ORACLE

Oracle® Business Rules
Language Reference

109 (10.1.3.1.0)
B28964-01

September 2006

Oracle Business Rules Language Reference, 10g (10.1.3.1.0)
B28964-01

Copyright © 2005, 2006, Oracle. All rights reserved.
Primary Author: Thomas Van Raalte

Contributors: Qun Chen, Ching Chung, David Clay, Kathryn Gruenefeldt, Gary Hallmark, Phil Varner,
Neal Wyse, Lance Zaklan

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PlEIACE ...ttt vii
NS Lo = VT TSR RSO RRRTRTTN Vii
Documentation AcCeSSIDILItYccciiiiiiiiiiiiiiii s Vii
Related DOCUITIEIESveevieieeiecieeeeeeeetee ettt et e et e e ete e eaaeeaeesaaeeseesseseseesneseseeesesenseensesensseseeans viii
CONMVEIIEIONS ..oitvveiiee ettt ettt e e eeett e e e eeate e e e e e eaaeeeesessaaaseeeesaabaeeeeseaaseeeseessaaeseesssnsssaessessssssseessnssaeeeessns viii

1 Rules Programming Concepts

11 Starting the Oracle Business Rules RL Language Command-Linecccccocoeninnnnn. 1-2
1.2 Introducing Rules and Rulesets............ccccciiiiiiiiiiiiiiccceeeeeeeas 1-2
121 RUIE CONAIEIONS ..ttt sttt b et be b sa e st ne e seeene 1-3
1.2.2 RULE ACHONS. ..ttt ettt e ae et s ae et be b e se et e e et e st ebeebeeee 1-3
1.3 Introducing Facts and RL Language Classescocoovreieiireiiiiineiecee s 1-3
131 What ATE FACES? ..ottt ettt sttt ettt e et 1-3
132 Adding Facts to Working Memory with Assert...........cccoooiii 1-4
1.3.3 Using RL Language Classes as Facts ... 1-4
134 Using Java Classes as FaCES ... 1-5
14 Understanding and Controlling Rule Firing...........c.cooiiiiie 1-6
14.1 Rule Activation and the Agendaccccccciiiiiiiiiiiiiiccas 1-6
1.4.2 Watching Facts, Rules, and Rule Activations ... 1-7
143 Ordering Rule Firingcooiiiiiiiiiiiiicci e 1-9
1.5 Integrating RL Language Programs with Java Programs............cccccccevviviinnnnnnnnnne. 1-11
151 Using Java Beans Asserted as Factscc.cooeiuiieiiiiiiiiii 1-12
152 Using RuleSession Objects in Java Applications.........c.cccooceieiiiiciiiniicicicceee 1-14
1.6 Building a Coin Counter Rules Program.............ccccooeiiiiiiiiiiiiiiiceeceecees 1-14

2 Rule Language Reference

RULESEL .ottt ettt ettt et e e e se et e esessesseese s et ensenseneeneesaesessensens 2-2
Y PS ettt s 2-4
TA@NEIEIETS ...ttt ettt et b s bt bbb st et e et e bt ebeebesbesaens 2-7
|5 =Y =Y PSS SU TR URTPR 2-9
DEFINMITIONS ..ttt ettt ettt a e eb e b e b e sbe s be st e st et e be e et eseebeebesbesbebensens 2-10
Variable Definitions.cocrireieiiniiieiresee ettt sttt 2-11
RUIE DEfINITIONS ..veviinieeieiieieteiiieet ettt ettt sttt e s e s e e e e eseeseenesnens 2-13
Class DEfINIHIONScociruiriiiiiiiieiitetesee ettt sttt sttt ettt ettt eseebeebesaeas 2-16

FUNCHON DO INITIONS ...veiiveieeceiee ettt eesaae s saae e s eaveesenaeeeennees 2-21

Fact Class Declarations............ccveeuiiiiiinniniiiiiicse s 2-22
Import Statementcooiiiii 2-26
Include Statement ... 2-27
USINg EXPIESSIONS ..ottt 2-28
Boolean EXPressions..........cceiicieiiiicieieceieec e 2-29
Numeric EXPIESSIONScovoviieviiiiiiciiiitetcc ettt 2-31
String EXPIESSIONSc.cuiiiiiiiiiiiiiiiiiiiiicc s 2-32
ATTay EXPIOSSIONS....cocviiiiiiiiieieieieietetetet s 2-33
Fact Set EXPIeSSIONScouiuiuiuiiiiiiiiiiiiiiicieicieee s 2-34
ODbject EXPIESSIONS........cocuiuiiiiiiciciicieicieieieieieieieeteeete ettt seaeeees 2-39
Primary @XpPreSSiONSoccccueiiiciciiieiiieieie ettt e 2-40
Actions and Action BIOCKS..........cccoviiiiiiiiiiiiiiiiiccccc 2-44
If Else Action BIOCK.........cooiiiiiiiiiiiiiccc s 2-45
While Action BIOCKccooiiiiiiiiiiic s 2-46
FOr Action BlOCK........ccuiiiiiiiiiiiiicicic s 2-47
Try Catch Finally Action BLOCK.........cccciiiiiiiiiiiiciccceccceeeeeeeeeeeeeeeeeees 2-48
Synchronized Action BlOcK ... 2-49
Return ACHON ..ooviiiiccc s 2-50
TRIOW ACHON. c...cviieiiiii s 2-51
ASSIZN ACHON ..ottt 2-52
Increment or Decrement EXPreSsions ...ttt 2-53
Primary ACHONScoiuiiiiiiiiiiccc s 2-54
Built-in FUNCHONS ... 2-55
ASSEIT 1ottt 2-56
ASSETtXPAth ..oceiviii s 2-58
ClearRule.......coiiiiiiiiiii s 2-59
clearRulesetStackcciiiiiiiiiiiiiiiii s 2-60

clearWatchRules, clearWatchActivations, clearWatchFacts, clearWatchFocus, clear-
WatchCompilations, clearWatchAll 2-61

EtRUIESESLACK ... 2-62
GETRUIESESSION. ..ot 2-63
GEtSIIAtEZY .o 2-64
RALE e 2-65
B 2-66
ODJECE . 2-67
PIUNEIN (oo 2-68
POPRUIESEL ..o 2-69
PUSHRULESEL ... 2-70
TEETACE et 2-71
TOSEL ..oeiiiit bbb 2-72
4 o OO 2-73

TUNUNTIHAIE ..ot saa s eaae s s eav e e enaee s enneas 2-74

SEERULESEESTACK ...ttt sttt sttt ettt sttt ste e 2-75
SEESITAtOGY ..vvvieieiicicictetc s 2-76
SNOWACHVALIONS ..ttt ettt ettt ettt et b e 2-77
SNOWEACES ...ttt sttt b e st b ettt 2-78
S ettt s 2-79
watchRules, watchActivations, watchFacts, watchFocus, watchCompilations....... 2-80

3 Using the Command-line Interface

3.1 Starting and Using the Command-Line Interface.........ccccoooiiiiiiiii 3-1
3.2 RL Command-Line Optionsccooirueieiiicieieiccie et 3-3
3.3 RL Command-Line Built-in Commandsc.ccocoviviiiiiiiiccnes 3-3
3.3.1 Clear ComMmMANdccovviiiiiiiiiiiii s 3-3
3.3.2 Exit Commandccccovviiiiiiiiiiiiiiic s 3-4

4 Using a RuleSession

4.1 RuleSession Constructor Properties...........oceiieiiiiicicieeccccc s 4-2
4.2 RuleSession Methods..........ccciiiiiiiiiiiiiiiic s 4-2
4.3 RL to Java Type CONVeISION.......ccccuiviiiiieteiiiicie et 4-3
4.4 RL EXCEPLIONSvvieiiititiietetcne ettt en s 4-3
4.5 Error Handlingcooeeiiiiieeecrcec e 4-4
4.6 RL Class Reflectionccviiiiiiiiiiiiiiiiiiiiiccc s 4-4
4.7 XML NaVIgation......cccoouiiiiiiiieiieiieie s 4-5
4.8 Obtaining Results from a Rule Enabled Program............cccccocoiiiiiiiiiiiciceccceenns 4-5
4.8.1 Overview of Results EXamples ..o 4-5
4.8.2 Using External Resources to Obtain Results..............cooooiiiiii 4-6

A Summary of Java and RL Differences
A.l RL Differences from JAVAccoceceieieirinisierieseietese et etee et sessestessesaestesaesseseeseesessensessensan A-1

B Oracle Business Rules DMS Instrumentation

B.1 Enabling Oracle Business Rules DMS Instrumentationcccccocevvviviininnnnnnnnnnnes B-2

B.2 Oracle Business RULES IMELTICSvcveeiririniiiniiiesieieieteeeteeee e ere st b e sse s se s saesaesaesessessanss B-2

B.2.1 Oracle Business Rules RuUle MELTICSoooveeuieiiriieieniieieeeieeteeteeee e see e B-2

B.2.2 Oracle Business Rules Ruleset MEtriCScoviiueevieereeieereeieeteceeereecee et veeneeveenns B-3

B.2.3 Oracle Business Rules Working Memory Metricsc.cccococccecieceincenceeene B-3

B.2.4 Oracle Business Rules RuleSession MetriCSccoieverieeienieeeerieeienieseereseesseseesesseens B-3
Index

vi

Audience

Preface

This Preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documents

« Conventions

Oracle Business Rules Language Reference is intended for application developers and
Oracle Application Server administrators who perform the following tasks:

= Develop rule enabled applications
= Debug rule enabled applications
= Deploy and Administer rule enabled applications.

= Develop rulesets for those who prefer a technical language environment instead of
the Oracle Business Rules Rule Author graphical environment for rule authoring.

= Need to use Oracle Business Rules RL Language advanced features that are not
available in the Oracle Business Rules Rule Author environment.

To use this document, you need to be familiar with the Java programming language.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://ww. oracl e. com accessibility/
Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an

Vii

otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see the following documents:
« Oracle Business Rules User’s Guide

« Oracle Containers for]2EE Deployment Guide

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text

= RL Language Backus-Naur Form Grammar Rules

Conventions in Text

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

RL Language Backus-Naur Form Grammar Rules

Each RL Language command in the guide is shown in a format description that
consists of a variant of Backus-Naur Form (BNF) that includes the symbols and
conventions in the following table.

Symbol or

Convention Meaning

[1 Brackets enclose optional items.

{} Braces enclose items only one of which is required.

| A vertical bar separates alternatives within brackets or braces.
* A star indicates that an element can be repeated.

viii

Symbol or

Convention Meaning

delimiters Delimiters other than brackets, braces, vertical bars, stars, and ellipses
must be entered as shown.

boldface Words appearing in boldface are keywords. They must be typed as
shown.
(Keywords are case-sensitive in some, but not all, operating systems.)
Words that are not in boldface are placeholders for which you must
substitute a name or value

underline When on the left side of a production (: : =) indicates a definition for a
non-terminal symbol.

underline When found on the right side of a production, : : = , alink, which is a

italic text

non-terminal symbol, links to the definition for the non-terminal
symbol.

Semantic information about non-terminals, such as the required data
type for an expression or a descriptive tag used in following discussion,
is in italics.

1

Rules Programming Concepts

This chapter introduces Oracle Business Rules RL Language (RL Language) concepts,
and includes the following sections:

« Starting the Oracle Business Rules RL Language Command-Line
« Introducing Rules and Rulesets

« Introducing Facts and RL Language Classes

« Understanding and Controlling Rule Firing

« Integrating RL Language Programs with Java Programs

« Building a Coin Counter Rules Program

Rules Programming Concepts 1-1

Starting the Oracle Business Rules RL Language Command-Line

1.1 Starting the Oracle Business Rules RL Language Command-Line

The Oracle Business Rules environment is implemented in a JVM or in a J2EE
container by the classes supplied with r| . j ar . Start the RL Language command-line
interface using the following command:

java -jar RuleDir/lib/rl.jar -p "RL> "

Where RuleDir is the path for the Oracle Business Rules installation. The —p option
specifies the prompt.

The RL Language command-line interface provides access to an Oracle Business Rules
RuleSession. The RuleSession is the API that allows Java programmers to access the RL
Language in a Java application (the command-line interface uses a RuleSession
internally).

You can run the program in Example 1-1 using the command-line interface by
entering the text shown at the RL> prompt.

Example 1-1 Using the Command-Line Interface

RL> printin(l + 2);

3

RL> final int low = -10;

RL> final int high = 10;

RL> println(low + high * high);
90

RL> exit;

See Also:

= Chapter 3, "Using the Command-line Interface" for more details
and for a list of command-line options

= Chapter 4, "Using a RuleSession" for details on Oracle Business
Rules RuleSession API

1.2 Introducing Rules and Rulesets

An RL Language ruleset provides a namespace, similar to a Java package, for RL
classes, functions, and rules. In addition, you can use rulesets to partially order rule
firing. A ruleset may contain executable actions, may include or contain other rulesets,
and may import Java classes and packages.

An RL Language rule consists of rule conditions, also called fact-set-conditions, and an
action-block or list of actions. Rules follow an if-then structure with rule conditions
followed by rule actions.

Example 1-2 shows a program that prints, "Hello World." This example demonstrates
a program that contains a single top-level action in the default ruleset (named nai n).
Example 1-2 contains only an action, and does not define a rule, so the action executes
immediately at the command-line.

Example 1-2 Hello World Programming Example

RL> printin("Hello Wrld");
Hello Wrld
RL>

1-2 Oracle Business Rules Language Reference

Introducing Facts and RL Language Classes

See Also: Understanding and Controlling Rule Firing on page 1-6
for details on rule firing

1.2.1 Rule Conditions

A rule condition is a component of a rule that is composed of conditional expressions
that refer to facts.

In the following example the conditional expression refers to a fact (Dr i ver instance
d1), followed by a test that the fact's data member, age, is less than 16.

if (fact Driver dl1 && dl.age < 16)

Example 1-3 shows the complete rule, written in RL Language (the rule includes a rule
condition and a rule action).

The Oracle Rules Engine activates a rule whenever there is a combination of facts that
makes the rule’s conditional expression true. In some respects, a rule condition is like a
query over the available facts in the Oracle Rules Engine, and for every row that
returns from the query, the rule activates.

Note: Rule activation is not the same as rule firing.

Example 1-3 Defining a Driver Age Rule

RL> rul e driverAge{
if (fact Driver dl && dl1.age < 16)

{

printin("lInvalid Driver");

}

1.2.2 Rule Actions

A rule action is activated if all of the rule conditions are satisfied. There are several
kinds of actions that a rule’s action-block might perform. For example, an action in the
rule’s action-block can add new facts by calling the assert function or remove facts by
calling the retract function. An action can also execute a Java method or perform an RL
Language function (Example 1-3 uses the pri nt | n function). Using actions, you can
call functions that perform a desired task associated with a pattern match.

1.3 Introducing Facts and RL Language Classes
This section describes Oracle Business Rules facts and includes the following sections:
= What Are Facts?
= Adding Facts to Working Memory with Assert
= Using RL Language Classes as Facts

= Using Java Classes as Facts

1.3.1 What Are Facts?

Oracle Business Rules facts are asserted objects. For Java objects, a fact is a shallow
copy of the object, meaning that each property is cloned, if possible, and if not, then
the fact is a copy of the Java object reference.

Rules Programming Concepts 1-3

Introducing Facts and RL Language Classes

In RL Language, a Java object is an instance of a Java class and an RL Object is an
instance of an RL Language class. You can use Java classes in the classpath or you can
define and use RL Language classes in a ruleset. You can also declare additional
properties that are associated with the existing properties or methods of a Java class
using a fact class declaration. You can hide properties of a Java class that are not
needed in facts using a fact class declaration.

An RL Language class is similar to a Java Bean without methods. An RL class contains
set of named properties. Each property has a type that is either an RL class, a Java
object, or a primitive type.

Using Oracle Business Rules, you typically use Java classes, including JAXB generated
classes that support the use of XML, to create rules that examine the business objects in
a rule enabled application, or to return results to the application. You typically use RL
classes to create intermediate facts that can trigger other rules in the Oracle Rules
Engine.

1.3.2 Adding Facts to Working Memory with Assert

Oracle Business Rules uses working memory to contain facts (facts do not exist outside
of working memory). A RuleSession contains the working memory.

A fact in RL Language is an asserted instance of a class. Example 1-4 shows the assert
function that adds an instance of the RL class ent er Roomas a fact to working
memory. A class that is the basis for asserted facts may be defined in Java or in RL
Language.

In Example 14 the sayHel | o rule matches facts of type ent er Room and for each
such fact, prints a message. The action new, shown in the assert function, creates an
instance of the ent er Roomclass.

In Example 14 the r un function fires the sayHel | o rule.

Note: The RL Language newkeyword extends the Java new
functionality with the capability to specify initial values for properties.

Example 1-4 Matching a Fact Defined by an RL Language Class

RL> class enterRoom{ String who; }
RL> assert(new ent er Room(who: "Bob"));
RL> rul e sayHello {
if (fact enterRoom) {
printin("Hello " + enterRoom who);
}
}
RL> run();
Hel | o Bob
RL>

See Also: "Understanding and Controlling Rule Firing" on page 1-6

1.3.3 Using RL Language Classes as Facts

You can use RL Language classes in a rules program to supplement a Java
application's object model, without having to change the application code for the Java
application that supplies Java Objects.

1-4 Oracle Business Rules Language Reference

Introducing Facts and RL Language Classes

Example 1-5 shows the gol dCust rule uses a Java class containing customer data,
cust ; the rule’s action asserts an instance of the Gol dCust oner RL class,
representing a customer that spends more than 500 dollars in a three month period.
The Java Cust oner class includes a method Spent | nLast Mont hs that is supplied
an integer representing a number of months of customer data to add.

Example 1-5 goldCust Rule
rul e gol dCust {

if (fact Custoner cust && cust.SpentlnLastMnths(3) > 500){
assert (new Gol dCustoner(cust: cust));

}
}

Example 1-6 shows the gol dDi scount rule uses the RL fact Gol dCust oner to infer
that if a customer spent $500 within the past 3 months, then the customer is eligible for
a 10% discount.

Example 1-6 goldDiscount Rule
rul e gol dDi scount {
if (fact Order ord & fact Col dCustoner(cust: ord.customer))
{

ord.discount = 0.1;
assert(ord);

}

Example 1-7 shows the declaration for the Gol dCust onmer RL class (this assumes that
you also have the Cust oner class available in the classpath).

