
Oracle® Containers for J2EE
Servlet Developer's Guide

10g (10.1.3.1.0)

B28959-01

October 2006

Oracle Containers for J2EE Servlet Developer’s Guide, 10g (10.1.3.1.0)

B28959-01

Copyright © 2002, 2006, Oracle. All rights reserved.

Primary Author: Alfred Franci

Contributing Author: Bonnie Vaughan, Brian Wright, Tim Smith

Contributors: Dana Singleterry, Olaf Heimburger, James Kirsch, Bryan Atsatt, Ashok Banerjee, Bill Bishop,
Olivier Caudron, Cania Chung, Gerald Ingalls, Sunil Kunisetty, Philippe Le Mouel, David Leibs, Sastry
Malladi, Jasen Minton, Debu Panda, Lenny Phan, Shiva Prasad, Paolo Ramasso, Charlie Shapiro, JJ Snyder,
Joyce Yang, Serge Zloto, Sheryl Maring, Tug Grall, Mike Lehmann, Steve Button

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

v

Contents

Preface ... xiii

Audience... xiii
Documentation Accessibility ... xiii
Related Documentation.. xiv
Conventions ... xvi

1 Summary of What to Know About Servlets

Summary of Servlet and J2EE Technology .. 1-1
The Essence of Servlets.. 1-2
Why Use Servlets?.. 1-2
Servlet Lifecycle.. 1-3
JSP Pages and Other J2EE Component Types.. 1-4

Key Components and APIs of the Servlet Model .. 1-4
Key Methods of the Servlet Interface .. 1-4
Servlet Communication: Request and Response Objects ... 1-5

Key Methods of the HttpServletRequest Interface .. 1-6
Key Methods of the HttpServletResponse Interface.. 1-7

Servlet Execution in the Servlet Container ... 1-8
Servlet Configuration Objects ... 1-10

Obtaining a Servlet Configuration Object .. 1-10
Key Servlet Configuration Methods ... 1-10

Servlet Contexts: the Application Container... 1-10
Servlet Context Basics.. 1-10
Obtaining a Servlet Context ... 1-11
Key Servlet Context Methods... 1-11

What are Servlet Sessions (User Sessions) Used For? .. 1-12
Servlet Thread Models .. 1-12

Servlet Feature Table .. 1-13

2 Deploying and Invoking Servlets

Initial Considerations and OC4J Scenarios... 2-1
A Brief Overview of OC4J Administration .. 2-1
OC4J in a Standalone Versus Oracle Application Server Environment..................................... 2-2
OC4J and Oracle Application Server Administration Tools.. 2-3

Summary of URL Components.. 2-3

vi

Deploying a Web Application to OC4J .. 2-7
Application Structure .. 2-7
Summary of General Steps to Deploy a WAR File.. 2-8
Summary of General Steps to Deploy an EAR File ... 2-9

Invoking a Servlet in OC4J.. 2-10
Invoking a Servlet in a Standalone OC4J Environment .. 2-10
Invoking a Servlet by Class Name During OC4J Development... 2-11
Invoking a Servlet in an Oracle Application Server Environment .. 2-12

Deploying and Invoking the Simple Servlet Example .. 2-12
Deploy the Servlet Example as a WAR File .. 2-12

Create the web.xml File... 2-12
Create the WAR File .. 2-13
Deploy the WAR File and Bind the Web Application.. 2-13

Deploy the Servlet Example as an EAR File.. 2-14
Create the web.xml File and WAR file.. 2-14
Create the application.xml File .. 2-14
Create the EAR File.. 2-14
Deploy the EAR File and Bind the Contained Web Application...................................... 2-15

Invoke the Servlet Example ... 2-15
Preloading Servlets ... 2-16

3 Understanding and Using Servlet Sessions

Overview of Session Tracking ... 3-1
Session Objects.. 3-1
Session IDs .. 3-2
Cookies and Persistent Session Data... 3-2
When to Use Cookies Versus Session Attributes .. 3-2

Using Session Tracking in OC4J ... 3-2
Configuring Session Tracking and Enabling or Disabling Cookies in OC4J............................. 3-3
How OC4J Can Use Cookies for Session Tracking ... 3-3
Using URL Rewriting for Session Tracking ... 3-4
Session Tracking Through Secured Connections .. 3-4

Using a Session Object in Your Servlet.. 3-5
Summary of HttpSession Methods .. 3-5
Adding and Retrieving Session Attributes... 3-7
Session Object Example... 3-7

Using Cookies in Your Servlet .. 3-10
Configuring Cookies... 3-11
Summary of Cookie Methods.. 3-11
Retrieving, Displaying, and Adding Cookies ... 3-12
Cookie Example... 3-13

Canceling a Session .. 3-15
Using a Timeout to Cancel a Session.. 3-15
Explicitly Canceling a Session ... 3-16

4 Understanding and Using Servlet Filters

Overview of How Filters Work.. 4-1

vii

How the Servlet Container Invokes Filters .. 4-1
Typical Filter Actions ... 4-3

Standard Filter Interfaces ... 4-3
Methods of the Filter Interface ... 4-3
Method of the FilterChain Interface .. 4-4
Methods of the FilterConfig Interface ... 4-4

Implementing and Configuring Filters.. 4-5
Implement the Filter Code .. 4-5
Configure the Filter .. 4-6
Construction of the Filter Chain ... 4-7

Simple Filter Example ... 4-7
Write the Simple Filter Code .. 4-7
Write the Target JSP Page ... 4-8
Configure the Simple Filter... 4-8
Package the Simple Filter Example ... 4-8
Invoke the Simple Filter Example.. 4-9

Filtering Forward or Include Targets .. 4-9
The web.xml <dispatcher> Element.. 4-9
Configuring Filters for Forward or Include Targets .. 4-10

Using a Filter to Wrap and Alter the Request or Response ... 4-10
Response Filter Example .. 4-11

Write the Custom Output Stream Code .. 4-11
Write the Response Wrapper Code .. 4-12
Write the Base Filter Code ... 4-12
Write the Response Filter Code... 4-13
Write the Target HTML Page .. 4-13
Configure the Response Filter ... 4-14
Package the Response Filter Example.. 4-14
Invoke the Response Filter Example .. 4-14

Form Authentication Filter .. 4-15

5 Understanding and Using Event Listeners

Overview of How Event Listeners Work ... 5-1
Event Listener Interfaces... 5-2

ServletContextListener Methods, ServletContextEvent Class... 5-2
ServletContextAttributeListener Methods, ServletContextAttributeEvent Class 5-3
HttpSessionListener Methods, HttpSessionEvent Class .. 5-3
HttpSessionAttributeListener Methods, HttpSessionBindingEvent Class................................ 5-4
HttpSessionActivationListener Methods.. 5-4
HttpSessionBindingListener Methods .. 5-5
ServletRequestListener Methods, ServletRequestEvent Class .. 5-5
ServletRequestAttributeListener Methods, ServletRequestAttributeEvent Class.................... 5-6

Implementing and Configuring Event Listeners ... 5-6
Implement the Listener Code ... 5-6
Configure the Listener... 5-7
Physical File Required for Welcome File .. 5-8

Session Lifecycle Listener Example.. 5-8

viii

Write the JSP Welcome Page .. 5-9
Write the Session Creation Servlet... 5-9
Write the Session Invalidation Servlet ... 5-10
Write the Session Lifecycle Listener Code... 5-10
Configure the Session Lifecycle Listener Example .. 5-11
Package the Session Lifecycle Listener Example.. 5-12
Invoke the Session Lifecycle Listener Example .. 5-12

6 Developing Servlets

Writing a Basic Servlet... 6-1
When to Implement Methods of the Servlet Interface.. 6-2

When to Override the init() Method .. 6-2
When to Override the doGet() or doPost() Method... 6-3
When to Override the doPut() Method ... 6-3
When to Override the doDelete() Method .. 6-3
When to Override the getServletInfo() Method ... 6-3
When to Override the destroy() Method... 6-3

Setting Up the Response ... 6-4
Step-by-Step Through a Simple Servlet .. 6-4

Simple Servlet Example .. 6-5
Write the Sample Code.. 6-6
Compile the Sample Code .. 6-6

Using HTML Forms and Request Parameters .. 6-7
Using an HTML Form for User Input ... 6-7
Displaying Request Parameter Data Specified in User Input.. 6-8
Complete Example Using a Form and Request Parameters .. 6-8
Using the POST Method for URL Security.. 6-10
Calling Information Methods of the Request Object ... 6-11
Complete Example Retrieving Request Information... 6-11

Dispatching to Other Servlets Through Includes and Forwards... 6-12
Basics of Includes and Forwards .. 6-13
Why Use Includes and Forwards? .. 6-13
Step-by-Step Through the Include or Forward Process .. 6-14
Complete Example of a Servlet Include ... 6-14

When to Use Filters for Pre-Processing and Post-Processing ... 6-16
When to Use Event Listeners for Servlet Notification ... 6-17
How to Display the Stack Trace.. 6-18
Migrating an Application from Apache Tomcat to OC4J .. 6-18

Pointers for Migrating from Tomcat to OC4J ... 6-19
Introduction ... 6-19
Migration Approach for Servlets .. 6-19
Migrating a Simple Servlet .. 6-20
Migrating a WAR File .. 6-20
Migrating an Exploded Web Application ... 6-21
Tips From the Field.. 6-21

JNDI Lookups in Tomcat and OC4J .. 6-22
Tomcat-to-OC4J JSP Compilation Issues ... 6-23

ix

Tomcat-to-OC4J Clustering Issues.. 6-24
Basic Configuration in Tomcat and OC4J... 6-24
Network Considerations in Tomcat and OC4J .. 6-24
State Persistence Mechanisms in Tomcat and OC4J ... 6-25
Replication Algorithms in Tomcat and OC4J .. 6-26
State Replication Transmission .. 6-26
Application Design in Tomcat and OC4... 6-26
Load Balancing in Tomcat and OC4J ... 6-26

7 Using Annotations for Services and Resource References

Overview of How Annotations Work ... 7-1
Annotations and Injection .. 7-2
Annotations in OC4J.. 7-3

EJB Annotation ... 7-3
Resource Annotation ... 7-4
Resources Annotation.. 7-4
PostConstruct Annotation .. 7-5
PreDestroy Annotation.. 7-5
PersistenceUnit(s) Annotation ... 7-5
PersistenceContext(s) Annotation ... 7-6
WebServiceRef Annotation... 7-6
DeclaresRoles Annotation... 7-7
RunAs Annotation ... 7-7

Annotation Rules and Guidelines .. 7-7
How Annotations Affect Performance with Servlet Version 2.5... 7-8
Annotation Example .. 7-8

8 Using JDBC or Enterprise JavaBeans

Using JDBC in Servlets ... 8-1
Why Use JDBC? .. 8-1
Configuring a Data Source and Resource Reference .. 8-2

Configure the Data Source... 8-2
Configure the Resource Reference ... 8-3

Implementing JDBC Calls ... 8-3
Database Query Servlet Example .. 8-4

Configure the Data Source for the Query Servlet .. 8-5
Write the HTML Welcome Page... 8-5
Write the Query Servlet ... 8-5
Configure the Servlet and JNDI Resource Reference .. 8-7
Package the Query Example.. 8-7
Invoke the Query Example.. 8-8

TopLink Servlet Examples .. 8-8
Overview of Enterprise JavaBeans.. 8-8

Why Use Enterprise JavaBeans? .. 8-9
EJB Support in OC4J and Oracle Application Server.. 8-9
Servlet-EJB Lookup Scenarios .. 8-9

x

EJB Local Interfaces Versus Remote Interfaces... 8-10
Using the Remote Flag for Remote Lookup within the Same Application 8-11

9 Best Practices and Performance

Best Practices for Sessions .. 9-1
Best Practices for Security... 9-1
Considerations for Thread Models ... 9-2

Custom Thread Pool .. 9-3
Best Practices for Performance... 9-4
Monitoring Performance ... 9-5

Oracle Application Server Dynamic Monitoring Service ... 9-5

A Web Module Administration

Application Server Control Console Top-Level Web Module Pages .. A-1
How to Get to a Web Module Home Page .. A-1
Summary of Top-Level Web Module Pages ... A-2

Application Server Control Web Module Configuration Pages .. A-3
Configuration Properties Page.. A-3
Deployment Descriptor Viewing Pages... A-5
Servlet Mappings Page... A-5
Filter Mappings Page.. A-6
Resource Reference Mappings Page... A-7
EJB Reference Mappings Page... A-8
Environment Entry Mappings Page... A-8
Resource Reference Lookup Context Page.. A-9

Summary of Web Module MBeans and Administration... A-10
General Overview of OC4J MBean Administration... A-10
Summary of OC4J Web Module MBeans .. A-11

B Web Module Configuration Files

Overview of Web Application Configuration Files.. B-1
Standard web.xml Configuration File .. B-1
Oracle global-web-application.xml Configuration File ... B-2
Oracle orion-web.xml Configuration File .. B-3
Summary of Relationship Between Web Application Configuration Files B-3

Hierarchy of orion-web.xml and global-web-application.xml ... B-3
Elements and Attributes of orion-web.xml, global-web-application.xml B-4

<access-mask> ... B-4
<classpath> .. B-5
<context-attribute> ... B-6
<context-param-mapping> .. B-7
<ejb-ref-mapping> .. B-7
<env-entry-mapping> .. B-7
<expiration-setting> ... B-8
<group> .. B-8
<host-access> ... B-9

xi

<ip-access> ... B-9
<jazn-web-app> ... B-10
<lookup-context> .. B-12
<mime-mappings>.. B-12
<ojsp-init> .. B-13
<orion-web-app> .. B-16
<request-tracker> .. B-22
<resource-env-ref-mapping> .. B-23
<resource-ref-mapping> .. B-23
<security-role-mapping> ... B-24
<service-ref-mapping> ... B-25
<servlet-chaining> .. B-25
<session-tracker> .. B-26
<session-tracking> .. B-27
<user> ... B-28
<virtual-directory> ... B-29
<web-app> ... B-29
<web-app-class-loader>... B-30

C Third Party Licenses

ANTLR .. C-1
The ANTLR License.. C-1

Apache ... C-1
The Apache Software License ... C-2

Apache SOAP... C-6
Apache SOAP License .. C-7

Index

xii

xiii

Preface

This document is a developer's guide that introduces and explains the Oracle
implementation of Java servlet technology, specified by an industry consortium led by
Sun Microsystems. It summarizes standard features and covers Oracle implementation
details and value-added features. The discussion includes basic servlets, data-access
servlets, and servlet filters and event listeners.

Servlet technology is a component of the standard Java 2 Enterprise Edition (J2EE).
The J2EE component of the Oracle Application Server is known as the Oracle
Containers for J2EE (OC4J).

The OC4J servlet container in Oracle Application Server 10g Release 3 (10.1.3.1.0) is a
complete implementation of the Sun Microsystems Java Servlet Specification, Version 2.4.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documentation

■ Conventions

Audience
The guide is intended for J2EE developers who are writing Web applications that use
servlets and possibly JavaServer Pages (JSP) modules. It provides the basic
information you will need regarding the OC4J servlet container. It does not attempt to
teach servlet programming in general, nor does it document the Java Servlet API in
detail.

You should be familiar with the current version of the Java Servlet Specification,
produced by Sun Microsystems. This is especially true if you are developing a
distributable Web application, in which sessions can be replicated to servers running
under more than one Java virtual machine (JVM).

If you are developing applications that primarily use JavaServer Pages modules, refer
to the Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to

xiv

facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documentation
For more information, see the following Oracle resources.

Additional OC4J documents:

■ Oracle Containers for J2EE Developer’s Guide

This document discusses items of general interest to developers writing an
application to run on OC4J—issues that are not specific to a particular container
such as the servlet, EJB, or JSP container. (An example is class loading.)

■ Oracle Containers for J2EE Deployment Guide

This document covers information and procedures for deploying an application to
an OC4J environment. This includes discussion of the deployment plan editor that
comes with Oracle Enterprise Manager 10g.

■ Oracle Containers for J2EE Configuration and Administration Guide

This document discusses how to configure and administer applications for OC4J,
including use of the Oracle Enterprise Manager 10g Application Server Control
Console, use of standards-compliant MBeans provided with OC4J, and, where
appropriate, direct use of OC4J-specific XML configuration files.

■ Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

This document provides information about JavaServer Pages development and the
JSP implementation and container in OC4J. This includes discussion of Oracle
features such as the command-line translator and OC4J-specific configuration
parameters.

■ Oracle Containers for J2EE JSP Tag Libraries and Utilities Reference

xv

This document provides conceptual information as well as detailed syntax and
usage information for tag libraries, JavaBeans, and other Java utilities provided
with OC4J. There is also a summary of tag libraries from other Oracle product
groups.

■ Oracle Containers for J2EE Services Guide

This document provides information about standards-based Java services
supplied with OC4J, such as JTA, JNDI, JMS, JAAS, and the Oracle Application
Server Java Object Cache.

■ Oracle Containers for J2EE Security Guide

This document (not to be confused with the Oracle Application Server Security
Guide) describes security features and implementations particular to OC4J. This
includes information about using JAAS, the Java Authentication and
Authorization Service, as well as other Java security technologies.

■ Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

This document provides information about Enterprise JavaBeans development
and the EJB implementation and container in OC4J.

■ Oracle Containers for J2EE Resource Adapter Administrator’s Guide

This document provides an overview of J2EE Connector Architecture features and
describes how to configure and monitor resource adapters in OC4J.

Oracle Application Server Web services documents:

■ Oracle Application Server Web Services Developer’s Guide

This document describes Web services development and configuration in OC4J
and Oracle Application Server.

■ Oracle Application Server Advanced Web Services Developer’s Guide

This document describes topics beyond basic Web service assembly. For example,
it describes how to diagnose common interoperability problems, how to enable
Web service management features (such as reliability, auditing, and logging), and
how to use custom serialization of Java value types.

This document also describes how to employ the Web Service Invocation
Framework (WSIF), the Web Service Provider API, message attachments, and
management features (reliability, logging, and auditing). It also describes
alternative Web service strategies, such as using JMS as a transport mechanism.

■ Oracle Application Server Web Services Security Guide

This describes Web services security and configuration in OC4J and Oracle
Application Server.

Java-related documents for Oracle Database:

■ Oracle Database Java Developer's Guide

■ Oracle Database JDBC Developer's Guide and Reference

Additional Oracle Application Server documents:

■ Oracle Application Server Administrator’s Guide

■ Oracle Application Server Performance Guide

■ Oracle HTTP Server Administrator’s Guide

■ Oracle Process Manager and Notification Server Administrator’s Guide

xvi

Oracle Enterprise Manager 10g Application Server Control online help topics,
available through the Application Server Control Console.

The following Oracle Technology Network Web site for Java servlets and JavaServer
Pages modules is also available:

http://www.oracle.com/technology/tech/java/servlets/index.html

For further servlet information, refer to the Java Servlet Specification at the following
location:

http://java.sun.com/products/servlet/download.html#specs

Resources from Sun Microsystems:

■ Web site for Java servlet technology:

http://java.sun.com/products/servlet/index.jsp

■ Web site for JavaServer Pages technology:

http://java.sun.com/products/jsp/index.jsp

■ J2EE 1.4 Javadoc, including the servlet packages javax.servlet and
javax.servlet.http:

http://java.sun.com/j2ee/1.4/docs/api/index.html

■ Java™ Platform, Enterprise Edition Specification Version 5 (Java EE 5 specification):

http://java.sun.com/javaee/5

■ Enterprise JavaBeans™ Specification, Version 3.0 (EJB specification):

http://java.sun.com/products/ejb

■ Web Services for J2EE 1.2 (Web Services specification):

http://jcp.org/en/jsr/detail?id=109

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Summary of What to Know About Servlets 1-1

1
Summary of What to Know About Servlets

Oracle Containers for J2EE (OC4J) enables you to develop and deploy standard
J2EE-compliant applications. Applications are packaged in standard Enterprise archive
(EAR) deployment files, which include standard Web archive (WAR) files to deploy
the Web modules, resource adapter archive (RAR) files for resource adapters, and Java
archive (JAR) files for any Enterprise JavaBeans (EJB) and application client modules
in the application.

With Oracle Application Server 10g Release 3 (10.1.3.1.0), OC4J complies with Java 2
Platform Enterprise Edition Specification, v1.4, including full compliance with the Sun
Microsystems Java Servlet Specification, Version 2.4 in the OC4J servlet container. (Any
mention of the servlet specification in this manual refers to this version unless
otherwise noted.)

This chapter, containing the following sections, provides an overview of servlet
technology and concludes with a summary of servlet features:

■ Summary of Servlet and J2EE Technology

■ Key Components and APIs of the Servlet Model

■ Servlet Feature Table

You can find the servlet specification at the following location:

http://java.sun.com/products/servlet/reference/api/index.html

Summary of Servlet and J2EE Technology
The following sections offer a brief introduction to servlet and other J2EE technology:

■ The Essence of Servlets

Note: Servlets in this release require HTTP/1.1 and Java 2 Standard
Edition (J2SE) 1.3 or higher.

Note: Sample servlet applications are included in the OC4J
demos, available from the following location on the Oracle
Technology Network (requiring an OTN membership, which is free
of charge):

http://www.oracle.com/technology/tech/java/oc4j/demos/i
ndex.html

Summary of Servlet and J2EE Technology

1-2 Oracle Containers for J2EE Servlet Developer’s Guide

■ Why Use Servlets?

■ Servlet Lifecycle

■ JSP Pages and Other J2EE Component Types

The Essence of Servlets
In recent years, servlet technology has emerged as a powerful way to extend Web
server functionality through dynamic Web pages. A servlet is a Java program that runs
in a Web server, as opposed to an applet that runs in a client browser. Typically, the
servlet takes an HTTP request from a browser, generates dynamic content (such as by
querying a database), and provides an HTTP response back to the browser.
Alternatively, the servlet can be accessed directly from another application component
or send its output to another component. Most servlets generate HTML text, but a
servlet may instead generate XML to encapsulate data.

More specifically, a servlet runs in a J2EE application server, such as OC4J. Servlets are
one of the main application component types of a J2EE application, along with
JavaServer Pages (JSP) and Enterprise JavaBeans (EJB) modules, which are also
server-side J2EE component types. These are used in conjunction with client-side
components such as applets (part of the Java 2 Platform, Standard Edition
specification) and application client programs. An application can consist of any
number of any of these components.

Prior to servlets, Common Gateway Interface (CGI) technology was used for dynamic
content, with CGI programs being written in languages such as Perl and being called
by a Web application through the Web server. CGI ultimately proved less than ideal,
however, due to its architecture and scalability limitations.

Why Use Servlets?
In the Java realm, servlet technology offers advantages over applet technology for
server-intensive applications, such as those accessing a database. One advantage of
running in the server is that the server is usually a robust machine with many
resources, making the program more scalable. Running in the server also results in
more direct access to the data. The Web server in which a servlet is running is on the
same side of the network firewall as the data being accessed.

Servlet programming also offers advantages over earlier models of server-side Web
application development, including the following:

■ Servlets outperform earlier technologies for generating dynamic HTML, such as
server-side includes or CGI scripts. After a servlet is loaded into memory, it can run
on a single lightweight thread; CGI scripts must be loaded in a different process
for each request.

■ Servlet technology, in addition to improved scalability, offers the well-known Java
advantages of security, robustness, object orientation, and platform independence.

Note: The terms Web module and Web application are
interchangeable in most uses and are both used throughout this
document. If there is a distinction, it is that "Web module" typically
indicates a single component, whether or not it composes an
independent application, while "Web application" typically
indicates a working application that may consist of multiple
modules or components.

Summary of Servlet and J2EE Technology

Summary of What to Know About Servlets 1-3

■ Servlets are fully integrated with the Java language and its standard APIs, such as
JDBC for Java database connectivity.

■ Servlets are fully integrated into the J2EE framework, which provides an extensive
set of services that your Web application can use, such as Java Naming and
Directory Interface (JNDI) for component naming and lookup, Java Transaction
API (JTA) for managing transactions, Java Authentication and Authorization
Service (JAAS) for security, Remote Method Invocation (RMI) for distributed
applications, and Java Message Service (JMS). The following Web site contains
information about the J2EE framework and services:

http://java.sun.com/j2ee/docs.html

■ A servlet handles concurrent requests (through either a single servlet instance or
multiple servlet instances, depending on the thread model), and servlets have a
well-defined lifecycle. In addition, servlets can optionally be loaded when OC4J
starts, so that any initialization is handled in advance instead of at the first user
request. See "Preloading Servlets" on page 2-16.

■ The servlet request and response objects offer a convenient way to handle HTTP
requests and send text and data back to the client.

Because servlets are written in the Java programming language, they are supported on
any platform that has a Java virtual machine (JVM) and a Web server that supports
servlets. Servlets can be used on different platforms without recompiling. You can
package servlets together with associated files such as graphics, sounds, and other
data to make a complete Web application. This simplifies application development and
deployment.

In addition, you can port a servlet-based application from another Web server to OC4J
with little effort. If your application was developed for a J2EE-compliant Web server,
then the porting effort is minimal.

Servlet Lifecycle
Servlets have a predictable and manageable lifecycle:

■ When the servlet is loaded, its configuration details are read from the standard
web.xml Web module configuration file. These details can include initialization
parameters.

■ There is only one instance of a servlet, unless the single-threaded model is used.
See "Servlet Thread Models" on page 1-12.

■ Client requests invoke the central service() method of the servlet, which then
delegates the request to doGet() (for HTTP GET requests), doPost() (for HTTP
POST requests), or some other overridden request-handling method, depending
on the information in the request headers.

■ Filters can be interposed between the container and the servlet to modify the
servlet behavior, either during request or response. See Chapter 4, "Understanding
and Using Servlet Filters" for more information.

■ A servlet can forward requests to other servlets or include output from other
servlets. See "Dispatching to Other Servlets Through Includes and Forwards" on
page 6-12.

■ Responses come back to the client through response objects, which the container
passes back to the client in HTTP response headers. Servlets can write to a
response object by using a java.io.PrintWriter or
javax.servlet.ServletOutputStream object.

Key Components and APIs of the Servlet Model

1-4 Oracle Containers for J2EE Servlet Developer’s Guide

■ The container calls the destroy() method before the servlet is unloaded.

JSP Pages and Other J2EE Component Types
In addition to servlets, an application may include other server-side components, such
as JSP pages and EJBs. Servlets are managed by the OC4J servlet container; EJBs are
managed by the OC4J EJB container; and JSP pages are managed by the OC4J JSP
container. These containers form the core of OC4J.

Servlets and JSP pages have a particularly close correspondence. Both servlets and JSP
pages are referred to as Web components, and both are configured through the standard
web.xml file. A JSP page implementation class, created by the JSP container during
translation of a JSP page, is actually a servlet and implements the
javax.servlet.Servlet interface, as does any servlet. JSP pages and servlets can
be used seamlessly together in creating Web applications.

Servlets or JSP pages often call EJBs to perform further processing. A typical J2EE
application uses servlets or JSP pages for the user interface and for initial processing of
user requests, then calls EJBs to perform business logic and database access.

For more information about JSP pages and EJBs, see the following:

■ Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

■ Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Key Components and APIs of the Servlet Model
This section summarizes important components and programming interfaces of the
servlet model, covering the following:

■ Key Methods of the Servlet Interface

■ Servlet Communication: Request and Response Objects

■ Servlet Execution in the Servlet Container

■ Servlet Contexts: the Application Container

■ Servlet Configuration Objects

■ What are Servlet Sessions (User Sessions) Used For?

■ Servlet Thread Models

For complete information about APIs mentioned here, see the Sun Microsystems
Javadoc for the javax.servlet and javax.servlet.http packages at the
following location:

http://java.sun.com/j2ee/1.4/docs/api/index.html

Key Methods of the Servlet Interface
A Java servlet, by definition, implements the javax.servlet.Servlet interface.
This interface specifies methods to initialize a servlet, process requests, get the

Note: Wherever this manual mentions functionality that applies
to servlets, you can assume it applies to JSP pages as well unless
stated otherwise.

Key Components and APIs of the Servlet Model

Summary of What to Know About Servlets 1-5

configuration and other basic information of a servlet, and remove a servlet instance
from service.

For Web applications, you can implement the Servlet interface by extending the
javax.servlet.http.HttpServlet abstract class. This class, intended for HTTP
servlets suitable for a Web site, extends the javax.servlet.GenericServlet
class, which implements the Servlet interface.

The HttpServlet class includes the following methods, which are called by the OC4J
servlet container (discussed later in this chapter) during servlet execution, as
appropriate. You can write code to override any of them, as desired, to provide
functionality in your servlet. See "When to Implement Methods of the Servlet
Interface" on page 6-2.

■ void init(ServletConfig config)

Initializes the servlet, preparing it to serve requests. This takes a servlet
configuration object, described in "Servlet Configuration Objects" on page 1-10, as
input. Implement code here for any special startup requirements of your servlet.

■ void destroy()

Removes the servlet from service. Implement code here for any special shutdown
requirements of your servlet, such as releasing resources.

■ void doGet(HttpServletRequest req, HttpServletResponse resp)

Implement code here to execute an HTTP GET request. HTTP request and response
objects are described in the next section, "Servlet Communication: Request and
Response Objects"

■ void doPost(HttpServletRequest req, HttpServletResponse resp)

Implement code here to execute an HTTP POST request.

■ void doPut(HttpServletRequest req, HttpServletResponse resp)

Implement code here to execute an HTTP PUT request.

■ void doDelete(HttpServletRequest req,
 HttpServletResponse resp)

Executes an HTTP DELETE request.

■ String getServletInfo()

Retrieves information about the servlet, such as author and release date.

Also be aware of the following methods:

■ void service(HttpServletRequest req,
 HttpServletResponse resp)

This is the central method of a servlet. It receives HTTP requests and, by default,
dispatches them to the appropriate doXXX() methods that you have defined.
There is typically no need to override this method.

■ ServletConfig getServletConfig()

Retrieves the servlet configuration object, which contains initialization and startup
parameters.

Servlet Communication: Request and Response Objects
Servlet methods mentioned in the preceding section that handle HTTP
operations—doGet(), doPost(), doPut(), and doDelete()—take as input an

Key Components and APIs of the Servlet Model

1-6 Oracle Containers for J2EE Servlet Developer’s Guide

HTTP request object (an instance of a class that implements the
javax.servlet.http.HttpServletRequest interface, which extends the
javax.servlet.ServletRequest interface) and an HTTP response object (an
instance of a class that implements the
javax.servlet.http.HttpServletResponse interface, which extends the
javax.servlet.ServletResponse interface).

The request object provides information to the servlet regarding the HTTP request,
such as request parameter names and values, the name of the remote host that made
the request, and the name of the server that received the request. The response object
provides HTTP-specific functionality in sending the response, such as specifying the
content length and MIME type and providing the output stream.

Key Methods of the HttpServletRequest Interface
This section summarizes methods of interest for HTTP request objects. See "Using
HTML Forms and Request Parameters" on page 6-7 for examples of some of their uses.

The following methods are defined in the HttpServletRequest interface:

■ HttpSession getSession()

Returns (first creating, if necessary) an object representing the client session
associated with this request. See "What are Servlet Sessions (User Sessions) Used
For?" on page 1-12. You can optionally input the Boolean true or false to
specify whether you want to create a new session if one does not already exist.

■ Cookie[] getCookies()

Returns an array of cookie objects for the cookies, used for session tracking, that
were sent with this request. See "Using Cookies in Your Servlet" on page 3-10.

■ java.lang.StringBuffer getRequestURL()

Recreates the URL that was used for this request.

■ String getContextPath()

Returns the context path portion of the URL for this request. This corresponds to
the root path of the servlet context for the Web application. See "Summary of URL
Components" on page 2-3.

■ String getServletPath()

Returns the servlet path portion of the URL for this request. This is the portion that
results in the invocation of the particular servlet being requested, according to
configuration in the standard web.xml file.

■ String getRequestURI()

Returns a portion of the URL for this request, after the host and port and up to the
query string (if any). This is typically the context path and servlet path.

■ String getQueryString()

Returns the query string appended to the URL (if applicable), following the "?"
delimiter.

■ String getMethod()

Returns the HTTP method used with this request, such as GET, POST, or PUT.

■ String getProtocol()

Returns the protocol (typically HTTP) and version being used.

Key Components and APIs of the Servlet Model

Summary of What to Know About Servlets 1-7

The following methods are inherited from the ServletRequest interface:

■ String getParameter(String name)

Returns a string indicating the value of the request parameter specified by name
(or null if not found).

■ java.util.Enumeration getParameterNames()

Returns an enumeration object containing strings that indicate the names of all
request parameters for this request.

■ javax.servlet.ServletInputStream getInputStream()

Retrieves the body of the request in binary format.

■ java.io.BufferedReader getReader()

Retrieves the body of the request in character format.

■ String getContentType()

Returns a string indicating the MIME type for the body of this request (or null if
the MIME type is unknown).

■ void setCharacterEncoding(String charset)

Overrides the character encoding (MIME character set) that would otherwise be
used for interpreting the body and parameters of this request.

■ String getCharacterEncoding()

Returns a string indicating the character encoding used for interpreting the body
and parameters of this request.

■ RequestDispatcher getRequestDispatcher(String path)

Returns a request dispatcher, which is used as a wrapper for the resource at the
specified path. See "Dispatching to Other Servlets Through Includes and
Forwards" on page 6-12.

Key Methods of the HttpServletResponse Interface
This section summarizes methods of interest for HTTP response objects. See "Setting
Up the Response" on page 6-4 for further information.

The following methods are defined in the HttpServletResponse interface:

■ void sendRedirect(String location)

For redirects, specify the alternative location (URL) to which the client is being
redirected. (One reason for redirection might be load balancing, for example. Or
perhaps a document has moved from one URL to another.)

■ String encodeURL(String url)

For session tracking, when cookies are disabled, this is used in URL rewriting to
encode the specified URL with an ID for the session. It returns the encoded URL.
See "Using URL Rewriting for Session Tracking" on page 3-4.

■ String encodeRedirectURL(String url)

For redirects, this is equivalent to encodeURL().

■ void addCookie(javax.servlet.http.Cookie cookie)

For session tracking, when cookies are enabled, this adds the specified cookie to
the response. See "Using Cookies in Your Servlet" on page 3-10.

Key Components and APIs of the Servlet Model

1-8 Oracle Containers for J2EE Servlet Developer’s Guide

■ void sendError(int code)
void sendError(int code, String msg)

Send an error response, with a specified integer error code, to the client. You can
optionally specify a descriptive message as well.

The following methods are inherited from the ServletResponse interface:

■ javax.servlet.ServletOutputStream getOutputStream()

Returns a stream object that can be used for writing binary data into the response
to the client.

■ java.io.PrintWriter getWriter()

Returns a print writer object that can be used for writing character data into the
response to the client.

■ void setContentType(String type)

Specify a MIME type for the body of this response. You can optionally also specify
a character encoding (MIME character set). For example,
"text/html;charset=UTF-8".

■ String getContentType()

Returns a string indicating the MIME type for the body of this response. This
method also returns the character encoding (MIME character set) if one had been
specified.

■ void setCharacterEncoding(String charset)

Specify a character encoding for the body of this response. Alternatively, you can
set a character encoding through the setContentType() method. A setting in
setCharacterEncoding() overrides any character encoding set through
setContentType().

■ String getCharacterEncoding()

Returns a string indicating the character encoding for the body of this response.

Servlet Execution in the Servlet Container
Unlike a Java client program, a servlet has no static main() method. Therefore, a
servlet must execute under the control of an external container.

Servlet containers, sometimes referred to as servlet engines, execute and manage servlets.
The servlet container calls servlet methods and provides services that the servlet needs
while executing. A servlet container is usually written in Java and is either part of a
Web server (if the Web server is also written in Java) or is otherwise associated with
and used by a Web server. OC4J includes a fully standards-compliant servlet container.

The servlet container provides the servlet with easy access to properties of the HTTP
request, such as its headers and parameters. When a servlet is called, such as when it is
specified by URL, the Web server passes the HTTP request to the servlet container. The
container, in turn, passes the request to the servlet. In the course of managing a servlet,
a servlet container performs the following tasks:

■ It creates an instance of the servlet and calls its init() method to initialize it.

■ It constructs a request object to pass to the servlet. The request includes, among
other things:

– Any HTTP headers from the client

Key Components and APIs of the Servlet Model

Summary of What to Know About Servlets 1-9

– Parameters and values passed from the client (for example, names and values
of query strings in the URL)

– The complete URI of the servlet request

■ It constructs a response object for the servlet.

■ It invokes the servlet service() method, implemented in the HttpServlet
class. The service method dispatches requests to the servlet doGet() or
doPost() methods, depending on the HTTP header in the request (GET or POST).

■ It calls the destroy() method of the servlet to discard it, when appropriate, so
that it can be garbage collected. (For performance reasons, it is typical for a servlet
container to keep a servlet instance in memory for reuse, rather than destroying it
each time it has finished its task. It would be destroyed only for infrequent events,
such as Web server shutdown.)

Figure 1–1 shows how a servlet relates to the servlet container and to a client, such as a
Web browser.

Figure 1–1 Servlets and the Servlet Container

A servlet can use J2EE persistence with Oracle TopLink, a Java object-to-relational
persistence architecture that provides a mechanism for storing Java objects and
Enterprise Java Beans (EJBs) in relational databases and for converting between Java
Objects and XML documents (JAXB). For information about using TopLink to integrate

Key Components and APIs of the Servlet Model

1-10 Oracle Containers for J2EE Servlet Developer’s Guide

persistence and object-transformation into your applications, see Oracle TopLink
Developer’s Guide.

Servlet Configuration Objects
A servlet configuration object contains initialization and startup parameters for a servlet
and is an instance of a class that implements the javax.servlet.ServletConfig
interface. Such a class is provided with any J2EE-compliant Web server.

Obtaining a Servlet Configuration Object
A servlet can retrieve a servlet configuration object through the
getServletConfig() method of the servlet. This method is specified in the
javax.servlet.Servlet interface, with a default implementation in the
javax.servlet.http.HttpServlet class.

The servlet init() method takes a ServletConfig object as input, so if you
override the init() method, the servlet will have access to a servlet configuration
object that the servlet container creates and passes during servlet execution.

Key Servlet Configuration Methods
The ServletConfig interface specifies the following methods:

■ ServletContext getServletContext()

Retrieves a servlet context for the application. See the following section, "Servlet
Contexts: the Application Container".

■ String getServletName()

Retrieves the name of the servlet.

■ Enumeration getInitParameterNames()

Retrieves the names of the initialization parameters of the servlet, if any. The
names are returned in a java.util.Enumeration instance of String objects.
(The Enumeration instance is empty if there are no initialization parameters.)

■ String getInitParameter(String name)

Returns a String object containing the value of the specified initialization
parameter, or null if there is no parameter by that name.

Servlet Contexts: the Application Container
A servlet context is used to maintain information for all instances of a Web application
within any single JVM (that is, for all servlet and JSP page instances that are part of the
Web application). There is one servlet context for each Web application running within
a given JVM; this is always a one-to-one correspondence. You can think of a servlet
context as a container for a specific application.

Servlet Context Basics
Any servlet context is an instance of a class that implements the
javax.servlet.ServletContext interface, with such a class being provided with
any Web server that supports servlets.

A ServletContext object provides information about the servlet environment (such
as the name of the server) and allows sharing of resources between servlets in the
group, within any single JVM. (For servlet containers supporting multiple
simultaneous JVMs, implementation of resource-sharing varies.)

Key Components and APIs of the Servlet Model

Summary of What to Know About Servlets 1-11

A servlet context provides the scope for the running instances of the application.
Through this mechanism, each application is loaded from a distinct classloader and its
runtime objects are distinct from those of any other application. In particular, the
ServletContext object is distinct for an application, much as each HttpSession
object is distinct for each user of the application.

Since version 2.2 of the servlet specification, most implementations can provide
multiple servlet contexts within a single host, which is what allows each Web
application to have its own servlet context. (Previous implementations usually
provided only a single servlet context with any given host.)

Obtaining a Servlet Context
A servlet can retrieve a servlet context through the getServletContext() method
of a servlet configuration object. See "Servlet Configuration Objects" on page 1-10.

Key Servlet Context Methods
The ServletContext interface specifies methods that allow a servlet to
communicate with the servlet container that runs it, which is one of the ways that the
servlet can retrieve application-level environment and state information. Methods
specified in ServletContext include the following:

■ void setAttribute(String name, Object value)

Binds the specified object to the specified attribute name in the servlet context.
Using attributes, a servlet container can give information to the servlet that is not
otherwise provided through the ServletContext interface.

■ Object getAttribute(String name)

Returns the attribute with the given name, or null if there is no attribute by that
name. The attribute is returned as a java.lang.Object instance.

■ java.util.Enumeration getAttributeNames()

Returns a java.util.Enumeration instance containing the names of all
available attributes of the servlet context.

■ void removeAttribute(String attrname)

Removes the specified attribute from the servlet context.

■ String getInitParameter(String name)

Returns a string that indicates the value of the specified context-wide initialization
parameter, or null if there is no parameter by that name. This allows access to
configuration information that is useful to the Web application associated with this
servlet context.

■ Enumeration getInitParameterNames()

Returns a java.util.Enumeration instance containing the names of the
initialization parameters of the servlet context.

■ RequestDispatcher getRequestDispatcher(String path)

Note: For a servlet context, setAttribute() is a local operation
only. It is not intended to be distributed to other JVMs within a
cluster. (This is in accordance with the servlet specification.)

Key Components and APIs of the Servlet Model

1-12 Oracle Containers for J2EE Servlet Developer’s Guide

Returns a request dispatcher, which acts as a wrapper for the resource located at the
specified path. See "Dispatching to Other Servlets Through Includes and
Forwards" on page 6-12.

■ RequestDispatcher getNamedDispatcher(String name)

Returns a request dispatcher that acts as a wrapper for the specified servlet.

■ String getRealPath(String path)

Returns the real path, as a string, for the specified virtual path.

■ URL getResource(String path)

Returns a java.net.URL instance with a URL to the resource that is mapped to
the specified path.

■ String getServerInfo()

Returns the name and version of the servlet container.

■ String getServletContextName()

Returns the name of the Web application with which the servlet context is
associated, according to the <display-name> element of the web.xml file.

What are Servlet Sessions (User Sessions) Used For?
The HTTP protocol is stateless by design. This is fine for stateless servlets that simply
take a request, perform a few computations, output some results, and then in effect go
away. But most server-side applications must keep some state information and
maintain a dialogue with the client. The most common example of this is a shopping
cart application. A client accesses the server several times from the same browser and
visits several Web pages. The client decides to buy some of the items offered for sale at
the Web site and clicks the BUY ITEM buttons. If each transaction were being served
by a stateless server-side object, and the client provided no identification on each
request, it would be impossible to maintain a filled shopping cart over several HTTP
requests from the client. In this case, there would be no way to relate a client to a
server session, so even writing stateless transaction data to persistent storage would
not be a solution.

