header and delivers it to the client application.

Figure 1–1 Interceptor Framework

See Also:

Chapter 5, "Secure Web Service Usage Scenarios" for more information
on common use cases.

SOAP
Web

Service

SOAP
Client

Modified SOAP
Request

(outbound)

Modified SOAP
Response
(inbound)

Service
Interceptor

Client
Interceptor

Service
Interceptor

Client
Interceptor

1

4

2

3

Web Services Security Support in OracleAS Web Services

1-12 Web Services Security Guide

Service Security Interceptor
The service security interceptor acts as a filter on incoming SOAP messages. The
security settings in the deployment descriptor describes the configuration that drives
the interceptor. The service interceptor is responsible for decrypting, verifying, and
authenticating (in that order) the incoming request message. When sending a response
message, the service interceptor embeds a WS-Security header and provides for
integrity and confidentiality of the outbound response message. The main intent of the
service interceptor is to establish a security context of execution for SOAP operations.

Client Security Interceptor
Client handlers act as peers for the service handlers on the Web service client side. The
client interceptor follows a set order of processing when it adds authentication tokens
to, signs, and encrypts a SOAP message.

Figure 1–2 illustrates the movement of data through the client and service handlers.
The client handler first collects authentication information and inserts it as a
WS-Security token. This is followed by signature computation and encryption of the
message. Configuration that resides in a Stub deployment descriptor determines what
parts of the message must be integrity/confidentiality protected.

Figure 1–2 Data Flow Through Security Handlers

When the Oracle WS-Security runtime is involved in both the client and server,
security interceptors are available at both sides, and these intercepts load security
policies specified in configuration files. Many other types of clients (for example, .NET
clients) understand and generate WS-Security headers within SOAP envelopes. A
receiving interceptor enforces security policies; a sending interceptor intercepts a
message and modifies it based on security requirements of the target receiver. For
example, if the target receiver requires a message to be signed, the sender signs the
message.

The Oracle WS-Security component is fully integrated with the OracleAS Web Services
security infrastructure, which is based on the J2EE security model. For instance, when
a request message contains a user name and password, the security handler
authenticates by leveraging the underlying OracleAS JAAS Provider infrastructure. If
authentication succeeds, a user identity (JAAS Subject) is established in the execution
context, and further resource access is authorized by the container based on this
identity. It should be noted that the security interceptor helps establish the identity
against which the operation can be authorized. Server-side handlers leverage the
OracleAS JAAS Provider for the formulation of Subjects and associate the correct
Principal instances (users and/or roles) with each Subject during the commit phase of
JAAS authentication. After that point, the asserted or authenticated Principal instances
contained in Subject are used as a basis for J2EE and JAAS authorization.

WS-Security Client Handler

Add
Encryption

WS-Security Service Handler

Application Server 1

Add
Signature

Add
Authentication

Token

Application Server 2

Decrypt
and

Replace

Verify
Signature

Process
Authentication

Token

Web Services Security Support in OracleAS Web Services

Introduction 1-13

Architecture
The OracleAS Web Services architecture is built to support secure communications
using a declarative model that requires a minimum of developer effort. An interceptor
framework automates common security tasks, such as encrypting portions of the
message body.

Figure 1–3 illustrates the overall architecture of WS-Security architecture for the Oracle
Web service stack.

Figure 1–3 Web Services Security Architecture

The major components of the Oracle WS-Security architecture are the client and
service security interceptors. These interceptors plug into the OracleAS Web Services
management framework and work in tandem with other interceptors, including those
that implement auditing, logging, and reliability.

Web Service Security Integration
The following sections describe how the Web service security interceptor integrates
with the OracleAS Web Services Security framework.

■ Integration with JAAS

■ Integration with Oracle Identity Management

■ Integration with External LDAP Servers

■ Integration with Oracle Access Manager

Integration with JAAS
OracleAS Web Services provides an implementation of Oracle Application Server Java
Authentication and Authorization Service (JAAS) Provider for J2EE applications that is
fully integrated with J2EE declarative security. This allows J2EE applications to take
advantage of the JAAS constructs such as principal-based security and pluggable login
modules. OracleAS Web Services Security provides out-of-the-box JAAS
authentication login modules that allow J2EE applications running on OracleAS Web
Services to leverage the central security services of Oracle Identity Management.

The JAAS Provider ensures secure access to and execution of Java applications, and
integration of Java-based applications with Oracle Application Server Single Sign-On.

Web
Services

Client

Request

Response

Client
Security

Interceptor

Service
Security

Interceptor

Stub
Deployment
Descriptor

wsmgmt.xml
Configuration

File

JAAS

WS-Security
Processor

Web
Service

Request

Response

WS-Security
Processor

Web Services Security Support in OracleAS Web Services

1-14 Web Services Security Guide

Integration with Java Single Sign-On
The OC4J 10.1.3.1 implementation packages a lighter-weight Java single sign-on (Java
SSO) solution that does not rely on additional required infrastructure as is the case
with other single sign-on options. This Java SSO, based on the OracleAS JAAS
Provider identity management framework, can be used across Web applications in any
of the following deployment scenarios:

■ Web applications are deployed in the same application EAR file.

■ Web applications are deployed in different application EAR files in the same OC4J
instance.

■ Web applications are deployed in application EAR files in different OC4J
instances, where the Web applications share a common security domain and
cookie domain.

■ A single application, including Web applications, is deployed into multiple OC4J
instances within an OC4J cluster.

Integration with Oracle Identity Management
Oracle Identity Management provides an enterprise infrastructure for securing
distributed enterprise applications. Oracle Identity Management is an integrated
package of the Oracle Internet Directory (OID), an LDAP server, Single Sign-On,
Security and User Management functionality.

Security in OracleAS Web Services is integrated with Oracle Identity Management.
With this integration it is possible to perform the following services:

■ Secure Web services and authenticate against OID servers.

■ Propagate the Oracle Single Sign-On server authenticated user identity to remote
Web services using standards based SAML token.

■ Implement fine-grained JAAS authorization for Web services. In this case, JAAS
authorization policies are stored in the OID server.

Oracle Identity Management Support for Web Services Authentication Mechanisms Oracle
Identity Management integration supports these Web services authentication
mechanisms: HTTP basic, digest, username token, X.509 token, and SAML token.

Oracle Application Server Web Services Security Integration with Oracle Identity Management
The current release of Oracle Application Server Web Services Security is integrated
with these releases of Oracle Identity Management: 10.1.2.0.1, 10.1.2.0.2, and 10.1.4.

See Also:

Oracle Containers for J2EE Security Guide for more information on Java
SSO.

See Also:

Oracle Identity Management Infrastructure Administrator’s Guide for more
information on the components that comprise Oracle Internet
Directory.

See Also:

Oracle Containers for J2EE Security Guide for more information on
integrating Oracle Identity Management with OC4J Security.

Tool Support for Web Service Security

Introduction 1-15

Integration with External LDAP Servers
Web services security in OracleAS Web Services is integrated with external
(non-Oracle) LDAP servers such as Active Directory. With this integration it is possible
to:

■ Secure Web services and authenticate against LDAP servers.

■ Implement fine-grained JAAS authorization for Web services. In this case, JAAS
authorization policies are stored in the XML file system-jazn-data.xml.

External LDAP Server Integration Support for Web Services Authentication Mechanisms External
LDAP server integration supports these Web services authentication mechanisms:
HTTP basic, username token, X.509 token, and SAML token.

Oracle Application Server Web Services Security Integration with External LDAP Servers The
current release of Oracle Application Server Web Services Security can be integrated
with these external LDAP servers:

■ 10g (10.1.3.1.0) Oracle Application Server Web Services Security is integrated with
Windows 2000 and 2003 Active Directory.

■ 10g (10.1.3.1.0) Oracle Application Server Web Services Security is integrated with
Sun Java System Application Server (formerly known as iPlanet).

Integration with Oracle Access Manager
Oracle Access Manager is a complete solution for user identity and profile
management, single sign-on, and access control. By integrating Oracle Access Manager
with OC4J, a single Oracle Access Manager instance enables you to centralize
authentication and authorization for one or more instances of OC4J. This single
instance enables you to access single sign-on, centralize auditing, and provide stronger
authentication options.

The Oracle Access Manager security provider for OC4J can be used to configure
authentication and authorization for Web-based applications and single sign-on. It can
also be used to configure EJB authentication and Web Service authentication schemes
such as username token, X.509 and SAML.

Tool Support for Web Service Security
This section provides an overview of the parts of the Web service security
configuration that can be set by the Oracle JDeveloper and Application Server Control
tools.

This section contains these sub-sections:

■ Application Server Control Support for Web Service Security

■ Oracle JDeveloper Support for Web Service Security

■ Oracle Web Services Manager

See Also:

 Oracle Containers for J2EE Security Guide for more information on
integrating Oracle Identity Management with OC4J security.

See Also:

Oracle Containers for J2EE Security Guide for more information on
Oracle Access Manager.

Tool Support for Web Service Security

1-16 Web Services Security Guide

Application Server Control Support for Web Service Security
Application Server Control can read and modify the security configuration of a
deployed Web service. Once the configuration values have been modified and applied,
the Web service can be restarted and run with the new values. Application Server
Control can be used to set Web service security options on the port and operation
level.

At the global level, you can use Application Server Control to set the keystore
configuration and the signature and encryption keys. Like the security configuration,
if you change the keystore, signature, or encryption values, you must restart the
application for the new values to take effect.

Global- and Port-Level Keystore and Identity Certificates
You can choose to employ a global keystore or an application-specific keystore for the
Web service port. If you choose a global keystore, it applies to all applications
deployed in that OC4J instance. If you choose an port-specific keystore, it must be
deployed with your application. For a global keystore, you choose a keystore name,
path, and password. You also choose identity certificates for message signature and
encryption.

If you choose an application-specific keystore, you must also specify the identity
certificates for signature and encryption to be used by all operations exposed by this
Web service port.

See Also:

The on-line help for Application Server Control and Oracle
JDeveloper. The on-line help provides detailed information of the
individual security options that can be controlled by these tools.

See Also:

The Application Server Control on-line help for more information on
how to use this tool to read and modify the configuration of a
deployed Web service.

Note: Both server and trusted certificates are stored in the same
keystore. This is different from how Secure Sockets Layer (SSL) or
Oracle Remote Method Invocation (ORMI) is used in OC4J. You can
use either Oracle Wallet or Java Keystore (JKS) as a keystore. "Using
Keystores" on page 3-1 provides more information on how to use
these keystores.

See Also:

■ "Keystore Elements" on page 2-5 for more information on the
elements and attributes that allow you to specify a global
keystore.

■ "Signature and Encryption Key Elements" on page 2-6 for more
information on the elements and attributes that allow you to
specify a port signature and encryption keys.

Tool Support for Web Service Security

Introduction 1-17

Port- and Operation-Level Security Configuration
A security configuration for inbound and outbound SOAP messages can be set on the
port-level and operation level. The same security operations (except keystore settings)
are available at operation level.

A port-level setting applies to a Web service application. A port-level security
configuration is used by all of the operations exposed by the Web service port. An
operation-level setting is for a particular operation of the Web service application. A
configuration setting made on the operation level overrides the setting made on the
port level.

At the port-level you also choose keystore and identity certificates that will apply to all
of the operations on the Web service. These values cannot be overridden on the
operation level.

Port-Level and Operation-Level Inbound Policy Configuration
The port and operation level share the same security options for inbound SOAP
messages. This section summarizes the options that Application Server Control can
set.

■ Authentication for inbound messages—lets you specify whether the Web service
should expect the message to authenticate by using a username/password (with
or without a nonce or timestamp), a X.509 certificate, or a SAML token. "Security
Elements for Inbound Messages" on page 2-7 provides more information on the
authentication elements that Application Server Control can set.

■ Signature verification for inbound messages—lets you specify whether to require
the message body to be signed, whether a timestamp is present and a set of
acceptable signature algorithms. "Signature Verification Elements for Inbound
Messages" on page 2-9 provides more information on the verification elements
that Application Server Control can set.

■ Decryption for inbound messages—lets you specify whether the message body
should be encrypted and a set of acceptable encryption algorithms. "Decryption
Elements for Inbound Messages" on page 2-10 provides more information on the
decryption elements that Application Server Control can set.

Port- and Operation-Level Outbound Policy Configuration
The port and operation level share the same security options for outbound messages.
This section summarizes the options that Application Server Control can set.

■ Signing for outbound messages—lets you specify whether to sign the message,
add a timestamp, and an acceptable signature algorithm. "Signature Elements for
Outbound Messages" on page 2-17 provides more information on the signing
elements that Application Server Control can set.

■ Encryption for outbound messages—lets you encrypt the body element of the
outbound SOAP message by using either a request certificate or a public key by
specifying an alias. "Encryption Elements for Outbound Messages" on page 2-18
provides more information on the verification elements that Application Server
Control can set.

Web Services Agent
Web Services Agent enables you to configure your Web service so that it can be
managed by Oracle Web Services Manager (WSM). Oracle WSM and Oracle Web
Services Manager Agent provide another technique of applying security policies to a
Web service. Oracle Web Services Manager enables you to create policies declaratively,

Tool Support for Web Service Security

1-18 Web Services Security Guide

then export them to a file. The policies are applied to the Web service when you
configure the Web Services Agent in Application Server Control. Agents are more
capable than Web Services Security, in that they support different security algorithms
and can provide integration with Oracle Access Manager and SiteMinder.

Oracle JDeveloper Support for Web Service Security
Oracle JDeveloper can be used to develop OracleAS Web Services and client Web
service management configuration files. Oracle JDeveloper can aid you in the initial
creation of these files or it can be used to add management configuration to existing
files.

Wizards in Oracle JDeveloper help you configure port and operation level security for
inbound and outbound SOAP messages. They cannot be used to set security on the
global level.

The port and operation level share the same security options for inbound and
outbound messages. This section summarizes the options that Oracle JDeveloper
wizards can set.

■ Web service authentication—lets you specify whether the Web service should
expect to be accessed by using a username and password, a X.509 certificate, or a
SAML token.

■ signature validation for inbound messages—lets you specify that inbound
messages must be signed, and the signature algorithm.

■ decryption for inbound messages—lets you specify that inbound messages will be
decrypted and the decryption algorithm.

■ signing outbound messages—lets you specify whether to add signatures and
timestamps to outbound messages and a signing algorithm.

■ encryption for outbound messages—lets you specify whether to use a public key
or the client-supplied certificate from a previously sent signed message, and the
encryption algorithm.

■ keystore path—lets you specify credential store locations of the various keys
required to implement the chosen security policies. Can be set on the port level
only.

■ signature key—lets you specify the alias and password to access the required key
for signing messages. Can be set on the port level only.

■ encryption key—lets you specify the alias and password to access the required key
for decrypting messages. Can be set on the port level only.

Oracle Web Services Manager
Oracle Web Services Manager (WSM) is a Web services security and management
solution that provides the visibility and control required to deploy Web services into
production. With Oracle WSM, organizations can enjoy a common security

See Also:

"Oracle Web Services Manager" later in this chapter for more
information on this tool.

See Also:

The Oracle JDeveloper on-line help for more information on security
options in JDeveloper wizards.

Tool Support for Web Service Security

Introduction 1-19

infrastructure for all Web Service applications. This allows "best practice" security
policies and monitoring to be deployed across existing or new services.

With Oracle WSM, an administrator creates security and management policies using a
browser-based tool. A typical Web Service security policy could include the following
items:

■ Decrypt the incoming XML message

■ Extract the user's credentials

■ Perform an authentication for this user

■ Perform an authorization check for this user and this Web Service

■ Write a log record containing the authorization checking information

■ If all of the steps are successful, pass the message to the intended Web Service

■ If all of the steps are not successful, return an error and write an exception record

To apply the security policy, Oracle WSM intercepts every incoming request to a Web
service and applies any of the policy items in the list. As the policy is executed, Oracle
WSM collects statistics about its operations and sends them to a monitoring server.
The monitor displays errors, service availability data, and so on. As a result, each Web
service in an enterprise network can automatically gain security and management
control, without the service developer coding extra logic.

The following sections describe the motivations for using Oracle WSM.

Web Services Access Control and Single Sign-On
Oracle WSM supports single sign-on, including authentication, authorization, and
auditing for Web services. For example, a browser-based single sign-on cookie could
be used for authentication and authorization in a Web service. Oracle WSM has tight
integration with products such as Siteminder and Oracle Access Manager to support
enterprise single sign-on solutions. It also supports authentication and authorization
through Microsoft Active Directory, and LDAP.

Centralized Security Policy Management with Localized Enforcement
Oracle WSM allows organizations to minimize the duplication of effort required to
build security into each service by leveraging a centralized security infrastructure. The
OracleAS Web Services management solution provides the ability to add "best
practice" security to an existing Web service, without requiring you to re-work the
Service's code.

Place Security Policies in the hands of Security Professionals instead of the
Developer
Companies are struggling to manage their security policies. They want to be able to
change, develop, and manage their security policies from a central location. This
reduces cost, and allows an organization to quickly determine their security policies
throughout their applications.

See Also:

■ Oracle Web Services Manager Installation Guide for information on
integrating Oracle WSM with OC4J.

■ Oracle Web Services Manager User and Administrator Guide for
information on using Oracle Web Services Manager.

Tool Support for Web Service Security

1-20 Web Services Security Guide

When to Use Oracle WSM to Secure Web Services
Both Oracle WSM and OracleAS Web Services Security provide the ability to secure
Web services. The WS-Security implementation within OracleAS Web Services was
developed so that Web services can be secured by anybody who uses them. OracleAS
Web Services Security is bundled with Oracle 10g Release 3 (10.1.3.1.0) Oracle
Application Server, and supports the WS-Security 1.0 specification. It is ideal for
deployments where Web services are deployed within the OC4J instance, and security
is enforced locally by OC4J.

For large or enterprise-wide deployments where a number of Web services must be
centrally managed and secured, Oracle WSM is recommended.

Configuring Web Service Security 2-1

2
Configuring Web Service Security

This chapter describes the client- and server-side configurations for Web services
security. These security configurations are stored in XML files. On the server, this
configuration is stored in the oracle-webservices.xml deployment descriptor
file. On a client, it is stored in the <generated_name>_Stub.xml deployment
descriptor file.

You can create these files and configure the security elements in any of the following
ways:

■ Oracle JDeveloper IDE—Use the Oracle JDeveloper IDE to create and configure
Web service and client security. This tool provides wizards that help you create a
security configuration. It stores the results in an oracle-webservices.xml
deployment descriptor for the server and a <generated_name>_Stub.xml
deployment descriptor for the client.

■ Application Server Control—Use Application Server Control to configure security
for all of the operations in a particular Web services port, or configure specific
security settings for individual operations in the port. The content of the
oracle-webservices.xml and <generated_name>_Stub.xml files are not
changed. The changes are made to the wsmgmt.xml file which contains the Web
service security and management policies currently in force. Application Server
Control can change the configuration only for Web services, not for their clients.

For more information, see the topic Configuring Security for a Web Service in the
Application Server Control on-line help.

■ WebServicesAssembler—Use this command line tool to configure and assemble
the security elements in the Web service and client.

■ Manual configuration—To manually configure security, enter values for the
security elements directly in the server and client deployment descriptor files.

The Web services security configuration for the client and server is based on inbound
and outbound policies. These policies are defined in "Security Policies" on page 1-3.

Figure 2–1 illustrates the deployment descriptors that are generated when you
configure Web service security and how information is passed to the client and service.
The following steps correspond to the numbers in the figure.

1. The security configuration for a Web service client. Configuring security for a
client will generate the <generated_name>_Stub.xml deployment descriptor
with a security configuration. The client interceptor uses the <generated_
name>_Stub.xml deployment descriptor at runtime to generate the security
header (if an <outbound> element is configured) and enforce the security policy
(if an <inbound> element is configured).

2-2 Web Services Security Guide

2. The security configuration for a Web service (server side). Configuring security for
the Web service application will generate an oracle-webservices.xml
deployment descriptor with the security configuration.

3. When you deploy the Web service, the wsmgmt.xml file will be updated with the
Web service security configured in the oracle-webservices.xml deployment
descriptor as described in Step 2. The wsmgmt.xml file is an instance-level
configuration file, which holds the entire security configuration for the Web
services deployed in an OC4J instance. The server interceptor uses the
wsmgmt.xml file at runtime to enforce the security policy (if an inbound element
is configured) or generate the security header (if an outbound element is
configured).

In the diagram, the dashed boxes indicate that for a given <outbound> element in the
Web service client configuration, there is a corresponding <inbound> element in the
Web service configuration. Similarly, for a given <outbound> element in the Web
service, there is a corresponding <inbound> element in the client configuration file.

For example, a <username-token> subelement in the client <outbound> element
indicates that the client will be sending a username token. In the Web service
<inbound> element there is corresponding <verify-username-token> element
which indicates that the Web service must verify the username token.

Note: Oracle Application Server Web Services Security recommends
that you do not directly edit the wsmgmt.xml file.

Security Configuration Elements

Configuring Web Service Security 2-3

Figure 2–1 How Policies Work Together for Client- and Server-side Web Services

Security Configuration Elements
This section provides definitions of the security configuration elements. The same set
of security configuration elements can appear at the global, port, and operation level.
The values for security configuration elements set at the operation level override
settings made at the port and global levels. Port-level settings override global-level
settings.

In general, OracleAS Web Services Security elements appear in the header or body of
SOAP messages. The client uses the same set of security configuration elements as the
server. Example 2–1 illustrates the security configuration elements as they are used in
the server-side oracle-webservices.xml deployment descriptor.

Example 2–1 Security Configuration Elements in the Server-Side Configuration File

<oracle-webservices xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Web Service
Client

Web
Service wsmgmt.xml

<generated_name>_Stub.xml

<oracle-webservice-clients>
 <webservice-client>
 <port-info>
 <runtime>
 <security>

</security>
 </runtime>
 </port-info>
 </webservice-client>
</oracle-webservice-clients>

oracle-webservices.xml

<oracle-webservices>
 <webservice-description name="Service" >
 <port-component name="MyService">
 <runtime>
 <security>

</security>
 </runtime>
 </port-component>
 </webservice-description>
</oracle-webservices>

1 2

3

 <outbound>
 <username-token name="user" …./>
 <encrypt>
 <recipient-key alias="oraenc"/>
 <encryption-method>
 3DES
 </encryption-method>
 ……
 </encrypt>
 </outbound>

 <inbound>
 <decrypt>
 <encryption-methods>
 <encryption-method>
 3DES
 </encryption-method>
 </encryption-methods>
 ……
 </decrypt>
 </inbound>

 <inbound>
 <verify-username-token/>
 <decrypt>
 <encryption-methods>
 <encryption-method>
 3DES
 </encryption-method>
 </encryption-methods>
 ……
 </decrypt>
 </inbound>

 <outbound>
 <encrypt>
 <recipient-key alias="oraenc"/>
 <encryption-method>
 3DES
 </encryption-method>
 ……
 </encrypt>
 </outbound>

Security Configuration Elements

2-4 Web Services Security Guide

xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/oracleas/schema/oracle-webs
ervices-10_0.xsd">
 <webservice-description name="XYZService ">
<port-component name="XYZPort">
 <runtime enabled="security">
 <security>
 <key-store store-pass="abc" path="./mykeystore.jks"/>
 <signature-key alias="signkey" key-pass="signkeypass"/>
 <encryption-key alias="enckey" key-pass="enckeypass"/>
 </security>
 </runtime>

 <operations>
 <operation name="sayHello" input="{http://tempuri.org/}/sayHello">
 <runtime>
 <security>
 <inbound>
 <verify-username-token />
 <verify-x509-token />
 <verify-saml-token/>
 <verify-signature>
 <signature-methods>
 <signature-method>
 RSA-SHA1
 </signature-method>
 </signature-methods>
 <tbs-elements>
 <element name-space="http://schemas.xmlsoap.org/soap/envelope"
 local-part="Body"/>
 </tbs-elements>
 <verify-timestamp expiry="28800" created="true"/>
 </verify-signature>
 <decrypt>
 <encryption-methods>
 <encryption-method>
 3DES
 </encryption-method>
 </encryption-methods>
 <keytransport-methods>
 <keytransport-method>
 RSA-1_5
 </keytransport-method>
 </keytransport-methods>
 <tbe-elements>
 <element name-space="http://schemas.xmlsoap.org/soap/envelope"
 local-part="Body" mode="CONTENT"/>
 </tbe-elements>
 </decrypt>
 </inbound>

 <outbound>
 <signature>
 <tbs-elements>
 <tbs-element
name-space="http://schemas.xmlsoap.org/soap/envelope/" local-part="Body"/>
 </tbs-elements>
 </signature>
 <encrypt>
 <recipient-key alias="enckey"/>
 <tbe-elements>

Security Configuration Elements

Configuring Web Service Security 2-5

 <tbe-element
name-space="http://schemas.xmlsoap.org/soap/envelope/" local-part="Body" />
 </tbe-elements>
 </encrypt>
 </outbound>
 </security>
 </runtime>
 </operation>
 </operations>
</port-component>
</webservice-description>
</oracle-webservices>

Example 2–2 illustrates the security configuration elements as they are used in the
client-side <generated_name>_Stub.xml deployment descriptor.

Example 2–2 Security Configuration Elements in the Client-Side Configuration File

<oracle-webservice-clients>
<webservice-client>
<port-info>
<runtime enabled="security">
 <key-store path="mykeystore.jks" store-pass="password"/>
 <signature-key alias="signkey" key-pass="signkeypass"/>
 <security>
 <outbound>
 <username-token name="SCOTT" password="TIGER"/>
<signature>
 <tbs-elements>
 <tbs-element name-space="http://schemas.xmlsoap.org/soap/envelope/"
local-part="Body"/>
 </tbs-elements>
 <add-timestamp created="true" expiry="28800"/>
 </signature>
 <encrypt>
 <recipient-key alias="reckey"/>
 <tbe-elements>
 <tbe-element name-space="http://schemas.xmlsoap.org/soap/envelope/"
local-part="Body"/>
 </tbe-elements>
 </encrypt>
 </outbound>
 </security>
</runtime>
<operations>
 <operation name="sayHello"/>
</operations>
</port-info>
</webservice-client>
</oracle-webservice-clients>

Keystore Elements
The <key-store> element is required and can occur at both global and port levels on
the server, and at port level on the client. A global keystore setting applies to all
applications deployed within the instance; it can be overridden by a specific port-level
keystore. If you make any changes to the value of the <key-store> element, then
you must restart the application to enable the new values.

Security Configuration Elements

2-6 Web Services Security Guide

Signature and Encryption Key Elements
The <signature-key> and <encryption-key> are required at port level if a port
level keystore is specified or when selecting keys from a global keystore. If these keys
are not configured at the port level, then the global-level values are used.

If you make any changes to the values of the <signature-key> or
<encryption-key> elements, then you must restart the application to enable the
new values.

Nonce Configuration Elements
A nonce is a random value that can be included in the username token to prevent
replay attacks. The nonce is cached by the server. OracleAS Web Services Security lets
you configure a nonce value that can be inserted into the username token. For more
information on configuring the nonce, see "Configure the Nonce Cache with a Digest
Password" on page 3-10.

Table 2–1 Keystore Settings

Element Name Description

<key-store> Identifies the path to the keystore. This element can appear at
global or port level. This element has these attributes:

■ path—File system path to the keystore. This can be an
absolute or relative path. On the server, the relative path is
relative to the application root directory:

J2EE_HOME/applications/application_name.

On the client, the path can be either absolute or relative to
J2EE_HOME when the client application is deployed on
OracleAS Web Services.

■ type—Keystore type. The default type is JKS. Other
supported types are PKCS12 and ORACLE_WALLET.

■ store-pass—Password to access the keystore.

Table 2–2 General Security Settings

Element Name Description

<signature-key> Points to the key required by <signature> and
<verify-signature>. This element has these attributes:

■ alias—Alias for the key.

■ key-pass—Password to access the key.

<encryption-key> Points to the key required for decrypting the message. This
element has these attributes:

■ alias—Alias for the key.

■ key-pass—Password to access the key.

The <encryption-key> element is configured as part of the
alias attribute of the <recipient-key> subelement of the
<encrypt> element. For more information on the alias
attribute and <recipient-key>, see Table 2–19, " Subelements
of the <encrypt> Element" on page 2-18.

Security Configuration Elements

Configuring Web Service Security 2-7

Security Elements for Inbound Messages
The following sections describe the security elements that can be set for inbound
messages.

■ Username Token Elements for Inbound Messages

■ X.509 Token Elements for Inbound Messages

■ SAML Token Elements for Inbound Messages

■ Signature Verification Elements for Inbound Messages

■ Decryption Elements for Inbound Messages

The inbound message section in the oracle-webservices.xml and <generated_
name>_Stub.xml deployment descriptors are delimited with <inbound> elements.
The <inbound> element encapsulates the security configuration policy with respect to
incoming messages. The <inbound> element can occur as a subelement of
<security> at the global, port, and operation level.

Inbound security defines the context-specific security policy for incoming messages. In
the case of a client, it corresponds to the security policy associated with receiving a
response. In the case of a service, it corresponds to the security policy associated with
receiving a request.

The <verify-username-token>, <verify-x509-token>, and
<verify-saml-token> elements are the authentication elements for inbound
messages. Authentication elements are optional and can be configured for the server
side. The Web service application can choose to allow a username token, an X.509
token, and a SAML token, in any combination.

A Web service client is not required to send an authentication token. If an
authentication token is required, only one can be sent. The user will be authenticated
based on the token(s) sent in the SOAP request.

Table 2–4 summarizes the security tokens that can be inserted into an inbound
message configuration.

Table 2–3 Nonce Configuration Settings

Element Name Description

<nonce-config> The nonce-config element enables you to configure the cache.

■ clock-skew—The amount of clock skew, in seconds, that
is allowed between the client and server if the creation time
is included in the username token. The default is 300
seconds.

■ cache-ttl (cache time to live)—Indicates how long, in
seconds, the nonces remain valid in the cache. Expired
nonces are removed from the cache. Default is 300 seconds.

Table 2–4 Authentication Elements for Inbound Messages

Element Name Description

<verify-username-token> Specifies the security policy for username tokens. See "Username
Token Elements for Inbound Messages" for more information on
this security token.

<verify-x509-token> Specifies the authentication policy with respect to X.509 tokens.
See "X.509 Token Elements for Inbound Messages" for more
information on this security token.

Security Configuration Elements

2-8 Web Services Security Guide

Username Token Elements for Inbound Messages
The <verify-username-token> element specifies the security policy for username
tokens. This is an optional subelement of the <inbound> element and can occur only
once within the element. This subelement has these attributes:

■ password-type—Type of password authentication: plaintext or digest.
Default is plaintext.

■ require-nonce—Specifies whether a nonce must be included in the username
token. This attribute is required for digest authentication. Default is false.

■ require-created—Specifies whether the creation time must be included in the
username token. This attribute can be used with either plain text or digest
password authentication. However, it must be set to true for digest
authentication. Default is false.

The <verify-username-token> element can also have an optional <property>
subelement. Table 2–5 describes the property element and its value.

X.509 Token Elements for Inbound Messages
The <verify-x509-token> element specifies the authentication policy with respect
to X.509 tokens. It is an optional subelement of the <inbound> element.

<verify-saml-token> Specifies whether the incoming SOAP message carrying a SAML
assertion should be verified. See "SAML Token Elements for
Inbound Messages" on page 2-9 for more information on this
security token.

Table 2–5 Subelements of the <verify-username-token> Element

Element Name Description

<property> Properties that can be set on the <verify-username-token>
element. The <property> subelement has this format:

<property name="property_name" value="property_
value"/>

OracleAS Web Services Security defines the following property on
<verify-username-token>.

■ username.token.allow.nopassword—The value of this
boolean property determines whether the Web service will
authenticate a username token without requiring a password.
This property is useful when the user is already authenticated
and trusted, and only its existence in the identity store needs to
be verified.

The following example allows the Web service to accept a
username token without an accompanying password.

<property name="username.token.allow.nopassword"
value="true"/>

This property can be set in the oracle-webservices.xml
deployment descriptor. There is no tool support for adding this
property; you must manually edit the file.

See "Configure the Service to Not Require a Password" on page 3-9 for
examples of how to use this property.

Table 2–4 (Cont.) Authentication Elements for Inbound Messages

Element Name Description

Security Configuration Elements

Configuring Web Service Security 2-9

SAML Token Elements for Inbound Messages
The <verify-saml-token> element is an optional subelement of the <inbound>
element. It specifies whether the incoming SOAP message carrying a SAML assertion
should be verified.

Table 2–6 lists the subelements of the <verify-saml-token> element. All of the
subelements are optional.

Signature Verification Elements for Inbound Messages
The <verify-signature> element is an optional subelement of the <inbound>
element. It specifies the integrity or signature requirements of the receiver. These
requirements include the name of the signature verification algorithm and the message
parts to be verified. The <verify-signature> element occurs only once within the
<inbound> element. Table 2–7 describes the subelements of the
<verify-signature> element. All of the subelements are optional.

Table 2–6 Subelements of the <verify saml-token> Element

Element Name Description

<subject-confirmation-methods> This is an optional element for inbound policy. When used
as part of the inbound <verify-saml-token> policy, it
refers to the confirmation method used for propagating the
identity in the incoming SOAP message.

<confirmation-method> This is an optional element for the
<subject-confirmation-method>. The possible
values for <confirmation-method> are:

■ Sender-Vouches—(default) The incoming SAML
token must supply a sender-vouches confirmation
method and the reference to the token must be signed.

■ Sender-Vouches-Unsigned—The incoming SAML
token must supply a sender-vouches confirmation
method and the token must not be signed.

■ Holder-Of-Key—The incoming SAML token must
supply a holder-of-key confirmation method. The
assertion must have the public key of the user.

Table 2–7 Subelements of the <verify-signature> Element

Element Name Description

<signature-methods> Collection of <signature-method> elements. The
<signature-method> is used to specify the acceptable signing
algorithms. Algorithm names are specified using their short
names instead of URIs. The default value is RSA-SHA1.
Table 2–18, " Signature Algorithms and Short Names" on
page 2-17 lists the algorithm URIs and corresponding short
names that are recognized by Web service security.

<tbs-elements> List of elements that are expected to be signed in the incoming
request. This element has these attributes:

■ local-part—The actual element name.

■ name-space—The actual name space of the element in the
SOAP message. This attribute can be omitted if there is only
one element with this name in the namespace.

Security Configuration Elements

2-10 Web Services Security Guide

Decryption Elements for Inbound Messages
The <decrypt> element is an optional subelement of the <inbound> element. It
specifies the confidentiality requirements of the receiver. The <decrypt> element
occurs only once within an <inbound> element.

Table 2–8 describes the elements that are available to set decryption details for
inbound messages. All of the subelements are optional.

<verify-timestamp> Verifies the timestamp in the incoming SOAP message. (This
timestamp is configured with the <add-timestamp> element
described in Table 2–17). The created attribute is used to
indicate whether a timestamp was created for the message.
Incoming SOAP messages with a timestamp that has expired are
rejected by the server.

■ expiry—Expiration time, in seconds, on the signature.
Default is 28800 seconds (8 hours).

■ created—Indicates whether the timestamp includes the
creation time. Default is true.

<property> Properties that can be set on the <verify-signature>
element. The <property> subelement has this format:

<property name="property_name" value="property_
value"/>

OracleAS Web Services Security defines the following property
on <verify-signature>.

■ clock-skew—Configures the clock difference between the
client and the server. The client that is sending the SOAP
message (signing and adding a timestamp) and the Web
service application (receiving the SOAP message and
verifying the signature and the timestamp) may be running
on two separate machines. If the clocks on the machines are
not in sync, then clock-skew is configured to sync-up the
time between them.

The default value of clock-skew is 0 and the units are
measured in milliseconds. The following example sets the
clock skew to three seconds.

<property name="clock-skew" value="3000"/>

This property can be set in either the
oracle-webservices.xml or <generated_name>_
Stub.xml deployment descriptor. There is no tool support
for adding this property; you must manually edit the files.

Table 2–7 (Cont.) Subelements of the <verify-signature> Element

Element Name Description

Security Configuration Elements

Configuring Web Service Security 2-11

Table 2–8 Subelements of the <decrypt> Element

Element Name Description

<encryption-methods> Collection of <encryption-method> elements. Encryption
methods as part of the <decrypt> element refer to the
encryption methods accepted by the Web service application. A
Web service application can accept multiple encryption
methods. If the incoming SOAP message is encrypted the server
interceptor checks the confidentiality policy and rejects the
request if the encryption algorithms do not match. The valid
options are:

■ 3DES

■ AES-128 (default)

■ AES-256

Table 2–9 lists the encryption algorithm URIs and corresponding
short names recognized by Web services security.

Table 2–19 on page 2-18 provides more information on the
<encryption-method> element.

<keytransport-methods> Collection of <keytransport-method> elements. Each
<keytransport-method> specifies the acceptable key
transport algorithms. Multiple <keytransport-method>
elements can be specified for inbound messages. Algorithm
names are specified using their short names instead of URIs.
Acceptable values are:

■ RSA-1_5 (default)

■ RSA-OAEP-MGF1P

Table 2–10 lists the algorithm URIs and corresponding short
names recognized by Web services security.

<tbe-elements> Collection of <tbe-element> elements. Indicates the elements
that are encrypted in the incoming SOAP message.

■ name-space—The actual name space of the element in the
SOAP message. This attribute can be omitted if there is only
one element with this name in the namespace.

■ local-part—The actual element name.

■ mode—An additional attribute that is used to specify
whether the ELEMENT or the CONTENT is expected to be
encrypted. If mode is ELEMENT then the entire element is
expected to be encrypted, if mode is CONTENT then the
content of the element is expected to be encrypted. Default
is CONTENT.

Security Configuration Elements

2-12 Web Services Security Guide

Table 2–9 lists the URIs of the encryption algorithms recognized by Web service
security and their short names.

Table 2–10 lists the URIs of the key transport algorithms recognized by Web service
security and their short names.

Security Elements for Outbound Messages
The following sections describe the security elements that can be set for outbound
messages.

■ Username Token Elements for Outbound Messages

■ X.509 Token Elements for Outbound Messages

■ SAML Token Elements for Outbound Messages

<property> Properties that can be set on the <decrypt> element. The
<property> subelement has this format:

<property name="property_name" value="property_
value"/>

OracleAS Web Services Security defines the following property
on <decrypt>.

■ oracle.security.wss.decryptusingski

When set to true, the subject key identifier in the
encrypted key tag is resolved to a private key in the
keystore. By default, this property is set to false. For
example:

<property
name="oracle.security.wss.decryptusingski"
value="true"/>

Note: This property can be set in either the
oracle-webservices.xml or <generated_name>_
Stub.xml deployment descriptor. There is no tool support
for adding this property; you must manually edit the files.

The decryption key alias and password is stored in the
system-jazn-data.xml file using password indirection.
See "Replacing Cleartext Passwords by Using Password
Indirection" on page 3-6 for more information on the
password indirection mechanism.

Table 2–9 URIs and Short Names for Encryption Algorithms

URI of the Algorithm Short Name

http://www.w3.org/2001/04/xmlenc#3des-cbc 3DES

http://www.w3.org/2001/04/xmlenc#aes128-cbc AES-128 (default)

http://www.w3.org/2001/04/xmlenc#aes256-cbc AES-256

Table 2–10 URIs and Short Names for Key Transport Algorithms

URI of the Algorithm Short Name

http://www.w3.org/2001/04/xmlenc#rsa-1_5 RSA-1_5 (default)

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p RSA-OAEP-MGF1P

Table 2–8 (Cont.) Subelements of the <decrypt> Element

Element Name Description

Security Configuration Elements

Configuring Web Service Security 2-13

■ Elements for Retrieving SAML Tokens from an External SAML Authority

■ Signature Elements for Outbound Messages

■ Encryption Elements for Outbound Messages

The outbound message section in the oracle-webservices.xml and
<generated_name>_Stub.xml deployment descriptors are delimited with
<outbound> elements. Outbound security defines the context-specific security policy
for the outgoing messages. In the case of a client, it corresponds to the security policy
associated with sending a request. In the case of a service, it corresponds to the
security policy associated with sending a response.

Example 2–11 summarizes the security tokens that can be inserted into an outbound
message configuration.

Username Token Elements for Outbound Messages
The <username-token> element is an optional element of the outbound policy. This
element specifies the username token that must be inserted into the security header
block. Only one instance of the element is permitted.

A client can pass a username and password by using a callback handler. The callback
handler is a user-defined class that handles
javax.security.auth.Namecallback and Passwordcallback. The name of
the class can be specified in the <username-token> element's cbhandler-name
attribute.

If this element is not present, the client runtime can build the username token using
the Stub.USERNAME_PROPERTY and Stub.PASSWORD_PROPERTY supported by
JAX-RPC. The Web service client can either use the Stub properties or use a static
configuration by specifying the user name and password in a deployment descriptor.
For more information on using the Stub properties, see "Pass the User Name and
Password with Stub Properties" on page 3-13.

Table 2–12 describes the <username-token> attributes. All of the attributes are
optional.

Table 2–11 Outbound Security Tokens

Element Name Description

<username-token> Specifies a username token that must be inserted into the
security header block. See "Username Token Elements for
Outbound Messages" on page 2-13 for more information on this
security token.