Example 1-7 Declaring an RL Language Class

cl ass Gol dCust ormer {
Custoner cust;

}

See Also: "Adding Facts to Working Memory with Assert” on
page 1-4

1.3.4 Using Java Classes as Facts

You can use asserted Java objects as facts in an RL Language program. You are not
required to explicitly define or declare the Java classes. However, you must include the
Java classes in the classpath when you run the program. This lets you use the Java
classes in rules, and allows a rules program to access and use the public attributes,
public methods, and bean properties defined in the Java class (bean properties are
preferable for some applications because the Oracle Rules Engine can detect that a Java
object supports Pr oper t yChangelLi st ener ; in this case it uses that mechanism to be
notified when the object changes).

In addition, Fact class declarations can fine tune the properties available to use in an
RL program, and may be required for certain multiple inheritance situations.

When you work with Java classes, using the i mpor t statement lets you omit the
package name (see Example 1-8).

Rules Programming Concepts 1-5

Understanding and Controlling Rule Firing

Example 1-8 Sample Java Fact with Import

rul eset main

{
i nport exanpl e. Person;
inport java.util.*;
rul e hasN ckNanes

{

if (fact Person p & ! p.nicknanes.isEnmpty())

{
/] accessing properties as fields:
printIn(p.firstName + " " + p.lastNane + " has nicknames:");
Iterator i = p.nicknames.iterator();
while (i.hasNext())
{

printin(i.next());

}

}

}

See Also:

= "Fact Class Declarations" on page 2-22

= 'Import Statement" on page 2-26

1.4 Understanding and Controlling Rule Firing
This section covers the following topics:
= Rule Activation and the Agenda
= Watching Facts, Rules, and Rule Activations
= Ordering Rule Firing

1.4.1 Rule Activation and the Agenda

The Oracle Rules Engine matches facts against the rule conditions (fact-set-conditions)
of all rules as the state of working memory changes. The Oracle Rules Engine only
checks for matches when the state of working memory changes, typically when a fact
is asserted or retracted. A group of facts that makes a given rule condition true is
called a fact set row. A fact set is a collection of all the fact set rows for a given rule. Thus
a fact set consists of the facts that match the rule conditions for a rule. For each fact set
row in a fact set, an activation, consisting of a fact set row and a reference to the rule is
added to the agenda (the agenda contains the complete list of activations).

Figure 1-1 shows a RuleSession with an agenda containing activations in working
memory.

1-6 Oracle Business Rules Language Reference

Understanding and Controlling Rule Firing

Figure 1-1 RuleSession with Working Memory and the Agenda Containing Activations

JVM
RuleSession
Java Working Memory
Objects
Agenda
J J Activation
J Facts Activation
J F ; Activation
E Activation
F Activation
3
I Activation
| Assert

The run, runUntilHalt, and step functions execute the activations on the agenda, that
is, these commands fire the rules (use the step command to fire a specified number of
activations).

Rules fire when the Oracle Rules Engine removes activations, by popping the
activations off the agenda and performing the rule's actions.

The Oracle Rules Engine may remove activations without firing a rule if the rule
conditions are no longer satisfied. For example, if the facts change or the rule is cleared
then activations may be removed without firing. Further, the Oracle Rules Engine
removes activations from the agenda when the facts referenced in a fact set row are
modified or the facts are retracted, such that they no longer match a rule condition
(and this can also happen in cases where new facts are asserted, when the ! operator
applies).

Note the following concerning rule activations:

1. Activations are created, and thus rules fire only when facts are asserted, modified,
or retracted (otherwise, the rules would fire continuously).

2. If arule asserts a fact that is mentioned in the rule condition, and the rule
condition is still true, then a new activation is added back to the agenda and the
rule fires again (in this case the rule would fire continuously). This behavior is
often a bug. Avoid this by adding additional limiting details in the rule condition.

3. The actions associated with a rule firing can change the set of activations on the
agenda, by modifying facts, asserting facts, or retracting facts, and this can change
the next rule to fire.

4. Rules fire sequentially, not in parallel.

See Also: Ordering Rule Firing on page 1-9

1.4.2 Watching Facts, Rules, and Rule Activations

You can use the functions wat chAct i vati ons, wat chFact s, wat chRul es, and
showFact s to help write and debug RL Language programs.

This section covers the following topics:
= Watching and Showing Facts in Working Memory
= Watching Activations and Rule Firing

Rules Programming Concepts 1-7

Understanding and Controlling Rule Firing

1.4.2.1 Watching and Showing Facts in Working Memory

Example 1-9 shows the wat chFact s function that prints information about facts
entering and leaving working memory.

As shown in Example 1-9, the wat chFact s function prints ==> when a fact is
asserted. Each fact is assigned a short identifier, beginning with f - , so that the fact
may be referenced. For example, activations include a reference to the facts that are
passed to the rule actions.

In Example 1-9, notice that the program uses the default ruleset mai n. This ruleset
contains the ent er Roomclass.

Example 1-9 Using watchFacts with enterRoom Facts

RL> wat chFacts();

RL> class enterRoom {String who;}

RL> assert(new ent er Roon{who: "Rahul"));
==> f-1 main. enterRoonm(who : "Rahul")
RL> assert(new ent er Room(who: "Kathy"));
==> f-2 main. enter Roomwho : "Kathy")
RL> assert(new ent er Room(who: "Tont'));
==> f-3 main. enter Roon(who : "Tont)
RL>

You can use showFact s to show the current facts in working memory. Example 1-10
shows that the Oracle Rules Engine asserts the initial-fact, f - 0 (the Oracle Rules
Engine uses this fact internally).

Example 1-10 Show Facts in Working Memory

RL> showFact s();

f-0 initial-fact()

f-1 main.enterRoom(who : "Rahul")
f-2 min.enterRoom(who : "Kathy")
f-3 main. enterRoom(who : "Tont)
For a total of 4 facts.

Use retract to remove facts from working memory, as shown in Example 1-11. When
wat chFact s is enabled, the Oracle Rules Engine prints <== when a fact is retracted.

Example 1-11 Retracting Facts from Working Memory

RL> wat chFacts();

RL> retract(object(2));

<== f-2 main. enterRoom who : "Kathy")
RL> showFact s();

f-0 initial-fact()

f-1 main.enterRoom(who : "Rahul")
f-3 main. enterRoonm(who : "Ton)

For a total of 3 facts.

1.4.2.2 Watching Activations and Rule Firing

The wat chAct i vat i ons function monitors the Oracle Rules Engine and prints
information about rule activations entering and leaving the agenda. The wat chRul es
function prints information about rules firing.

Example 1-12 shows how r un causes the activations to fire. Notice that Rahul is
greeted last even though he entered the room first (this is due to the firing order).

1-8 Oracle Business Rules Language Reference

Understanding and Controlling Rule Firing

Note: Activations may be removed from the agenda before they are
fired if their associated facts no longer make the condition true.

Example 1-12 Using WatchActivations and WatchRules

RL> cl ear;
RL> cl ass enterRoom {String who;}
RL> assert(new ent er Roorm(who: "Rahul "));
RL> assert(new ent er Roorm(who: "Kathy"));
RL> assert(new ent er Room(who: "Tont'));
RL> wat chActi vations();
RL> rul e sayHello {
if (fact enterRoon) {

printin("Hello " + enterRoom who);

}

}

==> Activation: main.sayHello :
==> Activation: main.sayHello :
==> Activation: nmain. sayHello :
RL> wat chRul es();

RL> run();

Fire 1 main.sayHello f-3

Hello Tom

Fire 2 main. sayHello f-2

Hel I o Kat hy

Fire 3 main.sayHello f-1

Hel | o Rahul

RL>

— = —h
'
WN -

1.4.3 Ordering Rule Firing

To understand the ordering algorithm for firing rule activations on the agenda, we
introduce the ruleset stack. Each Rul eSessi on includes one ruleset stack. The

Rul eSessi on’s ruleset stack contains the top of the stack, called the focus ruleset, and
any non focus rulesets that are also on the ruleset stack. You place additional rulesets
on the ruleset stack using either the pushRuleset or setRulesetStack built-in functions.
You can manage the rulesets on the ruleset stack with the clearRulesetStack,
popRuleset, and setRulesetStack functions. In this case, the focus of the ruleset stack is
the current top ruleset in the ruleset stack (see Example 1-13).

Example 1-13 Ruleset Stack - Picture
Rul eSet Stack

Focus Ruleset --> Top_Rul eset
Next _down_Rul eset
Lower _Rul eset
Bott om Rul eset

When activations are on the agenda, the Oracle Rules Engine fires rules when run,
runUntilHalt, or step executes. The Oracle Rules Engine sequentially selects a rule
activation from all of the activations on the agenda, using the following ordering
algorithm:

1. The Oracle Rules Engine selects all the rule activations for the focus ruleset, that is
the ruleset at the top of the ruleset stack (see the pushRuleset and setRulesetStack
built-in functions).

Rules Programming Concepts 1-9

Understanding and Controlling Rule Firing

2. Within the set of activations associated with the focus ruleset, rule priority
specifies the firing order, with the higher priority rule activations selected to be
fired ahead of lower priority rule activations (the default priority level is 0).

3. Within the set of rule activations of the same priority, within the focus ruleset, the
most recently added rule activation is the next rule to fire. However, note that in
some cases multiple activations may be added to the agenda at the same time, the
ordering for such activations is not defined.

4. When all of the rule activations in the current focus fire, the Oracle Rules Engine
pops the ruleset stack, and the process returns to Step 1, with the current focus.

If a set of rules named R1 must all fire before any rule in a second set of rules named
R2, then you have two choices:

= Use asingle ruleset and set the priority of the rules in R1 higher than the priority
of rules in R2.

= Use two rulesets R1 and R2, and push R2 and then R1 on the ruleset stack.

Generally, using two rulesets with the ruleset stack is more flexible than using a single
ruleset and setting the priority to control when rules fire. For example if some rule R in
R1 must trigger a rule in R2 before all rules in R1 fire, a return in R pops the ruleset
stack and allows rules in R2 to fire.

If execution must alternate between two sets of rules, for example, rules to produce
facts and rules to consume facts, it is easier to alternate flow with different rulesets
than by using different priorities.

Example 1-14 shows that the priority of the keepGar yQut rule is set to high, this is
higher than the priority of the sayHel | o rule (the default priority is 0). If the
activations of both rules are on the agenda, the higher priority rule fires first. Notice
that just before calling r un, sayHel | 0 has two activations on the agenda. Because
keepGar yQut fires first, it retracts the ent er Room(who: "Gary") fact, which
removes the corresponding sayHel | 0 activation, resulting in only one sayHel | o
firing.

The rule shown in Example 1-14 illustrates two additional RL Language features.

1. Thef act operator, also known as a fact set pattern, uses the optional var
keyword to define a variable, in this case the variable g, that is bound to the
matching facts.

2. You can remove facts in working memory using the r et r act function.

Example 1-14 Using Rule Priority with keepGaryOut Rule

RL> final int low=-10;
RL> final int high = 10;
RL> rul e keepGaryQut {
priority = high;
if (fact enterRoom{who: "Gary") var g) {
retract(g);
}

}
RL> assert(new enterRoom(who: "Gary"));

==> f-4 main. enter Room who: "Gry")
==> Activation: main.sayHello : f-4
==> Activation: main.keepGaryQut : f-4
RL> assert(new ent er Room(who: "Mary"));
==> f-5 main. ent er Room who: "Mary")
==> Activation: main.sayHello : f-5

1-10 Oracle Business Rules Language Reference

Integrating RL Language Programs with Java Programs

RL> run();

Fire 1 main. keepGaryQut f-4

<== f-4 main. enter Room(who: "Gry"
<== Activation: main.sayHello : f-
Fire 2 main.sayHello f-5

Hel o Mary

RL>

)
4

Example 1-15 shows the sayHel | o rule that includes a condition that matches the
asserted ent er Roomfact; this match adds an activation to the agenda. Example 1-15

demonstrates the following RL Language programming features.

1.

The Oracle Rules Engine matches facts against the rule conditions
(fact-set-conditions) of all rules as the state of working memory changes. Thus, it
does not matter whether facts are asserted before the rule is defined, or after.

The run function processes any activations on the agenda. No activations on the
agenda are processed before calling run.

Example 1-15 enterRoom Class with sayHello Rule

RL> cl ass enterRoom{ String who; }
RL> rul e sayHello {

}

if (fact enterRoom) {

printin("Hello " + enterRoom who);

RL> assert (new ent er Roon{who: "Bob"));
RL> run();
Hel | o Bob

RL>

Notes for ordering rule firing.

1.

When you use the r et ur n action, this changes the behavior for firing rules. A

r et ur n action in a rule pops the ruleset stack, so that execution continues with
the activations on the agenda that are from the ruleset that is currently at the top of
the ruleset stack.

If rule execution was initiated with either the run or step functions, and a return
action pops the last ruleset from the ruleset stack, then control returns to the caller
of the run or step function.

If rule execution was initiated with the runUntilHalt function, then a return action
does not pop the last ruleset from the ruleset stack. The last ruleset is popped with
runUntilHalt when there are not any activations left. The Oracle Rules Engine then
waits for more activations to appear. When they do, it places the last ruleset on the
ruleset stack before resuming ruleset firing.

Rule priority is only applicable within rules in a given ruleset. Thus, the priority of
rules in different rulesets are not comparable.

1.5 Integrating RL Language Programs with Java Programs

This section describes integrating RL Language programs with Java programs. This
section covers the following topics:

Using Java Beans Asserted as Facts

Using RuleSession Objects in Java Applications

Rules Programming Concepts 1-11

Integrating RL Language Programs with Java Programs

See Also: "Invoking Rules" in Chapter 3 in the Oracle Business Rules
User’s Guide

1.5.1 Using Java Beans Asserted as Facts

Example 1-16 shows the Java source for a simple bean. Use the j avac command to
compile the bean, exanpl e. Per son shown in Example 1-16 into a directory tree.

The following shows how an RL Language command-line can be started that can
access this Java bean:

java -classpath RuleDir/lib/rl.jar;BeanPath oracle.rules.rl.session. ConmandLine -p
"RL> "

Where BeanPath is the classpath component to any supplied Java Bean classes.

Example 1-16 Java Source for Person Bean Class

package exanpl e;
inport java.util.*;
public class Person

{

private String firstNane;
private String | astNane;
private Set nicknames = new HashSet();

public Person(String first, String last, String[] nick) {
firstName = first; |astName = | ast;
for (int i =0; i <nick.length; ++i)
ni cknanes. add(ni ck[i]);

}

public Person() {}

public String getFirstNane() {return firstNane;}

public void setFirstNane(String first) {firstName = first;}
public String getLastName() {return |astNane;}

public void setLastNanme(String last) {lastName = |ast;}
public Set getN cknames() {return nicknanes;}

}

Example 1-17 shows how the RL Language command-line can execute an RL
Language program that uses exanpl e. Per son. The i mport statement, as in Java,
allows a reference to the Per son class using "Per son" instead of "exanpl e. Per son".
Rules reference the Per son bean class and its properties and methods. In order to
create a Per son fact you must assert aJava Per son bean.

Example 1-17 uses the new operator to create an array of Per son objects, named
peopl e. The peopl e array is declared final so that r eset does not create more

peopl e. The nunPeopl e variable is not declared f i nal so thatr eset re-invokes the
assert Peopl e function and re-asserts the Per son facts using the existing Per son
objects.

Example 1-17 Ruleset Using Person Bean Class
rul eset main

{

i nport exanpl e. Person;
inport java.util.*;
rul e hasN ckNanes

{

if (fact Person(nicknames: var nns) p & !'nns.isEnpty())

1-12 Oracle Business Rules Language Reference

Integrating RL Language Programs with Java Programs

{
/] accessing properties as fields:
printIn(p.firstName + " " + p.lastNane + " has nicknanmes:");
Iterator i = nns.iterator();
while (i.hasNext())
{
printin(i.next());
}
}
}
rul e noNi ckNanes
{
if fact Person(nicknanmes: var nns) p && nns.isEnpty()
{
/'] accessing properties with getters:
printIn(p.getFirstName() + " " + p.getLastNanme() + " does not have nicknanes");
}
}

final Person[] people = new Person[] {
new Person("Robert", "Smith", new String[] { "Bob", "Rob" }), // using constructor
new Person(firstName: "Joe", |astNane: "Schnmoe") // using attribute value pairs

b

function assertPeopl e(Person[] people) returns int

{
for (int i =0; i < people.length; ++i) {
assert(people[i]);
}
return people.length;
}
int nunPeopl e = assert Peopl e(peopl e);
run();
}

Note the following when working with Java beans as facts:

1. Thef act operator can include a pattern that matches or retrieves the bean
properties. The properties are defined by getter and setter methods in the bean
class.

2. The newoperator can include a pattern that sets property values after invoking the
default no-argument constructor, or can pass arguments to a user-defined
constructor.

3. Outside of the f act and newoperators, the bean properties may be referenced or
updated using getter and setter methods, or using the property name as if it were
a field.

4. If a bean has both a property and a field with the same name, then the field cannot
be referenced in RL Language.

If Example 1-18 executes using the same Rul eSessi on following the execution of
Example 1-17, the output is identical to the Example 1-17 results (both per son facts
are reasserted).

Note: The RL Language command-line interpreter internally creates
a Rul eSessi on when it starts up (and when you use the cl ear
command).

Rules Programming Concepts 1-13

Building a Coin Counter Rules Program

Example 1-18 Using Reset with a RuleSession

reset();
run();

1.5.2 Using RuleSession Objects in Java Applications

Java programs can use the Rul eSessi on interface to execute rulesets, invoke RL
Language functions passing Java objects as arguments, and redirect RL Language

wat ch and pri nt | n output. Example 1-19 and Example 1-20 each contain a Java
program fragment that uses a Rul eSessi on that prints "hello world". Like many Java
program fragments, these examples are also legal RL Language programs.

The RL Language environment provides multiple rule sessions. Each rule session can
be used by multiple threads, but rules are fired by a single thread at a time.

Each rule RuleSession has its own copy of facts and rules. To create a fact from a Java
Object, use a call such as:

rs.cal | Functi onWt hArgument ("assert”, Cbject;);

To create a rule, a function, or an RL Language class, define a string containing a
ruleset, and use the execut eRul eset method.