Session tracking is a mechanism to identify user sessions and appropriately tie all of a
user's requests to his or her session. This process is typically performed using cookies
or URL rewriting.

In the standard servlet API, each user session is represented by an instance of a class
that implements the javax.servlet.http.HttpSession interface.

See Chapter 3, "Understanding and Using Servlet Sessions" for details.

Servlet Thread Models
For a servlet in a nondistributable environment, a servlet container uses only one
servlet instance for each servlet declaration. In a distributable environment, a
container uses one servlet instance for each servlet declaration in each JVM. Therefore,
a servlet container, including the OC4J servlet container, generally processes
concurrent requests to a servlet by using multiple threads for multiple concurrent
executions of the central service() method of the servlet.

Servlet developers must keep this in mind, making provisions for simultaneous
processing through multiple threads and designing their servlets so that access to

Servlet Feature Table

Summary of What to Know About Servlets 1-13

shared resources is somehow synchronized or coordinated. See "Considerations for
Thread Models" on page 9-2 for information.

Servlet Feature Table
Table 1–1 summarizes servlet development features described in this document (some
of which have already been discussed), with cross-references for information. Features
added in the servlet 2.4 specification are noted.

Table 1–1 Servlet Features in the Current Release

Feature Information

Request and response
objects

"Servlet Communication: Request and Response Objects" on
page 1-5

Servlet container "Servlet Execution in the Servlet Container" on page 1-8

Servlet configuration objects "Servlet Configuration Objects" on page 1-10

Servlet contexts "Servlet Contexts: the Application Container" on page 1-10

Sessions Introduction in "What are Servlet Sessions (User Sessions) Used
For?" on page 1-12; details in Chapter 3, "Understanding and
Using Servlet Sessions"

Includes and forwards "Dispatching to Other Servlets Through Includes and Forwards"
on page 6-12

Servlet filters Introduction in "When to Use Filters for Pre-Processing and
Post-Processing" on page 6-16; details in Chapter 4,
"Understanding and Using Servlet Filters"

Note: The ability to use filters with include or forward targets
was added in the servlet 2.4 specification.

Event listeners Introduction in "When to Use Event Listeners for Servlet
Notification" on page 6-17; details in Chapter 5, "Understanding
and Using Event Listeners"

Note: Support for request listeners (as opposed to servlet context
or session listeners) was added in the servlet 2.4 specification.

Use of JDBC and data
sources

"Using JDBC in Servlets" on page 8-1

Use of EJBs "Overview of Enterprise JavaBeans" on page 8-8

Servlet Feature Table

1-14 Oracle Containers for J2EE Servlet Developer’s Guide

Deploying and Invoking Servlets 2-1

2
Deploying and Invoking Servlets

After being deployed, a servlet is invoked by OC4J when a request for the servlet
arrives from a client. The client request may come from a Web browser or a Java client
application, or from another servlet in the application using the request-forward or
request-include mechanism, or from a remote object on a server.

A servlet is requested through its URL mapping, which is according to how the servlet
is configured and deployed, with a portion of the URL (the servlet path) being
specified in the standard web.xml file, and another portion (the context path) being
determined either during deployment or according to the standard
application.xml file, depending on how you deploy.

The following sections cover servlet deployment and invocation:

■ Initial Considerations and OC4J Scenarios

■ Summary of URL Components

■ Deploying a Web Application to OC4J

■ Invoking a Servlet in OC4J

■ Deploying and Invoking the Simple Servlet Example

■ Preloading Servlets

Initial Considerations and OC4J Scenarios
Before discussing deployment and invocation of servlets in OC4J, we summarize some
initial considerations and scenarios:

■ A Brief Overview of OC4J Administration

■ OC4J in a Standalone Versus Oracle Application Server Environment

■ OC4J and Oracle Application Server Administration Tools

A Brief Overview of OC4J Administration
OC4J supports the following standards for deploying and managing applications in a
J2EE environment:

■ Java Management Extensions (JMX) 1.2 specification allows standard interfaces to be
created for managing resources, such as services and applications, in a J2EE
environment. The OC4J implementation of JMX provides a user interface that you
can use to completely manage an OC4J server and applications running within it.

■ Java 2 Platform, Enterprise Edition Management Specification (JSR-77) allows objects
known as MBeans (managed beans) to be created for runtime management of

Initial Considerations and OC4J Scenarios

2-2 Oracle Containers for J2EE Servlet Developer’s Guide

applications in a J2EE environment. In OC4J, you can directly access MBeans
through a System MBean Browser in Oracle Enterprise Manager 10g, but many of
their properties are exposed in a more user-friendly way through other features of
Enterprise Manager.

■ Java 2 Enterprise Edition Deployment API Specification (JSR-88) defines a standard
API for configuring and deploying J2EE applications and modules into a
J2EE-compatible environment. The OC4J implementation includes the ability to
create or edit a deployment plan containing the OC4J-specific configuration data
needed to deploy a component into OC4J.

A deployment plan is a client-side aggregation of all the configuration data needed to
deploy an archive into OC4J. You can edit a deployment plan during deployment,
using the deployment plan editor.

The OC4J deployment plan editor and System MBean Browser are exposed through
Oracle Enterprise Manager 10g Application Server Control, referred to as Application
Server Control. The user interface for this is the Application Server Control Console.
Additionally, for convenience, many parameters corresponding to MBeans properties,
including key properties relating to Web modules, are exposed through other pages of
the Application Server Control Console.

In general, avoid direct manipulation of OC4J MBeans or OC4J-specific XML
configuration files where possible. The XML files are updated automatically by OC4J
when you use the Application Server Control Console. For this reason, this document
contains relatively few examples of OC4J-specific XML configuration, although there
is reference information in Appendix B, "Web Module Configuration Files". There may
be deployment situations, however, where an orion-web.xml property is not
exposed through the Application Server Control Console. In these situations, directly
manipulating the XML file may be the only option.

For general information about OC4J deployment, configuration, and administration,
refer to the Oracle Containers for J2EE Deployment Guideand the Oracle Containers for
J2EE Configuration and Administration Guide. For more information about Application
Server Control, you can also refer to the introduction to administration tools in the
Oracle Application Server Administrator’s Guide.

OC4J in a Standalone Versus Oracle Application Server Environment
During development, it is typical to use OC4J by itself, outside an Oracle Application
Server environment. We refer to this as standalone OC4J (or, sometimes, as unmanaged
OC4J). In this scenario, OC4J can use its own Web listener and is not managed by any
external Oracle Application Server processes.

By contrast, a full Oracle Application Server environment (sometimes referred to as
managed OC4J), includes the use of Oracle HTTP Server as the Web listener, and the
Oracle Process Manager and Notification Server (OPMN) to manage the environment.

See the Oracle Containers for J2EE Configuration and Administration Guide for additional
information about Oracle Application Server versus standalone environments and
about the use of Oracle HTTP Server and OPMN with OC4J.

See the Oracle HTTP Server Administrator’s Guide for general information about Oracle
HTTP Server and the related mod_oc4j module. (Connection to the OC4J servlet
container from Oracle HTTP Server is through this module.) See the Oracle Process
Manager and Notification Server Administrator’s Guide for general information about
OPMN.

Summary of URL Components

Deploying and Invoking Servlets 2-3

OC4J and Oracle Application Server Administration Tools
In either an Oracle Application Server or standalone environment, you can deploy,
bind, configure, and administer your J2EE applications in OC4J through the
Application Server Control, introduced in "A Brief Overview of OC4J Administration"
on page 2-1. This is generally the preferred way to manage your applications, and is
therefore emphasized in this document. You can deploy an application through the
Application Server Control Console "Deploy" feature in the Applications tab that is
accessible from the OC4J Home page. Application Server Control Console pages for
Web module configuration are discussed in Appendix A, "Web Module
Administration".

In standalone OC4J, you also have the option of using the command-line OC4J
admin_client.jar tool to deploy and bind your J2EE applications.

Alternatively, if you use the Oracle JDeveloper tool to develop your application, you
can use it to deploy and bind the application as well.

Also, in some cases and particularly during development, it may be necessary to
configure aspects of an OC4J application through direct manipulation of OC4J-specific
XML files. For this reason, reference documentation for these files is included in the
OC4J documentation set. Elements and attributes of the
global-web-application.xml (global) and orion-web.xml (application-level)
OC4J-specific Web module configuration files are documented in Appendix B, "Web
Module Configuration Files".

See the Oracle Containers for J2EE Deployment Guide and Oracle Containers for J2EE
Configuration and Administration Guide for general information about using the
Application Server Control Console or admin_client.jar tool to deploy and
manage your applications. There is also extensive online help for the Application
Server Control Console.

Summary of URL Components
Before discussing servlet deployment and invocation, it is useful to summarize the
components of a URL and what determines their values. Here is the generic construct
(though note that pathinfo is usually empty):

protocol://host:port/contextpath/servletpath/pathinfo

You can also have additional information following any delimiters, such as request
parameter settings following a question mark ("?") delimiter:

protocol://host:port/contextpath/servletpath/pathinfo?param1=value1...

Table 2–1 describes the components of the generic construct.

Summary of URL Components

2-4 Oracle Containers for J2EE Servlet Developer’s Guide

Table 2–1 URL Components

Component Description

Protocol The network protocol to be used when invoking the Web application.
General examples are HTTP, HTTPS, FTP, or ORMI (for EJBs). In a
standalone environment, OC4J typically uses HTTP protocol directly
through its own Web listener. In an Oracle Application Server
environment, Oracle HTTP Server is the Web listener and it uses AJP
(Apache JServ Protocol) to communicate to OC4J, although AJP is
invisible to the end user.

Protocol for an OC4J Web site is reflected in the protocol attribute
of the <web-site> element in the Web site XML file, such as
(typically) default-web-site.xml. Use protocol="http" for
HTTP or protocol="ajp13" for AJP. (These should be set
appropriately by default.)

Host The network name of the server that the Web application is running
on. If the Web client is on the same system as the application server,
you can use localhost. Otherwise, use the host name (as defined in
/etc/hosts on a UNIX system, for example), such as:

www.example.com

Port The server port that the Web server listens on. If a URL does not
specify a port, most browsers assume port 80 for HTTP protocol or
port 443 for HTTPS.

The port number for an OC4J Web site is reflected in the port
attribute of the <web-site> element in the Web site XML file. For
standalone OC4J, this is typically the default-web-site.xml file
and the default port is 8888. For an Oracle Application Server
environment, this is typically the default-web-site.xml file, but
depending on the port setting, the actual port number may be
determined by OPMN. For each port, there must be one associated
protocol, according to the <web-site> element protocol attribute.

Refer to the Oracle Containers for J2EE Configuration and Administration
Guide for general information about OC4J Web site configuration and
Web site XML files.

Summary of URL Components

Deploying and Invoking Servlets 2-5

Context path
(sometimes referred
to as context root)

The designated root path for the servlet context. When you deploy an
EAR file using the Application Server Control Console, this is
according to a <context-root> element in the standard
application.xml file within the EAR file, as shown in "Create the
application.xml File" on page 2-14.

When you deploy a WAR file using the Application Server Control
Console, you can specify the context path during deployment. When
you deploy an EAR file using admin_client.jar, you specify the
context path when you bind any Web module that is part of the
application. (See the Oracle Containers for J2EE Deployment Guide for
information.)

In OC4J, the specified context path is reflected in the setting of the
root attribute of the <web-app> element (a subelement of
<web-site>) for the applicable Web module in the Web site XML
file. (Each context is associated with a directory path in the server file
system.)

The <web-app> element also reflects the J2EE application name (and
EAR file name) you specify during deployment, through its
application attribute, and the Web module name (and WAR file
name) you specify, through its name attribute. The J2EE application
name, Web module name, and context path are all mapped together
in this way. Here is an example:

<web-app application="ojspdemos" name="ojspdemos-web"
 root="/ojspdemos" />

When you deploy a WAR file by itself, it is associated with the OC4J
default J2EE application.

Servlet path The designated path, beyond the context path, for the particular
servlet you want to invoke. Specify the servlet path through standard
mappings in the Web module web.xml file.

A servlet class is mapped to a servlet name of your choosing through
<servlet-class> and <servlet-name> subelements of a
<servlet> element. The servlet name is mapped to a servlet path
through <servlet-name> and <url-pattern> subelements of a
<servlet-mapping> element. (You can map a single servlet class
to multiple servlet names and multiple servlet paths.) Here is an
example:

<web-app>
 ...
 <servlet>
 <servlet-name>logout</servlet-name>
 <servlet-class>
 oracle.security.jazn.samples.http.Logout
 </servlet-class>
 </servlet>
 ...
 <servlet-mapping>
 <servlet-name>logout</servlet-name>
 <url-pattern>/logout/*</url-pattern>
 </servlet-mapping>
 ...
</web-app>

Table 2–1 (Cont.) URL Components

Component Description

Summary of URL Components

2-6 Oracle Containers for J2EE Servlet Developer’s Guide

Consider the following sample URL:

http://www.example.com:port/foo/bar/mypath/myservlet/info1/info2?user=Amy

In the process of invoking a servlet according to a URL supplied by a client browser,
the servlet container takes the following steps:

1. It examines everything in the URL after the port number, then examines its own
configuration settings (such as in a Web site XML file) for recognized context
paths, then determines what part of the URL is the context path.

Assume for this example that /foo/bar is the context path.

2. It examines everything in the URL after the context path, then examines the servlet
mappings in the web.xml file for recognized servlet paths, then determines what
part of the URL is the servlet path.

At this point, the servlet can be invoked. The servlet container does not use any
information beyond the servlet path.

Assume for this example that /mypath/myservlet is the servlet path.

3. If anything remains in the URL after the servlet path and preceding any URL
delimiters (such as "?" in this example, which delimits request parameter settings),
that portion of the URL is taken as extra information and is passed to the servlet
through the HTTP request object.

Assume for this example that /info1/info2 is the extra path information.

As shown in this example, the context path, servlet path, and any path information can
all be "compound" components, with one or more forward-slashes between parts. In
many cases, the context path may be simple, such as just foo, and the servlet path
may also be simple, such as just myservlet, and any path information may be simple
as well. But it is impossible to know by just looking at a URL what part of it is the
context path, what part is the servlet path, and what part is extra path information (if
any). You must examine the configuration in the Web site XML file and web.xml file
to determine this.

Path information (This is typically empty.) Beyond the context path and servlet path, a
URL can contain additional information that is supplied to the servlet
through the HTTP request object. Such information is presumably
understood by the servlet. This information is separate from any
request parameter settings or other URL components that follow
delimiters such as question marks. Such delimiters would follow any
path information.

Note: The name specified in a <servlet-name> element is the
name you input to the servlet context getNamedDispatcher()
method if you want a request dispatcher for that servlet.

Table 2–1 (Cont.) URL Components

Component Description

Deploying a Web Application to OC4J

Deploying and Invoking Servlets 2-7

Deploying a Web Application to OC4J
In OC4J, according to the J2EE specification, you deploy a J2EE application as an EAR
file. The EAR file contents include zero or more WAR files for Web applications
(combinations of servlets and JSP pages) that are part of the overall J2EE application.

If you want to deploy a Web application only, you can either package the WAR file
inside an EAR file, effectively defining a J2EE wrapper application, or you can deploy
the WAR file directly.

The following sections, after a review of standard application structure, discuss the
general steps for each approach:

■ Application Structure

■ Summary of General Steps to Deploy a WAR File

■ Summary of General Steps to Deploy an EAR File

Note that this discussion does not go into detail—it is intended only as a summary. See
the Oracle Containers for J2EE Deployment Guide for specific information and procedures
for deploying to OC4J.

Application Structure
The standard Web application structure, as specified in the Java Servlet Specification, is
as follows:

root_directory/
 Static files (for example, index.html)
 JSP pages
 WEB-INF/
 web.xml
 classes/
 servlet classes (directory substructure according to Java package)
 lib/
 JAR files (libraries and dependency classes)

This structure is reflected in the structure of a standard WAR file, used to deploy a
Web application. The standard web.xml file, also specified in the Java Servlet
Specification, is where you configure servlets and JSP pages (among other things). See
"Summary of General Steps to Deploy a WAR File", which follows shortly, for
additional information about WAR files and web.xml.

Notes:

■ Cookie names are based on the host name, port number, and
path (just the context path by default, but possibly including
the servlet path as well).

■ You can retrieve the context path, servlet path, and path
information through the getContextPath(),
getServletPath(), and getPathInfo() methods of the
HTTP request object.

Deploying a Web Application to OC4J

2-8 Oracle Containers for J2EE Servlet Developer’s Guide

The standard J2EE application structure, as specified in the Java 2 Enterprise Edition
Specification, is a superset of the Web application structure, as follows:

root_directory/
 META-INF/
 application.xml
 WebModule/
 Static files (for example, index.html)
 JSP pages
 WEB-INF/
 web.xml
 classes/
 servlet classes (directory substructure according to Java package)
 lib/
 JAR files (libraries and dependency classes)
 EJBModule/...
 ClientModule/...
 ResourceAdapterModule/...

This structure is reflected in the structure of a standard EAR file, used to deploy a J2EE
application and the WAR and other archive files that it contains. The standard
application.xml file, also specified in the Java 2 Enterprise Edition Specification, is
where you configure a J2EE application and its modules, including Web modules. The
EAR file contains any WAR files, EJB JAR files, application client JAR files, and
resource adapter RAR files containing modules for the application. See "Summary of
General Steps to Deploy an EAR File", which follows shortly, for additional
information about EAR files and application.xml.

Summary of General Steps to Deploy a WAR File
To deploy a Web application directly as a WAR file (as opposed to putting the WAR
file into a J2EE EAR file), use the following general steps.

1. Create a standard web.xml file to configure the Web application. A web.xml file
is required within a WAR file. Within the top-level <web-app> element, use
<servlet> and <servlet-mapping> subelements to configure servlets and JSP
pages.

Map a servlet class to a URL servlet path by using the <servlet-name> and
<servlet-class> subelements of a <servlet> element, and the
<servlet-name> and <url-pattern> subelements of a <servlet-mapping>

Note: For OC4J-specific Web module settings, you can include an
orion-web.xml under /WEB-INF along with the web.xml file.
Alternatively, you can let OC4J create the orion-web.xml file
automatically and use the Application Server Control Console for
OC4J-specific settings (which are then reflected in orion-web.xml).

Note: For OC4J-specific J2EE application settings, it is permissible to
include an orion-application.xml file under /META-INF along
with the standard application.xml file. But it is more typical to let
OC4J create the orion-application.xml file automatically and to
use the Application Server Control Console for OC4J-specific
settings (which are then reflected in orion-application.xml). See
the Oracle Containers for J2EE Developer’s Guide for information about
the orion-application.xml file.

Deploying a Web Application to OC4J

Deploying and Invoking Servlets 2-9

element. The name is of your choosing but should be logical; its purpose is simply
to map the servlet class to the servlet path.

<web-app>
...
 <servlet>
 <servlet-name>servletname</servlet-name>
 <servlet-class>package.Classname</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>servletname</servlet-name>
 <url-pattern>servletpath</url-pattern>
 </servlet-mapping>
...
</web-app>

2. Create a WAR file to contain your Web application components and web.xml file,
from the root directory of a directory structure that parallels the Web application
structure shown in "Application Structure" on page 2-7.

3. Deploy the WAR file to OC4J. If you use the Application Server Control Console
"Deploy" feature (available from the Applications tab that is accessible from the
OC4J Home page), this includes the opportunity to supply or create, and
optionally edit, a standard JSR-88-compliant deployment plan.

4. Bind the Web application. This is the process that associates the Web application
with an OC4J Web site, and associates a URL context path to use in accessing the
Web application. When you use the Application Server Control Console to deploy
a WAR file, binding is included in the deployment steps and you have the
opportunity to specify the context path.

Summary of General Steps to Deploy an EAR File
To deploy a Web application as a WAR file within an EAR file, as opposed to
deploying the WAR file directly, use the following steps.

1. Create a web.xml file and WAR file for the Web application, as described in the
preceding section, "Summary of General Steps to Deploy a WAR File".

2. Create a standard application.xml file, which configures a J2EE application.
An application.xml file is required within an EAR file. In particular, map the
Web application you are deploying to a URL context path—this is where
Application Server Control obtains context path information, which is
subsequently written to the Web site XML file.

Within a <web> element, use a <web-uri> subelement to specify the WAR file
name, together with a <context-root> subelement to specify the context path.

<application>
...
 <module>
 <web>

Note: You cannot configure parameters that would correspond to an
orion-application.xml file when you deploy a standalone WAR
file, because there can be no orion-application.xml file within a
WAR file. You would have to package the WAR file in an EAR file to
configure such parameters. See "Application Structure" on page 2-7 for
related information.

Invoking a Servlet in OC4J

2-10 Oracle Containers for J2EE Servlet Developer’s Guide

 <web-uri>warname.war</web-uri>
 <context-root>contextpath</context-root>
 </web>
 </module>
...
</application>

3. Create an EAR file to contain your application components and
application.xml file, from the root directory of a directory structure that
parallels the J2EE application structure shown in "Application Structure" on
page 2-7.

4. Deploy the EAR file to OC4J. If you use the Application Server Control Console
"Deploy" feature (available from the Applications tab that is accessible from the
OC4J Home page), this includes the opportunity to supply or create, and
optionally edit, a standard JSR-88-compliant deployment plan.

5. Bind any Web application to be invoked. This is the process that associates the
Web application with an OC4J Web site, and associates a URL context path to use
in accessing the Web application. When you use the Application Server Control
Console to deploy an EAR file, binding of a Web application is included in the
deployment steps, and the context path is according to the standard
application.xml file that you provided in the EAR file, as noted in the
preceding text.

Invoking a Servlet in OC4J
This section discusses how to invoke a servlet in a standalone OC4J environment
versus an Oracle Application Server environment, and covers special OC4J features for
invoking a servlet by class name in a development or testing scenario:

■ Invoking a Servlet in a Standalone OC4J Environment

■ Invoking a Servlet by Class Name During OC4J Development

■ Invoking a Servlet in an Oracle Application Server Environment

Invoking a Servlet in a Standalone OC4J Environment
In a standalone OC4J environment, a Web site uses HTTP protocol directly through the
OC4J Web listener, without going through the Oracle HTTP Server, and is configured
according to settings in the default-web-site.xml file. (This is the typical name,
but Web site XML file names are according to settings in the server.xml file and can
be changed as desired.)

When a servlet is requested, the OC4J servlet container interprets the URL as described
in "Summary of URL Components" on page 2-3, which also discusses considerations in
how the context path and servlet path are determined. By default in standalone OC4J,
the port is 8888, which is used for many examples in this document (given that it is a
developer's guide).

If "/mypath" is the context path and "/myservlet" is the servlet path, for example,
you will invoke the servlet with a URL such as the following:

http://www.example.com:8888/mypath/myservlet

Invoking a Servlet in OC4J

Deploying and Invoking Servlets 2-11

Invoking a Servlet by Class Name During OC4J Development
For a development or testing scenario in standalone OC4J, there is a convenient
mechanism for invoking a servlet by class name. For security reasons, use this
mechanism only while developing or testing your application.

With a true setting of the OC4J system property http.webdir.enable (where
false is the default), the servlet-webdir attribute in the <orion-web-app>
element of the global-web-application.xml file or orion-web.xml file defines
a special URL component used to invoke servlets by class name. This URL component
follows the context path in the URL, and anything following this URL component is
assumed to be a servlet class name, including applicable package information. The
servlet class name appears instead of a servlet path in the URL. (Technically, the
servlet-webdir value is the servlet path and acts as a servlet itself, and the class
name of the servlet you wish to execute is taken as path information.)

OC4J will look for the class under the /WEB-INF/classes directory (in a
subdirectory according to the package) or in a JAR file in the /WEB-INF/lib directory
of the Web application associated with the context path.

Generally speaking, for any given application in a scenario with the true setting of
http.webdir.enable, OC4J behavior for invocation by class name is determined by
the servlet-webdir setting in the orion-web.xml file for that application, if there
is a setting. But note the following:

■ Any setting of servlet-webdir in the global-web-application.xml file
acts as a default value (as is true with configuration settings in
global-web-application.xml in general). If there is no servlet-webdir
setting in global-web-application.xml, however, then the default value is
"" (empty quotes). This setting disables invocation by class name. The default
value is used in the event that orion-web.xml is not included with the
application deployment, or does not have a servlet-webdir setting.

■ You can disable servlet invocation by class name in either of two ways:

– Use the default false value of the system property http.webdir.enable.
This results in any servlet-webdir setting being ignored. (See the Oracle
Containers for J2EE Configuration and Administration Guide for general
information about OC4J system properties.)

– Set a servlet-webdir value of "" (empty quotes), either through
global-web-application.xml or orion-web.xml.

The servlet-webdir attribute is also discussed in "<orion-web-app>" on page B-16.

Assuming a context path of "/mypath" and a setting of
servlet-webdir="/servlet/", the following URL invokes the servlet
foo.bar.SessionServlet by its class name:

Notes:

■ You can set servlet-webdir (servletWebdir) through the
Application Server Control deployment plan editor.

■ You can use the invocation by class name mechanism with the
OC4J default Web application by placing the class under the
j2ee/home/default-web-app/WEB-INF/classes directory
and using the context path of the default Web application ("/" by
default) in the URL.

Deploying and Invoking the Simple Servlet Example

2-12 Oracle Containers for J2EE Servlet Developer’s Guide

http://www.example.com:8888/mypath/servlet/foo.bar.SessionServlet

Invoking a Servlet in an Oracle Application Server Environment
In an Oracle Application Server environment, OC4J is accessed through the Oracle
HTTP Server, which uses AJP protocol to communicate to OC4J. (AJP is invisible to the
end user.) A Web site is configured according to settings in the
default-web-site.xml file. (This is the typical name, but Web site XML file names
are according to settings in the server.xml file and can be changed as desired.)

When a servlet is requested, the OC4J servlet container interprets the URL as described
in "Summary of URL Components" on page 2-3, which also discusses considerations in
how the port, context path, and servlet path are determined.

If "/mypath" is the context path and "/myservlet" is the servlet path, for example,
you will invoke the servlet with a URL such as the following (with an appropriate port
number):

http://www.example.com:port/mypath/myservlet

Deploying and Invoking the Simple Servlet Example
In this section, we deploy and invoke the servlet shown in "Simple Servlet Example"
on page 6-5. First we deploy it directly as a WAR file, then as a WAR file within an
EAR file.

Deploy the Servlet Example as a WAR File
In this section, we use the following steps, first outlined in "Summary of General Steps
to Deploy a WAR File" on page 2-8, to deploy the simple servlet example directly as a
WAR file:

1. Create the web.xml File

2. Create the WAR File

3. Deploy the WAR File and Bind the Web Application

See "Invoke the Servlet Example" on page 2-15 for execution of the servlet, and for how
some of the deployment specifications are reflected in the URL of the servlet.

Create the web.xml File
Here is a web.xml file for the simple servlet example. The <servlet-class>
element reflects the package name and class name specified in HelloWorld.java,
shown in "Write the Sample Code" on page 6-6. The <url-pattern> element
specifies myhello as the servlet path portion of the URL to use in invoking the servlet.
The servlet name maps the class name to the servlet path.

<?xml version="1.0"?>
<!DOCTYPE web-app (doctype...)>
<web-app>
 <servlet>
 <servlet-name>hello</servlet-name>

Important: Allowing the invocation of servlets by class name
presents a significant security risk. Do not configure OC4J to
operate in this mode in a production environment. See "Best
Practices for Security" on page 9-1 for information.

Deploying and Invoking the Simple Servlet Example

Deploying and Invoking Servlets 2-13

 <servlet-class>mytest.HelloWorld</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>hello</servlet-name>
 <url-pattern>myhello</url-pattern>
 </servlet-mapping>
</web-app>

Create the WAR File
Here is the directory structure for the simple servlet example, according to the
standard Web application structure:

root_directory/
 WEB-INF/
 web.xml
 classes/
 mytest/
 HelloWorld.class
 HelloWorld.java

The WAR file must reflect this structure. If you want to create the WAR file manually,
you can use the JAR utility, with the following command, while your current directory
is the root directory (assume % is the system prompt):

% jar cvf MyHelloWorld.war .

This generates the WAR file MyHelloWorld.war, with the following contents and
structure (where the Manifest.mf file and META-INF directory are created
automatically):

META-INF/Manifest.mf
WEB-INF/web.xml
WEB-INF/classes/mytest/HelloWorld.class
WEB-INF/classes/mytest/HelloWorld.java

The WAR file name should reflect the key Web component name. In this case, it reflects
the class name of the servlet example.

Deploy the WAR File and Bind the Web Application
Deploy the WAR file, typically through Application Server Control "Deploy" feature
(available from the Applications tab, which is accessible from the OC4J Home page).

 In the Application Server Control Console:

1. Specify the WAR file.

2. Instruct Application Server Control to create a new deployment plan.

3. Specify an application (Web application) name, which should reflect the WAR file
name.

4. Specify the parent application (the OC4J default application by default).

5. Specify the Web site for binding the Web application, such as
default-web-site.

6. Specify the context path (or use the default, derived from the WAR file name). For
this example, specify "/mycontext".

Deploying and Invoking the Simple Servlet Example

2-14 Oracle Containers for J2EE Servlet Developer’s Guide

Deploy the Servlet Example as an EAR File
In this section, we use the following steps, first outlined in "Summary of General Steps
to Deploy an EAR File" on page 2-9, to deploy the simple servlet example as a WAR
file within an EAR file:

1. Create the web.xml File and WAR file.

2. Create the application.xml File

3. Create the EAR File

4. Deploy the EAR File and Bind the Contained Web Application

See "Invoke the Servlet Example" on page 2-15 for execution of the servlet, and for how
some of the deployment specifications are reflected in the URL of the servlet.

Create the web.xml File and WAR file.
First, create the web.xml file and WAR file, as you would if you were deploying the
WAR file directly. This is described in "Create the web.xml File" on page 2-12 and
"Create the WAR File" on page 2-13.

Create the application.xml File
Here is an application.xml file for the simple servlet example, to use in deploying
the servlet in a WAR file within an EAR file. When you use the Application Server
Control Console to deploy, this is where the context path is determined; then it is
subsequently written to the Web site XML file. The <web-uri> element indicates the
name of the WAR file. The <context-root> element ties the Web application of the
WAR file (in this case, the servlet example) to the desired URL context path,
/mycontext.

<?xml version = '1.0' encoding = 'UTF-8'?>
<!DOCTYPE web-app (doctype...)>
<application>
 <module>
 <web>
 <web-uri>MyHelloWorld.war</web-uri>
 <context-root>/mycontext</context-root>
 </web>
 </module>
</application>

Create the EAR File
Before creating the EAR file, follow these steps to prepare your directory structure:

1. From your desired root directory, create a META-INF subdirectory.

Note: If you use admin_client.jar instead of the Application
Server Control Console, deploying and binding are separate steps,
and you specify the context path when you bind. See the Oracle
Containers for J2EE Deployment Guide for information.

Note: When you use admin_client.jar to deploy an EAR file
and bind a contained Web application, you specify the context path
directly when you bind the Web application.

Deploying and Invoking the Simple Servlet Example

Deploying and Invoking Servlets 2-15

2. Place the application.xml file in META-INF, according to the standard J2EE
application structure.

3. Place the WAR file in the root directory.

This results in the following directory structure:

root_directory/
 META-INF/
 application.xml
 MyHelloWorld.war

If you want to create the EAR file manually, you can use the JAR utility, with the
following command, while your current directory is the root directory (assume % is the
system prompt):

% jar cvf MyHelloWorld.ear .

This generates the EAR file MyHelloWorld.ear, with the following contents and
structure (where the Manifest.mf file is created automatically):

MyHelloWorld.war
META-INF/application.xml
META-INF/Manifest.mf

Deploy the EAR File and Bind the Contained Web Application
Deploy the EAR file, typically through the Application Server Control "Deploy"
feature (available from the Applications tab, which is accessible from the OC4J Home
page).

In the Application Server Control Console:

1. Specify the EAR file.

2. Instruct Application Server Control to create a new deployment plan.

3. Specify a J2EE application name, which should reflect the EAR file name.

4. Specify the parent application (the OC4J default application by default).

5. Specify the Web site for binding the Web application, such as
default-web-site.

Invoke the Servlet Example
Given the WAR file deployment or EAR file deployment shown previously (both of
which specify the same servlet path and context path), invoke the servlet as follows,
specifying the appropriate host name. The URL here assumes an OC4J port number of
8888, which is the default for OC4J in a standalone environment.

http://www.example.com:8888/mycontext/myhello

The servlet path, myhello, is according to the web.xml file you provided during
deployment. The context path, /mycontext, is according to either the
application.xml file or according to your specification in binding the Web

Note: If you use admin_client.jar instead of the Application
Server Control Console, deploying an EAR file and binding a
contained Web application are separate steps. See the Oracle Containers
for J2EE Deployment Guide for information.

Preloading Servlets

2-16 Oracle Containers for J2EE Servlet Developer’s Guide

application, as discussed earlier. ("Summary of URL Components" on page 2-3
includes discussion of context paths.)

Here is the output of the servlet:

Preloading Servlets
Typically, the servlet container instantiates and loads a servlet class when it is first
requested, such as by direct request through the browser, or through an include or
forward. However, if you want any servlets to start as soon as the server starts, you
can arrange for them to be preloaded through settings in the server.xml file, the
Web site XML file (such as default-web-site.xml), and the web.xml file.
Preloaded servlets are loaded and initialized when the OC4J server starts up or when
the Web application is deployed or redeployed.

Preloading requires the following steps:

1. Verify that the relevant <application> element in the server.xml file has the
attribute setting start="true". OC4J inserts this setting by default when you
deploy an application.

2. Specify the attribute setting load-on-startup="true" in the relevant
<web-app> subelement of the <web-site> element of the Web site XML file.
(See the Oracle Containers for J2EE Configuration and Administration Guide for
information about OC4J Web site XML files.)

3. For any servlet that you want to preload, there must be a <load-on-startup>
subelement under the <servlet> element in the web.xml file for the Web
module.

Table 2–2 explains the behavior of the <load-on-startup> element in web.xml.

Table 2–2 File web.xml <load-on-startup> Behavior

Value Range Behavior

Less than zero (<0)

For example:

<load-on-startup>-1</load-on-startup>

Servlet is not preloaded.

Preloading Servlets

Deploying and Invoking Servlets 2-17

Greater than or equal to zero (>=0)

For example:

<load-on-startup>1</load-on-startup>

Servlet is preloaded. The order of its
loading, with respect to other
preloaded servlets in the same Web
application, is according to the
load-on-startup value, lowest number
first. (For example, 0 is loaded before
1, which is loaded before 2.)

Empty element

For example:

<load-on-startup/>

The behavior is as if the
load-on-startup value is
Integer.MAX_VALUE, ensuring that
the servlet is loaded after any servlets
with load-on-startup values greater
than or equal to zero.

Note: OC4J supports the specification of startup classes and
shutdown classes, described in detail in the Oracle Containers for J2EE
Developer’s Guide. Startup classes are designated through the
<startup-classes> element of the server.xml file and are
called immediately after OC4J initializes. Shutdown classes are
designated through the <shutdown-classes> element of
server.xml and are called immediately before OC4J terminates.

Be aware that startup classes are called before any preloaded
servlets.

Table 2–2 (Cont.) File web.xml <load-on-startup> Behavior

Value Range Behavior

Preloading Servlets

2-18 Oracle Containers for J2EE Servlet Developer’s Guide

Understanding and Using Servlet Sessions 3-1

3
Understanding and Using Servlet Sessions

Servlet sessions, used to track state information for users over multiple requests and
responses, were introduced in "What are Servlet Sessions (User Sessions) Used For?"
on page 1-12. The following sections provide details and examples, including use of
session attributes and cookies:

■ Overview of Session Tracking

■ Using Session Tracking in OC4J

■ Using a Session Object in Your Servlet

■ Using Cookies in Your Servlet

■ Canceling a Session

Overview of Session Tracking
The OC4J servlet container, in compliance with the servlet specification, implements
session tracking through HTTP session objects, which are instances of a class that
implements the javax.servlet.http.HttpSession interface. (Such a class is
provided by the OC4J servlet container.) When a servlet creates an HTTP session
object, the client interaction is considered to be stateful.

You can think of a session object as a dictionary that stores values (Java objects)
together with their associated keys, or names (Java strings). Each name/value pair
constitutes a session attribute.

The following subsections discuss session objects and other session-tracking features:

■ Session Objects

■ Session IDs

■ Cookies and Persistent Session Data

■ When to Use Cookies Versus Session Attributes

Session Objects
A servlet uses the getSession() method of the HTTP request object to retrieve or
create an HTTP session object. This method takes a Boolean argument to specify
whether a new session object should be created for the client if one does not already
exist within the application. You can use attributes of the session object to store and
retrieve data related to the user session, through the setAttribute() and
getAttribute() methods. See "Using a Session Object in Your Servlet" on page 3-5.

Using Session Tracking in OC4J

3-2 Oracle Containers for J2EE Servlet Developer’s Guide

You cannot use session objects to share data between applications, nor can you use
them to share data between different clients of the same application. There is one
HTTP session object for each client in each application.

Session IDs
In order to maintain a mapping between a particular session and the appropriate
session object, so that it can properly access information for the current session, OC4J
generates a unique session ID for each session. When a stateful servlet (essentially, a
servlet that has created a session object) returns a response to the client, the session ID
generated by OC4J is included in the response. If cookies are enabled, OC4J uses a
session ID cookie to accomplish this. See "How OC4J Can Use Cookies for Session
Tracking" on page 3-3.

If cookies are disabled, the session ID is communicated through URL rewriting, and
you are required to call the encodeURL() method (or the encodeRedirectURL()
method, for includes or forwards) of your HTTP response object. See "Using URL
Rewriting for Session Tracking" on page 3-4.

Cookies and Persistent Session Data
To make session data persistent, you can store it in a database if you need the
protection, transactional safety, and backup features that a database offers. For smaller
amounts of data, where database functionality is not required, you can create and use
your own cookies, or perhaps use the file system or other remote objects.

A cookie has a name and a single associated value, and is stored as an attribute of the
HTTP request and response headers. See "Using Cookies in Your Servlet" on page 3-10.

When to Use Cookies Versus Session Attributes
Session data is typically stored and manipulated through attributes of the session
object, but for small amounts of data, particularly information that you want to be
persistent, you have the option of creating and using cookies instead. When to use
cookies instead of session attributes is a matter of preference and intent, but consider
the following:

■ Cookies are communicated back and forth between the client and server in the
HTTP requests and responses, while a session object remains in the server. It is
obviously inefficient to move large amounts of data back and forth between the
client and server, so cookies should be used only for small amounts of data.

■ Because cookies travel back and forth over the network or Internet, they are
generally less secure than session objects.

One philosophy, for example, might be to use session attributes for business-related
data, and cookies for presentation-related data. A cookie can indicate information,
such as information about the user, that tells the servlet what to display or how to
display it, and does not tend to change between subsequent sessions of the same user.

Using Session Tracking in OC4J
The following sections describe key OC4J features for session tracking:

■ Configuring Session Tracking and Enabling or Disabling Cookies in OC4J

■ How OC4J Can Use Cookies for Session Tracking

■ Using URL Rewriting for Session Tracking

Using Session Tracking in OC4J

Understanding and Using Servlet Sessions 3-3

■ Session Tracking Through Secured Connections

Configuring Session Tracking and Enabling or Disabling Cookies in OC4J
OC4J performs session tracking according to settings in the <session-tracking>
element of the global-web-application.xml or orion-web.xml file.

The servlet container first attempts to accomplish session tracking through cookies. If
cookies are disabled, the server can maintain session tracking only through URL
rewriting, through the encodeURL() method of the response object, or the
encodeRedirectURL() method for forwards or includes. You must include the
encodeURL() or encodeRedirectURL() calls in your servlet if cookies may be
disabled. See "Using URL Rewriting for Session Tracking" on page 3-4.

Cookies are enabled by default, as reflected by the setting cookies="enabled" in
<session-tracking>. A setting of cookies="disabled" disables cookies:

<session-tracking cookies="disabled" ... >
 ...
</session-tracking>

You can also designate one or more session tracker servlets, according to settings of
<session-tracker> subelements of <session-tracking>. Session trackers are
useful for logging information, for example. You must define any session trackers in
orion-web.xml, not global-web-application.xml, because a
<session-tracker> element points to a servlet that is defined within the same
application. A session tracker is invoked as soon as a session is created; specifically, at
the same time as the invocation of the sessionCreated() method of an HTTP
session listener, which is an instance of a class that implements the
javax.servlet.http.HttpSessionListener interface. See Chapter 5,
"Understanding and Using Event Listeners" for information about session listeners.

Also see "<session-tracking>" on page B-27 and "<session-tracker>" on page B-26.

How OC4J Can Use Cookies for Session Tracking
If cookies are enabled, OC4J uses session tracking cookies as follows:

1. With the first response to a servlet after a session is created, the servlet container
sends a cookie with a session ID back to the client, often along with a small
amount of other useful information (all less than 4 KB). The container sends the
cookie, named JSESSIONID, in an HTTP Set-Cookie response header.

2. Upon each subsequent request from the same Web client session, the client sends
the cookie back to the server as part of the request, in an HTTP Cookie request
header, and the server uses the cookie value to look up session state information to
pass to the servlet.

3. With subsequent responses, the container sends the updated cookie back to the
client.

Note: You can explicitly enable or disable cookies through the
Application Server Control deployment plan editor
sessionTracking property, as discussed in the Oracle Containers for
J2EE Deployment Guide.

Using Session Tracking in OC4J

3-4 Oracle Containers for J2EE Servlet Developer’s Guide

Your servlet code is not required to do anything to send this cookie; the container
handles this automatically. Sending cookies back to the server is handled
automatically by the Web browser.

Also see "Session Tracking Through Secured Connections" on page 3-4.

Using URL Rewriting for Session Tracking
An alternative to cookies is URL rewriting, through the encodeURL() method of the
HTTP response object (or, equivalently, the encodeRedirectURL() method for
includes or forwards). This mechanism allows OC4J to encode the session ID into a
URL path if cookies are disabled. The following conditions must be met:

■ The session must be valid.

■ The session ID has not been received through cookies in previous exchanges with
the client.

■ The URL points to a location within the application.

To ensure that the servlet container can use URL rewriting, you must use
encodeURL() whenever you write a URL to the output stream, instead of writing the
URL directly. For example:

out.println("Click <a href=" + res.encodeURL(req.getRequestURL().toString()) +
 ">this link");
out.println(" to access this page again.
");

OC4J uses the parameter jsessionid (in conformance with the servlet specification)
to indicate the session ID in the URL path, as in the following example:

http://www.example.com:port/myapp/index.html?jsessionid=6789

The value of the rewritten URL is used by the server to look up session state
information to pass to the servlet, which is similar to the functionality of cookies.