<x509-token> If this element is present, an X.509 certificate is inserted into the
security header block. See "X.509 Token Elements for Outbound
Messages" on page 2-14.

<saml-token> The client interceptor uses the contents of this element to create
the SAML assertion for the user identity. See "SAML Token
Elements for Outbound Messages" on page 2-15 for more
information on this security token.

<signature> Specifies the algorithm for signing outgoing messages or
individual message elements. See "Signature Elements for
Outbound Messages" on page 2-17 for more information on this
security token.

<encryption> Specifies the encryption algorithm, key transport algorithm, and
recipient key for encrypting outgoing messages or message
elements. See "Encryption Elements for Outbound Messages" on
page 2-18 for more information on this security token.

Security Configuration Elements

2-14 Web Services Security Guide

X.509 Token Elements for Outbound Messages
The <x509-token> element is an optional element of the <outbound> configuration.
This element indicates that an X.509 signing certificate will be inserted into the request.
A direct reference to the X.509 certificate (signer's certificate) is added. You must have
the signature key configured for this configuration to work.

Instead of passing a certificate (using direct reference), you could also pass the subject
key identifier of the certificate. "Using the Subject Key Identifier for Signing" on
page 3-43 provides more information on how to pass the subject key identifier.

Table 2–13 describes the subelement of the <x509-token> element.

Table 2–12 Attributes of the <username-token> Element

Attribute Name Description

name The username to be inserted into the token.

password The actual password of the user.

password-type Type of password: plaintext or digest. Default is
plaintext. Note that if you set password-type to digest,
then add-nonce and add-created will be set to true by
default.

cbhandler-name The name of the callback handler that inserts the username
token into the SOAP message. The callback handler is a
user-defined callback handler class that handles NameCallback
and PasswordCallback. The value of the cbhandler-name
attribute is the name of the user-defined implementation class.

add-nonce Specifies whether a nonce should be added to the request. For
digest authentication, this attribute is required and must be set
to true. This attribute is optional for plain text password
authentication. The default value is false.

add-created Specifies whether a creation time should be added to the
request. For digest password authentication, this attribute is
required and must be set to true. This attribute is optional for
plain text password authentication. The default value is false.

Table 2–13 Subelement of the <x509-token> Element

Element Name Description

<property> Properties that can be set on the <x509-token> element. The
<property> subelement has this format:

<property name="property_name" value="property_
value"/>

OracleAS Web Services Security defines the following property
on <x509-token>.

■ oracle.security.wss.signX509token—This
property is applicable only when the <x509-token> is
used with signature <signature>. If set to true (default),
the Binary Security Token (BST) that contains the X.509
token will be signed. If set to false, the Binary Security
Token will not be signed. For example:

<property
name="oracle.security.wss.signX509token"
value="false"/>

Security Configuration Elements

Configuring Web Service Security 2-15

SAML Token Elements for Outbound Messages
The <saml-token> element is an optional element of the <outbound> policy. The
client interceptor refers to the <saml-token> element in the outbound policy for
creating the actual SAML assertion for the user identity. "How to Configure a SAML
Token for the Client-Side" on page 3-26 provides information on how to provide
dynamic and static configuration of SAML tokens. Table 2–14 describes the attributes
of the <saml-token> element. All of the attributes are optional.

Table 2–15 describes the subelements of the <saml-token> element. All of the
subelements are optional.

Table 2–14 Attributes of the <saml-token> Element

Attribute Description

name (required) You can choose a name for the assertion subject by
providing a value for the name attribute of the <saml-token>
element. The name attribute has the following format:

[realm-name/]name

The name represents the name of the assertion. The assertion
name can be prefixed with the assertion's realm-name. If the
realm name is already present, then it is set as the name
qualifier.

The name attribute contains the actual name of the user identity
that is being propagated. For example, name="jdoe". The
value of the name attribute is inserted in the
<name-identifier> element of the SAML assertion. The
default name format for the name identifier is UNSPECIFIED
(see name-format).

name-format Specifies the format of the assertion subject name. This element
can have any of the following values:

■ UNSPECIFIED (default)— can be any value.

■ EMAIL—an email address, such as abc@myCompany.com.

■ X509-SUBJECT-NAME—an X.509 subject name (an X.509
subject name translates to DN, a distinguished name). For
example: CN="abc", OU="Security", O="Oracle",
C="US".

■ WINDOWS-DOMAIN-NAME—the name of a Windows
domain. For example: abc.

cbhandler-name Identifies the name of the user-defined class that will handle the
SAMLTokenCallback call back handler. This class is used to
pass SAML assertions to the interceptor.

The callback handler must be able to handle SAML token
callback. "Writing a SAML Token Callback Handler" on
page 3-30 provides more information on how to write this
handler.

issuer-name Used to get the SAML assertion issuer name. The default value
is www.oracle.com. It is strongly recommended that you
change this to the name of your own assertion issuer.

Security Configuration Elements

2-16 Web Services Security Guide

Elements for Retrieving SAML Tokens from an External SAML Authority
The <saml-authority> element is an optional subelement of <saml-token>. A
configuration of the <saml-authority> element and its attributes allow you to
retrieve a SAML token from an external SAML authority by issuing a SAMLP request.
"Retrieving a SAML Token from an External SAML Authority" on page 3-31 provides
more information on configuring this element. Table 2–16 describes the attributes of
<saml-authority>.

Table 2–15 Subelements of the <saml-token> Element

Element Name Description

<subject-confirmation-meth
od>

The supported confirmation methods are Sender-Vouches
(default), Sender-Vouches-Unsigned, and Holder-Of-Key.

"Configuring Confirmation Methods" on page 3-28 provides
more information on confirmation methods and on how to
configure this element.

<attribute> The <attribute> element has a mandatory path attribute that
points to a properties file. The attribute statement is created from
the attributes listed in this file.

This properties file contains one or more attribute name/value
pairs for asserting a user's identity. The attribute name can be
prefixed with an optional namespace. For example:

[attribute-name-space/]attribute-name=value

The following is an example of a value that can appear in an
<attribute> subelement.

email=abc@myCompany.com

For more information on using the <attribute> element, see
"Configuring Authentication and Attributes Statements" on
page 3-28.

<saml-authority> Enables you to retrieve a SAML token from an external SAML
authority. For more information, see "Elements for Retrieving
SAML Tokens from an External SAML Authority".

Table 2–16 Attributes of the <saml-authority> Element

Name Description

<endpoint-address> (Required) Specifies the SAML Responder URL.

<auth-user-name> Specifies the username that is used to provide authentication to
the SAML authority. This attribute is required for the
Holder-Of-Key confirmation method, optional otherwise. For
the Holder-Of-Key subject confirmation method, the SAML
assertion token is requested for the user identified by
auth-user-name. For the Sender-Vouches subject
confirmation method, the SAML assertion token is requested for
the user identified by the name attribute of <saml-token>
element.

<auth-password> (Optional) Specifies the password that is used to provide
authentication to the SAML authority. The auth-user-name
and auth-password elements are required if
password-based-mechanism is used for authentication.

Security Configuration Elements

Configuring Web Service Security 2-17

Signature Elements for Outbound Messages
Table 2–17 describes the subelements of the <signature> element. The subelements
describe the options that are available for signing outbound messages.

Table 2–18 lists the signature algorithms recognized by Web service security and their
associated short names.

<require-signature> (Optional) If this boolean attribute is true, then the SAMLP
request is signed with the client's signature key. In addition, the
client-side keystore and signature keys should be configured.
The default value for this element is false.

See "Keystore Elements" on page 2-5 and "Signature and
Encryption Key Elements" on page 2-6 for more information on
configuring the keystore and the signature key.

Table 2–17 Subelements of the <signature> Element

Element Name Description

<signature-methods> Collection of <signature-method> elements. The
<signature-method> element specifies the acceptable
signature algorithm. Algorithm names are specified using their
short names instead of URIs. The default value is RSA-SHA1.

Table 2–18, " Signature Algorithms and Short Names" on
page 2-17 lists the algorithm URIs and corresponding short
names that are recognized by OracleAS Web Services Security.

<tbs-elements> Collection of <tbs-element> elements. Each <tbs-element>
indicates the element to be signed. This element has these
attributes:

■ name-space—The actual name space of the element in the
SOAP message. This attribute can be omitted if there is only
one element with this name in the namespace. This attribute
can be omitted if all of the elements in the SOAP message
share the same name space.

■ local-part—The actual element name.

<add-timestamp> Adds a timestamp to the outbound SOAP message. (This
timestamp is verified by setting the <verify-timestamp>
element described in Table 2–7 on page 2-9).

■ expiry—Expiration time, in seconds, until the signature
expires. Default is 28800 seconds (8 hours).

■ created—Indicates whether a creation time is inserted into
the timestamp. Default is true.

Table 2–18 Signature Algorithms and Short Names

Signature Algorithm Short Name

http://www.w3.org/2000/09/xmldsig#rsa-sha1 RSA-SHA1 (default)

http://www.w3.org/2001/04/xmldsig-more#rsa-md5 RSA-MD5

http://www.w3.org/2000/09/xmldsig#dsa-sha1 DSA-SHA1

Table 2–16 (Cont.) Attributes of the <saml-authority> Element

Name Description

Security Configuration Elements

2-18 Web Services Security Guide

Encryption Elements for Outbound Messages
The <encrypt> element is an optional subelement of the <outbound> element. It
specifies confidentiality requirements of the sender. The <encrypt> element can
occur only once within an <outbound> element.

Table 2–19 describes the encryption elements that are available for outbound
messages.

Table 2–19 Subelements of the <encrypt> Element

Element Name Description

<encryption-method> Specifies the encryption method to be used for encrypting the
elements of the outbound SOAP message. Only one encryption
method can be listed under the <encrypt> element. The
following methods are valid.

■ 3DES

■ AES-128 (default)

■ AES-256

Table 2–9 lists the URIs and corresponding short names for the
encryption algorithms recognized by Web services security.

<keytransport-method> A <keytransport-method> identifies the key transport
algorithm. Only one keytransport method can be specified for
outbound messages. Algorithm names are specified using their
short names instead of URIs. The possible values for this
element are:

■ RSA-1_5 (default)

■ RSA-OAEP-MGF1P

Table 2–10 lists the URIs and corresponding short names of the
algorithms recognized by Web services security.

<tbe-elements> Collection of <tbe-element> elements. Each <tbe-element>
indicates an element to be encrypted. This element has these
attributes:

■ name-space—The actual name space of the element in the
SOAP message. This attribute can be omitted if there is only
one element with this name in the namespace.

■ local-part—The actual name of the element.

■ mode—An additional attribute that is used to specify
whether the ELEMENT or the CONTENT is encrypted. If the
value of mode is ELEMENT then the entire element is
encrypted, if the value of mode is CONTENT then the content
of the element is encrypted. Default is CONTENT.

<recipient-key> The key alias of the recipient, which is used to encrypt the data
encryption key. The data encryption key is the generated
symmetric key that is used to encrypt the actual data. The data
encryption key itself is also encrypted using the recipient's
public key.

The recipient key may or may not have a key usage extension. If
the recipient key does have a key usage extension, then it must
be of the type KEY_ENCIPHERMENT. If it does not, the
encryption request is rejected.

This element has these attributes:

■ alias—An alias for the key.

■ key-pass—An optional password attribute to access the
key.

Security Configuration Elements

Configuring Web Service Security 2-19

<use-request-cert> The Web service client has sent a signed SOAP message and the
Web service application has successfully verified the signature.
When the Web service application sends a response back to the
same client, it can choose to encrypt the response with the
signature certificate that the client sent in the first message
exchange.

The use-request-cert element is configured as part of a Web
service application's outbound encryption policy. Note that if the
server interceptor is unable to find the signature certificate (that
is, the client has not sent a signed SOAP message or the
signature verification failed) then the Web service application
will reject the encryption request.

Table 2–19 (Cont.) Subelements of the <encrypt> Element

Element Name Description

Security Configuration Elements

2-20 Web Services Security Guide

Administering Web Services Security 3-1

3
Administering Web Services Security

This chapter describes how to configure message-level security for SOAP messages.
This includes configuring keystores, security tokens, signature, and encryption. The
terminology used in this chapter, is described in "Web Service Security Concepts" on
page 1-2.

This chapter contains the following sections.

■ Using Keystores

■ Integrating Security Tokens with Security Providers

■ Using a Username Token

■ Using an X.509 Token

■ Using a SAML Token

■ Configuring XML Encryption

■ Configuring XML Signature

■ Combining Tokens, Encryption, and Signature in a Configuration

Using Keystores
This section describes how to create and configure a keystore that can be used with
Web service security. It also describes how you can enhance the protection of your
keystore, signature key, and encryption key passwords by employing password
indirection.

■ Creating a Keystore

■ Configuring a Keystore

■ Replacing Cleartext Passwords by Using Password Indirection

Using Keystores

3-2 Web Services Security Guide

Creating a Keystore
A keystore is a file that provides information about available public and private keys.
Keys are used for a variety of purposes, including authentication and data integrity.
For example:

■ to sign data, you must have the signer's private key

■ to verify a signature, you must have a trusted CA certificate and the public key
that matches the private key

■ to encrypt data, you must have the recipient's public key

■ to decrypt data, you must have the private key which corresponds to the public
key

These trusted certificates and public and private keys are stored in the keystore. Oracle
Application Server Web Services Security supports a variety of keystores, including
Oracle Wallet, PKCS12, and Sun Microsystem's Java Key Store (JKS) format. The
following sections describe where you can obtain trusted certificates and how to create
and use these keystores.

■ How to Obtain a Trusted Certificate

■ How to Create and Use a Java Key Store

■ How to Create and Use an Oracle Wallet

How to Obtain a Trusted Certificate
You can obtain a certificate from a Certificate Authority (CA), such as Verisign or
Entrust, and include them in the keystore. To get the certificate, you must create a
Certificate Request and submit it to the CA. The CA will authenticate the certificate
requestor and create a digital certificate based on the request. You must then include
the certificate in the wallet.

How to Create and Use a Java Key Store
The Java Key Store (JKS) is the proprietary keystore format defined by Sun
Microsystems. To create and manage the keys and certificates in the JKS, use the

Note: This section assumes that you are familiar with public key
infrastructure concepts such as trust stores, certificates, and public and
private keys. If you are not, the following books and Web sites provide
an overview of these topics.

■ Oracle Application Server Certificate Authority Administrator’s Guide

http://download-east.oracle.com/docs/cd/B14099_
15/idmanage.htm

■ Oracle Security Developer Tools (OSDT) Reference

http://download-east.oracle.com/docs/cd/B14099_
15/idmanage.htm

■ Java Security Overview

http://java.sun.com/developer/technicalArticles/Securi
ty/whitepaper/index.html

■ J2SE Security and the Java Platform

http://java.sun.com/security/index.jsp

Using Keystores

Administering Web Services Security 3-3

keytool utility that is distributed with the Java JDK. You can use the keytool utility
to perform the following tasks:

■ create public and private key pairs, designate public keys belonging to other
parties as trusted, and manage your keystore.

■ issue certificate requests to the appropriate Certification Authority (CA), and
import the certificates which they return.

■ administer your own public and private key pairs and associated certificates. This
enables you to use your own keys and certificates to authenticate yourself to other
users and services. This process is known as "self-authentication". You can also use
your own keys and certificates for data integrity and authentication services, using
digital signatures.

■ cache the public keys of your communicating peers. The keys are cached in the
form of certificates.

How to Create Private Keys and Load Trusted Certificates The following section provides an
outline of how to create and manage the JKS with the keytool utility. It describes
how to create a keystore and to load private keys and trusted CA certificates. You can
find more detailed information on the commands and arguments for the keytool
utility at this Web site.

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.htm
l

1. Create a new private key and self-signed certificate.

Use the genKey command to create a private key. It will create a new private key
if one does not exist. The following command generates an RSA key, with
RSA-SHA1 as the signature algorithm, with the alias test in the test.jks
keystore.

 keytool -genkey -alias test -keyalg "RSA" -sigalg
"SHA1withRSA" -dname "CN=test, C=US" -keypass test123
-keystore test.jks -storepass test123

By default, if you omit the algorithm to generate the key pair (keyalg), then the
genKey command generates a DSA key. If you omit the signature algorithm
(sigalg) argument, then the signature algorithm is derived based on the value of
keyalg.

Make sure to use the correct values for the keyalg and sigalg arguments, based
on your signature configuration. If the underlying algorithm to generate the key
pair (keyalg) is DSA, then the default signature algorithm (sigalg)
SHA1withDSA is used. If the underlying keyalg is RSA, then the default sigalg
RSAwithMD5 is used.

2. Display the keystore.

The following command displays the contents of the keystore. It will prompt you
for the keystore password.

keytool -list -v -keystore test.jks

3. Import a trusted CA certificate in the keystore.

Use the -import command to import the certificate. The following command
imports a trusted CA certificate into the test.jks keystore. It will create a new
keystore if one does not exist.

Using Keystores

3-4 Web Services Security Guide

keytool -import -alias aliasfortrustedcacert -trustcacerts
-file trustedcafilename -keystore test.jks -storepass test123

4. Generate a certificate request.

Use the -certreq command to generate the request. The following command
generates a certificate request for the test alias. The CA will return a certificate or
a certificate chain.

keytool -certreq -alias test -sigalg "RSAwithSHA1" -file
certreq_file -keypass test123 -storetype jks -keystore
test.jks -storepass test123

5. Replace the self-signed certificate with the trusted CA certificate.

You must replace the existing self-signed certificate with the certificate from the
CA. To do this, use the -import command. The following command replaces the
trusted CA certificate in the test.jks keystore.

keytool -import -alias test -file trustedcafilename -keystore
test.jks -storepass test123

How to Create and Use an Oracle Wallet
The Oracle Wallet acts as a keystore for storing and managing public and private keys,
and X.509 certificates. To create a wallet, Oracle provides the orapki utility in the
ORACLE_HOME/bin directory.

This section provides an outline of how to create and manage the Oracle Wallet with
the orapki utility. You can find more information on the Oracle Wallet at this Web
site.

http://www.oracle.com/technology/products/oid/oidhtml/sec_idm_
training/html_masters/basics06.htm

You can find more information on using the orapki utility for creating and managing
the Oracle Wallet in the Oracle Database Advanced Security Administrator's Guide.

■ "How to Create an Oracle Wallet with Self-Signed Certificates" describes how to
create an Oracle Wallet, add a self-signed certificate, and export it.

■ "How to Create an Oracle Wallet and User Certificates" describes how to work
with certificate requests and replies. Steps 1 to 3 describe how to create and export
a certificate request.

How to Create an Oracle Wallet with Self-Signed Certificates The following steps illustrate
creating an Oracle Wallet with a self-signed certificate, viewing the wallet, and
exporting the certificate.

1. Create a root Oracle Wallet.

orapki wallet create -wallet wallet_dir wallet_dir

This command creates the root Oracle Wallet in the wallet_dir directory. By
default, the wallet will be named ewallet.p12.

2. Add a root certificate to the Oracle Wallet.

orapki wallet add -wallet wallet_dir -dn 'CN=root_test,C=US'
-keysize 2048 -self_signed -validity 3650

This command adds a self-signed (root) certificate to the wallet. It creates a
self-signed certificate with a validity of 3650 days. The distinguished name of the
subject is CN=root_test,C=US. The key size for the certificate is 2048 bits.

Using Keystores

Administering Web Services Security 3-5

3. Export the self-signed certificate from the Oracle Wallet.

orapki wallet export -wallet wallet_dir -dn 'CN=root_
test,C=US' -cert b64certificate.txt

This command exports the self-signed certificate to the b64certificate.txt
file. Note that the distinguished name used is the same as in the previous step.

4. View the contents of the root Oracle Wallet.

orapki wallet display -wallet wallet_dir

The display command enables you to view the contents of the Oracle Wallet.

How to Create an Oracle Wallet and User Certificates The following steps illustrate creating
an Oracle Wallet, adding and exporting a certificate request, and then importing the
received certificate.

1. Create an Oracle Wallet with auto login enabled.

orapki wallet create -wallet server -auto_login

This command creates an Oracle Wallet at /private/user/server with auto
login enabled.

2. Add a certificate request to the Oracle Wallet.

orapki wallet add -wallet server -dn 'CN=server_test,C=US'
-keysize 2048

This command adds a certificate request to the wallet that was created. The
distinguished name of the subject is CN=server_test,C=US. The specified key
size is 2048 bits.

3. Export a certificate request from the Oracle Wallet.

orapki wallet export -wallet server -dn 'CN=server_test,
C=US' -request creq.txt

This command exports the certificate request to the specified file, creq.txt. Note
that the order of the distinguished name is reversed (when the certificate request
was created).

4. Create a signed certificate from the certificate request for testing purposes.

orapki cert create -wallet wallet_dir -request creq.txt -cert
cert.txt -validity 3650

This command creates a certificate, cert.txt with a validity of 3650 days. The
certificate is created from the certificate request generated in the preceding step.

5. View a certificate.

orapki cert display -cert cert.txt -complete

This command displays the certificate generated in the preceding step. The
-complete option enables you to display additional certificate information,
including the serial number and public key.

6. Add a trusted certificate to the Oracle wallet.

orapki wallet add -wallet server -trusted_cert -cert
b64certificate.txt

This command adds a trusted certificate, b64certificate.txt to the wallet.
You must add all trusted certificates in the certificate chain of a user certificate
before adding a user certificate.

Using Keystores

3-6 Web Services Security Guide

7. Add a user certificate to the Oracle wallet.

orapki wallet add -wallet server -user_cert -cert cert.txt

This command adds the user certificate, cert.txt to the wallet.

8. View the contents of the Oracle wallet.

orapki wallet display -wallet server

The display command enables you to view the contents of the Oracle Wallet.

Configuring a Keystore
Keystore, signature, and encryption keys can be configured at global or port level.
Oracle Web Service security implementation can be configured to use JKS or PKCS12
or Oracle Wallet.

■ Configuring Instance Keystores and Keys

■ Configuring Application Keystores and Keys

Configuring Instance Keystores and Keys
A global keystore and key setting apply to all Web service applications that are
deployed in a particular OC4J instance. "Keystore Elements" on page 2-5 provides
more information about the global keystore. To configure an instance level keystore
and keys use Application Server Control tool. For more information, see the topic
Viewing or Modifying the Instance Keystore and Identity Certificates in the Application
Server Control on-line help.

Configuring Application Keystores and Keys
You can use a keystore and keys for an Oracle Web service application which are
separate from those belonging to the instance. An application-specific keystore and
key setting takes precedence over instance-specific settings.

To configure an application-specific keystore and keys, add the <key-store>,
<signature-key>, and <encryption-key> elements under the <security>
element in the oracle-webservices.xml file for the server and <generated_name>_
Stub.xml for the client.

Example 3–1 illustrates a keystore configuration for a Web service application. The
name of the keystore is mykeystore.jks and the password to access it is abc.

Example 3–1 Configuration for a Web Service Application Keystore

 <security>
 <key-store store-pass="abc" path="./mykeystore.jks"/>
 <signature-key alias="signkey" key-pass="signkeypass"/>
 <encryption-key alias="enckey" key-pass="enckeypass"/>
 </security>

Replacing Cleartext Passwords by Using Password Indirection
Many OC4J components, such as the keystore, signature key, and encryption key,
require passwords for authentication. Embedding these passwords into deployment
descriptors, such as oracle-webservice.xml, poses a security risk, especially if the
permissions on the files allow them to be read by any user. To avoid this problem, you
can employ password indirection. Password indirection replaces cleartext passwords
with information necessary to look up the password in another location.

Integrating Security Tokens with Security Providers

Administering Web Services Security 3-7

Use Application Server Control administration console Instance/Application Keystore
settings screen to indirect the passwords for keystores and keys. This action
automatically adds a user entry with an indirect username and password to the
instance-specific ORACLE_
HOME/j2ee/instance/config/system-jazn-data.xml.

Manually Removing Stale Indirect User Accounts
In the current release, you must use Application Server Control to obfuscate the
keystore, signature key, and encryption key passwords. During obfuscation, an
indirect user account is created in the system-jazn-data.xml file.

If you undeploy the application, these indirect user accounts are not removed. You
must manually delete the them by using Application Server Control.

The following list describes how you can identify the names of indirect user accounts
for global-level and port-level keystores and keys.

■ For a port-level keystore, the name of the indirect user account is created with the
following format:

applicationName.portName.keystore.actual-keystore-name

For example:

my-security-sample.myport.keystore.myks.jks

■ For a global-level keystore, the name of the indirect user account is created with
the following format:

default.keystore.actual-keystore-name

For example:

default.keystore.myks.jks

■ For port-level keys, the name of the indirect user account is created with the
following format:

applicationName.portName.key.actual-key-alias

For example:

my-security-sample.myport.key.mysignkey

■ For global-level keys, the name of the indirect user account is created with the
following format:

default.key.actual-key-alias

For example:

default.key.mysignkey

Integrating Security Tokens with Security Providers
With Web Services Security, you can employ a username, X.509, or SAML token as
your security element. They can integrate with many of the security providers defined
under Oracle Containers for J2EE. See "Web Service Security Integration" on page 1-13

See Also:

See the Oracle Containers for J2EE Security Guide for more information
on creating and using indirect passwords.

Using a Username Token

3-8 Web Services Security Guide

for more information on how Web service security integrates with the OracleAS Web
Services Security framework.

Table 3–1 lists the security providers that are supported for the username, X.509, and
SAML tokens.

Using a Username Token
This section describes how to configure the username token for the server and for the
client. It also describes how to integrate the token with OC4J security providers.

■ How to Configure the Username Token for the Server Side

■ How to Configure the Username Token for the Client Side

■ Integrating Username Token with Security Providers (File-Based XML, LDAP,
Custom, Oracle Access Manager)

■ Preventing Replay Attacks with Nonces

How to Configure the Username Token for the Server Side
For the server, you configure the user name token in the oracle-webservices.xml
deployment descriptor. Configuring the username token for the server consists of the
following steps:

1. Configure the <verify-username-token> Element

2. Configure the Service to Not Require a Password (Optional)

3. Configure the Nonce Cache with a Digest Password (Optional)

This step is required for digest password only.

Configure the <verify-username-token> Element
To configure a user name token for the server side, use the
<verify-username-token> element. This element can occur only once as a
subelement of the <inbound> element. Attributes of the
<verify-username-token> element let you configure details about the password,
and whether a nonce or a creation time should be included in the token.

Details about the password are specified in the password-type attribute. The
password can be designated as either plaintext or digest. Plaintext indicates
that the token will expect a password that is in unencrypted, human-readable form.

Table 3–1 Security Tokens and Providers Supported by Web Services Security

Token Name

File-Based
Security
Provider
(XML)

Oracle Identity
Management
(versions
10.1.2.0.x and
10.1.4)

External LDAP
Security
Provider

Custom
Security
Provider

Oracle Access
Manager
(versions 7.0.4
and 10.1.4)

Username token,
Plaintext password

YES YES YES YES YES

Username token,
Digest password

YES NO NO NO NO

X.509 token YES YES YES NO YES

SAML token YES YES YES, but must
configure
manually

NO YES

Using a Username Token

Administering Web Services Security 3-9

Digest indicates that the password is sent in digest form—not in clear text. That is, a
cryptographic checksum value has been calculated for the password that is sent with
the token. The purpose of the value is to ensure that the password has not been
tampered with. The recipient of the password, in this case the server, recomputes the
cryptographic checksum and compares it with the cryptographic checksum passed
with the password; if they match, it is probable that the password was not tampered
with during transmission.

If you choose to send a digest password, then you must choose whether a nonce or a
creation time should be included in the username token. The require-nonce
attribute specifies whether a nonce must be included in the username token. A nonce
is a random value that can be included in the username token to prevent replay
attacks. The server caches this value in order to compare it with the nonce included
with succeeding requests. Using a nonce ensures that the application generates a
different password digest at every invocation; two nonce digests will differ even if
they have identical password and time created values.

The require-created attribute specifies whether the token's creation time must be
included in the username token. This can also be used to prevent replay attacks.

Example 3–2 illustrates a sample username token configuration.

Example 3–2 Username Token Configuration for the Server Side

 ...
 <inbound>
 <verify-username-token/>
 </inbound>
 ...

Configure the Service to Not Require a Password
You can configure the Web service so that it will authenticate a username token
without requiring a password. By not requiring a password, interoperability with
other vendors is enhanced.

To allow the service to authenticate the token without a password, OracleAS Web
Services provides the boolean username.token.allow.nopassword property as a
<property> subelement of the <verify-username-token> element.

For example, you can enter the following configuration in the
oracle-webservices.xml file to allow the service to authenticate a username
token without requiring a password.

...
 <inbound>
 <verify-username-token>
 <property name="username.token.allow.nopassword" value="true"/>
</verify-username-token>
 </inbound>
...

See Also:

■ "Preventing Replay Attacks with Nonces" on page 3-16 provides
more information on how nonces can be used to help prevent
replay attacks.

■ The <verify-username-token> and its attributes are listed in
Table 2–4 on page 2-7.

Using a Username Token

3-10 Web Services Security Guide

If a client sends a username token without a password to a service with this
configuration, it will be accepted. The following is an example of a client configuration
for a username token that does not declare a password.

..
 <outbound>
 <username-token name="oc4jadmin" add-nonce="true" add-created="true"/>
 </outbound>
...

Configure the Nonce Cache with a Digest Password
The nonce cache can be statically configured in the javacache.xml file (ORACLE_
HOME/j2ee/home/config/javacache.xml). The OracleAS Web Services runtime
uses this file to configure the Java Object Cache at runtime. You can configure the
nonce cache by editing the values for the <max-size> and <max-objects>
elements in this file.

The <max-size> element specifies the maximum size of the memory, in megabytes,
available to the Java Object Cache. The <max-objects> element specifies the
maximum number of in-memory objects that are allowed in the cache. The count does
not include group objects, or objects that have been spooled to disk and are not
currently in memory.

Example 3–3 illustrates a sample nonce cache configuration in the javacache.xml
file. The nonce cache is configured to hold a maximum of 2000 objects and grow up to
512 kilobytes in size.

Example 3–3 Sample Nonce Cache Configuration (javacache.xml)

<?xml version = '1.0' encoding = 'UTF-8'?>
<cache-configuration xmlns="http://www.oracle.com/oracle/ias/cache/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <max-objects>
 20000
 </max-objects>
 <max-size>
 512
 </max-size>
</cache-configuration>

Tools for Configuring the Username Token for the Server
You can use the following tools to configure the username token for the server.

See Also:

For more information on the
username.token.allow.nopassword property, see Table 2–5,
" Subelements of the <verify-username-token> Element" on page 2-8.

See Also:

■ "Preventing Replay Attacks with Nonces" on page 3-16 provides
more information on how nonces can be used to help prevent
replay attacks.

■ For more information on the javacache.xml file, see "Java
Object Cache" in the Oracle Containers for J2EE Services Guide.

Using a Username Token

Administering Web Services Security 3-11

Application Server Control You can configure the username token in the Inbound Policies
Authentication Page. For more information, see the context-sensitive help for this page
in the Application Server Control online help.

Oracle JDeveloper Authentication is set on the Authentication page of the Secure Web
Services wizard or the Web Services Editor. For more information, see the topic Setting
Authentication for Web Services in the Oracle JDeveloper on-line help.

WebServicesAssembler tool You can use this tool to assemble a security configuration
into your Web service. To do this, follow these general steps:

1. Include a configuration for the username token in the
oracle-webservices.xml deployment descriptor.

2. Use the ddFileName argument to specify this file as input to the appropriate Web
service assembly command.

For more information on the ddFileName argument and assembling Web services, see
"Using WebServicesAssembler" in the Oracle Application Server Web Services Developer’s
Guide.

How to Configure the Username Token for the Client Side
For the client, you configure the username token in the <generated_name>_
Stub.xml deployment descriptor. Configuring the username token for the client
consists of the following steps:

1. Configure the <username-token> Element

2. Pass the Username and Password with a Callback Handler (Optional)

3. Pass the User Name and Password with Stub Properties (Optional)

Configure the <username-token> Element
The <username-token> element specifies the username token that must be inserted
into the security header block. Providing appropriate values for the name and
password attributes allow the message to access the service.

Adding a nonce with the add-nonce attribute and a request creation time with the
add-created attribute to the token can provide additional security. If you choose a
digest password, then these attributes must be present and set to true. These
attributes are optional for plain text password.

Example 3–4 illustrates a sample username token configuration for the server.

Example 3–4 Username Token Configuration for the Client Side

 ...
 <outbound>
 <username-token name="SCOTT" password="TIGER"/>
 </outbound>
 ...

Pass the Username and Password with a Callback Handler
A callback handler is a javax.security.auth.callback.CallbackHandler
instance that allows a login module to interact with a user to obtain login information.
Callback handlers are defined in the Java Authentication and Authorization Service
(JAAS) package which enables applications to authenticate and enforce access controls
upon users.

Using a Username Token

3-12 Web Services Security Guide

There are three types of callback handlers, each represented by a class in the
javax.security.auth.callback package:

■ NameCallback—a callback handler to handle a user name

■ PasswordCallback—a callback handler to handle a password

■ TextInputCallback—a callback handler to handle any text field in a login form
other than a user name or password field

To dynamically pass the username and password to the service, the client can use a
callback handler. You will typically write your own callback handler class that
implements one or more of the classes in the callback package. Then, use the
<username-token> element's cbhandler-name attribute to specify the name of the
handler class.

the Example 3–5 illustrates a fragment of the user-defined
UsernameTokenCallbackHandler callback handler implementation. This callback
handler handles javax.security.auth.callback.Namecallback and
Passwordcallback to pass the username and password.

Example 3–5 Callback Handler for a Username Token

...
package oracle.ws.wssecurity.usernametoken;

...

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.TextOutputCallback;

...

public class UsernameTokenCallbackHandler implements CallbackHandler {

 Callback c = null;

 public void handle(Callback[] callbacks) {
 try {
 if (callbacks == null) {
 return;
 }

 for (int i = 0; i < callbacks.length; i++) {
 c = callbacks[i];

 if (c instanceof NameCallback) {
 NameCallback nc = (NameCallback)c;
 nc.setName("name");

 } else if (callbacks[i] instanceof PasswordCallback) {
 PasswordCallback pc =

See Also:

The Oracle Containers for J2EE Security Guide provides more
information on callback handlers.

Using a Username Token

Administering Web Services Security 3-13

(PasswordCallback)callbacks[i];
 pc.setPassword("password".toCharArray());
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Example 3–6 illustrates the cbhandler-name attribute in the <username-token>
element configured to use the
oracle.ws.wssecurity.usernametoken.UsernameTokenCallbackHandler
callback handler defined in the previous example.

Example 3–6 Configuration for the cbhandler-name Attribute

...
 <outbound>
 <username-token
cbhandler-name="oracle.ws.wssecurity.usernametoken.UsernameTokenCallbackHandler"/>
 </outbound>
...

Pass the User Name and Password with Stub Properties
If you do not include the <username-token> attributes name and password in your
configuration, then the client runtime can dynamically build the username token using
the Stub.USERNAME_PROPERTY and Stub.PASSWORD_PROPERTY properties
supported by JAX-RPC. For more information on Stub properties, see "Username
Token Elements for Outbound Messages" on page 2-13.

Example 3–7 illustrates client code that uses Stub.USERNAME_PROPERTY and
Stub.PASSWORD_PROPERTY to call the Web service with the username oc4jadmin
and password welcome.

Example 3–7 Using Stub Properties to Access a Web Service

...
public void UserNameWithSystemProperties() throws Exception {
 // Call the service with Stub property username/password
 ((Stub) stub)._setProperty(Stub.USERNAME_PROPERTY, "oc4jadmin");
 ((Stub) stub)._setProperty(Stub.PASSWORD_PROPERTY, "welcome");
String response = stub.helloUser(MESSAGE);
System.out.println("Response: ["+response+"]");
...

Tools for Configuring the Username Token for the Client
You can use the following tools to configure the username token for the client.

Oracle JDeveloper Authentication is set on the Authentication page of the Secure Web
Services wizard or the Web Services Editor. For more information, see the topic Setting
Authentication for Web Services in the Oracle JDeveloper on-line help.

WebServicesAssembler tool You can use this tool to assemble a security configuration
into your Web service client proxy. To do this, follow these general steps:

Using a Username Token

3-14 Web Services Security Guide

1. Include a configuration for the username token in the <generated_name>_
Stub.xml deployment descriptor.

2. Use the ddFileName argument to specify this file as input to the
WebServicesAssembler genProxy command.

For more information on the ddFileName argument and assembling Web service
clients, see "Assembling a J2SE Web Service Client" in the Oracle Application Server Web
Services Developer’s Guide.

Integrating Username Token with Security Providers (File-Based XML, LDAP, Custom,
Oracle Access Manager)

Table 3–1 on page 3-8 provides a summary of the security providers that can be used
with the username token. All of the security Providers that are available for the
username token can be configured by using Application Server Control.

You should configure OC4J with security providers before you configure Web service
security. Table 3–2 indicates where you can find additional information on configuring
the security providers that are available for the username token.

Using Oracle Access Manager as a Security Provider for Username Token
Authentication
If you have Oracle Access Manager as part of your deployment, then you can use it as
a security provider to integrate with the service’s access system. The Oracle Access
Manager security provider uses the CoreIDLoginModule login module, supplied by
Oracle. The CoreIDLoginModule is defined in the ORACLE_
HOME/j2ee/instance/config/system-jazn-data.xml file.

The login module is configured for each application.

Table 3–2 Security Providers that can be Used with the Username Token

For this Security Provider type See this resource for more information

File-based Security Provider For information on how to configure a file based provider
for the username security token, see the Oracle Containers
for J2EE Security Guide.

Oracle Identity Management For information on how to configure Oracle Identity
Management, including Oracle Internet Directory (OID),
for the username security token, see the Oracle Containers
for J2EE Security Guide.

Single sign-on is not available for the username token.

External LDAP Providers For information on how to configure external LDAP
providers for the username security token, see the Oracle
Containers for J2EE Security Guide.

Custom Security Providers For information on how to configure custom providers for
the username security token, see the Oracle Containers for
J2EE Security Guide.

Oracle Access Manager For information on how to configure Oracle Access
Manager as a security provider for the username security
token, see "Using Oracle Access Manager as a Security
Provider for Username Token Authentication" on
page 3-14.

For more information on Oracle Access Manager, see the
Oracle Containers for J2EE Security Guide.

Using a Username Token

Administering Web Services Security 3-15

On the client, the username token uses the username and password for authentication.
Consequently, the Web service must define validation for the username and password
using the Oracle Access Manager login module. Once you define the authentication
scheme for username and password verification, you must define these variable values
in the login module by using the coreid.name.attribute and
coreid.password.attribute properties.

To authenticate the name, set the value of the coreid.name.attribute property to
the variable name defined for verifying the user name in the credential_mapping
plug-in. This property is set as an option under the <login-module> element.

To authenticate the password, set the value of the coreid.password.attribute
property to the variable name defined for verifying the password in the validate_
password plug-in.

Example 3–8 illustrates setting the coreid.name.attribute property to
authenticate the user name for the username token. The username_variable value
is a variable name used to authenticate the user name in the credential_mapping
plug-in.

Example 3–8 Setting the User Name Variable for Oracle Access Manager in the
Username Login Module

...
<login-module>
...
 <option>
 <name>coreid.name.attribute</name>
 <value>username_variable</value>
 </option>
...
</login-module>
...

Example 3–9 illustrates setting the coreid.password.attribute property to
authenticate the password for the username token. The username_password value is
a variable name used to authenticate the password in the validate_password
plug-in.

Example 3–9 Setting the Password Variable for Oracle Access Manager in the Username
Login Module

...
<login-module>
...
 <option>
 <name>coreid.password.attribute</name>
 <value>username_password</value>
 </option>

...
</login-module>
...

See Also:

For more information on the CoreIDLoginModule and the
coreid.password.attribute and coreid.name.attribute
properties, see the Oracle Containers for J2EE Security Guide.

Using a Username Token

3-16 Web Services Security Guide

Example 3–10 illustrates a sample CoreIDLoginModule configuration for a
username token in the system-jazn-data.xml file. The value of the <name>
element, application_name, represents the name of the Web service application.

Example 3–10 CoreIDLoginModule for Username Token Authentication

<application>
 <name>application_name</name>
 <login-modules>
 <login-module>
 <class>
 oracle.security.jazn.login.module.coreid.CoreIDLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 <option>
 <name>coreid.resource.type</name>
 <value>res_type</value>
 </option>
 <option>
 <name>coreid.resource.operation</name>
 <value>res_operation</value>
 </option>
 <option>
 <name>coreid.resource.name</name>
 <value>/res_name</value>
 </option>
 <option>
 <name>coreid.name.attribute</name>
 <value>username_variable</value>
 </option>
 <option>
 <name>coreid.password.attribute</name>
 <value>username_password</value>
 </option>
 </options>
 </login-module>
 </login-modules>
</application>

Preventing Replay Attacks with Nonces
If you are using the username token for authentication, then you can employ a nonce
to help prevent message replay attacks. A message replay attack occurs when an
intermediate listener (a "man in the middle") captures an authenticated and validated
message. The intermediate party can replay the captured message over and over again
unless there is some means for client and service to uniquely identify a message.