Example 1-19 Using a RuleSession Object with callFunctionWithArgument

inport oracle.rules.rl.*;
try {

Rul eSession rs = new Rul eSession();

rs.call Functi onWthArgument ("printin", "hello world");
} catch (RLException rle) {

Systemout.printlin(rle);

}

Example 1-20 Using a RuleSession with ExecuteRuleset
inport oracle.rules.rl.*;

try {
Rul eSession rs = new Rul eSession();
String rset =

"ruleset main {" +
" function nyPrintIn(String s) {" +
" printin(s);" +
n }ll +
A
rs.execut eRul eset (rset);
rs.cal |l FunctionWthArgument ("nyPrintin", "hello world");
} catch (RLException rle) {
Systemout.printin(rle);

}

1.6 Building a Coin Counter Rules Program

This section shows a sample that uses RL Language to solve a puzzle:

How many ways can 50 coins add up to $1.50?

1-14 Oracle Business Rules Language Reference

Building a Coin Counter Rules Program

The rules program that solves this puzzle illustrates an important point for rule-based
programming; knowledge representation, that is, the fact classes that you select, can be
the key design issue. It is often worthwhile to write procedural code to shape your
data into a convenient format for the rules to match and process.

To use this example, first copy the RL Language program shown in Example 1-22 to a
file named coi ns. r| . You can include this from the RL Language command-line
using the i ncl ude command. Before you include the coins program, use the cl ear ;
command to erase everything in the current rule session, as follows:

RL> clear;
RL> include file:coins.rl;
RL>

Example 1-21 shows the debugging functions that show the count coins sample facts,
activations, and rules for the coin counter. All facts are asserted, and activations for all
solutions are placed on the agenda. Notice that the facts are matched to the rule
condition as they are generated by popul at e_f act s, and thatfi nd_sol uti on
merely prints the matches.

Example 1-21 Using Debugging Functions with Coins Example

RL> wat chFacts();

RL> wat chActivations();

RL> wat chRul es();

RL> reset();

RL> showActivations();

RL> run();

The rule is fired for each activation, printing out the solutions
RL>

In Example 1-22, the keyword f i nal in front of a global variable definition such as
coi nCount andt ot al Ambunt marks that variable as a constant, as in Java. You can
reference constants in rule conditions, but you cannot reference variables in rule
conditions.

In RL Language, you must initialize all variables. The initialization expression for a
final variable is evaluated once when the variable is defined. The initialization
expression for a non-final variable is evaluated when the variable is defined, and again
each time the r eset function is called. Because the r eset function retracts all facts
from working memory, it is good practice to assert initial facts in a global variable
initialization expression, so that the facts are re-asserted when r eset is called.

Example 1-22 illustrates how to use global variable initialization expressions. The

i nitialized global variable is initialized with the popul at e_f act s function. This
function is re-executed whenever r eset is called. The popul at e_f act s function has
a whi | e loop nested within a f or loop. The f or loop iterates over an array of coin
denomination Strings. For each denomination, the whi | e loop asserts a fact that
expresses a count and a total that does not exceed the total amount of $1.50. For
example, for half dollars:

coi n(denomi nation "hal f-dollar", count:0, amount:O0)
coi n(denomi nation "hal f-dollar", count:1, amount:50)
coi n(denomi nation "hal f-dollar", count:2, amount:100)
coi n(denomi nation "hal f-dollar", count:3, amount: 150)

With such facts in working memory, the rule f i nd_sol ut i on matches against each
denomination with a condition that requires that the counts sum to coi nCount and
the amounts sum to t ot al Ant . The r un function fires the f i nd_sol uti ons
activations.

Rules Programming Concepts 1-15

Building a Coin Counter Rules Program

Example 1-22 Count Coins Program Source

final int coinCount = 50;
final int total Am = 150;
final String[] denom nations = new String[]
{"hal f-dollar" , "quarter", "dime", "nickel", "penny" };
class coin {
String denom nation;

int count;
int anount;
}
function popul ate_facts() returns bool ean
{
for (int i =0; i < denomnations.length;, ++i) {
String denom = denominations[i];
int count = 0;
int total = 0;
int anount = 0;
if (denom== "half-dollar") { anount = 50; }
else if (denom== "quarter") { anount = 25; }
else if (denom== "dine") { amount = 10; }
else if (denom== "nickel") { amount =5; }
el se { anount = 1; }
while (total <= total Amt && count <= coi nCount)
{
assert (new coi n(denoni nation: denom
count : count,
amount : total));
total += anount;
count ++;
}
}
return true;
}

bool ean initialized = popul ate_facts();
rule find_solution
{
i f(fact coin(denom nation: "penny") p
&& fact coin(denom nation: "nickel") n
&& fact coin(denom nation: "dine") d
&& fact coin(denom nation: "quarter") q
&& fact coin(denom nation: "half-dollar") h

&& p.count + n.count + d.count + g.count + h.count == coi nCount
&& p.armount + n.amount + d.amount + g.anount + h.anount == total Ant)
{
println("Solution:"
+ " penni es=" + p.count
+ " nickel s=" + n.count
+ " dines=" + d.count
+ " quarters=" + g.count
+ " hal f-dol lars=" + h.count
)
}
}
run();

1-16 Oracle Business Rules Language Reference

2

Rule Language Reference

This chapter contains a detailed and complete reference to the Oracle Business Rules
RL Language (RL Language) syntax, semantics, and built-in functions.

Grammar rules define the RL Language. Each grammar rule defines a non-terminal
symbol on the left of the : : = symbol in terms of one or more non-terminal and
terminal symbols on the right of the : : = symbol.

Reserved Words

autofocus, boolean, break, catch, char, class, constant, continue, double, else, exists,
extends, fact, false, final, finally, float, for, function, if, import, include, instanceof,
int, logical, long, new, null, priority, property, public, query, return, returns, rule,
ruleset, short, synchronized, throw, true, try, while, var

Note: Reserved words not in shown in bold are planned for a future
RL Language release, and include the words: break, continue, and

query.

Rule Language Reference 2-1

Ruleset

Ruleset

Format

Usage Notes

Examples

A ruleset groups a set of definitions. A ruleset is a collection of rules and other
definitions that are all intended to be evaluated at the same time. A ruleset may also
contain executable actions, may include or contain other rulesets, and may import Java
classes and packages.

ruleset ::= named-ruleset | unnamed-ruleset
named-ruleset ::= ruleset ruleset-name { unnamed-ruleset }
unnamed-ruleset ::= (import | include | named-ruleset | definition | action | fact-class)*

ruleset-name ::= identifier

A named-ruleset creates or adds definitions to the specified ruleset named
ruleset-name.

An unnamed-ruleset adds definitions to the default ruleset named mai n.

Rulesets may be nested, that is they may contain or include other rulesets. Nesting
does not affect ruleset naming, but it does affect ruleset visibility in a way similar to
Java import's affect on package visibility.

You can execute a ruleset using the RL Language command-line, or using the Java
RuleSession API.

A named-ruleset ruleset-name must be unique within a Rul eSessi on.

Example 2-1 contains two definitions, ent er Roomand sayHel | 0, and two actions
(assert and run).

The rule shown in Example 2-1 will not fire until:
1. Anent er Roomfact is asserted.

2. The run function executes, which pushes the rule's containing ruleset, hel | 0 onto
the ruleset stack.

Example 2-1 Using a Named Ruleset

rul eset hello {
class enterRoom{ String who; }
rule sayHello {
if (fact enterRoom {
printin("Hello " + enterRoom who);
}

}
assert (new ent er Roon{who: "Bob"));

run("hell 0");

}

In Example 2-2, if ruleset R2 is nested in ruleset R1, the name R2 must be unique
within the rule session. R2 is not named relative to R1. For example, the class C2
defined in R2 is globally named R2.C2, not R1.R2.C2. If R2 is nested in R1, a public

2-2 Oracle Business Rules Language Reference

Ruleset

class C1 defined in R1 may be referenced in R2 using either the full name R1.C1 or the
short name C1 (assuming R2 does not also define C1).

Example 2-2 Using a Nested Ruleset

rul eset Rl {
public class Cl {
public String s;

}
Cl apple = new CL(s: "apple");
rul eset R2 {
public class C {
public String s;
}
Cl cl1 = apple; /] finds C1 and apple in containing ruleset RL
cl.s = "delicious";
C2 c2 = new C2(s: "pear");
}
R2.C2 pear = R2.c2; // finds R2.C2 and R2.c2 because they are fully qualified
printIn(apple.s +" " + pear.s); // prints "delicious pear"

pear = ¢2; // UndefinedException: ¢2 not in RL or a containing rul eset

Rule Language Reference 2-3

Types

Types

RL Language is a strongly typed language. Each variable and value has a specified
type.

Format
type = simple-type [[1]
simple-type ::= primitive | object-type
primitive == boolean | numeric
numeric z=int | double | float | long | short | byte | char
object-type = class-definition-name | Java-class-name
class-definition-name ::= gname
Java-class-name ::= gname
Type Conversion
There are several ways that a value can be converted from one type to another:
1. Conversion from any type to St ri ng using the St r i ng concatenation operator + .
2. Implicitly from context. For example, by adding an i nt to a doubl e first converts
the i nt to adoubl e and then adds the 2 doubl es.
3. Casting between 2 numeric types.
4. Casting between 2 classes related by inheritance.
5. Invoking a function or method that performs the conversion. For example,
toString.
Table 2-1 summarizes the implicit conversions for various types. Rows indicate how
the type in the From column may be implicitly converted, as shown in the list of types
shown in the To column.
Table 2-1 Implicit Type Conversions
From To
int doubl e, fl oat, | ong
f1 oat doubl e
| ong doubl e, f | oat
short i nt,doubl e, fl oat, | ong
byt e i nt,doubl e, fl oat, | ong,short
char i nt,doubl e, fl oat, | ong
String hj ect
oj ect (bj ect (if the From Object is a subclass of the To Object)
fact set bool ean
array oj ect

2-4 Oracle Business Rules Language Reference

Types

Note: An Object is an instance of a Java or RL Language class or
array. Type conversion is possible only if the classes are related by
inheritance (implements or extends).

Table 2-2 summarizes the allowed cast conversions for various types where a cast can
be used to convert a primitive with more bits to a primitive with fewer bits, without
throwing an exception.

The type conversions shown in Table 2-2 require an explicit cast operator. For
example,

int i =1,

short s = (short)i;

Note: Type conversions such as those shown in Table 2-2 that
involve numeric types may lose high order bits, and such conversions
involving Objects may throw a RLCl assCast Exept i on.

Table 2-2 Explicit Type Conversions

From To
doubl e float,long,int,short,byte, char
fl oat I ong,int,short,byte,char
| ong int,short,byte,char
short byt e, char
byt e char
char byt e
When you use a cast to convert a primitive with more bits, to a primitive with fewer
bits, the RL Language discards extra, high order, bits without throwing an exception.
For example,
short s = -134;
byte b = (byte)s;
println("s =" +s+", b="+h);
prints: s =-134, b = 122
Primitive Types

A primitive type may be any of the following

= Anint,whichis a 32 bit integer. Literal values are scanned by
java.l ang. I nt eger. parsel nt

« Al ong. Literal values are scanned by j ava. | ang. Long. par seLong

= Ashort. Literal values are scanned by j ava. | ang. Short . par seShort
= Abyt e. Literal values are scanned by j ava. | ang. Byt e. par seByt e

« Achar.

= Adoubl e. Literal values are scanned by j ava. | ang. Doubl e. par seDoubl e

Rule Language Reference 2-5

Types

= Afl oat.Literal values are scanned by j ava. | ang. Fl oat . par seFl oat

« Abooleantrueorfal se

Object Types
An object type may be:
= Ajava (bj ect, identified by the qualified name, qname, of its class. For example,
java.lang. String.
= AnRL Language Obj ect, identified by the qualified name, qname of its class. For
example, rul eset 1. Cl ass1.
String Types
RL Language uses Java strings, where:
= Strings are instances of the class j ava. | ang. Stri ng.
= A string literal is delimited by double quotes ("string").
Use \" to include the double quote character in a string.
= Strings may be concatenated using the + operator as follows:
- If any operand of a + operator is a String then the remaining operands are
converted to String and the operands are concatenated.
- An Object is converted to a String using its t 0St r i ng method.
- Aninstance of an RL Language class is converted to a String using a built-in
conversion.
Array Types

Square brackets [] denote arrays. An array in RL Language has the same syntax and
semantics as a Java 1-dimensional array.

Note: RL Language does not support multi-dimensional arrays.

2-6 Oracle Business Rules Language Reference

Identifiers

Identifiers

Format

Usage Notes

Examples

RL Language supports both the Java and the XML variant of identifiers and
namespace packages. To use the XML variant, the identifier must be enclosed in back
quotes.

identifier ::= java-identifier | xml-identifier
java-identifier ::= valid-Java-identifier

xml-identifier ::= "valid-xmi-identifier or URI"

Where:
valid-Java-identifier is: a legal Java identifier, for example, JLd_0.
valid-xml-identifier is: a legal XML identifier, for example x-1.

URlis: a legal Uniform Resource Identifier, for example, http://www.oracle.com/rules

An xml-identifier can contain characters that are illegal Java identifier characters, for
example, " and '-'. The JAXB specification defines a standard mapping of xml
identifiers to Java identifiers, and includes preserving the Java conventions of
capitalization. The JAXB specification also defines a standard mapping from the
schema target namespace URI to a Java package name, and a mapping from
anonymous types to Java static nested classes.

RL Language supports both the Java and the XML variant of identifiers and
namespaces or packages. Enclose an identifier in back quotes to use the XML variant,
as shown in Example 2-3.

You can use the back quote notation anywhere an identifier or package name is legal
in RL Language. To use the XML variant of identifiers in St r i ng arguments to
assertXPath, back quotes are not needed. Example 2—4 and Example 2-5 are
equivalent.

Example 2-3 Sample Mapping for XML Identifiers Using Back Quotes

“http://wwv. myconpany. conf po. xsd™ -> com myconpany. po
‘my-attribute’ -> nyAttribute
“ltens/item -> Itens$ltenType

Example 2-4 Using an XML Identifier in a String with assertXPath

inport "http://ww. nycompany. conl po. xsd’ . *;

fact class "purchaseOrder” supports xpath;

fact class "Itens/item supports xpath;

assert XPat h("http://ww. myconpany. con po. xsd", root,
".Iliten]ship-date > 20-jul -2004]");

rule r {
if (fact “a-global -elenent-nane (“ny-attribute’: 0)) {

Rule Language Reference 2-7

|dentifiers

printIn("my-attribute is zero");

}
}

Example 2-5 Using Java ldentifiers with assertXPath

i mport com nyconpany. po. *;
fact class PurchaseOrder supports xpath;
fact class Itens$ltenType supports xpath;
assert XPat h(" com myconpany. po",
root,
"./liten]shipDate > 20-jul -2004]");
rule r {
if (fact Ad obal El enent Name (nyAttribute: 0)) {
printin("ny-attribute is zero");
}
}

2-8 Oracle Business Rules Language Reference

Literals

Literals

Table 2-3 summarizes the RL Language literals. The literals are the same as Java
literals.

Table 2-3 RL Language Literals

A literal such as Can be assigned to variables of these types

An integer in range 0..127 or a char with byte, char,short,int,| ong, fl oat,doubl e
UCS2 encoding in range 0...127

An integer in range 0..65535 or a char char,int,long,fl oat,doubl e

An integer in range -128..127 byte,short,int,l ong,fl oat,doubl e
An integer in range -32768..32767 short,int,long,fl oat,doubl e

An integer int,long,float,double

An integer with L suffix | ong, fl oat,doubl e

A floating point constant doubl e

A floating point constant with F suffix f1 oat,doubl e

A String enclosed in "" String, Mj ect

Rule Language Reference 2-9

Definitions

Definitions

Format

Usage Notes

Example

When a definition within a ruleset is executed, it is checked for correctness and then
saved for use later in the rule session.

definition ::= variable | rule | rl-class-definition | function

name = identifier
gname = [ruleset-or-packagename. Jname

ruleset-or-packagename ::= gname

Every definition has a unique name within its containing ruleset, and thus a unique
qualified name, gname, within the rule session.

Variables defined at the ruleset level are global. Global variables are visible to all
expressions contained in the ruleset using the name of the variable and visible to
expressions in other rulesets using the variable gname. Functions and public classes
may also be referenced from other rulesets using the respective gname.

Java classes and their methods and properties also have gnames.

The gname of the class definition in Example 2-6 is hel | 0. ent er Room

Example 2-6 Class Definition Within a Named Ruleset

rul eset hello {
class enterRoom{ String who; }
rule sayHell o {
if (fact enterRoom {
printin("Hello " + enterRoom who);
}

}
assert (new ent er Roon{who: "Bob"));

run("hello");

}

2-10 Oracle Business Rules Language Reference

Definitions

Variable Definitions

Format

Usage Notes

Global Variables

Examples

Variables are declared as in Java, but initialization is always required.

variable ::= [final] (numeric name = numeric-expression
I boolean name = boolean-expression
I type [] name = array-expression | null

I object-type name = object-expression | null)

The type of the array initialized with the array-expression must be the same as the
type specified for the array elements.

A variable can have a primitive type, a Java class name, or an RL Language class
name, and may be an array of elements of the same type.

The type of the object-expression must be the same as the object-type of the variable
being declared. A class instance or array may be initialized to null.

Variables may be local or global in scope. The initialization expression is required.
Local variables may not be final.

Variables immediately enclosed in a ruleset, that is, in a definition, are global to a rule
session in scope. The initialization expression for a final global variable is executed
when the global variable is defined.

The initialization expression for a non-final global variable is executed both:

= When the global variable is defined.

= Each time the r eset function is called.

Global variables declared as final may not be modified after they are initialized.

Global variables referenced in a rule condition (fact-set-condition) must be final.

Example 2-7 shows that the reset function performs initialization for the non-final
global variable i . Thus, this example prints 0, not 1.

Example 2-7 Non-Final Global Variable Initialization After Reset Function
RL>int i =0;

RL> i ++;

RL> reset();

RL> printin(i);

Be careful when initializing global variables with functions that have side effects. If
you do not want the side effects repeated when calling reset, you should declare the

Rule Language Reference 2-11

Variable Definitions

variable f i nal . For example, Example 2-8 prints "once" twice and Example 2-9 prints
"once" once.

Example 2-8 Initializing a Global Variable with Side Effects with Reset

RL> clear;
RL> function once() returns int
{
println("once");
return 1,
}
RL> int i = once();
once
RL> reset();
once
RL>

Example 2-9 Initializing a Final Global Variable to Avoid Side Effects with Reset

RL> cl ear;
RL> function once() returns int
{
println("once");
return 1;
}
RL> final int i = once();
once
RL> reset();
RL>

2-12 Oracle Business Rules Language Reference

Definitions

Rule Definitions

Format

Usage Notes

The Oracle Rules Engine matches facts against the fact-set-conditions of all rules in the
rule session to build the agenda of rules to execute. A fact set row is a combination of
facts that makes the conditions of a rule true. An activation is a fact set row paired
with a reference to the action-block of the rule. The agenda is the list of all activations
in the rules session. The Oracle Rules Engine matches facts and rules when the state of
working memory changes, typically when a fact is asserted or retracted.