To comply with the servlet specification, calls to the encodeURL() and
encodeRedirectURL() methods result in no action if cookies are enabled.

Session Tracking Through Secured Connections
When exchanges between OC4J and a client include sensitive information, the
transmissions should occur over a secured connection. You can achieve this with
HTTPS (transmitting the HTTP protocol over SSL sockets, as discussed in detail in the
Oracle Containers for J2EE Security Guide). In this case, cookies or URL rewriting would
not be appropriate for transmitting a session ID, given that the ID could be intercepted
or spoofed. If the value of the session ID is compromised, the associated session state
is vulnerable.

Notes:

■ The encodeURL() method replaced the servlet 2.0
encodeUrl() method (note capitalization), which is
deprecated.

■ OC4J does not support auto-encoding, in which session IDs are
automatically encoded into the URL by the servlet container.
This is a nonstandard and resource-intensive process.

Using a Session Object in Your Servlet

Understanding and Using Servlet Sessions 3-5

In this secured transmission situation, where HTTPS is used for all transmissions,
OC4J stores the information needed to retrieve the session state directly into the SSL
connection, as an attribute of the SSL session (functionality that is invisible to the
user). This provides the greatest level of security for the session state, but also ties the
lifetime of the session state to the lifetime of the SSL connection itself. If the SSL
connection is dropped, the session state is lost.

It is also possible for an application to be shared between HTTP and HTTPS. (See
"Making an Application Available on HTTP and HTTPS in Standalone OC4J" on
page 3-5.) If an application is shared in this way, OC4J assumes that transmissions to it
may or may not be over the SSL connection. The lack of a guaranteed SSL connection
where session information can be stored results in OC4J falling back to cookies or URL
rewriting for session tracking, as discussed previously.

Making an Application Available on HTTP and HTTPS in Standalone OC4J
To make a single application available over two protocols in standalone OC4J, that
application must be declared in two different Web site XML files, and marked as
"shared". This feature is enabled if the shared attribute of the <web-app> element in
each Web site XML file is set to "true". Setting an application as shared makes a single
application deployment available over the protocols defined for each Web site it is
declared within. To share between HTTP and HTTPS, one Web site would be secured,
configured for HTTPS, and the other would be not secured, configured for HTTP.

See the Oracle Containers for J2EE Configuration and Administration Guide for additional
information about shared applications in OC4J.

Using a Session Object in Your Servlet
This section shows you how to use attributes of a session object, first summarizing key
methods of the HttpSession interface, then discussing the creation and retrieval of
session attributes through getter and setter methods, and concluding with an example.

Summary of HttpSession Methods
The servlet container uses HTTP session objects—instances of a class provided by
OC4J that implements the javax.servlet.http.HttpSession interface—in
managing data for user sessions. The HttpSession interface specifies the following
public methods to handle session attributes:

■ void setAttribute(String name, Object value)

Add a session attribute, adding the specified object to the session object, under the
specified name.

■ Enumeration getAttributeNames()

Retrieves a java.util.Enumeration object consisting of String objects for
the names of all session attributes.

■ Object getAttribute(String name)

Note: Some older browsers drop the SSL connection in certain
circumstances, causing the subsequent and sometimes unexpected
loss of session state. If this is a problem, you can work around it by
specifying the application as shared to force the use of cookies or URL
rewriting for session tracking. This is less secure, but may be the only
workable alternative.

Using a Session Object in Your Servlet

3-6 Oracle Containers for J2EE Servlet Developer’s Guide

Retrieves the value of the session attribute that has the specified name (or returns
null if there is no match).

■ void removeAttribute(String name)

Removes the session attribute that has the specified name.

Depending on the configuration of the servlet container and the servlet itself, sessions
may expire automatically after a set amount of time. Alternatively, they may be
invalidated explicitly by the servlet. Servlets can manage session lifecycle with the
following methods, specified in the HttpSession interface:

■ void setMaxInactiveInterval(int interval)

Set a session timeout interval, in seconds, as an integer, overriding any default in
the servlet container or set through the web.xml <session-timeout> element.
A negative value indicates no timeout. A value of 0 results in an immediate
timeout. Also see "Canceling a Session" on page 3-15.

■ int getMaxInactiveInterval()

Retrieves a value indicating the session timeout interval, in seconds. If you had
specified a timeout value through setMaxInactiveInterval(), that is the
value that is returned. Otherwise, the value of the web.xml
<session-timeout> element is returned, if that was specified. Otherwise, the
servlet container default timeout is returned.

■ void invalidate()

Immediately invalidate the session, unbinding any objects from it.

There are also utility methods to retrieve a servlet context, and to retrieve information
about session creation and access:

■ ServletContext getServletContext()

Retrieves the servlet context that the session belongs to.

■ boolean isNew()

Returns true within the request that created the session; returns false
otherwise.

■ long getCreationTime()

Returns the time when the session object was created, measured in milliseconds
since midnight, January 1, 1970.

■ long getLastAccessedTime()

Returns the time of the most recent request associated with the client session,
measured in milliseconds since midnight, January 1, 1970. If the client session has
not yet been accessed, this method returns the session creation time.

For complete information about HttpSession methods, refer to the Sun
Microsystems Javadoc for the javax.servlet.http package, at the following
location:

Development Tip:

The java.util.Date class has a constructor that takes milliseconds
since midnight, January 1, 1970, and converts that value into the date,
hours, minutes, and seconds.

Using a Session Object in Your Servlet

Understanding and Using Servlet Sessions 3-7

http://java.sun.com/j2ee/1.4/docs/api/index.html

Adding and Retrieving Session Attributes
Here are some typical steps in creating and displaying session attributes. These steps
are shown in a complete example in "Session Object Example" on page 3-7.

1. Get the session object from the request:

HttpSession session = request.getSession();

2. Take user input to specify each attribute name and value. For this example,
assume the servlet has a form that takes the name and value for an attribute and
stores them in request parameters called dataname and datavalue. (The form is
shown in the complete example.)

String dataName = request.getParameter("dataname");
String dataValue = request.getParameter("datavalue");

3. Use the specified name and value to set each attribute:

if (dataName != null && dataValue != null) {
 session.setAttribute(dataName, dataValue);
}

4. If you want to output all the attributes back to the browser, start by calling
getAttributeNames() to get all the names:

Enumeration attributeNames = session.getAttributeNames();

5. Iterate through the java.util.Enumeration object to retrieve each name, then
retrieve each corresponding value, and output the name and value. In this
example, assume all the names and values can be handled as Java strings:

while (attributeNames.hasMoreElements()) {
 String name = attributeNames.nextElement().toString();
 String value = session.getAttribute(name).toString();
 out.println(name + " = " + value + "
");
}

Session Object Example
This example puts together the steps in "Adding and Retrieving Session Attributes" on
page 3-7. There is also code for a form to take user input for attribute names and
values, and code to display the session ID, creation time, and last access time (in this
case, the time when the last attribute was added).

As in previous examples, the doGet() method is called through the doPost()
method, for a POST request.

Important: In a clustered application, any object used as a session
attribute must implement the java.io.Serializable interface.

Note: In the HttpSession interface, the methods
setAttribute(), getAttributeNames(), and getAttribute()
replace putValue(), getValueNames(), and getValue(), which
are deprecated.

Using a Session Object in Your Servlet

3-8 Oracle Containers for J2EE Servlet Developer’s Guide

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SessionExample extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 response.setContentType("text/html");

 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<body bgcolor=\"white\">");

 out.println("<h3>" + "My Session Example" + "</h3>");

/* Display session ID, creation time, and access time. */

 HttpSession session = request.getSession();
 out.println("Session ID: " + session.getId());
 out.println("
");
 out.println("Created: ");
 out.println(new Date(session.getCreationTime()) + "
");
 out.println("Last accessed: ");
 out.println(new Date(session.getLastAccessedTime()));

/* Set attribute, based on data from user (form is later in code). */

 String dataName = request.getParameter("dataname");
 String dataValue = request.getParameter("datavalue");
 if (dataName != null && dataValue != null) {
 session.setAttribute(dataName, dataValue);
 }

/* Display all attributes. */

 out.println("<P>");
 out.println("The following data is in the session:
");
 Enumeration attributeNames = session.getAttributeNames();
 while (attributeNames.hasMoreElements()) {
 String name = attributeNames.nextElement().toString();
 String value = session.getAttribute(name).toString();
 out.println(name + " = " + value + "
");
 }

/* Take user input for an attribute. */

 out.println("<P>");
 out.print("<form action=\"");
 out.print("SessionExample\" ");
 out.println("method=POST>");
 out.println("Specify attribute name: ");
 out.println("<input type=text size=20 name=dataname>");
 out.println("
");
 out.println("Specify attribute value: ");
 out.println("<input type=text size=20 name=datavalue>");
 out.println("

");

Using a Session Object in Your Servlet

Understanding and Using Servlet Sessions 3-9

 out.println("<input type=submit>");
 out.println("</form>");

 out.println("</body>");
 out.println("</html>");

 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 doGet(request, response);
 }

}

When you first run the servlet, it displays something like the following:

Each time you enter a new attribute name and value and click Submit Query, the
output is updated to show the new name/value pair. If you enter "Customer" and
"Brian" for one attribute name and its value, and "SSN" and "123-45-6789" for another
attribute name and its value, clicking Submit Query after each pair of entries, the
output is updated as follows. Note that the last access time of the session object has
also changed:

Using Cookies in Your Servlet

3-10 Oracle Containers for J2EE Servlet Developer’s Guide

Using Cookies in Your Servlet
For small amounts of data that are to be persistent, you can create and use your own
cookies, assuming cookies are enabled. Cookies are represented by instances of the
javax.servlet.http.Cookie class, and are passed between client and server as
attributes of the HTTP request and response headers.

A servlet can do the following with cookies:

■ Create a cookie with specified name and value, using the Cookie class constructor

■ Add a cookie to the response, using the addCookie() method of the response
object.

■ Retrieve cookies from the request, using the getCookies() method of the
request object

■ Get the name of a cookie, and get or set the value and other information of the
cookie, using methods of the Cookie class (which are summarized shortly)

The following sections provide details, and a complete example, about how to use
cookies:

■ Configuring Cookies

■ Summary of Cookie Methods

■ Retrieving, Displaying, and Adding Cookies

■ Cookie Example

Note: If cookies are enabled, OC4J automatically uses a cookie in
keeping track of your session ID, as discussed in "How OC4J Can Use
Cookies for Session Tracking" on page 3-3.

Using Cookies in Your Servlet

Understanding and Using Servlet Sessions 3-11

Configuring Cookies
Cookies are enabled by default. However, as described in "Configuring Session
Tracking and Enabling or Disabling Cookies in OC4J" on page 3-3, you can explicitly
enable them or disable them by setting cookies="enabled" or
cookies="disabled" in the <session-tracking> element of the
global-web-application.xml or orion-web.xml file.

The <session-tracking> element has additional cookie settings as well:

■ cookie-domain: This is the desired domain for cookies. In general, this would be
used to track a single client or user over multiple Web sites. The setting must start
with a period ("."). For example:

<session-tracking cookie-domain=".us.oracle.com" />

In this case, the same cookie is used and reused when the user visits any site that
matches the ".us.oracle.com" domain pattern, such as
webserv1.us.oracle.com or webserv2.us.oracle.com.

The domain specification must consist of at least two parts, such as
".us.oracle.com" or ".oracle.com". A setting of ".com", for example, is
illegal.

Cookie domain functionality can be used, for example, to share session state
between nodes of a Web application running on different hosts.

For a particular cookie, you can override the cookie-domain setting through the
setDomain() method of the cookie.

■ cookie-max-age: This number is sent with the session cookie and specifies a
maximum interval (in seconds) for the browser to save the cookie. By default, the
cookie is kept in memory during the browser session and then discarded, so that it
is not persistent.

For a particular cookie, you can override the cookie-max-age setting through
the setMaxAge() method of the cookie. See the next section, "Summary of
Cookie Methods", for additional information.

Also see "<session-tracking>" on page B-27.

Summary of Cookie Methods
Use the Cookie constructor to create a new cookie:

■ Cookie(String name, String value)

Create a cookie with the specified name and value, as Java strings.

Use Cookie getter and setter methods, including the following, to specify or retrieve
information about the cookie:

■ String getName()

Returns the name of the cookie.

■ void setValue(String value)

Note: You can configure cookies through attributes of the
sessionTracking property in the Application Server Control
deployment plan editor, as discussed in the Oracle Containers for J2EE
Deployment Guide.

Using Cookies in Your Servlet

3-12 Oracle Containers for J2EE Servlet Developer’s Guide

Specify a new value for the cookie, as a Java string.

■ String getValue()

Returns the current value of the cookie, as a Java string.

■ void setDomain(String value)

By default, cookies are only returned to the server that sent them, but you can use
this method to specify a domain, or Domain Name System zone, in which the
cookie is visible. See "Configuring Cookies" on page 3-11 for information about
using cookie domains in OC4J.

■ String getDomain()

Returns the domain in which the cookie is visible.

■ void setMaxAge(int maxAge)

Specify a maximum age for the cookie, in seconds, after which it will expire. A
value of 0 causes the cookie to be deleted immediately. For a value of -1, the cookie
will exist until browser shutdown, so will not be stored persistently. The default is
-1, or as otherwise specified in your OC4J configuration. See "Configuring
Cookies" on page 3-11.

■ int getMaxAge()

Returns the maximum age of the cookie before expiration, in seconds, or special
values as described for setMaxAge().

■ void setComment(String comment)

Create a comment to provide information about the cookie.

■ String getComment()

Returns a comment that provides information about the cookie (or null if there is
no comment).

For complete information about Cookie methods, refer to the Sun Microsystems
Javadoc for the javax.servlet.http package at the following location:

http://java.sun.com/j2ee/1.4/docs/api/index.html

Retrieving, Displaying, and Adding Cookies
Here are some typical steps in creating and displaying cookies. These steps are shown
in a complete example in "Cookie Example" on page 3-13.

1. To retrieve an array of javax.servlet.http.Cookie objects containing the
current set of cookies in the request, call the getCookies() method of the
request object:

Cookie[] cookies = request.getCookies();

2. To output the cookie names and values, iterate through the array (or notify the
user if the array is empty):

if (cookies != null && cookies.length > 0) {
 for (int i = 0; i < cookies.length; i++) {
 Cookie cookie = cookies[i];
 out.print("Cookie name: " + cookie.getName() + "
");
 out.println("Cookie value: " + cookie.getValue() + "

");
 }
} else {
 out.println("There are no cookies.");

Using Cookies in Your Servlet

Understanding and Using Servlet Sessions 3-13

}

3. To create a new cookie, you can take user input to specify the name and value. For
this example, assume the servlet has a form that takes the name and value and
stores them in request parameters called cookiename and cookievalue. (The
form is shown in the complete example.)

String cookieName = request.getParameter("cookiename");
String cookieValue = request.getParameter("cookievalue");

4. To add the new cookie to the response, first input the specified name and value to
the Cookie constructor to create the cookie, then call the addCookie() method
of the response object:

if (cookieName != null && cookieValue != null) {
 Cookie cookie = new Cookie(cookieName, cookieValue);
 response.addCookie(cookie);
}

Cookie Example
This example puts together the steps in "Retrieving, Displaying, and Adding Cookies"
on page 3-12. There is also code for a form to take user input for cookie names and
values.

As in previous examples, the doGet() method is called through the doPost()
method, for a POST request.

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class CookieExample extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 response.setContentType("text/html");

 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<body bgcolor=\"white\">");

 out.println("<h3>" + "My Cookies Example" + "</h3>");

/* Show cookies currently in request. */

 Cookie[] cookies = request.getCookies();
 if (cookies != null && cookies.length > 0) {
 out.println("Your browser is sending the following cookies:

");
 for (int i = 0; i < cookies.length; i++) {
 Cookie cookie = cookies[i];
 out.print("Cookie name: " + cookie.getName() + "
");
 out.println("Cookie value: " + cookie.getValue() + "

");
 }
 } else {
 out.println("There are no cookies.");
 }

Using Cookies in Your Servlet

3-14 Oracle Containers for J2EE Servlet Developer’s Guide

/* Add new cookie that was just specified by user (form code below), and output
 back to the browser to confirm what the user just added. */

 String cookieName = request.getParameter("cookiename");
 String cookieValue = request.getParameter("cookievalue");
 if (cookieName != null && cookieValue != null) {
 Cookie cookie = new Cookie(cookieName, cookieValue);
 response.addCookie(cookie);
 out.println("<P>");
 out.println
 ("You just created the following cookie for your browser to send:

");
 out.print("New cookie name: " + cookieName + "
");
 out.print("New cookie value: " + cookieValue + "
");
 }

/* Form to prompt user for a cookie name and value. */

 out.println("<P>");
 out.println("Create a new cookie for your browser to send:
");
 out.print("<form action=\"");
 out.println("CookieExample\" method=POST>");
 out.print("Specify cookie name: ");
 out.println("<input type=text length=20 name=cookiename>
");
 out.print("Specify cookie value: ");
 out.println("<input type=text length=20 name=cookievalue>

");
 out.println("<input type=submit></form>");

 out.println("</body>");
 out.println("</html>");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 doGet(request, response);
 }

}

When you first run the servlet, it outputs the names and values of any cookies that
already exist in the request, then prompts you to add a new cookie. In the following
sample output, there is already one cookie:

Canceling a Session

Understanding and Using Servlet Sessions 3-15

As soon as you specify a cookie name and value and click Submit Query, the servlet
confirms what you entered:

If you reload the servlet, you will see your new cookie included in the list of cookies
currently in the request:

Canceling a Session
HTTP session objects generally persist for the duration of the server-side session;
however, a session can be terminated explicitly by the servlet, or can be canceled by
the servlet container after a certain expiration period.

Using a Timeout to Cancel a Session
The default session timeout for the OC4J server is 20 minutes. You can change the
default for a specific application by setting the <session-timeout> subelement
under the <session-config> element in web.xml. Specify the timeout in minutes,
as an integer. For example, to reduce the session timeout to five minutes, add the
following lines to the application web.xml file:

<session-config>
 <session-timeout>5</session-timeout>

Canceling a Session

3-16 Oracle Containers for J2EE Servlet Developer’s Guide

</session-config>

According to the servlet specification, a negative value specifies the default behavior
that a session never times out. For example:

<session-config>
 <session-timeout>-1</session-timeout>
</session-config>

A value of 0 results in an immediate timeout.

To override the OC4J timeout or any <session-timeout> setting, for a particular
servlet, you can use the setMaxInactiveInterval() method of the session object.
This method is specified in the HttpSession interface. Specify an integer value, but
note that with this method, you specify the timeout value in seconds, not minutes.
Again, a negative value means there is no timeout.

The following example specifies a timeout of 10 minutes:

HttpSession session = request.getSession();
...
session.setMaxInactiveInterval(600);

The getMaxInactiveInterval() method returns an integer indicating the timeout
interval, in seconds. This would be the value set in setMaxInactiveInterval(), if
applicable. Otherwise, it would be the value specified in <session-timeout>
(converted to seconds), if applicable. If neither setMaxInactiveInterval() nor
<session-timeout> has been used, getMaxInactiveInterval() will return the
OC4J default timeout value in seconds: 1200.

Explicitly Canceling a Session
A servlet can explicitly cancel a session by invoking the invalidate() method on
the session object, as in the following example:

HttpSession session = request.getSession();
...
session.invalidate();

This immediately invalidates the session and unbinds any objects that were bound to
it.

Understanding and Using Servlet Filters 4-1

4
Understanding and Using Servlet Filters

When the servlet container calls a method in a servlet on behalf of the client, the HTTP
request that the client sent is, by default, passed directly to the servlet. The response
that the servlet generates is, by default, passed directly back to the client, with its
content unmodified by the container.

Alternatively, you can use servlet filters to preprocess Web application requests and
postprocess server responses. Filters were introduced in "When to Use Filters for
Pre-Processing and Post-Processing" on page 6-16, and are described in the following
sections:

■ Overview of How Filters Work

■ Standard Filter Interfaces

■ Implementing and Configuring Filters

■ Simple Filter Example

■ Filtering Forward or Include Targets

■ Using a Filter to Wrap and Alter the Request or Response

■ Response Filter Example

Overview of How Filters Work
This section provides an overview of the following topics:

■ How the Servlet Container Invokes Filters

■ Typical Filter Actions

How the Servlet Container Invokes Filters
Figure 4–1 shows, on the left, a scenario in which no filters are configured for the
servlet being requested. On the right, several filters (1, 2,..., N) have been configured.

Overview of How Filters Work

4-2 Oracle Containers for J2EE Servlet Developer’s Guide

Figure 4–1 Servlet Invocation with and without Filters

Each filter implements the javax.servlet.Filter interface, which includes a
doFilter() method that takes as input a request and response pair along with a
filter chain, which is an instance of a class (provided by the servlet container) that
implements the javax.servlet.FilterChain interface. The filter chain reflects
the order of the filters. The servlet container, based on the configuration order in the
web.xml file, constructs the chain of filters for any servlet or other resource that has
filters mapped to it. For each filter in the chain, the filter chain object passed to it
represents the remaining filters to be called, in order, followed by the target servlet.

The FilterChain interface also specifies a doFilter() method, which takes a
request and response pair as input and is used by each filter to invoke the next entity
in the chain.

Also see "Standard Filter Interfaces" on page 4-3.

If there are two filters, for example, the key steps of this mechanism would be as
follows:

1. The target servlet is requested. The container detects that there are two filters and
creates the filter chain.

2. The first filter in the chain is invoked by its doFilter() method.

3. The first filter completes any preprocessing, then calls the doFilter() method of
the filter chain. This results in the second filter being invoked by its doFilter()
method.

4. The second filter completes any preprocessing, then calls the doFilter()
method of the filter chain. This results in the target servlet being invoked by its
service() method.

Standard Filter Interfaces

Understanding and Using Servlet Filters 4-3

5. When the target servlet is finished, the chain doFilter() call in the second filter
returns, and the second filter can do any postprocessing.

6. When the second filter is finished, the chain doFilter() call in the first filter
returns, and the first filter can do any postprocessing.

7. When the first filter is finished, execution is complete.

None of the filters are aware of their order. Ordering is handled entirely through the
filter chain, according to the order in which filters are configured in web.xml.

Typical Filter Actions
The following are among the possible actions of the doFilter() method of a filter:

■ Create a wrapper for the request object to allow input filtering. Process the content
or headers of the request wrapper as desired.

■ Create a wrapper for the response object to allow output filtering. Process the
content or headers of the response wrapper as desired.

■ Pass the request and response pair (or wrappers) to the next entity in the chain,
using the chain doFilter() method. Alternatively, to block request processing,
do not call the chain doFilter() method.

Any processing you want to occur before the target resource is invoked must be prior
to the chain doFilter() call. Any processing you want to occur after the completion
of the target resource must be after the chain doFilter() call. This can include
directly setting headers on the response.

Note that if you want to preprocess the request object or postprocess the response
object, you cannot directly manipulate the original request or response object. You
must use wrappers. When postprocessing a response, for example, the target servlet
has already completed and the response could already be committed by the time a
filter would have a chance to do anything with the response. You must pass a response
wrapper instead of the original response in the chain doFilter() call. See "Using a
Filter to Wrap and Alter the Request or Response" on page 4-10.

Standard Filter Interfaces
A servlet filter implements the javax.servlet.Filter interface. The main method
of this interface, doFilter(), takes a javax.servlet.FilterChain instance,
created by the servlet container to represent the entire chain of filters, as input. The
initialization method of the Filter interface, init(), takes a filter configuration
object, which is an instance of javax.servlet.FilterConfig, as input. This
section briefly describes the methods specified in these interfaces.

For additional information about the interfaces and methods discussed here, refer to
the Sun Microsystems Javadoc for the javax.servlet package, at:

http://java.sun.com/j2ee/1.4/docs/api/index.html

Methods of the Filter Interface
The Filter interface specifies the following methods to implement in your filters:

■ void init(FilterConfig filterConfig)

The servlet container calls init() as a filter is first instantiated and placed into
service. This method takes a javax.servlet.FilterConfig instance as input,
which the servlet container uses to pass information to the filter during the

Standard Filter Interfaces

4-4 Oracle Containers for J2EE Servlet Developer’s Guide

initialization. Include any special initialization requirements in your
implementation. Also see "Methods of the FilterConfig Interface" on page 4-4.

■ void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)

This is where your filter processing occurs. Each time a target resource (such as a
servlet or JSP page) is requested, where the target resource is mapped to a chain of
one or more filters, the servlet container calls the doFilter() method of each
filter in the chain, in order according to web.xml filter configurations. (See
"Construction of the Filter Chain" on page 4-7.) Within the doFilter()
processing of a filter, invoke the doFilter() method on the filter chain object
that is passed in to the doFilter() method of the filter. (An exception to this is if
you want to block request processing.) This is what leads to invocation of the next
entity in the chain (either the next filter, or the target servlet if this is the last filter
in the chain) after a filter has completed.

■ destroy(): The servlet container calls destroy() after all execution of the filter
has completed (all threads of the doFilter() method have completed, or a
timeout has occurred) and the filter is being taken out of service. Include any
special cleanup requirements in your implementation.

Method of the FilterChain Interface
The FilterChain interface specifies one method:

■ void doFilter(ServletRequest request,
 ServletResponse response)

Invoking this method, which you do from the doFilter() method of a filter,
causes the next entity in the chain to be invoked—either the next filter, or the
target resource (such as a servlet or JSP page) if this method is called from the last
filter in the chain.

Methods of the FilterConfig Interface
The FilterConfig interface specifies the following methods, available for your
optional use:

■ java.util.Enumeration getInitParameterNames()

You can set initialization parameters for a filter through <init-param> elements
under the <filter> element in the web.xml file. (See "Configure the Filter" on
page 4-6.) Then, in your filter, you can use the getInitParameterNames()
method of the FilterConfig object, which is passed in through the init()
method, to retrieve an Enumeration object of Java strings containing the names
of the initialization parameters. (The Enumeration object is empty if there are no
initialization parameters for the filter.)

■ String getInitParameter(String paramname)

After retrieving initialization parameter names, use getInitParameter() to
retrieve the value of a specified parameter.

■ ServletContext getServletContext()

You can use this method to retrieve the servlet context associated with the
requested servlet (which the filter is filtering).

■ String getFilterName()

Implementing and Configuring Filters

Understanding and Using Servlet Filters 4-5

You can use this method to retrieve the name of the filter, according to the
<filter-name> element in the web.xml file.

Implementing and Configuring Filters
This section shows the basic steps of implementing and configuring a filter. Steps such
as these are included in a complete sample in "Simple Filter Example" on page 4-7.

There is a subsection describing construction of the filter chain, based on your filter
configuration order in web.xml.

Implement the Filter Code
This section lists steps in implementing code for a servlet filter.

1. Create a class that implements the javax.servlet.Filter interface. For
example:

public class TimerFilter implements javax.servlet.Filter { }

2. For initialization of your filter, implement the init() method, specified in the
Filter interface. First, create or retrieve a javax.servlet.FilterConfig
object, which init() takes as input. For example:

private FilterConfig filterConfig;
...
public void init(final FilterConfig filterConfig)
{
 this.filterConfig = filterConfig;
}

In case you want any special initialization processing, see "Methods of the
FilterConfig Interface" on page 4-4.

3. For your filter processing, implement the doFilter() method, specified in the
Filter interface. This method takes a request object, a response object, and a
javax.servlet.FilterChain object created by the servlet container.
Implement whatever processing you want, and (typically) call the doFilter()
method of the filter chain object to invoke the next entity in the chain. For
example:

public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain)
 throws java.io.IOException, javax.servlet.ServletException
{
 long start = System.currentTimeMillis();
 System.out.println("Milliseconds in: " + start);
 chain.doFilter(request, response);
 long end = System.currentTimeMillis();
 System.out.println("Milliseconds out: " + end);
}

The first println() call is executed before the rest of the chain is invoked; the
second println() call is executed afterward, when chain.doFilter()
returns.

4. Implement the destroy() method, specified in the Filter interface, to clean up
resources or do anything special before the filter is taken out of service. For
example:

public void destroy()

Implementing and Configuring Filters

4-6 Oracle Containers for J2EE Servlet Developer’s Guide

{
 filterConfig = null;
}

Configure the Filter
This section lists the steps in configuring a servlet filter. Do the following in web.xml
for each filter:

1. Declare the filter through a <filter> element and its subelements, which maps
the filter class (including package) to a filter name. For example:

<filter>
 <filter-name>timer</filter-name>
 <filter-class>filter.TimerFilter</filter-class>
</filter>

You can optionally specify initialization parameters here, similarly to how you
would for a servlet:

<filter>
 <filter-name>timer</filter-name>
 <filter-class>filter.TimerFilter</filter-class>
 <init-param>
 <param-name>name</param-name>
 <param-value>value</param-value>
 <init-param>
</filter>

2. Using a <filter-mapping> element and its subelements, map the filter name to
a servlet name or URL pattern to associate the filter with the corresponding
resource (such as a servlet or JSP page) or resources. For example, to have the filter
invoked whenever the servlet of name myservlet is invoked:

<filter-mapping>
 <filter-name>timer</filter-name>
 <servlet-name>myservlet</servlet-name>
</filter-mapping>

Or, to have the filter invoked whenever sleepy.jsp is requested, according to
URL pattern:

<filter-mapping>
 <filter-name>timer</filter-name>
 <url-pattern>/sleepy.jsp</url-pattern>
</filter-mapping>

Note that instead of specifying a particular resource in the <url-pattern>
element, you can use wild card characters to match multiple resources, such as in
the following example:

<url-pattern>/mypath/*</url-pattern>

The filter name can be arbitrary, but preferably is meaningful. It is simply used as the
linkage in mapping a filter class to a servlet name or URL pattern.

Note: There are additional considerations in implementing a filter to
alter the HTTP request or response. See "Using a Filter to Wrap and
Alter the Request or Response" on page 4-10.

Simple Filter Example

Understanding and Using Servlet Filters 4-7

If you configure multiple filters that apply to a resource, they will be entered in the
servlet chain according to their declaration order in web.xml, and they will be
invoked in that order when the target servlet is requested. See the next section,
"Construction of the Filter Chain".

Construction of the Filter Chain
When you declare and map filters in web.xml, the servlet container determines which
filters apply to each servlet or other resource (such as a JSP page or static page) in the
Web application. Then, for each servlet or resource, the servlet container builds a chain
of applicable filters, according to your web.xml configuration order, as follows:

1. First, any filters that match a servlet or resource according to a <url-pattern>
element are placed in the chain, in the order in which the filters are declared in
web.xml.

2. Next, any filters that match a servlet or resource according to a <servlet-name>
element are placed in the chain, with the first <servlet-name> match following
the last <url-pattern> match.

3. Finally, the target servlet or other resource is placed at the end of the chain,
following the last filter with a <servlet-name> match.

Simple Filter Example
This example shows a filter that is invoked when a JSP page is requested. The JSP page
writes a line to the browser. The filter writes two lines to the OC4J console—one line
before the JSP page runs, and one after.

Write the Simple Filter Code
Here is the code for the simple filter, TimerFilter. The doFilter() method writes
two lines to the OC4J console, one before the target JSP page is executed and one after.

package filter;

import javax.servlet.*;

public class TimerFilter implements javax.servlet.Filter
{
 private FilterConfig filterConfig;

 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain)
 throws java.io.IOException, javax.servlet.ServletException
 {
 long start = System.currentTimeMillis();
 System.out.println("Milliseconds in: " + start);
 chain.doFilter(request, response);
 long end = System.currentTimeMillis();
 System.out.println("Milliseconds out: " + end);
 }

 public void init(final FilterConfig filterConfig)
 {

Note: There are additional steps to configure a filter for a forward or
include target. See "Filtering Forward or Include Targets" on page 4-9.

Simple Filter Example

4-8 Oracle Containers for J2EE Servlet Developer’s Guide

 this.filterConfig = filterConfig;
 }

 public void destroy()
 {
 filterConfig = null;
 }
}

Write the Target JSP Page
Here is the target JSP page, sleepy.jsp, which has a wait interval then outputs the
wait time to the browser.

<%
 int sleeptime = 1000;
 Thread.sleep(sleeptime);
%>
<HTML>
<HEAD>
<TITLE>Sleepy JSP</TITLE>
</HEAD>
<BODY>
<HR>
<P><CENTER>Sleepy JSP slept for <%= sleeptime %> milliseconds!</CENTER></P>
<HR>
</BODY>
</HTML>

Configure the Simple Filter
Here is the configuration in web.xml that declares the simple filter and maps it to
requests for sleepy.jsp:

<?xml version="1.0" ?>
<!DOCTYPE web-app (doctype...)>
<web-app>
 <filter>
 <filter-name>timer</filter-name>
 <filter-class>filter.TimerFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>timer</filter-name>
 <url-pattern>/sleepy.jsp</url-pattern>
 </filter-mapping>
</web-app>

Package the Simple Filter Example
The WAR file for this example, which we name filter.war, has the following
contents and structure:

sleepy.jsp
META-INF/Manifest.mf
WEB-INF/web.xml
WEB-INF/classes/filter/TimerFilter.class
WEB-INF/classes/filter/TimerFilter.java

And the EAR file is as follows:

filter.war

Filtering Forward or Include Targets

Understanding and Using Servlet Filters 4-9

META-INF/Manifest.mf
META-INF/application.xml

(The Manifest.mf files are created automatically by the JAR utility.)

Invoke the Simple Filter Example
For this example, assume that application.xml maps the context path /myfilter
to filter.war. In this case, after deployment, you invoke sleepy.jsp as follows,
and the filter is executed as a result:

http://host:port/myfilter/sleepy.jsp

The following is written to the browser:

Sleepy JSP slept for 1000 milliseconds!

In a sample execution, the following is written to the OC4J console (where you started
OC4J, for example, if you are running OC4J in a standalone environment):

04/04/30 13:01:19 Milliseconds in: 1083355279136
04/04/30 13:01:20 Milliseconds out: 1083355280152

The "Milliseconds in" line is written before the JSP page is invoked. The "Milliseconds
out" line is written after the JSP page is done and execution returns to the filter. In this
example, there is a difference of 1016 milliseconds, mostly due to the 1000-millisecond
wait in the JSP page.

Filtering Forward or Include Targets
You can configure a filter to act on forward or include targets in addition to, or instead
of, acting on direct request targets. This is described in the following subsections:

■ The web.xml <dispatcher> Element

■ Configuring Filters for Forward or Include Targets

The web.xml <dispatcher> Element
Use the <dispatcher> subelement of <filter-mapping> in web.xml if you want
to configure filters for forward or include targets. This element has four supported
values:

■ INCLUDE: Use this for the filter to be applied to any include targets matching a
specified servlet name or with URLs matching a specified pattern.

■ FORWARD: Use this for the filter to be applied to any forward targets matching a
specified servlet name or with URLs matching a specified pattern.

■ REQUEST: Use this in addition to an INCLUDE or FORWARD setting (one
<dispatcher> element for each setting) for the filter to also be applied to direct
request targets matching a specified servlet name or with URLs matching a
specified pattern. (It is nonsensical to use the REQUEST value only. If you want the
filter to apply only to direct requests, there is no need to use the <dispatcher>
element.)

Note: See "Dispatching to Other Servlets Through Includes and
Forwards" on page 6-12 for general information about including
and forwarding.

Using a Filter to Wrap and Alter the Request or Response

4-10 Oracle Containers for J2EE Servlet Developer’s Guide

■ ERROR: Use this for the filter to be applied under the error page mechanism.

See the following section, "Configuring Filters for Forward or Include Targets", for
examples.

Configuring Filters for Forward or Include Targets
This section provides a few sample configurations to have a filter act on forward or
include targets. We start with the filter declaration, followed by alternative filter
mapping configurations:

<filter>
 <filter-name>myfilter</filter-name>
 <filter-class>mypackage.MyFilter</filter-class>
</filter>

To execute MyFilter to filter an include target named includedservlet:

<filter-mapping>
 <filter-name>myfilter</filter-name>
 <servlet-name>includedservlet</servlet-name>
 <dispatcher>INCLUDE</dispatcher>
</filter-mapping>

Note that the include() call can come from any servlet (or other resource) in the
application. Also note that MyFilter would not execute for a direct request of
includedservlet, unless you have another <dispatcher> element with the value
REQUEST.

To execute MyFilter to filter any servlet directly requested through a URL pattern
"/mypath/", or to execute it to filter any forward target that is invoked through a URL
pattern starting with "/mypath/":

<filter-mapping>
 <filter-name>myfilter</filter-name>
 <url-pattern>/mypath/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

Using a Filter to Wrap and Alter the Request or Response
Particularly useful functions for a filter are to manipulate a request, or manipulate the
response to a request. To manipulate a request or response, you must create a wrapper.
You can use the following general steps:

1. To manipulate requests, create a class that extends the standard
javax.servlet.http.HttpServletRequestWrapper class. This class will
be your request wrapper, allowing you to modify a request as desired.

2. To manipulate responses, create a class that extends the standard
javax.servlet.http.HttpServletResponseWrapper class. This class will
be your response wrapper, allowing you to modify a response after the target
servlet or other resource has delivered and possibly committed it.

3. Optionally create a class that extends the standard
javax.servlet.ServletOutputStream class, if you want to add custom
functionality to an output stream for the response.

4. Create a filter that uses instances of your custom classes to alter the request or
response as desired.

Response Filter Example

Understanding and Using Servlet Filters 4-11

The next section, "Response Filter Example", provides an example of a filter that alters
the response.

Response Filter Example
This example employs an HTTP servlet response wrapper that uses a custom servlet
output stream. This functionality allows the wrapper to manipulate the response data
after the target HTML page is finished writing it out. Without using a wrapper, you
cannot change the response data after the servlet output stream has been closed
(essentially, after the servlet has committed the response). That is the reason for
implementing a filter-specific extension to the ServletOutputStream class in this
example.

This example uses the following custom classes:

■ GenericResponseWrapper: Extends HttpServletResponseWrapper for
custom functionality in manipulating an HTTP response.

■ FilterServletOutputStream: Extends ServletOutputStream to provide
custom functionality for use in the response wrapper.

■ MyGenericFilter: This class is for a generic, empty ("pass-through") filter that
is used as a base class.

■ PrePostFilter: Extends MyGenericFilter and implements doFilter()
code to alter the HTTP response, inserting a line before the HTML page output
and a line after the HTML page output.

Write the Custom Output Stream Code
This class, FilterServletOutputStream, extends the standard
ServletOutputStream class to implement special functionality that the response
wrapper will use.

package mypkg;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class FilterServletOutputStream extends ServletOutputStream {

 private DataOutputStream stream;

 public FilterServletOutputStream(OutputStream output) {
 stream = new DataOutputStream(output);
 }

 public void write(int b) throws IOException {
 stream.write(b);
 }

 public void write(byte[] b) throws IOException {
 stream.write(b);
 }

 public void write(byte[] b, int off, int len) throws IOException {
 stream.write(b,off,len);
 }

Response Filter Example

4-12 Oracle Containers for J2EE Servlet Developer’s Guide

}

Write the Response Wrapper Code
This class, GenericResponseWrapper, extends the standard
HttpServletResponseWrapper class to implement custom functionality to
manipulate an HTTP response.

package mypkg;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class GenericResponseWrapper extends HttpServletResponseWrapper {
 private ByteArrayOutputStream output;
 private int contentLength;
 private String contentType;

 public GenericResponseWrapper(HttpServletResponse response) {
 super(response);
 output=new ByteArrayOutputStream();
 }

 public byte[] getData() {
 return output.toByteArray();
 }

 public ServletOutputStream getOutputStream() {
 return new FilterServletOutputStream(output);
 }

 public PrintWriter getWriter() {
 return new PrintWriter(getOutputStream(),true);
 }

 public void setContentLength(int length) {
 this.contentLength = length;
 super.setContentLength(length);
 }

 public int getContentLength() {
 return contentLength;
 }

 public void setContentType(String type) {
 this.contentType = type;
 super.setContentType(type);
 }

 public String getContentType() {
 return contentType;
 }
}

Write the Base Filter Code
This class, MyGenericFilter, is an empty filter, providing a template that is
extended by the response filter of this example.

Response Filter Example

Understanding and Using Servlet Filters 4-13

package mypkg;

import javax.servlet.*;

public class MyGenericFilter implements javax.servlet.Filter {
 public FilterConfig filterConfig;

 public void doFilter(final ServletRequest request,
 final ServletResponse response,
 FilterChain chain)
 throws java.io.IOException, javax.servlet.ServletException {
 chain.doFilter(request,response);
 }

 public void init(final FilterConfig filterConfig) {
 this.filterConfig = filterConfig;
 }

 public void destroy() {
 }
}

Write the Response Filter Code
This class, PrePostFilter, which extends MyGenericFilter, is a filter that alters
the response of the target HTML page, prepending a line of output before the HTML
page output, and appending a line of output after the HTML page output.

package mypkg;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class PrePostFilter extends MyGenericFilter {

 public void doFilter(final ServletRequest request,
 final ServletResponse response,
 FilterChain chain)
 throws IOException, ServletException {
 OutputStream out = response.getOutputStream();
 out.write(new String("<HR>PRE<HR>").getBytes());
 GenericResponseWrapper wrapper =
 new GenericResponseWrapper((HttpServletResponse) response);
 chain.doFilter(request,wrapper);
 out.write(wrapper.getData());
 out.write(new String("<HR>POST<HR>").getBytes());
 out.close();
 }
}

Write the Target HTML Page
This HTML page, prepostfilter.html, is requested by the user in this example.
The filter inserts output before and after the output of this page.

<HTML>
<HEAD>
<TITLE>PrePostFilter Example</TITLE>
</HEAD>

Response Filter Example

4-14 Oracle Containers for J2EE Servlet Developer’s Guide

<BODY>
This is a testpage. You should see

this text when you invoke prepostfilter.html,

as well as the additional material added

by the PrePostFilter class.

</BODY>
</HTML>

Configure the Response Filter
Here is the configuration in web.xml that declares the response filter and maps it to
requests for prepostfilter.html:

<?xml version="1.0" ?>
<!DOCTYPE web-app (doctype...)>
<web-app>
 <filter>
 <filter-name>prepost</filter-name>
 <filter-class>mypkg.PrePostFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>prepost</filter-name>
 <url-pattern>/prepostfilter.html</url-pattern>
 </filter-mapping>
</web-app>

Package the Response Filter Example
The WAR file for this example, which we name myresponsewrapper.war, has the
following contents and structure:

prepostfilter.html
META-INF/Manifest.mf
WEB-INF/web.xml
WEB-INF/classes/mypkg/FilterServletOutputStream.class
WEB-INF/classes/mypkg/FilterServletOutputStream.java
WEB-INF/classes/mypkg/GenericResponseWrapper.class
WEB-INF/classes/mypkg/GenericResponseWrapper.java
WEB-INF/classes/mypkg/MyGenericFilter.class
WEB-INF/classes/mypkg/MyGenericFilter.java
WEB-INF/classes/mypkg/PrePostFilter.class
WEB-INF/classes/mypkg/PrePostFilter.java

And the EAR file is as follows:

myresponsewrapper.war
META-INF/application.xml
META-INF/Manifest.mf

(The Manifest.mf files are created automatically by the JAR utility.)