A nonce is a unique random number that is included in the message that helps to
uniquely identify the message to the client and server. For example, an application can
use a nonce when creating a password digest, as follows:

password_digest = SHA1 (nonce + created + password)

Using an X.509 Token

Administering Web Services Security 3-17

Using a nonce ensures that the application generates a different password digest at
every invocation; two nonced digests will differ even if they have identical password
and time created values.

A nonce can be added to the username token whether the password type is digest or
plain text. To add a nonce, include the add-nonce="true" and
add-created="true" attributes to the <username-token> element.

For plain text password type, the add-nonce and add-created attributes are
optional.

If you specify the password type as DIGEST, then the add-nonce and add-created
attributes are required and will be set to true by default. In the following example,
there is no need to specify the add-nonce and add-created attributes; they are
implicitly set to true.

<username-token name="jdoe" password="password"
password-type="DIGEST"/>

Using an X.509 Token
This section describes how to configure the X.509 token for the server and the client. It
also describes how to integrate the token with OC4J security providers.

■ How to Configure an X.509 Token for the Server Side

■ How to Configure X.509 Token for the Client Side

■ Integrating X.509 Token with Security Providers (XML, LDAP, Oracle Access
Manager)

How to Configure an X.509 Token for the Server Side
For the server, you configure the X.509 token in the oracle-webservices.xml
deployment descriptor. Configuring the X.509 token for the server consists of the
following steps:

1. Configure the <verify-x509-token> Element

2. Configure the Keystore

3. Map the X.509 Certificates to Valid Users (Optional)

Configure the <verify-x509-token> Element
To configure an X.509 token for the server, use the <verify-x509-token> element.
The <verify-x509-token> element is a subelement of the <inbound> element.
Example 3–11 illustrates a sample X.509 token configuration for the server.

Example 3–11 X.509 Token Configuration for the Server Side

 ...
 <inbound>
 <verify-x509-token/>
 <inbound>

Note: OracleAS Web Services Security handles X.509 (#X509V3)
simple certificate processing only. It does not support certificate path
(#X509PK1PathV1) or Set of Certificates and CRLs (#PKCS7).

Using an X.509 Token

3-18 Web Services Security Guide

...

Configure the Keystore
Create a keystore to store the private keys, public keys, and certificates required by the
X.509 token. You can use either a Java Key Store (JKS) or Oracle Wallet. For the steps
involved in configuring either of these keystores, see "Using Keystores" on page 3-1.

Map the X.509 Certificates to Valid Users
The mapping attribute (mapping.attribute) maps an X.509 certificate to a valid
user in an XML or LDAP repository. The LDAP repository can be either an Oracle
Internet Directory (OID) or an external repository such as Active Directory or iPlanet.
The default mapping attribute uses DN or the distinguished name of the X.509
certificate to map the certificate to a user in the LDAP realm.

For an XML provider (jazn-data.xml) the CN or common-name is used by default.
The realm will be based on the security provider configuration.

You can customize the mapping by setting mapping.attribute in the bootstrap
jazn.xml file (ORACLE_HOME/j2ee/instance_name/config/jazn.xml).

Example 3–12 illustrates using the mapping.attribute attribute to map a user in
the LDAP repository to an X.509 certificate based on an email address. The example
assumes that the default DN will be used to map the certificate and that the DN has the
following definition:

DN = "CN=jdoe, OU=security, O=Oracle, email=jdoe@oracle.com"

The certificate will be mapped to the user with the e-mail address
jdoe@oracle.com.

Example 3–12 Mapping a User to an X.509 Certificate

<jazn provider="LDAP" location=".... ">
<property name="mapping.attribute" value="email"/>
</jazn>

If multiple users are found to match the mapping attribute, then the request is rejected.
The value of the mapping.attribute attribute cannot be changed by using
Application Server Control.

Table 3–3 describes the default values for the mapping attribute based on the security
provider type.

Tools for Configuring the X.509 Token on the Server
You can use the following tools to configure the X.509 token on the server.

Application Server Control You can configure the X.509 token in the Inbound Policies
Authentication Page. For more information, see the context-sensitive help for this page
in the Application Server Control online help.

Table 3–3 Values for mapping.attribute Based on Security Provider Types

Default Value Security Provider Type

CN File-based Security provider. CN should be the default only for
XML providers.

DN Oracle Identity Management security provider, external LDAP
Provider and Oracle Access Manager

Using an X.509 Token

Administering Web Services Security 3-19

Oracle JDeveloper Authentication is set on the Authentication page of the Secure Web
Services wizard or the Web Services Editor. For more information, see the topic Setting
Authentication for Web Services in the Oracle JDeveloper on-line help.

WebServicesAssembler tool You can use this tool to assemble a security configuration
into your Web service. To do this, follow these general steps:

1. Include a configuration for the X.509 token in the oracle-webservices.xml
deployment descriptor.

2. Use the ddFileName argument to specify this file as input to the appropriate Web
service assembly command.

How to Configure X.509 Token for the Client Side
For the client, you configure the X.509 token in the <generated_name>_Stub.xml
deployment descriptor. Configuring the X.509 token for the client consists of the
following steps:

1. Configure the <x509-token> Element

2. Configure the Keystore with a Signature Key

3. Authenticate an X.509 Token with a Subject Key Identifier (Optional)

4. Sign the X.509 Token (Optional)

Configure the <x509-token> Element
To configure the client for the X.509 token use the <x509-token> element.
Example 3–13 illustrates a sample configuration.

Example 3–13 X.509 Token Configuration for the Client Side

...
 <outbound>
 <x509-token/>
 <outbound>
...

Configure the Keystore with a Signature Key
Create a keystore to store the signature key required by the X.509 token on the client.
You can use either a Java Key Store (JKS) or Oracle Wallet to provide this. For the steps
involved in obtaining a signature key and for configuring either of these keystores, see
"Using Keystores" on page 3-1.

Authenticate an X.509 Token with a Subject Key Identifier
For X.509 token authentication, if the receiver has prior knowledge of the X.509
certificate used for authentication, then the subject key identifier can be sent instead of
the entire certificate. The subject key identifier is an extension of the certificate which
is used to calculate the public key. If your certificate does not have the subject key
identifier, then the request will be rejected.

See Also:

For more information on the ddFileName argument and assembling
Web Services, see "Using WebServicesAssembler" in the Oracle
Application Server Web Services Developer’s Guide.

Using an X.509 Token

3-20 Web Services Security Guide

To authenticate with a subject key identifier, make the following changes to the
<generated_name>_Stub.xml file.

1. Set the <property> subelement of the <signature> element to the subject key
identifier property oracle.security.wss.signwithski.

2. Set the value attribute of the <property> subelement to true. By default, this
property is set to false.

Example 3–14 illustrates how to use the subject key identifier property
oracle.security.wss.signwithski to authenticate an X.509 token.

Example 3–14 X.509 Token with a Subject Key Identifier

<x509-token/>
<signature>
 <property name="oracle.security.wss.signwithski" value="true"/>
 </signature>

Sign the X.509 Token
An unsigned X.509 token is not secure and can be replaced with any other token. You
can secure the X.509 token by signing it in outbound messages. To do this, OracleAS
Web Services Security defines the boolean
oracle.security.wss.signX509token property on the <x509-token>.

This property is applied only when the <x509-token> is used with signature
<signature>. If set to true (default), the X.509 token will be signed. If set to false,
the X.509 token will not be signed.

For more information on this property, see "X.509 Token Elements for Outbound
Messages" on page 2-14.

Example 3–15 illustrates how the oracle.security.wss.signX509token
property is used in conjunction with the <x509-token> and <signature> elements.

Example 3–15 Signing the X.509 Token in an Outbound Message

...
<x509-token>
 <property name="oracle.security.wss.signX509token" value="true"/>
</x509-token>
<signature>
 ...
</signature>
...

Tools for Configuring the X.509 Token on the Client
You can use the following tools to configure an X.509 token on the client.

Oracle JDeveloper Authentication is set on the Authentication page of the Secure Web
Services wizard or the Web Services Editor. For more information, see the topic Setting
Authentication for Web Services in the Oracle JDeveloper on-line help.

Note: Configure the signature key in the security configuration to
point to the signer's private key. The signer's certificate must have the
SubjectKeyIdentifierExtension. Also the receiver's keystore
must contain the signer's certificate to resolve the subject key
identifier.

Using an X.509 Token

Administering Web Services Security 3-21

WebServicesAssembler tool You can use this tool to assemble a security configuration
into your Web service client proxy. To do this, include a configuration for the X.509
token in the <generated_name>_Stub.xml deployment descriptor. Use the
ddFileName argument to specify this file as input to the WebServicesAssembler
genProxy command. For more information on the ddFileName argument and
assembling Web service clients, see "Using WebServicesAssembler" in the Oracle
Application Server Web Services Developer’s Guide.

Integrating X.509 Token with Security Providers (XML, LDAP, Oracle Access Manager)
Table 3–1 on page 3-8 provides a summary of the security providers that can be used
with the X.509 security token. All of the security Providers that are available for the
X.509 token can be configured by using Application Server Control.

You should configure OC4J with security providers before you configure Web service
security. Table 3–4 indicates where you can find additional information on configuring
the security providers that are available for the X.509 token.

Using Oracle Access Manager as a Security Provider for X.509 Token
Authentication
If you have Oracle Access Manager access system as part of your deployment, then
you can use it as a security provider to integrate with the service’s access system. The
Oracle Access Manager security provider uses the CoreIDLoginModule login
module. The login module is configured for each application. The
CoreIDLoginModule is defined in the ORACLE_HOME/j2ee/instance_
name/config/system-jazn-data.xml file.

To use Oracle Access Manager with X.509 authentication, configure the Oracle Access
Manager login module to use the mapping attribute for the authentication plug-in. Set
the coreid.name.attribute property to the value of the CN variable defined for
verifying the mapping attribute of in the credential_mapping plug-in. This
property is set as an option under the <login-module> element.

Table 3–4 Security Providers that can be Used with the X.509 Token

For this Security Provider type See this resource for more information

File-Based Security Provider For information on how to configure a file-based provider
for the X.509 security token, see the Oracle Containers for
J2EE Security Guide.

Oracle Identity Management For information on how to configure Oracle Identity
Management, including Oracle Internet Directory (OID)
and Single Sign-on, for the X.509 security token, see the
Oracle Containers for J2EE Security Guide.

External LDAP Providers For information on how to configure external LDAP
providers for the X.509 security token, see the Oracle
Containers for J2EE Security Guide.

Oracle Access Manager For information on how to configure Oracle Access
Manager as a security provider for the X.509 security token,
see "Using Oracle Access Manager as a Security Provider
for X.509 Token Authentication".

For more information on Oracle Access Manager, see the
Oracle Containers for J2EE Security Guide.

Using an X.509 Token

3-22 Web Services Security Guide

Example 3–16 illustrates setting the coreid.name.attribute property in the
CoreIDLoginModule to authenticate the mapping for the X.509 token. The cn_
variable value is a variable name used to authenticate the mapping.

Example 3–16 Setting the CN Variable for the Oracle Access Manager Login Module for
X.509 Authentication

...
<login-module>
...
 <option>
 <name>coreid.name.attribute</name>
 <value>cn_variable</value>
 </option>
...
</login-module>
...

Example 3–17 illustrates a CoreIDLoginModule for X.509 token authentication in the
system-jazn-data.xml file. The value of the <name> element, application_
name, represents the name of the Web service application.

Example 3–17 CoreIDLoginModule for X.509 Token Authentication

<application>
 <name>application_name</name>
 <login-modules>
 <login-module>
 <class>
 oracle.security.jazn.login.module.coreid.CoreIDLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 <option>
 <name>coreid.resource.type</name>
 <value>res_type</value>
 </option>
 <option>
 <name>coreid.resource.operation</name>
 <value>res_operation</value>
 </option>
 <option>
 <name>coreid.resource.name</name>
 <value>/res_name</value>
 </option>
 <option>
 <name>coreid.name.attribute</name>
 <value>cn_variable</value>
 </option>
 </options>

See Also:

For more information on the coreid.name.attribute property
and the CoreIDLoginModule, see the Oracle Containers for J2EE
Security Guide.

Using a SAML Token

Administering Web Services Security 3-23

 </login-module>
 </login-modules>
</application>

Using a SAML Token
This section describes how to configure the SAML token for the server and the client.
It also describes how to integrate the token with OC4J security providers. For
information on the SAML token use case, see "SAML Token Profile" on page 5-7.

■ How to Configure a SAML Token for the Server Side

■ How to Configure a SAML Token for the Client-Side

■ Integrating SAML Token with Security Providers (XML, LDAP, Oracle Access
Manager)

How to Configure a SAML Token for the Server Side
There are three possible usecases for configuring the SAML token on the server, based
on which confirmation method you want to employ. These confirmation methods are
sender vouches (unsigned), sender vouches (signed), and holder of key.

■ sender-vouches (unsigned)—the incoming SAML token must supply a
sender-vouches confirmation method and the token must not be signed.

■ sender-vouches (signed)—the incoming SAML token must supply a
sender-vouches confirmation method and the reference to the token that must be
signed.

■ holder of key—the incoming SAML token must supply a holder of key
confirmation method. The assertion must contain the public key of the user.

The following sections list the steps to configure the SAML token for each of these
usecases.

Sender-vouches (unsigned)
1. Configure the <verify-saml-token> Element

2. Map the SAML Assertion Subject (Optional)

3. Set Options for the SAMLLoginModule

The issuer name is set to www.oracle.com by default. It is strongly
recommended that you change this value to the name of your own assertion
issuer.

Sender-vouches (signed)
1. Configure the <verify-saml-token> Element

2. Configure the Keystore

3. Set Options for the SAMLLoginModule

The issuer name is set to www.oracle.com by default. It is strongly
recommended that you change this value to the name of your own assertion
issuer.

4. Map the SAML Assertion Subject (Optional)

Using a SAML Token

3-24 Web Services Security Guide

Holder of key
1. Configure the <verify-saml-token> Element

2. Configure the Keystore

3. Set Options for the SAMLLoginModule

For the holder-of-key confirmation method, the issuer name, trust point alias, and
all of the keystore options in the SAMLLoginModule must be set.

Configure the <verify-saml-token> Element
To configure a SAML token for the server, use the <verify-saml-token> element.
The <verify-saml-token> element is a subelement of the <inbound> element.

The <verify-saml-token> element can have an optional
<subject-confirmation-method> subelement. When used as part of an inbound
<verify-saml-token> policy, this subelement refers to the confirmation method
used to propagate the identity in the incoming SOAP message.

The actual confirmation method is specified by the <confirmation-method>
element. This is a subelement of the <subject-confirmation-method> element.
Possible values for <confirmation-method> are SENDER-VOUCHES,
SENDER-VOUCHES-UNSIGNED, and HOLDER-OF-KEY.

Example 3–18 provides a sample configuration which uses the
<verify-saml-token> element to verify a SAML token. This configuration will
accept a SAML token that contains the user's public key. The token itself can be either
signed, unsigned, or holder of key.

Example 3–18 Verifying a SAML Token

<verify-saml-token>
 <confirmation-methods>
 <confirmation-method>SENDER-VOUCHES</confirmation-method>
 <confirmation-method>SENDER-VOUCHES-UNSIGNED</confirmation-method>
 <confirmation-method>HOLDER-OF-KEY</confirmation-method>
</verify-saml-token>

Table 2–4 and Table 2–6 provide more information on the <verify-saml-token>
element and its subelements.

Configure the Keystore
Create a keystore to store the private keys, public keys and certificates required by the
SAML token. For a holder of key confirmation method, the keystore must contain the
user's trusted certificate for verifying the signature. Additionally, all of the assertion
issuer options in the SAMLLoginModule must be configured with Application Server
Control. See "Set Options for the SAMLLoginModule" on page 3-25 for more
information on the SAMLLoginModule options.

For the sender-vouches (signed) confirmation method, the keystore must contain the
public key and the trusted certificates. The issuer name option in the SAML login
module must also be configured with Application Server Control.

The sender-vouches (unsigned) confirmation method does not require a keystore to be
configured.

You can use either a Java Key Store (JKS) or Oracle Wallet as the keystore. For the steps
involved in configuring either of these keystores, see "Using Keystores" on page 3-1.

Using a SAML Token

Administering Web Services Security 3-25

Map the SAML Assertion Subject
By default, SAMLLoginModule is configured with Oracle's assertion issuer. If the
name identifier format is omitted or unspecified, then you must configure the
mapping.attribute attribute in the jazn.xml (ORACLE_HOME/j2ee/instance_
name/config/jazn.xml) file. The value of this attribute cannot be changed by
using Application Server Control; you must edit the file manually.

If the SAML token has a name identifier format, then one of the mapping attributes
described in Table 3–5 is used. A mapping attribute property is not required.
"Configuring SAML Assertion Subject Name and Format" on page 3-28 provides a
description of the subject name formats.

Table 3–6 describes the default values for the mapping.attribute attribute based
on the security provider type.

Example 3–19 illustrates using the mapping.attribute property to map a SAML
assertion subject to a valid user in an XML repository.

Example 3–19 Mapping a SAML Assertion Subject

<jazn provider="XML" realm="jazn.com">
 <property name="mapping.attribute" value="CN"/>
<jazn>

Set Options for the SAMLLoginModule
For SAML authentication to succeed, you must configure a trusted SAML assertion
issuer as part of the SAMLLoginModule options. The SAMLLoginModule is a system
login module that authenticates an incoming SAML token.

The SAMLLogingModule provides options for setting the trusted SAML issuer name,
trust point alias, keystore path, keystore type, and password for the trusted SAML
issuer. By default, the SAML login module is not configured with a keystore.

You can set the trusted SAML issuer name, keystore, and trust point alias options in
the Trusted SAML authority screen in Application Server Control.

Table 3–5 Subject Name Identifier Format and Corresponding Mapping Values

Subject Name Identifier Format Mapping Attribute in OID
Mapping Attribute in
Active Directory

Mapping Attribute in
iplanet

EMAIL_ADDRESS mail mail mail

X509_SUBJECT_NAME DN DN DN

WINDOWS_DOMAIN_NAME OrclADSAMAccountName samaccountname not applicable

UNSPECIFIED / OMITTED mapping.attribute in
the jazn.xml file

mapping.attribute
in the jazn.xml file

mapping.attribute
in the jazn.xml file

Table 3–6 Values for mapping.attribute Based on Security Provider Types

Default Property Value Security Provider Type

CN File-based Security provider. CN should be the default only for
XML provider.

DN Oracle Identity Management security provider, external LDAP
Provider, and Oracle Access Manager.

Using a SAML Token

3-26 Web Services Security Guide

Table 3–7 provides descriptions of the SAMLLogingModule options. These options
must be configured for each assertion issuer. The variable N in the option name
represents the number of the assertion issuer.

How to Configure a SAML Token for the Client-Side
For the Web service client, the SAML token can be configured for the sender-vouches
(unsigned), sender-vouches (signed), or holder of key confirmation methods. The
configuration can be either static, by hard coding the <saml-token> element values
in the <generated_name>_Stub.xml file, or set dynamically.

Sender Vouches (unsigned)
1. Configure the <saml-token> Element.

This configuration can be either static or dynamic. A static configuration involves
providing values for SAML elements in the <generated_name>_Stub.xml file.
For a dynamic configuration, you can use Stub properties, callback handlers,
identity propagation, or SAMLP. For more information on each of these
configurations, see the following sections:

■ Providing a Static SAML Client Configuration

■ Configuring a SAML Assertion Subject by Using a Stub Property

■ Configuring a SAML Assertion Subject by Identity Propagation

Note: For the holder of key subject confirmation method, the issuer
signs the SAML assertion. If you are configuring this method, then
you must set the issuer name, trust point alias, and all of the keystore
options.

Table 3–7 SAMLLoginModule Options

SAMLLoginModule Options Descriptions
Required by this
Confirmation Method

<issuer.keystorepassword.N> Occurs: 1...N

Specifies the keystore password.

Holder-of-Key

<issuer.keystorepath.N> Occurs: 1...N

Specifies the keystore path where the assertion
issuer certificate is stored.

Holder-of-Key

<issuer.keystoretype.N> Occurs: 1...N

Specifies the assertion issuer keystore type.
Default keystore type is JKS.

Holder-of-Key

<issuer.name.N> Occurs: 1...N

Specifies the issuer name. For the OC4J
Standalone SAMLLoginModule, the default
issuer name is set to www.oracle.com. It is
strongly recommended that you change this
value to the name of your own assertion issuer.

Holder-of-Key, Sender
Vouches

<issuer.trustpointalias.N> Occurs: 1...N

Specifies the trust point key alias of the
assertion issuer. This setting is used to verify
the assertion issuer certificate in Holder-Of-Key
subject confirmation cases.

Holder-of-Key

Using a SAML Token

Administering Web Services Security 3-27

■ Writing a SAML Token Callback Handler

■ Retrieving a SAML Token from an External SAML Authority

Sender vouches (signed)
1. Configure the <saml-token> Element

The configuration can be either static or dynamic. A static configuration involves
providing values for SAML elements in the <generated_name>_Stub.xml file.
For a dynamic configuration, you can use Stub properties, callback handlers,
identity propagation, or SAMLP. For more information on each of these
configurations, see the following sections:

■ Providing a Static SAML Client Configuration

■ Configuring a SAML Assertion Subject by Using a Stub Property

■ Configuring a SAML Assertion Subject by Identity Propagation

■ Writing a SAML Token Callback Handler

■ Retrieving a SAML Token from an External SAML Authority

2. Configure the Keystore with a signature key and certificates.

Holder of key
1. Configure the <saml-token> Element.

A client-side SAML token configuration for holder of key cannot be static. It must
be performed dynamically, either by using a callback handler or SAMLP.

2. Configure the Keystore with keys and certificates.

Configure the <saml-token> Element
A client-side configuration for SAML must provide the following values.

■ SAML assertion subject name

■ Assertion subject name format

■ Name of the assertion issuer

■ Authentication and attribute statements

You can provide these values either statically or dynamically. For a static
configuration, you provide values for SAML elements. For a dynamic configuration,
you write a SAML token callback handler.

■ Providing a Static SAML Client Configuration

■ Configuring a SAML Assertion Subject by Using a Stub Property

■ Configuring a SAML Assertion Subject by Identity Propagation

■ Writing a SAML Token Callback Handler

■ Retrieving a SAML Token from an External SAML Authority

■ Combining Static and Dynamic SAML Configuration

■ Retrieving a SAML Token from an External SAML Authority

Using a SAML Token

3-28 Web Services Security Guide

Providing a Static SAML Client Configuration
This section describes how to provide the required values for a static SAML
configuration. The client configuration for security appears in the <generated_
name>_Stub.xml file.

■ Configuring SAML Assertion Subject Name and Format

■ Configuring the Assertion Issuer

■ Configuring Authentication and Attributes Statements

■ Configuring Confirmation Methods

Configuring SAML Assertion Subject Name and Format You can choose a name for the
assertion subject by providing a value for the name attribute of <saml-token>
element. The name can optionally be prefixed with the assertion's realm name. If the
realm name is already present, then it is set as the name qualifier. The name attribute
has the following format:

name = [realm-name/]name

The format of the assertion subject's name is specified by setting the name-format
attribute. Table 2–14, " Attributes of the <saml-token> Element" on page 2-15 describes
the possible values for this attribute.

Configuring the Assertion Issuer You can configure the assertion issuer name by setting
the issuer-name attribute. If no value is specified for this attribute, then the default
assertion issuer, www.oracle.com, is used. It is strongly recommended that you
change this value to the name of your own issuer. Table 2–14, " Attributes of the
<saml-token> Element" on page 2-15 provides more information on this element.

Configuring Authentication and Attributes Statements Authentication statements are
generated by default. If you want to generate attribute statements, add an
attributes.properties file containing the attributes of the subject.

Use the path attribute of the attributes element to indicate the location of the
attributes.properties file.

<attributes path=<location-of-attributes.properties file >>

The attributes element can be prefixed with an optional name space value.

[attribute-name-space/]name=value

For example:

jazn.com/name=john doe

Configuring Confirmation Methods This section describes the types of confirmation
methods supported by OracleAS Web Services Security.

■ Configuring a Sender-Vouches (Signed) Confirmation Method

■ Configuring a Sender-Vouches-Unsigned Confirmation Method

■ Configuring a Holder-of-key Confirmation Method

The default confirmation method is sender-vouches (implicit signature).

Configuring a Sender-Vouches (Signed) Confirmation Method To configure a sender-vouches
(signed) confirmation method, configure the <saml-token> and <signature>
elements. Example 3–20 illustrates the configuration for generating a sender-vouches
(signed) assertion token. The <signature> element follows the <saml-token>

Using a SAML Token

Administering Web Services Security 3-29

element. The <signature-method> element identifies the signature algorithm. If no
algorithm is specified, then the default, RSA-SHA1, is used.

See Table 2–17, " Subelements of the <signature> Element" on page 2-17 for a
description of the <signature-method> element. Table 2–18, " Signature Algorithms
and Short Names" on page 2-17 provides a description of the element's possible
values.

Example 3–20 Configuration for a Sender-Vouches (Signed) Confirmation Method

<saml-token name="jdoe">
 <subject-confirmation-method>
 <confirmation-method>SENDER-VOUCHES</confirmation-method>
 </subject-confirmation-method>
</saml-token>
<signature>
 <signature-method>DSA-SHA1</signature-method>
</signature>

Configuring a Sender-Vouches-Unsigned Confirmation Method Example 3–21 illustrates the
configuration for generating a sender-vouches (unsigned) assertion token. The
<confirmation-method> element identifies the type of confirmation used for the
unsigned assertion. See Table 2–15, " Subelements of the <saml-token> Element" on
page 2-16 for a description of the possible values for the <confirmation-method>
element.

Example 3–21 Configuration for a Sender Vouches (Unsigned) Confirmation Method

<saml-token name="jdoe" >
 <subject-confirmation-method>
 <confirmation-method>SENDER-VOUCHES-UNSIGNED</confirmation-method>
 </subject-confirmation-method>
</saml-token>

Configuring a Holder-of-key Confirmation Method Example 3–22 illustrates the configuration
for sending a holder-of-key assertion using a callback handler. The cbhandler-name
attribute identifies the user-defined class that will handle the SAMLTokenCallback
callback handler. In this example, mypackage.SAMLTokenCallbackHandler is the
user-defined class.

Table 2–15 on page 2-16 provides more information on the cbhandler-name
attribute. "Writing a SAML Token Callback Handler" on page 3-30 provides more
information on creating callback handlers for SAML tokens.

Example 3–22 Configuration for a Holder of Key Confirmation

<saml-token cbhandler-name="mypackage.SAMLTokenCallbackHandler">
 <subject-confirmation-method>
 <confirmation-method>HOLDER-OF-KEY</confirmation-method>
 </subject-confirmation-method>
</saml-token>

Configuring a SAML Assertion Subject by Using a Stub Property
If you do not include a <saml-token> element in your configuration, then the client
runtime can dynamically build the token using the Stub.USERNAME_PROPERTY
supported by JAX-RPC. For more information on using this property, see Table 2–15,
" Subelements of the <saml-token> Element" on page 2-16.

Using a SAML Token

3-30 Web Services Security Guide

In the following example, Stub is javax.xml.rpc.Stub and _port is the stub
generated by WebServicesAssembler.

((Stub) _port)._setProperty(Stub.USERNAME_PROPERTY, name);

Configuring a SAML Assertion Subject by Identity Propagation
Identity propagation allows an application to propagate an ID to the Web service. The
ID information resides in the assertion subject. You can obtain the assertion subject
from the current thread of execution by setting the property
oracle.security.wss.propagate.identity to true. This property can be set
only at the port level. For example:

<property name="oracle.security.wss.propagate.identity" value ="true"/>

If the property is set to true and an identity already exists, then the identity is
propagated to the Web service. If an identity is not associated with the current thread
of execution, then the request is rejected. If this property is set to false (default), then
the identity is not propagated.

Writing a SAML Token Callback Handler
You can write a SAML token callback handler to deliver the assertion to the client
interceptor. The callback handler implementation must be able to handle a
SAMLTokenCallback object. The SAMLTokenCallback object is bi-directional; this
means that the name of the subject for whom the assertion is requested can be
retrieved by using the callback getName() method.

Example 3–23 illustrates a sample SAML token callback handler implementation. The
getName() method obtains the name of the subject. The getAssertion(subject)
method gets the assertion based on the value of subject. These lines are highlighted
in bold.

Example 3–23 Sample Implementation of a SAML Token Callback Handler

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import oracle.webservices.security.callback.SAMLTokenCallback;
public class SAMLTokenCallbackHandlerHK implements CallbackHandler {
 Callback c = null;
 public void handle(Callback[] callbacks) {
 try {
 if (callbacks == null) {
 return;
 }
 for (int i = 0; i < callbacks.length; i++) {
 c = callbacks[i];
 if (c instanceof SAMLTokenCallback) {
 SAMLTokenCallback sc = (SAMLTokenCallback) c;
String subject = sc.getName();
Document doc = getAssertion(subject);
sc.setXMLToken(

Note: If you provide a name value in a static configuration file and
dynamically set the username with USERNAME_PROPERTY, then the
USERNAME_PROPERTY value will override the value in the static
configuration.

Using a SAML Token

Administering Web Services Security 3-31

doc.getDocumentElement());
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
}

 public Document getAssertion(String subject) {

 //User implementation for getting the
 assertion subject
 }
}

Retrieving a SAML Token from an External SAML Authority
This section describes how to configure the client to retrieve a SAML token from an
external SAML authority. OracleAS Web Services clients can retrieve the token by
issuing a SAMLP request. To retrieve the token, you must configure the
<saml-authority> element, which is an optional subelement of the <saml-token>
element. Table 2–16, " Attributes of the <saml-authority> Element" on page 2-16
provides more information on this element.

Example 3–24 illustrates a client configuration that accepts a SAML token from an
external SAML authority. The username jdoe and the password password provide
authentication to the SAML authority. The <require-signature="true">
indicates that the SAMLP request is signed with the client's signature key. This implies
that the client-side keystore must be configured with the appropriate signature keys.

Example 3–24 Configuration to Retrieve a SAML Token

<saml-token>
 <saml-authority>
 <endpoint-address="http://www.example.com/"
 <auth-user-name="jdoe"
 <auth-password="password"
 <require-signature="true">
 <saml-authority/>
</saml-token>

Configure the Keystore
Create a keystore (or use an existing keystore) to store the private keys, public keys
and certificates required by the SAML token. For a holder of key or sender-vouches
(signed) confirmation method, the keystore must contain the private keys. The
sender-vouches (unsigned) does not require a keystore to be configured.

You can use either a Java Key Store (JKS) or Oracle Wallet as the keystore.

Combining Static and Dynamic SAML Configuration
You can combine static and dynamic techniques to provide a SAML configuration to
the client. For example, you can declare a SAML subject name statically, and then pass
it to the callback handler.

See Also:

See "Using Keystores" on page 3-1 for the steps involved in
configuring the Java Key Store and Oracle Wallet.

Using a SAML Token

3-32 Web Services Security Guide

Integrating SAML Token with Security Providers (XML, LDAP, Oracle Access Manager)
Table 3–1 on page 3-8 provides a summary of the security providers that can be used
with the SAML security token.

You should configure OC4J with security providers before you configure Web service
security. Example 3–8 indicates where you can find additional information on
configuring the security providers that are available for the SAML token.

Using Oracle Access Manager as a Security Provider for SAML Token
Authentication
If you have Oracle Access Manager as part of your deployment, then you can use it as
a security provider to integrate with the service’s access system. The Oracle Access
Manager security provider uses the CoreIDLoginModule login module supplied by
Oracle. The CoreIDLoginModule is defined in the ORACLE_
HOME/j2ee/instance_name/config/system-jazn-data.xml file.

Edit the system-jazn-data.xml file so that the Oracle Access Manager login
module appears before the SAML login module:

1. SAMLLoginModule

2. CoreIDLoginModule

See Also:

■ "Configuring SAML Assertion Subject Name and Format" on
page 3-28 for information on setting the SAML subject name.

■ "Writing a SAML Token Callback Handler" on page 3-30 for
information on writing a SAML callback handler.

Table 3–8 Security Providers that can be Used with the SAML Token

For this Security Provider Type See this resource for more Information

File-Based Security Provider For information on how to configure a file based provider
for the SAML security token, see the Oracle Containers for
J2EE Security Guide.

Oracle Identity Management For information on how to configure Oracle Identity
Management, including Oracle Internet Directory (OID)
and Single Sign-on, for the SAML security token, see the
Oracle Containers for J2EE Security Guide.

See "Configuring Single Sign-on Using SAML" on
page 3-35 for additional information on how to configure
single sign-on for this token.

External LDAP Providers SAML tokens can be used with external LDAP providers,
but they must be configured manually. These manual
steps are described in the following sections:

■ Map the SAML Assertion Subject

■ Authenticating SAML Tokens with an External
LDAP Provider

Oracle Access Manager For information on how to configure Oracle Access
Manager as a security provider for the token, see "Using
Oracle Access Manager as a Security Provider for SAML
Token Authentication"

For more information on Oracle Access Manager, see the
Oracle Containers for J2EE Security Guide.

Using a SAML Token

Administering Web Services Security 3-33

If you enter the modules in reverse order, then the configuration will be invalid. The
<control-flag> element must be set to required for both SAMLLoginModule
and CoreIDLoginModule. The login modules are configured for each application.

To use Oracle Access Manager with SAML authentication, configure the Oracle Access
Manager login module to use the mapping attribute for the authentication plug-in. Set
the coreid.name.attribute property to the value of the SAML subject defined for
verifying the mapping attribute of in the credential_mapping plug-in. This
property is set as an option under the <login-module> element.

Example 3–25 illustrates setting the coreid.name.attribute property to
authenticate the SAML subject. The subject_variable value is a variable name
used to authenticate the SAML subject in the credential_mapping plug-in.

Example 3–25 Setting the SAML Subject Variable for the Oracle Access Manager Login
Module for SAML Authentication

...
<login-module>
...
 <option>
 <name>coreid.name.attribute</name>
 <value>subject_variable</value>
 </option>
...
</login-module>
...

Example 3–26 illustrates the SAMLLoginModule and CoreIDLoginModule in the
system-jazn-data.xml file. Note that the SAMLLoginModule is listed before the
CoreIDLoginModule. The value of the <name> element, application_name,
represents the name of the Web service application.

Example 3–26 Using the Oracle Access Manager and SAML Login Modules for SAML
Subject Authentication

<application>
 <name>application_name</name>
 <login-modules>
 <login-module>
 <class>
 oracle.security.jazn.login.module.saml.SAMLLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 <option>
 <name>issuer.name.1</name>
 <value>www.oracle.com</value>
 </option>
 </options>

See Also:

For more information on this property and the
CoreIDLoginModule, see the Oracle Containers for J2EE Security
Guide.

Using a SAML Token

3-34 Web Services Security Guide

 </login-module>
 <login-module>
 <class>
 oracle.security.jazn.login.module.coreid.CoreIDLoginModule
 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 <option>
 <name>coreid.resource.type</name>
 <value>res_type</value>
 </option>
 <option>
 <name>coreid.resource.operation</name>
 <value>res_operation</value>
 </option>
 <option>
 <name>coreid.resource.name</name>
 <value>/res_name</value>
 </option>
 <option>
 <name>coreid.name.attribute</name>
 <value>subject_variable</value>
 </option>
 </options>
 </login-module>
 </login-modules>
</application>

Authenticating SAML Tokens with an External LDAP Provider
To authenticate an incoming SAML token against an external LDAP Provider, such as
Active Directory or iPlanet, SAMLLoginModule and LDAPLoginModule must be
configured with the ORACLE_HOME/j2ee/instance_
name/config/system-jazn-data.xml file. The modules must be entered into the
file in the following order.

1. SAMLLoginModule

2. LDAPLoginModule

If you enter the modules in reverse order, then the configuration will be invalid. The
<control-flag> element must be set to required for both SAMLLoginModule
and LDAPLoginModule. The login modules are configured for each application.

Example 3–27 illustrates a sample configuration. The SAMLLoginModule,
LDAPLoginModule, and <contol-flag> items appear in bold.

Example 3–27 Sample Configuration to Authenticate SAML Tokens for an External LDAP
Provider

<application>
 <name>MyApplication</name>

See Also:

For more information on LDAPLoginModule configuration, see the
Oracle Containers for J2EE Security Guide.

Using a SAML Token

Administering Web Services Security 3-35

 <login-modules>
 <login-module>

<class>oracle.security.jazn.login.module.saml.SAMLLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 ……
 </options>
 </login-module>
 <login-module>
<class>oracle.security.jazn.login.module.LDAPLoginModule </class>
 <control-flag>required</control-flag>
 <options>
 …..

 </options>
 </login-module>
 </login-modules>
</application>

Configuring Single Sign-on Using SAML
This section describes how to establish Oracle Single Sign-On between a Web
application and a Web service deployed on two different containers. It is assumed that
both the Web application and the Web service are configured to use SAML.

This scenario assumes that the Web application is deployed on an OC4J container that
is associated with Oracle Single Sign-On. When a request arrives at the Web
application, it is redirected to Oracle Identity Management where it is authenticated
with Oracle Single Sign-On.

The Web application invokes a Web service that uses SAML as its authentication
mechanism. The Oracle Single Sign-On identity from the Web application is
propagated to the Web service as a SAML assertion. When the Web service application
receives the SAML assertion, it verifies the assertion and authenticates the user.

Figure 3–1 illustrates the runtime flow of control between the client, the Web
application, and the Web service.

Figure 3–1 Runtime Flow of Single Sign-on Using SAML

10.1.3.1 OC4J
Container 2

Web
Service

10.1.3.1 OC4J
Container 1

Oracle Internet
Directory

Oracle Single
Sign-On

1

1 2

Web
Application

Web Service
Stub

4

3

10.1.2 Oracle Identity
Management

Web Services
Client

Using a SAML Token

3-36 Web Services Security Guide

The following steps describe the runtime flow between the Web components
illustrated in the figure.

1. The client logs in to the Web application; the Web application uses Oracle Single
Sign-On for authentication.

2. The Web application calls the Web service stub.

3. The Web service stub invokes the Web service. The stub passes a SAML assertion
with the Oracle Single Sign-On identity to the Web service.

4. The Web service application verifies the assertion and uses Oracle Internet
Directory to map the Oracle Single Sign-On identity.

The following steps describe how to configure Oracle Single Sign-On between your
Web application and a Web service.

■ Step 1: Install Oracle Identity Management 10.1.2 and Associate OC4J With It

■ Step 2: Configure the Web application to use Single Sign-on

■ Step 3a: Assemble and secure the Web service client

■ Step 3b: Integrate the Web application with the Web service client

■ Step 4: Assemble and secure the Web service (server side)

Step 1: Install Oracle Identity Management 10.1.2 and Associate OC4J With It
1. Install 10.1.2 Identity Management.

2. Associate Oracle Identity Management 10.1.2 with OC4J by using Application
Server Control.

Step 2: Configure the Web application to use Single Sign-on
Configure your Web application to use Oracle Single Sign-On by using Application
Server Control. For more information on using Application Server Control to configure
Oracle Single Sign-on, see the Application Server Control on-line help

Step 3a: Assemble and secure the Web service client
1. Generate the Web service client by using Oracle JDeveloper. In the Security

options, choose the SAML sender-vouches confirmation method.

2. Set the oracle.security.wss.propagate.identity property at the port
level to true.

<property name="oracle.security.wss.propagate.identity" value ="true"/>

If this property is set to true, then the Web application authenticated identity is
propagated as the SAML subject.

3. Package your Web service proxy/client keystore with your Web application and
deploy them to your Web application in the OC4J container (10.1.3.1 OC4J
Container 1 in Figure 3–1).

See Also:

For the instructions on how to configure Oracle Identity Management,
see the Oracle Containers for J2EE Security Guide.

See Also:

For the instructions on how to configure Single Sign-On, see the Oracle
Containers for J2EE Security Guide.

Configuring XML Encryption

Administering Web Services Security 3-37

Step 3b: Integrate the Web application with the Web service client
1. Get an instance of the Web service stub in the Web application.

2. Set the Stub.ENDPOINT_ADDRESS_PROPERTY to the actual Web service
endpoint address.

Step 4: Assemble and secure the Web service (server side)
1. Assemble the Web service by using Oracle JDeveloper.

2. Deploy the Web service application. Bundle the keystore and signature key and
deploy it with the application.

3. Configure your Web service to use SAML sender-vouches confirmation method by
using Application Server Control.

4. Configure the OC4J container containing the Web service (10.1.3.1 OC4J Container
2 in Figure 3–1) to use Oracle Identity Management by using Application Server
Control.

Configuring XML Encryption
Message-level encryption can be configured for a Web service at either the global or
port level. The <encryption-key> element points to the key required for decrypting
the message. If this element is configured at the global level, then it will point to an
encryption key in the global-level keystore. If it is configured at the port level, then it
will point to an encryption key in the port-level keystore. If the element is not
configured at the port level, then global level values are used.

The <encryption-key> element can possess an alias and a password. Oracle
JDeveloper and the command line keystore tools (Oracle Wallet and Java Key Store)
give you the option of assigning an alias and password when you create the key.

The following sections provide more information on the encryption and decryption of
SOAP messages.