The run, runUntilHalt, and step functions execute activations. Activations are
removed from the agenda after they are executed, or if the facts referenced in their fact
set row are modified or retracted such that they no longer match the rule's condition.

Activations are executed in order of the ruleset stack. You can manage the ruleset stack
with the getRulesetStack, clearRulesetStack, pushRuleset, and popRuleset functions.

In order for a rule to fire, three things must occur:

1. An activation of that rule must be on the agenda.

2. The containing ruleset must be at the top of the ruleset stack.
3. You must invoke run, runUntilHalt, or step.

The fact set produced in a fact-set-condition is available to the rule actions. For each
row in the fact set, the action-block is activated as follows:

= The rule’s action-block is scheduled for execution at the specified rule priority.

References from the action-block to the matched facts are bound to the current
TOW.

If a matched fact is retracted before the action-block is executed, the dependent
activations are destroyed (removed from the agenda).

rule := rule rule-name { property* fact-set-condition action-block }
rule-name ‘= name

property := priority | autofocus | logical

priority = priority = numeric-expression

autofocus ::= autofocus = boolean-literal

logical := logical = (boolean-literal | positive-integer-literal)

Where:

positive-integer-literal is: an integer literal that is > 0

The priority property specifies the priority for a rule. Within a set of activations of
rules from the same ruleset, activations are executed in priority order (see "Ordering
Rule Firing" on page 1-9). When rules have different priorities, the rules with a higher
priority are activated before those with a lower priority. The default priority is 0.
Within a set of activations of rules of the same priority, the most recently added
activations are executed first, but this behavior can be changed (see the getStrategy
and setStrategy functions).

Rule Language Reference 2-13

Rule Definitions

A rule with the autofocus property equal to t r ue automatically pushes its containing
ruleset onto the ruleset stack whenever it is activated.

A rule with the logical property makes all facts asserted by the rule's action block
dependent on some or all facts matched by the rule's condition. An integer value of n
for the logical property makes the dependency on the first n top-level &&ed fact set
expressions in the rule's condition. A boolean value of t r ue for the logical property
makes the dependency on the fact set expression of the condition. Anytime a fact
referenced in a row of the fact set changes such that the rule's logical conditions no
longer apply, the facts asserted by the activation associated with that fact set row are
automatically retracted.

Examples

Example 2-10 shows a rule with the inference, Socrates is mortal, which depends on
the fact, Socrates is a man.

Example 2-10 Defining and Using Rule allMenAreMortal

RL> clear;
RL> class Man {String nane;}
RL> class Mrtal {String nane;}
RL> Mortal lastMrtal = null;
RL> rule all MenAreMortal {

| ogi cal = true;

if (fact Man)

{

assert(lastMrtal = new Mrtal (name: Man.nanme));

}

}

RL> wat chAl I ();

RL> Man socrates = new Man(name: "Socrates");
RL> assert(socrates);

==> f-1 main. Man (name : "Socrates")

==> Activation: main.allMnAreMrtal : f-1
RL> run();

Fire 1 main.all MenAreMortal f-1

==> f-2 main. Mrtal (name : "Socrates")
<== Focus main, Ruleset stack: {}

RL> retract(socrates);

<== f-1 main.Man (name : "Socrates")

<== f-2 main.Mrtal (name : "Socrates")
RL> showFacts();

f-0 initial-fact()

Example 2-11 shows that it is possible for the same fact to be asserted by more than
one rule, or to be asserted by a top-level ruleset action or function. Such a fact will not
be automatically retracted unless all asserters have logical clauses that call for
automatic retraction. A fact that is asserted by a top level action or function will never
be automatically retracted.

Note that the fact that Socrates is mortal is not retracted, because it was asserted by a
top level action that is not dependent on the fact that Socrates is a man.

Example 2-11 Asserting Facts Unconditionally

RL> assert(socrates);
==> f-3 main. Man(name : "Socrates")
==> Activation: nain.allMnAreMrtal : f-3

2-14 Oracle Business Rules Language Reference

Definitions

RL> run();

Fire 1 main.allMenAreMortal f-3

==> f-4 main.Mrtal (name : "Socrates")
<== Focus main, Ruleset stack: {}

RL> assert(lastMrtal);

<=> f-4 main.Mrtal (name : "Socrates")
RL> retract(socrates);

<== f-3 main. Man(nane: "Socrates")

RL> showFact s();

f-0 initial-fact()

f-2 min. Mrtal (nane: "Socrates")

Rule Language Reference 2-15

Class Definitions

Class Definitions

Format

Usage Notes

Examples

All referenced classes must be defined with an RL Language class definition or must
be on the Java classpath (Java classes must be imported).

Both RL Language classes and Java classes can support xpath using the supports
keyword, with a supplied xpath.

rl-class-definition ::= [public] [final] class name [extends] [supports] { type-property* }

type-property = [public] type name [= expression] ;
extends = extends gname extended-class-name

extended-class-name ::= gname

The type of the optional initialization expression must be the same as the type of the
property or implicitly convertible to that type.

A public class is visible from all rulesets. A non-public class is visible only in the
containing ruleset.

A final class cannot be extended.
The extended class must be a defined RL Language class not an imported Java class.

Each property may have an optional initializer. The initializer is evaluated when the
class is instantiated by new. If an initial value is also passed to new, the value passed to
new overwrites the value computed by the initializer in the class definition.

A public property is visible from all rulesets. A non-public property is visible only
within its containing ruleset.

In RL Language, the type of an property may be the name of the containing class
definition (see Example 2-12). RL Language, unlike Java, does not support forward
references to class definitions (see Example 2-13).

Example 2-12 Class Definition with Type of Property with Name of Containing Class

class Q {
Q0 next;

}

Example 2-13 Class Definitions with Forward References are Not Allowed

class Cl {

C2 c¢2; |/ causes an UndefinedException
}
class C {

Cl cl;

}

2-16 Oracle Business Rules Language Reference

Definitions

xpath Support

Format

Usage Notes

Both RL Language classes and Java classes support xpath.
An xml identifier does not need to be surrounded by back quotes within an xpath.

The built-in assertXPath function supports a simple xpath-like syntax to assert a tree of
objects as facts. The nodes in the tree are objects from classes in the same package or
ruleset that support xpath. The links between parent and child nodes are instances of
the XLi nk class. All of the properties in a class that supports xpath may be used in the
xpath expression.

supports ::= supports xpath

xpath ::= first-step next-step*

first-step == (. I/*I[/I] (identifier | *)) predicate*
predicate ::= [identifier xrelop literal]
next-step ::= (/ | /') (identifier | *) predicate*
xrelop:=eqlltigtilelgelnel==1< > I<=l>=1!=

literal ::= integer-literal | decimal-literal | double-literal | string-literal | true | false | dateTime-literal
| date-literal | time-literal

integer-literal ::= [-] d+
d:=0111213141516171819

decimal-literal ::= [-] (. d+ | d+.d")

double-literal ::= [-] (. d+ | d+[.d*]) (e |E)[+]-]d+
string-literal ::= " char* " | ' char*'

dateTime-literal ::= local-date T time-literal

date-literal ::= local-date [time-zone]
time-zone :=Z 1 (+1-)dd:dd

local-date :=dddd-dd-dd

time-literal ::= dd:dd:dd[. d+][time-zone]

RL Language xpath support was designed to work with classes that conform to the
Java XML Binding (JAXB) 1.0 standard. All JAXB elements from the given root to the
elements selected by the xpath, inclusive, are asserted. Additional XLink facts are
asserted to aid in writing rules about the parent-child relationships among the asserted
elements.

If a JAXB element is retracted or re-asserted, using assert, then all of its children, and
XLinks, are retracted. Instead of re-asserting, use assertXPath again.

Note that RL Language Xpath is not a proper subset of W3C Xpath 2.0. Note the
following differences:

= Thelt and <, gt and >, are synonymous in RL Language but different in W3C.

« Date literals must use xs: dat e() and other constructors in W3C.

Rule Language Reference 2-17

Class Definitions

= Constructors are not supported in RL Language, and literals, other than string
literals, must not be quoted in RL Language.

Examples

Table 2—4 shows the xpath selection options for use with the built-in assertXPath
function. In the descriptions, select means that the element is asserted as a fact, and the
selected property of the XLink whose element property refers to the asserted element
is t r ue. The ancestors of a selected element, up to and including the root element, are
always asserted, but not necessarily selected.

Table 2-4 xpath Selection Strings

xpath Select String Description of Selection

/7* Select all elements including the root

JI* Select all but the root

. Select only the root

/ /foo Select all objects that are the value of a property named foo.
Jx==11/y Select children or attributes of root named y only if the root has a

child element or attribute named x and equal to 1

Example 2-14 instantiates an RL Language class called Person to build a family tree, as

follows:
First Generation Second Generation Third Generation
| da
Mary
Fred
John
Rachel
Sally
Evan

Example 2-14 uses the assertXPath function twice, with two xpaths:

[I ki ds[mal e==tr ue]
[I ki ds[mal e==f al se]

Example 2-14 defines two rules:
= sibling:prints all pairs of siblings.
= brotherSi st er: prints all pairs of brothers and all pairs of sisters.

Example 2-15 shows the output from running Example 2-14.

Example 2-14 Sample Family Tree Rule Using supports xpath

inport java.util.*;
rul eset xp {
public class Person supports xpath {
public String nane;
public bool ean nal e;
public List kids;
}

2-18 Oracle Business Rules Language Reference

Definitions

/] Build the Fanily Tree
Person p = new Person(nane: "Fred", male: true);
List k = new ArrayList();
k. add(p);
p = new Person(nane: "John", nale: true);
k. add(p);
p = new Person(nane: "Mary", male: false, kids: k);
Person gramma = new Person(name: "lda", nale: false, kids: new ArrayList());
granma. ki ds. add(p);
p = new Person(nane: "Sally", male: false);
k = new ArrayList();
k. add(p);
p = new Person(nane: "Evan", male: true);
k. add(p);
p = new Person(nane: "Rachel", male: false, kids: k);
gramma. ki ds. add(p);
Il test for siblings.
Il Note the test id(pl) < id(p2) halves the Cartesian product pl X p2.
rule sibling {
if (fact Person pl && fact Person p2 && id(pl) < id(p2) &
exi sts(fact XLink(elenent: pl) x &&
fact XLink(element: p2, parent: x.parent))) {
printin(pl.nane + " is sibling of " + p2.nane);
}
}

Il test for brothers and sisters, given the following 2 assertXPath() calls
rul e brotherSister {
if (fact Person pl && fact Person p2 && id(pl) < id(p2) &&
exists(fact XLink(element: pl, selected: true) x &&
fact XLink(element: p2, selected: true,
parent: Xx.parent) y &&
x. samePath(y))) {
println(pl.name + " and " + p2.name + " are " +
(pl.male ? "brothers" : "sisters"));
}
}

assert XPat h("xp", gramma, "//Kkids[nal e==true]");
assert XPat h("xp", gramma, "//kids[nale==false]");
run(*xp”);

Example 2-15 Output from Run of Family Tree Example

Mary and Rachel are sisters
Evan is sibling of Sally
Fred and John are brothers
Fred is sibling of John
Mary is sibling of Rachel

Example 2-16 shows that when you retract an element that was asserted with
assert XPat h, all its descendents are retracted as well.

The result is:

f-0 initial-fact()

For a total of 1 fact.

Rule Language Reference 2-19

Class Definitions

Example 2-16 Retract the Family Tree

retract (xp. gramm);
showFact s();

Example 2-17 prints all pairs of ancestors. First, the family tree is asserted.
Example 2-18 shows the output of a run of the code from Example 2-17.

Example 2-17 Print Ancestor Pairs with Class Ancestor

assert XPat h("xp", xp.gramma, "//*");
class Ancestor { Object element; Cbject ancestor; }
rule parents {
if (fact XLink x) {
assert (new Ancestor (el enent: x.elenent, ancestor: x.parent));
}
}

rul e ancestors {
if (fact XLink x && fact Ancestor(ancestor: x.element) a) {
assert(new Ancestor (el enent: a.elenent, ancestor: x.parent));
}
}

rule printAncestor {
if (fact xp.Person p & fact xp.Person a &&
fact Ancestor(elenment: p, ancestor: a) {
println(a.name + " is an ancestor of " p.nane);

}

}

run();

Example 2-18 Output from Run of Ancestor Example

Mary is an ancestor of John
Ida is an ancestor of John
Mary is an ancestor of Fred
Ida is an ancestor of Fred
Ida is an ancestor of Mry
Rachel is an ancestor of Evan
Ida is an ancestor of Evan
Rachel is an ancestor of Sally
Ida is an ancestor of Sally
Ida is an ancestor of Rachel

2-20 Oracle Business Rules Language Reference

Definitions

Function Definitions

Format

Usage Notes

Examples

A function is similar to a Java static method.

function = function name parameters [returns type] action-block
parameters n= ([type identifier (, type identifier)*])

The action-block may invoke the function being defined. However, the action-block
may not contain a forward reference to a function that has not already been defined
(see Example 2-19 and Example 2-20).

Functions may be overloaded. For example, the built-in println function is overloaded.

Example 2-19 Valid Function Definition Containing Recursive Reference
function factorial (long x) returns long {

if (x <=1) { return 1; }

else { return x * factorial(x - 1); }

}

Example 2-20 Invalid Function Definition Containing Reference to Undefined Function

function f1() {
f2(); [/ causes an UndefinedException

}
function f2() {

}

Rule Language Reference 2-21

Fact Class Declarations

Fact Class Declarations

Format

Usage Notes

Any Java class can be used as an RL Language fact in a fact context.

A fact context is one of:

= The class of a fact-class declaration.

= The class of a fact-set-pattern.

« The declared class of an argument to the assert function.

= The declared class of an argument to the retract function.

« The declared class of an element argument to the assertXPath function.

If a class or interface B implements or extends class or interface A, and both Aand B
appear in fact contexts, then A must appear before B. Failure to follow this rule will
resultin a Fact Cl assExcepti on.

Fact class definitions are not required when using RL Language classes.

For xpath support, use the supports xpath clause of the RL Language class definition.

fact-class ::= fact class class-name [supports] (fact-class-body | ;)

class-name ::= gname

fact-class-body ::= { hidden-properties | properties }

hidden-properties ::= hide property *; | (hide property ((name,)*name | *) ;)+
properties ::= property *; | (property ((name,)*name|*);)+

The fact-class-body is optional in a fact-class declaration. The default fact-class-body
is:

{ property *; }

Either the property or hi de property keywords can be used in a body, but not
both.

If hi de property is used with a list of property names, then those property names
are hidden and not available for use in RL Language.

If hi de property is used with the wildcard "*", then no properties other than those
exposed by a superclass or superinterface are available for use in RL Language.

If pr oper t y is used with a list of property names, then those properties are exposed
and available for use in RL Language. If property is used with the wildcard *, then all
properties other than those hidden by a superclass or superinterface are available for
use in RL Language.

A Hi ddenPr opert yExcept i on will be thrown if a superclass exposes a property
that its subclass hides or if a subclass exposes a property that its superclass hides.

2-22 Oracle Business Rules Language Reference

Fact Class Declarations

Examples

Suppose a Java class Vehi cl e has subclasses Car and Tr uck. The rule shown in
Example 2-21, mat chVehi cl e, generates a TypeCheckExcept i on wrapping a
Fact Cl assExcept i on because the subclasses are referenced before the superclass.
Wrapping is used instead of subclassing for both Fact Cl assExcept i on and

Mul ti pl el nheritanceExcepti on because in some fact contexts, these exceptions
are not thrown until runtime and then are wrapped by a RLRunt i neExcept i on.

Example 2-21 matchVehicle Rule with Subclasses Referenced Before the Superclass

assert(new Car()); // fact context for Car
assert(new Truck()); // fact context for Truck
rul e matchVehicle {
if (fact Vehicle v) { // fact context for Vehicle - too |ate!
if (v instanceof Car) {
printin("car");
} else {
println("truck");
}

}
} I generates a TypeCheckException wrapping a Factd assException

In Example 2-22, the mat chVehi cl e rule is the first reference to the superclass, so no
exception is thrown.

Example 2-22 matchVehicle Rule with References to Superclass First

clear;
rul e matchVehicle {
if (fact Vehicle v) {
if (v instanceof Car) {
printin("car");
} else {
println("truck");
}
}
}

assert(new Car());
assert(new Truck());
run(); // prints "truck" then "car"

In Example 2-23, a fact class declaration is the first reference to the superclass, so no
exception is thrown.

Example 2-23 matchVehicle Rule with Fact Class Declaration with Reference to
Superclass First

clear;
fact class Vehicle;
assert(new Car());
assert(new Truck());
rul e matchVehicle {
if (fact Vehicle v) {
if (v instanceof Car) {
printin("car");
} else {
println("truck");
}
}

Rule Language Reference 2-23

Fact Class Declarations

}

run(); // prints "truck" then "car

Facts do not support multiple inheritance. Consider the Java classes and interfaces
shown in Example 2-24.

Example 2-24 Java Classes and Sample Multiple Inheritance

package exanpl e;

public class Car {}

public interface Sporty {}

public class SportsCar extends Car inplenments Sporty {}

Example 2-25 entered at the command-line results in a TypeCheckExcept i on that
wraps a Mul ti pl el nheritanceExcepti on. Use the get Cause method on the
TypeCheckExcept i on to retrieve the wrapped

Mul ti pl el nheritanceExcepti on exception.

Example 2-25 Multiplelnheritance Exception for Facts

inport exanple. *;

fact class Sporty;

fact class Car;

fact class SportsCar; // throws TypeCheckException wapping a
Mul tipl el nheritanceException

Example 2-26 illustrates an exception that occurs at runtime when the Oracle Rules
Engine attempts to assert the r x8 object and discovers its true type is Spor t sCar , not
Obj ect . To avoid the Mul ti pl el nheri t anceExcept i on, you must choose
whether to use Sporty or Car in a fact class context. You cannot use both.