Invoke the Response Filter Example
For this example, assume that application.xml maps the context path
/mywrapper to myresponsewrapper.war. In this case, after deployment, you
invoke prepostfilter.html as follows, and the filter is executed as a result:

http://host:port/mywrapper/prepostfilter.html

Form Authentication Filter

Understanding and Using Servlet Filters 4-15

The following is output to the browser, with "PRE", "POST", and the horizontal rules
coming from the filter:

Form Authentication Filter
An OC4J proprietary filter dispatcher was introduced in 10.1.3 that enables a filter to
access the username/password credentials passed in to OC4J through Form
Authentication. For example, you would do this if you want to perform further
authentication on external resources.

To enable this feature, specify the FORMAUTH value in the <dispatcher> element for
the filter in the orion-web.xml file.

The following examples show the code that declares the filter and the code that
specifies the FORMAUTH feature:

In orion-web.xml or web.xml:

<filter>
 <filter-name>MyFilter</filter-name>
 <filter-class>myFilterClass</filter-class>
</filter>

In orion-web.xml:

<orion-web-app>
...
 <web-app>
 ...
 <filter-mapping>
 <filter-name>MyFilter</filter-name>
 <dispatcher>FORMAUTH</dispatcher>
 </filter-mapping>
 </web-app>
</orion-web-app>

Note:

The <filter> element can be declared in either the orion-web.xml
file or the web.xml file.

The <filter-mapping> element must be declared in the
orion-web.xml file.

Form Authentication Filter

4-16 Oracle Containers for J2EE Servlet Developer’s Guide

Any filter declared this way will be executed after the authentication form is
submitted, but before authentication is performed in OC4J.

The filter can call request.getParameters() to get the j_username and
j_password parameters from the request object.

Here is an example of the calling code:

import javax.servlet.*;
import javax.servlet.http.*;

public class MyFilter implements Filter {

 public MyFilter() {
 super();
 }

 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain filterChain)
 throws IOException, ServletExxception {
 HttpServletRequest req = (HttpServletRequest) request;

String username = req.getParameter("j_username");
String password = req.getParameter("j_password");
// use these credentials to access a remote DB
....
filterChain.doFilter(request, response);
 }

 public void init(FilterConfig filterConfig) throws ServletException {
 }

 public void destroy() {
 }
}

Understanding and Using Event Listeners 5-1

5
Understanding and Using Event Listeners

The servlet specification includes features to track key events in your Web applications
through event listeners, which were introduced in "When to Use Event Listeners for
Servlet Notification" on page 6-17. You can use listeners for automated processing and
more efficient resource management based on event status. You can implement
listeners for request events, session events, and servlet context events. This is
described in the following sections:

■ Overview of How Event Listeners Work

■ Event Listener Interfaces

■ Implementing and Configuring Event Listeners

■ Session Lifecycle Listener Example

Overview of How Event Listeners Work
There are eight event listener categories:

■ Servlet context lifecycle (startup or shutdown)

■ Servlet context attribute changes (adding, deleting, or replacing)

■ Session lifecycle (startup, invalidation, or timeout)

■ Session attribute changes (adding, deleting, or replacing)

■ Session migration (activation or passivation)

■ Session object binding (objects being bound to or unbound from a session)

■ Request lifecycle (start of request processing)

■ Request attribute changes (adding, deleting, or replacing)

You can create one or more event listener classes for each of these event categories. Or,
a single listener class can monitor multiple event categories.

Create an event listener class by implementing the appropriate interface or interfaces
of the javax.servlet or javax.servlet.http package. Table 5–1 summarizes
the categories and their associated interfaces.

Event Listener Interfaces

5-2 Oracle Containers for J2EE Servlet Developer’s Guide

Configure a listener through a <listener> element (subelement of the <web-app>
element) in the web.xml file. See "Configure the Listener" on page 5-7.

After your application starts up and before it services the first request, the servlet
container creates and registers an instance of each listener class that is declared in
web.xml. For each event category, listeners are registered in the order in which they
are declared. Then, as the application runs, event listeners for each category are
invoked in the order of their registration. All listeners remain active until after the last
request is serviced for the application.

Event Listener Interfaces
This section documents methods of the interfaces that are summarized in Table 5–1.
Each method described here is called by the servlet container when the appropriate
event occurs. These methods take different types of event objects as input, so these
event classes and their methods are also discussed.

ServletContextListener Methods, ServletContextEvent Class
The ServletContextListener interface specifies the following methods.
Implement this interface in a class you will use for tracking servlet context lifecycle
events.

Table 5–1 Event Listener Categories and Interfaces

Event Category Event Descriptions Java Interface

Servlet context
lifecycle

Servlet context creation, at which
point the first request can be serviced

Imminent shutdown of the servlet
context

javax.servlet.
ServletContextListener

Servlet context
attributes

Addition of servlet context attributes

Removal of servlet context attributes

Replacement of servlet context
attributes

javax.servlet.
ServletContextAttributeListener

Session lifecycle Session creation

Session invalidation

Session timeout

javax.servlet.http.
HttpSessionListener

Session attributes Addition of session attributes

Removal of session attributes

Replacement of session attributes

javax.servlet.http.
HttpSessionAttributeListener

Session migration Session activation

Session passivation

javax.servlet.
HttpSessionActivationListener

Session object
binding

Object bound to session

Object unbound from session

javax.servlet.
HttpSessionBindingListener

Request lifecycle Start of request processing javax.servlet.
ServletRequestListener

Request attributes Addition of session attributes

Removal of session attributes

Replacement of session attributes

javax.servlet.
ServletRequestAttributeListener

Event Listener Interfaces

Understanding and Using Event Listeners 5-3

■ void contextInitialized(ServletContextEvent sce)

The servlet container calls this method when the servlet context has been created
and the application is ready to process requests.

■ void contextDestroyed(ServletContextEvent sce)

The servlet container calls this method when the application is about to be shut
down.

The servlet container creates a javax.servlet.ServletContextEvent object that
is input for calls to ServletContextListener methods. The
ServletContextEvent class includes the following method, which your listener can
call:

■ ServletContext getServletContext()

Use this method to retrieve the servlet context object that was created or is about
to be shut down, from which you can obtain information as desired. See "Servlet
Contexts: the Application Container" on page 1-10 for information about the
javax.servlet.ServletContext interface.

ServletContextAttributeListener Methods, ServletContextAttributeEvent Class
The ServletContextAttributeListener interface specifies the following
methods. Implement this interface in a class you will use for tracking servlet context
attribute events.

■ void attributeAdded(ServletContextAttributeEvent scae)

The servlet container calls this method when an attribute is added to the servlet
context.

■ void attributeRemoved(ServletContextAttributeEvent scae)

The servlet container calls this method when an attribute is removed from the
servlet context.

■ void attributeReplaced(ServletContextAttributeEvent scae)

The servlet container calls this method when an attribute is replaced (its value
changed) in the servlet context.

The container creates a javax.servlet.ServletContextAttributeEvent object
that is input for calls to ServletContextAttributeListener methods. The
ServletContextAttributeEvent class includes the following methods, which
your listener can call:

■ String getName()

Use this method to get the name of the attribute that was added, removed, or
replaced.

■ Object getValue()

Use this method to get the value of the attribute that was added, removed, or
replaced. In the case of an attribute that was replaced, this method returns the old
value, not the new value.

HttpSessionListener Methods, HttpSessionEvent Class
The HttpSessionListener interface specifies the following methods. Implement
this interface in a listener class you will use to track session lifecycle events.

Event Listener Interfaces

5-4 Oracle Containers for J2EE Servlet Developer’s Guide

■ void sessionCreated(HttpSessionEvent hse)

The servlet container calls this method when the session is created.

■ void sessionDestroyed(HttpSessionEvent hse)

The servlet container calls this method when the session is about to be terminated.

The container creates a javax.servlet.http.HttpSessionEvent object that is
input for calls to HttpSessionListener methods. The HttpSessionEvent class
includes the following method, which your listener can call:

■ HttpSession getSession()

Use this method to retrieve the session object that was created or is about to be
terminated, from which you can obtain information as desired.

HttpSessionAttributeListener Methods, HttpSessionBindingEvent Class
The HttpSessionAttributeListener interface specifies the following methods.
Implement this interface in a listener class you will use to track session attribute
events.

■ void attributeAdded(HttpSessionBindingEvent hsbe)

The servlet container calls this method when an attribute is added to the session.

■ void attributeRemoved(HttpSessionBindingEvent hsbe)

The servlet container calls this method when an attribute is removed from the
session.

■ void attributeReplaced(HttpSessionBindingEvent hsbe)

The servlet container calls this method when an attribute is replaced (its value
changed) in the session.

The container creates a javax.servlet.http.HttpSessionBindingEvent object
that is input for calls to HttpSessionAttributeListener methods. The
HttpSessionBindingEvent class includes the following methods, which your
listener can call:

■ String getName()

Use this method to get the name of the attribute that was added, removed, or
replaced.

■ Object getValue()

Use this method to get the value of the attribute that was added, removed, or
replaced. In the case of an attribute that was replaced, this method returns the old
value, not the new value.

■ HttpSession getSession()

Use this method to retrieve the session object that had the attribute change.

HttpSessionActivationListener Methods
The HttpSessionActivationListener interface specifies the following methods.
Implement this interface in a listener class you will use to track session migration
(activation or passivation) events.

■ void sessionDidActivate(HttpSessionEvent hse)

The servlet container calls this method when the session is activated.

Event Listener Interfaces

Understanding and Using Event Listeners 5-5

■ void sessionWillPassivate(HttpSessionEvent hse)

The servlet container calls this method when the session is about to be passivated.

The servlet container creates an instance of the HttpSessionEvent class to use as
input for HttpSessionActivationListener method calls. See
"HttpSessionListener Methods, HttpSessionEvent Class" on page 5-3 for information
about this class.

HttpSessionBindingListener Methods
The HttpSessionBindingListener interface specifies the following methods.
Implement this interface in a class whose instances will be bound to a session.

■ void valueBound(HttpSessionBindingEvent hsbe)

The servlet container calls this method when the object (that implements
HttpSessionBindingListener) is bound to a session, which is identified.

■ void valueUnbound(HttpSessionBindingEvent hsbe)

The servlet container calls this method when the object is unbound from a session,
which is identified. The object can be unbound explicitly, or as a result of session
invalidation or timeout.

The servlet container creates an instance of the HttpSessionBindingEvent class to
use as input for HttpSessionBindingListener method calls. See
"HttpSessionAttributeListener Methods, HttpSessionBindingEvent Class" on page 5-4
for information about this class.

ServletRequestListener Methods, ServletRequestEvent Class
The ServletRequestListener interface specifies the following methods.
Implement this interface in a listener class you will use to track request lifecycle
events.

■ void requestInitialized(ServletRequestEvent sre)

The servlet container calls this method when the request is about to come into
scope of the Web application.

■ void requestDestroyed(ServletRequestEvent sre)

The servlet container calls this method when the request is about to go out of
scope of the Web application.

The container creates a javax.servlet.ServletRequestEvent object that is
input for calls to ServletRequestListener methods. The
ServletRequestEvent class includes the following method, which your listener can
call:

■ ServletRequest getServletRequest()

Use this method to retrieve the servlet request whose status is changing.

■ ServletContext getServletContext()

Use this method to retrieve the servlet context of the Web application.

Implementing and Configuring Event Listeners

5-6 Oracle Containers for J2EE Servlet Developer’s Guide

ServletRequestAttributeListener Methods, ServletRequestAttributeEvent Class
The ServletRequestAttributeListener interface specifies the following
methods. Implement this interface in a listener class you will use to track request
attribute events.

■ void attributeAdded(ServletRequestAttributeEvent srae)

The servlet container calls this method when an attribute is added to the request.

■ void attributeRemoved(ServletRequestAttributeEvent srae)

The servlet container calls this method when an attribute is removed from the
request.

■ void attributeReplaced(ServletRequestAttributeEvent srae)

The servlet container calls this method when an attribute is replaced (its value
changed) in the request.

The container creates a javax.servlet.ServletRequestAttributeEvent object
that is input for calls to ServletRequestAttributeListener methods. The
ServletRequestAttributeEvent class includes the following methods, which
your listener can call:

■ String getName()

Use this method to get the name of the attribute that was added, removed, or
replaced.

■ Object getValue()

Use this method to get the value of the attribute that was added, removed, or
replaced. In the case of an attribute that was replaced, this method returns the old
value, not the new value.

Implementing and Configuring Event Listeners
This section describes the basic steps of implementing and configuring listeners. See
"Session Lifecycle Listener Example" on page 5-8 for a complete example.

Implement the Listener Code
A listener class can be used for any or all categories of events summarized in
"Overview of How Event Listeners Work" on page 5-1. A single class can implement
multiple listeners. Implement code as follows:

■ For a servlet context lifecycle listener, implement the
ServletContextListener interface and write code for the methods
contextInitialized() (for actions at application startup) and
contextDestroyed() (for actions at application shutdown), as appropriate.

■ For a servlet context attribute listener, implement the
ServletContextAttributeListener interface and write code for the
methods attributeAdded() (for actions when an attribute is added),
attributeRemoved() (for actions when an attribute is removed), and
attributeReplaced() (for actions when an attribute value is changed), as
appropriate.

■ For a session lifecycle listener, implement the HttpSessionListener interface
and write code for one the methods sessionCreated() (for actions at session
creation) and sessionDestroyed() (for actions at session invalidation), as

Implementing and Configuring Event Listeners

Understanding and Using Event Listeners 5-7

appropriate. See "Write the Session Lifecycle Listener Code" on page 5-10 for an
elementary example.

■ For a session attribute listener, implement the
HttpSessionAttributeListener interface and write code for the methods
attributeAdded(), attributeRemoved(), and attributeReplaced(), as
appropriate.

■ For a session migration listener, implement the
HttpSessionActivationListener interface and write code for the methods
sessionDidActivate() (for actions at session activation) and
sessionWillPassivate() (for actions at session passivation), as appropriate.

■ For a session binding listener, implement the HttpSessionBindingListener
interface and write code for the methods valueBound() (for actions when the
object is bound to the session) or valueUnbound() (for actions when the object is
unbound from the session), as appropriate.

■ For a request lifecycle listener, implement the ServletRequestListener
interface and write code for the methods requestInitialized() (for actions
when the request comes into scope) and requestDestroyed() (for actions
when the request goes out of scope), as appropriate.

■ For a request attribute listener, implement the
ServletRequestAttributeListener interface and write code for the
methods attributeAdded(), attributeRemoved(), and
attributeReplaced(), as appropriate.

Configure the Listener
To configure each listener class, use a <listener> element (subelement of
<web-app>) and its <listener-class> subelement in the application web.xml
file:

<web-app>
 <listener>
 <listener-class>SessionLifeCycleEventExample</listener-class>
 </listener>
...
 <servlet>
 <servlet-name>name</servlet-name>
 <servlet-class>class</servlet-class>
 </servlet>
...
 <servlet-mapping>

Notes:

■ In a multithreaded application, attribute changes may occur
simultaneously. There is no requirement for the servlet container
to synchronize the resulting notifications; the listener classes
themselves are responsible for maintaining data integrity in such a
situation.

■ In a distributed environment, the scope of event listeners is one
for each deployment descriptor declaration for each JVM. There is
no requirement for distributed Web containers to propagate
servlet context events or session events to additional JVMs. The
servlet specification discusses this.

Session Lifecycle Listener Example

5-8 Oracle Containers for J2EE Servlet Developer’s Guide

 <servlet-name>name</servlet-name>
 <url-pattern>path</url-pattern>
 </servlet-mapping>
...
</web-app>

A listener is not associated with any particular servlet. At application startup, for each
event category, the servlet container registers listeners in the order in which they are
declared in web.xml. As the application runs, event listeners for each category are
invoked in the order of their registration whenever an applicable event occurs.
Listeners remain active until the last request for the application has been serviced.

Upon application shutdown, however, listeners are notified in the reverse order of
their declarations, with request and session listeners being notified before servlet
context listeners.

Physical File Required for Welcome File
A physical file must be present for a welcome file to dispatch to a servlet. To create a
servlet mapped to /index.html that maps to the JSP page /index.jsp and have it
serve as a welcome file, the web.xml file should include the following entries:

<servlet>
 <servlet-name> index_jsp </servlet-name>
 <jsp-file> /index.jsp </jsp-file>
</servlet>

<servlet-mapping>
 <servlet-name>index_jsp</servlet-name>
 <url-pattern>/index.html</url-pattern>
</servlet-mapping>

This works only if there is a physical file, /index.html, in the Web application. The
file can be zero length. As long as the file exists, this servlet will be loaded as the
welcome file. Otherwise, a java.lang.StringIndexOutOfBoundsException
exception will be thrown.

Session Lifecycle Listener Example
This is an elementary example of a session lifecycle event listener that writes messages
to the OC4J console whenever a session is created or terminated. There is code for the
following components:

■ index.jsp: This is the application welcome page, which has a link to invoke
SessionCreateServlet to create an HTTP session.

■ SessionCreateServlet: This servlet creates an HTTP session and has a link to
SessionDestroyServlet to terminate the session.

■ SessionDestroyServlet: This servlet terminates the HTTP session and has a
link back to the welcome page.

■ SessionLifeCycleEventExample: This is the event listener class, which
implements the HttpSessionListener interface with code for the
sessionCreated() and sessionDestroyed() methods to write a console
message when a session is created or terminated.

Session Lifecycle Listener Example

Understanding and Using Event Listeners 5-9

Write the JSP Welcome Page
Here is the JSP welcome page, index.jsp, from which you can invoke the session
creation servlet by clicking the Create New Session link. In this example, we assume
/mylistener is the context path of the application, and mysessioncreate is
configured in web.xml to be the servlet path of the session creation servlet.

<%@page session="false" %>
<HTML>
<BODY>
<H2>OC4J Session Event Listener</H2>
<P>
This example demonstrates the use of a session event listener.
</P>
<P>
Create New Session

</P>
<P>
Click the Create link above to start a new session.

A session listener has been configured for this application.

The servlet container will send an event to this listener when a new session
is

created or destroyed. The output from the event listener will be visible in
the

console window from where OC4J was started.
</P>
</BODY>
</HTML>

Write the Session Creation Servlet
This servlet, SessionCreateServlet, creates an HTTP session object and displays
some information for the created session. You can terminate the session by clicking the
Destroy Session link, which invokes SessionDestroyServlet. In this example, we
assume /mylistener is the context path of the application, and
mysessiondestroy is configured in web.xml to be the servlet path of the session
invalidation servlet.

import java.io.*;
import java.util.Enumeration;
import java.util.Date;
import javax.servlet.*;
import javax.servlet.http.*;

public class SessionCreateServlet extends HttpServlet {

 public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 // Get the session object.
 HttpSession session = req.getSession(true);

 // Set content type for the response.
 res.setContentType("text/html");

 // Then write the data of the response.
 PrintWriter out = res.getWriter();

 out.println("<HTML><BODY>");
 out.println("Destroy Session");

Session Lifecycle Listener Example

5-10 Oracle Containers for J2EE Servlet Developer’s Guide

 out.println("<h2>Session Created</h2>");
 out.println("Also check the OC4J console.");
 out.println("<h3>Session Data:</h3>");
 out.println("New Session: " + session.isNew());
 out.println("
Session ID: " + session.getId());
 out.println("
Creation Time: " + new Date(session.getCreationTime()));
 out.println("</BODY></HTML>");

 }
}

Write the Session Invalidation Servlet
This servlet, SessionDestroyServlet, destroys the HTTP session object. You can
go back to the JSP welcome page to create a new session by clicking the Reload
Welcome Page link. In this example, we assume /mylistener is the context path of
the application.

import java.io.*;
import java.util.Enumeration;
import java.util.Date;
import javax.servlet.*;
import javax.servlet.http.*;

public class SessionDestroyServlet extends HttpServlet {

 public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 // Get the session object.
 HttpSession session = req.getSession(true);

 // Invalidate the session.
 session.invalidate();

 // Set content type for response.
 res.setContentType("text/html");

 // Then write the data of the response.
 PrintWriter out = res.getWriter();

 out.println("<HTML><BODY>");
 out.println("Reload Welcome Page");
 out.println("<h2>Session Destroyed</h2>");
 out.println("Also check the OC4J console.");
 out.println("</BODY></HTML>");
 out.close();
 }
}

Write the Session Lifecycle Listener Code
This section shows the session lifecycle listener class,
SessionLifeCycleEventExample, which implements the
HttpSessionListener interface. Its sessionCreated() method is called by the
servlet container whenever an HTTP session is created, which occurs when you click
Create New Session from the JSP welcome page. When sessionCreated() is
called, it writes a "CREATED" message to the OC4J console indicating the ID of the
new session.

Session Lifecycle Listener Example

Understanding and Using Event Listeners 5-11

The sessionDestroyed() method is called by the servlet container whenever an
HTTP session is destroyed, which occurs when you click Destroy Session from the
session creation servlet. When sessionDestroyed() is called, it prints a
"DESTROYED" message to the OC4J console indicating the ID of the terminated
session.

(This class also implements the ServletContextListener interface and has
contextInitialized() and contextDestroyed() methods, but these features
are not used in this example.)

import javax.servlet.http.*;
import javax.servlet.*;

public class SessionLifeCycleEventExample
 implements ServletContextListener, HttpSessionListener
{
 ServletContext servletContext;

 /* Methods for the ServletContextListener */
 public void contextInitialized(ServletContextEvent sce)
 {
 servletContext = sce.getServletContext();
 }

 public void contextDestroyed(ServletContextEvent sce)
 {
 }

 /* Methods for the HttpSessionListener */
 public void sessionCreated(HttpSessionEvent hse)
 {
 log("CREATED",hse);
 }

 public void sessionDestroyed(HttpSessionEvent hse)
 {
 log("DESTROYED",hse);
 }

 protected void log(String msg, HttpSessionEvent hse)
 {
 String _ID = hse.getSession().getId();
 log("SessionID: " + _ID + " " + msg);
 }

 protected void log(String msg)
 {
 System.out.println(getClass().getName() + " " + msg);
 }
}

Configure the Session Lifecycle Listener Example
The servlets and the event listener are declared in the web.xml file. This results in
SessionLifeCycleEventExample being instantiated and registered upon
application startup. Because of this, the servlet container automatically calls
SessionLifeCycleEventExample methods, as appropriate, upon the occurrence of
session lifecycle events (or servlet context lifecycle events, but that is not relevant for
this example). Here are the web.xml entries:

Session Lifecycle Listener Example

5-12 Oracle Containers for J2EE Servlet Developer’s Guide

<?xml version="1.0" ?>
<!DOCTYPE web-app (doctype...)>
<web-app>
 <listener>
 <listener-class>SessionLifeCycleEventExample</listener-class>
 </listener>
 <servlet>
 <servlet-name>sessioncreate</servlet-name>
 <servlet-class>SessionCreateServlet</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>sessiondestroy</servlet-name>
 <servlet-class>SessionDestroyServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>sessioncreate</servlet-name>
 <url-pattern>mysessioncreate</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>sessiondestroy</servlet-name>
 <url-pattern>mysessiondestroy</url-pattern>
 </servlet-mapping>
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 </welcome-file-list>
</web-app>

Package the Session Lifecycle Listener Example
The WAR file for this example, which we name sessionlistener.war, has the
following contents and structure:

index.jsp
META-INF/Manifest.mf
WEB-INF/web.xml
WEB-INF/classes/SessionCreateServlet.class
WEB-INF/classes/SessionCreateServlet.java
WEB-INF/classes/SessionDestroyServlet.class
WEB-INF/classes/SessionDestroyServlet.java
WEB-INF/classes/SessionLifeCycleEventExample.class
WEB-INF/classes/SessionLifeCycleEventExample.java

And the EAR file is as follows:

sessionlistener.war
META-INF/application.xml
META-INF/Manifest.mf

(The Manifest.mf files are created automatically by the JAR utility.)

Invoke the Session Lifecycle Listener Example
For this example, assume that application.xml maps the context path
/mylistener to sessionlistener.war. In this case, after deployment, you invoke
the JSP welcome page as follows:

http://host:port/mylistener/index.jsp

The welcome page outputs the following:

Session Lifecycle Listener Example

Understanding and Using Event Listeners 5-13

Clicking Create New Session invokes the session creation servlet. In a test run, this
results in the following output:

And the OC4J console reports the following:

04/05/13 15:56:25 SessionLifeCycleEventExample
Session ID: 8223afa422b84b94235252164cb9a7ad84089f1abe70 CREATED

Clicking Destroy Session invokes the session termination servlet. This results in the
following output:

And in a test run, the OC4J console reports the following:

04/05/13 15:58:08 SessionLifeCycleEventExample
Session ID: 8223afa422b84b94235252164cb9a7ad84089f1abe70 DESTROYED

Session Lifecycle Listener Example

5-14 Oracle Containers for J2EE Servlet Developer’s Guide

Clicking Reload Welcome Page takes you back to the JSP welcome page, where you
can create another session.

Developing Servlets 6-1

6
Developing Servlets

This chapter, consisting of the following sections, provides basic information for
developing servlets for OC4J and the Oracle Application Server:

■ Writing a Basic Servlet

■ Simple Servlet Example

■ Using HTML Forms and Request Parameters

■ Dispatching to Other Servlets Through Includes and Forwards

■ When to Use Filters for Pre-Processing and Post-Processing

■ When to Use Event Listeners for Servlet Notification

■ Migrating an Application from Apache Tomcat to OC4J

For more general OC4J development information, refer to the Oracle Containers for J2EE
Developer’s Guide.

Writing a Basic Servlet
HTTP servlets follow a standard form. They are written as public classes that extend
the javax.servlet.http.HttpServlet class. Most servlets override either the
doGet() method or the doPost() method of HttpServlet, to handle HTTP GET or
POST requests, respectively. It may also be appropriate to override the init() and
destroy() methods if special processing is required for initialization work at the
time the servlet is loaded by the container, or for finalization work when the container
shuts down the servlet.

The following subsections cover basic scenarios for implementing these methods,
show how to set up the response, and go step-by-step through the code of a Hello
World servlet:

■ When to Implement Methods of the Servlet Interface

■ Setting Up the Response

Note: For use during development, there is a convenience flag to
direct automatic recompilation of servlet source files in a specified
directory. If a source file has changed since the last request, then OC4J
will, upon the next request, recompile the servlet, redeploy the Web
application, and reload the servlet and any dependency classes. See
the description of the development flag under "<orion-web-app>"
on page B-16.

Writing a Basic Servlet

6-2 Oracle Containers for J2EE Servlet Developer’s Guide

■ Step-by-Step Through a Simple Servlet

When to Implement Methods of the Servlet Interface
Here is a basic code template for servlet development:

package ...;
import ...;

public class MyServlet extends HttpServlet {

 public void init(ServletConfig config) {
 }

 public void doGet(HttpServletRequest request, HttpServletResponse)
 throws ServletException, IOException {
 }

 public void doPost(HttpServletRequest request, HttpServletResponse)
 throws ServletException, IOException {
 }

 public void doPut(HttpServletRequest request, HttpServletResponse)
 throws ServletException, IOException {
 }

 public void doDelete(HttpServletRequest request, HttpServletResponse)
 throws ServletException, IOException {
 }

 public String getServletInfo() {
 return "Some information about the servlet.";
 }

 public void destroy() {
 }

}

The subsections that follow discuss the scenarios for overriding any of these methods.

When to Override the init() Method
You can override the init() method to perform special actions that are required only
once in the servlet lifetime, such as the following:

■ Establish database connections.

■ Get initialization parameters from the servlet configuration object and store the
values.

■ Recover persistent data that the servlet requires.

■ Create expensive session objects, such as hashtables.

For example, to establish a database connection through a data source:

public void init() throws ServletException {
 try {
 InitialContext ic = new InitialContext(); // JNDI initial context
 ds = (DataSource) ic.lookup("jdbc/OracleDS"); // JNDI lookup
 conn = ds.getConnection(); // database connection through data source

Writing a Basic Servlet

Developing Servlets 6-3

 }
 ...
}

When to Override the doGet() or doPost() Method
Almost any servlet will override the doGet() method, to handle an HTTP GET
request, or the doPost() method, to handle an HTTP POST request, for the bulk of its
processing. GET and POST are the two HTTP methods for passing form data to the
server. A detailed discussion of when to use one versus the other is beyond the scope
of this manual, but the doPost() method may be more appropriate if security is a
particular concern, given that the GET method places form parameters directly in the
URL string, or for large sequences of data, allowing the client to send data of unlimited
length to the server.

In implementing doGet() or doPost(), in addition to writing the code that
generates the data to pass to the client, you will typically write code to read data from
the HTTP request, set up the HTTP response, and write the response. For additional
information, see "Setting Up the Response", which follows shortly, and "Using HTML
Forms and Request Parameters" on page 6-7.

"Step-by-Step Through a Simple Servlet" on page 6-4 shows the steps for an
elementary doGet() implementation.

When to Override the doPut() Method
Use this method to execute an HTTP PUT request, which allows a file to be written
from the client to the server. The doPut() method must be able to handle a content
header (or issue an error message if it cannot), and must leave any content headers it
encounters intact.

When to Override the doDelete() Method
Use this method to execute an HTTP DELETE request, which allows a file or Web page
to be removed from the server.

When to Override the getServletInfo() Method
Use this method to retrieve information from the servlet, such as author and version.
By default, this method returns an empty string, so you must override it to provide
any meaningful information.

When to Override the destroy() Method
This method is called by the servlet container when the servlet is about to be shut
down. You can override it for any cleanup prior to shutdown that is appropriate for
your servlet, such as the following:

■ Update any persistent data to make sure it is current.

■ Clean up any resources, such as database connections or file handles.

For example, to close the database connection that was opened in "When to Override
the init() Method" on page 6-2:

public void destroy() {
 try {
 conn.close();
 }
 ...
}

Writing a Basic Servlet

6-4 Oracle Containers for J2EE Servlet Developer’s Guide

Setting Up the Response
To send a response from your servlet, use the HttpServletResponse instance that is
passed in to the servlet method you are using, typically doGet() or doPost(). The
key steps are as follows:

1. Set a content type, and optionally a character encoding (MIME character set), for
the response.

2. Get a writer object (java.io.PrintWriter), for character data, or an output
stream (javax.servet.ServletOutputStream), for binary data, from the
response object.

3. Write the response data to the writer object or output stream.

Here is some code that shows these steps.

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException
{
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html><body><h1>Hello World</h1></body></html>");
 ...
}

See "Key Methods of the HttpServletResponse Interface" on page 1-7 for a summary of
response methods.

Step-by-Step Through a Simple Servlet
This chapter shows a Hello World example that overrides the doGet() method. This
servlet is shown in its entirety in "Simple Servlet Example" on page 6-5, but we also go
through it step-by-step here.

Initial steps in the servlet example:

1. Declare a package, as appropriate. The servlet example declares mytest:

package mytest;

2. Import required Java packages, particularly the servlet packages. The following
are typically required:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

Note: The OC4J default content type, if any, is reflected in the
<default-mime-type> element of the OC4J
global-web-application.xml (global) or orion-web.xml
(application-level) Web application configuration file. You can set it
through the deployment plan editor in the Application Server Control
Console, introduced in "A Brief Overview of OC4J Administration" on
page 2-1.

Development Tip: The servlet container implicitly closes the writer
object or output stream after committing the response, but it is still
good programming practice to close it explicitly.

Simple Servlet Example

Developing Servlets 6-5

3. Declare the servlet class, which always extends HttpServlet for HTTP
operations:

public class HelloWorld extends HttpServlet {
 ...
}

4. Declare any servlet method that you want to override. The servlet methods for
HTTP operations all take the same parameters (an HTTP request object and an
HTTP response object) and throw the same exceptions. The servlet example
overrides doGet():

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 ...
}

Steps in the servlet example doGet() method:

1. Set the content type for the response object. This may not always be required, but
is generally advisable:

response.setContentType("text/html");

Optionally, you can also specify a character encoding, such as UTF-8 in the
following example:

response.setContentType("text/html; charset=UTF-8");

2. Get a writer object from the response object:

PrintWriter out = response.getWriter();

3. Write the data to the response object:

out.println("<html>");
out.println("<head>");
out.println("<title>Hello World!</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1>Hi Amy!</h1>");
out.println("</body>");
out.println("</html>");

4. Close the output stream, which also commits the response.

out.close();

(In this simple example, manipulating request data is not required.)

Simple Servlet Example
This section shows the complete simple servlet example that is discussed, step-by-step,
in the preceding section. This example is deployed and invoked in "Deploying and
Invoking the Simple Servlet Example" on page 2-12.

Simple Servlet Example

6-6 Oracle Containers for J2EE Servlet Developer’s Guide

Write the Sample Code
The following code writes "Hi Amy!" to the browser. Enter the code into a file called
HelloWorld.java. According to the package statement, the HelloWorld class will
be in package mytest.

package mytest;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Hello World!</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Hi Amy!</h1>");
 out.println("</body>");
 out.println("</html>");

 out.close();
 }
}

Compile the Sample Code
Compile the sample code. If you are using a JDK from Sun Microsystems, with their
default compiler, accomplish this as follows, from the directory where the .java file is
located (assuming % is the system prompt):

% javac HelloWorld.java

Using HTML Forms and Request Parameters

Developing Servlets 6-7

Using HTML Forms and Request Parameters
A typical servlet might ask the user to enter some information for the servlet to display
or manipulate. The servlet can use HTML forms to take the information, store it in
parameters of the HTTP request object, and send it to the server. You can also retrieve
other information from the request object, such as the protocol, HTTP method, and
request URI being used.

The following sections show some examples:

■ Using an HTML Form for User Input

■ Displaying Request Parameter Data Specified in User Input

■ Complete Example Using a Form and Request Parameters

■ Using the POST Method for URL Security

■ Calling Information Methods of the Request Object

■ Complete Example Retrieving Request Information

HTTP request parameters will not be available to servlet filters that are meant to be
executed before dispatch of the request to a static resource (an .html file, for
example). Filters that execute before dynamic resources, such as a servlet or JSP page,
will have access to the parameters.

See "Key Methods of the HttpServletRequest Interface" on page 1-6 for a summary of
request methods.

Using an HTML Form for User Input
A servlet can use an HTML form to take input from the user, then submit these data to
the server as parameters of the HTTP request object. Here is an example:

PrintWriter out = response.getWriter();

Development Tips:

■ Add the location of the Java executables—such as the JVM, Java
compiler, and JAR utility—to your system file path so you can run
them from any location. For example, for the Sun Microsystems
JDK 1.4.2, version 4, add jdkroot/j2sdk1.4.2_04/bin to the
file path, where jdkroot is the full path to the directory where
the JDK is installed, so you can run java, javac, and jar from
any location. How to accomplish this varies, depending on your
operating system.

■ The standard servlet classes and interfaces are provided with
OC4J in a file called servlet.jar in the
oc4jroot/j2ee/home/lib directory, where oc4jroot is the
full path to the directory where OC4J is installed. You must make
servlet.jar available to the Java compiler. One way to
accomplish this is to add
oc4jroot/j2ee/home/lib/servlet.jar to a system or user
classpath environment variable. If you are using a Sun JDK, an
alternative way to accomplish this is to copy servlet.jar to the
JDK jre/lib/ext extensions directory. For example, for JDK
1.4.2, version 4, copy it to the
jdkroot/j2sdk1.4.2_04/jre/lib/ext directory.

Using HTML Forms and Request Parameters

6-8 Oracle Containers for J2EE Servlet Developer’s Guide

...
out.print("<form action=\"");
out.print("RequestParamExample\" ");
out.println("method=GET>");
out.println("Enter a new first name: ");
out.println("<input type=text size=20 name=firstname>");
out.println("
");
out.println("Enter a new last name: ");
out.println("<input type=text size=20 name=lastname>");
out.println("
" + "
");
out.println("<input type=submit>");
out.println("</form>");

This example prompts the user to enter his or her first name, stores it in a request
parameter called firstname, prompts for the last name, and stores it in a request
parameter called lastname. The request object is sent to the server, where the
information is processed as desired (as shown in the next section).

A significant disadvantage to using the GET method for this operation, however, is
that the parameter names and values are appended to the servlet URL string. To
prevent this, you can use the POST method instead, as shown in "Using the POST
Method for URL Security" on page 6-10.

Displaying Request Parameter Data Specified in User Input
This section shows sample code that displays request parameter data that were
specified by the user through an HTML form (shown in the preceding section).

PrintWriter out = response.getWriter();
...
String firstName = request.getParameter("firstname");
String lastName = request.getParameter("lastname");
out.println("First and last name from request:" + "
" + "
");
if (firstName != null || lastName != null) {
 out.println("First name ");
 out.println(" = " + firstName + "
");
 out.println("Last name ");
 out.println(" = " + lastName + "
");
} else {
 out.println("(No names entered. Please enter first and last name.)");
}

The values of the request parameters firstname and lastname are stored in the
strings firstName and lastName, then output to the user.

Complete Example Using a Form and Request Parameters
Here is the complete servlet with the code from the preceding sections. It prompts the
user for first name and last name, with the information being written to the request
object, then it retrieves the names from the request object and outputs them to the user.
(The output code comes first, indicating "No names entered" until the user first enters
some names.)

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class RequestParamExample extends HttpServlet {

 public void doGet(HttpServletRequest request,

Using HTML Forms and Request Parameters

Developing Servlets 6-9

 HttpServletResponse response)
 throws IOException, ServletException
 {
 response.setContentType("text/html");

 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<body>");

 out.println("<h3>" + "My Request Parameter Example" + "</h3>");
 String firstName = request.getParameter("firstname");
 String lastName = request.getParameter("lastname");
 out.println("First and last name from request:" + "
" + "
");
 if (firstName != null || lastName != null) {
 out.println("First name ");
 out.println(" = " + firstName + "
");
 out.println("Last name ");
 out.println(" = " + lastName + "
");
 } else {
 out.println("(No names entered. Please enter first and last name.)");
 }
 out.println("<P>");
 out.print("<form action=\"");
 out.print("RequestParamExample\" ");
 out.println("method=GET>");
 out.println("Enter a new first name: ");
 out.println("<input type=text size=20 name=firstname>");
 out.println("
");
 out.println("Enter a new last name: ");
 out.println("<input type=text size=20 name=lastname>");
 out.println("
" + "
");
 out.println("<input type=submit>");
 out.println("</form>");

 out.println("</body>");
 out.println("</html>");
 }
}

When the servlet first starts, it shows the following:

If you enter "Jimmy" and "Geek" and then click Submit Query, it shows the following:

Using HTML Forms and Request Parameters

6-10 Oracle Containers for J2EE Servlet Developer’s Guide

Using the POST Method for URL Security
The preceding example used the HTTP GET method, which results in request
parameter names and values being appended to the servlet URL. To avoid this
(typically for security considerations), you can use the POST method instead. In the
following code, the preceding example has been modified to use the POST method in
the form, and to use a doPost() method to call the doGet() method. Changes are
highlighted in bold.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class RequestParamExample extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 response.setContentType("text/html");

 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<body>");

 out.println("<h3>" + "My Request Parameter Example" + "</h3>");
 String firstName = request.getParameter("firstname");
 String lastName = request.getParameter("lastname");
 out.println("First and last name from request:" + "
" + "
");
 if (firstName != null || lastName != null) {
 out.println("First name ");
 out.println(" = " + firstName + "
");

Development Tip: This servlet uses the HTTP GET method, resulting
in the request parameter names and values being appended to the
servlet URL. In this example, the string
"?firstname=Jimmy&lastname=Geek" is appended. See the next
section, "Using the POST Method for URL Security" on page 6-10, for
how to avoid this.

Using HTML Forms and Request Parameters

Developing Servlets 6-11

 out.println("Last name ");
 out.println(" = " + lastName + "
");
 } else {
 out.println("(No names entered. Please enter first and last name.)");
 }
 out.println("<P>");
 out.print("<form action=\"");
 out.print("RequestParamExample\" ");
 out.println("method=POST>");
 out.println("Enter a new first name: ");
 out.println("<input type=text size=20 name=firstname>");
 out.println("
");
 out.println("Enter a new last name: ");
 out.println("<input type=text size=20 name=lastname>");
 out.println("
" + "
");
 out.println("<input type=submit>");
 out.println("</form>");

 out.println("</body>");
 out.println("</html>");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 doGet(request, response);
 }
}

Calling Information Methods of the Request Object
"Key Methods of the HttpServletRequest Interface" on page 1-6 lists some methods of
the request object that you can use to retrieve information about the HTTP request.
Here is a code sample that calls some of the information methods of a request object
and outputs the information:

PrintWriter out = response.getWriter();
...
out.println("Method:");
out.println(request.getMethod());
out.println("Request URI:");
out.println(request.getRequestURI());
out.println("Protocol:");
out.println(request.getProtocol());

This example retrieves and displays the HTTP method (such as GET or POST), the
request URI (consisting of the context path and servlet path in this example), and the
protocol (such as HTTP). The next section shows a complete example.

Complete Example Retrieving Request Information
Here is a complete servlet that retrieves the HTTP method, request URI, and protocol,
and outputs them in an HTML table.

Development Tip: There is still a doGet() method in this example,
rather than using doPost() directly, because browsers use GET
requests.

Dispatching to Other Servlets Through Includes and Forwards

6-12 Oracle Containers for J2EE Servlet Developer’s Guide

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class RequestInfoExample extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<body>");

 out.println("<h3>" + "My Request Info Example" + "</h3>");
 out.println("<table border=0><tr><td>");
 out.println("Method:");
 out.println("</td><td>");
 out.println(request.getMethod());
 out.println("</td></tr><tr><td>");
 out.println("Request URI:");
 out.println("</td><td>");
 out.println(request.getRequestURI());
 out.println("</td></tr><tr><td>");
 out.println("Protocol:");
 out.println("</td><td>");
 out.println(request.getProtocol());
 out.println("</td></tr>");
 out.println("</table>");

 out.println("</body>");
 out.println("</html>");
 }
}

This results in output such as the following:

Dispatching to Other Servlets Through Includes and Forwards
Many servlets use other servlets in the course of their processing, either by including
the response of another servlet or by forwarding the request to another servlet. The
following subsections discuss these features and show examples:

■ Basics of Includes and Forwards

■ Why Use Includes and Forwards?