■ Configuring Encryption for Outbound Messages

■ Configuring Encryption for Inbound Elements

■ Encrypting the Body of a SOAP Message

■ Encrypting Elements of a SOAP Message

■ Decrypting Elements of a SOAP Message

■ Encrypting a Message with a Signature Key

■ Accepting Multiple Keys to Decrypt Messages

Configuring Encryption for Outbound Messages
The <encrypt> subelement of the <outbound> element specifies the confidentiality
requirements of the sender. The <encrypt> element contains subelements to specify
encryption methods and algorithms. You can specify the encryption algorithm that
will be used to encrypt the message with the <encryption-method> element. The
<keytransport-method> element identifies an algorithm that can be used to
encrypt encryption keys for intended recipients. The <use-request-cert> lets the
Web service application encrypt the response message with the signature certificate
that the client sent in the original request message

Configuring XML Encryption

3-38 Web Services Security Guide

The <recipient-key> element provides the alias and password for the recipient's
public key. This key must reside in the keystore. The recipient's public key is used to
encrypt the data encryption key.

You can use <tbe-elements> to specify the elements in the SOAP message to be
encrypted. This element enables you to encrypt the entire message element or only the
contents of an element.

Configuring Encryption for Inbound Elements
For inbound messages, the <decrypt> subelement of the <inbound> element
specifies how received messages will be decrypted. You can specify acceptable
encryption algorithms for incoming messages with the <encryption-method>
element. The <keytransport-method> element identifies acceptable encryption
algorithms for encryption keys.

For incoming messages, the <tbe-elements> element indicates which elements are
encrypted. "Decrypting Elements of a SOAP Message" on page 3-40 provides more
information about how to use the <tbe-elements> element for inbound messages.
The recipient's private key used for decryption must be present in the keystore.

The decryption key alias must be configured in the <encryption-key> element of
the <keystore> element.

Encrypting the Body of a SOAP Message
The SOAP message body can be encrypted with Application Sever Control or with
Oracle JDeveloper. An entry is created for the message body in the <tbe-element>
element with Body as the value of the local-part attribute and CONTENT as the
value of the mode attribute. Table 2–19, " Subelements of the <encrypt> Element" on
page 2-18 provides more information on these elements and attributes.

Example 3–28 illustrates a sample entry under the <tbe-element> element that will
encrypt the SOAP message body.

See Also:

■ "Encrypting the Body of a SOAP Message" on page 3-38 and
"Encrypting Elements of a SOAP Message" on page 3-39 provide
more information about how to use the <tbe-elements>
element for outbound messages.

■ "Encryption Elements for Outbound Messages" on page 2-18
provides more information on all of the subelements of
<encrypt>.

See Also:

■ "Configuring a Keystore" on page 3-6 provides more information
on configuring a keystore.

■ "Decryption Elements for Inbound Messages" on page 2-10
provides more information on the configuration elements used for
decryption.

Note: If you are encrypting the SOAP Body element, the mode
attribute must be set to CONTENT.

Configuring XML Encryption

Administering Web Services Security 3-39

Example 3–28 Encrypting the SOAP Message Body

...
<encrypt>
 <recipient-key alias="enckey"/>
 <tbe-elements>
 <tbe-element name-space="http://schemas.xmlsoap.org/soap/envelope"
local-part="Body" mode="CONTENT"/>
 </tbe-elements>
</encrypt>
...

Decrypting the Body of a SOAP Message
The SOAP message body can be decrypted with Application Sever Control or with
Oracle JDeveloper. An entry is created for the message body in the <tbe-element>
element with Body as the value of the local-part attribute and CONTENT as the
value of the mode attribute. Table 2–8, " Subelements of the <decrypt> Element" on
page 2-11 provides more information on the these elements and attributes.

Example 3–29 illustrates a sample entry under the <tbe-elements> element that will
decrypt the SOAP message body.

Example 3–29 Decrypting the body of a SOAP Message

...
<decrypt>
 <tbe-elements>
 <tbe-element name-space="http://schemas.xmlsoap.org/soap/envelope"
local-part="Body" mode="CONTENT"/>
 </tbe-elements>
</decrypt>
...

Encrypting Elements of a SOAP Message
Any part of the SOAP message can be encrypted by adding a <tbe-element>
element with the name-space and local-part attributes. If only one element exists
in the SOAP message with that specific name, then you can omit the name space.

By default, only the content of the element is encrypted. To encrypt the entire element,
set the mode attribute to ELEMENT.

Example 3–30 illustrates the code for encrypting a user name token.

Example 3–30 Encrypting a User Name Token Element

...
<encrypt>
 <recipient-key alias="enckey"/>
 <tbe-elements>
 <tbe-element
name-space=http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-wss-wssecurity-sec
-ext-1.0.xsd local-part="UsernameToken" mode="ELEMENT"/>
 </tbe-elements>
</encrypt>

Note: If you are decrypting the SOAP Body element, the mode
attribute must be set to CONTENT.

Configuring XML Encryption

3-40 Web Services Security Guide

...

Decrypting Elements of a SOAP Message
To decrypt a specific element, specify the <tbe-element> with name-space and
local-part attributes. By default, only the content of the element is decrypted. To
decrypt the entire element, set the mode attribute to ELEMENT.

If the element is not encrypted in the incoming request, then the request will be
rejected.

Example 3–31 illustrates the code to decrypt a UsernameToken element.

Example 3–31 Decrypting a SOAP Message Element

...
<decrypt>
 <tbe-elements>
 <tbe-element
name-space=http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-wss-wssecurity-sec
-ext-1.0.xsd local-part="UsernameToken" mode="ELEMENT"/>
 </tbe-elements>
</decrypt>
...

Encrypting a Message with a Signature Key
When the Web service application sends a response back to the same client, it can
choose to encrypt the response with the signature certificate that the client sent in the
first message exchange. Note that this assumes that during the first message exchange
the Web service client sent a signed SOAP message and the Web service application
successfully verified the signature.

To allow the application to encrypt the response with the client's signature certificate,
configure the <use-request-cert> element as part of a Web service application's
outbound encryption policy. Note that if the server interceptor is unable to find the
signature certificate (that is, the client has not sent a signed SOAP message or the
signature verification failed) then the Web service application will reject the encryption
request.

Accepting Multiple Keys to Decrypt Messages
The default behavior of a service defined under OracleAS Web Services is to accept
only one encryption key for the decryption of messages. The boolean property
oracle.security.wss.decryptusingski, which is set on the <decrypt>
element, allows a Web service to decrypt a message that could have been encrypted
with any one of a number of keys.

If the decryptusingski property is set to true, then the subject key identifier in the
<encryption-key> element in the received message is resolved to a private key in
the keystore. If this property is set to false, then the Web service will accept only one
encryption key to decrypt messages. By default, this property is set to false.

The following steps describe how to set up the private key in the keystore and the user
account to access the key.

1. Add the private key used for decryption to the keystore configured in the
<keystore> element of the security configuration.

Configuring XML Signature

Administering Web Services Security 3-41

2. Create a user account in ORACLE_HOME/j2ee/instance_
name/config/system-jazn-data.xml using Application Server Control. The
username must be of the type:

application-name.portname.key.<decryption-key-alias>

For example, to create a decryption key for the SecureService application with
port SecurePort and alias deckey, the user name would be the following:

SecureService.SecurePort.key.deckey

The password would be the decryption key password.

Example 3–32 illustrates the use of the oracle.security.wss.decryptusingski
property.

Example 3–32 Decrypting Inbound Messages

...
 <inbound>
 ...
 <decrypt>
 ...
 <property name="oracle.security.wss.decryptusingski" value="true"/>
 </decrypt>
 ...
 </inbound>
...

Configuring XML Signature
Message-level signature can be configured for a Web service at either the global or port
level. The <signature-key> element points to the key required for signing the
message. If this element is configured at the global level, then it will point to a
signature key in the global-level keystore. If it is configured at the port level, then it
will point to a signature key in the port-level keystore. If the element is not configured
at the port level, then global level values are used. To verify a signature, the trusted
root certificate must reside in the keystore. If you are using self-signed certificates,
then you can specify an alias in the <signature-key> element.

The <signature-key> element can possess an alias and a password. Oracle
JDeveloper and the command line keystore tools (Oracle Wallet and Java Key Store)
give you the option of assigning an alias and password when you create the key.

The following sections provide more information on signing and verifying the
signatures on SOAP messages.

■ Configuring Signature for Outbound Messages

■ Configuring Signature for Inbound Messages

■ Signing the Body of a SOAP Message

■ Signing Elements of a SOAP Message

■ Verifying a Signature on a Specific Element

See Also:

See Table 2–8, " Subelements of the <decrypt> Element" on page 2-11
for more information on the
oracle.security.wss.decryptusingski property.

Configuring XML Signature

3-42 Web Services Security Guide

■ Using the Subject Key Identifier for Signing

Configuring Signature for Outbound Messages
The <signature> subelement of the <outbound> element specifies the options that
are available for signing outbound messages. You can specify the algorithms that will
be used to sign the message with the <signature-method> element.

You can use <tbs-elements> to specify the elements in the SOAP message to be
signed. This element enables you to sign the entire message element or only the
contents of an element.

The <add-timestamp> element enables you to an additional level of security by
adding a timestamp to the signature. This timestamp is verified by the
<verify-timestamp> element for incoming messages.

Configuring Signature for Inbound Messages
For inbound messages, the <verify-signature> subelement of the <inbound>
element specifies how the signatures on received messages will be verified. You can
specify acceptable signature algorithms for incoming messages with the
<signature-method> element.

The <verify-timestamp> element defines an expiration time on the signature and
whether a creation time has been included. This timestamp element is configured with
the <add-timestamp> element defined for signing outgoing messages.

For incoming messages, the <tbs-elements> element indicates which elements of
the message are signed.

An additional property, clock-skew, can also be defined for incoming messages. The
clock skew value. This property enables you to specify an allowable clock difference
between the client and the server.

Signing the Body of a SOAP Message
A digital signature can be applied to the SOAP message body by using Application
Sever Control or Oracle JDeveloper. For more information, see the topics Implementing

See Also:

■ "Signing the Body of a SOAP Message" on page 3-42 and "Signing
Elements of a SOAP Message" on page 3-43 provide more
information about how to use the <tbs-elements> element for
outbound messages.

■ "Preventing Replay Attacks with Timestamps" on page 3-44
provides more information on how timestamps can be used to
help prevent replay attacks.

See Also:

■ "Verifying a Signature on a Specific Element" on page 3-43
provides more information about how to use the
<tbs-elements> element for inbound messages.

■ "Signature Verification Elements for Inbound Messages" on
page 2-9 provides more information on verification elements and
their attributes.

Configuring XML Signature

Administering Web Services Security 3-43

WS-Security for Web Services in the Oracle JDeveloper on-line help or Configuring
Security for a Web Service in the Application Server Control on-line help.

Signing Elements of a SOAP Message
Any part of a SOAP message can be signed by adding a <tbs-element> element
with the name-space and local-part attributes to identify the element. If only one
element exists in the SOAP message with the specified name, then you can omit the
name-space attribute.

Example 3–33 illustrates the code for signing a UsernameToken element in a SOAP
message.

Example 3–33 Signing a SOAP Message Element

<signature>
 <tbs-elements>
 <tbs-element
name-space=http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-wss-wssecurity-sec
-ext-1.0.xsd local-part="UsernameToken"/>
 </tbs-elements>
</signature>

You can sign and encrypt the SOAP Body element with Oracle JDeveloper or
Application Server Control. For all other elements, you must edit the
oracle-webservices.xml and <generated_name>_Stub.xml files manually.

Verifying a Signature on a Specific Element
To verify a signature on a specific element, specify the <tbs-element> element with
name-space and local-part attributes. If the element is not signed in the incoming
request, then the request will be rejected.

Example 3–34 illustrates the code for verifying a signed user name token.

Example 3–34 Configuration for Verifying a Signature for an Element

<verify-signature>
 <tbs-elements>
 <tbs-element
name-space=http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-wss-wssecurity-sec
-ext-1.0.xsd local-part="UsernameToken"/>
 </tbs-elements>
</verify-signature>

Using the Subject Key Identifier for Signing
If the receiver of the signed message has prior knowledge of the signer's public key
certificate, then instead of sending the entire certificate in the message, you can send
the certificate's subject key identifier. The subject key identifier is an extension of the
certificate which is used to calculate the public key. If your certificate does not have the
subject key identifier, then the request will be rejected.

To sign with subject key identifier, set the property element in the signature to
oracle.security.wss.signwithski, and set the value attribute to true. By
default, this property is set to false.

Example 3–35 illustrates how to set the subject key identifier
oracle.security.wss.signwithski property in the <property> subelement.

Configuring XML Signature

3-44 Web Services Security Guide

Example 3–35 Signing a Message Body with a Subject Key Identifier

<signature>
 <tbs-elements>
 <tbs-element name-space="http://schemas.xmlsoap.org/soap/envelope/"
local-part="Body"/>
</tbs-elements>
 <property name="oracle.security.wss.signwithski" value="true"/>
 </signature>

Preventing Replay Attacks with Timestamps
Applications can use timestamps to prevent replay attacks. A timestamp can be used
to protect messages by identifying an expiration time after which the message is no
longer valid. Validation is performed by the receiving Web service.

To account for any time differences between the client and the server, you can
configure the clock-skew property in the <verify-signature> element. For more
information on this property, see Table 2–7, " Subelements of the <verify-signature>
Element" on page 2-9.

Adding Timestamps
The <add-timestamp> subelement of the <signature> element enables you to add
a timestamp to outgoing SOAP messages. To enhance message security, the expiry
attribute enables you to set an expiration time on the signature; the created attribute
inserts the signature creation time.

Example 3–36 illustrates a configuration for adding a timestamp to outbound
messages. According to the configuration, the outbound message includes a creation
time in the timestamp, and the signature should be considered valid for 3000 seconds
(50 minutes) after it is sent.

Example 3–36 Configuration to Add a Timestamp to Outbound Messages

...
<outbound>
 ...
 <signature>
 ...
 <add-timestamp created="true" expiry="3000"/>
 ...
 </signature>
 ...
</outbound>
...

Verifying TimeStamps
The <verify-timestamp> subelement of the <verify-signature> element
enables you to verify the timestamp placed on inbound SOAP messages. The
<verify-timestamp> subelement has two attributes, expiry and created. The

Note: Configure the signature key in the security configuration to
point to the signer's private key. The signer's certificate must have the
SubjectKeyIdentifierExtension. Also, the receiver's keystore
must contain the signer's certificate to resolve the subject key
identifier.

Configuring XML Signature

Administering Web Services Security 3-45

expiry time sets the expiration time on the freshness of the message. If the message
arrives after the expiration time, the message is rejected. If the created attribute is set
to true, then the timestamp on the SOAP message is checked to see if it includes a
creation time. If the creation time is not included then the message is rejected.

Example 3–37 illustrates configuration of the verify timestamp. According to the
configuration, an inbound message is expected to contain a creation time in its
timestamp and the signature should be accepted if message arrives within 28800
seconds (8 hours) of when it is sent.

Example 3–37 Configuring Timestamp Verification on Inbound Messages

...
<inbound>
 ...
 <verify-signature>
 ...
 <verify-timestamp expiry="28800" created="true"/>
 ...
 </verify-signature>
...
</inbound>
...

Adjusting the Clock Skew Between a Client and a Web Service Application
OracleAS Web Services Security provides a way to synch-up any time differences
between the client and a Web service application when they are running on different
machines. This is a useful function when SOAP messages with timestamps are being
passed.

For example, the client which runs on one machine signs a SOAP message, adds a
timestamp, and sends it to the Web Service application. The application, which runs on
a separate machine, receives the message and verifies the signature and the timestamp.
If the clocks on the two machines are not in sync, there will be a mismatch between the
timestamps and the message will be rejected.

Web Services Security provides a clock-skew property on the
<verify-signature> element which will sync-up time differences between the two
machines. The default value of clock-skew is 0 and the units are measured in
milliseconds.

Example 3–38 illustrates setting the clock skew between the client and Web service
application to three seconds.

Example 3–38 Setting Clock Skew Between the Client and Web Service Application

...
<verify-signature>
 <signature-methods>
 <signature-method>
 RSA-SHA1
 </signature-method>
 </signature-methods>
 <property name="clock-skew" value="3000"/>
 <verify-timestamp expiry="28800" created="true"/>
 ...
</verify-signature>
...

Combining Tokens, Encryption, and Signature in a Configuration

3-46 Web Services Security Guide

Combining Tokens, Encryption, and Signature in a Configuration
You can combine security tokens, encryption, and signature in a server and client
configuration in any combination. The configurations for the client and server must be
compatible. As an example, this section illustrates how you can configure the client
side and server side deployment descriptors to use a SAML token for authentication
with encryption and signature.

Example 3–39 illustrates a configuration for the client side deployment descriptor,
<generated_name>.Stub.xml. The configuration uses the SAML token for
authentication, and the message body and SAML assertion are signed for integrity
protection. The message body is encrypted to provide message confidentiality. This
can be configured using Oracle JDeveloper.

By default, the SAML subject confirmation method is sender-vouches (signed). A
SAML assertion is generated for the user identity jdoe with sender-vouches
confirmation. The assertion is signed using the signature key with the alias signkey.

The message body is signed using signkey and a timestamp is added for message
freshness with the expiration time set to 3000 seconds. The default signature algorithm
RSA-SHA1 is used for signing. The message body is also encrypted with the recipient's
key that has the alias enckey. The default encryption algorithm is AES-128 and the
default key transport algorithm is RSA-1_5. The signature and the recipient's key are
stored in mykeystore.jks.

Example 3–39 Client-Side Deployment Descriptor Configured for SAML Token,
Encryption, and Signature

<oracle-webservice-clients>
 <webservice-client>
 <port-info>
 <runtime enabled="security">
 <security>
 <key-store path="./mykeystore.jks" store-pass="password"/>
 <signature-key alias="signkey" key-pass="password"/>
 <outbound>
 <saml-token name="jdoe"/>
 <signature>
 <tbs-elements>
 <tbs-element
name-space="http://schemas.xmlsoap.org/soap/envelope/" local-part="Body"/>
 </tbs-elements>
 <add-timestamp created="true" expiry="3000"/>
 </signature>
 <encrypt>
 <recipient-key alias="enckey"/>
 <tbe-elements>
 <tbe-element
name-space="http://schemas.xmlsoap.org/soap/envelope/" local-part="Body"/>
 </tbe-elements>
 </encrypt>
 </outbound>
 </security>
 </runtime>
 <operations>
 <operation name="sayHello">
 </operation>
 </operations>
 </port-info>
 </webservice-client>

Combining Tokens, Encryption, and Signature in a Configuration

Administering Web Services Security 3-47

 </oracle-webservice-clients>

The server decrypts the message, verifies the signature on the message body and the
assertion, and then authenticates the user using the SAML token.

Example 3–40 illustrates the complimentary configuration for the server side
deployment descriptor, oracle-webservices.xml. This configuration can also be
created by using Oracle JDeveloper.

The message body is decrypted using the private key with alias deckey. The
signature is verified (both body and assertion signature) using the public key attached
in the SOAP message. The trusted CA certificates are verified using the keystore
mykeystore.jks. The user is authenticated and a subject is created for the user
jdoe. The sender's public key certificate and trusted certificates, as well as the
recipient's public key certificate for decryption are stored in mykeystore.jks.

Example 3–40 Server-Side Deployment Descriptor Configured for SAML Token,
Encryption, and Signature

<oracle-webservices>
<webservice-description name="SecureService">
<port-component name="SecurePort">
 <runtime enabled="security">
 <security>
 <key-store path="./mykeystore.jks" store-pass="password"/>
 <signature-key alias="signkey" key-pass="password"/>
 <encryption-key alias="deckey" key-pass="password"/>
 </security>
 </runtime>
 <operations>
 <operation name="sayHello">
 <runtime>
 <security>
 <inbound>
 <verify-saml-token>
 <subject-confirmation-methods>
 <confirmation-method>SENDER-VOUCHES</confirmation-method>
 </subject-confirmation-methods>
 </verify-saml-token>
 <verify-signature>
 <tbs-elements>
 <tbs-element name-space="http://schemas.xmlsoap.org/soap/envelope/"
local-part="Body"/>
 </tbs-elements>
 </verify-signature>
 <decrypt>
 <tbe-elements>
 <tbe-element name-space="http://schemas.xmlsoap.org/soap/envelope/"
local-part="Body"/>
 </tbe-elements>
 </decrypt>
 </inbound>
 </security>
 </runtime>

Note: The subject confirmation method in the
<verify-saml-token> element can be omitted. If it is present, it
must match either the subject confirmation in the <saml-token>
element or the default value.

Combining Tokens, Encryption, and Signature in a Configuration

3-48 Web Services Security Guide

 </operation>
 </operations>
</port-component>
</webservice-description>
</oracle-webservices>

Building Secure Web Services 4-1

4
Building Secure Web Services

This chapter provides the generalized steps for assembling a secure Web service.
Oracle Application Server Web Services provides the WebServicesAssembler tool
which enables you to assemble the service top down (from a WSDL) or bottom up
(from Java classes, EJBs, or database resources). The tool can assemble your service
either from Ant tasks in a build script or by entering commands on the command line.

Assembling a Secure Web Service
In OracleAS Web Services Security, the security policies for a Web service are specified
in XML configuration files. Some examples of the security policies they can describe
include username token authentication and XML signature and encryption of the
SOAP message body.

The WebServicesAssembler tool adds the policies declared in the configuration files to
the Web service at assembly time. The policies can be assembled into the service by
either the bottom up or top down approach. You must provide one configuration file
for the server and a corresponding file for the client.

These sections describe how to assemble security into a Web service:

■ Assembling Security into a Web Service Top Down

■ Assembling Security into a Web Service Bottom Up

These sections describe how to create the files for the server and the client. They also
describe how to specify their content to implement username authentication and the
XML signature and encryption security policies:

■ Creating a Server-Side Security Configuration File

See Also:

For a detailed description of using the WebServicesAssembler tool to
build Web services, see the Oracle Application Server Web Services
Developer’s Guide.

Note: The Oracle JDeveloper IDE and the Application Server Control
tools can aid your development of secure Web services. You can use
the Oracle JDeveloper IDE to build, configure, deploy, and test a
secure Web service. You can also use Application Server Control tool
to deploy, manage, and monitor it. For more information on using
these tools to build and deploy Web services, see the topics Developing
with Web Services in the Oracle JDeveloper on-line help and Web
Services Page in the Application Server Control on-line help.

Assembling a Secure Web Service

4-2 Web Services Security Guide

■ Creating a Client-Side Security Configuration File

Assembling Security into a Web Service Top Down
The following steps provide a general outline of how to add a security configuration to
a Web service application that is being assembled top down from an existing WSDL.
To perform this assembly, the WebServicesAssembler tool provides the
topDownAssemble command. Only the steps that concern adding security are
described in detail. If you need more information on an individual step, see
"Assembling a Web Service from a WSDL" in the Oracle Application Server Web Services
Developer’s Guide.

1. Generate the service endpoint interface using WebServicesAssembler.

Provide a WSDL from which the Web service will be generated as input to the
WebServicesAssembler genInterface command.

2. Compile the generated interfaces and type classes from Step 1 using the Java
compiler.

3. Implement the Java service endpoint for the Web service you want to provide.

The Java service endpoint must have a method signature that matches every
method in the generated Java interface in Step 1.

4. Compile the Java service endpoint.

5. Create a server-side security configuration file.

The WebServicesAssembler tool uses this file to generate security information into
the oracle-webservices.xml server-side deployment descriptor. "Creating a
Server-Side Security Configuration File" on page 4-10 provides instructions on
how to create this file.

6. (Optional) Create a keystore.

If you are signing or encrypting data, or verifying signatures or decrypting data,
you must have a keystore to store trusted certificates and public and private keys.
See "Creating a Keystore" on page 3-2 for more information on creating a Oracle
Wallet or JKS keystore.

7. (Optional) Bundle the keystore.

If your server-side security configuration contains a <decrypt>,
<verify-signature>, <verify-x509-token>, or <verify-saml-token>
element in the inbound policy, or if it contains an <encrypt>, <x509-token>,
<saml-token>, or <signature> element in the outbound policy, then you must
either bundle a keystore with your application or specify a global-level keystore.

To bundle a keystore with your application, follow these steps:

a. Create an ear/META-INF directory in the directory where the service is
generated (that is, the directory specified as the target of the
WebServicesAssembler topDownAssemble command's output argument).

b. Copy the keystore into the ear/META-INF directory.

8. Assemble the service.

Assemble the Web service using the WebServicesAssembler topDownAssemble
command. This is where you generate the security configuration into the Web
service. Note that the path to the serverConfig.xml file, which contains the
security configuration, is specified with the ddFileName argument.

Assembling a Secure Web Service

Building Secure Web Services 4-3

Command line:

java -jar wsa.jar -topDownAssemble
 -wsdl SecureService.wsdl
 -unwrapParameters false
 -className oracle.demo.security.SecureServiceImpl
 -input build/classes/service
 -output build
 -ear dist/secure_service.ear
 -packageName oracle.demo.security
 -fetchWsdlImports true
 -ddFileName serverConfig.xml
 -classpath ./build/classes/client/ :
 $OC4J_HOME/jlib/jaxen.jar :
 $OC4J_HOME/jlib/osdt_wss.jar :
 $OC4J_HOME/jlib/osdt_cert.jar :
 $OC4J_HOME/jlib/osdt_xmlsec.jar :
 $OC4J_HOME/jlib/osdt_core.jar :
 $OC4J_HOME/jlib/osdt_saml.jar :
 $OC4J_HOME/jlib/oraclepki.jar :
 $OC4J_HOME/j2ee/home/jazn.jar :
 $OC4J_HOME/j2ee/home/jazncore.jar :
 $OC4J_HOME/j2ee/home/jaznplugin.jar

Ant task:

<oracle:topDownAssemble appName="secure_service"
 wsdl="./wsdl/SecureService.wsdl"
 unwrapParameters="false"
 input="build/classes/service "
 output="build"
 ear="dist/secure_service.ear"
 packageName="oracle.demo.security"
 fetchWsdlImports="true"
 ddFileName=serverConfig.xml>
 <oracle:portType
 className="oracle.demo.topdowndoclit.service.DocLitLoggerImpl"
 </oracle:portType>
 <oracle:classpath>
 <pathelement location="build/classes/client/" />
 <pathelement location="${OC4J_HOME}/jlib/jaxen.jar" />
 <pathelement location="${OC4J_HOME}/jlib/osdt_wss.jar" />
 <pathelement location="${OC4J_HOME}/jlib/osdt_cert.jar" />
 <pathelement location="${OC4J_HOME}/jlib/osdt_xmlsec.jar" />
 <pathelement location="${OC4J_HOME}/jlib/osdt_core.jar" />
 <pathelement location="${OC4J_HOME}/jlib/osdt_saml.jar" />
 <pathelement location="${OC4J_HOME}/jlib/oraclepki.jar" />
 <pathelement location="${OC4J_HOME}/j2ee/home/jazn.jar" />
 <pathelement location="${OC4J_HOME}/j2ee/home/jazncore.jar" />
 <pathelement location="${OC4J_HOME}/j2ee/home/jaznplugin.jar" />
 </oracle:classpath>
 </oracle:topDownAssemble>

In this command and Ant task:

■ topDownAssemble—Creates the required classes and deployment
descriptors for a Web service based on a WSDL description. The files can be
stored in either an EAR file, a WAR file, or a directory.

■ wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document.

Assembling a Secure Web Service

4-4 Web Services Security Guide

■ unwrapParameters—When set to false the generated service endpoint
interface will be generated with wrappers around the input parameter and the
return type.

■ className—Specifies the name of the class (including the package name)
that is the implementation class for the Web service.

■ input—Specifies the directory or JAR containing the classes that should be
copied to WEB-INF/classes. This argument will be added to the classpath
used by the WebServicesAssembler.

■ output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created.

■ ear—Specifies the name and location of the generated EAR.

■ packageName—Specifies the package name that will be used for generated
classes if no package name is declared in the JAX-RPC mapping file.

■ fetchWsdlImports—Indicates if you want to make a local copy of the
WSDL and everything it imports.

■ ddFileName—Specifies the oracle-webservices.xml deployment
descriptor that contains the settings you want to assign to the Web service.

■ classpath—Specifies the classpath that contains any user-created classes
given to WebServicesAssembler. One reason to specify this argument is if you
have already created some value type classes or exceptions and you do not
want WebServicesAssembler to overwrite them.

At a minimum, specify the name of the WSDL, the class name that implements the
Service (generated in Step 3), and the name of the output directory. The
WebServicesAssembler tool outputs an EAR file, and a WAR file within the EAR.
The WAR file contains the service artifacts, the implementation classes, the Web
deployment descriptor (web.xml) and the JAX-RPC deployment descriptor
(webservices.xml) and oracle-webservices.xml with the security
configuration.

9. Deploy and bind the service into a running instance of OC4J.

You can deploy the service by using Application Server Control or by using
admin_client.jar on the command line. For more information on deployment,
see Deploying an Application in the Application Server Control on-line help and the
Oracle Containers for J2EE Deployment Guide.

10. Configure a security provider on the server-side to authenticate user data sent by
the client.

See Also:

"Using WebServicesAssembler", in the Oracle Application Server Web
Services Developer’s Guide for more detailed information on these
arguments.

Note: If you want to authenticate the user based on the username
token, then a user entry must exist with the username and password
sent by client. For information on creating a file-based repository of
user entries, see the Oracle Containers for J2EE Security Guide.

Assembling a Secure Web Service

Building Secure Web Services 4-5

For more information on configuring security providers, see the Oracle Containers
for J2EE Security Guide.

11. (Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Test Page for each deployed Web service.

For more information on the Web Service Test Page, see the Oracle Application
Server Web Services Developer’s Guide.

12. Create the client security configuration file.

Create a client configuration file that specifies the security that will be applied to
your Web service client. In this example, the file is called clientConfig.xml.
The WebServicesAssembler tool uses this file to generate the client-side
deployment descriptor <generated_name>_Stub.xml. "Creating a Client-Side
Security Configuration File" on page 4-14 provides instructions on how to create
the client configuration file.

13. Generate the secure client code.

For the J2SE environment, generate stubs (client proxies) for a J2SE Web service
client by running the WebServicesAssembler tool with the genProxy command.

For information on assembling a J2EE client, see "Assembling a J2EE Client" in the
Oracle Application Server Web Services Developer’s Guide.

For example, the following command generates client proxies that can be used for
a J2SE client. Note that the ddFileName argument specifies the client
configuration file.

Command line:

java -jar wsa.jar -genProxy
-wsdl http://localhost:8888/webservice/webservice?WSDL
-unwrapParameters false
-output build/src/client
-packageName oracle.demo.security.stubs
-ddFileName clientConfig.xml

Ant task:

<oracle:genProxy
wsdl="http://localhost:8888/webservice/webservice?WSDL"
unwrapParameters="false"
output="build/src/client"
packageName="oracle.demo.security.stubs"
ddFileName="clientConfig.xml"
/>

In this command and Ant task:

■ genProxy—Creates a static proxy stub that can be used by a J2SE Web service
client.

■ wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document.

■ unwrapParameters—This argument can be set only for document-literal
operations and will be ignored for other message formats. When set to false
the generated service endpoint interface will be generated with wrappers
around the input parameter and the return type.

■ output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created.

Assembling a Secure Web Service

4-6 Web Services Security Guide

■ packageName—Specifies the package name that will be used for generated
classes if no package name is declared in the JAX-RPC mapping file.

■ ddFileName—Specifies the oracle-webservices.xml deployment
descriptor that contains the settings you want to assign to the Web service.

At a minimum, specify the name of the WSDL, the name of the output directory
and the name of the client configuration file. The WebServicesAssembler tool
generates a <generated_name>_Stub.xml. A client application uses the stub to
invoke operations on a remote service.

14. Compile and run the client.

Assembling Security into a Web Service Bottom Up
The following steps provide a general outline of how to add a security configuration to
a Web Service application that is being assembled bottom up. The
WebServicesAssembler tool provides several specialized commands based on whether
you are assembling the services from Java classes, EJBs, JMS destinations, or database
resources. These commands are summarized in "Ant Tasks and
WebServicesAssembler" on page 4-26.

In the following example, a Web service is assembled from Java classes. To perform
this assembly, the WebServicesAssembler tool provides the assemble command.
Only the steps that concern adding security are described in detail. If you need more
information on an individual step, see "Assembling a Web Service with Java Classes"
in the Oracle Application Server Web Services Developer’s Guide.

1. Provide the compiled Java class that you want to expose as a Web service and its
compiled interface.

2. Create the Web service security configuration file.

In this example, the file is called serverConfig.xml. The
WebServicesAssembler tool uses this file to generate security information into the
oracle-webservices.xml server-side deployment descriptor. "Creating a
Server-Side Security Configuration File" on page 4-10 provides instructions on
how to create this file.

3. (Optional) Create a keystore.

If you are signing or encrypting data, or verifying signatures or decrypting data,
you must have a keystore to store trusted certificates and public and private keys.
See "Creating a Keystore" on page 3-2 for more information on creating a Oracle
Wallet or JKS keystore.

4. (Optional) Bundle the keystore.

If your server-side security configuration contains a <decrypt>,
<verify-signature>, <verify-x509-token>, or <verify-saml-token>
element in the inbound policy, or if it contains an <encrypt>, <x509-token>,
<saml-token>, or <signature> element in the outbound policy, then you must
either bundle a keystore with your application or specify a global-level keystore.

To bundle a keystore with your application, follow these steps:

See Also:

"Using WebServicesAssembler", in the Oracle Application Server Web
Services Developer’s Guide for more detailed information on these
arguments.

Assembling a Secure Web Service

Building Secure Web Services 4-7

a. Create an ear/META-INF directory in the directory where the service is
generated (that is, the directory specified as the target of the
WebServicesAssembler output argument).

b. Copy the keystore into the ear/META-INF directory.

5. Assemble the secure Web service.

Assemble the Web service by running the WebServicesAssembler tool with the
appropriate *Assemble command for the Web service you are creating. Note that
the path to the serverConfig.xml server configuration file is specified with the
ddFileName argument.

Note that this example assumes that the command is run on the UNIX operating
system. Directory paths use the forward slash (/) and the classpath argument uses
a colon (:) to separate individual classpath elements. If you are using the
Windows operating system, use a back slash (\) in directory paths and separate
individual classpath elements with a semicolon (;).

Command line:

java -jar wsa.jar -assemble
 -appName securehello
 -serviceName SecureHelloService
 -interfaceName oracle.demo.hello.HelloInterface
 -className oracle.demo.hello.HelloImpl
 -input ./build/classes/client
 -output build
 -ear dist/securehello.ear
 -uri SecureHelloService
 -ddFileName serverConfig.xml
 -classpath ./build/classes/client/ :
 $OC4J_HOME/jlib/jaxen.jar :
 $OC4J_HOME/jlib/osdt_wss.jar :
 $OC4J_HOME/jlib/osdt_cert.jar :
 $OC4J_HOME/jlib/osdt_xmlsec.jar :
 $OC4J_HOME/jlib/osdt_core.jar :
 $OC4J_HOME/jlib/osdt_saml.jar :
 $OC4J_HOME/jlib/oraclepki.jar :
 $OC4J_HOME/j2ee/home/jazn.jar :
 $OC4J_HOME/j2ee/home/jazncore.jar :
 $OC4J_HOME/j2ee/home/jaznplugin.jar

Ant task:

<oracle:assemble appName="securehello"
 serviceName'"SecureHelloService"
 input="./build/classes/client"
 output="build"
 ear="dist/securehello.ear"
 >
 <oracle:porttype
 interfaceName="oracle.demo.hello.HelloInterface"
 className="oracle.demo.hello.HelloImpl"
 <oracle:port uri="SecureHelloService" />
 </oracle:porttype>
 <oracle:classpath>
 <pathelement location="build/classes/client/" />
 <pathelement location="${OC4J_HOME}/jlib/jaxen.jar" />
 <pathelement location="${OC4J_HOME}/jlib/osdt_wss.jar" />
 <pathelement location="${OC4J_HOME}/jlib/osdt_cert.jar" />
 <pathelement location="${OC4J_HOME}/jlib/osdt_xmlsec.jar" />

Assembling a Secure Web Service

4-8 Web Services Security Guide

 <pathelement location="${OC4J_HOME}/jlib/osdt_core.jar" />
 <pathelement location="${OC4J_HOME}/jlib/osdt_saml.jar" />
 <pathelement location="${OC4J_HOME}/jlib/oraclepki.jar" />
 <pathelement location="${OC4J_HOME}/j2ee/home/jazn.jar" />
 <pathelement location="${OC4J_HOME}/j2ee/home/jazncore.jar" />
 <pathelement location="${OC4J_HOME}/j2ee/home/jaznplugin.jar" />
 </oracle:classpath>
</oracle:assemble>

In this command and Ant task:

■ assemble—Generates a Web service from Java files bottom up. The
command creates all of the files required to create a deployable archive.

■ appName—Specifies the name of an application. Usually, this name is used as
a base value for other arguments like context and uri.

■ serviceName—Specifies the service name.

■ interfaceName—Specifies the name of a Java class (including the package
name) that contains the service endpoint interface (SEI).

■ className—Specifies the name of the class (including the package name)
that is the implementation class for the Web service.

■ input—Specifies the directory or JAR containing the classes that should be
copied to WEB-INF/classes. This argument will be added to the classpath
used by the WebServicesAssembler.

■ output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created.

■ ear—Specifies the name and location of the generated EAR.

■ uri—Specifies the URI to use for the Web service.

■ ddFileName—Specifies the oracle-webservices.xml deployment
descriptor that contains the settings you want to assign to the Web service.

■ classpath—Specifies the classpath that contains any user-created classes
given to WebServicesAssembler. One reason to specify this argument is if you
have already created some value type classes or exceptions and you do not
want WebServicesAssembler to overwrite them.

The output of this command is an EAR file that contains the contents of a WAR file
that can be deployed to an OC4J instance. The build directory specified by the
output argument contains separate directories for the EAR file and the Java
classes. The dist directory contains the J2EE Web services-compliant application
EAR file, securehello.ear.

See Also:

"Using WebServicesAssembler", in the Oracle Application Server Web
Services Developer’s Guide for more detailed information on these
arguments.

Note: If you want to authenticate the user based on the username
token, then a user entry must exist with the username and password
sent by client. See "Configuring File Based Providers" in the Oracle
Containers for J2EE Security Guide for information on adding user
entries to the server.

Assembling a Secure Web Service

Building Secure Web Services 4-9

6. Deploy and bind the service.

You can deploy the service by using Application Server Control or by using
admin_client.jar on the command line. For more information on deployment,
see Deploying an Application in the Application Server Control on-line help and the
Oracle Containers for J2EE Deployment Guide.

7. Configure a security provider on the server-side to authenticate user data sent by
the client.

See the Oracle Containers for J2EE Security Guide for more information on security
provider configurations.

8. (Optional) Check that deployment succeeded. OracleAS Web Services provides a
Web Service Home Page for each deployed Web service.

For more information on the Web Services Home Page, see "Testing Web Service
Deployment" in the Oracle Application Server Web Services Developer’s Guide.

9. Create a client security configuration.

Create a client configuration file that specifies the security that will be applied to
your Web service client. In this example, the file is called clientConfig.xml.
The WebServicesAssembler tool uses this file to generate the client-side
deployment descriptor <generated_name>_Stub.xml. "Creating a Client-Side
Security Configuration File" on page 4-14 provides instructions on how to create
the client configuration file.

10. Assemble secure client code.

For the J2SE environment, generate stubs (client proxies) for a J2SE Web service
client by running the WebServicesAssembler tool with the genProxy command.

For information on assembling a J2EE client, see "Assembling a J2EE Client" in the
Oracle Application Server Web Services Developer’s Guide.

For example, the following command generates client proxies that can be used for
a J2SE client. Note that the ddFileName argument specifies the client
configuration file.

Command line:

java -jar wsa.jar -genProxy
-wsdl http://localhost:8888/webservice/webservice?WSDL
-unwrapParameters false
-output build/src/client
-packageName oracle.demo.security.stubs
-ddFileName clientConfig.xml

Ant task:

<oracle:genProxy
wsdl="http://localhost:8888/webservice/webservice?WSDL"
unwrapParameters="false"
output="build/src/client"
packageName="oracle.demo.security.stubs"
ddFileName="clientConfig.xml"
/>

In this command and Ant task:

■ genProxy—Creates a static proxy stub that can be used by a J2SE Web service
client.

Creating a Server-Side Security Configuration File

4-10 Web Services Security Guide

■ wsdl—Specifies the absolute file path, relative file path, or URL to a WSDL
document.

■ unwrapParameters—This argument can be set only for document-literal
operations and will be ignored for other message formats. When set to false
the generated service endpoint interface will be generated with wrappers
around the input parameter and the return type.

■ output—Specifies the directory where generated files will be stored. If the
directory does not exist, it will be created.

■ packageName—Specifies the package name that will be used for generated
classes if no package name is declared in the JAX-RPC mapping file.

■ ddFileName—Specifies the oracle-webservices.xml deployment
descriptor that contains the settings you want to assign to the Web service.

At a minimum, specify the name of the WSDL, the name of the output directory,
and the client configuration file. The WebServicesAssembler tool generates a
<generated_name>_Stub.xml. A client application uses the stub to invoke
operations on a remote service.