Example 2-26 RLRuntimeException wraps MultipleInheritanceException

inport exanpl e.*;

fact class Sporty;

fact class Car;

bj ect rx8 = new SportsCar();

assert(rx8); // throws RLRuntineException wapping a MiltiplelnheritanceException

Example 2-27 FactClassException Possible Cause

oracle.rules.rl.Factd assException: fact class for 'X should be declared earlier
inrule session

Note the fact context rule is:

If X is a subclass or subinterface, of Y, then Y must appear in a fact context before X. A
fact context is a fact-class declaration, a rule fact pattern, or the argument of assert,
assertXPath, or retract.

In some cases you need to consider the fact context. For example, with an XML schema
such as the following:

<schema>
<el ement nane=A type=T/>
<conpl exType name=T>
<sequence>
<el ement name=B type=T/>

2-24 Oracle Business Rules Language Reference

Fact Class Declarations

</ sequence>
</ conpl exType>
</ schema>

JAXB generates:

interface T {
List getB(); // List has Tinpl objects

}

interface A extends T;
class Alnpl inplements A extends Tlnpl;
class Tinpl inplements T;

In an example with the following order of appearance in fact contexts:

1. fact classT

2. assert XPat h Al npl

3. assert Tl npl (performed internally by the asser t XPat h implementation)

The, Al mpl precedes Tl npl in the ordering, yet Al npl extends Tl npl , which would
give the exception. The fix for this fact context is to explicitly issue f act cl ass
Tl npl ; anywhere before Step 2.

Rule Language Reference 2-25

Import Statement

Import Statement

An import statement makes it possible to omit the package name qualification when
referencing Java classes.

Format
import ::= import (Java-class-name | Java-package-name.*);

Java-package-name ::= gname

Usage Notes

Import commands can be placed inside a ruleset, implying that the scope of the import
is that ruleset, but the import actually applies globally. The following code
demonstrates this behavior, if imports were scoped, then the Pri nt Wi t er reference
in r 2 would fail compilation.

class X { }

ruleset rl {
inport java.io.*;
rule A {
if (fact X) {

@PrintWiter pw = null;

}

1

}

ruleset r2 {
rule B {
if (fact X) {
@PrintWiter pw = null;
}
}
}

2-26 Oracle Business Rules Language Reference

Include Statement

Include Statement

Include the ruleset at the location specified by the URL.

Format
include = include URL;

Where:

URL is: A legal Uniform Resource Locator.

Usage Notes
Thefil e: and htt p: schemes are supported.

Example
include file:exanple.rl;

Rule Language Reference 2-27

Using Expressions

Using Expressions

Expressions in RL Language use familiar Java syntax (with minor variations as noted).
For example,

(a+1) *(b-2

Use expressions in a condition or in an action, with some restrictions. Expressions are
strongly typed.

Format
expression ::= boolean-expression

| numeric-expression
| string-expression
| array-expression
| fact-set-expression

| object-expression

2-28 Oracle Business Rules Language Reference

Using Expressions

Boolean Expressions

Format

Usage Notes

Example

Boolean expressions, as in Java, may be either t r ue or f al se.

boolean-expression ::= boolean-assignment

boolean-expression ? boolean-expression : boolean-expression
boolean-expression I boolean-expression
boolean-expression && boolean-expression
numeric-expression equal-op numeric-expression
object-expression equal-op object-expression
boolean-expression equal-op boolean-expression
object-expression instanceof type-name

numeric-expression relop numeric-expression
string-expression relop string-expression

! boolean-expression

boolean-primary-expression

boolean-assignment ::= boolean-target-expression = boolean-expression

equal-op
relop
type-name

::|!:
<l>l<=1>=

gname

For strings, < is Unicode UCS2 code point order.

For objects,! = does not test for inequality of object references, but rather is the
negation of the equals methods.

Thus, the statement:

if (objectl != object2){}

Is equivalent to the statement:

if (! (objectl. equals(object2)){}

RL Language, unlike Java, does not support testing for equality of object references.

Example 2-28 shows use of a boolean expression in RL Language.

Rule Language Reference 2-29

Boolean Expressions

Example 2-28 RL Boolean Expression
if (

(true ? "a" < "b" : false)

& (1 ==01]] 1.0 > 0)

&& "x" instanceof bject)

{
printin("all true");

i

2-30 Oracle Business Rules Language Reference

Using Expressions

Numeric Expressions

Numeric expressions, as in Java, implicitly convert integer operands to floating point if
other operands are floating point. Table 2-1 shows other implicit conversions.

Format
numeric-expression ::= numeric-assignment

| boolean-expression ? numeric-expression : humeric-expression
| numeric-expression(+ | =) numeric-expression

| numeric-expression (* | /| %) numeric-expression

| numeric-expression ** numeric-expression

| (numeric-cast) numeric-expression

| (+ I=) numeric-expression

| (++ | =) numeric-primary-expression

| numeric-primary-expression [++ | ==

numeric-assignment = numeric-target-expression (=|+=1-=1*=1/=1%=) numeric-expression

numeric-cast ::= numeric

Usage Notes

Table 2-5 shows the precedence order, from highest to lowest, for a
numeric-expression.

Table 2-5 Expression Operator Precedence

Symbols Category Description

++ Post-increment or numeric-primary-expression [++ | --]
-- Post-decrement

++ Pre-increment or (++ | --) numeric-primary-expression
-- Pre-decrement

- Unary minus or (+ | -) numeric-expression
+ Unary plus
(type) Type cast (numeric cast) numeric-expression
** Exponentiation numeric-expression ** numeric-expression
* | ,% Multiply or Divide or numeric-expression (* | / | %) numeric-expression
Remainder
+,- Addition or Subtraction numeric-expression(+ | -) numeric-expression
Conditional boolean-expression ? numeric-expression : numeric-expression
= Assignment Operators numeric-target-expression (= | += | -= | *= | /= | %=) numeric-expression

Rule Language Reference 2-31

String Expressions

String Expressions

As in Java, any expression can be converted to a string using the concatenation +
operator. In RL Language, unlike Java, when an array is converted to a string, the
array contents are converted to a string, with array elements separated by commas and
surrounded with curly braces. When an instance of an RL Language class is converted
to a string, the class name appears followed by property value pairs separated by
commas and surrounded with parentheses. This RL Language feature is useful for
logging, tracing, and debugging.

When + operator is applied to an operand thatis a St r i ng, then all operands are
converted to St ri ngs and the operands are concatenated.

Format
string-expression ::= string-assignment
| boolean-expression ? string-expression : string-expression
| string-expression + expression
| expression + string-expression
| string-primary-expression
|
string-assignment ::= string-target-expression (=1+=) string-expression
Example

Example 2-29 shows use of a string expression in RL Language. The example prints "1
2.0 true {1,2}"

Example 2-29 RL String Expression

int i =1;

double f = 2.0;

bool ean b = true;

int[] v =newint[]{i, 2};

println(i +" " +f +" " +b+"" +v);

2-32 Oracle Business Rules Language Reference

Using Expressions

Array Expressions

Format

Usage Notes

RL Language arrays behave just like Java arrays, but are limited to one dimension. The
base type of an array is the type of the members of the array. All members must be of
the same type. An array element may contain an array but only if the containing array
is of type Qbj ect [].

Note: RL Language does not directly support multi-dimensional
arrays.

array-expression ::= array-assignment
| boolean-expression ? array-expression : array-expression

| (array-cast) (array-expression | object-expression)
| array-primary-expression
array-assignment ::= array-target-expression = array-expression

array-cast ::= type

The type of an array-cast must be an array type.

Rule Language Reference 2-33

Fact Set Expressions

Fact Set Expressions

Format

Usage Notes

2-34 Oracle Busin

A fact-set-expression matches, filters, and returns facts from working memory. A
fact-set-expression is legal only in a rule fact-set-condition. The i f keyword indicates a
fact-set-condition; however, a fact-set-condition is different from an if action. A rule’s
fact-set-condition iterates through all the rows in a fact set that match the
fact-set-condition. The if action tests a boolean expression.

fact-set-condition ::= if fact-set-expression
fact-set-expression ;= fact-set-expression Il fact-set-expression

| fact-set-expression && fact-set-expression
| fact-set-expression && boolean-expression
| ! fact-set-expression

| exists fact-set-expression

| fact-set-pattern

| (fact-set-expression)

fact-set-pattern ::= fact fsp-class [(property-pattern (, property-pattern)*) |

[var] local-object-variable

fsp-class ::= gname

local-object-variable ::= identifier

property-pattern ::= property-name : field-pattern
field-pattern ::= var local-property-variable | constraint

local-property-variable ::= identifier

simple-expression ::= string literal
| object-target-expression

| numeric literal
| numeric-target-expression
| boolean-literal

| boolean-target-expression

constraint ::= simple-expression
property-name ::= name

A fact-set-expression can limit the facts it returns using either a simple-expression as a
constraint in a fact-set-pattern or using a supported operator with the
fact-set-expression.

ess Rules Language Reference

Using Expressions

A fact-set-expression may not contain any of the following:
» assert

. new

= References to non-final global variables.

Operator precedence is as in Java. Use parentheses to force desired precedence. For
example,

fact person var p & (p.age < 21 || p.age > 65)

Without the parentheses, the p in p. age is undefined (see Table 2-5 for more details
on operator precedence).

A local-object-variable or local-property-variable is in scope for all expressions
following the pattern that are following the pattern and connected with the &&
operator. If the pattern is not contained in an exi sts,| | ,or! expression, the variable
is also in scope in the rule's action-block. The &&'ed expressions may filter the returned
facts, so that only the facts surviving the filter are returned.

Fact Set Pattern - Fetch From Working Memory

Join Operator

Filter Operator

Union Operator

The most primitive fact-set-expression is the fact-set-pattern that returns some or all
facts of the given class that have been asserted into working memory. A
fact-set-pattern searches working memory for facts of the given class and with the
optional constraint on the property values. The returned fact set contains a row for
each matching fact. A local row variable can be defined to refer to each row, or local
field variables can be defined to refer to fields within a row. If no local row variable is
supplied, the name part of the class qname can be used to refer to each row (see
Example 2-33).

The && operator defines the cross product or join of two fact-set-expression operands.
The left-hand-side of a fact-set-expression && operator must be a fact set. The
right-hand-side of a join operator is another fact-set-expression. The result of applying
the && operator to two fact sets is the joined fact set.

The && operator defines a filter operator that rejects facts in its left-hand-side
fact-set-expression that do not match the right-hand-side boolean-expression. The
left-hand-side of filter must be a fact-set-expression. The right-hand-side of a filter is a
boolean-expression.

A filter right-hand-side may include references to variables defined, using the var
keyword, in the left-hand-side.

The | | operator defines the union of two fact-set-expression operands. When the| |
operator is applied to fact-set-expressions, the following is true:

= The expression’s var s cannot be referenced outside the containing expression.

= The| | returns the concatenation of its input fact sets, but the contents of the
produced fact set are not accessible. Thus, | | is typically usedina! orexi sts
expression. Rather than a top-level | | in a condition, it is usually better to use two
or more rules with top-level & operators so that var s defined in the condition can
be referenced in the action-block.

Rule Language Reference 2-35

Fact Set Expressions

Note: In the following construction:

if (fact X || fact W {}

If both an X and a Ware both asserted, this rule fires twice, once for
each fact.

Empty Operator
The ! operator tests if the fact-set-expression is empty. When the ! is applied to the
fact-set-expression, the following is true:

= The expression’s var s cannot be referenced outside the containing ! expression.

« The! operator returns a single row if the fact-set-expression is empty, else the !
operator returns an empty fact set.

Exists (Not Empty) Operator

The exi st s operator tests if the fact-set-expression is not empty.
When the exi st s operator is applied to the fact-set-expression, the following is true:

= The expression’s var s cannot be referenced outside the containing exi st s
expression.

= Theexi st s returns a single row if the expression is not empty, else exi st s
returns an empty fact set.

Var Keyword

Note that when you use var , the fact is only visible using the var defined variable
(and not using the original name). Thus, the following example works, assuming
action. ki nd is defined:

if (fact action) {
println(action. kind);

}

However, for the following example, after var a is defined, the acti on. ki nd
reference produces a syntax error because you need to use a. ki nd after the var a
definition.

if (fact action var a) {
println(action.kind);

}

Examples

Example 2-30 shows the action is placed on the agenda for all Count er facts with a
value of 1.

Example 2-30 Fact Set Express for Counter.value

class Counter { int id; int value; }
rule exla {
if (fact Counter ¢ && c.value == 1)
{ printIn("counter id" + c.id +" is 1"); }

}

2-36 Oracle Business Rules Language Reference

Using Expressions

Example 2-31 shows an equivalent way to express the rule from Example 2-30, using a
constraint.

Example 2-31 Using a Fact Set Constraint

rule exlb {
if (fact Counter(value: 1) c)
{ printIn("counter id" + c.id +" is 1"); }
}
assert(new Counter(id: 99, value: 1));
run(); // prints twice, once for each rule

Example 2-32 shows an illegal use of a fact set, because ¢ is used before it is defined.

Example 2-32 lllegal Use of Fact Set

rule ex2 {
if (c.value == 1 && fact Counter c)
{ printIn("counter id" + c.id +" is 1"); }

}

Example 2-33 shows an action is placed on the agenda for all At t Fact s with the
property a2==0 and without a matching, equal first elements, Counter.

Example 2-33 Using a Fact Set with &&Operator for Counter Fact

class AttFact {int al; int a2;}
rule ex3 {
if (fact AttFact(a2: 0) && ! fact Counter(id: AttFact.al))
{ printin(AttFact.al); }
}
assert(new AttFact()); // will match because al=a2=0
assert(new AttFact(al: 1, a2: 0)); // will not match
run(); // rule fires once

Example 2-34 shows the condition, i f (fact Ca a & fact Cb(v: a.v) b) is
interpreted as follows:

« Thefact Ca areturnsa factsetcontaininga(v: 1), a(v: 2), a(v: 3)

= The && operator returns a fact set containing the two rows { a(v: 1), b(v:
1)}, {a(v: 2),b(v: 2)}

Example 2-34 Using a Fact Set with && Operator

class Ca {int v;}

assert(new Ca(v: 1));
assert(new Ca(v: 2));
assert(new Ca(v: 3));
class Cb {int v;}

assert(new Cb(v: 0));
assert(new Cb(v: 1));
assert(new Cb(v: 2));

rule r {
if (fact Ca a & fact Cbh(v: a.v) b) {
printin("row " +a+" " +h);
}
}

run(); // prints 2 rows

Rule Language Reference 2-37

Fact Set Expressions

2-38 Oracle Business Rules Language Reference

Using Expressions

Object Expressions

The only expression operators for objects are assignment and cast.

Format

object-expression ;== object-assignment | (ob-cast) object-expression |
boolean-expression ? object-expression : object-expression

object-assignment ::= object-target-expression = object-primary-expression

ob-cast ::= object-type

Rule Language Reference 2-39

Primary expressions

Primary expressions

Primary expressions include assignment targets such as variables, properties, array
elements, class members and other tightly binding expression syntax such as literals,
method and function calls, and object and fact construction. The syntax is very similar
to Java except where noted.

Format
primary-expression ::= array-primary-expression
I string-primary-expression
I numeric-primary-expression
I boolean-primary-expression

I object-primary-expression

array-primary-expression ::=

array-constructor

| function-call returning array

I method-call* returning 1-dim Java array
I (array-expression)

| array-target-expression

array-constructor ::= new (
simple-type [numeric-expression integer]

I numeric []{ numeric-expression (, numeric-expression)* } numeric expression must be
implicitly convertible to base

I boolean []{ boolean-expression (, boolean-expression)* }
I object-type [1{ object-expression (, object-expression)*}

)

array-target-expression ::=

gname variable of type array
I member of type array

I array-primary-expression base type is Object [numeric-expression int]

string-primary-expression ::=

string literal (see "Literals" on page 2-9)

I object-primary-expression object is java.lang.String

string-target-expression ::= object-target-expression object is java.lang.String

2-40 Oracle Business Rules Language Reference

Using Expressions

numeric-primary-expression ::=

numeric literal
I function-call returning numeric
I method-call returning numeric
I array-primary-expression . length
I (numeric-expression)

I numeric-target-expression

numeric-target-expression ::=

gname variable of type numeric
I member of type numeric

I array-primary-expression base type is numeric [numeric-expression]

boolean-primary-expression ::=

boolean-literal
I function-call returning boolean
I method-call returning boolean
I (boolean-expression)

I boolean-target-expression

boolean-literal ::= true | false

boolean-target-expression ::=

gname variable of type boolean
I member of type boolean

I array-primary-expression base type is boolean [numeric-expression int]

object-primary-expression ::=

new class-definition-name ([expression (, expression)* | argument list)
I new class-definition-name ([property-pattern (, property-pattern)*] property-value pairs)
I function-call returning Java object
I method-call returning Java object

I object-target-expression

object-target-expression ::=

gname variable of type object

Rule Language Reference 2-41

Primary expressions

Examples

new

Example

| member of type Java object

| array-primary-expression base type is object [numeric-expression int]

function-call ::= qname function name ([expression (, expression)*] argument list)

method-call ::= object-primary-expression . identifier method name
([expression (, expression)*] argument list)

member ::= object-primary-expression . identifier member name

Example 2-35 shows the RL Language literal syntax (which is the same as Java).

Example 2-35 Use of Literals
String s = "This is a string."
int i = 23;

double f = 3.14;

bool ean b = fal se;

Methods and functions can be overloaded. However, unlike Java, RL Language uses a
first fit algorithm to match an actual argument list to the overloaded functions.

Example 2-36 shows an example of example of overloading

Example 2-36 Overloading

function f(int i);
function f(CQbject o);
function f(String s); // can never be called

f(1); [l calls first f
f("a"); /I calls second f, because "a" is an Object

RL Language classes do not have user-defined constructors. The default constructor
initializes properties to their default values. The RL Language new operator permits
specifying some property values (this works for Java bean properties, too).

A Java bean property may have a getter but no setter. Such a property may not be
modified.

Example 2-37 Initialization Using the New Operator

class C{ int i =1; int j =2; }
Cc =new);
printin(c); // c.i == 1 and c.j ==

c =new C(i: 3);

2-42 Oracle Business Rules Language Reference

Using Expressions

printin(c); // c.i == 3 and c.j ==
c=newCi: 0, j: 0);
printin(c); /I c.i ==c¢.j ==

Rule Language Reference 2-43

Actions and Action Blocks

Actions and Action Blocks

RL Language, unlike Java, requires action blocks and does not allow a single
semi-colon terminated action.