■ Step-by-Step Through the Include or Forward Process

Dispatching to Other Servlets Through Includes and Forwards

Developing Servlets 6-13

■ Complete Example of a Servlet Include

Basics of Includes and Forwards
In servlet terminology, a servlet include is the process by which a servlet includes the
response from another servlet within its own response. Processing and response are
initially handled by the originating servlet, then are turned over to the included
servlet, then revert back to the originating servlet once the included servlet is finished.

With a servlet forward, processing is handled by the originating servlet up to the point
of the forward call, at which point the response is reset and the target servlet takes
over processing of the request. When a response is reset, any HTTP header settings
and any information in the output stream are cleared from the response. After a
forward, the originating servlet must not attempt to set headers or write to the
response. Also note that if the response has already been committed, then a servlet
cannot forward to or include another servlet.

To forward to or include another servlet, you must obtain a request dispatcher for that
servlet—this is the mechanism for dispatching an HTTP request to an alternative
servlet. Use either of the following servlet context methods:

■ RequestDispatcher getRequestDispatcher(String path)

■ RequestDispatcher getNamedDispatcher(String name)

For getRequestDispatcher(), input the URI path of the target servlet. For
getNamedDispatcher(), input the name of the target servlet, according to the
<servlet-name> element for that servlet in the web.xml file.

In either case, the returned object is an instance of a class that implements the
javax.servlet.RequestDispatcher interface. (Such a class is provided by the
servlet container.) The request dispatcher is a wrapper for the target servlet. In general,
the duty of a request dispatcher is to serve as an intermediary in routing requests to
the resource that it wraps.

A request dispatcher has the following methods to execute any includes or forwards:

■ void include(ServletRequest request,
 ServletResponse response)

■ void forward(ServletRequest request,
 ServletResponse response)

As you can see, you pass in the servlet request and response objects when you call
these methods.

Why Use Includes and Forwards?
A servlet include is a convenient way to do any of the following:

■ Reuse existing code without having to rewrite it.

■ Include the same processing or output in multiple servlets, without having to
implement the code in each individual servlet.

■ Include content from a static file.

Note: The target of an include or forward can be a JSP page as well
as a servlet. Wherever target servlets are discussed in the following
text, you can assume the same applies to target JSP pages.

Dispatching to Other Servlets Through Includes and Forwards

6-14 Oracle Containers for J2EE Servlet Developer’s Guide

You are including the output of the target servlet in addition to the output of the
originating servlet.

These points are similarly true for servlet forwards, but remember that with a forward,
the output of the target servlet is instead of the output of the originating servlet, not in
addition to it.

Step-by-Step Through the Include or Forward Process
Here are basic steps to implement an include or forward:

1. Use the getServletConfig() method of the servlet (specified in the
javax.servlet.Servlet interface) to retrieve a servlet configuration object.

ServletConfig config = getServletConfig();

2. Use the getServletContext() method of the servlet configuration object to
retrieve the servlet context object for the servlet.

ServletContext context = config.getServletContext();

3. Use the getRequestDispatcher() or getNamedDispatcher() method of
the servlet context object to retrieve a RequestDispatcher object. For
getRequestDispatcher(), specify the URI path of the target servlet; for
getNamedDispatcher(), specify the name of the target servlet, according to the
relevant <servlet-name> element in the web.xml file.

RequestDispatcher rd = context.getRequestDispatcher("path");

RequestDispatcher rd = context.getNamedDispatcher("name");

4. Use the include() or forward() method of the request dispatcher, as
appropriate, to execute the include or forward, respectively. Pass the servlet
request and response objects.

rd.include(request, response);

rd.forward(request, response);

You can combine all four steps into a single statement, as in the following example:

getServletConfig().getServletContext().getRequestDispatcher
 ("path").include(request, response);

The next section shows a complete example for a servlet include.

Complete Example of a Servlet Include
This section provides a complete example of a servlet including the output of another
servlet. The RequestInfoExample class, shown in "Complete Example Retrieving
Request Information" on page 6-11, is updated to include output from a slightly
modified version of the HelloWorld class shown in "Simple Servlet Example" on
page 6-5.

Note: Alternatively, you can retrieve a request dispatcher through
the getRequestDispatcher() method of the request object
(HttpServletRequest instance).

Dispatching to Other Servlets Through Includes and Forwards

Developing Servlets 6-15

Here is the slightly modified Hello World example whose output will be included. The
class is now called HelloIncluded and is not in a package:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloIncluded extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Hello World!</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Hi Amy!</h1>");
 out.println("</body>");
 out.println("</html>");
 }
}

Here is the updated request information example class, now called
RequestInfoWithInclude, that includes the output from HelloIncluded. Key
code is highlighted in bold:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class RequestInfoWithInclude extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<body>");

 out.println("<h3>" + "My Request Info Example" + "</h3>");
 out.println("<table border=0><tr><td>");
 out.println("Method:");
 out.println("</td><td>");
 out.println(request.getMethod());
 out.println("</td></tr><tr><td>");
 out.println("Request URI:");
 out.println("</td><td>");
 out.println(request.getRequestURI());
 out.println("</td></tr><tr><td>");
 out.println("Protocol:");
 out.println("</td><td>");
 out.println(request.getProtocol());
 out.println("</td></tr>");
 out.println("</table>");

When to Use Filters for Pre-Processing and Post-Processing

6-16 Oracle Containers for J2EE Servlet Developer’s Guide

 out.println("</body>");
 out.println("</html>");

 getServletConfig().getServletContext().getRequestDispatcher
 ("/mypath/helloincluded").include(request, response);
 }
}

The path /mypath/helloincluded is a URI consisting of the context path and
servlet path. The assumption is that the application has been configured so that
HelloIncluded can also be requested directly, as follows:

http://host:port/mypath/helloincluded

See Chapter 2, "Deploying and Invoking Servlets" for related information.

You could similarly include a JSP page instead of a servlet, such as in the following
example:

 getServletConfig().getServletContext().getRequestDispatcher
 ("/mypath/hello.jsp").include(request, response);

Invoking RequestInfoWithInclude results in output such as the following:

When to Use Filters for Pre-Processing and Post-Processing
Request objects and response objects are typically passed directly between the servlet
container and a servlet. The servlet specification, however, allows servlet filters, which
are Java programs that execute on the server and can be interposed between servlets
and the servlet container to wrap and preprocess requests or to wrap and postprocess
responses. A filter is invoked when there is a request for a resource that the filter has
been mapped to in the servlet configuration.

Filters can effectively transform requests and responses. Use filters if you want to
apply preprocessing or postprocessing for a group of servlets. (If you want to modify
the request or response for just one servlet, there is no need to create a filter. You can
just do what is required directly in the servlet itself.)

You can use filters in scenarios such as accessing a resource, or processing a request to
that resource, prior to the request being invoked; or wrapping a request or response in
a customized request object or response object, respectively. You can act on a servlet
with a chain of filters in a specified order.

One example is an encryption filter. Servlets in an application may generate response
data that is sensitive and should not go out over the network in clear-text form,
especially when the connection has been made using a nonsecure protocol such as

When to Use Event Listeners for Servlet Notification

Developing Servlets 6-17

HTTP. A filter can encrypt the responses. (Of course, in this case the client must be able
to decrypt the responses.) Other examples are filters for authentication, logging,
auditing, data compression, and caching.

See Chapter 4, "Understanding and Using Servlet Filters" for details.

When to Use Event Listeners for Servlet Notification
The servlet specification adds the capability to track key events in your Web
applications through event listeners. You can implement listeners to notify your
application of application events, session events, or request events. This functionality
allows more efficient resource management and automated processing based on event
status.

Use event listeners if there is reason for your application to be notified of any of the
following.

■ For the servlet context:

– The servlet context is newly created or is about to be shut down.

– Servlet context attributes are added, removed, or replaced.

■ For a session:

– A session is newly created or is newly invalidated or timed out.

– Session attributes are added, removed, or replaced.

– A session is newly active or passive.

– An object is newly bound to or unbound from a session.

■ For a request:

– A request is being newly processed.

– Request attributes are added, removed, or replaced.

As an example, consider a Web application comprising servlets that access a database.
You can create a servlet context lifecycle event listener to manage the database
connection. This event listener may function as follows:

1. The event listener is notified of application startup.

2. The application logs in to the database and stores the connection object in the
servlet context.

3. Servlets use the database connection to perform SQL operations.

4. The event listener is notified of imminent application shutdown (shutdown of the
Web server or removal of the application from the Web server).

5. Prior to application shutdown, the event listener closes the database connection.

An event listener class is declared in the web.xml deployment descriptor and invoked
and registered upon application startup. When an event occurs, the servlet container
calls the appropriate event listener method.

See Chapter 5, "Understanding and Using Event Listeners" for details.

How to Display the Stack Trace

6-18 Oracle Containers for J2EE Servlet Developer’s Guide

How to Display the Stack Trace
The following changes have been made to the error messages that are presented when
an exception occurs and there is no error page to handle it.

The following error message appears for security-sensitive exceptions:

Servlet error: An exception occurred. For security reasons, it
may not be included in this response. Please consult the
application log for details.

For other exceptions, the following error message appears:

Servlet error: An exception occurred. The current application
deployment descriptors does not allow for including it in this
response. Please consult the application log for details.

If you have tests that rely on the display of an exception or stack trace, you can cause
the stack trace to be displayed by running the application in developer mode.

To run an application in development mode, set the development attribute of the
<orion-web-app> element to "true" in the orion-web.xml file.

Here is an example:

<?xml version="1.0"?>
<orion-web-app
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/oracleas/schema/orion-web-1
0_0.xsd"
 deployment-version="null"
 deployment-time="1152223108413"
 jsp-cache-directory="./persistence"
 jsp-cache-tlds="standard"
 temporary-directory="./temp"
 context-root="/DevelopmentThrowException"
 schema-major-version="10"
 schema-minor-version="0"
 development="true">
<!-- Uncomment this element to control web application class loader behavior.
 <web-app-class-loader search-local-classes-first="true"
include-war-manifest-class-path="true" />
 -->
 <web-app>
 </web-app>
</orion-web-app>}}

Migrating an Application from Apache Tomcat to OC4J
This section provides information about migrating a Web application that includes
servlets, JSP modules, or both from Apache Tomcat to OC4J. The following topics are
discussed:

■ Pointers for Migrating from Tomcat to OC4J

■ JNDI Lookups in Tomcat and OC4J

Migrating an Application from Apache Tomcat to OC4J

Developing Servlets 6-19

■ Tomcat-to-OC4J JSP Compilation Issues

■ Tomcat-to-OC4J Clustering Issues

Pointers for Migrating from Tomcat to OC4J
This section provides pointers about migrating Java servlets from Tomcat to Oracle
Application Server. This section contains the following topics:

■ Introduction

■ Migration Approach for Servlets

■ Migrating a Simple Servlet

■ Migrating a WAR File

■ Migrating an Exploded Web Application

■ Tips From the Field

Introduction
Migrating Java servlets from Tomcat to OC4J is straightforward, requiring little or no
code changes to the servlets migrated, depending on some of the choices made in the
Tomcat environment.

Oracle Application Server 10g Release 3 (10.1.3.x) is fully compliant with Sun
Microsystem's J2EE Servlet specification, version 2.4. Tomcat 5.5 is also compatible
with version 2.4.

In addition, Oracle Application Server 10g Release 3 (10.1.3.x) is backward compatible
to Servlet 2.3. Hence, servlets written to the standard 2.3 specification should work
correctly in OC4J and require minimal migration effort.

The primary tasks involved in migrating servlets to a new environment are
configuration and deployment.

The tasks involved in migrating servlets also depend on how the servlets have been
packaged and deployed. Servlets can be deployed as a simple servlet, as a Web
application packaged with other resources in a standard directory structure, or as a
Web archive (WAR) file.

Migration Approach for Servlets
The typical steps for migrating servlets to OC4J are as follows:

1. Configuration: Create or modify the Oracle Application Server deployment
descriptors for the servlets.

2. Packaging:

■ Simple servlets can be deployed individually.

■ Servlets can be packaged as part of a Web application in a WAR file.

3. Deployment: Application Server Control Console can be used to deploy servlets in
a WAR file. Individual servlets and servlets in exploded Web applications can be
deployed automatically by copying them to the appropriate directories.

Oracle JDeveloper provides tools and wizards to automate these steps.

Migrating an Application from Apache Tomcat to OC4J

6-20 Oracle Containers for J2EE Servlet Developer’s Guide

Migrating a Simple Servlet
Simple servlets are easily configured and deployed in OC4J. The manual process used
to deploy a servlet is the same in both Tomcat and OC4J.

A servlet must be registered and configured as part of a Web application. To register
and configure a servlet, several entries must be added to the Web application
deployment descriptor.

The typical steps to deploy a simple servlet are as follows:

1. Update the Web application deployment descriptor (web.xml) with the name of
the servlet class and the URL pattern used to resolve requests for the servlet.

2. Copy the servlet class file to the WEB-INF/classes/ directory. If the servlet class
file contains a package statement, create additional subdirectories for each level of
the package statement. The servlet class file must then be placed in the lowest
subdirectory created for that package.

3. Extract and copy the supporting utility class file and any other supporting files
required by the servlet to the appropriate directory in the Oracle Application
Server installation.

4. Start or restart the home OC4J "home" instance.

5. Invoke the servlet from your browser by entering its URL.

Migrating a WAR File
A Web application can be configured and deployed as a WAR file. This is most easily
accomplished in OC4J by using the Application Server Control Console administration
GUI. Alternatively, you can manually copy the WAR file to the appropriate directory.
This is also true for Tomcat.

Production Web applications are typically deployed using WAR or EAR files through
Application Server Control Console or the utility. During the development of a Web
application, it may be faster to deploy and test edited code using an exploded
directory format.

See the Oracle Containers for J2EE Deployment Guide for more information on
deployment.

Note: The recommended and preferred way to deploy a servlet is by
packaging it in a WAR or EAR file and using Oracle Enterprise
Manager 10g Application Server Control Console.

Alternatively, you can deploy manually using the
admin_client.jar command line utility. The manual processes
described in this chapter of editing XML files and starting OC4J at the
command line using the java command should preferably be used in a
development environment. For information on admin_client.jar,
see the Oracle Containers for J2EE Configuration and Administration
Guide and the Oracle Containers for J2EE Deployment Guide.

Note: Manually copying a WAR file to the appropriate directory to
deploy it should only be done in a development environment where
OC4J is in standalone mode (not a component of an Oracle
Application Server instance).

Migrating an Application from Apache Tomcat to OC4J

Developing Servlets 6-21

The typical steps for migrating a WAR file from Tomcat to OC4J are as follows:

1. Create the WAR file for the sample application.

2. Deploy the sample application to OC4J.

3. Test the deployed application.

Migrating an Exploded Web Application
Web applications can also be configured and deployed as a collection of files stored in
a standard directory structure or exploded directory format. This can be accomplished
in OC4J by manually copying the contents of the standard directory structure to the
appropriate directory in the OC4J installation. The same method can also be used for
Tomcat.

Deploying a Web application in exploded directory format is used primarily during
the development of a Web application. It provides a fast and easy way to deploy and
test changes. When deploying a production Web application, package the Web
application in a WAR file and deploy the WAR file using Application Server Control
Console.

The typical steps for manually deploying an exploded Web application in OC4J are as
follows:

1. Copy the top-level directory containing the exploded Web application into the
following directory of your OC4J installation:
 <ORACLE_HOME>/j2ee/home/applications

Then, modify the application deployment descriptor
<ORACLE_HOME>/config/application.xml to include the Web application,
as follows:

<web-module id="migratedHR" path="../applications/hrapp" />

2. Bind the Web application to your Web site by adding an entry in the descriptor file
<ORACLE_HOME>/config/default-web-site.xml, as follows:

<web-app application="default" name="migratedHR " root="/hr" />

3. Finally, register the new application by adding a new <application> tag entry
in the following file: <ORACLE_HOME>/config/server.xml

When you modify server.xml and save it, OC4J detects the timestamp change of
this file and deploys the application automatically. OC4J need not be restarted.

Tips From the Field
Here are some issues to watch out for when porting from Tomcat to OC4J.

■ Make Sure to Use the Initial Slash "/" in Path Names

■ JNDI Context Factory Summary

■ Xerces and Xalan Require Additional Steps

Make Sure to Use the Initial Slash "/" in Path Names

Tomcat is not entirely compliant with the Servlet specification with respect to the
following methods of the ServletContext class:

■ ServletContext.getResource()

■ ServletContext.getResourceAsStream()

Migrating an Application from Apache Tomcat to OC4J

6-22 Oracle Containers for J2EE Servlet Developer’s Guide

The methods getResource() and getResourceAsStream() take a path
parameter. This path allows you to access files in your web application directory
structure such as WEB-INF/config.xml.

The J2EE API documentation and specifications state the following:

"The path must begin with a "/" and is interpreted as relative to the current context
root."

Tomcat, contrary to the Servlet specification, allows path names without the initial
slash (/).

OC4J, in full compliance with the Servlet specification, requires the initial slash (/).

Don't forget the initial slash (/) on path names to access files with the
ServletContext class.

JNDI Context Factory Summary

In OC4J, you can use several different JNDI context factories, each of which creates an
InitialContext and comes with different functionalities.

The most commonly used context factories are the following:

■ The internal context factory - You get the internal context factory when you are
within the OC4J container and you call the default constructor of
InitialContext without jndi.properties in the class path.

■ RMIInitialContextFactory - This context factory is commonly used to
connect to the OC4J container. It ignores every configuration and does not require
the java:comp/env/ prefix.

■ ApplicationClientContextFactory - This context factory takes care of your
JNDI environment (especially in META-INF/application-client.xml) and
honors the java:comp/env/ environment prefix.

Xerces and Xalan Require Additional Steps

If the code relies on Xerces/Xalan, then additional steps must be taken.

Metalink has additional information about this topic.

JNDI Lookups in Tomcat and OC4J
Tomcat enables you to look up resources using java:comp/env/ResourceName
without defining a <resource-ref> element in web.xml.

OC4J requires the <resource-ref> element in web.xml
or the lookup is just as ResourceName.

OC4J can do this by default for a Data Source defined on the server:

initialContext.lookup("jdbc/ScottDS")

Whereas Tomcat can do it like this:

initialContext.lookup("java:comp/env/jdbc/ScottDS")

If you do not want make code changes and you need to use the Tomcat option, then
you must modify web.xml to include the <resource-ref> entry for the resource, as
follows:

Migrating an Application from Apache Tomcat to OC4J

Developing Servlets 6-23

<resource-ref>
 <res-auth>Container</res-auth>
 <res-ref-name>jdbc/ScottDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 </resource-ref>

Tomcat-to-OC4J JSP Compilation Issues
In general, OC4J interprets the J2EE specifications more strictly than Tomcat.

You can avoid compilation issues by replacing custom Tomcat JSP tags with standard
JSP tags before you deploy a JSP page on OC4J.

Be careful when the words "should" and "may" appears in the specification. Treat these
cases with caution because they allow choice, which results in differing behavior.

Here is an example. The JSP specification says:

In this case, OC4J implements the recommendation that the type attribute should be
used instead of the class attribute when the JavaBean does not have a zero-args
constructor. Tomcat does not insist on the type attribute but will accept the class
attribute as well. This difference results in the following problem when migrating the
application from Tomcat to OC4J:

If you use the type attribute in your index.jsp and the JavaBean (my.MyClass)
does not have a public no-args constructor, then your page works properly both in
Tomcat and in OC4J, which is the desirable behavior.

The following example shows this preferred usage:

<jsp:useBean id="codeDesc" scope="session" type="my.MyClass"/>

If, on the other hand, you use the class="my.MyClass" attribute in this situation,
Tomcat may accept this usage and behave correctly. But OC4J will throw a
JSPCompilationException because OC4J uses the more strict interpretation of the
specification.

The following example shows the less-strict usage:

<jsp:useBean id="codeDesc" scope="session" class="my.MyClass"/>

A scripting language variable of the specified type (if given) or
class (if type is not given) is defined with the given id in the
current lexical scope of the scripting language. The type
attribute should be used to specify a Java type that cannot be
instantiated as a JavaBean (i.e. a Java type that is an abstract
class, an interface, or a class with no public no-args
constructor). If the class attribute is used for a Java type that
cannot be instantiated as a JavaBean, the container may
consider the page invalid, and is recommended to (but not
required to) produce a fatal translation error at translation time,
or a java.lang.Instantiation-Exception at request time.

Migrating an Application from Apache Tomcat to OC4J

6-24 Oracle Containers for J2EE Servlet Developer’s Guide

Tomcat-to-OC4J Clustering Issues
This section provides an overview of how clustering in OC4J and Tomcat relate to one
another. The following topics are discussed:

■ Basic Configuration in Tomcat and OC4J

■ Network Considerations in Tomcat and OC4J

■ State Persistence Mechanisms in Tomcat and OC4J

■ Replication Algorithms in Tomcat and OC4J

■ Application Design in Tomcat and OC4

■ Load Balancing in Tomcat and OC4J

In OC4J, clustering is defined on an application-by-application basis when it is
deployed.

For information about clustering in OC4J, including how to configure, see Chapter 9
"Application Clustering in OC4J" of the Oracle Containers for J2EE Configuration and
Administration Guide.

For information about load balancing, see Appendix D of the Oracle® HTTP Server
Administrator's Guide.

Basic Configuration in Tomcat and OC4J
In Tomcat, clustering is configured using the <cluster> element and its subelements in
the server.xml file. Clustering is enabled on a container basis.

In OC4J, clustering is defined on an application-by-application basis using the
<cluster> element in the orion-application.xml file of a deployed application.

This enables applications with and without clustering enabled to co-exist within the
same OC4J instance. Clustering in OC4J is configured using the orion-application.xml
file of the application in question. To enable container-level clustering, enable
clustering for the default application and all deployed applications will inherit this
setting. Also, since the clustering is configured on a per-application basis in OC4J,
different applications can be configured to enable clustering, using different protocols
and different options.

Network Considerations in Tomcat and OC4J
Tomcat uses both IP multicast and IP sockets to facilitate clustering. In terms of
terminology, Tomcat has a single in-memory replication option, where it combines the
two network models.

■ IP multicast is used to perform group membership operations - such as when
Tomcat instances are discovering and checking the availability of one another.

■ IP sockets are used to perform the actual replication of the session state from one
Tomcat instance to another Tomcat instance. Presumably this is for the in-memory
state persistence mechanism.

OC4J differs in its use and terminology for in-memory session-state replication. OC4J
has two different ways to replicate session state in-memory - it can use either IP

Note: The commentary in this section is based on the behavior of
Tomcat 5.

Migrating an Application from Apache Tomcat to OC4J

Developing Servlets 6-25

multicast OR IP sockets. In either case, the Group membership activities occur using
the same network model.

■ IP Multicast

If you configure OC4J to use IP Multicast as the replication protocol, then OC4J
uses IP Multicast as the medium to participate in the Group membership protocol
as well as for distributing session state to the other members of the Group. The
multicast network address is defaulted to a known value. It can be configured as
desired using the <multicast> subelement of the <cluster> element. In OC4J, the
multicast replication protocol has the added value of guaranteed delivery - so,
even though the actual network model used has no reliability guarantees, the way
in which is it used by OC4J guarantees that all the packets are delivered and no
loss of session state will occur.

■ IP Sockets

If you configure OC4J to use Peer-Peer as the replication protocol, then OC4J uses
IP sockets as the medium to participate in the Group membership protocol as well
as for distributing session state to its selected peers. In the case of OC4J used on its
own (standalone), then the list of peers must be statically defined in a
configuration file. The TCP socket address defaults to a well-known value. It can
be configured using the peer subelement of the cluster protocol, tag.

In the case of OC4J used in the Oracle Application Server environment (clustered),
the initial list of peers is provided by the OPMN server. OPMN also allocates the
port numbers used by the Peer replication protocol so that there are no port
conflicts on a server where multiple OC4J instances are started.

State Persistence Mechanisms in Tomcat and OC4J
Tomcat supports the following mechanisms to handle the distribution of session state
to other Tomcat instances:

■ In-memory

■ Database

■ File-based

OC4J supports the following session persistence mechanisms:

■ In-memory

■ Database

There is potential confusion here because OC4J supports two methods of
in-memory-based replication (multicast and peer) whereas Tomcat uses a combination
of both to support in-memory replication.

OC4J does not support a file-based state replication protocol.

OC4J uses the term "replication protocol" instead of "state persistence".

■ In Tomcat, the "state persistence" mechanism is defined by specifying the name of
the class used to implement the persistence mechanism.

■ In OC4J, the analogous concept, "replication protocol", is configured as a value in
the orion-application.xml file using the <protocol> tag and specifying
one of the <multicast>, <peer> or <database> subtags to indicate which
protocol should be used.

The database replication protocol requires the JNDI location of a Data Source,
which points to the database instance in which the state replicas will be stored.

Migrating an Application from Apache Tomcat to OC4J

6-26 Oracle Containers for J2EE Servlet Developer’s Guide

Replication Algorithms in Tomcat and OC4J
In Tomcat, the type of state replicated can be configured to be either the full session or
just the change set. This is configured by specifying the class that is used to perform
the replication task.

OC4J supports the same concept of sending either the full session or just the deltas.
This is configurable using the <replication-policy> element and the scope
attribute. The options are modifiedAttributes or allAttributes.

State Replication Transmission
In Tomcat, the transmission of the state replications can be configured to be
synchronous, asynchronous, or pooled.

OC4J by default uses an asynchronous replication model for replication transmissions.
This can be changed to a synchronous model using the synchronous-replication
option, whereupon the OC4J instance sending the replica will wait for an
acknowledgment from the receiving OC4J before proceeding.

Application Design in Tomcat and OC4
OC4J and Tomcat share the same application design requirements for applications that
will run in a clustered environment.

Load Balancing in Tomcat and OC4J
Tomcat provides a built-in HTTP server. However, it is possible to scale up using a
generic Apache HTTP Server with mod_proxy or mod_rewrite or the AJP-based
mod_jk connector to route between multiple instances of Tomcat.

OC4J also provides a built-in HTTP server. However, to scale up and benefit from the
automatic load balancing capabilities it provides, Oracle recommends using the Oracle
HTTP server. Using OC4J HTTP requires a third-party load balancing component.

In an Oracle Application Server environment, the Oracle HTTP Server is used to route
requests to applications running on OC4J instances. The Oracle HTTP Server is
configured to discover the OC4J instances running in the same Cluster Topology. As
applications are deployed to the OC4J instances, Oracle HTTP Server automatically
receives updates about the new deployment and automatically adds the application
context root to its list of routable URLs.

Oracle HTTP Server provides automatic failover for clustered applications with sticky
session support so that session-based requests are always routed to the same OC4J
instance until a failover occurs.

Oracle HTTP Server uses a round-robin load balancing algorithm by default. The load
balancing model can be changed to several different options.

For further discussion, see Appendix D, "Load Balancing Using mod_oc4j" in the
Oracle HTTP Server Administrator’s Guide.

Using Annotations for Services and Resource References 7-1

7
Using Annotations for Services and

Resource References

OC4J supports annotations that the servlet 2.5 specification describes, by injecting
resource references before a component instance is made available to an application.
The following sections describe how to use annotations in OC4J:

■ Overview of How Annotations Work

■ Annotations and Injection

■ Annotations in OC4J

■ Annotation Rules and Guidelines

■ How Annotations Affect Performance with Servlet Version 2.5

Overview of How Annotations Work
In J2SE 5.0 or greater, you can specify configuration data and dependency on external
resources in Java code as metadata, also referred to as annotations. You can define
such data in configuration files or in annotations for services, such as EJBs or Web
services, and for resource references, such as data sources and JMS destinations.

For example, in J2EE 1.4, before a servlet can refer to an EJB, the developer must define
an ejb-local-ref element, like this one:

<ejb-local-ref>
 <ejb-ref-name>ejb/HelloWorld</ejb-ref-name>
 <local>oracle.ejb.HelloWorld</local>
</ejb-local-ref>

Then, to refer to the EJB in code, the developer has to use JNDI, as in this code
fragment:

Context ic = new InitialContext();

HelloWorld helloWorld = (HelloWorld)ic.lookup("java:comp/env/ejb/HelloWorld");
helloWorld.greet(“Hello!”);

In servlet 2.5, the client code is simplified and OC4J injects the correct resource or
service. The client only needs to specify the resource or service in an annotation, such
as this one:

@EJB
private HelloWorld helloWorld;
helloWorld.greet("Hello!");

Annotations and Injection

7-2 Oracle Containers for J2EE Servlet Developer’s Guide

Annotations and Injection
The metadata-complete attribute of the web-app element in a Web application’s
deployment descriptor specifies whether the Web descriptor and other related
deployment descriptors for this module (such as Web service descriptors) are
complete. If the web.xml file uses servlet 2.5 by setting version="2.5" or points to
the servlet 2.5 schema namespace, the OC4J servlet container will check the
metadata-complete flag to determine whether or not to process annotations. If
version is set to 2.4 or an earlier version, the servlet container does not process any
annotations.

If metadata-complete is set to true, the default value for Servlet 2.4, the servlet
container ignores any servlet annotations that are in the class files of the application. If
the metadata-complete attribute is missing or is set to false, the default value for
Servlet 2.5, and version is set to 2.5, the servlet container examines the class files of
the application for servlet annotations and supports the annotations as follows:

1. The OC4J servlet container inspects resource or service references for annotation
references for classes of a Web application that are located in the WEB-INF/
directory or in a JAR file under the WEB-INF/lib/ directory.

The servlet container also provides annotation support for jar files listed in
MANIFEST.MF.

2. The OC4J servlet container provides annotation support for managed component
classes that are declared in the Web application deployment descriptor and that
implement the following interfaces:

■ javax.servlet.Servlet

■ javax.servlet.Filter

■ javax.servlet.ServletContextListener

■ javax.servlet.ServletContextAttributeListencer

■ javax.servlet.ServletRequestListener

■ javax.servlet.ServletRequestAttributeListener

■ javax.servlet.http.HttpSessionListener

■ javax.servlet.http.HttpSessionAttributeListener

3. The OC4J servlet container injects resource or service references before any
lifecycle methods are called on the instance.

■ (init() for javax.servlet.Servlet and javax.servlet.Filter

■ contextInitialized() for
javax.servlet.ServletContextListener

■ requestInitialized() for
javax.servlet.ServletRequestListener

4. If both an annotation and a deployment descriptor entry declare an environment
entry, information in the deployment descriptor entry can override some of the
information in a Resource, EJB, or WebServiceRef annotation.

The following specifications describe the rules for using a deployment descriptor
entry to override annotation information:

■ For rules to override Resource annotations, see the Java EE 5 specification.

■ For rules to override EJB annotations, see the EJB specification.

Annotations in OC4J

Using Annotations for Services and Resource References 7-3

■ For rules to override WebServiceRef annotations, see the Web Services
specification.

5. If the OC4J servlet container cannot find a resource or service that it needs to inject
for a class, the initialization of the class fails and OC4J issues this warning
message:

Some resource(s) and/or service(s) to be injected cannot be found for class
name. class name will not be put to service.

6. After all the resource or service references have been injected, and before any
lifecycle methods are called on the instance, the method marked with the
PostConstruct annotation, if any, must be invoked to give the servlet a chance
to initialize the injected resources. See "PostConstruct Annotation" on page 7-5.

7. Before the servlet is taken out of service, the method marked with a PreDestroy
annotation, if any, must be invoked to give the servlet a chance to release the
injected resources. See "PreDestroy Annotation" on page 7-5.

Annotations in OC4J
This section describes the annotations that OC4J supports:

EJB Annotation

Resource Annotation

Resources Annotation

PostConstruct Annotation

PreDestroy Annotation

PersistenceUnit(s) Annotation

PersistenceContext(s) Annotation

WebServiceRef Annotation

DeclaresRoles Annotation

RunAs Annotation

EJB Annotation
An EJB annotation on a field or method of an application component is equivalent to
an ejb-ref or ejb-local-ref element in the deployment descriptor. If a field has
an EJB annotation, OC4J injects the field with a reference to the corresponding EJB
component.

In an EJB annotation, you can refer to the local or remote home interface of the bean or
to the business interface of an EJB 3 bean. If the reference is to the EJB 3 business
interface, OC4J injects a reference to an instance of the enterprise bean.

The following example shows a short EJB annotation:

 @EJB private ShoppingCart myCart;

The next example shows a longer EJB annotation, which uses all of the annotation
fields:

 @EJB(
 name = "ejb/shopping-cart",
 beanName = "Cart1",

Annotations in OC4J

7-4 Oracle Containers for J2EE Servlet Developer’s Guide

 beanInterface = ShoppingCart.class,
 description = "Items for purchase"
)
 private ShoppingCart myCart;

For more details about the EJB annotation, see the EJB specification.

The example set in the "Annotation Example" section on page 7-8 includes EJB
annotation.

Resource Annotation
Use the Resource annotation to declare a reference to a resource such as a data
source, JMS destination, or environment entry. If you use this annotation, you do not
need to declare the reference in a <resource-ref>,
<message-destination-ref>, <env-ref>, or <resource-env-ref> element
in the deployment descriptor.

When a Resource annotation is applied on a field or a setter method, OC4J injects a
reference to the resource declared by the annotation and maps the references to the
JNDI name for the resource. When the annotation is applied to a class, the annotation
declares a resource that the application will look up at runtime.

Each injection corresponds to a JNDI lookup. If the annotation does not explicitly
specify the JNDI name, the name of the field combined with the fully qualified name
of the class is used as the JNDI name. For example, the default JNDI name of a field
named myDb in a class MyApp in the package com.example would be
java:comp/env/com.example.MyApp/myDb. All JNDI names are relative to
java:comp/env/. If the annotation is applied on a setter method, the default is the
JavaBeans property name corresponding to the method qualified by the class name.
When the annotation is applied to a class, there is no default and the name must be
specified.

The following example does not specify the JNDI name, so OC4J would use the default
JNDI name:

 @Resource
 private DataSource myDB;

The next example explicitly specifies the JNDI name:

 @Resource(name="customerDB")
 private DataSource myDB;

For general information about annotations, see the Java EE 5 specification.

The example set in the "Annotation Example" section on page 7-8 includes resource
annotation.

Resources Annotation
Repeated annotations are not allowed, so the Resources annotation acts as a
container for multiple Resource annotations, in this format:

 public @interface Resources {
 Resource[] value;
 }
 // value – Array of multiple resources.

The following example shows a Resources annotation that contains two Resource
annotations on a class, for a data source and a connection factory:

Annotations in OC4J

Using Annotations for Services and Resource References 7-5

 @Resources ({
 @Resource (name = "myDB", type=javax.sql.DataSource),
 @Resource (name = "myCF", type=javax.jms.ConnectionFactory)
)
 public class MulResClass {
 //...
 }

PostConstruct Annotation
OC4J invokes the method with the PostConstruct annotation after all other
resource injections have been completed and before any lifecycle methods on a
component is called. This allows the component to do post-create processing. OC4J
invokes this method even if the class has no other annotations.

The following example shows a PostConstruct annotation:

 @PostConstruct
 void doPostInjectionProcessing {
 //...

PreDestroy Annotation
OC4J invokes the method with the PreDestroy annotation before taking the servlet
out of service. This allows the servlet to release the injected resources. OC4J invokes
this method even if the class has no other annotations.

The following example shows a PreDestroy annotation:

 @PreDestroy
 void doPreDestroyProcessing {
 //...
 }

PersistenceUnit(s) Annotation
A PersistenceUnit annotation is required for using EJB 3.0 persistence. A
persistence unit has configuration details about entity managers (persistence contexts)
that manage a set of related entity beans. "PersistenceContext(s) Annotation" on
page 7-6 describes the annotation for persistence contexts.

You can annotate a field or a method of a servlet with a PersistenceUnit annotation. A
logical persistent unit reference refers to an entity manager factory for a persistence
unit.

The following example declares a single persistence unit:

 @PersistenceUnit
 EntityManagerFactory emf;

Note: The PostConstruct annotation lets an arbitrary method of a
servlet act as the init() method.

Note: The PreDestroy annotation lets an arbitrary method of a
servlet act as the destroy() method.

Annotations in OC4J

7-6 Oracle Containers for J2EE Servlet Developer’s Guide

If you declare multiple persistence units in a servlet, you must specify an explicit
unitName for each unit, as follows:

 @PersistenceUnit(unitName=”InventoryManagement”)
 EntityManagerFactory emf;

A PersistenceUnit annotation is equivalent to a persistence-unit-ref
element in persistence.xml.

For more information about persistence unit references, see the Java EE 5 specification.

PersistenceContext(s) Annotation
A PersistenceContext annotation is required for using EJB 3.0 persistence. A
persistence context is an entity manager that manages a set of related entity beans. A
persistence unit has configuration details about a persistence context.
"PersistenceUnit(s) Annotation" on page 7-5 describes the annotation for persistence
units. An example of a PersistenceContext annotation follows:

 @PersistenceContext
 EntityManager em;

If multiple persistence units are declared in the servlet, an explicit unit name must be
specified in the unitName attribute, as follows:

 @PersistenceContext(unitName=”InventoryManagement”)
 EntityManager em;

This annotation is equivalent to a persistence-context-ref element in
persistence.xml.

For more information about persistence context references, see the Java EE 5
specification.

WebServiceRef Annotation
Annotating with the WebServiceRef annotation is equivalent to declaring a
<resource-ref> element in the deployment descriptor that would provide a
reference to a Web service.

This annotation has two main uses:

■ Define a reference whose type is a generated service interface

■ Define a reference whose type is a service endpoint interface (SEI)

An example of a WebServiceRef annotation follows:

 // Generated Service Interface
 @WebServiceRef
 private StockQuoteService stockQuoteService;

 // SEI
 @WebServiceRef(StockQuoteService.class)
 private StockQuoteProvider stockQuoteProvider;

For more details about the WebServiceRef annotation, see Java API for XML-Based
Web Services, 2.0 (JSR 224).

Annotation Rules and Guidelines

Using Annotations for Services and Resource References 7-7

DeclaresRoles Annotation
The DeclaresRoles annotation defines all the security roles that compose the
security model of an application. You can specify this annotation on a class, defining
roles that you can test from within the methods of the annotated class, by calling
isCallerInRole.

The following example shows a DeclaresRoles annotation:

 @DeclaresRoles("Manager")
 public class CorporationServlet {
 //...
 }

This annotation is equivalent to the following code in a web.xml file:

 <web-app>
 <security-role>
 <role-name>Manager</role-name>
 </security-role>
 </web-app>

For more details about the DeclaresRoles annotation, see Common Annotations for
the JavaTM Platform (JSR 250)

RunAs Annotation
The RunAs annotation is equivalent to the <run-as> element in the deployment
descriptor. This annotation can only be used in classes that implement the
javax.servlet.Servlet interface or a subclass of it.

The following example shows a RunAs annotation:

 @RunAs("Admin")
 public class CorporationServlet {
 //...
 }

This annotation is equivalent to the following code in a web.xml file:

 <servlet>
 <servlet-name>CorporationServlet</servlet-name>
 <run-as>Admin</run-as>
 </servlet>

For more details about the RunAs annotation, see Common Annotations for the JavaTM
Platform (JSR 250)

Annotation Rules and Guidelines
Here are some rules for using annotations. For more information on general
annotation guidelines, see the Java EE 5 specification.

■ A field or a method of the following container-managed component classes can be
annotated to request that an entry from the component's environment be injected
into the class:

javax.servlet.Servlet
javax.servlet.Filter
javax.servlet.ServletContextListener
javax.servlet.ServletContextAttributeListencer

How Annotations Affect Performance with Servlet Version 2.5

7-8 Oracle Containers for J2EE Servlet Developer’s Guide

javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttributeListener
javax.servlet.http.HttpSessionListener
javax.servlet.http.HttpSessionAttributeListener

■ A field or method can have any access qualifier (such as public or private).

■ A field or method cannot be static, except for the fields or methods of the
application client main class that have been annotated for injection. These fields or
methods must be static.

■ Any violation of the preceding rules is an error that will result in a message or
messages being logged. The violating class will not be put in service.

■ Annotations applied on a class do not cause resource injections. Instead, they
declare an entry in an application component's environment that the application
component can look up through JNDI or the component context lookup method.

■ Resource annotations can be specified in any of the classes in the first item of this
list or on any of their superclasses, as the following example shows. Injection of
resources follows the Java language overriding rules for visibility of fields and
methods.

Class A {

 @Resource
 private DataSource myDS; // Injected resource not visible in class B
 //...
}

Class B extends Class A {
 public DataSource myDS; // Not a resource, needs to do JNDI lookup
 //...
}

How Annotations Affect Performance with Servlet Version 2.5
Whether or not annotations are used for Web applications with servlet version 2.5, if
the metadata-complete attribute of <web-app> is missing from the deployment
descriptor or is set to false (the servlet 2.5 default value), OC4J needs to load all the
classes under WEB-INF/ and WEB-INF/lib to look for annotations. This loading can
have some impact on Oracle Application Server performance at startup. When you are
not using annotations, you can avoid this performance impact by specifying
metadata-complete="true".

This startup performance impact is applicable only for Web applications with servlet
version 2.5. For Web applications with servlet version 2.4 or lower, there will be no
performance impact.

Annotation Example
This section contains an example of a servlet using annotations and the corresponding
web.xml file.

The servlet illustrates the Servlet 2.5 way of doing things and then commented out is
the Servlet 2.4 way of doing things as a comparison. The servlet demonstrates one
@EJB annotation and two @Resource annotations.

Annotation Example

Using Annotations for Services and Resource References 7-9

The web.xml file illustrates the version= and metadata-complete settings
required to enable annotations to be used:

<web-app version="2.5" metadata-complete="false">
 ...
</web-app>

For additional information, see the document "How-To: Using Dependency Injection In
Web Module" on the following site:

http://www.oracle.com/technology/tech/java/oc4j/10131/how_to/ind
ex.html

Here is the web.xml file example.

<?xml version="1.0"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.5"
 metadata-complete="false"
>

 <display-name>Annotation Example</display-name>
<description>A few examples of Servlet 2.5 Annotation and Resource
Injection</description>

 <servlet>
 <display-name>hello</display-name>
 <servlet-name>HelloServlet</servlet-name>
 <servlet-class>HelloServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>HelloServlet</servlet-name>
 <url-pattern>/hello</url-pattern>
 </servlet-mapping>

 <env-entry>
 <env-entry-name>EmpNo</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>15</env-entry-value>
 </env-entry>
</web-app>

Here is the HelloServlet.java servlet example.