11. Compile and run the client.

Creating a Server-Side Security Configuration File
This section describes how to create a server-side Web service security configuration
file to verify a username token. In this example, the file is called serverConfig.xml.
The WebServicesAssembler tool appends the data found in this file into the
oracle-webservices.xml server-side deployment descriptor.

The following general steps describe how to create the server-side Web service security
configuration file.

1. Create a file using any text editor.

Example 4–1 on page 4-11 provides a sample server-side configuration file named
serverConfig.xml.

2. Enter the XML elements to set the security configuration in the file.

The following sections provide sample server-side Web service security
configurations for username token and for XML signature and encryption.

■ "Defining a Server-Side, Port Level Security Configuration for Username
Token" provides a sample configuration file that enforces username token
verification at the port-level.

See Also:

"Using WebServicesAssembler", in the Oracle Application Server Web
Services Developer’s Guide for more detailed information on these
arguments.

Note: If you are using Oracle JDeveloper to secure your Web service,
then the security configuration is automatically generated into the
oracle-webservices.xml file.

Creating a Server-Side Security Configuration File

Building Secure Web Services 4-11

■ "Defining a Server-Side, Operation-Level Security Configuration for Username
Token" provides a sample configuration file that enforces username token
verification at the operation-level.

■ "Defining a Server-Side, Port-Level Security Configuration to Verify XML
Signature and Decryption" provides a sample configuration file that
implements XML signature and XML encryption at the port level.

■ "Defining a Server-Side, Operation-Level Security Configuration for XML
Signature and Decryption" provides a sample configuration file that
implements XML signature and XML encryption at the operation level.

3. Save the file.

Defining a Server-Side, Port Level Security Configuration for Username Token
Example 4–1 illustrates a sample server-side Web services configuration file which
enforces security on the port level. This means that the user name token will have to be
verified before access is granted to any of the operations in the port. Note that line
numbers have been added for reference purposes only. They should not appear in
your file. "Security Elements for Inbound Messages" on page 2-7 provides more
information on the <verify-username-token> element for inbound security.

■ Line 2: This line identifies the Web service to which security will be applied. The
name attribute value should match the service name in the WSDL.

■ Line 3: This line identifies the port name. It must match a valid port name in the
WSDL.

■ Lines 4-10: In this example security is applied at port level. The <runtime
enabled="security"> element indicates that at run time, Web services security
will be enforced based on the policy defined in the <security> element. Since
security is configured at port level in this example, the same security will be
applied to all operations exposed by this Web service.

■ Lines 6-8: These lines configure the inbound security for the incoming request. In
this example, the <verify-username-token/> element indicates that the Web
service application is expecting a username token in the request header. You can
also enforce the password type and whether a nonce is required. See "Security
Elements for Inbound Messages" on page 2-7 for more information on this
element.

■ Lines 11-13: These lines define the operations that the Web service port exposes.

Example 4–1 Sample Server-Side Configuration File for Port-Level Username Token
Verification

1. <oracle-webservices>
2. <webservice-description name="SecureService">
3. <port-component name="SecureServiceSoap">
4. <runtime enabled="security">
5. <security>
6. <inbound>
7. <verify-username-token/>
8. </inbound>
9. </security>
10. </runtime>
11. <operations>
12. <operation name="getCatalog"/>
13. </operations>
14. </port-component>

Creating a Server-Side Security Configuration File

4-12 Web Services Security Guide

15. </webservice-description>
16. </oracle-webservices>

Defining a Server-Side, Operation-Level Security Configuration for Username Token
Example 4–2 illustrates a sample server-side Web services configuration file which
enforces security on the operation level. This means that the username token will have
to be verified before access is granted to the specified operation. Note that line
numbers have been added for reference purposes only. They should not appear in
your file.

The following configuration is similar to Example 4–1 with one major difference:

■ Lines 6-14: The username verification is applied only for the getCatalog
operation.

Example 4–2 Sample Server-Side Configuration File for Operation Level Username
Token Verification

1. <oracle-webservices>
2. <webservice-description name="SecureService">
3. <port-component name="SecureServiceSoap">
4. <runtime enabled="security"/>
5. <operations>
6. <operation name="getCatalog">
7. <runtime>
8. <security>
9. <inbound>
10. <verify-username-token/>
11. </inbound>
12. </security>
13. </runtime>
14. </operation>
15. </operations>
16. </port-component>
17. </webservice-description>
18. </oracle-webservices>

Defining a Server-Side, Port-Level Security Configuration to Verify XML Signature and
Decryption

Since the settings are made on the port level, verification must take place before access
is granted to any of the operations in the port. See "Keystore Elements" on page 2-5
and "Signature and Encryption Key Elements" on page 2-6 for more information on
configuring keystore, encryption and signature elements. Note that line numbers have
been added for reference purposes only. They should not appear in your file.

■ Lines 4 -25: These lines set the keystore, keys, and inbound policy at the port level.
Chapter 3, "Administering Web Services Security" provides more information on
generating keystore and keys.

■ Lines 6-8: These lines set the key-store path attribute to point to the keystore
that is deployed with the application. The store-pass attribute contains the
keystore password. The signature-key alias attribute is used to verify the

See Also:

See "Security Elements for Inbound Messages" on page 2-7 for more
information on the <verify-username-token>element.

Creating a Server-Side Security Configuration File

Building Secure Web Services 4-13

trusted certificate. The encryption-key alias attribute is used to decrypt the
message. Note that signalias/encalias must be in the testks.jks file.

■ Lines 11-18: These lines specify the message integrity policy. The server expects the
body and the timestamp to be signed. The signature must have a timestamp with
the created value set to the creation time. The expiry attribute specifies when the
signature will expire (that is, the current time must be less than the value of the
creation time plus the value of expiry). The value of the clock-skew attribute is
used to adjust the system clocks, when the Web service client and the Web service
are on different machines.

■ Lines 19-23: These lines specify the message confidentiality policy. The server
expects the content of the message body to be encrypted.

Example 4–3 Sample Server-Side Configuration File with Keystore and Inbound Policy
for Decryption and Signature Verification

1. <oracle-webservices>
2. <webservice-description name="SecureHelloService">
3. <port-component name="SecureHelloPort">
4. <runtime enabled="security">
5. <security>
6. <key-store path="META-INF/testks.jks" store-pass="keystorepwd"/>
7. <signature-key alias="signalias" key-pass="signkeypwd"/>
8. <encryption-key alias="encalias" key-pass="enckeypwd"/>
9. </security>
10. <inbound>
11. <verify-signature>
12. <tbs-elements>
13. <tbs-element name-space="http://schemas.xmlsoap.org/soap/envelope/"
local-part="Body"/>
14. <tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-uti
lity-1.0.xsd" local-part="Timestamp"/>
15. </tbs-elements>
16. <verify-timestamp created="true" expiry="28800"/>
17. <property name="clock-skew" value="3000" />
18. </verify-signature>
19. <decrypt>
20. <tbe-elements>
21. <tbe-element name-space="http://schemas.xmlsoap.org/soap/envelope/"
local-part="Body"/>
22. </tbe-elements>
23. </decrypt>
24. </inbound>
25. </runtime>
26. <operations>
27. <operation name="sayHello">
28. </operation>
29. </operations>
30. </port-component>
31. </webservice-description>
32. </oracle-webservices>

Defining a Server-Side, Operation-Level Security Configuration for XML Signature and
Decryption

Example 4–4 illustrates a sample server-side Web services configuration file where the
global level keystore settings are used for signature verification and decryption. Note

Creating a Client-Side Security Configuration File

4-14 Web Services Security Guide

that line numbers have been added for reference purposes only. They should not
appear in your file.

■ Lines 7-26: These lines indicate that security is enforced for the sayHello()
operation. The server expects to receive signed and encrypted messages.

■ Lines 10-17: These lines specify the message integrity policy. The server expects the
message body and the timestamp to be signed. The signature must have a
timestamp with the created value set to creation time. The expiry attribute
specifies when the timestamp will expire (that is, the current time must be less
than the value of the creation time plus the value of expiry). The clock-skew
attribute is used to adjust the system clocks, when the Web service client and the
Web service are on different machines.

■ Lines 18 -22: These lines specify the message confidentiality policy. The server
expects the content of the body to be encrypted.

Example 4–4 Sample Server-Side Configuration File with Operation-Level Decryption
and Signature Verification

1. <oracle-webservices>
2. <webservice-description name="SecureHelloService">
3. <port-component name="SecureHelloPort">
4. <runtime enabled="security">
5. <operations>
6. <operation name="sayHello">
7. <runtime>
8. <security>
9. <inbound>
10. <verify-signature>
11. <tbs-elements>
12. <tbs-element name-space="http://schemas.xmlsoap.org/soap/envelope/"
local-part="Body"/>
13. <tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-uti
lity-1.0.xsd" local-part="Timestamp"/>
14. </tbs-elements>
15. <verify-timestamp created="true" expiry="28800"/>
16. <property name="clock-skew" value="3000" />
17. </verify-signature>
18. <decrypt>
19. <tbe-elements>
20. <tbe-element name-space="http://schemas.xmlsoap.org/soap/envelope/"
local-part="Body"/>
21. </tbe-elements>
22. </decrypt>
23. </inbound>
24. </security>
25. </runtime>
26. </operation>
27. </operations>
28. </port-component>
29. </webservice-description>
30. </oracle-webservices>

Creating a Client-Side Security Configuration File
This section describes how to create a client-side Web service security configuration
file to generate a username token. In this example, the file is called

Creating a Client-Side Security Configuration File

Building Secure Web Services 4-15

clientConfig.xml. The WebServicesAssembler tool appends the data found in this
file into the <generated_name>_Stub.xml client-side deployment descriptor.

The following general steps describe how to create the client-side Web service security
configuration file.

1. Create a file using any text editor.

Example 4–5 on page 4-15 provides a sample client-side configuration file named
clientConfig.xml.

2. Enter the XML elements to generate a username token security configuration in
the file.

The following sections provide examples of client-side security configuration files
for username token and for signature and encryption.

■ "Defining a Client-Side, Port Level Security Configuration for Username
Token" provides a sample configuration file that allows a user name and
password to be sent to access any operations exposed at the port level.

■ "Defining a Client-Side, Port-Level Security Configuration for XML Signature
and Encryption" provides a sample configuration file that signs and encrypts
the message body.

3. Save the file.

Defining a Client-Side, Port Level Security Configuration for Username Token
Example 4–5 illustrates a sample client-side Web services configuration file which
enforces security on the port level. In this example, the client must send a user name
and password to access any operations that the service exposes at the port level. Note
that line numbers have been added for reference purposes only. They should not
appear in your file.

■ Lines 4-10: In this example, security is applied at port level. The <runtime
enabled="security"> element indicates that at run time, the client will be
secured based on the policy defined in the <security> element. Since the
security is configured at the port level, the same security will be applied to all
operations of the Web service.

■ Lines 6-8: The <outbound> clause is where you define the outbound message
policy. The <username-token> element indicates that a username token will be
added to the security header with username SCOTT and password TIGER. You can
also specify the password type as either PLAINTEXT (default) or DIGEST.

Example 4–5 Sample Client-Side Web Services Configuration File with Port-Level
Username Token Security

1. <oracle-webservice-clients>

Note: If you are using Oracle JDeveloper to secure your Web service,
then the security configuration is automatically generated into the
<generated_name>_Stub.xml file.

See Also:

"Username Token Elements for Outbound Messages" on page 2-13
provides more information on the <username-token> element.

Creating a Client-Side Security Configuration File

4-16 Web Services Security Guide

2. <webservice-client>
3. <port-info>
4. <runtime enabled="security">
5. <security>
6. <outbound>
7. <username-token name="SCOTT " password="TIGER"/>
8. </outbound>
9. </security>
10. </runtime>
11. <operations>
12. <operation name="sayHello"/>
13. </operations>
14. </port-info>
15. </webservice-client>
16. </oracle-webservice-clients>

Defining a Client-Side, Port-Level Security Configuration for XML Signature and
Encryption

Example 4–6 illustrates a sample client-side Web services configuration file which
enforces security on the port level. In this example, the configuration sets the security
policy for the client side keystore, the key configuration policy, and the outbound
message policy. Note that line numbers have been added for reference purposes only.
They should not appear in your file.

■ Lines 4-24: These lines specify the security policy for the client side keystore, the
key configuration policy, and the outbound message policy. You must generate the
keystore and the signature and encryption keys. For more information on creating
a keystore and adding keys, see "Using Keystores" on page 3-1.

■ Lines 6-7: These lines specify the client side keystore path and signature key alias.

■ Lines 8-22: These lines specify the outbound message policy.

■ Lines 9-15: These lines specify the signature policy. In this example, these lines
indicate that the body and timestamp must be signed.

■ Lines 16-21: Specify the encryption policy and the recipients key that will be used
to encrypt the request.

Example 4–6 Sample Client-Side Web Services Configuration File with Port Level
Signature and Encryption Security

1. <oracle-webservice-clients>
2. <webservice-client>
3. <port-info>
4. <runtime enabled="security">
5. <security>
6. <key-store path="etc/testks.jks" store-pass="keystorepwd"/>
7. <signature-key alias="signalias" key-pass="signkeypwd"/>
8. <outbound>
9. <signature>
10. <tbs-elements>
11. <tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-uti
lity-1.0.xsd" local-part="Timestamp"/>
12. <tbs-element name-space="http://schemas.xmlsoap.org/soap/envelope/"
local-part="Body"/>
13. </tbs-elements>
14. <add-timestamp created="true" expiry="28800"/>
15. </signature>

Client JAR Files

Building Secure Web Services 4-17

16. <encrypt>
17. <tbe-elements>
18. <tbe-element name-space="http://schemas.xmlsoap.org/soap/envelope/"
local-part="Body"/>
19. </tbe-elements>
20. <recipient-key alias="encalias"/>
21. </encrypt>
22. </outbound>
23. </security>
24. </runtime>
25. <operations>
26. <operation name="sayHello">
27. </operation>
28. </operations>
29. </port-info>
30. </port-component>
31. </webservice-description>
32. </oracle-webservices>
33. </webservice-client>
34. </oracle-webservice-clients>

Creating Users For Authentication
The server requires username and password data to authenticate users trying to access
the Web service secured with the username policy. To provide this data, you can enter
information for each user in the instance level system-jazn-data.xml file. You can
find this file at OC4J_HOME/j2ee/<instance_
name>/config/system-jazn-data.xml.

Adding User Entries by Using Application Server Control
The Application Server Control console provides screens where you can create users
and passwords and add them to the server.

Client JAR Files
Table 4–1 lists the client JAR files required if you are assembling security into your
Web service client.

See Also:

For more information on the contents of the
system-jazn-data.xml file, see the Oracle Containers for J2EE
Security Guide.

See Also:

For more information, see the topic Managing Security Provider Roles
and Users in the Application Server Control on-line help.

See Also:

The "Web Service APIs and JARs" appendix in the Oracle Application
Server Web Services Developer’s Guide lists the other JARs that must
appear on the classpath to compile a Web service client.

Adding Transport-Level Security to a Web Service

4-18 Web Services Security Guide

Adding Transport-Level Security to a Web Service
You can secure a Web service on the transport level by using basic, digest, or client
certification (client-cert) authentication. If your Web service was assembled from a
version 2.1 or 3.0 EJB, you can secure it on the transport level by making additions to
the oracle-webservices.xml deployment descriptor. This section also provides
information on how to write J2SE and J2EE clients to access Web services secured on
the transport level.

■ Adding Basic Authentication

■ Adding Digest Authentication

■ Adding Client Certification Authentication

■ Adding Transport-Level Security for Web Services Based on EJBs

■ Accessing Web Services That Require a Username and Password

Adding Basic Authentication
With basic authentication, the user is prompted directly for a user name and password,
without going through OracleAS Single Sign-On. A login module (such as
RealmLoginModule, for example) is used to generate a login dialog.

To specify basic authentication at the transport level, provide a value of BASIC for the
<auth-method> subelement of <login-config> in web.xml. For example:

<web-app ...>
 ...
 <login-config>

Table 4–1 Client JAR Files for Security

JAR Name and Path Description

OC4J_HOME/jlib/jaxen.jar Contains the classes that define Jaxen—a Java
XPath Engine capable of evaluating XPath
expressions across multiple modes (such as
dom4j, JDOM, and so on).

OC4J_HOME/jlib/osdt_wss.jar Contains Oracle Security Developer's Toolkit Web
services security (WS-Security) APIs.

OC4J_HOME/jlib/osdt_cert.jar Contains the Oracle Security Developer's Toolkit
cryptography APIs.

OC4J_HOME/jlib/osdt_xmlsec.jar Contains Oracle Security Developer's Toolkit XML
signing and encryption APIs.

OC4J_HOME/jlib/osdt_core.jar Contains the Oracle Security Developer's Toolkit
(OSDT) APIs

OC4J_HOME/jlib/osdt_saml.jar Contains Oracle Security Developer's Toolkit
Security Assertion Markup Language (SAML)
APIs.

OC4J_HOME/jlib/oraclepki.jar Contains the Oracle orapki keytool utility.

OC4J_HOME/j2ee/home/jazn.jar Contains the JAZN (Oracle JAAS provider)
administration tool.

OC4J_HOME/j2ee/home/jazncore.jar Contains the JAZN (Oracle JAAS provider)
implementation.

OC4J_HOME/j2ee/home/jaznplugin.jar Contains the JAZN (Oracle JAAS provider)
custom plug-in module.

Adding Transport-Level Security to a Web Service

Building Secure Web Services 4-19

 <auth-method>BASIC</auth-method>
 ...
 <login-config>
 ...
</web-app>

Adding Digest Authentication
With the digest authentication mechanism, the password that a client presents to
authenticate itself is encrypted through the use of an MD5 digest. This is transmitted
in the request message. From a user perspective, digest authentication behaves in the
same way as basic authentication.

To specify digest authentication at the transport level, provide a value of DIGEST for
the <auth-method> subelement of <login-config> in web.xml. For example:

<web-app ...>
 ...
 <login-config>
 <auth-method>DIGEST</auth-method>
 ...
 <login-config>
 ...
</web-app>

Adding Client Certification Authentication
The client certification (client-cert) method authenticates the client through HTTPS.
The user must possess a public key certificate.

To specify client-cert authentication at the transport level, provide a value of
CLIENT-CERT for the <auth-method> subelement of <login-config> in
web.xml. For example:

<web-app ...>
 ...
 <login-config>
 <auth-method>CLIENT-CERT</auth-method>
 ...
 <login-config>
 ...
</web-app>

Adding Transport-Level Security for Web Services Based on EJBs
Version 2.1 and 3.0 Enterprise Java Beans (EJBs) can be exposed as Web services. You
can define transport-level security constraints for Web services based on EJBs by

See Also:

For more information on providing basic authentication, see the Oracle
Containers for J2EE Security Guide.

See Also:

For more information on providing digest authentication see the
Oracle Containers for J2EE Security Guide.

See Also:

For more information on providing client-cert authentication, see the
Oracle Containers for J2EE Security Guide.

Adding Transport-Level Security to a Web Service

4-20 Web Services Security Guide

configuring the <ejb-transport-security-constraint> and
<ejb-transport-login-config> elements in the oracle-werbservices.xml
deployment descriptor.

The <ejb-transport-security-constraint> element lets you specify whether
the security constraints should apply to a SOAP port, a WSDL URL, or both. You can
also specify a security role and a transport guarantee.

The <ejb-transport-login-config> element lets you specify whether the EJB
application uses basic authentication, digest authentication, or client certificate as its
authentication mechanism.

The client of a secured EJB Web service can be configured to pass a username and
password to the secured service in either of the following ways:

■ statically—enter configuration parameters into the proprietary deployment
descriptors, such as orion-ejb-jar.xml or orion-web.xml file.

■ programmatically—"Accessing Web Services That Require a Username and
Password" provides more information on writing a client that can access a secured
Web service.

Example 4–7 illustrates <ejb-transport-security-constraint> and its
subelements in the oracle-webservices.xml deployment descriptor. This element
associates transport-level security constraints for a version 2.1 or 3.0 EJB exposed as a
Web service. The URL of the EJB exposed as a Web service is indicated by the
<endpoint-address-uri> element in the port component. The sub-elements
<wsdl-url> and <soap-port> are identifiers that let you choose whether the
security constraints will apply to a WSDL URL or to a SOAP port. If <wsdl-url> and
<soap-port> are both present or both absent in the
<ejb-transport-security-constraint> element, then the security constraints
will apply to both the WSDL and the SOAP port.

Example 4–7 <ejb-transport-security-constraint> Element in oracle-webservices.xml

...
 <port-component name="String">
 <endpoint-address-uri>String</endpoint-address-uri>
 <ejb-transport-security-constraint>
 <wsdl-url/>
 <soap-port/>
 <role-name>Manager</role-name>
 <role-name>Administrator</role-name>
 <transport-guarantee>NONE</transport-guarantee>
 </ejb-transport-security-constraint>
 ...
 </port-component>
...

Example 4–8 illustrates <ejb-transport-login-config> and its subelements in
the oracle-webservices.xml deployment descriptor. This element configures the
transport-level authentication method (such as basic, digest, or client certificate) and
the realm name that should be used for this EJB application. The URL of the EJB

See Also:

For more information on how to use the elements described in this
section, see the oracle-webservices-10_0.xsd schema and
"Packaging and Deploying Web Services" in the Oracle Application
Server Web Services Developer’s Guide.

Adding Transport-Level Security to a Web Service

Building Secure Web Services 4-21

application exposed as a Web service is indicated by the <endpoint-address-uri>
element in the port component.

Example 4–8 <ejb-transport-login-config> Element in oracle-webservices.xml

...
 <ejb-transport-login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>sec-ejb</realm-name>
 </ejb-transport-login-config>
...

Accessing Web Services That Require a Username and Password
If a Web service is secured by either HTTP authentication or WS-Security username
token authentication, then the client must provide a username and password in order
to pass messages to it.

The following sections describe the properties and field values that a J2SE or J2EE
client can use to access a Web service secured by HTTP authentication or WS-Security
username token authentication. It also describes how to make these properties and
values available to the client programatically or as part of a static configuration.

■ HTTP Authentication Properties

■ WS-Security Username Token Authentication Field Values

■ Passing Authentication Information Programatically

■ Passing Authentication Information Statically

HTTP Authentication Properties
For HTTP authentication, the following properties can be used by the
javax.xml.rpc.Stub and javax.xml.rpc.Call interfaces.

javax.xml.rpc.security.auth.username
javax.xml.rpc.security.auth.password

For convenience, these interfaces also define constant field values for these properties.

javax.xml.rpc.Stub.USERNAME_PROPERTY
javax.xml.rpc.Stub.PASSWORD_PROPERTY
javax.xml.rpc.Call.USERNAME_PROPERTY
javax.xml.rpc.Call.PASSWORD_PROPERTY

WS-Security Username Token Authentication Field Values
For WS-Security, a Web service client can pass a username and password by using stub
field values. The following sections describe using these stub field values:

Stub.USERNAME_PROPERTY
Stub.PASSWORD_PROPERTY

Passing Authentication Information Programatically
You can use Java properties (that is,javax.xml.rpc.Stub.USERNAME_PROPERTY
and PASSWORD_PROPERTY, andjavax.xml.rpc.Call.USERNAME_PROPERTY and
PASSWORD_PROPERTY) to pass username and password values programatically to the
client.

Following are two examples, one for HTTP authentication and one for WS-Security
username token authentication. The examples will pass the username and password to

Adding Transport-Level Security to a Web Service

4-22 Web Services Security Guide

the client. The username and password are added to one of the generated Web service
client files. The file is called <service>SoapHttp_Stub.java. This technique can be
used in a J2EE Web service client only.

HTTP Authentication In the following example for HTTP authentication, the generated
file EchoSoapHttp_Stub.java client file is accessing the Echo Web service. This file
is edited to add the username and password credentials. The
javax.xml.rpc.security.auth.username and password properties are added
with the _setProperty method.

 /*
 * public constructor
 */
 public EchoSoapHttp_Stub(HandlerChain handlerChain) {
 super(handlerChain);
 _setProperty(ENDPOINT_ADDRESS_PROPERTY,
"http://aaabbb.mycompany.com:8888/WebServicesDemos-Echo-context-
root/echoSoapHttpPort");
 // Added for HTTP authentication
 _setProperty("javax.xml.rpc.security.auth.username","helen");
 _setProperty("javax.xml.rpc.security.auth.password","welcome");
 setSoapVersion(SOAPVersion.SOAP_11);
 setServiceName(new QName("http://demo/","echo"));
 setPortName(new QName("http://demo/","echoSoapHttpPort"));
 setupConfig("echoclient/proxy/runtime/EchoSoapHttp_Stub.xml");
 }

WS-Security Username Token Authentication In the case of WS-Security username token,
you must first generate support for the token into your client. When you assemble the
client with the WebServicesAssembler genProxy command, specify a client
configuration file with the ddFileName argument. The client configuration file is
where you enable username token authentication. Example 4–9 illustrates a sample
genProxy command.

Example 4–9 Sample genProxy Command

<oracle:genProxy
 wsdl="http://localhost:8888/webservice/webservice?WSDL"
 unwrapParameters="false"
 output="build/src/client"
 packageName="MyService"
 ddFileName="clientConfig.xml"
>
 <classpath>
 <pathelement path="${common.webservices.class.path}"/>
 <pathelement location="${ORACLE_HOME}/webservices/lib/wsa.jar}"/>
 </classpath>
</oracle:genProxy>

Example 4–10 illustrates the contents of a sample client configuration file that enables
WS-Security username token. The file is based on the
oracle-webservices-client-10_0.xsd. Note the presence of the
<username-token> element in the <outbound> section. You do not have to specify
username and password attributes for the token as they will be supplied
programatically.

Adding Transport-Level Security to a Web Service

Building Secure Web Services 4-23

Example 4–10 Sample Client Configuration File for WS-Security Username Token
Authentication

<oracle-webservice-clients>
<webservice-client>

<port-info>
<runtime enabled="security">
 <security>
 <outbound>
 <username-token name="" password-type="PLAINTEXT" add-nonce="true"
add-created="false"/>
 </outbound>
 </security>
</runtime>
<operations>
 <operation name="echoUser"/>
</operations>
</port-info>
</webservice-client>
</oracle-webservice-clients>

Example 4–11 illustrates a Java program that is calling the generated proxy client code.
The username and password can be passed programatically using the properties
Stub.USERNAME_PROPERTY and Stub.PASSWORD_PROPERTY.

Example 4–11 Providing a Username and Password Programatically

...
Context ic = new InitialContext();
Service service = (Service) ic.lookup("java:comp/env/service/MyEchoServiceRef");
//Service.getPort(portQName,SEI class)
EchoInterface echoPort = (EchoInterface)
service.getPort(portQName,echo.EchoInterface.class);
Stub port = (Stub) echoPort;
 port.setProperty(Stub.USERNAME_PROPERTY, "helen");
 port.setProperty(Stub.PASSWORD_PROPERTY, "welcome");
...

As an alternative to the properties, you can use the following methods provided in the
generated proxy:

setUsername(String username)
setPassword(String password)

Passing Authentication Information Statically
To pass a static configuration, edit the appropriate orion-*.xml file for your Web
service. This technique can be used by either J2EE or J2SE Web service clients.

HTTP Authentication You can pass the username and password to access a Web service
in a deployment descriptor. To do this, you must manually edit the
<service-ref-mapping> element in the orion-*.xml file for your service.

If you are accessing the service endpoint with a static client proxy add, a
<stub-property> subelement to the <service-ref-mapping> element. If you
are dynamically invoking the service endpoint using Dynamic Invocation Interface
(DII), add a <call-property> element instead.

Adding Transport-Level Security to a Web Service

4-24 Web Services Security Guide

The following steps describe how to edit the <service-ref-mapping> clause and
the values you must provide for the <call-property> and <stub-property>
elements.

1. Edit the <service-ref-mapping> element of the appropriate orion-*.xml
deployment descriptor for your Web service.

■ If you are working with a client proxy, enter a <stub-property> subelement
for the username and password, or

■ If you are dynamically invoking the service endpoint, enter a
<call-property> subelement.

2. Specify the username property javax.xml.rpc.security.auth.username
and its value in the <name> and <value> subelements of the stub- or
call-property element entered in Step 1.

3. Specify the username property javax.xml.rpc.security.auth.password
and its value in the <name> and <value> subelements of the stub- or
call-property element entered in Step 1.

4. When you generate your Web service client, specify the orion-*.xml
deployment descriptor as input to the WebServicesAssembler genProxy
command.

Example 4–12 illustrates a sample <service-ref-mapping> clause which uses
<stub-property> elements to specify a username and password to access the
secured Web service. The javax.xml.rpc.security.auth.username and
password properties and their values are added as child elements of
<stub-property>.

Example 4–12 Sample HTTP Authentication Configuration in an orion-*.xml File

 ...
 <service-ref-mapping name="service/MyEchoServiceRef">
 ...
 <stub-property>
 <name>javax.xml.rpc.security.auth.password</name>
 <value>welcome</value>
 </stub-property>
 <stub-property>
 <name>javax.xml.rpc.security.auth.username</name>
 <value>helen</value>
 </stub-property>
 </service-ref-mapping >
 ...

WS-Security Username Token Authentication In the case of WS-Security username token,
you generate support for the token into the client. When you assemble the client with
the WebServicesAssembler genProxy command, specify a client configuration file
with the ddFileName argument. Example 4–13 illustrates a sample genProxy
command.

See Also:

For more information on the <call-property> and
<stub-property> elements, see the Oracle Application Server Web
Services Developer’s Guide.

Adding Transport-Level Security to a Web Service

Building Secure Web Services 4-25

Example 4–13 Sample genProxy Command

<oracle:genProxy
 wsdl="http://localhost:8888/webservice/webservice?WSDL"
 unwrapParameters="false"
 output="build/src/client"
 packageName="MyService"
 ddFileName="clientConfig.xml"
>
 <classpath>
 <pathelement path="${common.webservices.class.path}"/>
 <pathelement location="${ORACLE_HOME}/webservices/lib/wsa.jar}"/>
 </classpath>
</oracle:genProxy>

Example 4–14 illustrates a sample client configuration file that enables WS-Security
username token authentication. The file is based on the
oracle-webservices-clients.xsd. Note the presence of the
<username-token> element in the <outbound> section. In this case, specify
username and password attributes for the token. The values of these attributes
allows messages sent from the client to access the service.

Example 4–14 Sample Client Configuration File for WS-Security Username Token
Authentication

<oracle-webservice-clients>
<webservice-client>

<port-info>
<runtime enabled="security">
 <security>
 <outbound>
 <username-token name="" username="helen" password="welcome"
password-type="PLAINTEXT" add-nonce="true" add-created="false"/>
 </outbound>
 </security>
</runtime>
<operations>
 <operation name="echoUser"/>
</operations>
</port-info>
</webservice-client>
</oracle-webservice-clients>

Propagating Identities from a Web Service to an EJB
The Oracle Web Service Security implementation provides seamless integration for
propagating the user's identity when a Web service invokes an EJB.

The Web service is authenticated by using message level security. Re-authentication is
not required when accessing the EJB from the Web service. The same Web service user
identity is propagated to the EJB. The EJB application can access the user identity by
using standard EJB methods such as
javax.ejb.EjbContext.getCallerPrincipal.

Further access checks can be performed by using
javax.ejb.EjbContext.isCallerInRole.

Ant Tasks and WebServicesAssembler

4-26 Web Services Security Guide

Ant Tasks and WebServicesAssembler
The WebServicesAssembler tool assists in assembling OracleAS Web Services. It
enables you to generate the artifacts required to develop and deploy Web services,
regardless of whether you are creating the service top down (from a WSDL) or bottom
up from Java classes, EJBs, JMS destinations, or database resources. The
WebServicesAssembler tool can also be invoked to create Web service client objects
based on a WSDL.

The WebServicesAssembler tool can be invoked either on the command line or by Ant
tasks. The WebServicesAssembler tool gives you flexibility in how you assemble a Web
service. You can break the assembly process into a number of steps that let you more
closely control how the Web service is created.

The following list provides a summary of the tasks that you can perform with the
WebServicesAssembler tool.

■ Web service assembly—assemble Web services. These commands create all of the
files necessary to create a deployable archive such as a WAR, an EAR, or an EJB
JAR.

■ WSDL management—perform actions on a WSDL, such as generate a WSDL for
bottom-up development, manage its contents and location, and determine
whether it can be processed by WebServicesAssembler.

■ Java generation—generate code to create a Java interface from a WSDL, a
proxy/stub, or JAX-RPC value type classes.

■ Deployment descriptor generation—generate deployment descriptors for EARs,
WARs, or EJB JARs.

■ Information—return a short description of WebServicesAssembler commands and
the version number of the tool.

Getting an Authenticated User Identity in a Web Service Application
On the server, you can obtain the name of an authorized user from the username
(plaintext or digest), SAML, or X.509 security tokens. This information can be used for
further validation checks before the user is allowed to access additional server
resources. This section describes how you can obtain a user identity with the
AccessControlContext and ServiceLifeCycle APIs.

■ Getting an Authenticated Subject with the AccessControlContext API

■ Getting an Authenticated Principal with the ServiceLifeCycle API

Note: The EJB application must be configured with J2EE security.
Refer to "EJB Security Configuration" in the Oracle Containers for J2EE
Security Guide for more information.

See Also:

The "Using WebServicesAssembler" chapter in the Oracle Application
Server Web Services Developer’s Guide provides detailed information on
how to use WebServicesAssembler commands to perform each task.

Getting an Authenticated User Identity in a Web Service Application

Building Secure Web Services 4-27

Getting an Authenticated Subject with the AccessControlContext API
You can use methods from the java.security.AccessControlContext,
java.security.AccessController, and javax.security.auth.Subject
classes to get the authenticated subject.

The following general steps describe how to get the authenticated subject from an
AccessController object.

1. Create an AccessControlContext object by calling the
AccessController.getContext method. The getContext method takes a
"snapshot" of the current calling context and returns it in an
AccessControlContext object.

2. Get the subject of the context by using the Subject.getSubject method.

Example 4–15 illustrates using the AccessControlContext, AccessController,
and Subject APIs to get the name of an authorized user.

Example 4–15 Obtaining the Name of an Authenticated User with the
AccessControlContext API

java.security.AccessControlContext context =
 java.security.AccessController.getContext();
javax.security.auth.Subject sub = javax.security.Subject.getSubject(context);

Getting an Authenticated Principal with the ServiceLifeCycle API
You can use the javax.xml.rpc.server.ServiceLifecycle and
ServletEndpointContext interfaces to obtain user information from the SAML,
username, or X.509 security tokens. For example, the
ServletEndpointContext.getUserPrincipal method returns the name of the
authenticated user; the ServletEndpointContext.isUserInRole method
returns whether the user belongs to a specific role.

To obtain user information from the Web service, follow these general steps:

1. Implement the ServiceLifecycle interface for the Web service.

See Also:

For more information on the classes and methods described in this
section, see the API for the java.security and
javax.security.auth packages at the following Web site:

http://java.sun.com/j2se/1.4.2/docs/api/index.html

Note: One of the purposes of getting the authenticated subject is to
perform JAAS Provider authorization. "Performing JAAS Provider
Authorization on a Web Service" on page 4-28 provides a summary of
how to perform this type of authorization on a Web service.

See Also:

For more information on the ServiceLifecycle and
ServletEndpointContext interfaces, see the API for the
javax.xml.rpc.server package at the following Web site:

http://java.sun.com/j2ee/1.4/docs/api/index.html

Performing JAAS Provider Authorization on a Web Service

4-28 Web Services Security Guide

2. In the implementation of the ServiceLifecycle.init method, cast the
context parameter to ServletEndpointContext.

3. Call methods, such as getUserPrincipal and isUserInRole, on the
ServletEndpointContext context parameter to obtain user information.

Example 4–16 illustrates how to obtain the name of an authenticated user from a
secure Web service. The SecureService class in the example implements the
ServiceLifecycle interface. In the init method implementation, the context
parameter is cast to the ServletEndpointContext interface. The
getUserPrincipal method returns access to the authenticated user name, which is
obtained by a call to getName.

Example 4–16 Obtaining the Name of an Authenticated User with the ServiceLifeCycle
API

package test;

public class SecureService implements javax.xml.rpc.server.ServiceLifecycle {

 private javax.xml.rpc.server.ServletEndpointContext context;

 public void init(Object obj) throws javax.xml.rpc.ServiceException {
 context = (javax.xml.rpc.server.ServletEndpointContext)obj;
 }

 public String helloUser(String message) throws java.rmi.RemoteException {
 java.security.Principal principal = context.getUserPrincipal();
 if(principal == null) {
 throw new RuntimeException("Principal not found");
 }
 String userName = principal.getName();
 return "Hi "+userName+"! "+message;
 }
 public void destroy() {
 context = null;
 }
}

Performing JAAS Provider Authorization on a Web Service
OracleAS Web Services includes OracleAS JAAS Provider, a highly scalable Java
Authentication and Authorization Service (JAAS) provider. OracleAS Web Services
can protect resources using JAAS authorization for enforcing fine-grained access
control over protected resources.

The following general steps describe how to perform JAAS authorization on a Web
service.

1. Get the authenticated subject from the security token.

See "Getting an Authenticated Subject with the AccessControlContext API" on
page 4-27 for more information on obtaining the authenticated subject.

2. Use the authenticated subject to issue JAAS authentication calls, such as
checkPermission.

See Also:

For more information on JAAS Provider authorization, see the Oracle
Containers for J2EE Security Guide.

Development Decisions

Building Secure Web Services 4-29

WS-Security and XML APIs
Oracle Security Developer Tools (OSDT) provide you with the cryptographic building
blocks necessary for developing robust security applications ranging from basic tasks
like secure messaging to more complex projects such as securely implementing a
service-oriented architecture. The tools build upon the core foundations of
cryptography, public key infrastructure, Web services security and federated identity
management.

Development Decisions
Chapter 5, "Secure Web Service Usage Scenarios", presents a number of use cases that
describe the different ways in which you can integrate security into a Web service.

See Also:

You can find the Reference Guide and Javadocs for OSDT at the
following Web site:

http://download-east.oracle.com/docs/cd/B14099_
15/idmanage.htm

Development Decisions

4-30 Web Services Security Guide

Secure Web Service Usage Scenarios 5-1

5
Secure Web Service Usage Scenarios

This chapter describes common scenarios for using Web service security. It begins with
the simplest use case, then proceeds through increasingly more complex use cases. The
first section of the chapter discusses use cases with no security implications; these are
then modified to add security features. This chapter is divided into the following
sections:

■ Non-Secured Web Services

■ HTTP-Based Security

■ WS-Security

■ XML Signature

■ XML Encryption

■ Gateways

■ Identity Management

■ Interoperability

Non-Secured Web Services
This section contains simple use cases that do not use Web service security. These use
cases serve as a basis to demonstrate adding security features.

■ Basic Web Service

■ Complex Business Process

■ Intermediary

■ Federated

Basic Web Service
Figure 5–1 illustrates a basic Web service use case, where a Web service client invokes a
Web service:

See Also:

For information on how to implement non-secured Web services see
the Oracle Application Server Web Services Developer’s Guide.

Non-Secured Web Services

5-2 Web Services Security Guide

Figure 5–1 Basic Web Service Use Case

This Web service offers real-time stock quotes to its clients. The Web service client
supplies a stock ticker symbol, for example "ORCL", and expects the current value of
the stock as the response.

Complex Business Process
Figure 5–2 illustrates a complex workflow, a bank's Web service that allows users to
apply for an auto loan.

Figure 5–2 Complex Business Process

The Bank Web Service receives an applicant's application from a Web service client,
then invokes a Web service to make an inquiry to a credit bureau. The Bank Web
Service contains a Web service client that invokes the credit bureau Web service. The
bureau sends a response back to the Bank Web Service; this response might be an
approval or no-approval string and the credit score of the applicant.

Intermediary
Figure 5–3 illustrates an intermediary that separates a Web service client and a Web
service. This intermediary could be an external notary service, an XML firewall, a
BPEL process manager, or a quality of service (QOS) agent.

Figure 5–3 Intermediary Use Case

A typical intermediary does not modify the contents of the SOAP body, but adds or
modifies SOAP headers. For example, an XML firewall might validate content,
authenticate and authorize users, but would not process the SOAP body, because the
intermediary is not the Web service's final destination.

Federated
The federated use case is similar to the basic use case, except that it spans security
boundaries. Figure 5–4 shows a company that allows its customers to submit purchase
orders through a Web service; note that the company exposing the Web service does
not own or control the Web service client.

Web
Service

Web
Service
Client

Bank Web
Service

Web
Service
Client

Credit Web
Service

Web
Service
Client

Web
Service

Intermediary

Web
Service

Web
Service
Client

HTTP-Based Security

Secure Web Service Usage Scenarios 5-3

Figure 5–4 Federated Use Case

HTTP-Based Security
The traditional method of securing data, such as SOAP messages, transmitted over
HTTP is to use the Secure Sockets Layer and HTTP authentication.

■ Secure Sockets Layer

■ HTTP Basic Authentication and Digest Authentication

Secure Sockets Layer
The Secure Sockets Layer (SSL) prevents intermediate applications from reading a
message transmitted between a client and a server. SSL uses public-key encryption to
exchange a session key between the client and server; this session key is used to
encrypt the HTTP request and response traffic. SSL is the most commonly used
HTTP-based security solution. Figure 5–5 illustrates the flow of data when using SSL
encryption.