Format
action ::= action-block |if | while |for|try | synchronized | return | throw

| assign | incr-decr-expression | primary-action

action-block ::= { (variable | action)* }

Usage Notes

An action block is any number of local variable declarations and actions. The variables
are visible to subsequent variable initialization expressions and actions within the
same action block.

In RL Language, unlike in Java, all local variables must be initialized when they are
declared. Local variables may not be final.

To exit, you can invoke the System.exit(int) method from within an action.
Example

Example 2-38 Action Block Sample
RL> {

int i =2

while (i-- >0) { println("bye"); }
}
bye
bye
RL>

2-44 Oracle Business Rules Language Reference

Actions and Action Blocks

If Else Action Block

Format

Examples

Using the if else action, if the test is t r ue, execute the first action block, and if the fest

is f al se, execute the optional else part, which may be another if action or an action
block.

RL Language, unlike Java, requires action blocks and does not allow a single
semi-colon terminated action.

if if-test action-block [else if | action-block]

if =
if-test ::= boolean-expression

Example 2-39 shows an RL Language if else action block. Example 2—40 shows that an
action block is required.

Example 2-39 Sample If Else Action
String s = "b";
if (s=="a") { printin("no"); } else

if (s=="b") { println("yes");}
el se { printin("no"); }

Example 2-40 lllegal If Action Without an Action Block
if (s=="a") println("no");

Rule Language Reference 2-45

While Action Block

While Action Block

While the test is t r ue, execute the action block. A return, throw, or halt may exit the
action block.

Format
while ::= while while-test action-block

while-test ::= boolean-expression

Usage Notes

RL Language, unlike Java, requires action blocks and does not allow single semi-colon
terminated action.

Examples
Example 2—41 prints "bye" twice.

Example 2-41 Sample While Action
int i =2
while (i-- >0) {
println("bye");
}

Example 2-42 lllegal While Action Without an Action Block
while (i-- > 0) println("no");

2-46 Oracle Business Rules Language Reference

Actions and Action Blocks

For Action Block

Format

Usage Notes

Example

RL Language, like Java, has a for loop. Using the for action block, the for-init portion
executes, then while the boolean-expression is t r ue, first the specified action block is
executed then the for-update executes. A return, throw, or halt may exit the action
block.

for = for (for-init ; boolean-expression ; for-update) action-block
for-init = variable | for-update
for-update ;= incr-decr-expression | assign | primary-expression

RL Language does not allow a comma separated list of expressions in the f or i ni t
or for update clauses (Java does allow this).
Example 2-43 shows RL Language code that converts ani nt[] toadoubl e[].

Example 2-43 For Action
int[] is =newint[]{1,2,3};

doubl e[] fs =is; // error!

doubl e[] fs = new doubl e[3];

for (int i =0; i <is.length; ++) {
fs[i] =is[i];

println(fs);

Rule Language Reference 2-47

Try Catch Finally Action Block

Try Catch Finally Action Block

Format

Usage Notes

Examples

Execute the first action block. Catch exceptions thrown during executions that match
the Thr owabl e class in a catch clause. For the first match, execute the associated catch
action block. Bind the Thr owabl e class instance to the given identifier and make it
available to the catch action block. Whether or not an exception is thrown in the try
action block, execute the finally action block, if given.

Uncaught exceptions are printed as error messages when using the RL Language
command-line and are thrown as RLExcept i ons when using one of the RuleSession's
execut eRul eset orcal | Functi on methods. Thetry,catch,andfi nal | y in RL
Language is like Java both in syntax and in semantics. There must be at least one
catchorfinally clause.

try ::= try action-block
(catch (class-implementing-throwable identifier) action-block)*
[finally action-block]

class-implementing-throwable ::= gname

In order to fully understand how to catch exceptions in RL Language, one must
understand how the stack frames are nested during rule execution. Rules do not call
other rules the way that functions or methods may call functions or methods.
Therefore, you cannot use a catch block in one rule's action block to catch exceptions in
another rule's action block. Exceptions thrown during rule firing must either be
handled by the firing rule's action block, or must be handled by a caller to the run,
runUntilHalt, or step functions that caused the rule to fire.

Example 2-44 shows the try catch and finally actions. The output from running this
example is:

exception in invoked Java met hod
this is really bad!
but at least it's over!

Example 2-44 Try Catch and Finally Action Blocks

try {
throw new Exception("this is really bad!");

} catch (Exception e) {
println(e.getMessage());
println(e.getCause().get Message());

} finally {
printIn("but at least it's over!");

}

Note that RL Language treats the explicitly thrown Exception ("this is really
bad! ") as an exception from an invoked Java method, and wraps the Except i onina
JavaExcept i on. The explicitly thrown Except i on is available as the cause of the
JavaExcepti on.

2-48 Oracle Business Rules Language Reference

Actions and Action Blocks

Synchronized Action Block

Format

Example

As in Java, the synchronized action is useful for synchronizing the actions of multiple
threads. The synchronized action block allows you to acquire the specified object's
lock, then execute the action-block, then release the lock.

synchronized ::= synchronized object-primary-expression action-block

Example 2-45 changes the name of a Per son object, adding old names to the
nicknames, and synchronizes so that a concurrent reader of the Java object who is also
synchronizing will see a consistent view of the Per son (See Example 2-14 details on
the Per son bean).

Example 2-45 Synchronized Action

i nport exanple.Person; // this Java bean is defined in exanple J1
function changeNane(Person p, String first, String last) {
synchroni zed(p) {
java.util.Set s = p.getN cknanes();
s.add(p. getFirstNane());
s. add(p. get Last Narre()) ;
p. setFirstName(first);
p. set Last Nane(l ast);
}
assert(p);
}
Person person = new Person("El ner", "Fudd", new String[]{"Wabbit Wwver"});
println(person.ni cknanes. toArray());
changeNane(person, "Bugs", "Bunny");
println(person.ni cknanes. toArray());

Rule Language Reference 2-49

Return Action

Return Action

Format

Usage Notes

The return action returns from the action block of a function or a rule.

A return action in a rule pops the ruleset stack, so that execution continues with the
activations on the agenda that are from the ruleset that is currently at the top of the
ruleset stack.

If rule execution was initiated with either the run or step functions, and a return action
pops the last ruleset from the ruleset stack, then control returns to the caller of the r un
or step function.

If rule execution was initiated with the runUntilHalt function, then a return action will
not pop the last ruleset from the ruleset stack. The last ruleset is popped with
runUntilHalt when there are not any activations left. The Oracle Rules Engine then
waits for mor activations to appear. When they do, it places the last ruleset on the
ruleset stack before resuming ruleset firing.

return ::= return [return-value] ;

return-value ::= expression

If the function has a r et ur ns clause, then the return-value must be specified and it
must be of the type specified by the r et ur ns clause.

A return action in a rule or a f unct i on without a r et ur ns clause must not specify a
return-value.

2-50 Oracle Business Rules Language Reference

Actions and Action Blocks

Throw Action

Throw an exception, which must be a Java object that implements
java.l ang. Thr owabl e. A thrown exception may be caught by a cat ch in a try
action block.

Format
throw ::= throw throwable ;

throwable ::= object-primary-expression

Rule Language Reference 2-51

Assign Action

Assign Action

An assignment in RL Language, as in Java, is an expression that can appear as an

action.
Format
assign ::= assignment-expression ;
assignment-expression ::= boolean-assignment
| numeric-assignment
| string-assignment
| object-assignment
| array-assignment
Example

Example 2-46 shows the use of the RL Language assignment expression. This prints "6
5"

Example 2-46 Assignment Expression

clear;

int i =1,

intj =2

i +=] +=3;
printin(i +" " +j);

2-52 Oracle Business Rules Language Reference

Actions and Action Blocks

Increment or Decrement Expressions

Increment and decrement in RL Language, as in Java, are expressions that can appear

as actions.
Format

incr-decr ::= incr-decr-expression ;

incr-decr-expression ::= (++ | =) numeric-target-expression | numeric-target-expression (++ | =)
Examples

Example 2-47 shows the use of the RL Language decrement action. This example
prints "0".

Example 2-47 Decrement Action
clear;

int i =1;

- :

printin(i);

Rule Language Reference 2-53

Primary Actions

Primary Actions

A primary action is a primary expression such as a function call, assert, or Java method
call executed for its side-effects. For example, the pri nt | n function is often used as a
primary action.

Format
primary-action ::= primary-expression ;

2-54 Oracle Business Rules Language Reference

Built-in Functions

Built-in Functions

This section covers the following RL Language built-in functions:

assert, assertXPath, clearRule, clearRulesetStack, clearWatchRules,
clearWatchActivations, clearWatchFacts, clearWatchFocus, clearWatchCompilations,
clearWatchAll, getRulesetStack, getRuleSession, getStrategy, halt, id, object, println,
popRuleset, pushRuleset, retract, reset, run, runUntilHalt, setRulesetStack, setStrategy,
showActivations, showFacts, step, watchRules, watchActivations, watchFacts,
watchFocus, watchCompilations

Rule Language Reference 2-55

assert

assert

Format

Usage Notes

Examples

Adds a fact to working memory or updates a fact already in working memory based
on the properties of the supplied object obj. If the supplied object obj is a Java instance,
then properties are Java bean properties defined by an associated Beanl nf o class or
by the existence of getter and setter methods. If obj is an RL Language class instance,
then the properties are the fields of the class.

function assert(Object obj);

The fact in working memory is a shadow of the supplied object 0bj, and this shadow
contains a copy, clone, or reference to each property prop. If prop is a primitive type,
then prop is copied to the shadow. If prop implements the Java Cl oneabl e interface,
then a clone, shallow copy, of prop is shadowed. Otherwise, only the reference to prop
is shadowed. The more a shadow can copy its object's properties, the better a rule with
references to several facts can be optimized.

Note that because == and ! = when applied to an Obj ect in RL Language always
invokes the Cbj ect equals method, whether a shadow contains copies, clones, or
references is transparent to the RL Language program.

Assert may affect the agenda. Rules whose conditions now return a fact set because of
a new fact place activations on the agenda. Activations that test for non-existence of
facts, using ! , may be removed from the agenda. Updates to facts may affect the
agenda. Activations whose rule conditions no longer match the changed facts are
removed from the agenda. Rules whose conditions return a fact set because of the
changed facts have activations placed on the agenda.

Assert should be used to update the fact in working memory if any part of the obj’s
state has been updated that could possibly have an effect on a rule condition, unless
the obj is a Java bean that supports registering property change listeners, and all that is
changed is the value of a bean property.

Example 248 prints, "Pavi has highest salary 65000.0" and Example 2-49 prints, "dept
10 has no employees!".

Example 2-48 Using Assert Function in the highestSalary Rule

class Emp { String enane; double salary; }
rul e highestSalary {
if (fact Enp hi && !(fact Enp e && e.salary > hi.salary))
{

}

println(hi.ename + " has highest salary " + hi.salary);

}

Enp el = new Enp(enanme: "Pavi", salary: 55000.00);
assert(el); // put in working menory

Enp e2 = new Enp(ename: "Fred", salary: 60000.00);

assert(e2); /1 put in working nenory
el.sal ary += 10000. 00; /] Pavi is now the highest paid
assert(el); /1 MUST re-assert before allowing rules to fire

run();

2-56 Oracle Business Rules Language Reference

Built-in Functions

Example 2-49 Using Assert Function in the emptyDept Rule
inport java.util.*;
class Dept { int deptno; List enps = new ArrayList(); }
rul e enptyDept {
if (fact Dept d && d.enps.isEmty()) {
printIn("dept " + d.deptno + " has no enpl oyees!");
}
}
Dept d = new Dept (deptno: 10);
d. enps. add(el);

assert(d); /1 put in working menory with 1 enpl oyee
d. enps. remove(0);
assert(d); Il MIUST re-assert hefore allowing rules to fire

run();

See Also
assertXPath, id, object, retract

Rule Language Reference 2-57

assertXPath

assertXPath

Add a tree of facts to working memory using the specified element as the root and an
XML xpath-like expression to define the objects in the tree. The pkg is the Java package
or RL Language ruleset that contains the classes of objects in the tree. All objects in the
tree must be in the same package or ruleset.

In addition to asserting "element” and selected descendants, XLink facts are asserted
that link parent and child objects. The classes of all objects in the tree must use the
supports xpath (supports) clause of the RL class (rl-class-definition) or fact-class
declaration.

Format
function assertXPath(String pkg, Object element, String xpath);

See Also

assert, id, object, retract

2-58 Oracle Business Rules Language Reference

Built-in Functions

clearRule
Clears the named rule from the rule session. Removes all of the rule’s activations from
the agenda.

Format
function clearRule(String name);

See Also

getRuleSession

Rule Language Reference 2-59

clearRulesetStack

clearRulesetStack

Empties the ruleset stack.

Format
function clearRulesetStack();

See Also
getRulesetStack, getStrategy, popRuleset, pushRuleset, run, setStrategy

2-60 Oracle Business Rules Language Reference

Built-in Functions

clearWatchRules, clearWatchActivations, clearWatchFacts, clearWatchFocus,
clearWatchCompilations, clearWatchAll

The clearWatch functions stop printing debug information.

Format
function clearWatchRules();

function clearWatchActivations();
function clearWatchFacts();
function clearWatchFocus();
function clearWatchCompilations();

function clearWatchAll();

See Also

watchRules, watchActivations, watchFacts, watchFocus, watchCompilations

Rule Language Reference 2-61

getRulesetStack

getRulesetStack

Returns the ruleset stack as an array of ruleset names.

Format
function getRulesetStack() returns Stringf];

Usage Notes

Returns: the ruleset stack as an array of ruleset names.

Entry 0, the top of the stack, is the focus ruleset. The focus ruleset is the ruleset whose
activations are fired first by a subsequent run, runUntilHalt, or step function
execution.

See Also
clearRulesetStack, getStrategy, popRuleset, pushRuleset, setRulesetStack, setStrategy

2-62 Oracle Business Rules Language Reference

Built-in Functions

getRuleSession

Returns a Java Rul eSessi on object. An RL Language program could use this
Rul eSessi on to dynamically define new classes, rules, functions, or variables.

Format
function getRuleSession() returns RuleSession;
Example
rule learn {
if (fact f1 && .)
{
Rul eSession rs = get Rul eSession();
rs.executeRuleset("rule newRule { if fact f1 & fact f2 & ...{ ...} }");
}
}
See Also
clearRule

Rule Language Reference 2-63

getStrategy

getStrategy

Returns the current strategy. Table 2—6 shows the possible strategy values.
Format

function getStrategy() returns String;
See Also

clearRulesetStack, getRulesetStack, popRuleset, pushRuleset, setStrategy

2-64 Oracle Business Rules Language Reference

Built-in Functions

halt

The halt function halts execution of the currently firing rule, and returns control to the
run, runUntilHalt, or step function that caused the halted rule to run. The agenda is
left intact, so that a subsequent run, runUntilHalt, or step can be executed to resume
rule firings.

The halt function has no effect if it is invoked outside the context of a run,
runUntilHalt, or step function.

Format
function halt();

See Also

reset, run, runUntilHalt, step

Rule Language Reference 2-65

id
Return the fact id associated with the object obj. If obj is not associated with a fact,
returns -1.

Format
function id(Object obj) returns int;

See Also

assert, object, retract

2-66 Oracle Business Rules Language Reference

Built-in Functions

object
Return the object associated with the given fact id. If there is no such fact id, returns
null.

Format
function object(int factld) returns Object;

See Also

assert, id, retract

Rule Language Reference 2-67

printin

printin

Print the given value to the RuleSession output writer.

Format
function printin(char ¢);

function printin(char{] ca);
function printin(int J);

long ;
float #);

function printin
function printin
function printin(double a);

function printin(boolean b);

(
(
(
(
(
(
(
(

function printin(Object obj);

2-68 Oracle Business Rules Language Reference

Built-in Functions

popRuleset

Format

See Also

If the stack is empty, popRul eset throws RLRunt i meExcepti on. If the stack is not
empty, popRul eset pops the focus off the stack and returns it.

All entries are shifted down one position, and the new focus is the new top of stack,
entry 0.

Entry 0, the top of the stack, is the focus ruleset. The focus ruleset is the ruleset whose
activations are fired first by a subsequent run, runUntilHalt, or step function
execution.

function popRuleset() returns String;

Example 2-50 Using popRuleSet and Throwing RLRuntimeException

cl ear Rul eset Stack();
popRul eset () ; /1 RLRunt i meException

clearRulesetStack, getRulesetStack, getStrategy, pushRuleset, setStrategy

Rule Language Reference 2-69

pushRuleset

pushRuleset

Format

Examples

See Also

Push the given ruleset onto the stack and make it the focus. It is an error to push a
ruleset that is already the focus (RLI | | egal Ar gurment Except i on is thrown for this
error).

Entry 0, the top of the stack, is the focus ruleset. The focus ruleset is the ruleset whose
activations are fired first by a subsequent run, runUntilHalt, or step function
execution.

function pushRuleset(String focus);

Example 2-52 shows the RL Language using the pushRul eset and popRul eset
functions.

Example 2-51 Using pushRuleSet - Throws RLIllegalArgumentException

cl ear Rul eset Stack();
pushRul eset ("mai n"); /1 focus is "main"
pushRul eset (" main"); /1 RLIIIegal Argunment Exception

Example 2-52 Using pushRuleSet - Throws RLIllegalArgumentException

cl ear Rul eset St ack();
pushRul eset ("mai n"); /1 focus is "min"
pushRul eset ("mai n"); /1 RLIIIegal Argument Exception

Example 2-53 Using popRuleSet - Throws RLRuntimeException

cl ear Rul eset Stack();
popRul eset () ; /1 RLRunt i meException

clearRulesetStack, getRulesetStack, getStrategy, popRuleset, setStrategy

2-70 Oracle Business Rules Language Reference

Built-in Functions

retract

Remove the fact associated with the object 0bj from working memory.

Format
function retract(Object obj);

Usage Notes

Retract may affect the agenda. Activations that depend on the retracted fact are
removed from the agenda.

Note, rules that have conditions that test for non-existence of facts (using !) may place
new activations on the agenda.

See Also

assert, id, object

Rule Language Reference 2-71

reset

reset
Clears all facts from working memory, clears all activations from the agenda, and
re-evaluates non-final global variable initialization expressions.

Format
function reset();

See Also

halt, run, runUntilHalt, step

2-72 Oracle Business Rules Language Reference

Built-in Functions

run

Format

Usage Notes

See Also

Fire rule activations on the agenda until:

= A rule action calls halt directly or indirectly. For example, when halt is called by a
function called by a rule action.