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.annotation.Resource;

Annotation Example

7-10 Oracle Containers for J2EE Servlet Developer’s Guide

import javax.sql.*;
import java.sql.*;
import javax.naming.*;
import org.acme.*;
import javax.rmi.*;
import javax.ejb.*;
public class HelloServlet extends HttpServlet {

 @EJB HelloObject bean;
 @Resource(name="EmpNo") int empNo;
 @Resource(name="jdbc/OracleDS") private DataSource db;

 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {
 res.setContentType("text/html");

 PrintWriter writer = res.getWriter();

 // ejb invocation
 writer.println(bean.sayHello()+"
");

 // fetch value set by deployer
 writer.println("EmpNo="+empNo+"
");

 // make a db connection
 writer.println("db="+getConnection()+"
");
 }

 public Connection getConnection() {
 Connection conn = null;

 try {
 if (db != null) {
 conn = db.getConnection();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 return conn;
 }

 // The following is the pre-2.5 way to do it.
/*

 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {
 res.setContentType("text/html");

 PrintWriter writer = res.getWriter();

 InitialContext ctx = new InitialContext();
 Object obj = ctx.lookup("java:comp/env/ejb/Hello");

 HelloHome ejbHome = (HelloHome)
 PortableRemoteObject.narrow(obj,HelloHome.class);
 HelloObject bean = ejbHome.create();

 // ejb invocation
 writer.println(bean.sayHello()+"
");

Annotation Example

Using Annotations for Services and Resource References 7-11

 // fetch value set by deployer
 Context myEnv = (Context) ctx.lookup("java:comp/env");
 Integer empNoInteger = (Integer) myEnv.lookup("EmpNo");
 int empNo = empNoInteger.intValue();

 writer.println("EmpNo="+empNo+"
");

 // make a db connection
 writer.println("db="+getConnection()+"
");
 }

 public Connection getConnection() {

 Context initCtx = new InitialContext();
 javax.sql.DataSource db =
 (javax.sql.DataSource) initCtx.lookup("java:comp/env/jdbc/OracleDS");

 Connection conn = null;

 try {
 if (db != null) {
 conn = db.getConnection();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 return conn;
 }
*/
}

Annotation Example

7-12 Oracle Containers for J2EE Servlet Developer’s Guide

Using JDBC or Enterprise JavaBeans 8-1

8
Using JDBC or Enterprise JavaBeans

Dynamic Web applications typically access a database to provide content. This chapter
shows how servlets can use JDBC, the Java standard API for database connectivity. It
also provides an overview of Enterprise JavaBeans, which you can call from servlets to
perform server-side business logic or manage data persistence for an application. The
following sections are included:

■ Using JDBC in Servlets

■ Overview of Enterprise JavaBeans

Using JDBC in Servlets
A servlet can access a database using a JDBC driver. The recommended way to use
JDBC is to employ an OC4J data source for the database connection, and to use JNDI,
the Java Naming and Directory Interface, to look up the data source. The following
subsections describe the basic steps involved and supply an example of this
functionality:

■ Why Use JDBC?

■ Configuring a Data Source and Resource Reference

■ Implementing JDBC Calls

■ Database Query Servlet Example

For information about JDBC, see the Oracle Database JDBC Developer's Guide and
Reference.

Why Use JDBC?
Part of the power of servlets comes from their ability to retrieve data from a database
to create dynamic output. A servlet can generate dynamic HTML by getting
information from a database and sending it back to the client, or can update a
database, based on information passed to the servlet in the HTTP request.

JDBC is the standard Java mechanism for accessing a database.

Using JDBC in Servlets

8-2 Oracle Containers for J2EE Servlet Developer’s Guide

Configuring a Data Source and Resource Reference
Your database connection will presumably use a standard data source. This section
describes steps to configure a data source that you can use through JNDI:

1. Configure the Data Source

2. Configure the Resource Reference

See the Oracle Containers for J2EE Services Guide for more information about data
sources and their configuration in OC4J.

Configure the Data Source
To use a data source, you must add it to the central OC4J data source configuration.
Typically perform this step through Oracle Enterprise Manager 10g Application Server
Control.

In the Application Server Control Console:

1. From the applicable Application Home page, or from the OC4J Home page, select
the Administration tab.

2. Go to the task "JDBC Resources".

3. From the JDBC Resources page, you can create a data source. You can also edit a
data source created previously. You can also create or edit connection pools from
this page.

Configuring a data source results in new or updated entries in the
j2ee/home/config/data-sources.xml file, following the form shown below (in
this example, to use the Oracle JDBC Thin driver). Note the following:

■ The <connection-pool> element has settings for a JDBC connection pool and
specifies the name of the pool. (Connection pooling improves performance by
taking a connection from an existing pool of connection objects, rather than going
through the overhead of creating a new connection object.)

■ The <connection-factory> subelement of <connection-pool> specifies the
class to use as a factory for connections (in this case presumably a class
representing a data source) and the database user name, password, and connection
string.

■ The <managed-data-source> element specifies the name (name) and JNDI
location (jndi-name) of the data source, and references the connection pool
specified in the <connection-pool> element.

See "Configure the Data Source for the Query Servlet" on page 8-5 for an example.

<data-sources ... >

Notes:

■ The general assumption is that you will use an Oracle database
and Oracle JDBC driver. For connection to a non-Oracle database,
you can use a DataDirect JDBC driver, provided with Oracle
Application Server.

■ Instead of using JDBC directly from a servlet, you can use EJBs to
access data instead. Also see "Overview of Enterprise JavaBeans"
on page 8-8.

Using JDBC in Servlets

Using JDBC or Enterprise JavaBeans 8-3

 <connection-pool name="poolname">
 <connection-factory factory-class="package.Classname"
 user="user"
 password="password"
 url="jdbc:oracle:thin:@host:port/service"/>
 </connection-pool>
 <managed-data-source connection-pool-name="poolname"
 jndi-name="jndiname"
 name="name"/>
</data-sources>

Configure the Resource Reference
To use a data source and JNDI lookup, there must also be an appropriate resource
reference entry in the web.xml file. Here is an example, which corresponds to the data
source configuration example shown in the preceding section:

 <resource-ref>
 <res-auth>Container</res-auth>
 <res-ref-name>jdbc/OracleDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 </resource-ref>

This establishes that the jdbc/OracleDS resource is of type DataSource, for use as
a data source.

Implementing JDBC Calls
This section shows typical steps to access a database through JDBC in servlet code. See
"Write the Query Servlet" on page 8-5 for a complete example.

1. Import required packages. In addition to the servlet and java.io packages, there
are packages that include classes for JDBC, data sources, and JNDI:

import javax.servlet.*;
import javax.servlet.http.*;
import javax.naming.*; // for JNDI
import javax.sql.*; // extended JDBC interfaces (such as data sources)
import java.sql.*; // standard JDBC interfaces
import java.io.*;

2. Implement the init() method to perform the JNDI lookup of the data source and
to establish the database connection, inside a try...catch block. The lookup
here corresponds to the examples shown in "Configuring a Data Source and
Resource Reference" on page 8-2.

 public void init() throws ServletException {
 try {
 InitialContext ic = new InitialContext(); // JNDI initial context
 ds = (DataSource) ic.lookup("jdbc/OracleDS"); // JNDI lookup
 conn = ds.getConnection(); // database connection through data source

Note: For the url entry, the host:port:sid form is also still
supported, but deprecated.

Note: Always use the Container setting for the <res-auth>
element, indicating that the container, as opposed to application
component code, performs the sign-on to the resource.

Using JDBC in Servlets

8-4 Oracle Containers for J2EE Servlet Developer’s Guide

 }
 catch (SQLException se) {
 throw new ServletException(se);
 }
 catch (NamingException ne) {
 throw new ServletException(ne);
 }
 }

3. Implement the appropriate servlet doXXX() method, such as doGet(), and use
JDBC to perform the desired SQL operations. In this example, assume a SQL query
string has been constructed in a string query. The code creates a JDBC statement
object, performs the query, loops through the result set to print the data records
(where out is a PrintWriter object), then closes the statement and result set
objects. SQL operations are also performed inside a try...catch block.

 try {
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(query);
 while (rs.next()) {
 out.println(rs.getString(1) + rs.getInt(2));
 }
 rs.close();
 stmt.close();
 }
 catch (SQLException se) {
 se.printStackTrace(out);
 }

4. Implement the destroy() method to close the database connection (also inside a
try...catch block).

 public void destroy() {
 try {
 conn.close();
 }
 catch (SQLException se) {
 se.printStackTrace();
 }
 }

Database Query Servlet Example
This example has an HTML welcome page that prompts the user for the LIKE
specification that completes the following query:

SELECT ename, empno FROM emp WHERE ename LIKE xxx

The welcome page then invokes a servlet to perform the query and output the results.

The following sections show how to implement and configure the example:

■ Configure the Data Source for the Query Servlet

■ Write the HTML Welcome Page

■ Write the Query Servlet

■ Configure the Servlet and JNDI Resource Reference

■ Package the Query Example

■ Invoke the Query Example

Using JDBC in Servlets

Using JDBC or Enterprise JavaBeans 8-5

Configure the Data Source for the Query Servlet
Here is the data source configuration for this example, as reflected in the OC4J
data-sources.xml file, configurable through the Application Server Control
Console, as described in "Configure the Data Source" on page 8-2. This example uses
the Oracle JDBC Thin driver to access a database on host myhost through port 5521
using service name myservice, connecting as user scott. (This is a simplified
example—there are ways to avoid exposing the password in data-sources.xml.)
The example also uses connection pooling, and the class OracleDataSource to
represent the data source from which connections are obtained. The jndi-name entry,
jdbc/OracleDS, is used by the servlet for the JNDI lookup of the data source.

<data-sources>
 <connection-pool name="ConnectionPool1">
 <connection-factory factory-class="oracle.jdbc.pool.OracleDataSource"
 url="jdbc:oracle:thin:@myhost:5521/myservice"
 user="scott" password="tiger"/>
 </connection-pool>
 <managed-data-source connection-pool-name="ConnectionPool1"
 jndi-name="jdbc/OracleDS" name="OracleDS"/>
</data-sources>

Write the HTML Welcome Page
Here is the welcome page, empinfo.html, prompting the user to complete the query,
then invoking the query servlet. For this example, the servlet is deployed to be
invoked with the context path and servlet path of /myquery/getempinfo.

<html>
<head>
<title>Query the Employees Table</title>
</head>
<body>
<form method=GET ACTION="/myquery/getempinfo">
The query is

SELECT ename, empno FROM emp WHERE ename LIKE xxx

<p>
Specify the WHERE clause xxx parameter.

Enclose entry in single-quotes; use % for wildcard. Search is case-sensitive.

Example: 'S%' (for all names starting with 'S').

<input type=text name="queryVal">
<p>
<input type=submit>
</form>
</body>
</html>

Write the Query Servlet
Here is the query servlet, GetEmpInfo, implementing the steps described in
"Implementing JDBC Calls" on page 8-3. There is also formatting for an HTML table
for the output, and a counter for the number of rows retrieved.

import javax.servlet.*;
import javax.servlet.http.*;
import javax.naming.*; // for JNDI
import javax.sql.*; // extended JDBC interfaces (such as data sources)
import java.sql.*; // standard JDBC interfaces
import java.io.*;

Using JDBC in Servlets

8-6 Oracle Containers for J2EE Servlet Developer’s Guide

public class GetEmpInfo extends HttpServlet {

 DataSource ds = null;
 Connection conn = null;

 public void init() throws ServletException {
 try {
 InitialContext ic = new InitialContext(); // JNDI initial context
 ds = (DataSource) ic.lookup("jdbc/OracleDS"); // JNDI lookup
 conn = ds.getConnection(); // database connection through data source
 }
 catch (SQLException se) {
 throw new ServletException(se);
 }
 catch (NamingException ne) {
 throw new ServletException(ne);
 }
 }

 public void doGet (HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

/* Get the LIKE specification for the WHERE clause from the user, through the */
/* HTTP request, then construct the SQL query. */
 String queryVal = req.getParameter("queryVal");
 String query =
 "select ename, empno from emp " +
 "where ename like " + queryVal;

 resp.setContentType("text/html");

 PrintWriter out = resp.getWriter();
 out.println("<html>");
 out.println("<head><title>GetEmpInfo Servlet</title></head>");
 out.println("<body>");

/* Create a JDBC statement object and execute the query. */
 try {
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(query);

/* HTML table formatting for the output. */
 out.println("<table border=1 width=50%>");
 out.println("<tr><th width=75%>Last Name</th><th width=25%>Employee " +
 "ID</th></tr>");

/* Loop through the results. Using ResultSet getString() and */
/* getInt() methods to retrieve the individual data items. */
 int count=0;
 while (rs.next()) {
 count++;
 out.println("<tr><td>" + rs.getString(1) + "</td><td>" +rs.getInt(2) +
 "</td></tr>");

 }
 out.println("</table>");
 out.println("<h3>" + count + " rows retrieved</h3>");

 rs.close();
 stmt.close();

Using JDBC in Servlets

Using JDBC or Enterprise JavaBeans 8-7

 }
 catch (SQLException se) {
 se.printStackTrace(out);
 }

 out.println("</body></html>");
 }

 public void destroy() {
 try {
 conn.close();
 }
 catch (SQLException se) {
 se.printStackTrace();
 }
 }
}

Configure the Servlet and JNDI Resource Reference
The web.xml file, in addition to configuration for the servlet, must include a resource
reference entry for the data source. There is also configuration to declare
empinfo.html as a welcome file. Here is the file for this example:

<?xml version="1.0" ?>
<!DOCTYPE web-app (doctype...)>
<web-app>
 <servlet>
 <servlet-name>empinfoquery</servlet-name>
 <servlet-class>GetEmpInfo</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>empinfoquery</servlet-name>
 <url-pattern>getempinfo</url-pattern>
 </servlet-mapping>
 <resource-ref>
 <res-auth>Container</res-auth>
 <res-ref-name>jdbc/OracleDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 </resource-ref>
 <welcome-file-list>
 <welcome-file>empinfo.html</welcome-file>
 </welcome-file-list>
</web-app>

Package the Query Example
The WAR file for this example, which we name empinfo.war, has the following
contents and structure:

empinfo.html
META-INF/Manifest.mf
WEB-INF/web.xml
WEB-INF/classes/GetEmpInfo.class
WEB-INF/classes/GetEmpInfo.java

And the EAR file is as follows:

empinfo.war
META-INF/Manifest.mf
META-INF/application.xml

Overview of Enterprise JavaBeans

8-8 Oracle Containers for J2EE Servlet Developer’s Guide

(The Manifest.mf files are created automatically by the JAR utility.)

Invoke the Query Example
For this example, assume that application.xml maps the context path /myquery
to empinfo.war. In this case, after deployment, you can invoke the welcome page
empinfo.html as follows (given the declaration of empinfo.html as a welcome
page in web.xml):

http://host:port/myquery

In a test run, we specify 'S%' to look for any names starting with "S":

For a database used for the test run, this returned two entries:

TopLink Servlet Examples
A servlet can use Oracle TopLink to provide J2EE persistence for an application. You
can find TopLink servlet examples on the Oracle Technology Network, at this Web site:

http://www.oracle.com/technology/products/ias/toplink/examples/i
ndex.html

Overview of Enterprise JavaBeans
A servlet can call Enterprise JavaBeans to access a database or perform additional
business logic. The following sections offer an overview of EJBs and their use from
servlets:

■ Why Use Enterprise JavaBeans?

■ EJB Support in OC4J and Oracle Application Server

■ Servlet-EJB Lookup Scenarios

Overview of Enterprise JavaBeans

Using JDBC or Enterprise JavaBeans 8-9

■ EJB Local Interfaces Versus Remote Interfaces

■ Using the Remote Flag for Remote Lookup within the Same Application

For detailed information about EJB features, and for servlet-EJB examples in an Oracle
Application Server environment, refer to the Oracle Containers for J2EE Enterprise
JavaBeans Developer’s Guide.

Why Use Enterprise JavaBeans?
EJBs have many uses in business applications, including the use of session beans for
server-side business logic and entity beans to manage data persistence. EJB technology
provides a more robust infrastructure than JSP or servlet technology, for use in secure,
transactional, server-side processing.

A typical application design often uses a servlet as a front-end controller to process
HTTP requests, with EJBs being called to access or update a database, and finally
another servlet or JSP page being used to display data for the requester.

There are three categories of EJBs: session beans, entity beans, and message-driven
beans. Container Managed Persistence entity beans, in particular, are well-suited to
manage persistent data, because they make it unnecessary to use the JDBC API
directly when accessing a database. Instead, you can let the EJB container handle
database operations for you transparently.

Session beans are useful to model business logic and may be either stateless or stateful,
with stateful beans typically being used where transaction state must be maintained
across method calls or servlet requests. Stateless beans contain individual business
logic methods that are independent of application state.

EJB Support in OC4J and Oracle Application Server
OC4J provides full support for session beans, entity beans, and message driven beans.
The entity bean implementation provides Bean Managed Persistence (BMP), Container
Managed Persistence (CMP), local interfaces, container-managed relationships, and
the ability to perform queries using the EJB query language.

Within the entity bean implementation, a basic persistence manager supports both
simple mapping and complex mapping, supporting one-to-one, one-to-many,
many-to-one, and many-to-many object-relational mappings. It also automatically
maps fields of an entity bean to a corresponding database table.

To facilitate application maintenance and deployment, Oracle Application Server
provides a number of enhancements, including dynamic EJB stub generation. CORBA
interoperability provides the capability to build EJBs and access them as CORBA
services from CORBA clients.

Servlet-EJB Lookup Scenarios
There are three scenarios in calling an EJB from a servlet:

■ Local lookup: The servlet calls an EJB that is co-located, meaning it is in the same
application and on the same host, running in the same JVM. The servlet and EJB

Note: OC4J provides an EJB tag library to make accessing EJBs from
JSP pages more convenient. See the Oracle Containers for J2EE JSP Tag
Libraries and Utilities Reference for information.

Overview of Enterprise JavaBeans

8-10 Oracle Containers for J2EE Servlet Developer’s Guide

would have been deployed in the same EAR file, or in EAR files with a
parent/child relationship. For this, use EJB local interfaces.

■ Remote lookup within the same application: The servlet calls an EJB that is in the
same application, but on a different host, where the application is deployed to
both hosts. This requires EJB remote interfaces. This would be the case for a
multitier application where the servlet and EJB are in the same application, but on
different tiers.

■ Remote lookup outside the application: The servlet calls an EJB that is not in the
same application. This requires EJB remote interfaces. The EJB may be on a
different host or on the same host, but is not running in the same JVM.

Servlet-EJB communications use JNDI for local and remote EJB calls. When a remote
lookup is performed, JNDI uses either ORMI (the Oracle implementation of RMI) or
IIOP (the standard and interoperable Internet Inter-Orb Protocol). In versions of EJB
before 3.0, only home interfaces require JNDI lookup. They are then used to create
EJBs for use by the application. J2EE components can use the default no-args
constructor to look up objects within the same application. The
RMIInitialContextFactory or IIOPInitialContextFactory class can be
used for remote lookups. See the Oracle Containers for J2EE Services Guide for more
information about JNDI in OC4J.

A remote lookup requires a JNDI environment to be set up, including the URL and a
user name and password. This setup is typically in the servlet code, but for a lookup in
the same application it can be in the rmi.xml file instead.

Remote lookup within the same application on different hosts also requires proper
configuration of the OC4J EJB remote flag for your application, on each host. See
"Using the Remote Flag for Remote Lookup within the Same Application" on
page 8-11.

As in any application where EJBs are used, there must be an entry for each EJB in the
ejb-jar.xml file.

EJB Local Interfaces Versus Remote Interfaces
In initial versions of the EJB specification, an EJB always had a remote interface
extending the javax.ejb.EJBObject interface, and a home interface extending the
javax.ejb.EJBHome interface. In this model, all EJBs are defined as remote objects,
adding unnecessary overhead to EJB calls in situations where the servlet or other
calling module is co-located with the EJB.

In more recent versions, the EJB specification supports local interfaces for co-located EJB
calls. In this case, the EJB has a local interface that extends the
javax.ejb.EJBLocalObject interface, in contrast to having a remote interface. In

Note: The OC4J copy-by-value parameter, which maps to an
attribute of the <session-deployment> element of the
orion-ejb-jar.xml file, is also related to avoiding unnecessary
overhead, specifying whether to copy all incoming and outgoing
parameters in EJB calls. See the Oracle Containers for J2EE Enterprise
JavaBeans Developer’s Guide for information. Note that this
parameter is configurable as copyByValue in the Application
Server Control deployment plan editor, as discussed in the Oracle
Containers for J2EE Deployment Guide.

Overview of Enterprise JavaBeans

Using JDBC or Enterprise JavaBeans 8-11

addition, a local home interface that extends the javax.ejb.EJBLocalHome
interface is specified, in contrast to having a home interface.

Any lookup involving EJB remote interfaces uses RMI and has additional overhead
such as for security. RMI and other overhead are eliminated when you use local
interfaces.

Using the Remote Flag for Remote Lookup within the Same Application
In OC4J, to perform a remote EJB lookup within the same application but on different
tiers (where the same application has been deployed to both tiers), you must set the
OC4J EJB remote flag appropriately on each tier. When this flag is set to "true" on a
server, beans will be looked up on a remote server instead of the EJB service being
used on the local server.

The remote flag maps to an attribute in the <ejb-module> subelement of an
<orion-application> element in the orion-application.xml file. The default
setting is remote="false". Update the file to set this flag to "true", as follows:

<orion-application ... >
 ...
 <ejb-module remote="true" ... />
 ...
</orion-application>

(You cannot set this flag through Oracle Enterprise Manager 10g Application Server
Control.)

You can deploy the application EAR file to both servers with a remote flag value of
"false", then set it to "true" on server 1, the servlet tier. This is illustrated in
Figure 8–1.

Figure 8–1 Setup for Remote Lookup within Application

Notes:

■ An EJB can have both local and remote interfaces.

■ The term local lookup in this document refers to a co-located
lookup, in the same JVM. Do not confuse "local lookup" with
"local interfaces". Although local interfaces are typically used in
any local lookup, there may be situations in which remote
interfaces are used instead.

Overview of Enterprise JavaBeans

8-12 Oracle Containers for J2EE Servlet Developer’s Guide

You must properly configure server 2 as a remote host to instruct OC4J to look for EJBs
there. Specify host, port, username, and password settings in the <server>
subelement of the applicable <rmi-server> element in the rmi.xml file on server 1,
as follows:

<rmi-server ... >
...
 <server host="remote_host" port="remote_port" username="user_name"
 password="password" />
...
</rmi-server>

See the Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide for details about
using remote hosts and the remote flag.

Note: Use the default administrative user name for the remote host,
and the administrative password set up on the remote host. This
avoids possible JAZN configuration issues. See the Oracle Containers
for J2EE Security Guide for information about JAZN.

Best Practices and Performance 9-1

9
Best Practices and Performance

This chapter provides programming tips for how to maximize the efficiency and
performance of your servlets—general suggestions as well as suggestions regarding
sessions, security, and thread models. There is also an introduction to the Oracle
Dynamic Monitoring Service (DMS) to monitor performance. The following topics are
covered:

■ Best Practices for Sessions

■ Best Practices for Security

■ Considerations for Thread Models

■ Best Practices for Performance

■ Monitoring Performance

Best Practices for Sessions
This section discusses considerations when using sessions:

■ There are performance implications related to how session state is replicated in a
distributable environment. Replication is triggered each time there is a
setAttribute() call on the session object, so large numbers of such calls in a
servlet may impact performance.

■ For performance reasons, OC4J does not wait to confirm successful replication of
session state.

See the Oracle Containers for J2EE Developer’s Guide for information about clustering in
OC4J.

Best Practices for Security
The following are considerations for the security of your Web application running in
the OC4J servlet container:

■ In the global-web-application.xml file or orion-web.xml file, verify
appropriate settings as reflected in the <jazn-web-app> subelement of
<orion-web-app> to configure the OracleAS JAAS Provider and Single Sign-On
(SSO) properties for servlet execution. These features must be set appropriately in
order to invoke a servlet under the privileges of a particular security subject. You
can edit them through the jaznWebApp property in the Application Server
Control deployment plan editor, as described in the Oracle Containers for J2EE
Deployment Guide.

Considerations for Thread Models

9-2 Oracle Containers for J2EE Servlet Developer’s Guide

■ OC4J includes standard support for security constraints and security roles through
the <security-role> element of the web.xml deployment descriptor. For
general information, refer to the servlet specification. OC4J also offers related
support through the global-web-application.xml file
<security-role-mapping> element.

■ Invocation by class name should be considered only in a development
environment, because there is a significant security risk when users are allowed to
invoke servlets in this way.

Invocation by class name can bypass standard security constraints unless this is
specifically addressed in the web.xml file. In addition, when a servlet is invoked
by class, any exception it throws may reveal the physical path of the servlet
location, which is highly undesirable.

To resolve security issues, particularly in a production environment, you can
disable servlet invocation by class name in either of two ways:

– Set the system property http.webdir.enable to a value of false. This
setting results in any servlet-webdir setting being ignored. (See the Oracle
Containers for J2EE Configuration and Administration Guide for general
information about OC4J system properties.)

– Set a servlet-webdir value of "" (empty quotes), either through
global-web-application.xml or orion-web.xml. This is editable
through the servletWebdir property in the Application Server Control
deployment plan editor.

(Invocation by class name is described in "Invoking a Servlet by Class Name
During OC4J Development" on page 2-11, including additional information about
servlet-webdir settings.)

The following configuration in orion-web.xml, for example, would disable
invocation by class name:

<orion-web-app ... servlet-webdir="" ... >
 ...
</orion-web-app>

■ To guard against the guessing or "hacking" of session ID numbers for destructive
purposes, OC4J uses java.security.SecureRandom functionality to generate
random session ID numbers.

For additional information, also see the reference documentation under "Elements and
Attributes of orion-web.xml, global-web-application.xml" on page B-4.

Considerations for Thread Models
For a servlet in a nondistributable environment, a servlet container uses only one
servlet instance for each servlet declaration. In a distributable environment, a
container uses one servlet instance for each servlet declaration in each JVM. Therefore,
a servlet container, including the OC4J servlet container, generally processes
concurrent requests to a servlet by using multiple threads for multiple concurrent
executions of the central service() method of the servlet.

Servlet developers must keep this in mind, making provisions for simultaneous
processing through multiple threads and designing their servlets so that access to
shared resources is somehow synchronized or coordinated. Shared resources fall into
two main areas:

■ In-memory data, such as instance or class variables

Considerations for Thread Models

Best Practices and Performance 9-3

■ External objects, such as files, database connections, and network connections

One option is to synchronize the service() method as a whole; however, this may
adversely affect performance.

A better approach is to selectively protect instance or class fields, or access to external
resources, through synchronization blocks.

As perhaps a last resort, the servlet specification supports a single-thread model. If a
servlet implements the javax.servlet.SingleThreadModel interface, the servlet
container must guarantee that there is never more than one request thread at a time in
the service() method of any instance of the servlet. OC4J typically accomplishes
this by creating a pool of servlet instances, with a separate instance handling each
concurrent request. This process has significant performance impact on the servlet
container, however, and should be avoided if at all possible. Furthermore, the
SingleThreadModel interface will be deprecated in version 2.4 of the servlet
specification.

For general information about multithreading, see the Sun Microsystems Java Tutorial
on Multithreaded Programming at the following Web site:

http://java.sun.com/docs/books/tutorial/essential/threads/multithreaded
.html

Custom Thread Pool
You can create one or more custom thread pools for selected applications to use
instead of the default thread pool.

You create a custom thread pool in the server.xml file and then you make it
available for applications to use by referring to it in one or more *-web-site.xml
files.

Creating a Custom Thread Pool
To create a custom thread pool, add a <custom-thread-pool> element to the
server.xml file. The <custom-thread-pool> element is a sub-element of the
<application-server> element.

The name attribute is required, all other attributes are optional. The
<custom-thread-pool> element has the same attributes as the other thread pool
elements discussed in Chapter 10, "Task Manager and Thread Pool Configuration", of
the Oracle Containers for J2EE Configuration and Administration Guide. The server.xml
file is discussed in the "Overview of the OC4J Server Configuration File (server.xml)"
section of Appendix B, "Configuration Files Used in OC4J" of the Oracle Containers for
J2EE Configuration and Administration Guide.

The following example creates a custom thread pool named mypool in the
server.xml file. The example specifies the following for mypool:

■ The minimum number of threads to create in the pool is 10.

■ The maximum number of threads that can be created in the pool is 100.

■ The number of requests outstanding in each queue can be 50 requests.

■ Idle threads are kept alive for 700 seconds.

<application-server ...>
...

Best Practices for Performance

9-4 Oracle Containers for J2EE Servlet Developer’s Guide

 <custom-thread-pool name="mypool" min="10" max="100"
 queue="50" keepAlive="700000" debug="true"/>
...
</application-server>

Assigning a Custom Thread Pool to Applications
To instruct applications to use a custom thread pool instead of the default thread pool,
add a reference to that custom thread pool in the custom-thread-pool attribute in
the <web-site> element in one or more *-web-site.xml files.

Each web application assigned to the web site and port specified in the
*-web-site.xml file by being named in a <web-app> element will use the custom
thread pool named in the custom-thread-pool attribute.

The *-web-site.xml file is discussed in the "Overview of the Web Site
Configuration Files (*-web-site.xml)" section of Appendix B, "Configuration Files Used
in OC4J" of the Oracle Containers for J2EE Configuration and Administration Guide.

The following example shows the custom-thread-pool attribute used to name the
mypool custom thread pool to be used by all applications named in the <web-app>
elements of the srdemo-web-site.xml file:

 <?xml version="1.0" ?>
- <web-site xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/oracleas/schema/web-site-10_0.xsd"
port="12501" protocol="ajp13" display-name="SRDEMO Web Site" custom-thread-pool="mypool"
schema-major-version="10" schema-minor-version="0">
 <default-web-app application="default" name="defaultWebApp" root="/j2ee" />
 <web-app application="system" name="dms" root="/dmsoc4j" access-log="false" />
 <web-app application="system" name="JMXSoapAdapter-web" root="/JMXSoapAdapter" />
 <web-app application="default" name="jmsrouter_web" load-on-startup="true" root="/jmsrouter" />
 <web-app application="ascontrol" name="ascontrol" load-on-startup="true" root="/em" />
 <web-app application="bc4j" name="webapp" load-on-startup="true" root="/webapp" />
 <web-app application="SRDEMO" name="SRDEMO-WEB" load-on-startup="true" root="/SRDEMO" />
 <access-log path="../log/default-web-access.log" split="day" />
 </web-site>

Best Practices for Performance
This section summarizes issues, mostly documented elsewhere in this manual, that
may impact performance:

■ Consider the optimal expiration setting for Web pages in your application. You can
set the expiration for pages that match a given URL pattern, as reflected in the
<expiration-setting> subelement of <orion-web-app> in
global-web-application.xml or orion-web.xml. A more appropriate
setting decreases load on the application and improves performance. This is
editable through the expirationSettings property in the Application Server
Control deployment plan editor, as described in the Oracle Containers for J2EE
Deployment Guide.

■ Be aware of performance implications relating to how multiple concurrent
requests are synchronized or coordinated, and also be aware of related
considerations regarding thread models. See "Considerations for Thread Models"
on page 9-2.

Monitoring Performance

Best Practices and Performance 9-5

■ Servlet configuration parameters can significantly affect performance. In particular
be careful in using File Modification Check Interval, as reflected in the
file-modification-check-interval attribute of the <orion-web-app>
element in global-web-application.xml or orion-web.xml. This is
configurable through the Application Server Control Console Configuration
Properties Page (documented in "Configuration Properties Page" on page A-3) or
through the fileModificationCheckInterval property in the Application
Server Control deployment plan editor.

Also be wary of the use-keep-alives attribute of the <web-site> element in
default-web-site.xml. This attribute is discussed in the Oracle Containers for
J2EE Configuration and Administration Guide.

■ Additional JSP-related configuration parameters can significantly affect
performance, particularly the simple-jsp-mapping and
enable-jsp-dispatcher-shortcut attributes of the <orion-web-app>
element in global-web-application.xml or orion-web.xml. These are
configurable through the EnableJspDispatcherShortcut and
simpleJspMapping properties in the Application Server Control deployment
plan editor.

■ OC4J in a standalone environment supports a mode of "shared" operation for a
single application through multiple Web sites, where a site is defined as a
particular host and port. This feature is particularly intended for secure
applications in which some but not all communications require HTTPS. Running
the noncritical communications through an HTTP port improves performance.
You can enable this feature through the shared attribute of the <web-app>
element in default-web-site.xml.

■ If you ever use standalone OC4J as a production environment (although this is not
typical), ensure that the check-for-updates flag in the
<application-server> element in server.xml is turned off. This parameter
is discussed in both the Oracle Containers for J2EE Configuration and Administration
Guide and the Oracle Containers for J2EE Deployment Guide.

For further information, also see the reference documentation under "Elements and
Attributes of orion-web.xml, global-web-application.xml" on page B-4.

Monitoring Performance
This section includes information about monitoring the performance of servlets.

Oracle Application Server Dynamic Monitoring Service
In an Oracle Application Server environment, the Dynamic Monitoring Service (DMS)
adds performance-monitoring features to several components, including OC4J. The
goal of DMS is to provide information about runtime behavior through built-in
performance measurements so that users can diagnose, analyze, and debug any
performance problems. DMS provides this information in a package that can be used
at any time, including during live deployment. Data are published through HTTP and
can be viewed with a browser.

Standard configuration for DMS modules is reflected in the OC4J
system-application.xml file and the default-web-site.xml file. In
system-application.xml, the Web module dms and the path to its WAR file is
specified. The default-web-site.xml file specifies that this Web module is

Monitoring Performance

9-6 Oracle Containers for J2EE Servlet Developer’s Guide

deployed to the OC4J default application and binds it to its context path. Do not
directly alter any of these DMS configurations.

Use Application Server Control to access DMS, display DMS information, and, if
appropriate, alter DMS configuration.

Refer to the Oracle Application Server Performance Guide for information about DMS, the
Oracle Containers for J2EE Developer’s Guide for information about the global
application.xml file (which uses the same specification as the
orion-application.xml file), and the Oracle Containers for J2EE Configuration and
Administration Guide for information about Web site XML files.

Web Module Administration A-1

A
Web Module Administration

This appendix provides reference documentation of OC4J features for administering
Web modules through Oracle Enterprise Manager 10g Application Server Control,
covering the following topics:

■ Application Server Control Console Top-Level Web Module Pages

■ Application Server Control Web Module Configuration Pages

■ Summary of Web Module MBeans and Administration

Application Server Control Console Top-Level Web Module Pages
The Application Server Control Console provides a Web-based user interface for
deploying, configuring, and monitoring applications, as well as managing the OC4J
instance and the Web services used by your applications. It is installed, preconfigured,
and started automatically when you install the OC4J software (either in a standalone
or Oracle Application Server environment), and is bound to whichever port the OC4J
instance is using. In a standalone environment, the port is typically 8888. In an Oracle
Application Server environment, the port is usually 7777.

For example, in a standalone OC4J environment, you can use port 8888 of the
appropriate host to access the console:

http://host:1888

See the Application Server Control Console online help for detailed instructions on
using this interface.

The console is organized into functional areas for applications, administration,
performance, and Web services. You can manage Web modules through the
applications area.

Web module configuration starts from the applicable Web Module Home page in the
Application Server Control Console. This page has a General tab, a Performance tab,
and an Administration tab.

The rest of this section covers the following topics:

■ How to Get to a Web Module Home Page

■ Summary of Top-Level Web Module Pages

How to Get to a Web Module Home Page
To get to a Web Module Home page from the OC4J Home page, select the Applications
tab. From there, you can get to a Web Module Home page in one of two ways:

Application Server Control Console Top-Level Web Module Pages

A-2 Oracle Containers for J2EE Servlet Developer’s Guide

1. View applications, by selecting "Applications" in the View dropdown menu.

2. Select the application of interest.

3. In the resulting Application Home page, select the module of interest.

or:

1. View modules from all applications, by selecting "Modules" in the View dropdown
menu.

2. Select the module of interest.

Summary of Top-Level Web Module Pages
From a Web Module Home page, you can access the following:

■ General tab (the Web Module Home page itself): This lists the host, port, and
context path for the Web module, as well as the module's active servlets and JSP
pages. For each servlet and JSP page, the General tab page lists the following
metrics:

– Active Requests

– Current Client Processing Time (average processing time for each request over
the preceding five minutes)

– Requests per Second

– Requests Processed

– Total Client Processing Time (since startup of the servlet or JSP page)

(These metrics are not persistent if OC4J is restarted.)

■ Performance tab: This page graphically displays the following metrics for servlets
and JSP pages that have been executed.

– Active Sessions: The number of sessions active at any given point, over the
indicated period of time.

– Active Requests: The number of requests active at any given point, over the
indicated period of time.

– Response and Load: The average request processing time over the preceding
five minutes, together with the requests per second over the preceding five
minutes, over the indicated period of time.

■ Administration tab: From this page, you can view or edit certain Web module
configuration properties, view the web.xml or orion-web.xml file, and view or
edit various kinds of mappings that relate to the Web module. Specifically, you can
reach the following pages:

– Configuration Properties page

– View Deployment Descriptor page

– View Proprietary Deployment Descriptor page

– Servlet Mappings page

– Filter Mappings page

– Resource Reference Mappings page

– EJB Reference Mappings page

– Environment Entry Mappings page

Application Server Control Web Module Configuration Pages

Web Module Administration A-3

See the next section, "Application Server Control Web Module Configuration
Pages", for information about these pages.

For more information about the pages summarized in the preceding paragraphs, see
the context-sensitive topics "Web Module Home Page", "Web Module Performance
Page", and "Web Module Administration Page" in the Application Server Control
online help. For more information about OC4J performance metrics, see the topic
"Summary of the OC4J Performance Metrics" in the online help.

Application Server Control Web Module Configuration Pages
From the Web Module Administration page, you can select "Go to Task" for several
viewing and editing functions related to Web module configuration. These are
described in the following sections:

■ Configuration Properties Page

■ Deployment Descriptor Viewing Pages

■ Servlet Mappings Page

■ Filter Mappings Page

■ Resource Reference Mappings Page

■ EJB Reference Mappings Page

■ Environment Entry Mappings Page

■ Resource Reference Lookup Context Page

Configuration Properties Page
Table A–1 discusses the Web module properties you can configure through the
Configuration Properties page of the Application Server Control Console. This page is
accessible from the Web Module Administration page. For additional information
about the properties, see the appropriate elements under "Elements and Attributes of
orion-web.xml, global-web-application.xml" on page B-4.

The Configuration Properties page also displays the Web module name and
application name.

Notes:

■ For orion-web.xml properties you can view or edit in these
pages, corresponding elements and attributes are described under
"Elements and Attributes of orion-web.xml,
global-web-application.xml" on page B-4.

■ Where properties are documented as being under the <web-app>
element, existing values may be coming from either the web.xml
file or the orion-web.xml file. The <web-app> element is the
root element of web.xml, with the schema being defined in the
servlet specification. This definition is also imported into the
orion-web.xml schema definition. Settings under the
<web-app> element in orion-web.xml effectively override any
of the same settings under the <web-app> element in web.xml.
Changes made to any of these properties through the Application
Server Control Console are persisted to the orion-web.xml file.

Application Server Control Web Module Configuration Pages

A-4 Oracle Containers for J2EE Servlet Developer’s Guide

Also see the context-sensitive topic "Web Module Configuration Properties Page" in
the Application Server Control online help.

Table A–1 Properties of the Configuration Properties Page

Application Server
Control Property Corresponding XML Entity Description

Display Name <display-name> element under
<web-app>

A short name for the Web
module, for display by tools.

Note: This is read-only through
Application Server Control

Description <description> element under
<web-app>

An optional description of the
Web module.

Note: This is read-only through
Application Server Control

Distributable <distributable> element under
<web-app>

Indicates whether the
application is distributable, as
described in the servlet
specification. This property is
not editable through this page.

Note: This is read-only through
Application Server Control

Classpath <classpath> subelement of
<orion-web-app>

Informs OC4J of additional code
locations for Web application
class loading—either library
files or locations for individual
class files.

Persistence Path persistence-path attribute of
<orion-web-app>

Indicates where to store servlet
HttpSession objects for
persistence across server restarts
or application redeployments.
Specify a relative path, which
will be relative to an OC4J
temporary storage area under
application-deployments
directory. If no value is
specified, then there is no
persistence of session objects
across restarts or
redeployments.

Note: This attribute is ignored if
OC4J clustering is enabled.

Temporary
Directory

temporary-directory attribute of
<orion-web-app>

This is the path to a temporary
directory that can be used by
servlets and JSP pages for
scratch files. The path can be
either absolute, or relative to the
deployment directory.

Application Server Control Web Module Configuration Pages

Web Module Administration A-5

Deployment Descriptor Viewing Pages
You can view, but not edit, the application web.xml file and orion-web.xml file
through the View Deployment Descriptor page and View Proprietary Deployment
Descriptor page, respectively, of the Application Server Control Console.

Servlet Mappings Page
In the Servlet Mappings page of the Application Server Control Console, you can view,
but not edit, mappings between servlet names and URL patterns. These mappings are
described in Table A–2.

Also see the context-sensitive topic "Web Module Servlet Mappings Page" in the
Application Server Control online help.

File Modification
Check Interval

file-modification-check-interval
attribute of <orion-web-app>

This attribute, in milliseconds,
determines when to check a
static file, such as an HTML file,
to see whether its timestamp
has changed and it should
therefore be reloaded from the
file system. The default is
"1000". For performance
reasons, a very large value
("1000000", for example) is
recommended in a production
environment.

Session Timeout <session-timeout> subelement of
<session-config> element under
<web-app>

Defines the default session
timeout for all sessions created
in the Web application, in
minutes. For a value of 0 or less,
there is no timeout.

Default Buffer Size default-buffer-size attribute of
<orion-web-app>

Specifies the default size of the
output buffer for servlet
responses, in bytes. Without
specifying, the default is
"2048".

Allow Directory
Browsing

directory-browsing attribute of
<orion-web-app>

Specifies whether to allow
directory browsing for a URL
that ends in "/". Supported
values are "allow" and
"deny" (default). See
"<orion-web-app>" on
page B-16 for additional
information about directory
browsing.

Table A–2 Properties of the Servlet Mappings Page

Application Server
Control Property Corresponding XML Entity Description

Servlet Name <servlet-name> subelement
of <servlet-mapping>
element under <web-app>

A reference to the desired name of the
servlet, as defined in the
<servlet-name> subelement of a
corresponding <servlet> element
under <web-app>.

Table A–1 (Cont.) Properties of the Configuration Properties Page

Application Server
Control Property Corresponding XML Entity Description

Application Server Control Web Module Configuration Pages

A-6 Oracle Containers for J2EE Servlet Developer’s Guide

Filter Mappings Page
Table A–3 discusses the properties you can configure for servlet filters, through the
Filter Mappings page.

Also see the context-sensitive topic "Web Module Filter Mappings Page" in the
Application Server Control online help.

Table A–4 discusses addition servlet filter properties that are displayed for reference in
the Filter Mappings page.