Figure 5–5 SSL Encryption In a Web Service

HTTP Basic Authentication and Digest Authentication
Business requirements often dictate that access to Web services be restricted to
authenticated users. The following sections describe the two most common
approaches.

■ Basic Authentication

■ Digest Authentication

See Also:

For the steps to configure SSL, see the Oracle Containers for J2EE
Security Guide.

Note: Oracle Application Server Web Services also supports TLS
encryption; for details, see the Oracle Database Advanced Security
Administrator's Guide.

SOAP
Web

Service

Web
Service
Client

Internet

Firewall Firewall

Acme
Corporation

Yoyodyne
Corporation

Web
Service

Web
Service
Client

SSL

WS-Security

5-4 Web Services Security Guide

Basic Authentication
When using basic authentication, the Web service client authenticates itself to the
service by sending a base-64 encoded user name and password in an HTTP
authorization header. Basic authentication has a security weakness: it sends credentials
using base-64 encoding, which is trivial to decode. Sending credentials in a base-64
encoding is as insecure as sending them in the clear. Figure 5–6 illustrates the flow of
data when using basic authentication.

Figure 5–6 HTTP Basic Authentication in a Web Service

When a Web service validates an authentication request, it must do so against a
credential store. In OracleAS Web Services applications, authentication requests are
validated through the LDAP security provider. For example, your Web service could
be configured to use an LDAP provider.

Figure 5–7 Basic Authentication With LDAP

Digest Authentication
Digest authentication uses the same HTTP headers as basic authentication, but it
transmits a digest for the password. Although digest authentication is much more
secure than basic authentication, it is not interoperable in all security environments, so
is rarely used. Also, digest authentication uses weak algorithms such as MD5.
Encrypting transmissions using SSL is the preferred method to prevent credential
snooping.

Figure 5–8 Digest Authentication

WS-Security
Oracle provides pre-built JAX-RPC handlers called interceptors to provide WS-Security
message-level security. For outbound messages, these interceptors add the necessary
WS-Security headers to support WS-Security authentication, XML encryption, and
XML digital signature operations; for inbound messages, the interceptors process the
corresponding header information.

See Also:

For information on how to implement basic and digest authentication,
see the Oracle Containers for J2EE Security Guide.

Web
Service

Web
Service
Client

Basic
Authentication

Web
Service

Web
Service
Client

Basic
Authentication

Oracle
Internet

Directory

LDAP
Provider

Web
Service

Web
Service
Client

Basic / Digest
Authentication

WS-Security

Secure Web Service Usage Scenarios 5-5

Figure 5–9 Interceptor Framework

Web Services Security Authentication
WS-Security authentication is more flexible than either basic or digest authentication.
WS-Security provides three different authentication profiles to authenticate against a
Web service:

■ Username Token Profile

■ X.509 Token Profile

■ SAML Token Profile

Each of these profiles defines how to use its token type within the WS-Security
specification. Oracle provides a pre-built interceptor for all the WS-Security Token
profiles.

Username Token Profile
The Username Token Profile is similar to HTTP basic and digest authentication.
Applications can construct a username token with three different credential types:

■ username without password

■ username with password

■ username with encrypted password

The username token interceptor adds the token to the SOAP envelope.

If hosted on OracleAS Web Services, the receiving Web service also has a username
token interceptor. The interceptor processes the username token and validates the
credentials contained within it against the Web service's configured security provider,
such as the Oracle Internet Directory LDAP-based provider.

Note: An application can use SSL alone, WS-Security alone, or both
together.

SOAP
Web

Service

SOAP
Client

Modified SOAP
Request

(outbound)

Modified SOAP
Response
(inbound)

Service
Interceptor

Client
Interceptor

Service
Interceptor

Client
Interceptor

1

4

2

3

WS-Security

5-6 Web Services Security Guide

Figure 5–10 Username Token Use Case

The username token use case is a common use case for OracleAS Portal and other
Web-based applications; its advantage is that all credential checks are made against a
central user repository.

X.509 Token Profile
The X.509 Profile uses an X.509 certificate to authenticate against the receiving Web
service. Oracle provides a pre-built interceptor that adds WS-Security X.509
authentication to outbound messages. A certificate token is added to the WS-Security
header in the outgoing SOAP envelope. The certificate is read from a credential store
such as an Oracle Wallet or a Java Key Store.

Figure 5–11 X.509 Token Use Case

Under OracleAS Web Services, the interceptor on the receiving Web service validates
the X.509 certificate's signature and then checks to see if the user exists in the directory.
The distinguished name in the certificate must have a match in the directory. If the
receiving Web service is an external J2EE container or .NET Web service, it provides its
own means of validating the WS-Security X.509 certificate.

See Also:

For information on how to configure the username token, see "Using a
Username Token" on page 3-8.

SOAP
Web

Service

SOAP
Client

Modified SOAP
Request

Modified SOAP
Response

LDAP
Provider

SSL

Service
Interceptor

Client
Interceptor

Oracle
Internet

Directory

OC4JOC4J

SOAP
Web

Service

SOAP
Client

LDAP
Provider

Client
Interceptor

Oracle
Internet

Directory

OC4JOC4J

Keystore
· wallet
· Java keystore

Service
Interceptor

Keystore
· wallet
· Java keystore

WS-Security

Secure Web Service Usage Scenarios 5-7

SAML Token Profile
SAML tokens, unlike Username and X.509, assert that the SAML user or subject has
already been authenticated. SAML security tokens are composed of assertions: one or
more statements about a user. SAML assertions are attached to SOAP messages using
WS-Security by placing assertion elements inside the header. Oracle supports two
SAML use cases: sender vouches and holder of key.

Sender Vouches In the sender vouches use case, the sender vouches for the verification
of the assertion's subject. The sender's private key is used to sign both the assertion
and the message body. If the sender gets the assertion from a SAML authority, then the
SAML authority could also sign the message. In this scenario, double signing of the
assertion may occur.

Figure 5–12 SAML Assertion Use Case

Holder of Key In the holder of key use case, the sender submits a request for an
assertion to the SAML authority. The issuer then returns a signed assertion with user's
public key embedded in it. The sender then signs the message body with their private
key.

See Also:

For information on how to configure the X.509 token, see "Using an
X.509 Token" on page 3-17.

See Also:

For information on how to configure the SAML token for these use
cases, see "Using a SAML Token" on page 3-23.

SOAP
Web

Service

SOAP
Client

SAML Assertion
Response

SAML Assertion
Request

Client Interceptor

SAML
Authority

OC4JOC4J

Service Interceptor

Trust

XML Signature

5-8 Web Services Security Guide

Figure 5–13 SAML Authority Assertion Use Case

XML Signature
XML signatures ensure message integrity for SOAP messages. When you use XML
signatures, outbound message bodies are digitally signed with the sender's private
key. The receiver uses the sender's public key to validate the signature.

Figure 5–14 Digital Signature Use Case

Oracle also supports protecting the integrity of the message response. There are many
scenarios for using XML signatures to sign message bodies, message headers, or parts
of either. For example, an application could sign the whole message body to officially
identify the sender. Another application could sign several of the elements of the body,
each element from a different origin and identified by a signature from a different
signer. The signature can also be used to validate content integrity, detecting
tampering during transit or storage.

XML Encryption
XML encryption allows the encryption of an XML element, which could be the SOAP
body, the SOAP header, or any XML element within these structures. The interceptor

See Also:

For information on how to configure XML signature in a Web service,
see "Configuring XML Signature" on page 3-41.

SOAP
Web

Service

SOAP
Client

SAML Assertion
Response

SAML Assertion
Request

Client Interceptor

SAML
Authority

OC4JOC4J

Service Interceptor

Signs the assertion
after inserting
public key of the
user into the
assertion

Signs message
content

Trust

SOAP
Web

Service

SOAP
Client

Client Interceptor

OC4JOC4J

Keystore
· wallet
· Java keystore

Keystore
· wallet
· Java keystore

Service Interceptor

Gateways

Secure Web Service Usage Scenarios 5-9

substitutes an encrypted element for the original XML data; the receiver is responsible
for decrypting the element.

Figure 5–15 XML Encryption Use Case

XML encryption is used for targeted encryption. An application could encrypt an
entire message body or encrypt only sub-elements within a message body. XML
encryption does not replace SSL; the two can be used together or separately. For
example, a SOAP payload may contain a credit check that uses XML encryption only
on the elements that contain the credit card account numbers. It may be that this
information isn't encrypted until reaching a final destination in a multi-step process.
Therefore the entire message is sent over SSL to protect it while in transit.

To support encryption, the interceptor must be able to access a Java Key Store or an
Oracle Wallet. For XML encryption, the Web service client uses the Web service's
public key. The Web service decrypts any XML encrypted elements sent by the client
by using its private key.

Gateways
Some applications use gateways (centralized policy enforcement points) to implement
message security, instead of applying security within a J2EE container. Gateways can
be useful as checkpoints that all Web services must traverse before accessing external
Web services. For example, there could be a gateway that separates a company's Web
service clients and external Web services. This gateway would enforce WS-Security
policies on all outbound Web services.

The gateway shown in Figure 5–16 ensures that all outbound messages are signed.

Figure 5–16 Gateway Use Case

See Also:

For information on how to configure XML encryption in a Web
service, see "Configuring XML Encryption" on page 3-37.

SOAP
Web

Service

SOAP
Client

Client Interceptor

OC4JOC4J

Keystore
· wallet
· Java keystore

Service Interceptor
Keystore
· wallet
· Java keystore

Gateway

Web
Service
Client

Web
Service
Client

Web
Service

Web
Service

Identity Management

5-10 Web Services Security Guide

Identity Management
Web services often authenticate and authorize against an Identity Management
infrastructure. In OracleAS Web Services, the interceptors use the Identity
Management security provider configuration to determine where to authenticate. For
example, if the provider is the LDAP provider, then it will authenticate against an
LDAP directory.

Figure 5–17 Identity Management Use Case

Interoperability
Many business situations require a mixed-vendor environment, in which, for instance,
Oracle Web service clients interact with .NET Web services.

Figure 5–18 Interoperability Use Case

There are a number of use cases for interoperability between vendors to consider with
Web services. Interoperability between vendors is covered by the Basic Security Profile
(BSP) specification which is available from the Web Services Interoperability (WS-I)
organization (http://www.ws-i.org/).

SOAP
Web

Service

SOAP
Client

LDAP
Provider

LDAP
Directory

SOAP Request

SOAP Response

.NET Web
Service
Client

· Username, X.509, SAML Tokens
· XML Encryption
· XML Signature

Oracle
Web

Service

Troubleshooting 6-1

6
Troubleshooting

This chapter describes solutions to some of the errors you might encounter when
working with Oracle Application Server Web Services Security. The errors are divided
into these categories.

■ General Errors

■ Keystore-Related Errors

■ Message Integrity Errors

■ Message Confidentiality Errors

■ Authentication Errors

When you are troubleshooting errors that occur on the client side, the important file to
look at is the <generated_name>_Stub.xml deployment descriptor file. For errors
that occur on the server side, the important files to check are the oracle-
webservices.xml deployment descriptor and the wsmgtm.xml management
configuration file.

Logging Errors
Errors are logged in the log.xml file (ORACLE_
HOME/j2ee/home/log/oc4j/log.xml). To log the errors described in this
appendix, set the logging level to TRACE:32 in the j2ee-logging.xml logging
configuration file, then restart the Web service for the new value to take effect.

The value of the logging level cannot be reset with Application Server Control.

Error Numbers
Error numbers for the current release (10.1.3.1.0) of Web Services Security have the
format OWS-20nnn where n represents an integer. In previous releases, they have the
format J2EE-WSEnnnnn.

Where appropriate, error numbers are listed for the errors described in this appendix.

See Also:

The appendix "Error Message Prefixes" in the Oracle Application Server
Web Services Developer’s Guide describes all of the prefixes for OracleAS
Web Services error messages.

General Errors

6-2 Web Services Security Guide

General Errors

Missing <wsse:Security> in SOAP header
This error message is thrown when the incoming message is missing the security
header. Check that the client outbound policy is present in <generated_name>_
Stub.xml client-side deployment descriptor and the server outbound policy is
present in the oracle-webservices.xml server-side deployment descriptor or the
wsmgmt.xml file.

If the outbound policy (security configuration) does not exist, then check the Web
service description and the port name. If you configured security only on the
operation level, then make sure that the <runtime enabled="security"/>
element is set at the port level.

SOAP must understand error
The enabled="security" attribute may be missing. Check whether the
enabled="security" attribute is present in the oracle-webservices.xml file
and in the client side management file. If it is present in oracle-webservices.xml
then check it in the wsmgmt.xml file.

Unable to fetch realm
The realm name may be incorrect or missing. Check the default realm name in
ORACLE_HOME/j2ee/home/config/jazn.xml file. If you have included your own
orion-application.xml file, then check the realm name in the <jazn> element.
The realm name must be a valid realm and must exist in the XML/LDAP repository
base on the JAZN provider.

Keystore-Related Errors

OWS-20098: Could not resolve subject key identifier
Make sure that the keystore contains the signer's public key certificate. For example, if
the client side keystore has a signature key with the alias xyz, then the server side
keystore must have the public key certificate corresponding to the alias xyz.

See "Using Keystores" on page 3-1 for information on importing certificates into the
keytool or Oracle Wallet.

Exception when validating the signer certificate path to the trusted root
Import the signer's certificate which contains the matching public key (which
corresponds to signer's private key) and trusted CA certificates into the keystore. If the
certificates are chained, you must import all of the certificates in the chain.

See "Using Keystores" on page 3-1 for information on importing certificates into the
keytool or Oracle Wallet.

OWS-20014: Certificate for encryption not found
The <recipient-key> element may be missing or may contain an incorrect value.
Check the <recipient-key> element is present in the outbound <encrypt>
element. It must point to a valid key; the key must be specified in the <key-store>
element's path attribute. If you are using the <use-request-cert> element for

Keystore-Related Errors

Troubleshooting 6-3

encrypting the response back to the client using the client's public key, make sure that
the outbound policy for the client is configured with <x509-token/>.

For information on the <recipient-key> element, see "Encryption Elements for
Outbound Messages" on page 2-18. For information on the <use-request-cert>
element, see "Encrypting a Message with a Signature Key" on page 3-40.

OWS-20060, OWS-20061: No key/certificate exists for alias <some_alias>
Check that a private key or certificate with the specified alias is present in the keystore.

See "Using Keystores" on page 3-1 for information on adding keys and certificates to
the keystore or Oracle Wallet.

OWS-20063: Invalid recipient key alias
Check that you have included a public key with the correct recipient key alias in the
keystore.

See "Using Keystores" on page 3-1 for information on adding keys and certificates to
the keystore or Oracle Wallet.

OWS-20074: Invalid keystore path
Check the value of the <key-store> element's path attribute is correct.

For the client side, the keystore path must be absolute. If the client application is
deployed in the OC4J container, then it can be relative to ORACLE_HOME/j2ee/home.

For the server side port-level keystore, the path must be relative to the application's
root directory. For example, if you have deployed an application test-
application, the path to the keystore must be relative to the ORACLE_
HOME/j2ee/instance/applications/test-application/ directory.

For the server side global-level keystore, the path must be relative to the ORACLE_
HOME/j2ee/home/config directory.

If you are using the oracle.security.jazn.config system property to point to
the config directory, then the server side global keystore path must be relative to the
directory specified in this property. Note that this property is valid only for the server
side global-level keystore path.

See "Keystore Elements" on page 2-5 for more information on the <key-store>
element.

Error reading keystore data
Check the value of the <key-store> element's password attribute. Either the
password is incorrect or some one has tampered with the keystore.

See "Keystore Elements" on page 2-5 for more information on the password attribute.

Error getting certificate chain with alias <some_alias>
Check that the certificate chain is present in the keystore. Use the keytool -list
command to view your keystore.

See "Using Keystores" on page 3-1 for more information on keytool commands.

Error getting trusted certificates
Check that you have added all the trusted CA certificates to the keystore. Use the
keytool -list command to view your keystore.

See "Using Keystores" on page 3-1 for more information on keytool commands.

Message Integrity Errors

6-4 Web Services Security Guide

Message Integrity Errors

Element with specific namespace and local part must be signed
In the outbound <signature> element, make sure that the values for the name-
space and local-part attributes of <tbs-elements> are correct. These values
must match the name-space and the local-part values for the element expected to
be signed in the inbound <verify-signature> element.

For more information on these elements, see "Signature Verification Elements for
Inbound Messages" on page 2-9 and "Signature Elements for Outbound Messages" on
page 2-17.

Element with specific namespace and local part not found
In the outbound <signature> element, make sure that the values for the name-
space and local-part attributes of <tbs-elements> are present and correct.

For more information on these elements and attributes, see"Signature Elements for
Outbound Messages" on page 2-17.

Missing created or Missing timestamp
The outbound <signature> element must contain an <add-timestamp> element
with its created attribute set to true. For example:

<signature>
 <add-timestamp created="true" expiry="28800"/>
</signature>

See "Signature Elements for Outbound Messages" on page 2-17 for more information
about the <add-timestamp> element.

Timestamp expired
This indicates that there may be a mis-match between the clock times on the machines
on which the client and Web service application run. Set the clock-skew property in
the inbound <verify-signature> element to adjust the time difference between the
machines. The value is in milliseconds. For example:

<verify-signature>
 <property name="clock-skew" value="5000"/>
</ verify-signature>

For more information on using clock skew, see "Adjusting the Clock Skew Between a
Client and a Web Service Application" on page 3-45.

Invalid timestamp
This indicates that there may be a mis-match between the clock times on the machines
on which the client and Web service application run. Check the value of the timestamp
set in the request, and adjust the setting of the clock-skew property in the inbound
<verify-signature> element.

The value of the timestamp in the request message must be earlier than the value
(message arrival time – clock skew).

For more information on using clock skew, see "Adjusting the Clock Skew Between a
Client and a Web Service Application" on page 3-45.

Message Integrity Errors

Troubleshooting 6-5

Policy requires integrity
Check that the outbound <signature> element contains a valid configuration. It
must also match the inbound <verify-signature> configuration (if it is present).

For more information on these elements, see "Signature Verification Elements for
Inbound Messages" on page 2-9 and "Signature Elements for Outbound Messages" on
page 2-17.

OWS-20005: Element not found for signing
In the outbound policy <signature> element, check that the values of the name-
space and local-part attributes of <tbs-elements> are valid.

For more information on these elements, see "Signature Elements for Outbound
Messages" on page 2-17.

OWS-20096: Signature certificate missing Subject Key Identifier
Check the signature key that you have configured for signing. The public key
certificate must have a Subject Key Identifier extension.

OWS-20015: Cannot use certificate for KEY_ENCIPHERMENT
Check that the recipient-key (or client signature key in the case of use-request-
cert) has a key usage extension with value key encipherment.

OWS-20018, OWS-20019: Signature key/certificate not found
Check that the <signature-key> element has been configured with a valid alias and
password. The private key or certificate must be present in the keystore configured in
the <key-store> tag.

For more information on these elements, see "Keystore Elements" on page 2-5 and
"Signature and Encryption Key Elements" on page 2-6.

Invalid <signature-methods/> configured must have at least one signature
algorithm
The <signature-methods> element in the inbound <verify-signature>
element is optional. It should be omitted if no signature algorithms are being specified.
If the <signature-methods> element is present, then it must have at least one valid
signature algorithm. Acceptable signature algorithms are RSA-SHA1 (default), RSA-
MD5, and DSA-SHA1.

For more information on the <signature-methods> element, see "Signature
Verification Elements for Inbound Messages" on page 2-9.

No errors are returned if a Web service that requires signed messages receives
unsigned messages
If a client sends unsigned messages to a Web service that is configured to accept only
signed messages, no errors or exceptions are returned.

Incorrect error returned by Web services configured for signature verification
If a client sends an encrypted message to a Web service configured for signature
verification, a null pointer exception is returned. This is an incorrect exception for this
problem. The correct exception should be
oracle.j2ee.ws.common.soap.fault.SOAP11FaultException with an
appropriate string message.

Message Confidentiality Errors

6-6 Web Services Security Guide

Message Confidentiality Errors

OWS-20002: Encryption key not found at Port/Global Level
You will see this error message if the inbound policy is configured to <decrypt> and
the encryption key is missing at port/global level. Check the <encryption-key>
element and the <key-store> element. Make sure that the values for the alias and
password attributes are correct.

For more information on these elements, see "Keystore Elements" on page 2-5 and
"Signature and Encryption Key Elements" on page 2-6.

URI content must be encrypted
In the outbound <encrypt> element, check that the <tbe-element> subelement in
the <tbe-elements> element has the correct name-space and local-part
attribute values.

For more information on the <tbe-element> subelement, see "Encryption Elements
for Outbound Messages" on page 2-18.

Policy requires confidentiality
Check that the outbound <encrypt> element has a valid configuration and matches
the configuration of the inbound <decrypt> element.

For more information about these elements, see "Decryption Elements for Inbound
Messages" on page 2-10 and "Encryption Elements for Outbound Messages" on
page 2-18.

Invalid <keytransport-methods/> configured. Must have at least one algorithm
The <keytransport-methods> element in the inbound <decrypt> element is
optional and should be omitted if no key transport methods are being specified. If the
<keytransport-methods> element is present, then it must have at least one valid
key transport algorithm. Acceptable key transport algorithms are RSA-1_5 (default)
or RSA-OAEP-MGF1P.

For more information on the <keytransport-methods> element, see "Decryption
Elements for Inbound Messages" on page 2-10.

Invalid <encryption-methods/> configured. Must have at least one algorithm.
The <encryption-methods> element in the inbound <decrypt> element is
optional and should be omitted if no encryption methods are being specified. If the
<encryption-methods> element is present, then it must have at least one valid
encryption algorithm. Acceptable encryption algorithms are 3DES, AES-128 (default),
and AES-192.

For more information on the <encryption-methods> element, see "Decryption
Elements for Inbound Messages" on page 2-10.

Authentication Errors

Invalid security token specified
An Invalid security token specified or similar error message is returned
when attempting to invoke the Web service.

Authentication Errors

Troubleshooting 6-7

There could be several reasons for this error:

■ For a user name token with plain text password authentication:

– An incorrect user name was entered.

– An incorrect password was entered.

– An incorrect realm <realm name>/<user name> was entered. Check whether the
realm name and user name are correct. Check whether the format is correct.
For example, the format requires a forward slash (/), not a double slash (//)
or backslash (\).

– An incorrect value for the password-type attribute was entered. The value
should be PLAINTEXT (one word). Check that it was not entered as two words
or misspelled.

■ For a user name token with digest password authentication:

– Check all of the reasons listed under user name token with plain text
password authentication (described earlier).

– An incorrect value for the password-type attribute was entered. The value
should be DIGEST.

– Check the values for the add-nonce and add-created attributes. For digest
password authentication, these attributes should always be set to true.

■ For X.509 token authentication:

By default, the service expects RSA-SHA1 as the certificate's key encryption
algorithm. If DSA was used as the certificate's key encryption algorithm instead,
then check that it was correctly configured. The server and client side
configuration should explicitly specify DSA as the signature method.

■ For SAML token authentication:

An incorrect user name was entered.

Policy requires authentication token
The outbound policy must have one of the authentication tokens expected by the
server. For example, if your inbound policy contains <verify-x509-token> and
<verify-username-token> then your outbound policy must have either
<username-token> or <x509-token>.

Encryption element not found
In the outbound <encrypt> element, check that the <tbe-element> subelement in
the <tbe-elements> element has valid name-space and local-part attribute
values.

For more information on these attributes, see "Encryption Elements for Outbound
Messages" on page 2-18.

Note: Only one authentication token can be included in the
outbound policy. The inbound policy can have more than one
authentication token.

Authentication Errors

6-8 Web Services Security Guide

Invalid subject-confirmation method
Check that the subject <confirmation-method> subelement in the <saml-token>
element contains a valid value. The acceptable confirmation methods are SENDER-
VOUCHES (default), SENDER-VOUCHES-UNSIGNED, and HOLDER-OF-KEY.

For more information on the <confirmation-method> subelement, see "SAML
Token Elements for Outbound Messages" on page 2-15.

Cannot find X.509 token
Check that the configuration for the <signature-key> element contains valid values
for the alias and password attributes.

The private key with the alias value must exist in the keystore.

For more information on checking the keystore contents, see"Using Keystores" on
page 3-1. For more information on the <signature-key> element, see "Signature
and Encryption Key Elements" on page 2-6.

OWS-20012: No username found
Check that the <username-token> element in the outbound policy has a valid name
attribute. If you are setting the user name with Stub.USERNAME_PROPERTY, then
check that the value that is set by this property is correct. If you are using a callback
handler, then check the value set in the Namecallback.

For more information about the <username-token> element, see "Username Token
Elements for Outbound Messages" on page 2-13. For more information about using
Stub properties and callback handlers, see "How to Configure the Username Token for
the Client Side" on page 3-11.

OWS-20022: Invalid assertion, missing public key
Check the definition of the holder-of-key assertion. The assertion must contain the
user's public key in the subject.

Cannot authenticate user or invalid token
The primary reason for this error is that the user cannot be found in the repository.
Depending on your provider, different attributes are used to map the user. Check that
the mapping attribute and the realm name is correct in the jazn.xml file. Also, if the
provider is XML, then check the location of the jazn-data.xml file specified in
orion-application.xml. By default, this will be system-jazn-data.xml and
the user must be present in this repository. If there is a local jazn-data.xml file, then
the user must be present in this file. By default, for an XML provider, the mapping
attribute is CN.

OracleAS Web Services Security Schema A-1

A
OracleAS Web Services Security Schema

This appendix describes the Oracle Application Server Web Services security
configuration elements defined by the security schema
oracle-webservices-security-10_0.xsd. This file can be found in the
oc4j-schemas.jar file.

OC4J_HOME\j2ee\home\lib\oc4j-schemas.jar

OC4J_HOME represents the directory where you installed Oracle Containers for J2EE
(OC4J).

Security is typically used as part of a larger Web services management configuration.
To enable security, you have to configure it into the Web service on the server side and
into the client. The configuration is part of an XML configuration file that is passed to
the Web service or client when it is assembled.

■ For the server, the configuration is stored in the oracle-webservices.xml
deployment descriptor file. This file is based on the oracle-webservices-10_
0.xsd schema.

■ For a J2SE client, the configuration is stored in the <generated_name>_
Stub.xml deployment descriptor file. This file is based on the
oracle-webservices-client-10_0.xsd schema.

Hierarchy of a Security Configuration
A security configuration is delimited by the element <security>. In the
oracle-webservices.xml server-side configuration file, the configuration can
appear in the <runtime> clause for a port component and for an individual
operation. Each port and operation can have its own security configuration. The
following conceptual fragment illustrates where the security configuration elements
appear in the hierarchy of an oracle-webservices.xml file.

<oracle-webservices>
 <webservice-description>
<port-component>
 <runtime enabled="security">
 <security>
 <key-store>
 <signature-key>
 <encryption-key>

 <operations>
 <operation>
 <runtime>
 <security>

Elements and Attributes of the Security Schema

A-2 Web Services Security Guide

 <inbound>
 <verify-username-token>
 <property>
 <verify-x509-token>
 <property>
 <verify-saml-token>
 <subject-confirmation-methods>
 <verify-signature>
 <signature-methods>
 <signature-method>
 <tbs-elements>
 <verify-timestamp>
 <property>
 <decrypt>
 <encryption-methods>
 <encryption-method>
 <keytransport-methods>
 <keytransport-method>
 <tbe-elements>
 <property>

 <outbound>
 <username-token>
 <property>
 <saml-token>
 <attribute>
 <subject-confirmation-method>
 <confirmation-method>
 <saml-authority>
 <property>
 <x509-token>
 <property>
 <signature>
 <signature-methods>
 <signature-method>
 <add-timestamp>
 <tbs-elements>
 <tbs-element>
 <encrypt>
 <encryption-method>
 <keytransport-method>
 <recipient-key>
 <use-cert-request>
 <tbe-elements>
 <tbe-element>

Elements and Attributes of the Security Schema
This section is an alphabetical dictionary of elements of the auditing schema,
oracle-webservices-security-10_0.xsd.

<add-timestamp>

Parent element: <signature>

Child elements: None

Required? Optional

Elements and Attributes of the Security Schema

OracleAS Web Services Security Schema A-3

Inbound or Outbound Messages? Outbound

Adds a timestamp to the outbound SOAP message. This timestamp is verified by
setting the <verify-timestamp> element. See "<verify-timestamp>".

<attribute>

Parent element: <saml-token>

Child elements: None

Required? Optional

Inbound or Outbound Messages? Outbound

The <attribute> element has a mandatory path attribute that points to a properties
file. The attribute statement is created from the attributes listed in this file.

This properties file contains one or more attribute name/value pairs for asserting a
user's identity. The attribute name can be prefixed with an optional namespace. For
example:

[attribute-name-space/]attribute-name=value

The following is an example of a value that can appear in an <attribute>
subelement.

email=abc@myCompany.com

<confirmation-method>
This element can appear as an inbound or an outbound element.

As an inbound element:

Parent element: <subject-confirmation-methods>

Table A–1 <add-timestamp> Attributes

Name Description

created Value: boolean

Default: true

Indicates whether a creation time is inserted into the timestamp.
Default is true.

expiry Value: long

Default: 28800 seconds

Expiration time, in seconds, until the signature expires. Default
is 28800 seconds (8 hours).

Table A–2 <attribute> Attributes

Name Description

path Value: string

Default: n/a (Required)

Indicates the path to a properties file that contains one or more
attribute name/value pairs for asserting a user's identity.

Elements and Attributes of the Security Schema

A-4 Web Services Security Guide

Child elements: None

Required? Required if <subject-confirmation-methods> is specified

Inbound or Outbound Messages? Inbound

This is an required subelement if the <subject-confirmation-methods> is used.
Between one and three <confirmation-method> subelements can appear. The
possible string values for this element are:

■ Sender-Vouches—(default) The incoming SAML token must supply a
sender-vouches confirmation method and the reference to the token must be
signed.

■ Sender-Vouches-Unsigned—The incoming SAML token must supply a
sender-vouches confirmation method and the token must not be signed.

■ Holder-Of-Key—The incoming SAML token must supply a holder-of-key
confirmation method. The assertion must have the public key of the user.

As an outbound element:

Parent element: <subject-confirmation-method>

Child elements: None

Required? Optional

Inbound or Outbound Messages? Outbound

The supported confirmation methods are Sender-Vouches (default),
Sender-Vouches-Unsigned, and Holder-Of-Key. At most, one
<confirmation-method> element can be specified as a subelement of a
<subject-confirmation-method> element in an outbound configuration.

<decrypt>

Parent element: <inbound>

Child elements: <encryption-methods>, <keytransport-methods>, <property>,
<tbe-elements>

Required? Optional

Inbound or Outbound Messages? Inbound

The <decrypt> element is an optional subelement of the <inbound> element. It
specifies the confidentiality requirements of the receiver. The <decrypt> element
occurs only once within an <inbound> element.

In addition to the child elements listed earlier, the <decrypt> element also supports a
<property> subelement. The <property> subelement has this format:

<property name="property_name" value="property_value"/>

OracleAS Web Services Security defines the following property on <decrypt>.

■ oracle.security.wss.decryptusingski

Elements and Attributes of the Security Schema

OracleAS Web Services Security Schema A-5

When set to true, the subject key identifier in the encrypted key tag is resolved to
a private key in the keystore. By default, this property is set to false. For
example:

<property name="oracle.security.wss.decryptusingski"
value="true"/>

The decryption key alias and password is stored in the system-jazn-data.xml
file using password indirection.

<encrypt>

Parent element: <outbound>

Child elements: <encryption-method>, <keytransport-method>, <recipient-key>,
<tbe-elements>, <use-cert-request>

Required? Optional

Inbound or Outbound Messages? Outbound

The <encrypt> element is an optional subelement of the <outbound> element. It
specifies confidentiality requirements of the sender. The <encrypt> element can
occur only once within an <outbound> element.

<encryption-key>

Parent element: <security>

Child elements: None

Required? Optional

Inbound or Outbound Messages? Both

Points to the key required for decrypting the message.

The <encryption-key> element is configured as part of the alias attribute of the
<recipient-key> subelement of the <encrypt> element. For more information on
<recipient-key>, see "<recipient-key>".

The <signature-key> and <encryption-key> elements are required at port level
if a port level keystore is specified or when selecting keys from global keystore. If these
keys are not configured at the port level, then the global-level values are used.

If you make any changes to the values of the <signature-key> and
<encryption-key> elements, then you must restart the application to enable the
new values.

Note: This property can be set in either the
oracle-webservices.xml or <generated_name>_Stub.xml
deployment descriptor. There is no tool support for adding this
property; you must manually edit the files.

Elements and Attributes of the Security Schema

A-6 Web Services Security Guide

<encryption-method>
This element can appear as an inbound or an outbound element.

As an inbound element:

Parent element: <encryption-methods>

Child elements: None

Required? Required if <encryption-methods> is specified

Inbound or Outbound Messages? Inbound

Encryption methods as part of the <decrypt> element refer to the encryption
methods accepted by the Web service application. A Web service application can
accept multiple encryption methods. At least one, but no more than three
<encryption-method> elements can be listed. If the incoming SOAP message is
encrypted the server interceptor checks the confidentiality policy and rejects the
request if the encryption algorithms do not match. The valid values for
<encryption-method> are:

■ 3DES

■ AES-128 (default)

■ AES-256

Table 2–9, " URIs and Short Names for Encryption Algorithms" on page 2-12 lists the
encryption algorithm URIs and corresponding short names recognized by Web
services security.

As an outbound element:

Parent element: <encrypt>

Child elements: None

Required? Optional

Inbound or Outbound Messages? Outbound

Specifies the encryption method to be used for encrypting the elements of the
outbound SOAP message. Only one encryption method can be listed under the
<encrypt> element. The following methods are valid.

■ 3DES

Table A–3 <encryption-key> Attributes

Name Description

alias Value: string

Default: n/a (Required)

Alias for the key.

key-pass Value: string

Default: n/a

Password to access the key.

Elements and Attributes of the Security Schema

OracleAS Web Services Security Schema A-7

■ AES-128 (default)

■ AES-256

Table 2–9, " URIs and Short Names for Encryption Algorithms" on page 2-12 lists the
URIs and corresponding short names for the encryption algorithms recognized by Web
services security.

<encryption-methods>

Parent element: <decrypt>

Child elements: <encryption-method>

Required? Optional

Inbound or Outbound Messages? Inbound

Collection of <encryption-method> elements. See "<encryption-method>".

<inbound>

Parent element: <security>

Child elements: <decrypt>, <verify-saml-token>, <verify-signature>,
<verify-username-token>, <verify-x509-token>

Required? Optional

Inbound or Outbound Messages? Inbound

The inbound message section in the oracle-webservices.xml and <generated_
name>_Stub.xml deployment descriptors are delimited with <inbound> elements.
The <inbound> element encapsulates the security configuration policy with respect to
incoming messages. The <inbound> element can occur as a subelement of
<security> at the global, port, and operation level.

Inbound security defines the context-specific security policy for the incoming
messages. In the case of a client, it corresponds to the security policy associated with
receiving a response. In the case of a service, it corresponds to the security policy
associated with receiving a request.

<key-store>

Parent element: <security>

Child elements: None

Required? Optional

Inbound or Outbound Messages? Both

The <key-store> element is required and can occur at both global and port levels on
the server, and at port level on the client. A global keystore setting applies to all
applications deployed within the instance; it can be overridden by a specific port-level
keystore. If you make any changes to the value of the <key-store> element, then
you must restart the application to enable the new values.

Elements and Attributes of the Security Schema

A-8 Web Services Security Guide

<keytransport-method>
This element can appear as an inbound or an outbound element.

As an inbound element:

Parent element: <keytransport-methods>

Child elements: None

Required? Required if <keytransport-methods> is specified

Inbound or Outbound Messages? Inbound

Each <keytransport-method> specifies the acceptable key transport algorithms. At
least one, but no more than two <keytransport-method> elements can be specified
for inbound messages. Algorithm names are specified using their short names instead
of URIs. Acceptable values are:

■ RSA-1_5 (default)

■ RSA-OAEP-MGF1P

Table 2–10, " URIs and Short Names for Key Transport Algorithms" on page 2-12 lists
the algorithm URIs and corresponding short names recognized by Web services
security.

As an outbound element:

Parent element: <encrypt>

Table A–4 <key-store> Attributes

Name Description

name Value: string

Default: n/a

Name of the keystore.

path Value: string

Default: n/a (Required)

File system path to the keystore. This can be an absolute or
relative path. On the server, the relative path is relative to the
application root directory:

J2EE_HOME/applications/application_name.

On the client, the path can be either absolute or relative to
J2EE_HOME when the client application is deployed on
OracleAS Web Services.

type Value: string

Default: n/a

Keystore type. The default type is JKS. Other supported types
are PKCS12 and ORACLE_WALLET.

store-pass Value: string

Default: n/a

Password to access the keystore.

Elements and Attributes of the Security Schema

OracleAS Web Services Security Schema A-9

Child elements: None

Required? Optional

Inbound or Outbound Messages? Outbound

A <keytransport-method> identifies the key transport algorithm. Only one
keytransport method can be specified for outbound messages. Algorithm names are
specified using their short names instead of URIs. The possible values for this element
are:

■ RSA-1_5 (default)

■ RSA-OAEP-MGF1P

Table 2–10, " URIs and Short Names for Key Transport Algorithms" on page 2-12 lists
the URIs and corresponding short names of the algorithms recognized by Web services
security.

<keytransport-methods>

Parent element: <decrypt>

Child elements: <keytransport-method>

Required? Optional

Inbound or Outbound Messages? Inbound

Collection of <keytransport-method> elements. See "<keytransport-method>".

<nonce-config>

Parent element: <security>

Child elements: None

Required? Optional

Inbound or Outbound Messages? Both

A nonce is a random value that can be included in the username token to prevent
replay attacks. The nonce is cached by the server. OracleAS Web Services Security lets
you configure a nonce value that can be inserted into the username token.

Table A–5 <nonce-config> Attributes

Name Description

clock-skew Value: integer

Default: n/a

The amount of clock skew, in seconds, that is allowed between
the client and server if the creation time is included in the
username token.

Elements and Attributes of the Security Schema

A-10 Web Services Security Guide

<outbound>

Parent element: <security>

Child elements: <encrypt>, <saml-token>, <signature>, <username-token>,
<x509-token>

Required?

Inbound or Outbound Messages? Outbound

The outbound message section in the oracle-webservices.xml and
<generated_name>_Stub.xml deployment descriptors are delimited with
<outbound> elements. Outbound security defines the context-specific security policy
for the outgoing messages. In the case of a client, it corresponds to the security policy
associated with sending a request. In the case of a service, it corresponds to the
security policy associated with sending a response.

<recipient-key>

Parent element: <encrypt>

Child elements: None

Required? required

Inbound or Outbound Messages? Outbound

The key alias of the recipient, which is used to encrypt the data encryption key. The
data encryption key is the generated symmetric key that is used to encrypt the actual
data. The data encryption key itself is also encrypted using the recipient's public key.

The recipient key may or may not have a key usage extension. If the recipient key does
have a key usage extension, then it must be of the type KEY_ENCIPHERMENT. If it does
not, the encryption request is rejected.

cache-ttl (cache time to
live)

Value: integer

Default: 300 seconds

Indicates how long, in seconds, the nonces remain valid in the
cache. Expired nonces are removed from the cache. Default is
300 seconds.

Table A–6 <recipient-key> Attributes

Name Description

alias Value: String

Default: n/a (Required)

An alias for the key.

key-pass Value: string

Default: n/a

An optional password attribute to access the key.

Table A–5 (Cont.) <nonce-config> Attributes

Name Description

Elements and Attributes of the Security Schema

OracleAS Web Services Security Schema A-11

<saml-authority>

Parent element: <saml-token>

Child elements: <property>

Required? Optional

Inbound or Outbound Messages? Outbound

The <saml-authority> element is an optional subelement <saml-token>. A
configuration of the <saml-authority> element and its attributes allow you to
retrieve a SAML token from an external SAML authority by issuing a SAMLP request.

This element supports a <property> subelement which is currently unused.

<saml-token>

Parent element: <outbound>

Child elements: <attribute>, <property>, <saml-authority>,
<subject-confirmation-method>

Required? Optional

Table A–7 <saml-authority> Attributes

Name Description

<auth-password> Value: string

Default: n/a

Specifies the password that is used to provide authentication to
the SAML authority. The auth-user-name and
auth-password elements are required if
password-based-mechanism is used for authentication.

<auth-user-name> Value: string

Default: n/a

Specifies the username that is used to provide authentication to
the SAML authority. This attribute is required for the
Holder-Of-Key confirmation method, optional otherwise. For
the Holder-Of-Key subject confirmation method, the SAML
assertion token is requested for the user identified by
auth-user-name. For the Sender-Vouches subject
confirmation method, the SAML assertion token is requested for
the user identified by the name attribute of <saml-token>
element.

<endpoint-address> Value: string

Default: n/a (Required)

Specifies the SAML Responder URL.