= The agenda is empty.

= The ruleset stack is empty.

function run() returns int;

function run(String rulesetName) returns int;

If the argument, rulesetName is supplied, the named ruleset is pushed on the top of the
ruleset stack before firing any rules.

If a null rulesetName is supplied, the ruleset stack is not modified before firing rules.

If no rulesetName is supplied and the default mai n ruleset is not on the ruleset stack,
then the mai n ruleset is placed at the bottom of the ruleset stack before firing any
rules.

Returns: i nt, the number of rules fired.

halt, reset, runUntilHalt, step

Rule Language Reference 2-73

runUntilHalt

runUntilHalt

Format

Usage Notes

See Also

This functions fires rule activations until halt is called. Unlike run and step,
runUntilHalt does not return when the agenda is empty. Also, runUntilHalt does not
pop the bottommost ruleset name from the ruleset stack. Instead, it waits for the
agenda to contain activations.

function runUntilHalt() returns int;

The only way for activations to be added to the agenda while the main RuleSession
thread is busy executing runUntilHalt is for a second thread to either:

1. Modify Java bean facts with Pr oper t yChangeLi st eners.
2. Execute assert or r et ract functions.

Rules must be designed carefully when using runUntilHalt. For example, a rule that
attempts to find a fact with the minimum value of a property will fire when the first
instance of the fact is asserted, and then every time another instance is asserted with a
lower valued property.

halt, reset, run, step

2-74 Oracle Business Rules Language Reference

Built-in Functions

setRulesetStack

Sets the ruleset stack to the given array of ruleset names.

Entry 0, the top of the stack, is the focus ruleset, which is the ruleset whose activations
will be fired first by a subsequent run, runUntilHalt, or step function execution.

Format
function setRulesetStack(String[] rulesetStack

See Also
clearRulesetStack, getRulesetStack, getStrategy, popRuleset, pushRuleset, setStrategy

Rule Language Reference 2-75

setStrategy

setStrategy

Format

See Also

Strategy specifies the order in which activations from the same ruleset and with the
same priority are executed. Table 2—-6 shows the valid strategy values.

Table 2-6 Strategy Values for setStrategy and getStrategy Functions

Strategy Description
queue Activations are fired in order from oldest to newest.
stack Activations are fired in order from newest to oldest.

function setStrategy(String strategy);

clearRulesetStack, getRulesetStack, getStrategy, popRuleset, pushRuleset

2-76 Oracle Business Rules Language Reference

Built-in Functions

showActivations

The show functions print rule session state to the output Writer. State that can be
shown is: Activations all activations on the agenda

Format
function showActivations();

See Also

clearWatchRules, clearWatchActivations, clearWatchFacts, clearWatchFocus,
clearWatchCompilations, clearWatchAll, showFacts, watchRules, watchActivations,
watchFacts, watchFocus, watchCompilations

Rule Language Reference 2-77

showFacts

showFacts
The show functions print rule session state to the output Writer. State that can be
shown is: all facts in working memory.

Format
function showFacts();

See Also

clearWatchRules, clearWatchActivations, clearWatchFacts, clearWatchFocus,
clearWatchCompilations, clearWatchAll, showActivations, watchRules,
watchActivations, watchFacts, watchFocus, watchCompilations

2-78 Oracle Business Rules Language Reference

Built-in Functions

step
Fire rule activations on the agenda until:
= The specified number of rule activations, numRulesToFire have been fired.
= A rule action calls halt directly or indirectly. For example, by a function called by a
rule action.
= The agenda is empty.
= The ruleset stack is empty.
Format

function step(int numRulesToFire) returns int;

function step(int numRulesToFire, String rulesetName) returns int;

Usage Notes

If no ruleset name is supplied and the mai n ruleset is not on the ruleset stack, then the
mai n ruleset is placed at the bottom of the ruleset stack before firing any rules.

If a ruleset named, rulesetName, is supplied, the specified ruleset is pushed on the top
of the ruleset stack before firing any rules. If a null ruleset name is supplied, the ruleset
stack is not modified before firing rules.

Returns the integer number of rules fired.

See Also
halt, reset, run, runUntilHalt

Rule Language Reference 2-79

watchRules, watchActivations, watchFacts, watchFocus, watchCompilations

watchRules, watchActivations, watchFacts, watchFocus, watchCompilations

Format

See Also

The watch functions turn on printing of information about important rule session
events. The information is printed to the output Writer whenever the events occur. Use
a clearWatch function to turn off printing.

Table 2-7 describes the available debugging information.

Table 2-7 Watch Functions Event Descriptions

Debug Watch Rule Session Event Description

watch Rule session event description

Rules Information about rule firings (execution of activations)

Activations Addition or removal of activations from the agenda

Facts Assertion, retraction, or modification of facts in working memory
Focus Pushing or popping of the ruleset stack. The top of the ruleset stack is

called the focus ruleset, and all activations on the agenda from the focus
ruleset will be fired before the focus is popped and the next ruleset on the
stack becomes the focus.

Compilations When a rule's conditions are added to the rete network, information
about how the condition parts are shared with existing rules is printed.

=" indicates sharing. The order that rules are defined can affect sharing
and thus can affect performance.

All Includes information shown with watch Rules, watch Activations, watch
Facts, watch Compilations and watch Focus.

function watchRules();
function watchActivations();
function watchFacts();
function watchFocus();
function watchCompilations();

function watchAll();

clearWatchRules, clearWatchActivations, clearWatchFacts, clearWatchFocus,
clearWatchCompilations, clearWatchAll, showActivations, showFacts

2-80 Oracle Business Rules Language Reference

3

Using the Command-line Interface

This chapter describes the RL command-line that reads rulesets from Syst em i n and
writes output from the functions pri nt | n, wat ch, and, showto Syst em out .

This chapter covers the following topics:
« Starting and Using the Command-Line Interface
« RL Command-Line Options

« RL Command-Line Built-in Commands

3.1 Starting and Using the Command-Line Interface

The following invocation provides a simple command-line interface, with the prompt,
RL>. Example without Java Beans:

java -jar RuleDir/lib/rl.jar -p "RL> "

Example with Java Beans:

java -classpath RuleDir/lib/rl.jar;BeanPath oracle.rules.rl.session. CommandLine -p
"R

Where RuleDir is the top level installation directory and BeanPath is the classpath

component to any supplied Java Bean classes.

To exit the command-line interface, use the special action exi t ; at the command
prompt. The exi t ; action cannot be in an included ruleset. Alternatively, to exit you
can invoke the Syst em exi t (int) method in any action.

The RL command-line interface accumulates input line by line, and interprets the
input when the input stream includes either:

= A complete named ruleset

= One or more complete i mport,include,rul eset,definition,action
commands within an unnamed ruleset.

Note: Theif,elseandtry,catch,andfinally actions require
lookahead to determine where they end. In order to execute an i f
without an el se clause, or atry withouta fi nal | y clause at the RL
command-line, you should add a semi-colon terminator.

This is not necessary if you execute RL using i ncl ude, or using the
RuleSession API.

Using the Command-line Interface 3-1

Starting and Using the Command-Line Interface

Example 3-1 Sample RL Command-Line Input Processing
RL>int i =1;

RL>if (i >0) {printIn("i positive");}

/1 nothing happens - waiting for possible "else"

i positive

RL>

Input must be complete at the end of a line. For example, if an action ends in the
middle of a line, then that action is not interpreted until some following action is
complete at the end of a line.

Example 3-2 Sample Command-Line Input Processing - Waiting for End of Line

RL> println("del ayed"
); println("hello"

); println("world")
del ayed

hel l o

wor | d

RL>

Notes for using command-line input processing;:

1. The command-line segments its input into blocks and then feeds each block to the
interpreter. If you never type a closing brace or semicolon, no error is raised
because the command line waits for input before it does a full parse of the block

2. The command-line interpreter, when used interactively or with the —i option,
collapses the input, for line numbering purposes, into "small" rulesets ending at a
newline. Errors are reported with numbers within the ruleset.

For example, if the input consists of the following:

int i =0, i =1, // thisis a ruleset

i ="i"; [/ this is another rul eset

For this example, command-line reports an error as follows:

Oracle Business Rules RL: type check error
Conver si onExcepti on: cannot convert fromtype 'java.lang.String' to type "int'
at line 1 colum 5 in main

To avoid this behavior, you can explicitly enclose the input in a ruleset. For
example,
ruleset main {

inti =0, 1 =1,

=it

}

Now, the error is on line 3 or, you can include the input file using an include.

3-2 Oracle Business Rules Language Reference

RL Command-Line Built-in Commands

3.2 RL Command-Line Options

Table 3-1 RL Command-Line Options

Flag Description

- Read rulesets from the file named by the next argument, instead of from the
default, System i n.

For example,

-i mylnput.rl

Note: the command-line segments its input into blocks and then feeds each
block to the interpreter. If the file nyl nput . r| does not include a closing
brace or semicolon at the end, then, no error is raised because the command
line waits for additional input before it does a full parse of the block. Thus,
there are cases where an incomplete input file supplied using the —i option

could run and execute the valid part of the code from the file nyl nput . rl,
and exit, while still waiting for command line input.

- Executes the next argument as the first RL command, then start reading
input. This option is useful to include a file of settings and functions for
debugging.

For example,

-c "include file:debugSettings.rl;"

If you do not want to read from the input after executing the command,
include "exit;" at the end of the command.

For example,
-c "include file:script.rl; exit;"
-p Sets the next argument as the prompt string.
For example,
-p "RL> "
-0 Specifies where to write output from pri nt | n, wat ch, and showto the file
named by the next argument, instead of to Syst em out .
For example:

—0 debug. | og

-v Print version information.

3.3 RL Command-Line Built-in Commands

This section lists commands that are implemented by the RL command-line interface
(these commands are not part of RL). Thus, these commands cannot appear in blocks
or be included rulesets.

3.3.1 Clear Command

Discard the current RuleSession object and allocate a new one. The effect is that all
rules, variables, classes, and functions are discarded.

Instead of using cl ear ; to restart a command-line you can also type exi t; and then
reissue the Java command to start another command-line.

Using the Command-line Interface 3-3

RL Command-Line Built-in Commands

3.3.2 Exit Command

Exit the command-line interface. The command-line interface also exits when
end-of-file is reached on its input.

3-4 Oracle Business Rules Language Reference

A

Using a RuleSession

This chapter includes the following sections:

RuleSession Constructor Properties
RuleSession Methods

RL to Java Type Conversion

RL Exceptions

Error Handling

RL Class Reflection

XML Navigation

Obtaining Results from a Rule Enabled Program

Using a RuleSession 4-1

RuleSession Constructor Properties

4.1 RuleSession Constructor Properties

This section shows you the steps for creating a rule enabled application and describes
using a Rul eSessi on object. The package oracle.rules.rl contains the Rul eSessi on
object.

The Rul eSessi on no argument constructor returns a Rul eSessi on with the default
locale, logging, and DMS options set.

Table 4-1 shows the Rul eSessi on constructor properties.

Table 4-1 RuleSession Properties

Property Name

Property Value

oracle.rules.rl.configlLocal e A Locale object for the desired Locale. If not present in the map, the

oracl e. rul es.

oracl e. rul es.

oracl e. rul es.

oracl e. rul es.

rl

rl

rl

rl

default Locale is used.
Default Value: the JVM default Locale.

.configSessi onNane A name to associate with the RuleSession.

Default Value: the default is a generated name that should be
unique.

.configLoggi ng A Boolean value. If this property is present and the valueist r ue,
logging is enabled.

Default Value: f al se

. confi gDVS A Boolean value. If this property is present and the valueist r ue,
DMS is enabled.

Default Value: f al se

. confi gAppName A String with the name of the application or component that is
instantiating this session. This is only used for DMS metrics. Within
OC4J, a component name may be obtained using
MBeanSer ver Fact ory. cr eat eMBeanSer ver (). get Def aul t D
omai n().

Default Value: there is no default value. If this is missing, then that
component is missing from the DMS metric hierarchy.

4.2 RuleSession Methods

The outputWriter property determines where println, watch, and show output goes.

The rulesetName property sets the ruleset in the event that RL statements are executed
without an explicit named ruleset. The default rulesetName is mai n.

The executeRuleset methods parse and execute the given ruleset text (given as a String
or a java.io.Reader).

The callFunction method invokes the named RL function (which must either be a
built-in RL function or must have been previously defined with no parameters using
one of the executeRuleset methods) and returns its result. Functions with a single
argument can be invoked with the callFunctionWithArgument method. Functions
taking any number of arguments can be called using the

cal | Functi onWt hAr gunent Li st orcal | Functi onW t hAr gunent Arr ay
methods. The argument List or array must contain a Java Object for each RL function
parameter.

4-2 Oracle Business Rules Language Reference

RL Exceptions

4.3 RL to Java Type Conversion

Table 4-2 describes how Java Object types are be converted to RL types for passing
arguments to RL functions, and conversely how RL types are converted to Java types
for passing the RL function return value to Java.

Table 4-2 RL to Java Object Conversion

Java Class RL Type
java. |l ang. I nt eger int

j ava. |l ang. Char act er char
java.l ang. Byte byt e

j ava. | ang. Short short

j ava. |l ang. Long | ong

j ava. | ang. Doubl e doubl e

j ava. | ang. Fl oat fl oat

j ava. | ang. Bool ean bool ean
oj ect oj ect
int[] int[]
char[] char[]
byte[] byt e[]
short[] short[]
I'ong[] I'ong[]
doubl e[] doubl e[]
float[] float[]
bool ean[] bool ean[]
Obj ect[] Qoj ect []

4.4 RL Exceptions

The RuleSession parse and execute methods may throw an RLExcept i on. The

get Message method returns a formatted error message containing the description of
the error, the RL source ("main" or included URL), line number, and column number.
Each of these error components can also be accessed separately. Sometimes an
RLExcept i on is caused by another error (in general, a Thr owabl e object). This
underlying cause, if any, can also be accessed.

The package or acl e. rul es. r| . excepti ons contains the exceptions. The
RLExcept i on class has many subclasses that further categorize the nature of the
exception, as shown in the following hierarchy:

RLException

Par seException - a syntax error

TypeCheckException - a semantic error
ArrayException - array expected
Assi gnment Exception - invalid assignment target
Constructor Exception - can't find constructor for Java class
Cont ext Exception - construct invalid in given context
Conver si onException - can't convert between given types

Using a RuleSession 4-3

Error Handling

Final G assException - attenpt to extend a final fact class
I nvocationException - illegal function or method invocation
H ddenPropertyException - fact class for subclass attenpted to expose a hidden property or vice versa
Menmber Exception - property or method not a nmenber of class
Mil tipl eDefinitionException - synbol defined nore than once

QperationException - operator applied to wong types. For exanple, String * String
Undef i nedException - symbol is not defined

VisibilityException - class or menber referenced outside of defining ruleset or package is not public

RLRunt i meException - runtine error

RLXPat hException - error in assertXPath function

RLXm NaneException - error in xm identifier syntax

Engi neException - internal rule engine error

JavaException - an invoked Java nethod threw an exception, call getCause() to access the exception

RLArithmeticException - an RL arithnetic operation resulted in a divide by zero.

RLAr rayl ndexQut Of BoundsException - an attenpt was made to index into an array with an index outside the
allocated array

RLArraySt oreException - an attenpt has been made to store the wong type of object into an RL array of
obj ects

RLCl assCast Exception - in an RL expression, at attenpt has been made to cast an object to a subclass of
which it is not an instance
RLCl oneNot Support edException - a property of an object asserted as a fact appeared to be cloneable but did
not inplenment the clone nethod
RLI I | egal Argunent Exception - an attenpt was nade to pass an illegal argunent to a builtin RL function or to
a rul e engine Java met hod
RLNegat i veArraySi zeException - an attenpt was nade to allocate an array with a negative size
RLNul | Poi nter Exception - an RL expression attenpted to dereference a null object or null array reference

The following exceptions are always wrapped with either a RLRunt i meExcepti on
or TypeCheckExcepti on:

= Fact C assExcept i on: the fact class is defined too late (subclasses have already
been seen in a fact context).

= MiltiplelnheritanceExcepti on:factclass declarations support single
inheritance only.

4.5 Error Handling

RuleSession method invocations that throw a Par seExcept i on or
TypeCheckExcept i on do not affect the state of the RuleSession. A Java application,
for example, an interactive command-line, can catch these exceptions and continue
using the RuleSession.

RuleSession method invocations that throw a RLRunt i meExcept i on may have
affected the state of the RuleSession and the RuleSession may not be in a usable state
for the application to proceed. Robust applications should attempt to catch and

recover from RLRunt i meExcepti ons in RL at a point near where the exception is
thrown.

Other exceptions likely indicate a serious problem that the application cannot handle.

4.6 RL Class Reflection

You can use an RL class like a Java class in an RL program. The new, i nst anceof,
and cast operators work on both kinds of class. However, when an instance of an RL
class is passed to a Java program, it is actually an instance of
oracle.rules.rl.RLQbj ect. AJava program can use the following classes:

RLCl ass, RLProperty,and RLAr r ay to examine the RLCbj ect in a manner similar

4-4 Oracle Business Rules Language Reference

Obtaining Results from a Rule Enabled Program

tousing the j ava. | ang. ass,j ava. | ang. refl ect. Fi el d, and
java. | ang. Array classes to reflect a j ava. | ang. Obj ect . The package
oracl e.rul es. rl contains RLCLass, RLProperty,and RLArr ay.

4.7 XML Navigation

XLink objects are created and asserted as facts by the assertXPath function. An RL rule
can use XLinks to reason about the hierarchy of elements asserted by assertXPath.

See Also: "xpath Support" on page 2-17

4.8 Obtaining Results from a Rule Enabled Program

When you create a a rule enabled program with Oracle Business Rules, a common
question is, "How do I get the results of the evaluation?"

This section one approaches to extracting or exposing results of rule evaluation from
the rule engine.

This section covers the following;:
= Overview of Results Examples

= Using External Resources to Obtain Results

See Also: 3.11 Invoking Rules, in Oracle Business Rules User’s Guide

4.8.1 Overview of Results Examples

The examples in this section show a highway incident notification system. These
examples show the different approaches to access the results of rule engine evaluation.
The examples use two Java classes: traf fi c. Traf fi cl nci dent and
traffic.IncidentSubscription.

Note: Thetraffic.* sample classes are not included in the Oracle
Business Rules distribution.