URL Pattern <url-pattern> subelement of
<servlet-mapping> element
under <web-app>

The desired URL pattern (servlet
path) for the servlet, to map to the
corresponding servlet name. The URL
to invoke the servlet includes this
pattern.

Table A–3 Configurable Properties of the Filter Mappings Page

Application Server
Control Property Corresponding XML Entity Description

Filter Name <filter-name> subelement of
<filter-mapping> element
under <web-app>

A reference to the desired name of the
filter, as defined in the
<filter-name> subelement of a
corresponding <filter> element
under <web-app>.

URL Pattern or
Servlet Name

<url-pattern> or
<servlet-name> subelement
of <filter-mapping> element
under <web-app>

This is to map either a URL pattern or
a servlet name (not both) to the
corresponding filter name.

Apply to Forwards <dispatcher> subelement of
<filter-mapping> element
under <web-app>, with value
of FORWARD

Use this for the filter to be applied to
any "forward" targets matching the
servlet name or URL pattern.

Apply to Requests <dispatcher> subelement of
<filter-mapping> element
under <web-app>, with value
of REQUEST

Use this in addition to an "Apply to
Forwards" or "Apply to Includes"
setting for the filter to also be applied
to direct request targets matching the
servlet name or URL pattern.

Apply to Includes <dispatcher> subelement of
<filter-mapping> element
under <web-app>, with value
of INCLUDE

Use this for the filter to be applied to
any "include" targets matching the
servlet name or URL pattern.

Apply to Errors <dispatcher> subelement of
<filter-mapping> element
under <web-app>, with value
of ERROR

Use this for the filter to be applied
under the error page mechanism.

Table A–2 (Cont.) Properties of the Servlet Mappings Page

Application Server
Control Property Corresponding XML Entity Description

Application Server Control Web Module Configuration Pages

Web Module Administration A-7

Resource Reference Mappings Page
Use the Resource Reference Mappings page to specify a JNDI location for a resource
such as a data source, JMS queue, or mail session. Table A–5 shows properties you can
configure in this page.

Also see the context-sensitive topic "Web Module Resource Reference Mappings" in
the Application Server Control online help.

From the Resource Reference Mappings page, you can also edit a JNDI lookup context,
taking you to the Resource Reference Lookup Context page, described in "Resource
Reference Lookup Context Page" on page A-9.

Table A–4 Reference Properties of the Filter Mappings Page

Application Server
Control Property Corresponding XML Entity Description

Name <filter-name> subelement of
<filter> element under
<web-app>

The desired name of the filter.

Class <filter-class> subelement
of <filter> element under
<web-app>

The fully qualified name of the class
containing the filter code.

Description <description> subelement of
<filter> element under
<web-app>

An optional description of the filter.

Note: See Chapter 4, "Understanding and Using Servlet Filters", for
related information.

Table A–5 Properties of the Resource Reference Mappings Page

Application Server
Control Property Corresponding XML Entity Description

Name name attribute of
<resource-ref-mapping>
subelement of
<orion-web-app>

The name of the resource, which refers to
the value of a <res-ref-name>
subelement of <resource-ref> under
<web-app>. More specifically, this is the
name of a resource manager connection
factory reference.

Type <res-type> subelement of
<resource-ref> element
under <web-app>

The type of the data source or other
resource. This is the fully qualified Java
type that is implemented by the resource.

Authorization <res-auth> subelement of
<resource-ref> element
under <web-app>

Indicates whether sign-on to the resource
manager is programmatic in the
application component (Authorization
value is Application) or is managed by
the OC4J container (Authorization value
is Container).

JNDI Location location attribute of
<resource-ref-mapping>
element under
<orion-web-app>

The desired JNDI location from which to
look up the resource.

Application Server Control Web Module Configuration Pages

A-8 Oracle Containers for J2EE Servlet Developer’s Guide

EJB Reference Mappings Page
Use the EJB Reference Mappings page to specify a JNDI location for an EJB. Table A–6
discusses the properties in this page.

Also see the context-sensitive topic "Web Module EJB Reference Mappings Page" in the
Application Server Control online help.

Environment Entry Mappings Page
Use the Environment Entry Mappings Page to set a new value for an environment
entry. Table A–7 discusses the properties in this page.

Also see the context-sensitive topic "Web Module Environment Entry Mappings Page"
in the Application Server Control online help.

Lookup Context location attribute of
<lookup-context>
subelement of
<resource-ref-mapping>
element under
<orion-web-app>

Specifies an optional JNDI context that
will be used instead of the default context
in looking up the resource.

Table A–6 Properties of the EJB Reference Mappings Page

Application Server
Control Property Corresponding XML Entity Description

Name name attribute of
<ejb-ref-mapping>
subelement of
<orion-web-app>

The name of the EJB, which refers to
the value of an <ejb-ref-name>
subelement of <ejb-ref> under
<web-app>.

Type <ejb-ref-type> subelement
of <ejb-ref> element under
<web-app>

The type of EJB, either Entity or
Session.

Home Interface <home> subelement of
<ejb-ref> element under
<web-app>

The fully qualified name of the home
interface of the EJB.

Remote Interface <remote> subelement of
<ejb-ref> element under
<web-app>

The fully qualified name of the
remote interface of the EJB.

JNDI Location location attribute of
<ejb-ref-mapping>
subelement of
<orion-web-app>

The desired JNDI location from which
to look up the EJB.

Note:

■ See "Overview of Enterprise JavaBeans" on page 8-8 for related
information.

Table A–5 (Cont.) Properties of the Resource Reference Mappings Page

Application Server
Control Property Corresponding XML Entity Description

Application Server Control Web Module Configuration Pages

Web Module Administration A-9

Resource Reference Lookup Context Page
This page is linked from the Resource Reference Mappings page, described in
"Resource Reference Mappings Page" on page A-7, allowing you to specify a new
context from which to look up a resource. You can also edit context attributes.

Also see the context-sensitive topic "Resource Reference Lookup Context Page" in the
Application Server Control online help.

Table A–7 Properties of the Environment Entry Mappings Page

Application Server
Control Property Corresponding XML Entity Description

Name name attribute of
<env-entry-mapping>
subelement of
<orion-web-app>

The name of the environment entry,
and refers to the value of the
<env-entry-name> subelement of
an <env-entry> element under
<web-app>.

Type <env-entry-type>
subelement of <env-entry>
element under <web-app>

The Java type of the environment
entry.

Description <description> subelement of
<env-entry> element under
<web-app>

An optional description of the
environment entry.

Value <env-entry-value>
subelement of <env-entry>
element under <web-app>

The assembled value of the
environment entry (typically from the
web.xml file).

Deployed Value <env-entry-mapping>
subelement of
<orion-web-app>

The desired deployment value of the
environment entry, to override the
assembled value. The value of the
<env-entry-mapping> element
overrides the value of the
<env-entry-value> element.

Table A–8 Properties of the Resource Reference Lookup Context Page

Application Server
Control Property Corresponding XML Entity Description

Resource Reference
Name

name attribute of
<resource-ref-mapping>
subelement of
<orion-web-app>

The name of the resource, which
refers to the value of a
<res-ref-name> subelement of
<resource-ref> under
<web-app>. More specifically, this is
the name of a resource manager
connection factory reference.

Lookup Context
Location

location attribute of
<lookup-context>
subelement of
<resource-ref-mapping>
element under
<orion-web-app>

Specifies an optional JNDI context
that will be used instead of the
default context in looking up the
resource.

Name (of context
attribute)

name attribute of
<context-attribute>
subelement of
<lookup-context>

The name of an attribute to send to a
nondefault, such as third-party, JNDI
context specified as the corresponding
Lookup Context.

Summary of Web Module MBeans and Administration

A-10 Oracle Containers for J2EE Servlet Developer’s Guide

Summary of Web Module MBeans and Administration
Standards-compliant MBeans play a role in OC4J runtime configuration. The following
sections provide an overview:

■ General Overview of OC4J MBean Administration

■ Summary of OC4J Web Module MBeans

General Overview of OC4J MBean Administration
OC4J support for the JMX specification allows standard interfaces to be created for
managing resources dynamically, including resources relating to resource adapters, in
a J2EE environment. The OC4J implementation of JMX provides a JMX client, the
System MBean Browser, that you can use to manage an OC4J instance through MBeans
that are provided with OC4J.

An MBean is a Java object that represents a JMX manageable resource. Each
manageable resource within OC4J, such as an application or a resource adapter, is
managed through an instance of the appropriate MBean. Each MBean provided with
OC4J exposes a management interface that is accessible through the System MBean
Browser in the Application Server Control Console. You can set MBean attributes,
execute operations to call methods on an MBean, subscribe to notifications of errors or
specific events, and display execution statistics.

To access the browser from the OC4J home page, select the Administration tab and
then, under the list of tasks, go to the JMX task "System MBean Browser". From the
browser, you can do the following:

■ Select the MBean of interest in the left-hand frame.

■ Use the Attributes tab in the right-hand frame to view or change attributes. An
attribute that can be set has a field where you can type in a new value. Then apply
the change.

■ Use the Operations tab in the right-hand frame to invoke methods on the MBean.
Select the operation of interest. In the Operation window, you can invoke it with
specified parameter settings.

■ Use the Notifications tab (where applicable) in the right-hand frame to subscribe
to notifications. You can select each item for which you want notification, and then
apply the changes.

Value (of context
attribute)

value attribute of
<context-attribute>
subelement of
<lookup-context>

The desired value of the attribute.

Note: This information is provided for reference, but key Web
module configuration settings are exposed in a more user-friendly
manner through other features of the Application Server Control
Console, as discussed under "Application Server Control Web Module
Configuration Pages" on page A-3.

Table A–8 (Cont.) Properties of the Resource Reference Lookup Context Page

Application Server
Control Property Corresponding XML Entity Description

Summary of Web Module MBeans and Administration

Web Module Administration A-11

■ Use the Statistics tab (where applicable) in the right-hand frame to display
execution statistics.

Be aware that MBeans and their attributes vary regarding when changes take effect. In
the runtime model, changes take effect immediately. In the configuration model, some
changes take effect when the resource is restarted, others when the application is
restarted, and still others when OC4J is restarted. There is also variation in whether
changes are persisted.

See the Oracle Containers for J2EE Configuration and Administration Guide for details. The
System MBean Browser itself also provides information about the MBeans.

Summary of OC4J Web Module MBeans
OC4J exports a set of MBeans for each Web module, including the OC4J default Web
application, to support administration during application runtime. Some OC4J
MBeans are required in order to support the J2EE management specification, but may
offer extended features. Other OC4J MBeans are Oracle extensions to the model.

Table A–9 summarizes the OC4J implementation of MBeans that relate to Web
modules and are required of an application server according to JSR-77. These
implementations are in the oracle.oc4j.admin.management.mbeans package.

Notes:

■ MBeans are self-documenting in the System MBean Browser,
providing some documentation of MBean attributes, operations,
and notifications (as applicable).

■ Most (if not all) MBean statistical properties are derived from
DMS statistics. See "Oracle Application Server Dynamic
Monitoring Service" on page 9-5 for an introduction to DMS.

■ Regarding the default Web application: OC4J is installed with a
default configuration that includes a default J2EE application (also
known as the global application). The default application is, by
default, the parent of all other J2EE applications in OC4J, except
Application Server Control Console. In a typical OC4J installation,
the default application contains a default Web application. The
name and root directory path of the default Web application are
specified in the OC4J global application.xml file. In
standalone OC4J, the default Web application is bound to a Web
site through the default-web-site.xml file, and the default
context path is "/".

Table A–9 Mandatory System MBeans for Web Modules

MBean Description

Servlet Manages an instance of a servlet, with properties
corresponding to a <servlet> element in the web.xml
file.

Summary of Web Module MBeans and Administration

A-12 Oracle Containers for J2EE Servlet Developer’s Guide

Table A–10 summarizes the OC4J MBean that relates to Web modules and is an Oracle
extension. This MBean implementation is also in the
oracle.oc4j.admin.management.mbeans package.

Notes Regarding OC4J Web Module MBeans
■ WebModule attributes corresponding to the following <web-app> subelements

are accessible through the Application Server Control Console:
<context-param>, <servlet-mapping>, <filter-mapping>,
<session-timeout>.

■ OC4JWebModule attributes corresponding to the following <orion-web-app>
attributes and subelements are accessible through the Application Server Control
Console: file-modification-check-interval, directory-browsing,
<classpath>, <resource-ref-mapping>, <env-entry-mapping>,
<ejb-ref-mapping>.

■ The following JSP-related <orion-web-app> attributes, being global in nature,
do not apply to OC4JWebModule: jsp-cache-directory, jsp-cache-tlds,
jsp-taglib-locations, jsp-print-null, jsp-timeout.

WebModule Manages standard features of a Web module, with
properties corresponding to the <web-app> element
(outside of <servlet> subelements) in the web.xml file.

The loadAllServletMBeans() method of the WebModule
MBean creates the servlet MBeans without loading the
underlying servlets. OC4J loads a servlet when it is
invoked or when preloading is requested, as described
under "Preloading Servlets" on page 2-16.

Table A–10 Additional System MBeans for Web Modules

MBean Description

OC4JWebModule Manages OC4J-specific features of a Web module, with
properties corresponding to the <orion-web-app>
element (outside of the <web-app> subelement) in the
orion-web.xml file.

Table A–9 (Cont.) Mandatory System MBeans for Web Modules

MBean Description

Web Module Configuration Files B-1

B
Web Module Configuration Files

This appendix contains reference information for the OC4J-specific Web module
configuration files global-web-application.xml (for global and default
configuration) and orion-web.xml (for application-level configuration). There is
also an overview of these files and their relationship to the standard web.xml file.

■ Overview of Web Application Configuration Files

■ Hierarchy of orion-web.xml and global-web-application.xml

■ Elements and Attributes of orion-web.xml, global-web-application.xml

Overview of Web Application Configuration Files
A Web descriptor specifies and configures a set of J2EE Web components: static pages,
servlets, and JSP pages. The Web components can together form an independent Web
application and be deployed in an independent WAR file. More typically, however,
they will form just part of an overall J2EE application, being deployed in a WAR file
within the EAR file of the J2EE application.

OC4J uses three categories of Web descriptors. The following sections discuss each of
them and summarize the relationships between them:

■ Standard web.xml Configuration File

■ Oracle global-web-application.xml Configuration File

■ Oracle orion-web.xml Configuration File

■ Summary of Relationship Between Web Application Configuration Files

Standard web.xml Configuration File
The servlet specification defines the concept and XSD of a Web descriptor, called
web.xml, that you must include in the /WEB-INF directory of the associated WAR
file. The web.xml file specifies and configures the Web components of the WAR file,
as well as other components, such as EJBs, that the Web components may call. See the
servlet specification for more information.

Here is sample web.xml configuration specifying, among other things, a servlet, the
servlet mapping, and a local EJB lookup:

<web-app>
 <display-name>stateful, web-app:</display-name>
 <description>no description</description>
 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>

Overview of Web Application Configuration Files

B-2 Oracle Containers for J2EE Servlet Developer’s Guide

 <ejb-local-ref>
 <ejb-ref-name>CartBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>cart.CartHome</local-home>
 <local>cart.Cart</local>
 </ejb-local-ref>

 <servlet>
 <servlet-name>cart</servlet-name>
 <servlet-class>cart.CartServlet</servlet-class>
 <init-param>
 <param-name>param1</param-name>
 <param-value>1</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>cart</servlet-name>
 <url-pattern>/cart</url-pattern>
 </servlet-mapping>
 <security-role>
 <role-name>users</role-name>
 </security-role>
</web-app>

Oracle global-web-application.xml Configuration File
The OC4J server.xml file, through its <global-web-app-config> element,
specifies the OC4J global Web application descriptor. It is typically
global-web-application.xml, in the same directory as server.xml. This
descriptor defines default behavior for Web applications in OC4J.

The global Web application descriptor is defined by the XSD orion-web.xsd. This is
the same XSD as for the application-level, OC4J-specific Web descriptor,
orion-web.xml, described in the next section, "Oracle orion-web.xml Configuration
File".

The orion-web XSD is a superset of the standard XSD for web.xml. A <web-app>
subelement of the <orion-web-app> top-level element in the orion-web XSD has
the same specification as the top-level <web-app> element of web.xml. There are also
many other subelements of <orion-web-app> for specifying and configuring
OC4J-specific features.

For any default settings you specify within the <web-app> element in
global-web-application.xml, you can add to or, optionally, override these
settings through <web-app> settings in web.xml. You can then add to or, optionally,
override the resulting settings through <web-app> settings in orion-web.xml.

For any default settings you specify outside the <web-app> element in
global-web-application.xml, you can add to or, optionally, override these
settings through parallel settings in orion-web.xml.

Note: Avoid using the <web-app> element in
global-web-application.xml or orion-web.xml if possible.
Because it is customary to look in web.xml for any <web-app>
entries, having such entries elsewhere could be confusing and may
cause difficulty during troubleshooting.

Hierarchy of orion-web.xml and global-web-application.xml

Web Module Configuration Files B-3

For detailed information about the elements and attributes of the OC4J global Web
application descriptor, see "Elements and Attributes of orion-web.xml,
global-web-application.xml" on page B-4.

Oracle orion-web.xml Configuration File
In addition to the standard Web descriptor, web.xml, and the OC4J global Web
application descriptor, global-web-application.xml (which establishes default
behavior), there is an OC4J-specific application-level Web descriptor,
orion-web.xml.

The orion-web.xml descriptor is defined by a corresponding XSD. This is the same
XSD as for the global Web application descriptor that was described in the previous
section, "Oracle global-web-application.xml Configuration File".

You can provide an orion-web.xml file as well as the web.xml file, also in the
/WEB-INF directory of your WAR file. Use orion-web.xml to add to or, optionally,
override any default settings in global-web-application.xml, as well as to add
to or override any settings in web.xml.

Including an orion-web.xml file in your WAR file (inside the EAR file) is optional. If
you include it, OC4J copies it into the deployment directory during deployment
(under the j2ee/home/application-deployments directory by default).
Otherwise, OC4J generates orion-web.xml for you in the deployment directory,
using default settings from global-web-application.xml. Additionally, some
web.xml settings will influence the generation of orion-web.xml. For example,
<resource-ref> entries in web.xml will result in corresponding
<resource-ref-mapping> entries in orion-web.xml. .

For detailed information about the elements and attributes of the OC4J-specific Web
descriptor, see "Elements and Attributes of orion-web.xml,
global-web-application.xml" on page B-4.

Summary of Relationship Between Web Application Configuration Files
You can think of the relationship between global-web-application.xml,
web.xml, and orion-web.xml as follows:

1. The global-web-application.xml file establishes defaults for any Web
application in OC4J.

2. The web.xml file overlays anything defined in the <web-app> element of
global-web-application.xml, adding to and possibly overriding any Web
components and other settings defined there.

3. The orion-web.xml file overlays everything, adding to and possibly overriding
any settings from global-web-application.xml and web.xml.

Hierarchy of orion-web.xml and global-web-application.xml
Here is an overview of the element hierarchy for the
global-web-application.xml and orion-web.xml files.

Note: When OC4J copies orion-web.xml, it may make changes
to the file but these changes are transparent. For example, an
attribute setting that specifies the default value may be ignored or
removed.

Elements and Attributes of orion-web.xml, global-web-application.xml

B-4 Oracle Containers for J2EE Servlet Developer’s Guide

Elements and Attributes of orion-web.xml, global-web-application.xml
This section is an alphabetical dictionary of elements of the orion-web.xml and
global-web-application.xml files. See the preceding section, "Hierarchy of
orion-web.xml and global-web-application.xml", if you are interested in the hierarchy.

The element descriptions in this section generally apply to either
global-web-application.xml or to an application-specific orion-web.xml
configuration file. The global-web-application.xml file configures the global
application and sets defaults; the orion-web.xml file can override these defaults for
a particular application deployment, as appropriate. See "Summary of Relationship
Between Web Application Configuration Files" on page B-3 for a summary.

<access-mask>

Parent element: <orion-web-app>

<orion-web-app>
 <classpath>
 <context-param-mapping>
 <mime-mappings>
 <virtual-directory>
 <access-mask>
 <host-access>
 <ip-access>
 <servlet-chaining>
 <request-tracker>
 <session-tracking>
 <session-tracker>
 <resource-ref-mapping>
 <lookup-context>
 <context-attribute>
 <resource-env-ref-mapping>
 <security-role-mapping>
 <group>
 <user>
 <env-entry-mapping>
 <ejb-ref-mapping>
 <service-ref-mapping>
 <expiration-setting>
 <web-app>
 <jazn-web-app>
 <web-app-class-loader>
 <ojsp-init>

Note: You cannot use an <ojsp-init> element in
global-web-application.xml.

Notes:

■ Where attributes are discussed, note that attribute values are
always set inside quotes: attribute="value".

■ Most attributes of interest can be set through the Application
Server Control deployment plan editor. See the Oracle Containers
for J2EE Deployment Guide for information.

Elements and Attributes of orion-web.xml, global-web-application.xml

Web Module Configuration Files B-5

Child elements: <host-access>, <ip-access>

Required? Optional; zero or one

Use subelements of <access-mask> to specify optional access masks for this
application. You can use host names or domains to filter clients, through
<host-access> subelements, or you can use IP addresses and subnets to filter
clients, through <ip-access> subelements, or you can do both.

<classpath>

Parent element: <orion-web-app>

Child elements: None

Required? Optional; zero or more

Use this element to inform OC4J of additional code locations for Web application class
loading—either library files or locations for individual class files.

Table B–1 <access-mask> Attributes

Name Description

default Values: allow|deny

Default: allow

Specifies whether to allow requests from clients not identified
through a <host-access> or <ip-access> subelement. Use
separate mode attributes for the <host-access> and
<ip-access> subelements to specify whether to allow requests
from clients that are identified through those subelements.

Elements and Attributes of orion-web.xml, global-web-application.xml

B-6 Oracle Containers for J2EE Servlet Developer’s Guide

<context-attribute>

Parent element: <lookup-context>

Child elements: None

Required? Required if you use <lookup-context>; one or more

Each occurrence of this element specifies an attribute to send to a nondefault, such as
third-party, JNDI context named in the parent <lookup-context> element.

The only mandatory attribute in JNDI is java.naming.factory.initial, which is
the class name of the context factory implementation.

Table B–2 <classpath> Attributes

Name Description

path Values: String

Default: n/a (required)

You can specify one or more locations, separated by commas or
semicolons, where a location can be either of the following:

■ The complete path to a JAR or ZIP file, including the file
name

■ A directory path

In either case, you can use an absolute path or a path that is
relative to the configuration file location
(global-web-application.xml or orion-web.xml, as
applicable).

If you specify a directory path, the classloader recognizes only
individual class files in the specified directory, not JAR or ZIP
files (unless those are specified separately).

For example, assume the following setting in orion-web.xml:

<classpath path=
 /abc/def/lib1.jar,
 /abc/def/zip1.jar,
 /abc/def,mydir
/>

The classloader recognizes the following:

■ The lib1.jar and zip1.jar libraries (but no other
libraries in /abc/def)

■ Any class files in /abc/def

■ Any class files in mydir, relative to the location of
orion-web.xml

Table B–3 <context-attribute> Attributes

Name Description

name Values: String

Default: n/a (required)

Specifies the name of the attribute.

value Values: String

Default: n/a (required)

Specifies the desired value of the attribute.

Elements and Attributes of orion-web.xml, global-web-application.xml

Web Module Configuration Files B-7

<context-param-mapping>

Parent element: <orion-web-app>

Child elements: None

Required? Optional; zero or more

This element carries information in the content of the element itself, as follows:

In orion-web.xml, a <context-param-mapping> element overrides the value
specified through a corresponding <context-param> element in web.xml, for a
servlet context parameter. Use the name attribute to match a <param-name> setting in
web.xml, and use the element value to specify the new value:

<context-param-mapping name="..." >deploymentValue</context-param-mapping>

<ejb-ref-mapping>

Parent element: <orion-web-app>

Child elements: None

Required? Optional; zero or more

Use this element to declare a JNDI location for an EJB. This is in conjunction with a
corresponding <ejb-ref> or <ejb-local-ref> element to declare the EJB in the
web.xml file. The <ejb-ref-mapping> element name attribute corresponds to an
<ejb-ref-name> element in web.xml, and the location attribute specifies a JNDI
location.

<env-entry-mapping>

Parent element: <orion-web-app>

Child elements: None

Table B–4 <context-param-mapping> Attributes

Name Description

name Values: String

Default: n/a (required)

The name of the parameter for which you are specifying a new
value.

Table B–5 <ejb-ref-mapping> Attributes

Name Description

name Values: String

Default: n/a (required)

Specifies the EJB reference name, from an <ejb-ref-name>
element in web.xml.

location Values: String

Default: n/a (required)

Specifies a JNDI location from which to look up the EJB home.

Elements and Attributes of orion-web.xml, global-web-application.xml

B-8 Oracle Containers for J2EE Servlet Developer’s Guide

Required? Optional; zero or more

In orion-web.xml, an <env-entry-mapping> element overrides the value
specified through a corresponding <env-entry> element in web.xml, for an
environment entry. Use the name attribute to match an <env-entry-name> setting in
web.xml, and use the element value to specify the new value:

<env-entry-mapping name="..." >deploymentValue</env-entry-mapping>

<expiration-setting>

Parent element: <orion-web-app>

Child elements: None

Required? Optional; zero or more

This element sets the expiration for a given set of resources; that is, how long before
the resources would expire in the browser. (The browser reloads an expired resource
upon the next request for it.) This is useful for caching policies, such as for not
reloading images as frequently as documents.

<group>

Parent element: <security-role-mapping>

Child elements: None

Required? Optional; zero or more

Use this subelement of <security-role-mapping> to specify a group to map to the
security role specified in the parent <security-role-mapping> element. All the
members of the specified group are included in this role.

Table B–6 <env-entry-mapping> Attributes

Name Description

name Values: String

Default: n/a (required)

The name of the environment entry for which you are specifying
a new value.

Table B–7 <expiration-setting> Attributes

Name Description

expires Values: String (integer, seconds)

Default: 0

Specifies the number of seconds before expiration, or "never"
for no expiration. The default setting calls for immediate
expiration.

url-pattern Values: String

Default: n/a (required)

Specifies the URL pattern that the expiration applies to. This
could be as in the following example:

url-pattern="*.gif"

Elements and Attributes of orion-web.xml, global-web-application.xml

Web Module Configuration Files B-9

<host-access>

Parent element: <access-mask>

Child elements: None

Required? Optional; zero or more

This subelement of <access-mask> specifies a host name or domain from which to
allow or deny access.

<ip-access>

Parent element: <access-mask>

Child elements: None

Required? Optional; zero or more

This subelement of <access-mask> specifies an IP address and subnet mask from
which to allow or deny access.

Table B–8 <group> Attributes

Name Description

name Values: String

Default: n/a (required)

Specifies the name of the group.

Table B–9 <host-access> Attributes

Name Description

domain Values: String

Default: n/a (required)

Specifies the host or domain.

mode Values: allow|deny

Default: n/a (required)

Specifies whether to allow or deny access from the specified host
or domain.

Table B–10 <ip-access> Attributes

Name Description

ip Values: String

Default: n/a (required)

Specifies the IP address, as a 32-bit value (for example,
"123.124.125.126").

netmask Values: String

Default: No default

Specifies the relevant subnet mask, if any (example:
"255.255.255.0").

Elements and Attributes of orion-web.xml, global-web-application.xml

B-10 Oracle Containers for J2EE Servlet Developer’s Guide

<jazn-web-app>

Parent element: <orion-web-app>

Child elements: None

Required? Optional; zero or one

Use this element to configure the OracleAS JAAS Provider and Single Sign-On (SSO)
properties for servlet execution. You must set these features appropriately to invoke a
servlet under the privileges of a particular security subject.

When Oracle Identity Management is being used as the security provider for a Web
application, with SSO for authentication, you can synchronize a servlet session with
the OracleAS JAAS Provider user context through <jazn-web-app>. To synchronize
the session with the user context, set the sso.session.synchronize property to
"true", the default, in a <property> subelement under <jazn-web-app>:

<jazn-web-app ...>
<property name="sso.session.synchronize" value="true"/>
</jazn-web-app>

Or you can set the property to "false".

For additional information about JAAS and the features described for this element, see
the Oracle Containers for J2EE Security Guide. You can also refer to related Sun
Microsystems documentation at the following location:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html

mode Values: allow|deny

Default: n/a (required)

Specifies whether to allow or deny access from the specified IP
address and subnet mask.

Table B–11 <jazn-web-app> Attributes

Name Description

auth-method Values: BASIC|SSO|COREIDSSO

Default: BASIC

This is the method of HTTP client authentication. "BASIC" is for
basic J2EE authentication; "SSO" is for Oracle Single Sign-On.
"COREIDSSO" is for using Oracle COREid Access and Identity as
the security provider, with single sign-on

Another value for auth-method, "DIGEST", is deprecated in
the OC4J 10.1.3 implementation, but still supported for
backward compatibility. Instead, you can use the standard
DIGEST setting for auth-method in the web.xml file.

Note: Use "BASIC" if your application uses a custom
LoginModule instance.

Table B–10 (Cont.) <ip-access> Attributes

Name Description

Elements and Attributes of orion-web.xml, global-web-application.xml

Web Module Configuration Files B-11

Warning Issued for servlet.init() Not Working with run-as
For a Web application, when run-as user is specified in the web.xml file, all method
invocations except the Servlet.init() method will be invoked as the specified
user. With the JMS Router being the default application of OC4J, calls need to be
authorized to the router's EJBs. This is done by defining the application role
"jmsRouter", which is mapped to the JAAS "oc4j-administrators" role, and
specifying <method-permission> for all methods of the router's EJBs.

The init() method of the servlet within the router's Web model creates a router EJB
object. Regardless of whether run-as is specified in web.xml for the servlet, a
security exception is thrown:

@ oracle.oc4j.rmi.OracleRemoteException: anonymous is not allowed to call this EJB
method, check your security settings (method-permission in ejb-jar.xml and
security-role-mapping in orion-application.xml).

runas-mode Values: Boolean

Default: false

This mode is deprecated in the OC4J 10.1.3 implementation, but
still supported for backward compatibility. A new, consolidated
JAAS mode replaces the runas-mode and
doasprivileged-mode for servlets.

Set runas-mode to "true" to invoke the servlet using the
privileges of a particular subject. A subject is defined by an
instance of the javax.security.auth.Subject class and
includes a set of facts regarding a single entity, such as a person.
Such facts include identities and security-related attributes, such
as passwords and cryptographic keys.

With the default runas-mode="false" setting,
doasprivileged-mode is ignored.

doasprivileged-mode Values: Boolean

Default: true

This mode is deprecated in the OC4J 10.1.3 implementation, but
still supported for backward compatibility. A new, consolidated
JAAS mode replaces the runas-mode and
doasprivileged-mode for servlets.

Assuming runas-mode="true", use the default "true"
setting of doasprivileged-mode to use privileges of a
particular subject without being limited by the access-control
restrictions of the server. Values of runas-mode="true" and
doasprivileged-mode="true" result in use of the static
Subject.doAsPrivileged() method when the servlet is
invoked. Values of runas-mode="true" and
doasprivileged-mode="false" result in use of the static
Subject.doAs() method. In either case, the JAAS Provider
passes in the Subject instance in the method call.

When the doAsPrivileged() method is used, the JAAS
Provider invokes the method with a null
java.security.AccessControlContext instance. This is
to start the action freshly and execute the servlet without the
restrictions of the current server AccessControlContext
instance. When the doAs() method is used, an
AccessControlContext instance is retrieved from the current
thread (from the server).

Table B–11 (Cont.) <jazn-web-app> Attributes

Name Description

Elements and Attributes of orion-web.xml, global-web-application.xml

B-12 Oracle Containers for J2EE Servlet Developer’s Guide

Workaround for run-as Warning
You can remove the security warning by commenting out '*' in the <method-name>
element of <method-permission> in ejb-jar.xml and explicitly enumerating all
methods in AdminMgrBean that the jmsRouter role can access, as follows.

<!--
 <method-permission>
 <role-name>jmsRouter</role-name>
 <method>
 <ejb-name>AdminMgrBean</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
-->
 <method-permission>
 <role-name>jmsRouter</role-name>
 <method>
 <ejb-name>AdminMgrBean</ejb-name>
 <method-name>getConfig</method-name>
 </method>
 </method-permission>
 ...

runAsRoleName is correctly parsed in ServletDescriptor.java, stored in info
and thread in HttpApplication.loadServlet().

<lookup-context>

Parent element: <resource-ref-mapping>

Child elements: <context-attribute>

Required? Optional; zero or one

This element, through its location attribute, specifies an optional JNDI context that
will be used instead of the default context in looking up the resource mapped in the
parent <resource-ref-mapping> element. This is useful when you are connecting
to third-party modules, such as a third-party JMS server, for example. (Either use the
JNDI context implementation supplied by the resource vendor, or, if none exists, write
an implementation that negotiates with the vendor software.)

<mime-mappings>

Parent element: <orion-web-app>

Child elements: None

Required? Optional; zero or more

Table B–12 <lookup-context> Attributes

Name Description

location Values: String

Default: n/a (required)

Specifies the name of a nondefault (such as third-party) JNDI
context.

Elements and Attributes of orion-web.xml, global-web-application.xml

Web Module Configuration Files B-13

This element defines the path to a file containing MIME mappings to use.

<ojsp-init>

Parent element: <orion-web-app>

Child elements: None

Required? Optional; zero or one

This element sets the JSP configuration parameters (attributes) that Table B–14 lists. If
you specify this element in the orion-web.xml file for a Web application, the values
of these attributes, including default values, override the values of any corresponding
JSP configuration parameters specified in <init-param> elements in the web.xml
deployment descriptor installed with the Web module. Any corresponding
command-line options of the ojspc pretranslation utility override the <ojsp-init>
attributes as well as any corresponding settings in web.xml.

Table B–13 <mime-mappings> Attributes

Name Description

path Values: String

Default: n/a (required)

Specifies the path or URL for the file, either absolute or relative
to the location of the orion-web.xml file.

Note: You cannot use an <ojsp-init> element in
global-web-application.xml.

Table B–14 <ojsp-init> Attributes

Name Description

debug-mode Values: Boolean

Default: false

Specifies whether or not to print the stack trace. Set to true to
print the stack trace when certain runtime exceptions occur.

When this parameter is false and a file is not found, the full
path of the missing file is not displayed. This is an important
security consideration if you want to suppress the display of the
physical file path when nonexistent JSP files are requested.

iso-8859-1-convert Values: Boolean

Default: true

Specifies whether or not to convert strings to the iso-8859-1
character set. If the value of iso-8859-1-convert is "true" a
full conversion of the characters will take place, using an
encoder. If the value of iso-8859-1-convert is "false", byte
truncation will happen, providing a performance gain. Oracle
recommends this byte truncation for most of the common use
cases where the string does not contain characters.

Elements and Attributes of orion-web.xml, global-web-application.xml

B-14 Oracle Containers for J2EE Servlet Developer’s Guide

jsr45-debug Values: none, class, file

Default: none

Specifies the method for JSR-45 support, which JSR-045:
Debugging Support for Other Languages describes. Setting
jsr45-debug to "file" will generate a separate file containing
an SMAP of the JSP lines mapped to the Java lines. A "class"
setting will put this information into the compiled class file.
Setting jsr45-debug to "none" will turn off JSR-45 debugging
support.

main-mode Values: recompile, reload, justrun

Default: recompile

Specifies whether JSP-generated classes are automatically
reloaded or JSP pages are automatically retranslated when
changes are made.

If enabled, this feature allows new or modified JSP pages to be
loaded into the OC4J runtime, without requiring the Web
application to be redeployed or restarted. See Oracle Containers
for J2EE Support for JavaServer Pages Developer’s Guidefor
additional information.

If the value of main-mode is recompile, the container will
check the timestamp of the JSP page, retranslate it, and reload it
if has been modified since it was last loaded. The functionality
described for reload will also be executed.

If the value of main-mode is reload, the container will check
the timestamp of classes generated by the JSP translator, such as
page implementation classes, and reload any that have changed
or been redeployed since they were last loaded. This might be
useful, for example, when you deploy or redeploy compiled
classes, but not JSP pages, from a development environment to a
production environment.

If the value of main-mode is justrun, the container will not
perform any timestamp checking, so there is no retranslation of
JSP pages or reloading of JSP-generated Java classes. This is the
most efficient mode for a production environment, where JSP
pages are not expected to change frequently.

precompile-check Values: Boolean

Default: false

Specifies whether to check the HTTP request for a standard
jsp_precompile setting. The default is false.

If precompile_check is true and the request enables
jsp_precompile, then the JSP page will be pretranslated only,
without execution. Setting precompile_check to false
improves performance and ignores any jsp_precompile
setting in the request.

reduce-tag-code Values: Boolean

Default: false

If set to true, specifies further reduction in the size of generated
code for custom tag usage.

Table B–14 (Cont.) <ojsp-init> Attributes

Name Description

Elements and Attributes of orion-web.xml, global-web-application.xml

Web Module Configuration Files B-15

req-time-introspection Values: Boolean

Default: false

If set to true, enables request-time JavaBean introspection
whenever compile-time introspection is not possible. When
compile-time introspection is possible and succeeds, however,
there is no request-time introspection regardless of the setting of
this flag.

As an example of a scenario for use of request-time
introspection, assume a tag handler returns a generic
java.lang.Object instance in VariableInfo of the
tag-extra-info class during translation and compilation, but
actually generates more specific objects during runtime. In this
case, if req_time_introspection is enabled, the Web
container will delay introspection until request time.

An additional effect of this flag is to allow a bean to be declared
twice, such as in different branches of an if..then..else
loop. Consider the example that follows. With the default false
value of req_time_introspection, this code would cause a
parse exception. With a true value, the code will work without
error:

<% if (cond) { %>
 <jsp:useBean id="foo" class="pkgA.Foo1" />
<% } else { %>
 <jsp:useBean id="foo" class="pkgA.Foo2" />
<% } %>

static-text-in-chars Values: Boolean

Default: false

If set to true, instructs the JSP translator to generate static text
in JSP pages as characters instead of bytes. The default is false.

Enable this flag if your application requires the ability to change
the character encoding dynamically during runtime, such as in
the following example:

<% response.setContentType("text/html; charset=UTF-8");
%>

The false default setting improves performance in outputting
static text blocks.

Table B–14 (Cont.) <ojsp-init> Attributes

Name Description

Elements and Attributes of orion-web.xml, global-web-application.xml

B-16 Oracle Containers for J2EE Servlet Developer’s Guide

Table B–15 lists the <ojsp-init> attributes with corresponding JSP servlet
<init-param> elements and ojspc command-line options. For more information
about JSP servlet <init-param> elements, see the Oracle Containers for J2EE Support
for JavaServer Pages Developer’s Guide. For more information about JSP servlet ojspc
command-line options, see the Oracle Containers for J2EE JSP Tag Libraries and Utilities
Reference.

<orion-web-app>

Parent element: n/a (root)

Child elements: <access-mask>, <classpath>, <context-param-mapping>,
<ejb-ref-mapping>, <env-entry-mapping>, <expiration-setting>, <jazn-web-app>,
<mime-mappings>, <ojsp-init>, <request-tracker>, <resource-env-ref-mapping>,

tags-reuse Values: compiletime, compiletime-with-release, none

Default: compiletime

Specifies the mode for tag handler reuse, also known as tag
pooling.

■ Set to compiletime to enable the compile-time model of
tag handler reuse in its basic mode. This is the default value.

■ Set to compiletime_with_release to enable the
compile-time model of tag handler reuse in its "with release"
mode, where the tag handler release() method is called
between usages of a given tag handler within a given page.

■ Set to none or false to disable tag handler reuse. You can
override this value in any particular JSP page by setting the
JSP page context attribute oracle.jsp.tags.reuse to a
value of true.

■ Set to runtime to enable the runtime model of tag handler
reuse. You can override this in any particular JSP page by
setting the JSP page context attribute
oracle.jsp.tags.reuse to a value of false.

Note that the runtime option and its equivalent, true, are
deprecated in this release of OC4J.

Table B–15 JSP Servlet Configuration Parameters

<ojsp-init> Attribute
Equivalent JSP Servlet
<init-param>

ojspc Command-Line
Option

debug-mode debug_mode n/a

iso-8859-1-convert iso-8859-1-convert n/a

jsr45-debug debug -debug

main-mode main_mode n/a

precompile-check precompile_check n/a

reduce-tag-code reduce_tag_code -reduceTagCode

req-time-introspection req_time_instrospection -reqTimeIntrospection

static-text-in-chars static-text-in-chars -staticTextInChars

tags-reuse tags_reuse_default -tagReuse

Table B–14 (Cont.) <ojsp-init> Attributes

Name Description

Elements and Attributes of orion-web.xml, global-web-application.xml

Web Module Configuration Files B-17

<resource-ref-mapping>, <security-role-mapping>, <service-ref-mapping>,
<servlet-chaining>, <session-tracking>, <virtual-directory>, <web-app>,
<web-app-class-loader>

Required? Required; one only

This is the root element for specifying OC4J-specific configuration of a Web
application.

Note: The always-redeploy, deployment-time, and
deployment-version attributes are not supported for direct use, so
are not documented, although deployment-time and
deployment-version may receive container-generated values for
the time of deployment and the OC4J version. Modifying these
parameters has no effect.

Table B–16 <orion-web-app> Attributes

Name Description

autojoin-session Values: Boolean

Default: true

Specifies whether users should be assigned a session as soon as
they log in to the application.

default-buffer-size Values: Non-negative integer (bytes)

Default: 2048

Specifies the default size of the output buffer for servlet
responses, in bytes.

default-charset Values: String

Default: iso-8859-1

In 10.1.3.1 for JSP pages and for the servlet container, this
attribute specifies the ISO character set to use by default. In
general, for JSP 2.0 users, Oracle instead recommends standard
<page-encoding> functionality (under the web.xml
<jsp-config> element, according to the JSP 2.0
specification), to specify character sets according to URL
patterns. However, default-charset may be useful if you
have large numbers of JSP pages, particularly across multiple
applications, to avoid the necessity of making numerous
changes in your EAR files. Also, you can use
default-charset to set a base default, then use
<page-encoding> functionality to override the default for
particular URL patterns. See the JSP and servlet specifications
for more information about the <jsp-config> and
<page-encoding> elements.

default-mime-type Values: String

Default: No default

This specifies a default content type for servlet responses, for
situations where the setContentType() method is not called
from the servlet implementation. If default-mime-type is
not specified, then there is no default content type.

Elements and Attributes of orion-web.xml, global-web-application.xml

B-18 Oracle Containers for J2EE Servlet Developer’s Guide

development Values: Boolean

Default: false

This attribute is a convenience flag to use during development.
If development is set to "true", then the OC4J server checks
a particular directory for updates to servlet source files. If a
source file has changed since the last request, then OC4J will,
upon the next request, recompile the servlet, redeploy the Web
application, and reload the servlet and any dependency classes.