<require-signature> Value: boolean

Default: false

If this boolean attribute is true, then the SAMLP request is
signed with the client's signature key. In addition, the client-side
keystore and signature keys should be configured. The default
value for this element is false.

Elements and Attributes of the Security Schema

A-12 Web Services Security Guide

Inbound or Outbound Messages? Outbound

The <saml-token> element is an optional element of the <outbound> policy. The
client interceptor refers to the <saml-token> element in the outbound policy for
creating the actual SAML assertion for the user identity. This element has a
<property> subelement which is currently unused.

<security>

Parent element: Root element of a security configuration

Table A–8 <saml-token> Attributes

Name Description

name Value: string

Default: n/a (Required)

You can choose a name for the assertion subject by providing a
value for the name attribute of the <saml-token> element. The
name attribute has the following format:

[realm-name/]name

The name represents the name of the assertion. The assertion
name can be prefixed with the assertion's realm-name. If the
realm name is already present, then it is set as the name
qualifier.

The name attribute contains the actual name of the user identity
that is being propagated. For example, name="jdoe". The
value of the name attribute is inserted in the
<name-identifier> element of the SAML assertion. The
default name format for the name identifier is UNSPECIFIED
(see "name-format").

name-format Value: name-identifier-format-enum

Default: UNSPECIFIED

Specifies the format of the assertion subject name. This element
can have any of the following values:

■ UNSPECIFIED (default)— can be any value.

■ EMAIL—an email address, such as abc@myCompany.com.

■ X509-SUBJECT-NAME—an X.509 subject name (an X.509
subject name translates to DN, a distinguished name). For
example: CN="abc", OU="Security", O="Oracle",
C="US".

■ WINDOWS-DOMAIN-NAME—the name of a Windows
domain. For example: abc.

cbhandler-name Value: string

Default: n/a

Identifies the name of the user-defined class that will handle the
SAMLTokenCallback call back handler. This class is used to
pass SAML assertions to the interceptor.

issuer-name Value: string

Default: www.oracle.com

Used to get the SAML assertion issuer name. The default value
is www.oracle.com. It is strongly recommended that you
change this to the name of your own assertion issuer.

Elements and Attributes of the Security Schema

OracleAS Web Services Security Schema A-13

Child elements: <encryption-key>, <inbound>, <key-store>, <nonce-config>,
<outbound>, <signature-key>

Required? Optional

Inbound or Outbound Messages? Both

Encapsulates a security configuration. The configuration can occur at the global, port
or operation level.

<signature>

Parent element: <outbound>

Child elements: <add-timestamp>, <signature-methods>, <tbs-elements>

Required? Optional

Inbound or Outbound Messages? Outbound

Specifies the algorithm for signing outgoing messages or individual message elements.

<signature-key>

Parent element: <security>

Child elements: None

Required? Optional

Inbound or Outbound Messages? Both

Points to the key required by <signature> and <verify-signature>.

The <signature-key> and <encryption-key> elements are required at port level
if a port level keystore is specified or when selecting keys from the global keystore. If
these keys are not configured at the port level, then the global-level values are used.

If you make any changes to the values of the <signature-key> and
<encryption-key> elements, then you must restart the application to enable the
new values.

<signature-method>
This element can appear as an inbound or an outbound element.

Table A–9 <signature-key> Attributes

Name Description

alias Value: string

Default: n/a (Required)

Alias for the key.

key-pass Value: string

Default: n/a

Password to access the key.

Elements and Attributes of the Security Schema

A-14 Web Services Security Guide

As an inbound element:

Parent element: <signature-methods>

Child elements: None

Required? Optional

Inbound or Outbound Messages? Inbound

The <signature-method> element is used to specify the acceptable signing
algorithms. Algorithm names are specified using their short names instead of URIs.
The default value is RSA-SHA1. Table 2–18, " Signature Algorithms and Short Names"
on page 2-17 lists the algorithm URIs and corresponding short names that are
recognized by OracleAS Web Services Security.

As an outbound element:

Parent element: <signature-methods>

Child elements: None

Required? Required if <signature-methods> is specified.

Inbound or Outbound Messages? Outbound

The <signature-method> element specifies the acceptable signature algorithm.
Algorithm names are specified using their short names instead of URIs. The default
value is RSA-SHA1.

Table 2–18, " Signature Algorithms and Short Names" on page 2-17 lists the algorithm
URIs and corresponding short names that are recognized by OracleAS Web Services
Security.

<signature-methods>
This element can appear as an inbound or an outbound element.

As an inbound element:

Parent element: <verify-signature>

Child elements: <signature-method>

Required? Optional

Inbound or Outbound Messages? Inbound

List of <signature-method> elements. See "<signature-method>".

As an outbound element:

Parent element: <signature>

Child elements: <signature-method>

Required? Optional

Elements and Attributes of the Security Schema

OracleAS Web Services Security Schema A-15

Inbound or Outbound Messages? Outbound

Collection of <signature-method> elements. See "<signature-method>".

<subject-confirmation-method>

Parent element: <saml-token>

Child elements: <confirmation-method>

Required? Optional

Inbound or Outbound Messages? Outbound

Delimits a list of <confirmation-method> elements. See "<confirmation-method>".

<subject-confirmation-methods>

Parent element: <verify-saml-token>

Child elements: <confirmation-method>

Required? Optional

Inbound or Outbound Messages? Inbound

This is an optional element for inbound policy. When used as part of the inbound
<verify-saml-token> policy, it refers to an enumeration of confirmation methods
(<confirmation-method>) used for propagating the identity in the incoming SOAP
message.

<tbe-element>
This element can appear as an inbound or an outbound element.

As an inbound element:

Parent element: <tbe-elements>

Child elements: None

Required? Required if <tbe-elements> is present

Inbound or Outbound Messages? Inbound

Indicates the elements that are encrypted in the incoming SOAP message.

Table A–10 <tbe-element> Attributes

Name Description

local-part Value: string

Default: n/a (Required)

The actual element name.

Elements and Attributes of the Security Schema

A-16 Web Services Security Guide

As an outbound element:

Parent element: <tbe-elements>

Child elements: None

Required? Required if <tbe-elements> is specified

Inbound or Outbound Messages? Outbound

Each <tbe-element> indicates an element to be encrypted.

<tbe-elements>
This element can appear as an inbound or an outbound element.

As an inbound element:

Parent element: <decrypt>

mode Value: encrypt-mode-enum

Default: CONTENT

An additional attribute that is used to specify whether the
ELEMENT or the CONTENT is expected to be encrypted. If mode is
ELEMENT then the entire element is expected to be encrypted, if
mode is CONTENT then the content of the element is expected to
be encrypted. Default is CONTENT.

name-space Value: anyUri

Default: n/a (Required)

The actual name space of the element in the SOAP message. This
attribute can be omitted if there is only one element with this
name in the namespace.

Table A–11 <tbe-element> Attributes

Name Description

local-part Value: string

Default: n/a (Required)

The actual name of the element.

mode Value: enum-mode-encrypt

Default: CONTENT

An additional attribute that is used to specify whether the
ELEMENT or the CONTENT is encrypted. If the value of mode is
ELEMENT then the entire element is encrypted, if the value of
mode is CONTENT then the content of the element is encrypted.
Default is CONTENT.

name-space Value: anyUri

Default: n/a (Required)

The actual name space of the element in the SOAP message. This
attribute can be omitted if there is only one element with this
name in the namespace.

Table A–10 (Cont.) <tbe-element> Attributes

Name Description

Elements and Attributes of the Security Schema

OracleAS Web Services Security Schema A-17

Child elements: <tbe-element>

Required? Optional

Inbound or Outbound Messages? Inbound

Collection of <tbe-element> elements. See "<tbe-element>".

As an outbound element:

Parent element: <encrypt>

Child elements: <tbe-element>

Required? Required

Inbound or Outbound Messages? Outbound

Collection of <tbe-element> elements. See "<tbe-element>".

<tbs-element>
This element can appear as an inbound or an outbound element.

As an inbound element:

Parent element: <tbs-elements>

Child elements: None

Required? Required if <tbs-elements> is specified

Inbound or Outbound Messages? Inbound

The <tbs-element> element identifies the element in the SOAP message that is
expected to be signed.

As an outbound element:

Parent element: <tbs-elements>

Child elements: None

Required? Required if <tbs-elements> is specified

Table A–12 <tbs-element> Attributes

Name Description

local-part Value: string

Default: n/a (Required)

The actual element name.

name-space Value: anyUri

Default: n/a (Required)

The actual name space of the element in the SOAP message. This
attribute can be omitted if there is only one element with this
name in the namespace.

Elements and Attributes of the Security Schema

A-18 Web Services Security Guide

Inbound or Outbound Messages? Outbound

Each <tbs-element> indicates the element to be signed.

<tbs-elements>
This element can appear as an inbound or an outbound element.

As an inbound element:

Parent element: <verify-signature>

Child elements: <tbs-element>

Required? Optional

Inbound or Outbound Messages? Inbound

List of <tbs-element> elements that are expected to be signed in the incoming
request. See "<tbs-element>".

As an outbound element:

Parent element: <signature>

Child elements: None

Required? Optional

Inbound or Outbound Messages? Outbound

Collection of <tbs-element> elements. See "<tbs-element>".

<use-cert-request>

Parent element: <encrypt>

Child elements: None

Required? Required

Inbound or Outbound Messages? Outbound

Table A–13 <tbs-element> Attributes

Name Description

local-part Value: string

Default: n/a (Required)

The actual element name.

name-space Value: anyUri

Default: n/a (Required)

The actual name space of the element in the SOAP message. This
attribute can be omitted if there is only one element with this
name in the namespace. This attribute can be omitted if all of the
elements in the SOAP message share the same name space.

Elements and Attributes of the Security Schema

OracleAS Web Services Security Schema A-19

The Web service client has sent a signed SOAP message and the Web service
application has successfully verified the signature. When the Web service application
sends a response back to the same client, it can choose to encrypt the response with the
signature certificate that the client sent in the first message exchange.

The use-request-cert element is configured as part of a Web service application's
outbound encryption policy. Note that if the server interceptor is unable to find the
signature certificate (that is, the client has not sent a signed SOAP message or the
signature verification failed) then the Web service application will reject the encryption
request.

<username-token>

Parent element: <outbound>

Child elements: <property>

Required? Optional

Inbound or Outbound Messages? Outbound

The <username-token> element is an optional element of the outbound policy. This
element specifies the username token that must be inserted into the security header
block. Only one instance of the element is permitted. This element has an optional
<property> subelement which is currently unused.

Table A–14 <username-token> Attributes

Name Description

name Value: string

Default: n/a

The username to be inserted into the token.

password Value: string

Default: n/a

The actual password of the user

password-type Value: password-type-enum

Default: plaintext

Type of password: plaintext or digest. Default is
plaintext. Note that if you set password-type to digest,
then add-nonce and add-created will be set to true by
default.

cbhandler-name Value: string

Default: n/a

The name of the callback handler that inserts the username
token into the SOAP message. The callback handler is a
user-defined callback handler class that handles NameCallback
and PasswordCallback. The value of the cbhandler-name
attribute is the name of the user-defined implementation class.

Elements and Attributes of the Security Schema

A-20 Web Services Security Guide

<verify-saml-token>

Parent element: <inbound>

Child elements: <subject-confirmation-methods>

Required? Optional

Inbound or Outbound Messages? Inbound

The <verify-saml-token> element is an optional subelement of the <inbound>
element. It specifies whether the incoming SOAP message carrying a SAML assertion
should be verified.

<verify-signature>

Parent element: <inbound>

Child elements: <property>, <signature-methods>, <tbs-elements>,
<verify-timestamp>

Required? Optional

Inbound or Outbound Messages? Inbound

The <verify-signature> element is an optional subelement of the <inbound>
element. It specifies the integrity or signature requirements of the receiver. These
requirements include the name of the signature verification algorithm and the message
parts to be verified. The <verify-signature> element occurs only once within the
<inbound> element.

In addition to the child elements liste, the <verify-signature> element provides a
<property> subelement. The <property> subelement has this format:

<property name="property_name" value="property_value"/>

OracleAS Web Services Security defines the following property on
<verify-signature>.

■ clock-skew—Configures the clock difference between the client and the server.
The client that is sending the SOAP message (signing and adding a timestamp)

add-nonce Value: boolean

Default: false

Specifies whether a nonce should be added to the request. For
digest authentication, this attribute is required and must be set
to true. This attribute is optional for plain text password
authentication. The default value is false.

add-created Value: boolean

Default: false

Specifies whether a creation time should be added to the
request. For digest password authentication, this attribute is
required and must be set to true. This attribute is optional for
plain text password authentication. The default value is false.

Table A–14 (Cont.) <username-token> Attributes

Name Description

Elements and Attributes of the Security Schema

OracleAS Web Services Security Schema A-21

and the Web service application (receiving the SOAP message and verifying the
signature and the timestamp) may be running on two separate machines. If the
clocks on the machines are not in sync, then clock-skew is configured to sync-up
the time between them.

The default value of clock-skew is 0 and the units are measured in milliseconds.
The following example sets the clock skew to three seconds.

<property name="clock-skew" value="3000"/>

This property can be set in either the oracle-webservices.xml or
<generated_name>_Stub.xml deployment descriptor. There is no tool support
for adding this property; you must manually edit the files.

<verify-timestamp>

Parent element: <verify-signature>

Child elements: None

Required? Optional

Inbound or Outbound Messages? Inbound

Verifies the timestamp in the incoming SOAP message. (This timestamp is configured
with the <add-timestamp> element.) The created attribute is used to indicate
whether a timestamp was created for the message. Incoming SOAP messages with a
timestamp that has expired are rejected by the server.

<verify-username-token>

Parent element: <inbound>

Child elements: <property>

Required? Optional

Inbound or Outbound Messages? Inbound

The <verify-username-token> element specifies the security policy for username
tokens. This is an optional subelement of the <inbound> element and can occur only
once within the element.

Table A–15 <verify-timestamp> Attributes

Name Description

created Value: boolean

Default: true

Indicates whether the timestamp includes the creation time.
Default is true.

expiry Value: long

Default: 28800 seconds

Expiration time, in seconds, on the signature. Default is 28800
seconds (8 hours).

Elements and Attributes of the Security Schema

A-22 Web Services Security Guide

The <verify-username-token> element also has a <property> subelement. The
<property> subelement has this format:

<property name="property_name" value="property_value"/>

OracleAS Web Services Security defines the following property on
<verify-username-token>.

■ username.token.allow.nopassword—The value of this boolean property
determines whether the Web service will authenticate a username token without
requiring a password. This property is useful when the user is already
authenticated and trusted, and only its existence in the identity store needs to be
verified.

The following example allows the Web service to accept a username token without
an accompanying password.

<property name="username.token.allow.nopassword"
value="true"/>

This property can be set in the oracle-webservices.xml deployment
descriptor. There is no tool support for adding this property; you must manually
edit the file.

<verify-x509-token>

Parent element: <inbound>

Child elements: <property>

Required? Optional

Inbound or Outbound Messages? Inbound

The <verify-x509-token> element specifies the authentication policy with respect
to X.509 tokens. It is an optional subelement of the <inbound> element. It has an
optional <property> subelement which is currently not used.

<x509-token>

Parent element: <outbound>

Child elements: <property>

Table A–16 <verify-username-token> Attribute

Name Description

password-type Type of password authentication: plaintext or digest.
Default is plaintext.

require-nonce Specifies whether a nonce must be included in the username
token. This attribute is required for digest authentication.
Default is false.

require-created Specifies whether the creation time must be included in the
username token. This attribute can be used with either plain text
or digest password authentication. However, it must be set to
true for digest authentication. Default is false.

Oracle Web Services Security Schema Listing

OracleAS Web Services Security Schema A-23

Required? Optional

Inbound or Outbound Messages? Outbound

The <x509-token> element is an optional element of the <outbound> configuration.
This element indicates that an X.509 signing certificate will be inserted into the request.
A direct reference to the X.509 certificate (signer's certificate) is added. You must have
the signature key configured for this configuration to work.

The <x509-token> element supports a <property> subelement. The <property>
subelement has this format:

<property name="property_name" value="property_value"/>

OracleAS Web Services Security defines the following property on <x509-token>.

■ oracle.security.wss.signX509token—This property is applicable only
when the <x509-token> is used with signature <signature>. If set to true
(default), the Binary Security Token (BST) that contains the X.509 token will be
signed. If set to false, the Binary Security Token will not be signed. For example:

<property name="oracle.security.wss.signX509token"
value="false"/>

Oracle Web Services Security Schema Listing
Example A–1 illustrates the contents of the oracle-webservices-security-10_
0.xsd schema file.

Example A–1 Contents of the oracle-webservices-security-10_0.xsd Security Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema elementFormDefault="qualified" attributeFormDefault="unqualified"
version="1.0" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:simpleType name="password-type-enum">
 <xsd:restriction base="xsd:string">
 <xsd:whiteSpace value="collapse"/>
 <xsd:enumeration value="PLAINTEXT"/>
 <xsd:enumeration value="DIGEST"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="signature-method-enum">
 <xsd:restriction base="xsd:string">
 <xsd:whiteSpace value="collapse"/>
 <xsd:enumeration value="RSA-SHA1"/>
 <xsd:enumeration value="RSA-MD5"/>
 <xsd:enumeration value="DSA-SHA1"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="encryption-method-enum">
 <xsd:restriction base="xsd:string">
 <xsd:whiteSpace value="collapse"/>
 <xsd:enumeration value="3DES"/>
 <xsd:enumeration value="AES-128"/>
 <xsd:enumeration value="AES-256"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="keytransport-method-enum">
 <xsd:restriction base="xsd:string">
 <xsd:whiteSpace value="collapse"/>
 <xsd:enumeration value="RSA-OAEP-MGF1P"/>

Oracle Web Services Security Schema Listing

A-24 Web Services Security Guide

 <xsd:enumeration value="RSA-1_5"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="encrypt-mode-enum">
 <xsd:restriction base="xsd:string">
 <xsd:whiteSpace value="collapse"/>
 <xsd:enumeration value="CONTENT"/>
 <xsd:enumeration value="ELEMENT"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="nonce-config-type">
 <xsd:attribute name="clock-skew" type="xsd:integer" default="0"/>
 <xsd:attribute name="cache-ttl" type="xsd:integer" default="300"/>
 </xsd:complexType>
 <xsd:complexType name="security-config-type">
 <xsd:sequence>
 <xsd:element name="key-store" type="key-store-config-type" minOccurs="0"/>
 <xsd:element name="signature-key" type="key-config-type" minOccurs="0"/>
 <xsd:element name="encryption-key" type="key-config-type" minOccurs="0"/>
 <xsd:element name="nonce-config" type="nonce-config-type" minOccurs="0"/>
 <xsd:element name="inbound" type="inbound-config-type" minOccurs="0"/>
 <xsd:element name="outbound" type="outbound-config-type" minOccurs="0"/>
 <xsd:element name="property" type="property-config-type" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="security-operation-config-type">
 <xsd:sequence>
 <xsd:element name="inbound" type="inbound-config-type" minOccurs="0"/>
 <xsd:element name="outbound" type="outbound-config-type" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="security-global" type="security-config-type"/>
 <xsd:element name="security-port" type="security-config-type"/>
 <xsd:element name="security-operation" type="security-operation-config-type"/>
 <xsd:complexType name="inbound-config-type">
 <xsd:sequence>
 <xsd:element name="verify-username-token"
type="verify-username-token-config-type" minOccurs="0"/>
 <xsd:element name="verify-x509-token" type="verify-x509-token-config-type"
minOccurs="0"/>
 <xsd:element name="verify-saml-token" type="verify-saml-token-config-type"
minOccurs="0"/>
 <xsd:element name="verify-signature" type="verify-signature-config-type"
minOccurs="0"/>
 <xsd:element name="decrypt" type="decrypt-config-type" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="outbound-config-type">
 <xsd:sequence>
 <xsd:choice minOccurs="0">
 <xsd:element name="username-token" type="username-token-config-type"/>
 <xsd:element name="x509-token" type="x509-token-config-type"/>
 <xsd:element name="saml-token" type="saml-token-config-type"/>
 </xsd:choice>
 <xsd:element name="signature" type="signature-config-type" minOccurs="0"/>
 <xsd:element name="encrypt" type="encrypt-config-type" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="signature-config-type">

Oracle Web Services Security Schema Listing

OracleAS Web Services Security Schema A-25

 <xsd:sequence>
 <xsd:element name="signature-method" default="RSA-SHA1" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:whiteSpace value="collapse"/>
 <xsd:enumeration value="RSA-SHA1"/>
 <xsd:enumeration value="RSA-MD5"/>
 <xsd:enumeration value="DSA-SHA1"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="tbs-elements" type="sign-elements-config-type"
minOccurs="0"/>
 <xsd:element name="add-timestamp" type="timestamp-config-type"
minOccurs="0"/>
 <xsd:element name="property" type="property-config-type" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="encrypt-config-type">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="recipient-key" type="key-config-type"/>
 <xsd:element name="use-request-cert" type="xsd:boolean"/>
 </xsd:choice>
 <xsd:element name="encryption-method" default="AES-128" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:whiteSpace value="collapse"/>
 <xsd:enumeration value="3DES"/>
 <xsd:enumeration value="AES-128"/>
 <xsd:enumeration value="AES-256"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="keytransport-method" default="RSA-1_5" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:whiteSpace value="collapse"/>
 <xsd:enumeration value="RSA-OAEP-MGF1P"/>
 <xsd:enumeration value="RSA-1_5"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="tbe-elements" type="encrypt-elements-config-type"/>
 <xsd:element name="property" type="property-config-type" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="verify-signature-config-type">
 <xsd:sequence>
 <xsd:element name="signature-methods" type="signature-methods-config-type"
minOccurs="0"/>
 <xsd:element name="tbs-elements" type="sign-elements-config-type"
minOccurs="0"/>
 <xsd:element name="verify-timestamp" type="timestamp-config-type"
minOccurs="0"/>
 <xsd:element name="property" type="property-config-type" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>

Oracle Web Services Security Schema Listing

A-26 Web Services Security Guide

 </xsd:complexType>
 <xsd:complexType name="decrypt-config-type">
 <xsd:sequence>
 <xsd:element name="encryption-methods" type="encryption-methods-config-type"
minOccurs="0"/>
 <xsd:element name="keytransport-methods"
type="keytransport-methods-config-type" minOccurs="0"/>
 <xsd:element name="tbe-elements" type="encrypt-elements-config-type"
minOccurs="0"/>
 <xsd:element name="property" type="property-config-type" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="property-config-type">
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="value" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="key-store-config-type">
 <xsd:attribute name="store-pass" type="xsd:string" use="optional"/>
 <xsd:attribute name="path" type="xsd:string" use="required"/>
 <xsd:attribute name="type" type="xsd:string" use="optional"/>
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="key-config-type">
 <xsd:attribute name="alias" type="xsd:string" use="required"/>
 <xsd:attribute name="key-pass" type="xsd:string" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="signature-methods-config-type">
 <xsd:sequence>
 <xsd:element name="signature-method" default="RSA-SHA1" maxOccurs="3">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:whiteSpace value="collapse"/>
 <xsd:enumeration value="RSA-SHA1"/>
 <xsd:enumeration value="RSA-MD5"/>
 <xsd:enumeration value="DSA-SHA1"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="encryption-methods-config-type">
 <xsd:sequence>
 <xsd:element name="encryption-method" default="AES-128" maxOccurs="3">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:whiteSpace value="collapse"/>
 <xsd:enumeration value="3DES"/>
 <xsd:enumeration value="AES-128"/>
 <xsd:enumeration value="AES-256"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="keytransport-methods-config-type">
 <xsd:sequence>
 <xsd:element name="keytransport-method" default="RSA-1_5" maxOccurs="2">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">

Oracle Web Services Security Schema Listing

OracleAS Web Services Security Schema A-27

 <xsd:whiteSpace value="collapse"/>
 <xsd:enumeration value="RSA-OAEP-MGF1P"/>
 <xsd:enumeration value="RSA-1_5"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="username-token-config-type">
 <xsd:sequence>
 <xsd:element name="property" type="property-config-type" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 <xsd:attribute name="password" type="xsd:string" use="optional"/>
 <xsd:attribute name="password-type" type="password-type-enum" use="optional"
default="PLAINTEXT"/>
 <xsd:attribute name="cbhandler-name" type="xsd:string" use="optional"/>
 <xsd:attribute name="add-nonce" type="xsd:boolean" use="optional"
default="false"/>
 <xsd:attribute name="add-created" type="xsd:boolean" use="optional"
default="false"/>
 </xsd:complexType>
 <xsd:complexType name="verify-username-token-config-type">
 <xsd:sequence>
 <xsd:element name="property" type="property-config-type" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="password-type" type="password-type-enum" use="optional"/>
 <xsd:attribute name="require-nonce" type="xsd:boolean" use="optional"
default="false"/>
 <xsd:attribute name="require-created" type="xsd:boolean" use="optional"
default="false"/>
 </xsd:complexType>
 <xsd:complexType name="verify-x509-token-config-type">
 <xsd:sequence>
 <xsd:element name="property" type="property-config-type" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="x509-token-config-type">
 <xsd:sequence>
 <xsd:element name="property" type="property-config-type" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="cbhandler-name" type="xsd:string" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="timestamp-config-type">
 <xsd:attribute name="expiry" type="xsd:long" default="28800"/>
 <xsd:attribute name="created" type="xsd:boolean" default="true"/>
 </xsd:complexType>
 <xsd:complexType name="encrypt-elements-config-type">
 <xsd:sequence>
 <xsd:element name="tbe-element" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name-space" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="local-part" type="xsd:string" use="required"/>
 <xsd:attribute name="mode" type="encrypt-mode-enum" use="optional"
default="CONTENT"/>
 </xsd:complexType>

Oracle Web Services Security Schema Listing

A-28 Web Services Security Guide

 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="sign-elements-config-type">
 <xsd:sequence>
 <xsd:element name="tbs-element" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name-space" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="local-part" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="saml-token-config-type">
 <xsd:sequence>
 <xsd:element name="subject-confirmation-method"
type="subject-confirmation-method-config-type" minOccurs="0"/>
 <xsd:element name="attribute" type="attribute-config-type" minOccurs="0"/>
 <xsd:element name="property" type="property-config-type" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="saml-authority" type="saml-authority-config-type"
minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="name-format" type="name-identifier-format-enum"
default="UNSPECIFIED"/>
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 <xsd:attribute name="cbhandler-name" type="xsd:string" use="optional"/>
 <xsd:attribute name="issuer-name" type="xsd:string" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="verify-saml-token-config-type">
 <xsd:sequence>
 <xsd:element name="subject-confirmation-methods"
type="subject-confirmation-methods-config-type" minOccurs="0"/>
 <xsd:element name="property" type="property-config-type" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="subject-confirmation-methods-config-type">
 <xsd:sequence>
 <xsd:element name="confirmation-method" default="SENDER-VOUCHES"
maxOccurs="3">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:whiteSpace value="collapse"/>
 <xsd:enumeration value="SENDER-VOUCHES"/>
 <xsd:enumeration value="SENDER-VOUCHES-UNSIGNED"/>
 <xsd:enumeration value="HOLDER-OF-KEY"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="subject-confirmation-method-config-type">
 <xsd:sequence>
 <xsd:element name="confirmation-method" default="SENDER-VOUCHES"
minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:whiteSpace value="collapse"/>
 <xsd:enumeration value="SENDER-VOUCHES"/>

Security Configuration Listing

OracleAS Web Services Security Schema A-29

 <xsd:enumeration value="SENDER-VOUCHES-UNSIGNED"/>
 <xsd:enumeration value="HOLDER-OF-KEY"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="attribute-config-type">
 <xsd:attribute name="path" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:simpleType name="name-identifier-format-enum">
 <xsd:restriction base="xsd:string">
 <xsd:whiteSpace value="collapse"/>
 <xsd:enumeration value="UNSPECIFIED"/>
 <xsd:enumeration value="EMAIL"/>
 <xsd:enumeration value="X509-SUBJECT-NAME"/>
 <xsd:enumeration value="WINDOWS-DOMAIN-NAME"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="saml-authority-config-type">
 <xsd:sequence>
 <xsd:element name="property" type="property-config-type" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="endpoint-address" type="xsd:string" use="required"/>
 <xsd:attribute name="auth-user-name" type="xsd:string" use="optional"/>
 <xsd:attribute name="auth-password" type="xsd:string" use="optional"/>
 <xsd:attribute name="require-signature" type="xsd:boolean" use="optional"/>
 </xsd:complexType>
</xsd:schema>

Security Configuration Listing
You can find a sample oracle-webservices.xml deployment descriptor populated
with a security configuration in "Security Configuration Elements" on page 2-3.

Security Configuration Listing

A-30 Web Services Security Guide

Security Threats and Solutions B-1

B
Security Threats and Solutions

This appendix describes the security threats that are present in today's Web services
environment, and how Oracle Application Server Web Services Security responds to
these threats. The descriptions of the security threats are provided by the Web Services
Interoperability (WS-I) Organization's document Security Challenges, Threats and
Countermeasures Version 1.0. This document identifies the following information:

■ the security challenges: these are the goals or features that help you decide specific
security scenarios.

■ the threats that prevent the fulfillment of each goal.

■ the countermeasures you can employ to guard against each threat.

■ the possible usage scenarios and the security challenges and threats that might
apply to each.

This appendix identifies how the functionality in OracleAS Web Services can be used
to address the threats described in the Security Challenges document. For example,
Table B–1 describes message-level security threats and Table B–2 describes
transport-level security threats. These tables also identify possible solutions to the
security threats and whether you can implement the solutions with Application Server
Control or Oracle JDeveloper. The tables also provide a roadmap to where you can
find more information on the solutions in the documentation.

These tables use tags, such as SC1, SA1, and BISP1, to indicate message and transport
layer security mechanisms. These tags are briefly described in Table B–3. These tables
also use threat IDs, such as T-01 and T-02 to indicate types of security threats. These
threats are briefly described in Table B–4.

See Also:

For more information on these security mechanisms and threats, see
Security Challenges, Threats and Countermeasures Version 1.0 at the
following Web site.

http://www.ws-i.org/Profiles/BasicSecurity/SecurityC
hallenges-1.0.pdf.

B-2 Web Services Security Guide

Table B–1 Message Layer Security Solutions

Solution
Threat Number and
Name

Supported
Solutions

Application
Server Control
Support

Oracle JDeveloper
Support

Where
Documented

Sender Authentication

Username with clear
text password or digest
password with
encrypted
password/digest (SA1)

T-05: Principal Spoofing SA1 Inbound
configuration:

(verifying
username token) is
supported.

Outbound
configuration:

(username token),
Application Server
Control does not
support
encrypting or
decrypting the
username token.

Inbound
configuration:

(verifying username
token) is supported.

Outbound
configuration:

(username token
with clear
text/digest
password) is
supported.

Encrypting and
decrypting the
username token are
manual steps

"Encrypting
Elements of a SOAP
Message" on
page 3-39 and
"Decrypting
Elements of a SOAP
Message" on
page 3-40 provides
information on
encrypting and
decrypting the
username token.

"Assembling a
Secure Web Service"
on page 4-1
provides bottom up
and top down
examples which use
username token.

Sender Authentication

Username with clear
text password or digest
password (SA2)

T-05: Principal Spoofing SA2 Inbound
configuration is
supported by the
verify-usernam
e-token element.

Both inbound and
outbound
configuration are
supported.

"Using a Username
Token" on page 3-8.

Message Integrity,
Sender Authentication

XML Digital Signature
(SI1) with:

■ Username with
clear text password
or digest password
(SA2), or

■ X509 Certificate
(SA3), or

■ SAML Token
(SA5), or

■ REL Token (SA6)

T-01: Message
Alteration

T-05: Principal Spoofing

SI1, SA2,
SA3 and
SA5 are
supported

SA6 is not
supported.

Inbound policy for
SI1 (verify
signature) is
supported
through
Application Server
Control. You must
configure an
instance/port
level keystore with
a signature key.

Inbound policies
for SA2, SA3 and
SA5 are supported
through
Application Server
Control.

Outbound policies
for SA2, SA3 and
SA5 are not
supported
through
Application Server
Control.

Both Inbound and
Outbound policies
for SI1, SA2, SA3,
SA5 are supported
through Oracle
JDeveloper. You
must configure a
key store with a
signature key.

Chapter 2,
"Configuring Web
Service Security"

"Assembling
Security into a Web
Service Bottom Up"
on page 4-6
describes the
bottom up XML
Signature and
Username token
cases.

Security Threats and Solutions B-3

Message
Confidentiality, Sender
Authentication

XML Encryption (SC1)
with:

■ Username token
with password or
digest with
encrypted
password (SA1), or

■ Username token
with password or
digest (SA2), or

■ X509 Token (SA3),
or

■ SAML Token
(SA5), or

■ REL Token (SA6)

T-02: Message
Confidentiality

T-05: Principal Spoofing

SC1, SA1,
SA2, SA3,
and SA5 are
supported

SA6 is not
supported.

Inbound policy for
SC1 is supported
through
Application Server
Control. You must
configure an
instance/port-
level keystore with
an encryption key.

Inbound policies
for SA2, SA3, and
SA5 are supported
through
Application Server
Control.

Outbound policies
for SA2, SA3, SA5,
and SC1 are not
supported
through
Application Server
Control.

Both Inbound and
Outbound policies
for SC1, SA2, SA3,
and SA5 are
supported through
Oracle JDeveloper.
You must configure
an
instance/port-level
keystore with an
encryption key.

Configuring
security tokens and
encryption are
covered in
Chapter 3,
"Administering
Web Services
Security"

"Assembling
Security into a Web
Service Bottom Up"
on page 4-6
describes the
bottom up XML
Encryption case.

One-Way AnyNode –
AnyNode Message
Confidentiality,
Integrity, Sender
Authentication

XML Digital Signature
(SI1) with:

■ XML Encryption
(SC1), or

■ Username token
with password or
digest with
encrypted
password (SA1), or

■ Username token
with password or
digest (SA2), or

■ X509 Token (SA3),
or

■ SAML Token
(SA5), or

■ REL Token (SA6)

T-01: Message
Alteration

T-02: Confidentiality

T-05: Principal Spoofing

T-06: Forged claims

SI1, SC1,
SA1, SA2,
SA3, and
SA5 are
supported

SA6 is not
supported

Inbound policies
for SI1 and SC1
are supported
through
Application Server
Control.

Inbound policies
for SA2, SA3, and
SA5 are supported
through
Application Server
Control.

Outbound policies
for SC1, SC2, SA2,
SA3, and SA5 are
not supported
through
Application Server
Control

Both Inbound and
Outbound policies
for SI1, SC1, SA2,
SA3, and SA5 are
supported through
Oracle JDeveloper.
You must configure
a keystore with
signature and
encryption keys.

Configuring
security tokens and
XML signature are
covered in
Chapter 3,
"Administering
Web Services
Security"

Table B–1 (Cont.) Message Layer Security Solutions

Solution
Threat Number and
Name

Supported
Solutions

Application
Server Control
Support

Oracle JDeveloper
Support

Where
Documented

B-4 Web Services Security Guide

Two-Way AnyNode –
AnyNode Message
Confidentiality,
Integrity, Sender
Authentication

XML Digital Signature
(SI1) with:

■ XML Encryption
(SC1), or

■ Username token
with
password/digest
with encrypted
password (SA1), or

■ Username token
with
password/digest
(SA2), or

■ X509 Token (SA3),
or

■ SAML Token
(SA5), or

■ REL Token (SA6)

T-01: Message
Alteration

T-02: Message
Confidentiality

T-05: Principal Spoofing

T-06: Forged claims

SI1, SC1,
SA1, SA2,
SA3, and
SA5 are
supported

SA6 is not
supported

Inbound policies
for SI1 and SC1
are supported
through
Application Server
Control.

Inbound policies
for SA2, SA3, and
SA5 are supported
through
Application Server
Control.

Outbound policies
for SI1, SC1, SA2,
SA3, and SA5 are
not supported
through
Application Server
Control

Both Inbound and
Outbound policies
for SI1, SC1, SA2,
SA3, SA5 are
supported through
Oracle JDeveloper.

Configuring
security tokens and
XML signature are
covered in
Chapter 3,
"Administering
Web Services
Security"

Hybrid: Transport
Integrity and
Confidentiality,
AnyNode-AnyNode
Message
Confidentiality,
Integrity, Mutual
Authentication

SSL/TLS (BISP1) with
XML Signature (SI1)
with:

■ XML Encryption
(SC1), or

■ Username token
with
password/digest
with encrypted
password (SA1), or

■ Username token
with
password/digest
(SA2), or

■ X509 Token (SA3),
or

■ SAML Token
(SA5), or

■ REL Token (SA6)

T-01: Message
Alteration

T-02: Message
Confidentiality

T-03: Falsified Messages

T-04: Man in the Middle

T-05: Principal Spoofing

T-06: Forged claims

T-07: Replay of Message
Parts

T-08: Replay

BISP, BC1,
SI1, SC1,
SA1, SA2,
SA3, and
SA5 are
supported

SA6 is not
supported

Inbound policies
for SI1 and SC1
are supported
through
Application Server
Control.

Inbound policies
for SA2, SA3, and
SA5 are supported
through
Application Server
Control.

Outbound policies
for SC1, SI1, SA2,
SA3, SA5, BISP,
and BC1 are not
supported
through
Application Server
Control

Both Inbound and
Outbound policies
for SI1, SC1, SA2,
SA3, and SA5 are
supported through
Oracle JDeveloper.

BISP and BC1 are
not supported
through Oracle
JDeveloper.

Configuring
security tokens and
XML signature are
covered in
Chapter 3,
"Administering
Web Services
Security"

For the manual
steps to configure
SSL, see the Oracle
Containers for J2EE
Security Guide

Table B–1 (Cont.) Message Layer Security Solutions

Solution
Threat Number and
Name

Supported
Solutions

Application
Server Control
Support

Oracle JDeveloper
Support

Where
Documented

Security Threats and Solutions B-5

Table B–2 describes the security threats that can impact the transport layer and the
possible solutions that can be implemented under OracleAS Web Services Security.

Hybrid: Transport
Integrity and
Confidentiality,
Mutual Authentication
AnyNode-AnyNode
Message
Confidentiality,
Integrity, Mutual
Authentication

SSL/TLS (BISP) with
SSL/TLS and client
authentication (BC1)
with:

■ XML Signature
(SI1), or

■ XML Encryption
(SC1), or

■ Username token
with
password/digest
with encrypted
password (SA1), or

■ Username token
with
password/digest
(SA2), or

■ X509 Token (SA3),
or

■ SAML Token
(SA5), or

■ REL Token (SA6)

T-01: Message
Alteration

T-02: Message
Confidentiality

T-03: Falsified Messages

T-04: Man in the Middle

T-05: Principal Spoofing

T-06: Forged claims

T-07: Replay of Message
Parts

T-08: Replay

BISP, SI1,
SC1, SA1,
SA2, SA3,
and SA5 are
supported

SA6 is not
supported

Inbound policies
for SI1 and SC1
are supported
through
Application Server
Control.

Inbound policies
for SA2, SA3, and
SA5 are supported
through
Application Server
Control.

Outbound policies
for SI1, SC1, SA2,
SA3, SA5, and
BISP are not
supported
through
Application Server
Control

Both Inbound and
Outbound policy
for SI1, SC1, SA2,
SA3, and SA5 are
supported through
Oracle JDeveloper.

BISP is not
supported through
Oracle JDeveloper

Manual steps for
configuring SSL are
described in the
Oracle Containers for
J2EE Security Guide.

Table B–1 (Cont.) Message Layer Security Solutions

Solution
Threat Number and
Name

Supported
Solutions

Application
Server Control
Support

Oracle JDeveloper
Support

Where
Documented

B-6 Web Services Security Guide

Table B–3 provides a brief description of the tags that represent message- and
transport-layer security mechanisms described in Table B–1 and Table B–2.

Table B–2 Transport Layer Security Solutions

Solution
Threat Number and
Name

Solutions
Supported

Application
Server Control
Support

Oracle
JDeveloper
Support

Where
Documented

Consumer
Authentication

■ HTTP Basic
Authentication
(BC2), or

■ HTTP Digest
Authentication
(BC3), or

■ HTTP Attributes
(BC4)

T-05: Principal Spoofing Yes No No "Adding
Transport-Level
Security to a Web
Service" on
page 4-18. See also,
the Oracle Containers
for J2EE Security
Guide.

Transport Integrity,
Confidentiality,
Provider
Authentication

SSL/TLS (BISP1)

T-01: Message Alteration

T-02: Message
Confidentiality

Yes No No "Adding
Transport-Level
Security to a Web
Service" on
page 4-18. See also
the Oracle Containers
for J2EE Security
Guide.

Transport Integrity,
Confidentiality,
Mutual Authentication

SSL/TLS (BISP1) with
SSL/TLS with client
authentication (BC1)

T-01: Message Alteration

T-02: Message
Confidentiality

T-03: Falsified Messages

T-04: Man in the Middle

T-05: Principal Spoofing

T-06: Forged claims

T-07: Replay of Message
Parts

T-08: Replay

Yes No No "Adding
Transport-Level
Security to a Web
Service" on
page 4-18. See also
the Oracle Containers
for J2EE Security
Guide.