The Traf fi cl nci dent class represents information about an incident affecting
traffic and contains the following properties:

= Which highway

= Which direction

= Type of incident

= Time incident occurred

= Estimated delay in minutes

The | nci dent Subscri pti on class describes a subscription to notifications for
incidents on a particular highway and contains the following properties:

« Subscriber - the name of the subscriber
= The highway

« The direction

Using a RuleSession 4-5

Obtaining Results from a Rule Enabled Program

In the example using these classes, when an incident occurs that affects traffic on a
highway, a Traf f i cl nci dent object is asserted and rule evaluation determines to
whom notifications are sent.

In the examples, the sess object is a Rul eSessi on and a number of incident
subscriptions are asserted. As a simplification, it is assumed that the
Trafficlnci dent objects are short lived. They are effectively an event that gets
asserted and only those subscribers registered at that time are notified.

The classes in these examples are all Java classes. However, it is possible to manipulate
instances of RL classes in Java using the RL class reflection.

See Also: For documentation see the Javadoc for the RLClass,
RLObject, RLProperty and RLArray classes in the or acl e. rul es. r|
package. Thus, RL objects, or instances of RL classes, can be used to
hold rule engine results as well as Java objects.

4.8.2 Using External Resources to Obtain Results

This approach is similar to asserting a container for results, except that instead of a
container, the object is a means to affecting resources external to the rules engine. For
example, this could involve queuing up or scheduling work to be done, updating a
database, sending a message. Any Java method accessible in the action may be
invoked to effect the results. As with the container use case, the objects used to in this
example to access the external resources are not re-asserted since their content is not
being reasoned on.

Example 4-1 shows the | nci dent Di spat cher object that is asserted and then used
to dispatch the notification.

Example 4-1 Obtaining Results Using External Resources
rule incidentAlert

{
if (fact Trafficlncident ti &&
fact IncidentSubscription s &&
s. highway == ti.highway &%
s.direction == ti.direction &
fact IncidentDispatcher dispatcher)
{
di spat cher. di spat ch(s. subscriber, ti);
}
}

Example 4-2 shows Java code that asserts an | nci dent Di spat cher and a

Trafficl nci dent, and then invokes the rule engine. This could also be
accomplished using an object that is being reasoned on, but this would require a test in
the rule condition to avoid an infinite loop of rule firing.

Example 4-2 Sample Showing Results with External Resources

sess. cal | Functi onWt hArgunent ("assert”, new I ncidentDi spatcher());

/'l An accident has happened

Trafficlncident ti = new Trafficlncident();

ti.setH ghway("15");

ti.setDirection("south");

ti.setlncident("accident");

ti.setWen(new G egorianCal endar (2005, 1, 25, 5, 4));
ti.setDel ay(45);

4-6 Oracle Business Rules Language Reference

Obtaining Results from a Rule Enabled Program

sess. cal | Functi onWt hArgunent ("assert”, ti);
sess. cal | Function("run");

Using a RuleSession 4-7

Obtaining Results from a Rule Enabled Program

4-8 Oracle Business Rules Language Reference

A

Summary of Java and RL Differences

This appendix includes descriptions of differences between the RL Language and Java
languages.

A.1 RL Differences from Java

RL does not include interfaces or methods.

RL global variables are similar to Java static class variables, but there is one
instance for each rule session.

RL does not have a st at i ¢ keyword.

RL has rulesets instead of packages. Rulesets group definitions and actions.
Instances of RL and Java classes can be asserted as facts in working memory.
RL facts are not garbage collected; they must be explicitly retracted.

RL is interpreted. There is no compilation or class loading.The i ncl ude statement
can be used to read and interpret a ruleset at the given URL. Classes and functions
must be defined before they are used.

RL classes may not contain constructors or methods, only data fields. The data
fields behave like Java bean properties.

Java bean properties can be accessed as fields in RL.

The new operator can explicitly assign values to named properties, regardless of
whether or not a constructor is defined. The f act operator can match values to
named properties and retrieve, using the var keyword, values from named
properties. A property is either a Java bean property, for Java objects, or a field, for
RL objects.

RL arrays are limited to one dimension.
The i f and whi | e actions must be in a block, enclosed in curly braces ({ }).

RL does not include a swi t ch action, cont i nue statement, br eak statement, or
labeled statements for breaking out of nested loops.

An RL for loop cannot contain multiple comma separated initialization or update
expressions.

RL does not support bitwise & and | operators.
RL supports function overloading and Java method overloading using first fit.

RL variables must be initialized when they are defined.

Summary of Java and RL Differences A-1

RL Differences from Java

« For RL and Java objects, == always invokes the object equal s method. RL does
not allow testing for object reference equality. For objects,! = does not test for
inequality of object references, but rather is the negation of the equals methods.

Thus, the statement:

if (objectl !'= object2){}

Is equivalent to the statement:

if (! (objectl. equals(object2)){}

« Forward references to classes or functions is not allowed.

A-2 Oracle Business Rules Language Reference

B

Oracle Business Rules DMS Instrumentation

Oracle Rules Engine runs as a library that an application or application component
uses to work with rules. The application or component can include an application
name in the configuration passed to a Rul eSessi on constructor. With a name
present, the name becomes the top level in a DMS hierarchy. This facilitates analysis of
Oracle Rules Engine runtime.

In order to keep metrics for a Rul eSessi on instance, the instance must have a name.
A name for the Rul eSessi on may be included in the configuration that is passed to
the Rul eSessi on constructor. If no name is specified and DMS is configured, then
the Oracle Rules Engine generates a name.

This appendix includes the following sections:
« Enabling Oracle Business Rules DMS Instrumentation

« Oracle Business Rules Metrics

Oracle Business Rules DMS Instrumentation B-1

Enabling Oracle Business Rules DMS Instrumentation

B.1 Enabling Oracle Business Rules DMS Instrumentation

Support for DMS instrumentation is encapsulated so that the Oracle Rules Engine uses
a set of interfaces defined in oracle.rules.rl.dms. If a Rul eSessi on is created with
DMS enabled, then rl_dms.jar must be in the classpath otherwise RuleSession
construction fails.

B.2 Oracle Business Rules Metrics

Oracle Business Rules DMS metrics are organized in a hierarchy that reflects the key
components in a Rul eSessi on. The path in the hierarchy to the metrics for a
Rul eSessi on is (application specified portions are in italics):

/appName /rules/rl/rule_session_name/
Under each Rul eSessi on, there is:
workingMemory
ruleset/ruleset_name/rule/rule_name

where there are 1 or more rule sets. The ruleset named rmai n is always present and 0 or
more rules are shown for each ruleset.

DMS Nouns are defined for rules, rule sets, working memory, rule sessions, and rl.
DMS Noun Types contain DMS Sensors which contain the metrics.

B.2.1 Oracle Business Rules Rule Metrics
Table B-1 shows the Oracle Business Rules Rule metrics.

Table B—1 Oracle Business RulesRule Metrics (RLRuleType)

Metric Description Unit
addActi vati on the number of activations of this rule that were added to the agenda ops
renoveActi vation the number of activations of this rule that were removed from the agenda. ops
cl ear Activati ons The number of activations removed by reset() or clearRule() ops
activations The number of activations of this rule currently on the agenda ops
fire The number of activations of this rule that fired ops

The behavior of adding and removing activations from the agenda is that when a fact
is updated, re-asserted, and the activation remains a valid match, the activation is
removed and then added back. Thus, each sensor is incremented. This occurs because
an update of fact results in two tokens flowing through the Rete network, a remove
token and an add token.

If a rule is removed using the clearRule built in function, the RLRuleType instance for
that rule is destroyed and any data is lost.

B-2 Oracle Business Rules Language Reference

Oracle Business Rules Metrics

B.2.2 Oracle Business Rules Ruleset Metrics
Table B-2 shows the Oracle Business Rules Ruleset metrics.

Table B—2 Oracle Business Rules Ruleset Metrics (RLRulesetType)

Metric Description Unit

rul es The number of rules that are defined in this ruleset. The metrics from the RLRuleType ops
instances for each rule in this ruleset are aggregated at the ruleset level.

B.2.3 Oracle Business Rules Working Memory Metrics

Table B-3 shows the Oracle Business Rules Working Memory metrics.

Table B—3 Oracle Business Rules Working Memory Metrics (RLWorkingMemoryType)

Metric Description Unit
facts The number of facts in working memory ops
assert The number of new fact asserts ops
r e-assert The number of asserts of modified facts ops
retract The number of fact retract ops
reset Retracts The number of facts retracted by reset invocations ops

B.2.4 Oracle Business Rules RuleSession Metrics

Table B—4 shows the Oracle Business Rules RuleSession metrics.

Table B—4 Oracle Business Rules RuleSession Metrics (RLRuleSessionType)

Metric Description Unit
rul esets the number of rulesets that are defined in this rule session ops
reset the number of reset invocations ops

During initialization of a RuleSession, a reset is invoked so the number of reset
invocations will always be one more than invoked by the RuleSession client.

The metrics from the RLRulesetTypes and the RLRuleTypes will be aggregated at the
rule session level through the DMS roll up feature. Unlike RLRuleType, instances of
RLRuleSessionType are never destroyed.

Oracle Business Rules DMS Instrumentation B-3

Oracle Business Rules Metrics

B-4 Oracle Business Rules Language Reference

A

action, 2-44

assign, 2-52

primary, 2-54

return, 2-50

throw, 2-51
action-block, 2-44

catch, 2-48

else, 2-45

finally, 2-48

for, 2-47

if, 2-45

synchronized, 2-49

try, 2-48

while, 2-46
activation, 1-6
agenda, 1-6
array-expression, 2-33
assert function, 2-56
assertXpath function, 2-58
assignment-expression, 2-52
autofocus, 2-13

B

back quote

and xml identifiers, 2-7
boolean keyword, 2-4,2-11
byte keyword, 2-4

C

catch keyword, 2-48

char keyword, 2-4
class-definition-name, 2-4

clear function, 2-61

clearRule function, 2-59
clearRulesetStack function, 2-60
clearWatch function, 2-61
clearWatchActivation function, 2-61
clearWatchAll function, 2-61
clearWatchCompilations function, 2-61
clearWatchFacts function, 2-61
clearWatchFocus function, 2-61
clearWatchRules function, 2-61

command line
starting, 1-2

concatenation, 2-6
string, 2-32

D

Index

decrement expression, 2-53
definition, 2-10

name, 2-10

gname, 2-10

variable, 2-11
double keyword, 2-4

E

else
action-block, 2-45

else keyword, 2-45

exception
throw, 2-51

exists keyword, 2-34

expression
array-expression, 2-33
boolean-expression, 2-29
decrement, 2-53
definition, 2-28
increment, 2-53
numeric-expression, 2-31
object-expression, 2-39
primary-expression, 2-40
string-expression, 2-32

F

factset, 1-6,2-34
fact setrow, 1-6
fact-class-body, 2-22
facts
and working memory, 1-4
definition of, 1-3
Java classes as, 1-5
RL classes as, 1-5
fact-set-expression, 2-34
final keyword, 2-11
finally keyword, 2-48

Index-1

fire rule, 1-7

float keyword, 2-4

for
action-block, 2-47
for-init, 2-47
for-update, 2-47

function
assert, 2-56
assertXpath, 2-58
clear, 2-61
clearRule, 2-59
clearRulesetStack, 2-60
definition, 2-21
getRuleSession, 2-63
getRuleSetStack, 2-62
getStrategy, 2-64
halt, 2-65
id, 2-66
keyword, 2-21
object, 2-67
popRuleset, 2-69
println, 2-68
pushRuleset, 2-70
recursive, 2-21
reset, 2-72
retract, 2-71
run, 2-73
runUntilHalt, 2-74
setRulesetStack, 2-75
setStrategy, 2-76
showActivation, 2-77
showFacts, 2-78
step, 2-79
watch, 2-80

G

getRuleSession function, 2-63
getRulesetStack function, 2-62
getStrategy function, 2-64
global variable, 2-11

H

halt function, 2-65
hide keyword, 2-22

id function, 2-66
identifier, 2-7

java-identifier, 2-7

xml-identifier, 2-7
if action-block, 2-45
implicit conversion, 2-4
import keyword, 2-26
importing

Java class, 2-26
include

file, 2-27

http, 2-27

Index-2

increment expression, 2-53
instanceof keyword, 2-29
int keyword, 2-4

J

Java class

importing, 2-26
Java-class-name, 2-4
java-identifier, 2-7
java.lang.String, 2-6
JAXB and xml support, 2-17

L

literals, 2-9

logical, 2-13

logical= keyword, 2-13
long keyword, 2-4

N

name
definition, 2-10

named-ruleset, 2-2

nested ruleset, 2-2

null keyword, 2-11

numeric, 2-4

numeric-expression, 2-31
precedence, 2-31

O

object function, 2-67
object type, 2-6
object-expression, 2-39
object-type, 2-4
options
-c command-line, 3-3
-i command-line, 3-3
-0 command-line, 3-3
-p command-line, 1-2,3-3
-v command-line, 3-3

P

popRuleset function, 2-69

precedence
numeric-expression, 2-31

primary action, 2-54

primary-expression, 2-40

primitive, 2-4

primitive type, 2-5

println function, 2-68

priority, 2-13

priority= keyword, 2-13

property, 2-13

property keyword, 2-22

pushRuleset function, 2-70

Q

qname
definition, 2-10
queue strategy, 2-76

R

reserved words, 2-1
reset function, 2-72
results

obtaining, 4-5

using external resources, 4-6
retract function, 1-8,2-71
return keyword, 2-50
returns keyword, 2-21
RL

reserved words, 2-1
rule

autofocus, 2-13

definition, 2-13

logical, 2-13

priority, 2-13
rules

fire, 1-7

ordering, 1-9

priority, 1-9

rule action, 1-2,1-3

rule condition, 1-2,1-3
ruleset, 2-2

include, 2-27

nested, 2-2

using, 1-2
ruleset stack, 1-9
ruleset-name, 2-2
run function, 2-73
runUntilHalt function, 2-74

S

setRulesetStack function, 2-75
setStrategy
function, 2-76
queue strategy, 2-76
stack strategy, 2-76
short keyword, 2-4
showActivations function, 2-77
showFacts function, 1-8, 2-78
simple-type, 2-4
stack strategy, 2-76
starting command line interface,
step function, 2-79
string
+ operator, 2-32
concatenation, 2-6,2-32
literal, 2-6
type, 2-6
string-expression, 2-32
supports keyword, 2-17
synchronized
keyword, 2-49

1-2

T

throw keyword, 2-51
try keyword, 2-48
type, 2-4
conversion, 2-4
implicit conversion, 2-4
java.lang.String, 2-6
object, 2-6
primitive, 2-5
simple-type, 2-4
string, 2-6
types
simple-type, 2-4

U
unnamed-ruleset, 2-2
\Y
var keyword, 2-34
variable
definition, 2-11
global, 2-11
W

watchActivations function, 1-7,2-80
watchAll function, 2-80
watchCompilations function, 2-80
watchFacts function, 1-7,2-80
watchFocus function, 2-80
watchRules function, 1-7,2-80
while

action-block, 2-46

keyword, 2-46
working memory, 1-4

X

XML
binding, 2-17
support, 2-17
XLINK class, 2-17
xpath support, 2-17
xml-identifier, 2-7

Index-3

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Rules Programming Concepts
	1.1 Starting the Oracle Business Rules RL Language Command-Line
	1.2 Introducing Rules and Rulesets
	1.2.1 Rule Conditions
	1.2.2 Rule Actions

	1.3 Introducing Facts and RL Language Classes
	1.3.1 What Are Facts?
	1.3.2 Adding Facts to Working Memory with Assert
	1.3.3 Using RL Language Classes as Facts
	1.3.4 Using Java Classes as Facts

	1.4 Understanding and Controlling Rule Firing
	1.4.1 Rule Activation and the Agenda
	1.4.2 Watching Facts, Rules, and Rule Activations
	1.4.2.1 Watching and Showing Facts in Working Memory
	1.4.2.2 Watching Activations and Rule Firing

	1.4.3 Ordering Rule Firing

	1.5 Integrating RL Language Programs with Java Programs
	1.5.1 Using Java Beans Asserted as Facts
	1.5.2 Using RuleSession Objects in Java Applications

	1.6 Building a Coin Counter Rules Program

	2 Rule Language Reference
	Ruleset
	Types
	Identifiers
	Literals
	Definitions
	Variable Definitions
	Global Variables

	Rule Definitions
	Class Definitions
	xpath Support

	Function Definitions

	Fact Class Declarations
	Import Statement
	Include Statement
	Using Expressions
	Boolean Expressions
	Numeric Expressions
	String Expressions
	Array Expressions
	Fact Set Expressions
	Object Expressions
	Primary expressions
	new

	Actions and Action Blocks
	If Else Action Block
	While Action Block
	For Action Block
	Try Catch Finally Action Block
	Synchronized Action Block
	Return Action
	Throw Action
	Assign Action
	Increment or Decrement Expressions
	Primary Actions

	Built-in Functions
	assert
	assertXPath
	clearRule
	clearRulesetStack
	clearWatchRules, clearWatchActivations, clearWatchFacts, clearWatchFocus, clearWatchCompilations, clearWatchAll
	getRulesetStack
	getRuleSession
	getStrategy
	halt
	id
	object
	println
	popRuleset
	pushRuleset
	retract
	reset
	run
	runUntilHalt
	setRulesetStack
	setStrategy
	showActivations
	showFacts
	step
	watchRules, watchActivations, watchFacts, watchFocus, watchCompilations

	3 Using the Command-line Interface
	3.1 Starting and Using the Command-Line Interface
	3.2 RL Command-Line Options
	3.3 RL Command-Line Built-in Commands
	3.3.1 Clear Command
	3.3.2 Exit Command

	4 Using a RuleSession
	4.1 RuleSession Constructor Properties
	4.2 RuleSession Methods
	4.3 RL to Java Type Conversion
	4.4 RL Exceptions
	4.5 Error Handling
	4.6 RL Class Reflection
	4.7 XML Navigation
	4.8 Obtaining Results from a Rule Enabled Program
	4.8.1 Overview of Results Examples
	4.8.2 Using External Resources to Obtain Results

	A Summary of Java and RL Differences
	A.1 RL Differences from Java

	B Oracle Business Rules DMS Instrumentation
	B.1 Enabling Oracle Business Rules DMS Instrumentation
	B.2 Oracle Business Rules Metrics
	B.2.1 Oracle Business Rules Rule Metrics
	B.2.2 Oracle Business Rules Ruleset Metrics
	B.2.3 Oracle Business Rules Working Memory Metrics
	B.2.4 Oracle Business Rules RuleSession Metrics

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