Transport Integrity,
Confidentiality,
Mutual Authentication
with Enhanced
Consumer
Authentication

SSL/TLS (BISP1) with
HTTP Basic/ HTTP
Digest Authentication
(BC5)

T-01: Message Alteration

T-02: Message
Confidentiality

T-03: Falsified Messages

T-05: Principal Spoofing

T-06: Forged claims

T-07: Replay of Message
Parts

T-08: Replay

Yes No No "Adding
Transport-Level
Security to a Web
Service" on
page 4-18. See also,
the Oracle Containers
for J2EE Security
Guide.

Table B–3 Unique IDs for Message and Transport Layer Security Mechanisms

Tag Description

BC1 SSL/TLS with client authentication

BC2 HTTP basic

BC3 HTTP digest

BC4 HTTP attributes

BC5 HTTP basic or HTTP digest

BISP1 SSL/TSL

Security Threats and Solutions B-7

Table B–4 provides a brief description of the security threat IDs and names used in
Table B–1 and Table B–2.

SA1 XML encryption, username token with either password or digest

SA2 username and either password or digest

SA3 X.509 certificate

SA5 SAML token

SA6 REL token

SC1 XML encryption

SI1 XML digital signature

Table B–4 Security Threats Addressed by OracleAS Web Services Security

Threat ID Threat Name Description

T-01 Message Alteration The message information is altered by inserting, removing
or otherwise modifying information created by the
originator of the information and mistaken by the receiver as
being the originators intention.

T-02 Confidentiality Information within the message is viewable by unintended
and unauthorized participants.

T-03 Falsified Messages Fake messages are constructed and sent to a receiver who
believes them to have come from a party other than the
sender.

T-04 Man in the Middle A party poses as the other participant to the real sender and
receiver in order to fool both participants (for example, the
attacker is able to downgrade the level of cryptography used
to secure the message).

T-05 Principal Spoofing A message is sent which appears to be from another
principal.

T-06 Forged claims A message is sent in which the security claims are forged in
an effort to gain access to otherwise unauthorized
information (for example, a security token is used which
wasn't really issued by the specified authority).

T-07 Replay of Message
Parts

A message is sent which includes portions of another
message in an effort to gain access to otherwise
unauthorized information or to cause the receiver to take
some action.

T-08 Replay A whole message is resent by an attacker.

T-09 Denial of Service Amplifier Attack: attacker does a small amount of work and
forces system under attack to do a large amount of work.

Table B–3 (Cont.) Unique IDs for Message and Transport Layer Security Mechanisms

Tag Description

B-8 Web Services Security Guide

Third Party Licenses C-1

C
Third Party Licenses

This appendix includes the Third Party License for all the third party products
included with Oracle Application Server Web Services Security.

Apache
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.

The Apache license agreements apply to the following included Apache components:

■ Apache HTTP Server

■ Apache JServ

■ mod_jserv

■ Regular Expression package version 1.3

■ Apache Expression Language packaged in commons-el.jar

■ mod_mm 1.1.3

■ Apache XML Signature and Apache XML Encryption v. 1.4 for Java and 1.0 for
C++

■ log4j 1.1.1

■ BCEL v. 5

■ XML-RPC v. 1.1

■ Batik v. 1.5.1

■ ANT 1.6.2 and 1.6.5

■ Crimson v. 1.1.3

■ ant.jar

■ wsif.jar

■ bcel.jar

■ soap.jar

■ Jakarta CLI 1.0

■ jakarta-regexp-1.3.jar

Apache

C-2 Web Services Security Guide

■ JSP Standard Tag Library 1.0.6 and 1.1

■ Struts 1.1

■ Velocity 1.3

■ svnClientAdapter

■ commons-logging.jar

■ wsif.jar

■ commons-el.jar

■ standard.jar

■ jstl.jar

The Apache Software License

License for Apache Web Server 1.3.29
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000-2002 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

Apache

Third Party Licenses C-3

 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing
Applications,
 * University of Illinois, Urbana-Champaign.

License for Apache Web Server 2.0
Copyright (c) 1999-2004, The Apache Software Foundation
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Copyright (c) 1999-2004, The Apache Software Foundation
 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,

Apache

C-4 Web Services Security Guide

 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

Apache

Third Party Licenses C-5

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

Apache SOAP

C-6 Web Services Security Guide

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

Apache SOAP
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the Apache
software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Apache.

Apache SOAP License
Apache SOAP license 2.3.1

Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

Apache SOAP

Third Party Licenses C-7

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses

Apache SOAP

C-8 Web Services Security Guide

 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,

Jaxen

Third Party Licenses C-9

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

JSR 110
This program contains third-party code from IBM Corporation ("IBM"). Under the
terms of the IBM license, Oracle is required to provide the following notices. Note,
however, that the Oracle program license that accompanied this product determines
your right to use the Oracle program, including the IBM software, and the terms
contained in the following notices do not change those rights. Notwithstanding
anything to the contrary in the Oracle program license, the IBM software is provided
by Oracle "AS IS" and without warranty or support of any kind from Oracle or IBM.

Copyright IBM Corporation 2003 – All rights reserved

Java APIs for the WSDL specification are available at:
http://www-124.ibm.com/developerworks/projects/wsdl4j/

Jaxen
This program contains third-party code from the Apache Software Foundation
("Apache") and from the Jaxen Project ("Jaxen"). Under the terms of the Apache and
Jaxen licenses, Oracle is required to provide the following notices. Note, however, that
the Oracle program license that accompanied this product determines your right to
use the Oracle program, including the Apache and Jaxen software, and the terms
contained in the following notices do not change those rights.

SAXPath

C-10 Web Services Security Guide

The Jaxen License
Copyright (C) 2000-2002 bob mcwhirter & James Strachan. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list
of conditions, and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the disclaimer that follows these conditions in the
documentation and/or other materials provided with the distribution.

The name "Jaxen" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact
license@jaxen.org.

Products derived from this software may not be called "Jaxen", nor may "Jaxen"
appear in their name, without prior written permission from the Jaxen Project
Management (pm@jaxen.org).

In addition, we request (but do not require) that you include in the end-user
documentation provided with the redistribution and/or in the software itself an
acknowledgment equivalent to the following: "This product includes software
developed by the Jaxen Project (http://www.jaxen.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at
http://www.jaxen.org/.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE Jaxen
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on
behalf of the Jaxen Project and was originally created by bob mcwhirter and James
Strachan . For more information on the Jaxen Project, please see
http://www.jaxen.org/.

SAXPath
This program contains third-party code from SAXPath. Under the terms of the
SAXPath license, Oracle is required to provide the following notices. Note, however,
that the Oracle program license that accompanied this product determines your right
to use the Oracle program, including the SAXPath software, and the terms contained
in the following notices do not change those rights. Notwithstanding anything to the
contrary in the Oracle program license, the SAXPath software is provided by Oracle
"AS IS" and without warranty or support of any kind from Oracle or SAXPath.

The SAXPath License
Copyright (C) 2000-2002 werken digital. All rights reserved. Redistribution and
use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

W3C DOM

Third Party Licenses C-11

Redistributions of source code must retain the above copyright notice, this list
of conditions, and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the disclaimer that follows these conditions in the
documentation and/or other materials provided with the distribution.

The name "SAXPath" must not be used to endorse or promote products derived from
this software without prior written permission. For written permission, please
contact license@saxpath.org.

Products derived from this software may not be called "SAXPath", nor may "SAXPath"
appear in their name, without prior written permission from the SAXPath Project
Management (pm@saxpath.org).

In addition, we request (but do not require) that you include in the end-user
documentation provided with the redistribution and/or in the software itself an
acknowledgment equivalent to the following: "This product includes software
developed by the SAXPath Project (http://www.saxpath.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at
http://www.saxpath.org/.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE SAXPath
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made
by many individuals on behalf of the SAXPath Project and was originally created by
bob mcwhirter and James Strachan . For more information on the SAXPath Project,
please see http://www.saxpath.org/.

W3C DOM
This program contains third-party code from the World Wide Web Consortium
("W3C"). Under the terms of the W3C license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the W3C
software, and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the W3C
software is provided by Oracle AS IS and without warranty or support of any kind
from Oracle or W3C.

The W3C License
W3C® SOFTWARE NOTICE AND LICENSE
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
This work (and included software, documentation such as READMEs, or other related
items) is being provided by the copyright holders under the following license. By
obtaining, using and/or copying this work, you (the licensee) agree that you have
read, understood, and will comply with the following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation,
with or without modification, for any purpose and without fee or royalty is hereby

W3C DOM

C-12 Web Services Security Guide

granted, provided that you include the following on ALL copies of the software and
documentation or portions thereof, including modifications:

The full text of this NOTICE in a location viewable to users of the redistributed
or derivative work.
Any pre-existing intellectual property disclaimers, notices, or terms and
conditions. If none exist, the W3C Software Short Notice should be included
(hypertext is preferred, text is permitted) within the body of any redistributed
or derivative code.
Notice of any changes or modifications to the files, including the date changes
were made. (We recommend you provide URIs to the location from which the code is
derived.)
THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or
publicity pertaining to the software without specific, written prior permission.
Title to copyright in this software and any associated documentation will at all
times remain with copyright holders.

Index-1

Index

Symbols
<add-timestamp> element, 2-17, 3-42, 3-44
<attribute> element, 2-16
<auth-password> element, 2-16, A-11
<auth-user-name> element, 2-16, A-11
<call-property> element, 4-23
<confirmation-method> element, 2-9, 3-24, 3-29
<control-flag> element, 3-33, 3-34
<decrypt> element, 2-10, 3-38, 3-40, 4-2, 4-6, A-4
<DigestValue> element, 1-6
<ejb-transport-login-config> element, 4-20
<ejb-transport-security-constraint> element, 4-20
<encrypt> element, 2-18, 3-37, 4-2, 4-6, A-5
<encryption> element, 2-13
<encryption-key> element, 2-6, 3-6, 3-37, A-5, A-13
<encryption-method> element, 2-18, 3-37, 3-38
<encryption-methods> element, 2-11
<endpoint-address> element, 2-16, A-11
<endpoint-address-uri> element, 4-20
<Envelope> element, 1-2
<generated_name>_Stub.xml client deployment

descriptor, 1-3, 2-1, 2-7, 2-13, 3-6, 3-11, 3-14,
3-19, 3-20, 3-21, 3-26, 3-27, 3-28, 3-43, 4-5, 4-6, 4-9,
4-10, 4-15, A-1, A-7, A-10

<inbound> element, 2-2, 3-8, 3-17, 3-24, 3-42
<KeyInfo> element, 1-5
<key-store> element, 2-5, 3-6, A-7
<keytransport-method> element, 2-18, 3-37, 3-38
<keytransport-methods> element, 2-11
<login-module> element, 3-15, 3-21, 3-33
<name> element, 4-24
<name-identifier> element, 2-15, A-12
<nonce-config> element, 2-6, A-9
<outbound> element, 2-2, 3-37, 3-42, 4-22, 4-25
<property> element, 3-20, 3-43
<recipient-key> element, 2-18, 3-38
<Reference> element, 1-6
<require-signature> element, 2-17, 3-31, A-11
<saml-authority> element, 2-16, 3-31, A-11
<saml-token> element, 2-13, 2-15, 3-28, 3-31, 4-2, 4-6,

A-12
<saml-token> element, configuring, 3-27
<security> element, 2-7, 3-6, 4-11, 4-15, A-7
<service-ref-mapping> element, 4-23
<signature> element, 2-13, 2-17, 3-28, 3-42, 4-2, 4-6

<signature-key> element, 2-6, 3-6, 3-41, A-5, A-13
<SignatureMethod>, 1-5
<signature-method> element, 3-29, 3-42
<signature-methods> element, 2-9, 2-17
<SignatureValue> element, 1-6
<SignedInfo> element, 1-5
<subject-confirmation-method> element, 2-9, 2-16,

3-24
<tbe-element> element, 3-38, 3-39
<tbe-elements> element, 2-11, 2-18, 3-38
<tbs-element> element, 3-43
<tbs-elements> element, 2-9, 2-17, 3-42
<use-request-cert> element, 2-19, 3-37
<username-token> element, 2-2, 2-13, 3-13, 4-15,

4-22, 4-25, A-19
<username-token> element, configuring, 3-11
<value> element, 4-24
<verify-saml-token> element, 2-7, 2-8, 2-9, 4-2, 4-6,

A-20
<verify-saml-token> element, configuring, 3-24
<verify-signature> element, 2-9, 3-42, 3-44, 4-2, 4-6,

A-20
<verify-timestamp> element, 2-10, 3-42, 3-44
<verify-username-token> element, 2-2, 2-7, 2-8, 4-11,

4-12, A-21
<verify-username-token> element, configuring, 3-8
<verify-x509-token> element, 2-7, 2-8, 4-2, 4-6, A-22
<verify-x509-token> element, configuring, 3-17
<x509-token> element, 2-13, 2-14, 3-19, 4-2, 4-6, A-23

A
AccessControlContext class, to access user

credentials, 4-27
AccessController class, to access user

credentials, 4-27
accessing services secured with HTTP

authentication, 4-22, 4-23
accessing services secured with WS-Security

username token authentication, 4-22, 4-24
add-created attribute, 2-14, 3-11, A-20
add-nonce attribute, 2-14, 3-11, A-20
alias attribute, 2-6, 2-18, A-10
Ant tasks, for the WebServicesAssembler tool, 4-26
Apache software

license, C-2

Index-2

Application Server Control
support for Oracle Application Server Web Service

Security, 1-16
architecture, Oracle Application Server Web Services

Security, 1-13
assemble command (WebServicesAssembler

tool), 4-7
assembling a secure Web service, 4-1

bottom up, 4-6
top down, 4-2

assertion issuer, 3-25
assertion subject

configuring a name, 3-28
configuring a name format, 3-28
mapping to name identifiers, 3-25

attributes statements, for SAML, 3-28
attributes.properties file, 3-28
authentication, 1-2

creating user information, 4-17
elements, 2-7

authentication errors
troubleshooting, 6-6

authentication information
passing in a deployment descriptor, 4-23

authentication information, passing
programmatically, 4-21

authentication information, passing statically, 4-23
authentication statements, for SAML, 3-28

B
basic authentication, transport level, 4-18
basic authentication, use case, 5-4
basic Web service, use case, 5-1
bottom up Web service assembly, 4-6

C
cache-ttl attribute, 2-7
Call interface, 4-21
callback handler

for the SAML token, 3-30
for the username token, 3-12

cbhandler-name attribute, 2-14, 2-15, 3-12, 3-29,
A-12, A-19

Certificate Authority (CA), 3-2
certificates

loading with Java Keystore, 3-3
obtaining from a Certificate Authority, 3-2
self-signed, 3-4
user, 3-5

client certification authentication, transport
level, 4-19

client code, generating, 4-5
client interceptor, 1-11, 1-12
client JAR files, for security, 4-17
client-side security configuration files, 4-14
clock skew, adjusting, 3-45
clock-skew attribute, 2-7, 4-14
clock-skew property, 3-42, 3-44, 3-45

CN (common-name), 3-18
common name (CN), 3-18
complex business processes, use case, 5-2
configuration file for security

creating for the client-side, 4-14, 4-15, 4-16
creating for the server-side, 4-10, 4-11, 4-12, 4-13

confirmation methods
configuring, 3-28
holder-of-key, 3-23, 3-24, 3-27, 3-31
holder-of-key, configuring, 3-29
sender-vouches (signed), 3-23, 3-24, 3-27, 3-31
sender-vouches (signed), configuring, 3-28
sender-vouches (unsigned), 3-23, 3-24, 3-26, 3-31

configuring, 3-29
CoreIDLoginModule

for Oracle Access Manager security
provider, 3-14, 3-21, 3-32

coreid.name.attribute property, 3-15, 3-21, 3-33
coreid.password.attribute property, 3-15
created attribute, 2-10, 2-17, 3-44, A-3, A-21

D
ddFileName argument (WebServicesAssembler

tool), 3-11, 3-14, 3-19, 3-21, 4-2, 4-5, 4-7, 4-9
decryption

decrypting elements of a SOAP message, 3-40
decryption elements, 2-10, A-4
deployment descriptor

<generated_name>_Stub.xml (client), 2-1, 2-7,
2-13, 4-5, 4-6, 4-9, 4-10, 4-15, A-1, A-7, A-10

oracle-webservices.xml, 2-1, 2-7, 2-13, 4-2, 4-4,
4-6, A-1, A-7, A-10

webservices.xml, 4-4
web.xml, 4-4

deployment descriptors
passing authentication information, 4-23

deployment, testing, 4-5, 4-9
digest authentication, transport level, 4-19
digest authentication, use case, 5-4
digest password, for a nonce configuration, 3-10
distinguished name (DN), 3-18
DN (distinguished name), 3-18

E
ear/META-INF directory, 4-2, 4-7
EJBs

adding transport level security, 4-20
encryption

algorithms, 2-12
configuring, 3-37
configuring for inbound messages, 3-38
configuring for outbound messages, 3-37
decrypting elements of a SOAP message, 3-40
defined, 1-6
elements, 2-18, A-5
encrypting a SOAP message body, 3-38
encrypting elements of a SOAP message, 3-39

encryption key element, 2-6, A-5, A-13

Index-3

expiry attribute, 2-10, 2-17, 3-44, 4-14, A-3, A-21

F
federated Web services, use case, 5-2

G
gateways

use cases, 5-9
general errors

troubleshooting, 6-2
genInterface command (WebServicesAssembler

tool), 4-2
genProxy command (WebServicesAssembler

tool), 3-14, 3-21, 4-5, 4-9
genProxy, WebServicesAssembler command, 4-22,

4-24
global-level policy, 1-4

H
Holder-Of-Key attribute, 2-9, 2-16, A-4
holder-of-key confirmation method, 3-23, 3-24, 3-27,

3-31
configuring, 3-29

HTTP authentication, 4-22, 4-23
HTTP authentication, accessing services, 4-22, 4-23
HTTP security, use case, 5-3

I
identity management

use cases, 5-10
identity propagation

of SAML assertion subjects, 3-30
using the oracle.security.wss.propagate.identity

property, 3-30
inbound policy, 1-3
interceptors

client, 1-11, 1-12
data flow, 1-12
framework, 1-11
integration with OC4J security framework, 1-13
service, 1-11, 1-12

interoperability
use cases, 5-10

issuer name, configuring, 3-28
issuer.keystorepassword.N, SAMLLoginModule

option, 3-26
issuer.keystorepath.N, SAMLLoginModule

option, 3-26
issuer.keystoretype.N, SAMLLoginModule

option, 3-26
issuer-name attribute, 2-15, 3-28, A-12
issuer.name.N, SAMLLoginModule option, 3-26
issuer.trustpointalias.N, SAMLLoginModule

option, 3-26

J
J2EE client

accessing services secured on the transport
level, 4-21

J2SE client
accessing services secured on the transport

level, 4-21
JAAS, 1-13
JAR files, for security, 4-17
Java Keystore (JKS), 3-18, 3-19, 3-24, 3-31, 3-37

certreq command, 3-4
creating, 3-2
creating private keys, 3-3
genKey command, 3-3
import command, 3-3, 3-4
keytool utility, 3-3
list command, 3-3
loading certificates, 3-3
using, 3-2

javacache.xml file, 3-10
java.security.AccessControlContext, 4-27
java.security.AccessController, 4-27
javax.security.auth.Namecallback, 2-13, 3-12
javax.security.auth.Passwordcallback, 2-13, 3-12
javax.security.auth.Subject, 4-27
javax.xml.rpc.Call, 4-21
javax.xml.rpc.Call.PASSWORD_PROPERTY, 4-21
javax.xml.rpc.Call.USERNAME_PROPERTY, 4-21
javax.xml.rpc.security.auth.password, 4-21
javax.xml.rpc.security.auth.username, 4-21
javax.xml.rpc.security.auth.username property, 4-24
javax.xml.rpc.server.ServiceLifecycle, 4-27
javax.xml.rpc.server.ServletEndpointContext, 4-27
javax.xml.rpc.Stub, 3-30, 4-21
javax.xml.rpc.Stub.PASSWORD_PROPERTY, 4-21
javax.xml.rpc.Stub.USERNAME_PROPERTY, 4-21
jazn-data.xml file, 3-18
jazn.xml file, 3-18, 3-25
JDeveloper

support for Oracle Application Server Web Service
Security, 1-18

K
key transport algorithms, 2-12
key-pass attribute, 2-6, 2-18, A-10
keys

application keys, creating, 3-6
instance keys, creating, 3-6

keys, using multiple keys to decrypt messages,
decryption

using multiple keys, 3-40
keystore

application keystores, creating, 3-6
configuring for an X.509 token, 3-18
configuring for SAML token, 3-24
configuring for SAMl token, 3-31
configuring for X.509 token, 3-19
creating, 3-2
defined, 1-10

Index-4

instance keystores, creating, 3-6
keystore-related errors

troubleshooting, 6-2
keytool utility, 3-3

L
LDAP provider, SAML token authentication, 3-34
LDAP repository, 3-18
LDAPLoginModule, 3-34
local-part attribute, 2-9, 2-11, 2-17, 2-18, 3-38, 3-39,

3-40, 3-43, A-15, A-16, A-17, A-18

M
mapping-attribute attribute, 3-18
mapping.attribute attribute, 3-18, 3-25

default values, 3-18
message confidentiality errors

troubleshooting, 6-6
message integrity errors

troubleshooting, 6-4
message-level security, 1-8
mode attribute, 2-11, 2-18, 3-39, 3-40, A-16

N
name attribute, 2-14, 2-15, 3-11, 3-28, A-12, A-19
name identifier formats, for SAML tokens, 3-25
Namecallback, 2-13, 3-12
name-format attribute, 2-15, 3-28, A-12
name-space attribute, 2-9, 2-11, 2-17, 2-18, 3-39, 3-40,

3-43, A-16, A-17, A-18
nonce

configuration, 2-6, A-9
digest password configuration, 3-10
username token configuration, 3-9

non-secured Web services, use cases, 5-1

O
operation-level policy, 1-4
Oracle Access Manager

CoreIDLoginModule, 3-14, 3-21, 3-32
security provider, 1-15
security provider for SAML token, 3-32
security provider for username token, 3-14
security provider for X.509 token, 3-21

Oracle Application Server Web Services Security
Application Server Control support, 1-16
architecture, 1-13
JDeveloper support, 1-18
supported standards, 1-10
tool support, 1-15

Oracle HTTP Server
third party licenses, C-1

Oracle Identity Management (OID), 1-14
Oracle Wallet, 3-18, 3-19, 3-24, 3-31, 3-37

add command, 3-4, 3-5
cert create command, 3-5
create command, 3-4

creating, 3-4
creating self-signed certificates, 3-4
creating user certificates, 3-5
defined, 1-10
display command, 3-5, 3-6
export command, 3-5
orapki utility, 3-4
using, 3-4

Oracle Web Services Manager (OWSM), 1-18
access control, 1-19
policy management, 1-19
single sign-on, 1-19

oracle.security.wss.propagate.identity
property, 3-30, 3-36

oracle.security.wss.signwithski property, 3-20, 3-43
oracle-webservcies.xml deployment descriptor, 1-3
oracle-webservices-client-10_0.xsd, 4-22
oracle-webservices-clients.xsd, 4-25
oracle-webservices-security-10_0.xsd listing, A-23
oracle-webservices.xml deployment descriptor, 2-1,

2-2, 2-3, 2-7, 2-13, 3-6, 3-8, 3-11, 3-17, 3-19, 3-43,
4-2, 4-4, 4-6, 4-10, A-1, A-7, A-10

oracle-werbservices.xml deployment
descriptor, 4-20

orapki utility, 3-4
orion-ejb-jar.xml deployment descriptor, 4-20
orion-web.xml deployment descriptor, 4-20
outbound elements, 2-12
outbound policy, 1-3
output argument (WebServicesAssembler), 4-8

P
password attribute, 2-14, 3-11, A-19
password indirection, configuring, 3-6
Passwordcallback, 2-13, 3-12
password-type attribute, 2-8, 2-14, 3-8, A-19
path attribute, 2-6
policies

defined, 1-3
global-level, 1-4
inbound policy, 1-3
operation-level, 1-4
outbound policy, 1-3
port-level, 1-4

policy management, with Oracle Web Services
Manager, 1-19

port-level policy, 1-4
private keys, creating with Java Keystore, 3-3

R
replay attacks, preventing, 3-44
request envelope, defined, 1-4
require-created attribute, 2-8, 3-9
require-nonce attribute, 2-8, 3-9
response envelope, defined, 1-5

S
SAML authority (third party), retrieving a SAML

Index-5

token, 3-31
SAML elements, 2-9
SAML token

assertion issuer, 3-25
assertion subject

configuring by identity propagation, 3-30
configuring with Stub properties, 3-29

attributes statements, 3-28
attributes.properties file, 3-28
authenticating with a third party LDAP

provider, 3-34
authentication, 3-25
authentication statements, 3-28
client configuration, 3-26
configuring assertion subject name and

format, 3-28
dynamic client configuration, 3-30
integrating with security providers, 3-32
issuer name, configuring, 3-28
keystore configuration, 3-24, 3-31
mapping the assertion subject, 3-25
name identifier formats, 3-25
Oracle Access Managersecurity provider, 3-32
oracle.security.wss.propagate.identity

property, 3-36
retrieving from a third-party SAML

authority, 3-31
server configuration, 3-23
setting SAMLLoginModule options, 3-25
static and dynamic configurations,

combining, 3-31
static client configuration, 3-28
Stub properties, 3-29
writing a callback handler, 3-30

SAML token elements, 2-15, A-12
for retrieving SAML tokens, 2-16, A-11

SAML token profile, use case, 5-7
SAML tokens, 1-9

source URL, 1-10
SAML, configuring Single Sign-On, 3-35
SAML, defined, 1-7
SAMLLoginModule, 3-24, 3-25, 3-34
SAMLLoginModule options

issuer.keystorepassword.N, 3-26
issuer.keystorepath.N, 3-26
issuer.keystoretype.N, 3-26
issuer.name.N, 3-26
issuer.trustpointalias.N, 3-26

SAMLP, 2-16, 3-26, A-11
SAMLTokenCallback call back handler, 2-15, A-12
secure client code, generating, 4-5
secure sockets layer, use case, 5-3
secure Web service

assembling, 4-1
assembling bottom up, 4-6
assembling top down (from a WSDL), 4-2

security
administration, 3-1
client JAR files, 4-17
message-level, 1-8

threats and solutions, B-1
transport-level, 1-8

security elements, described, 2-3
security framework

integration with interceptors, 1-13
security providers

integrating with SAML tokens, 3-32
integrating with security tokens, 3-7
integrating with username tokens, 3-14
integrating with X.509 tokens, 3-21

security schema, listing, A-23
security tokens

integrating with security providers, 3-7
self-signed certificates, 3-4
sender-vouches (signed) confirmation method, 3-23,

3-24, 3-27, 3-31
configuring, 3-28

sender-vouches (unsigned) confirmation
method, 3-23, 3-24, 3-26, 3-31

sender-vouches (unsigned) confirmation method,
configuring, 3-29

Sender-Vouches attribute, 2-9, 2-16, A-4
Sender-Vouches-Unsigned attribute, 2-9, 2-16, A-4
server

accessing user credentials, 4-26
server-side security configuration files, 4-10
service endpoint interface, 4-2
service interceptor, 1-11, 1-12
ServiceLifeCycle interface, to access user

credentials, 4-27
ServletEndpointContext interface, to access user

credentials, 4-27
signature

algorithms, 2-17
computing, 1-5
configuring, 3-41
configuring for inbound messages, 3-42
configuring for outbound messages, 3-42
defined, 1-5
elements, 2-17
signing a SOAP message body, 3-42
signing a SOAP message element, 3-43
signwithski property, 3-20, 3-43
using a subject key identifier, 3-43
verifying signature for SOAP message

elements, 3-43
signature key element, 2-6, A-5, A-13
signature verification elements, 2-9, A-20
signwithski property, 3-20, 3-43
Single Sign-On, configuring with SAML, 3-35
single sign-on, with Oracle Web Services

Manager, 1-19
SOAP message body

encrypting, 3-38
signing, 3-42

SOAP message elements
decrypting, 3-40
encrypting, 3-39
signing, 3-43
verifying signature, 3-43

Index-6

SOAP, defined, 1-2
source URL

SAML tokens, 1-10
username tokens, 1-10
Web Service Interoperability, 1-11
XML Digital Signature, 1-10
XML encryption, 1-10

standards
supported by Oracle Application Server Web

Services Security, 1-10
store-pass attribute, 2-6
Stub interface, 3-30, 4-21
Stub properties, for the username token, 3-13
Stub.PASSWORD_PROPERTY, 2-13, 3-13, 4-21
Stub.USERNAME_PROPERTY, 2-13, 3-13, 3-29, 4-21
Subject class, to access user credentials, 4-27
subject key identifier

authenticating an X.509 token, 3-19
signing, 3-43

system-jazn-data.xml file, 3-7, 3-14, 3-34, 4-17

T
testing deployment, 4-5, 4-9
third party licenses, C-1
timestamps, in replay attack prevention, 3-44
token-based authentication

use case, 5-5
tokens

SAML, 1-9
username, 1-9
X.509, 1-9

tool support
username token, 3-13
X.509 token, 3-18, 3-20

top down Web service assembly, 4-2
topDownAssemble command

(WebServicesAssembler tool), 4-2
transport level security, 1-8

accessing Web services, 4-21
basic authentication, 4-18
client certification authentication, 4-19
digest authentication, 4-19

transport level security, for EJBs, 4-20
troubleshooting

authentication errors, 6-6
general errors, 6-2
keystore-related errors, 6-2
message confidentiality errors, 6-6
message integrity errors, 6-4

type attribute, 2-6

U
use cases

basic authentication, 5-4
basic Web service, 5-1
complex business processes, 5-2
digest authentication, 5-4
federated Web services, 5-2

gateways, 5-9
HTTP security, 5-3
identity management, 5-10
interoperability, 5-10
non-secured Web services, 5-1
Oracle Web Services Manager (OWSM), 1-18
SAML token profile, 5-7
secure sockets layer, 5-3
token-based authentication, 5-5
username token profile, 5-5
Web service intermediaries, 5-2
WS-Security, 5-4
X.509 token profile, 5-6
XML encryption, 5-8
XML signature, 5-8

user certificates, 3-5
user credentials

accessing on the server side, 4-26
username property, 4-24
username token, 1-9

client configuration, 3-11
configuration for the client-side, port level, 4-15
configuration for the server-side, operation

level, 4-12
configuration for the server-side, port level, 4-11
configuring nonce cache, 3-10
elements, 2-13, A-19
integrating with security providers, 3-14
nonce details, 3-9
Oracle Access Manager security provider, 3-14
passing the user name and password, 3-13
password details, 3-8
server configuration, 3-8
server-side configuration file, 4-11
source URL, 1-10
Stub properties, 3-13
tool support, 3-13
writing a callback handler, 3-12

username token authentication, accessing
services, 4-22, 4-24

username token profile, use case, 5-5

V
value attribute, 3-20, 3-43

W
Web Service Home Page, 4-9
Web service intermediaries, use case, 5-2
Web Service Interoperability

source URL, 1-11
Web Service Test Page, 4-5
WebServicesAssembler tool

described, 4-26
support for username token, 3-13
support for X.509 token, 3-19, 3-21

webservices.xml JAX-RPC deployment
descriptor, 4-4

web.xml Web deployment descriptor, 4-4

Index-7

wsmgmt.xml configuration file, 2-2
WS-Security username token authentication, 4-22,

4-24
WS-Security, defined, 1-8
WS-Security, use case, 5-4

X
X.509 certificate

mapping to users, 3-18
X.509 token, 1-9

authenticating, 3-19
client configuration, 3-19
elements, 2-14, A-23
integrating with security providers, 3-21
keystore configuration, 3-19
Oracle Access Manager security provider, 3-21
server configuration, 3-17
source URL, 1-10
tool support, 3-18, 3-20

X.509 token profile, use case, 5-6
XML Digital Signature, source URL, 1-10
XML encryption

use cases, 5-8
XML encryption, source URL, 1-10
XML repository, 3-18
XML signature

use cases, 5-8
XML signature and encryption

client-side
configuration file, 4-16
port level, 4-16

server-side
configuration file, 4-12, 4-13
operation level, 4-13
port level, 4-12

Index-8

	Contents
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	Web Service Security Concepts
	SOAP
	Security Policies
	Inbound Policy
	Outbound Policy
	Global Level Policy
	Port-Level Policy
	Operation-Level Policy

	The Request Envelope
	The Response Envelope
	XML Digital Signatures
	XML Encryption
	SAML
	Message-Level Security
	Transport-Level Security
	WS-Security
	Security Tokens
	Username Token
	X.509 Token
	SAML Token
	Keystore

	Web Services Security Support in OracleAS Web Services
	Standards Supported by OracleAS Web Services Security
	Interceptor Framework
	Service Security Interceptor
	Client Security Interceptor

	Architecture
	Web Service Security Integration
	Integration with JAAS
	Integration with Java Single Sign-On
	Integration with Oracle Identity Management
	Integration with External LDAP Servers
	Integration with Oracle Access Manager

	Tool Support for Web Service Security
	Application Server Control Support for Web Service Security
	Global- and Port-Level Keystore and Identity Certificates
	Port- and Operation-Level Security Configuration
	Port-Level and Operation-Level Inbound Policy Configuration
	Port- and Operation-Level Outbound Policy Configuration
	Web Services Agent

	Oracle JDeveloper Support for Web Service Security
	Oracle Web Services Manager
	When to Use Oracle WSM to Secure Web Services

	2 Configuring Web Service Security
	Security Configuration Elements
	Keystore Elements
	Signature and Encryption Key Elements
	Nonce Configuration Elements
	Security Elements for Inbound Messages
	Username Token Elements for Inbound Messages
	X.509 Token Elements for Inbound Messages
	SAML Token Elements for Inbound Messages
	Signature Verification Elements for Inbound Messages
	Decryption Elements for Inbound Messages

	Security Elements for Outbound Messages
	Username Token Elements for Outbound Messages
	X.509 Token Elements for Outbound Messages
	SAML Token Elements for Outbound Messages
	Elements for Retrieving SAML Tokens from an External SAML Authority
	Signature Elements for Outbound Messages
	Encryption Elements for Outbound Messages

	3 Administering Web Services Security
	Using Keystores
	Creating a Keystore
	How to Obtain a Trusted Certificate
	How to Create and Use a Java Key Store
	How to Create and Use an Oracle Wallet

	Configuring a Keystore
	Configuring Instance Keystores and Keys
	Configuring Application Keystores and Keys

	Replacing Cleartext Passwords by Using Password Indirection
	Manually Removing Stale Indirect User Accounts

	Integrating Security Tokens with Security Providers
	Using a Username Token
	How to Configure the Username Token for the Server Side
	Configure the <verify-username-token> Element
	Configure the Service to Not Require a Password
	Configure the Nonce Cache with a Digest Password
	Tools for Configuring the Username Token for the Server

	How to Configure the Username Token for the Client Side
	Configure the <username-token> Element
	Pass the Username and Password with a Callback Handler
	Pass the User Name and Password with Stub Properties
	Tools for Configuring the Username Token for the Client

	Integrating Username Token with Security Providers (File-Based XML, LDAP, Custom, Oracle Access Manager)
	Using Oracle Access Manager as a Security Provider for Username Token Authentication

	Preventing Replay Attacks with Nonces

	Using an X.509 Token
	How to Configure an X.509 Token for the Server Side
	Configure the <verify-x509-token> Element
	Configure the Keystore
	Map the X.509 Certificates to Valid Users
	Tools for Configuring the X.509 Token on the Server

	How to Configure X.509 Token for the Client Side
	Configure the <x509-token> Element
	Configure the Keystore with a Signature Key
	Authenticate an X.509 Token with a Subject Key Identifier
	Sign the X.509 Token
	Tools for Configuring the X.509 Token on the Client

	Integrating X.509 Token with Security Providers (XML, LDAP, Oracle Access Manager)
	Using Oracle Access Manager as a Security Provider for X.509 Token Authentication

	Using a SAML Token
	How to Configure a SAML Token for the Server Side
	Configure the <verify-saml-token> Element
	Configure the Keystore
	Map the SAML Assertion Subject
	Set Options for the SAMLLoginModule

	How to Configure a SAML Token for the Client-Side
	Configure the <saml-token> Element
	Providing a Static SAML Client Configuration
	Configuring a SAML Assertion Subject by Using a Stub Property
	Configuring a SAML Assertion Subject by Identity Propagation
	Writing a SAML Token Callback Handler
	Retrieving a SAML Token from an External SAML Authority
	Configure the Keystore
	Combining Static and Dynamic SAML Configuration

	Integrating SAML Token with Security Providers (XML, LDAP, Oracle Access Manager)
	Using Oracle Access Manager as a Security Provider for SAML Token Authentication
	Authenticating SAML Tokens with an External LDAP Provider
	Configuring Single Sign-on Using SAML

	Configuring XML Encryption
	Configuring Encryption for Outbound Messages
	Configuring Encryption for Inbound Elements
	Encrypting the Body of a SOAP Message
	Decrypting the Body of a SOAP Message
	Encrypting Elements of a SOAP Message
	Decrypting Elements of a SOAP Message
	Encrypting a Message with a Signature Key
	Accepting Multiple Keys to Decrypt Messages

	Configuring XML Signature
	Configuring Signature for Outbound Messages
	Configuring Signature for Inbound Messages
	Signing the Body of a SOAP Message
	Signing Elements of a SOAP Message
	Verifying a Signature on a Specific Element
	Using the Subject Key Identifier for Signing
	Preventing Replay Attacks with Timestamps
	Adding Timestamps
	Verifying TimeStamps

	Adjusting the Clock Skew Between a Client and a Web Service Application

	Combining Tokens, Encryption, and Signature in a Configuration

	4 Building Secure Web Services
	Assembling a Secure Web Service
	Assembling Security into a Web Service Top Down
	Assembling Security into a Web Service Bottom Up

	Creating a Server-Side Security Configuration File
	Defining a Server-Side, Port Level Security Configuration for Username Token
	Defining a Server-Side, Operation-Level Security Configuration for Username Token
	Defining a Server-Side, Port-Level Security Configuration to Verify XML Signature and Decryption
	Defining a Server-Side, Operation-Level Security Configuration for XML Signature and Decryption

	Creating a Client-Side Security Configuration File
	Defining a Client-Side, Port Level Security Configuration for Username Token
	Defining a Client-Side, Port-Level Security Configuration for XML Signature and Encryption
	Creating Users For Authentication
	Adding User Entries by Using Application Server Control

	Client JAR Files
	Adding Transport-Level Security to a Web Service
	Adding Basic Authentication
	Adding Digest Authentication
	Adding Client Certification Authentication
	Adding Transport-Level Security for Web Services Based on EJBs
	Accessing Web Services That Require a Username and Password
	HTTP Authentication Properties
	WS-Security Username Token Authentication Field Values
	Passing Authentication Information Programatically
	Passing Authentication Information Statically

	Propagating Identities from a Web Service to an EJB

	Ant Tasks and WebServicesAssembler
	Getting an Authenticated User Identity in a Web Service Application
	Getting an Authenticated Subject with the AccessControlContext API
	Getting an Authenticated Principal with the ServiceLifeCycle API

	Performing JAAS Provider Authorization on a Web Service
	WS-Security and XML APIs
	Development Decisions

	5 Secure Web Service Usage Scenarios
	Non-Secured Web Services
	Basic Web Service
	Complex Business Process
	Intermediary
	Federated

	HTTP-Based Security
	Secure Sockets Layer
	HTTP Basic Authentication and Digest Authentication
	Basic Authentication
	Digest Authentication

	WS-Security
	Web Services Security Authentication
	Username Token Profile
	X.509 Token Profile
	SAML Token Profile

	XML Signature
	XML Encryption
	Gateways
	Identity Management
	Interoperability

	6 Troubleshooting
	General Errors
	Keystore-Related Errors
	Message Integrity Errors
	Message Confidentiality Errors
	Authentication Errors

	A OracleAS Web Services Security Schema
	Hierarchy of a Security Configuration
	Elements and Attributes of the Security Schema
	<add-timestamp>
	<attribute>
	<confirmation-method>
	<decrypt>
	<encrypt>
	<encryption-key>
	<encryption-method>
	<encryption-methods>
	<inbound>
	<key-store>
	<keytransport-method>
	<keytransport-methods>
	<nonce-config>
	<outbound>
	<recipient-key>
	<saml-authority>
	<saml-token>
	<security>
	<signature>
	<signature-key>
	<signature-method>
	<signature-methods>
	<subject-confirmation-method>
	<subject-confirmation-methods>
	<tbe-element>
	<tbe-elements>
	<tbs-element>
	<tbs-elements>
	<use-cert-request>
	<username-token>
	<verify-saml-token>
	<verify-signature>
	<verify-timestamp>
	<verify-username-token>
	<verify-x509-token>
	<x509-token>

	Oracle Web Services Security Schema Listing
	Security Configuration Listing

	B Security Threats and Solutions
	C Third Party Licenses
	Apache
	The Apache Software License

	Apache SOAP
	Apache SOAP License

	JSR 110
	Jaxen
	The Jaxen License

	SAXPath
	The SAXPath License

	W3C DOM
	The W3C License

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