The directory is determined by the setting of the
source-directory attribute.

Note that the OC4J JSP container does not take any special
action for the development flag. Any related functionality is
handled by the OC4J servlet container.

directory-browsing Values: allow|deny

Default: deny

Specifies whether to allow directory browsing for a URL that
ends in "/". Assume the following circumstances:

■ There is no index.html file in the application root
directory.

■ There is no welcome file defined in the web.xml file.

If directory-browsing is set to "allow" under these
circumstances, then a URL ending in "/" results in the contents
of the corresponding directory being displayed in the user's
browser. If directory-browsing is set to "deny" under
these circumstances, then a URL ending in "/" results in an
error indicating that the directory contents cannot be
displayed.

If there is a defined welcome file or there is an index.html
file in the application root directory, then the contents of that
file are displayed, regardless of the directory-browsing
setting.

enable-jsp-dispatcher-shortcut Values: Boolean

Default: true

A "true" setting results in significant performance
improvements by the OC4J JSP container, especially in
conjunction with a "true" setting for the
simple-jsp-mapping attribute. This is particularly true for
JSP pages with numerous jsp:include statements. Use of the
"true" setting assumes, however, that if you define JSP files
with <jsp-file> elements in web.xml, then you have
corresponding <url-pattern> specifications for those files.

Table B–16 (Cont.) <orion-web-app> Attributes

Name Description

Elements and Attributes of orion-web.xml, global-web-application.xml

Web Module Configuration Files B-19

file-modification-check-interval Values: String (integer, milliseconds)

Default: 1000

This attribute determines when to check a static file, such as an
HTML file, to see whether its timestamp has changed and it
should therefore be reloaded from the file system. When a
static file is first accessed, it is loaded from the file system and
also cached. For each subsequent access, there is the following
logic:

■ If the elapsed time since the last check of the file
timestamp is less than the specified file-check interval,
then the timestamp is not checked and the file is loaded
from cache.

■ If the elapsed time since the last check of the file
timestamp is greater than the specified file-check interval,
then the timestamp is checked. If the timestamp has
changed since the last check, the file is loaded from the file
system, otherwise it is loaded from cache.

Specify this value in milliseconds. Zero or a negative number
specifies that the file timestamp is always checked. For
performance reasons, a very large value ("1000000", for
example) is recommended in a production environment.

jsp-cache-directory Values: String

Default: ./persistence (relative to the deployment directory of
the application)

This attribute specifies the JSP cache directory, which is used as
a base directory for output files from the JSP translator. It is
also used as a base directory for application-level TLD caching.

jsp-cache-tlds Values: on|off|standard

Default: standard

This flag indicates whether persistent TLD caching is enabled
for JSP pages. The "standard" or "on" setting enables caching,
and in either case .tld files are inherited from the global TLD
locations according to the jsp-taglib-locations attribute
of <orion-web-app>.

The "standard" setting also results in a search for .tld files
in the application /WEB-INF directory, and these are added to
the files inherited from the global level. Note that the
/WEB-INF/lib and /WEB-INF/classes subdirectories are
not searched.

The "on" setting also results in a search for .tld files among all
files within the application, and these are added to the files
inherited from the global level.

The "off" setting disables persistent TLD caching.

jsp-print-null Values: Boolean

Default: true

Set this flag to "false" to print an empty string instead of the
default "null" string for null output from a JSP page.

Table B–16 (Cont.) <orion-web-app> Attributes

Name Description

Elements and Attributes of orion-web.xml, global-web-application.xml

B-20 Oracle Containers for J2EE Servlet Developer’s Guide

jsp-taglib-locations Values: String

Default: See below

If persistent TLD caching is enabled for JSP pages (through the
jsp-cache-tlds attribute), you can use
jsp-taglib-locations to specify a semicolon-delimited
list of one or more directories to use as "well-known" locations.
Tag library JAR files can be placed in these locations for sharing
across multiple JSP pages and Web applications, and for TLD
caching

You can specify any combination of absolute directory paths or
relative directory paths. Relative paths would be under
ORACLE_HOME if ORACLE_HOME is defined, or under the
current directory (from which the OC4J process was started) if
ORACLE_HOME is not defined. The default value is as follows:

■ ORACLE_HOME/j2ee/home/jsp/lib/taglib/ if
ORACLE_HOME is defined

■ ./jsp/lib/taglib if ORACLE_HOME is not defined.

Important: Use the jsp-taglib-locations attribute only in
global-web-application.xml, not in orion-web.xml.

jsp-timeout Values: Non-negative integer (seconds)

Default: 0 (no timeout)

Specifies a period of time after which any JSP page will be
removed from memory if it has not been requested. This frees
up resources in situations in which some pages are called
infrequently.

persistence-path Values: String

Default: No default (by default, no persistence)

Indicates where to store servlet HttpSession objects for
persistence across server restarts or application redeployments.
Specify a relative path, which will be relative to an OC4J
temporary storage area under the
application-deployments directory. If no value is
specified, then there is no persistence of session objects across
restarts or redeployments.

Session objects must be serializable (directly or indirectly
implementing the java.io.Serializable interface) or
remoteable (directly or indirectly implementing the
java.rmi.Remote interface) for this feature to work.

Note: This attribute is ignored if OC4J clustering is enabled.

schema-major-version Values: String

Default: No default

The major version number of the orion-web.xml XSD. If you
create orion-web.xml manually, set this attribute to 10 for
use with the OC4J 10.1.3 implementation.

Note: This attribute does not appear directly in the XSD for
orion-web.xml. It is according to the attributeGroup
specification in the top-level OC4J XSD.

Table B–16 (Cont.) <orion-web-app> Attributes

Name Description

Elements and Attributes of orion-web.xml, global-web-application.xml

Web Module Configuration Files B-21

schema-minor-version Values: String

Default: No default

The minor version number of the orion-web.xml XSD. If you
create orion-web.xml manually, set this attribute to 0 for use
with the OC4J 10.1.3 implementation.

Note: This attribute does not appear directly in the XSD for
orion-web.xml. It is according to the attributeGroup
specification in the top-level OC4J XSD.

servlet-webdir Values: String

Default: /servlet/ (see note below)

Use this attribute, in conjunction with a true setting for the
OC4J system property http.webdir.enable, to enable
servlet invocation by class name in standalone OC4J. Once the
system property is set, any servlet-webdir setting that
starts with a slash ("/") enables this feature and specifies a
special URL portion to insert after the context path to instruct
OC4J to invoke a servlet by class name. Anything appearing
after this path in a URL is assumed to be a class name,
including the package. See "Invoking a Servlet by Class Name
During OC4J Development" on page 2-11 for additional
information.

This feature is typically for use in an OC4J standalone
environment during development and testing; it presents a
significant security risk and should not be used in a production
environment. (For production deployment, use the standard
web.xml mechanisms to define the context path and servlet
path.)

Here is an example of servlet invocation by class name,
assuming a context path of "/" and a setting of
servlet-webdir="/servlet/":

http://www.example.com:8888/servlet/foo.SessionServlet

Invocation by class name is disabled by a setting of
servlet-webdir="" (empty quotes) or by the OC4J system
property setting http.webdir.enable=false.

Note: Any servlet-webdir setting, including the default, is
overridden by the default false setting of
http.webdir.enable. See the Oracle Containers for J2EE
Configuration and Administration Guide for general information
about OC4J system properties.

simple-jsp-mapping Values: Boolean

Default: false

Set this to "true" if "*.jsp" is mapped to only the
oracle.jsp.runtimev2.JspServlet front-end JSP
servlet. This would be specified in the <servlet> elements of
any Web descriptors affecting your application
(global-web-application.xml, web.xml, and
orion-web.xml). A "true" setting allows performance
improvements for JSP pages.

Table B–16 (Cont.) <orion-web-app> Attributes

Name Description

Elements and Attributes of orion-web.xml, global-web-application.xml

B-22 Oracle Containers for J2EE Servlet Developer’s Guide

<request-tracker>

Parent element: <orion-web-app>

Child elements: None

Required? Optional; zero or more

This element specifies a servlet to use as a request tracker. A request tracker is invoked
for each separate request sent from a browser to the server, at the time that the
corresponding response is committed (immediately before the response is actually
sent). Request trackers are useful for logging information, for example.

source-directory Values: String

Default: /WEB-INF/src (if it exists), or /WEB-INF/classes

For situations in which the development attribute is set to
"true", the source-directory setting specifies where to
look for servlet source files to auto-compile. If you use the
default location, OC4J keeps track of the location of the
/WEB-INF directory of your application after deployment.
Note that modified source files will be found anywhere under
the source-directory directory, according to package
name.

temporary-directory Values: String

Default: ./temp

This is the path to a temporary directory that can be used by
servlets and JSP pages for scratch files. The path can be either
absolute, or relative to the deployment directory.

A servlet may use a temporary directory, for example, to write
information to disk as a user is entering data in a form
(perhaps for interim or short-term storage before the
information is written to a database).

The specified directory can then be recalled from the servlet
context, where it is available through the attribute
javax.servlet.context.tempdir, as in the following
example.

File file = (File)application.getAttribute
 ("javax.servlet.context.tempdir");

A java.io.File object is returned, from which you can
obtain directory information and contents.

Note:

Processing related to the enable-jsp-dispatcher-shortcut,
jsp-cache-directory, jsp-cache-tlds, jsp-print-null,
jsp-taglib-locations, jsp-timeout, and
simple-jsp-mapping attributes are handled by the OC4J JSP
container. For more information about these attributes and related
features, see the Oracle Containers for J2EE Support for JavaServer Pages
Developer’s Guide.

Table B–16 (Cont.) <orion-web-app> Attributes

Name Description

Elements and Attributes of orion-web.xml, global-web-application.xml

Web Module Configuration Files B-23

You must define any request trackers in orion-web.xml, not
global-web-application.xml, because a <request-tracker> element points
to a servlet defined within the same application. There can be multiple request
trackers, each one defined in a separate <request-tracker> element.

<resource-env-ref-mapping>

Parent element: <orion-web-app>

Child elements: None

Required? Optional; zero or more

Use this element to declare a JNDI location for an environment resource. This is in
conjunction with a corresponding <resource-env-ref> element in the web.xml
file, which declares the resource. The <resource-env-ref-mapping> element
name attribute corresponds to a <resource-env-ref-name> element in web.xml,
and the location attribute specifies a JNDI location.

<resource-ref-mapping>

Parent element: <orion-web-app>

Child elements: <lookup-context>

Required? Optional; zero or more

Use this element to declare a JNDI location for an external resource, such as a data
source, JMS queue, or mail session. This is in conjunction with a corresponding
<resource-ref> element in the web.xml file, which declares the resource. The
<resource-ref-mapping> element name attribute corresponds to a
<res-ref-name> element in web.xml, and the location attribute specifies the
JNDI location.

Table B–17 <request-tracker> Attributes

Name Description

servlet-name Values: String

Default: n/a (required)

Specifies the servlet to invoke. You can specify either the
designated servlet name or the class name, according to the
corresponding <servlet-name> or <servlet-class>
element (both of which are subelements of a <servlet>
element) in the web.xml file.

Table B–18 <resource-env-ref-mapping> Attributes

Name Description

name Values: String

Default: n/a (required)

Specifies the resource name, from web.xml.

location Values: String

Default: n/a (required)

Specifies the JNDI location from which to look up the resource.

Elements and Attributes of orion-web.xml, global-web-application.xml

B-24 Oracle Containers for J2EE Servlet Developer’s Guide

Following is an example using this element and its subelements:

 <resource-ref-mapping location="jdbc/HyperSonicDS" name="jdbc/myDS">
 <lookup-context location="foreign/resource/location">
 <context-attribute name="java.naming.factory.initial" value="classname" />
 <context-attribute name="name" value="value" />
 </lookup-context>
 </resource-ref-mapping>

<security-role-mapping>

Parent element: <orion-web-app>

Child elements: <group>, <user>

Required? Optional; zero or more

This element maps a security role to specified users and groups, or to all users. It maps
to a security role of the same name specified through a <security-role> element in
the web.xml file. Use either the impliesAll attribute or an appropriate combination
of subelements—<group>, <user>, or both.

See the Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide for additional
information about the <security-role-mapping> element in OC4J configuration
files.

Table B–19 <resource-ref-mapping> Attributes

Name Description

name Values: String

Default: n/a (required)

Specifies the resource name, from web.xml. For example:

name="jdbc/TheDSVar"

location Values: String

Default: n/a (required)

Specifies a JNDI location from which to look up the resource. For
example:

location="jdbc/TheDS"

Important: OC4J has an automatic security mapping feature. By
default, if a security role defined in web.xml has the same name as
an OC4J group defined in system-jazn-data.xml (or other
valid user manager), then OC4J maps them. However, this feature
is completely disabled if you do any explicit mapping through the
<security-role-mapping> element. If you use
<security-role-mapping> at all, OC4J assumes that you want
explicit mapping only. This is to prevent unintended implicit
mappings when a user may intend to declare explicit mappings
only.

Elements and Attributes of orion-web.xml, global-web-application.xml

Web Module Configuration Files B-25

<service-ref-mapping>

Parent element: <orion-web-app>

Child elements: According to its own schema definition

Required? Optional; zero or more

This element is for use in conjunction with a <service-ref> element that appears in
the web.xml file to declare a Web service. You can use it to specify OC4J-specific
quality of service features for the corresponding Web service, such as security, logging,
and auditing. See the Oracle Application Server Web Services Developer’s Guide for
complete information.

Note that as a <service-ref> element can appear in a web.xml, ejb-jar.xml, or
application-client.xml file, a corresponding <service-ref-mapping>
element can appear in an orion-web.xml, orion-ejb-jar.xml, or
orion-application-client.xml file. Supported features of the
<service-ref-mapping> element are according to its own XSD, which is imported
into the orion-web, orion-ejb-jar, and orion-application-client XSDs.

<servlet-chaining>

Parent element: <orion-web-app>

Child elements: None

Required? Optional; zero or more

This element specifies a servlet to call when the response of the current servlet is set to
a specified MIME type. The specified servlet is called after the current servlet. This is
known as servlet chaining, for filtering or transforming certain kinds of output.

Table B–20 <security-role-mapping> Attributes

Name Description

impliesAll Values: Boolean

Default: false

Specifies whether this mapping applies to all users.

name Values: String

Default: n/a (required)

Specifies the name of the security role, matching a name
specified in a <role-name> subelement of a
<security-role> element in web.xml.

Important: Servlet chaining is an older and proprietary
mechanism with functionality similar to that of standard servlet
filtering, which was introduced in version 2.3 of the servlet
specification. Use servlet filtering instead. The OC4J
<servlet-chaining> element is deprecated in the current
release and will be desupported in the next release.

Elements and Attributes of orion-web.xml, global-web-application.xml

B-26 Oracle Containers for J2EE Servlet Developer’s Guide

<session-tracker>

Parent element: <session-tracking>

Child elements: None

Required? Optional; zero or more

This subelement of <session-tracking> specifies a servlet to use as a session
tracker. A session tracker is invoked as soon as a session is created; specifically, at the
same time as the invocation of the sessionCreated() method of the HTTP session
listener (an instance of a class implementing the
javax.servlet.http.HttpSessionListener interface). Session trackers are
useful for logging information, for example.

You must define any session trackers in orion-web.xml, not
global-web-application.xml, because a <session-tracker> element points
to a servlet defined within the same application. There can be multiple session
trackers, each one defined in a separate <session-tracker> element.

Table B–21 <servlet-chaining> Attributes

Name Description

mime-type Values: String

Default: n/a (required)

Specifies the MIME type to trigger the chaining (for example,
"text/html").

servlet-name Values: String

Default: n/a (required)

Specifies the servlet to call when the specified MIME type is
encountered. The servlet name is tied to a servlet class through
its definition in the <web-app> element of
global-web-application.xml, web.xml, or
orion-web.xml.

Table B–22 <session-tracker> Attributes

Name Description

servlet-name Values: String

Default: n/a (required)

Specifies the servlet to invoke. You can specify either the
designated servlet name or the class name, according to the
corresponding <servlet-name> or <servlet-class>
element under the relevant <servlet> element in the web.xml
file.

set-secure Values: Boolean

Default: false

Specifies whether all session cookies generated by OC4J for an
application will be returned by the client only when the HTTPS
protocol is being used. If set-secure="true", all session cookies
will include the secure attribute, which instructs the browser to
return the cookies only over the secure HTTPS protocol. If
set-secure="false", the browser will return cookies over any
protocol.

Elements and Attributes of orion-web.xml, global-web-application.xml

Web Module Configuration Files B-27

<session-tracking>

Parent element: <orion-web-app>

Child elements: <session-tracker>

Required? Optional; zero or one

This element specifies the session-tracking settings for this application. Session
tracking is accomplished through cookies, assuming a cookie-enabled browser. The
servlet to use as the session tracker is specified through the <session-tracker>
subelement.

Notes:

■ If cookies are disabled, session tracking can be achieved only if
your servlet explicitly calls the encodeURL() method of the
response object, or the encodeRedirectURL() method for
redirects.

■ OC4J does not support auto-encoding, in which session IDs are
automatically encoded into the URL by the servlet container.
This process is nonstandard and expensive.

Table B–23 <session-tracking> Attributes

Name Description

cookies Values: enabled|disabled

Default: enabled

Specifies whether to send session cookies. The name of a session
cookie is JSESSIONID. (See "How OC4J Can Use Cookies for
Session Tracking" on page 3-3 for information about the
JSESSIONID cookie.)

Elements and Attributes of orion-web.xml, global-web-application.xml

B-28 Oracle Containers for J2EE Servlet Developer’s Guide

<user>

Parent element: <security-role-mapping>

Child elements: None

cookie-domain Values: String

Default: No default

Specifies the desired domain for JSESSIONID session cookies.
This overrides any domain setting in applicable Set-Cookie
HTTP response headers. You can use this attribute to track a
single client or user over multiple Web sites. The setting must
start with a period ("."). For example:

<session-tracking cookie-domain=".us.oracle.com" />

In this case, the same session cookie is used and reused when the
user visits any site that matches the ".us.oracle.com" domain
pattern, such as webserv1.us.oracle.com or
webserv2.us.oracle.com.

The domain specification must consist of at least two elements,
such as ".us.oracle.com" or ".oracle.com". A setting of
".com", for example, is illegal.

Here are two scenarios in which cookie domain functionality is
useful:

■ You can use it to share session state between nodes of a Web
application running on different hosts.

■ In an OC4J standalone environment, you can use it for a
shared application, where shared="true" in a
<web-app> element in the Web site XML file. In such an
application, some requests go through a secure port and
some go through a nonsecure port, with each port denoting
a separate Web site. You would want the same cookie used
regardless of which port is being used. (In this scenario,
using cookie-domain is unnecessary, however, if you use
the default ports of 80 for HTTP and 443 for HTTPS. The
client would already recognize these as different ports of the
same Web site, and only a single cookie would be used.)

cookie-path Values: String

Default: No default

You can use this to optionally specify the URL path value that
applies to JSESSIONID session cookies. This specifies the subset
of URLs for which session cookies are valid within any
applicable domain (which depends on the cookie domain
setting). If specified, it overrides any path setting in applicable
Set-Cookie HTTP response headers. If not specified, and if
there is no path setting in the Set-Cookie headers, the default
cookie path is the Web application context path.

cookie-max-age Values: Non-negative integer (seconds)

Default: No default

This number is sent with JSESSIONID session cookies and
specifies a maximum interval (in seconds) for the browser to
save the cookie. By default, the cookie is kept in memory during
the browser session and discarded afterward.

Table B–23 (Cont.) <session-tracking> Attributes

Name Description

Elements and Attributes of orion-web.xml, global-web-application.xml

Web Module Configuration Files B-29

Required? Optional; zero or more

Use this subelement of <security-role-mapping> to specify a user to map to the
security role specified in the parent <security-role-mapping> element.

<virtual-directory>

Parent element: <orion-web-app>

Child elements: None

Required? Optional; zero or more

This element adds a virtual directory mapping for static content, working in a way
that is conceptually similar to symbolic links on a UNIX system, for example. The
virtual directory enables you to make the contents of the real document root directory
available to the application without physically residing in the Web application WAR
file. This would be useful, for example, to link an enterprise-wide error page into
multiple WAR files.

<web-app>

Parent element: <orion-web-app>

Child elements: According to its own schema definition in the servlet specification

Required? Optional; zero or one

This element is used as in the standard web.xml file. See "Standard web.xml
Configuration File" on page B-1 for an overview, or the servlet specification for
complete information. You can establish defaults for <web-app> settings in
global-web-application.xml. In web.xml, application-specific <web-app>
settings can override the defaults. In orion-web.xml, deployment-specific
<web-app> settings can override the settings in web.xml.

Table B–24 <user> Attributes

Name Description

name Values: String

Default: n/a (required)

Specifies the name of the user.

Table B–25 <virtual-directory> Attributes

Name Description

real-path Values: String

Default: n/a (required)

This is a real path, such as /usr/local/realpath in UNIX or
C:\testdir in Windows.

virtual-path Values: String

Default: n/a (required)

This is a virtual path to map to the specified real path.

Elements and Attributes of orion-web.xml, global-web-application.xml

B-30 Oracle Containers for J2EE Servlet Developer’s Guide

<web-app-class-loader>

Parent element: <orion-web-app>

Child elements: None

Required? Optional; zero or one

Use this element for class-loading instructions.

Table B–26 <web-app> Attributes

Name Description

id Values: ID

Default:

metadata-complete Values: Boolean

Default: true for servlet 2.4, false for servlet 2.5

Specifies whether this deployment descriptor and other related
deployment descriptors for this module (such as Web service
descriptors) are complete or whether the class files available to
this module and packaged with this application should be
examined for annotations that specify deployment information.
If metadata-complete is set to true, the OC4J servlet
container will ignore any annotations that might be present in
the class files of the application. If metadata-complete is not
specified or is set to false and if version is set to 2.5 or
web-xml points to the servlet 2.5 schema namespace, the servlet
container will examine the class files of the application for
annotations.

version Values: web-app-versionType

Default: n/a (required)

Table B–27 <web-app-class-loader> Attributes

Name Description

search-local-classes-first Values: Boolean

Default: false

Set this to "true" to search and load WAR file classes before
system classes. By default, system classes are searched and
loaded first.

include-war-manifest-class-path Values: Boolean

Default: true

Set this to "false" to not include the classpath specified in
the WAR file manifest Class-Path attribute when
searching and loading classes from the WAR file (regardless
of the search-local-classes-first setting).
Otherwise, the classplath from the WAR file manifest is
included.

Elements and Attributes of orion-web.xml, global-web-application.xml

Web Module Configuration Files B-31

Notes:

■ If both attributes are set to "true", the overall classpath is
constructed so that classes physically residing in the WAR file are
loaded prior to any classes from the WAR file manifest classpath.
So you can assume that in the event of any conflict, classes
physically residing in the WAR file will take precedence.

■ To comply with the servlet specification,
search-local-classes-first functionality cannot be used
in loading classes in java.* or javax.* packages.

■ If you want to use an XML parser or JDBC driver packaged with
your application in place of the Oracle XML parser or JDBC
driver, set the search-local-classes-first attribute to
"true". You also need to specify the default inherited Oracle
library in the <remove-inherited> tag in
orion-application.xml. For complete instructions, see Oracle
Containers for J2EE Developer’s Guide.

Elements and Attributes of orion-web.xml, global-web-application.xml

B-32 Oracle Containers for J2EE Servlet Developer’s Guide

Third Party Licenses C-1

C
Third Party Licenses

This appendix includes the Third Party License for all the third party products
included with Oracle Application Server.

ANTLR
This program contains third-party code from ANTLR. Under the terms of the Apache
license, Oracle is required to provide the following notices. Note, however, that the
Oracle program license that accompanied this product determines your right to use
the Oracle program, including the ANTLR software, and the terms contained in the
following notices do not change those rights.

The ANTLR License
Software License

We reserve no legal rights to the ANTLR--it is fully in the public domain. An
individual or company may do whatever they wish with source code distributed with
ANTLR or the code generated by ANTLR, including the incorporation of ANTLR, or its
output, into commerical software.
We encourage users to develop software with ANTLR. However, we do ask that credit
is given to us for developing ANTLR. By "credit", we mean that if you use ANTLR or
incorporate any source code into one of your programs (commercial product,
research project, or otherwise) that you acknowledge this fact somewhere in the
documentation, research report, etc... If you like ANTLR and have developed a nice
tool with the output, please mention that you developed it using ANTLR. In
addition, we ask that the headers remain intact in our source code. As long as
these guidelines are kept, we expect to continue enhancing this system and expect
to make other tools available as they are completed.

Apache
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.

The Apache license agreements apply to the following included Apache components:

■ Apache HTTP Server

■ Apache JServ

■ mod_jserv

Apache

C-2 Oracle Containers for J2EE Servlet Developer’s Guide

■ Regular Expression package version 1.3

■ Apache Expression Language packaged in commons-el.jar

■ mod_mm 1.1.3

■ Apache XML Signature and Apache XML Encryption v. 1.4 for Java and 1.0 for
C++

■ log4j 1.1.1

■ BCEL v. 5

■ XML-RPC v. 1.1

■ Batik v. 1.5.1

■ ANT 1.6.2 and 1.6.5

■ Crimson v. 1.1.3

■ ant.jar

■ wsif.jar

■ bcel.jar

■ soap.jar

■ Jakarta CLI 1.0

■ jakarta-regexp-1.3.jar

■ JSP Standard Tag Library 1.0.6 and 1.1

■ Struts 1.1

■ Velocity 1.3

■ svnClientAdapter

■ commons-logging.jar

■ wsif.jar

■ commons-el.jar

■ standard.jar

■ jstl.jar

The Apache Software License

License for Apache Web Server 1.3.29
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000-2002 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *

Apache

Third Party Licenses C-3

 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing
Applications,
 * University of Illinois, Urbana-Champaign.

License for Apache Web Server 2.0
Copyright (c) 1999-2004, The Apache Software Foundation
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at ://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Copyright (c) 1999-2004, The Apache Software Foundation
 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

Apache

C-4 Oracle Containers for J2EE Servlet Developer’s Guide

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

Apache

Third Party Licenses C-5

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions

Apache SOAP

C-6 Oracle Containers for J2EE Servlet Developer’s Guide

 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

Apache SOAP
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the Apache

Apache SOAP

Third Party Licenses C-7

software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Apache.

Apache SOAP License
Apache SOAP license 2.3.1

Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the

Apache SOAP

C-8 Oracle Containers for J2EE Servlet Developer’s Guide

 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution

Apache SOAP

Third Party Licenses C-9

 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

Apache SOAP

C-10 Oracle Containers for J2EE Servlet Developer’s Guide

Index-1

Index

Symbols
<access-mask> element (orion-web.xml), B-4
<classpath> element (orion-web.xml), B-5
<context-attribute> element (orion-web.xml), B-6
<context-param-mapping> element

(orion-web.xml), B-7
<ejb-ref-mapping> element (orion-web.xml), B-7
<env-entry-mapping> element (orion-web.xml), B-7
<expiration-setting> element (orion-web.xml), B-8
<group> attribute (orion-web.xml), B-8
<host-access> element (orion-web.xml), B-9
<ip-access> element (orion-web.xml), B-9
<jazn-web-app> element (orion-web.xml), B-10
<lookup-context> element (orion-web.xml), B-12
<mime-mappings> element (orion-web.xml), B-12
<ojsp-init> element (orion-web.xml), B-13
<orion-web-app> element (orion-web.xml), B-16
<request-tracker> element (orion-web.xml), B-22
<resource-env-ref-mapping> element

(orion-web.xml), B-23
<resource-ref-mapping> element

(orion-web.xml), B-23
<security-role-mapping> element

(orion-web.xml), B-24
<service-ref-mapping> element

(orion-web.xml), B-25
<servlet-chaining> element (orion-web.xml), B-25
<session-tracking> element (orion-web.xml), B-27
<user> element (orion-web.xml), B-28
<virtual-directory> element (orion-web.xml), B-29
<web-app> element (orion-web.xml), B-29
<web-app-class-loader> element

(orion-web.xml), B-30

A
access-mask element (orion-web.xml), B-4
administration

Application Server Control Console pages, A-3
Application Server Control Console Web Module

Administration, A-2
JSR-77 support, 2-1
MBeans administration in OC4J, A-10
overview for OC4J, 2-1
Web module configuration files, B-1

Web module MBeans, summary, A-11
annotations

EJB, 7-3
overview, 7-1
PersistenceContext(s), 7-6
PersistenceUnit(s), 7-5
PostConstruct, 7-5
PreDestroy, 7-5
Resource, 7-4
Resources, 7-4
RunAs, 7-7
WebServiceRef, 7-6, 7-7

Application Server Control Console
Configuration Properties Page, A-3
configuring Web modules, A-3
EJB Reference Mappings page, A-8
Environment Entry Mappings page, A-8
Filter Mappings page, A-6
introduced, 2-2
overview, A-1
Resource Reference Lookup Context page, A-9
Resource Reference Mappings page, A-7
Servlet Mappings page, A-5
viewing web.xml and orion-web.xml, A-5
Web Module Administration, A-2
Web Module Home page, summary, A-2
Web Module Performance, A-2
Web module top-level pages, A-2

Application Server Control Console--Web Module
Home page, getting to, A-1

auto-encoding, session (not supported), 3-4, B-27

C
classpath element (orion-web.xml), B-5
classpath setup for servlet.jar, 6-7
co-location of servlet and EJB, 8-9
configuration

Application Server Control Console pages, A-3
cookies, 3-11
session tracking, 3-3
Web module configuration files, B-1
Web module MBeans, summary, A-11

container, servlet, 1-8
context path (URL component), 2-5
context root, 2-5

Index-2

context-attribute element (orion-web.xml), B-6
context-param-mapping element

(orion-web.xml), B-7
cookies

configuration, 3-11
Cookie methods, summary, 3-11
enabling or disabling, 3-3
OC4J use for session tracking, 3-3
retrieving, displaying, adding, 3-12
sample servlet, 3-13

D
data sources

configuration, 8-2
JNDI lookup, database connection, 8-3

default application in OC4J, A-11
default Web application in OC4J, A-11
demo location, OTN, 1-1
deployment

deployment plan, 2-2
deployment plan editor, 2-2
JSR-88 support, 2-2

destroy() servlet method, 1-4
dispatching to another servlet (include or

forward), 6-12
DMS (Dynamic Monitoring Service), 9-5
doDelete() servlet method, 1-4
doGet() servlet method, 1-4
doPost() servlet method, 1-4
doPut() servlet method, 1-4
Dynamic Monitoring Service (DMS), 9-5

E
EJB annotation, 7-3
ejb-ref-mapping element (orion-web.xml), B-7
EJBs from servlets

Application Server Control Console EJB Reference
Mappings page, A-8

co-location, 8-9
local interfaces vs. remote interfaces, 8-10
lookup categories, 8-9
OC4J and OracleAS support, 8-9
ORMI, IIOP usage, 8-10
remote flag for remote lookup, 8-11
scenarios, 8-9
why use, 8-9

Enterprise JavaBeans--see EJBs
env-entry-mapping element (orion-web.xml), B-7
event listeners--see listeners
expiration-setting element (orion-web.xml), B-8

F
Feiner, Amy, Hi, 2-16
Filter interface, 4-3
FilterChain interface, 4-4
FilterConfig interface, 4-4
filters

actions, typical, 4-3

Application Server Control Console Filter
Mappings page, A-6

configuration steps, 4-6
example, response filter, 4-11
example, simple filter, 4-7
filter chain construction, 4-7
implementation steps, 4-5
include/forward filtering, 4-9
interfaces, standard, 4-3
introduction, 6-16
invocation by container, 4-1
request/response wrapping, 4-10

forms in servlets, 6-7
forwards

basics, forwarding to another servlet, 6-13
example, 6-14
filtering forwarded servlet, 4-9
implementation steps, 6-14
why use, 6-13

G
GET, HTTP request, 6-1
getServletConfig() servlet method, 1-4
getServletInfo() servlet method, 1-4
global-web-application.xml file

element descriptions, B-4
element hierarchy, B-3
overview, B-2
relationship to web.xml, orion-web.xml, B-3

group attribute (orion-web.xml), B-8

H
host (URL component), 2-4
host-access element (orion-web.xml), B-9
HTML forms in servlets, 6-7
HttpServlet class

overview of methods, 1-4
when to override methods, 6-2

HttpServletRequest interface, 1-5
HttpServletResponse interface, 1-5
HttpSession methods, 3-5
HttpSessionActivationListener interface, 5-4
HttpSessionAttributeListener interface, 5-4
HttpSessionBindingEvent class, 5-4
HttpSessionBindingListener interface, 5-5
HttpSessionEvent class, 5-3
HttpSessionListener interface, 5-3

I
includes

basics, including another servlet, 6-13
example, 6-14
filtering included servlet, 4-9
implementation steps, 6-14
why use, 6-13

init() servlet method, 1-4
input from user, HTML forms, 6-7
invoking a servlet

Index-3

by class name (OC4J-specific), 2-11
in an Oracle Application Server

environment, 2-12
in standalone OC4J, 2-10
summary of URL components, 2-3

ip-access element (orion-web.xml), B-9

J
jazn-web-app element (orion-web.xml), B-10
JDBC driver, using packaged, B-31
JDBC from servlets

code implementation, 8-3
data source configuration, 8-2
example servlet, 8-4
why use, 8-1

JNDI
initial context factory, 8-10
lookup of datasource, 8-3
name and location for data source, 8-2

JSP parameters
enable-jsp-dispatcher-shortcut, B-18
jsp-cache-directory, B-19
jsp-cache-tlds, B-19
jsp-print-null, B-19
jsp-taglib-locations, B-20
jsp-timeout, B-20
simple-jsp-mapping, B-21

JSR-77 support, 2-1
JSR-88 support, 2-2

L
lifecycle, servlet, 1-3
listeners

code to implement, 5-6
configuration, 5-7
example, 5-8
introduction, when to use, 6-17
overview, categories, 5-1
request attribute interface, 5-6
request lifecycle interface, 5-5
servlet context attribute interface, 5-3
servlet context lifecycle interface, 5-2
session attribute interface, 5-4
session binding interface, 5-5
session lifecycle interface, 5-3
session migration interface, 5-4

load-on-startup, OC4J, 2-16
lookup-context element (orion-web.xml), B-12

M
managed OC4J, 2-2
MBeans

administration in OC4J, A-10
definition, 2-1
MBean browser, 2-2
Web module MBeans, summary, A-11

metrics, servlets, A-2
mime-mappings element (orion-web.xml), B-12

O
ojsp-init element (orion-web.xml), B-13
Oracle Application Server environment, 2-2
OracleAS JAAS Provider user context, B-10
orion-web-app element (orion-web.xml), B-16
orion-web.xml file

element descriptions, B-4
element hierarchy, B-3
overview, B-3
relationship to web.xml,

global-web-application.xml, B-3
viewing through Application Server Control

Console, A-5

P
path setup, 6-7
performance, servlets, 9-5, A-2
PersistenceContext(s) annotation, 7-6
PersistenceUnit(s) annotation, 7-5
persistent session data, 3-2
port (URL component), 2-4
POST, HTTP request, 6-1, 6-10
PostConstruct annotation, 7-5
PreDestroy annotation, 7-5
preloading, servlets in OC4J, 2-16
protocol (URL component), 2-4

R
redirect (to an alternative URL), 1-7
remote flag, for remote EJB lookup, 8-11
request dispatcher, include/forward to another

servlet, 6-13
requests

example, form and request parameters, 6-8
example, retrieving request information, 6-11
filtering/wrapping request, 4-10
information retrieval, request, 6-11
listener interface, attribute changes, 5-6
listener interface, lifecycle changes, 5-5
request objects, 1-5
request parameters for user input from forms, 6-7

request-tracker element (orion-web.xml), B-22
Resource annotation, 7-4
resource-env-ref-mapping element

(orion-web.xml), B-23
resource-ref-mapping element (orion-web.xml), B-23
Resources annotation, 7-4
responses

example, response filter, 4-11
filtering/wrapping response, 4-10
response objects, 1-5

RunAs annotation, 7-7

S
sample servlets

cookie servlet, 3-13
demo location, OTN, 1-1

Index-4

filter response, 4-11
filter, simple, 4-7
HTML form and request parameters, 6-8
JDBC query, 8-4
retrieving request info, 6-11
security, using POST, 6-10
servlet include, 6-14
session lifecycle event listener, 5-8
session servlet, 3-7
simple example, 6-5

security
POST method for URL security, 6-10
session tracking through secured connections, 3-4

security-role-mapping element
(orion-web.xml), B-24

service() servlet method, 1-3, 1-4
service-ref-mapping element (orion-web.xml), B-25
servlet configuration object, 1-10
servlet container, 1-8
servlet contexts

basics, 1-10
listener interface, attribute changes, 5-3
listener interface, lifecycle changes, 5-2
methods, 1-11
obtaining, 1-11

servlet filters--see filters
Servlet interface, 1-4
servlet path (URL component), 2-5
servlet-chaining element (orion-web.xml), B-25
ServletContextAttributeEvent class, 5-3
ServletContextAttributeListener interface, 5-3
ServletContextEvent class, 5-2
ServletContextListener interface, 5-2
ServletRequestAttributeEvent class, 5-6
ServletRequestAttributeListener interface, 5-6
ServletRequestEvent class, 5-5
ServletRequestListener interface, 5-5
sessions

attributes, adding and retrieving, 3-7
canceling explicitly, 3-16
configuring session tracking, 3-3
cookies versus session attributes, 3-2
cookies, enabling or disabling, 3-3
cookies, general use in servlets, 3-10
cookies, use by OC4J for session tracking, 3-3
HttpSession methods, summary, 3-5
introduction, when to use, 1-12
listener interface, attribute changes, 5-4
listener interface, lifecycle changes, 5-3
listener interface, migration changes, 5-4
listener interface, object binding changes, 5-5
persistent data, 3-2
sample servlet, 3-7
session IDs, overview, 3-2
session objects, overview, 3-1
session tracking in OC4J, 3-2
session tracking through secured connections, 3-4
timeout, specifying, 3-15
URL rewriting, OC4J use for session tracking, 3-4

session-tracking element (orion-web.xml), B-27

shared applications between Web site
(standalone), 3-5

single-thread model, servlets, 9-3
standalone environment, 2-2

T
thread models, introduction, 1-12
timeout of session, specifying, 3-15
tips

Date constructor for milliseconds since
1/1/1970, 3-6

no need to close response writer/stream, 6-4
setting up path, classpath, 6-7
using POST for URL security, 6-10

U
unmanaged OC4J, 2-2
URL components, summary, 2-3
URL rewriting, 3-4
user element (orion-web.xml), B-28

V
virtual-directory element (orion-web.xml), B-29

W
Web module vs. Web application, 1-2
web-app element (orion-web.xml), B-29
web-app-class-loader element (orion-web.xml), B-30
WebServiceRef annotation, 7-6, 7-7
web.xml file

overview, B-1
relationship to orion-web.xml,

global-web-application.xml, B-3
viewing through Application Server Control

Console, A-5

X
XML configuration files for Web modules, B-1
XML parser. using packaged, B-31

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	1 Summary of What to Know About Servlets
	Summary of Servlet and J2EE Technology
	The Essence of Servlets
	Why Use Servlets?
	Servlet Lifecycle
	JSP Pages and Other J2EE Component Types

	Key Components and APIs of the Servlet Model
	Key Methods of the Servlet Interface
	Servlet Communication: Request and Response Objects
	Key Methods of the HttpServletRequest Interface
	Key Methods of the HttpServletResponse Interface

	Servlet Execution in the Servlet Container
	Servlet Configuration Objects
	Obtaining a Servlet Configuration Object
	Key Servlet Configuration Methods

	Servlet Contexts: the Application Container
	Servlet Context Basics
	Obtaining a Servlet Context
	Key Servlet Context Methods

	What are Servlet Sessions (User Sessions) Used For?
	Servlet Thread Models

	Servlet Feature Table

	2 Deploying and Invoking Servlets
	Initial Considerations and OC4J Scenarios
	A Brief Overview of OC4J Administration
	OC4J in a Standalone Versus Oracle Application Server Environment
	OC4J and Oracle Application Server Administration Tools

	Summary of URL Components
	Deploying a Web Application to OC4J
	Application Structure
	Summary of General Steps to Deploy a WAR File
	Summary of General Steps to Deploy an EAR File

	Invoking a Servlet in OC4J
	Invoking a Servlet in a Standalone OC4J Environment
	Invoking a Servlet by Class Name During OC4J Development
	Invoking a Servlet in an Oracle Application Server Environment

	Deploying and Invoking the Simple Servlet Example
	Deploy the Servlet Example as a WAR File
	Create the web.xml File
	Create the WAR File
	Deploy the WAR File and Bind the Web Application

	Deploy the Servlet Example as an EAR File
	Create the web.xml File and WAR file.
	Create the application.xml File
	Create the EAR File
	Deploy the EAR File and Bind the Contained Web Application

	Invoke the Servlet Example

	Preloading Servlets

	3 Understanding and Using Servlet Sessions
	Overview of Session Tracking
	Session Objects
	Session IDs
	Cookies and Persistent Session Data
	When to Use Cookies Versus Session Attributes

	Using Session Tracking in OC4J
	Configuring Session Tracking and Enabling or Disabling Cookies in OC4J
	How OC4J Can Use Cookies for Session Tracking
	Using URL Rewriting for Session Tracking
	Session Tracking Through Secured Connections

	Using a Session Object in Your Servlet
	Summary of HttpSession Methods
	Adding and Retrieving Session Attributes
	Session Object Example

	Using Cookies in Your Servlet
	Configuring Cookies
	Summary of Cookie Methods
	Retrieving, Displaying, and Adding Cookies
	Cookie Example

	Canceling a Session
	Using a Timeout to Cancel a Session
	Explicitly Canceling a Session

	4 Understanding and Using Servlet Filters
	Overview of How Filters Work
	How the Servlet Container Invokes Filters
	Typical Filter Actions

	Standard Filter Interfaces
	Methods of the Filter Interface
	Method of the FilterChain Interface
	Methods of the FilterConfig Interface

	Implementing and Configuring Filters
	Implement the Filter Code
	Configure the Filter
	Construction of the Filter Chain

	Simple Filter Example
	Write the Simple Filter Code
	Write the Target JSP Page
	Configure the Simple Filter
	Package the Simple Filter Example
	Invoke the Simple Filter Example

	Filtering Forward or Include Targets
	The web.xml <dispatcher> Element
	Configuring Filters for Forward or Include Targets

	Using a Filter to Wrap and Alter the Request or Response
	Response Filter Example
	Write the Custom Output Stream Code
	Write the Response Wrapper Code
	Write the Base Filter Code
	Write the Response Filter Code
	Write the Target HTML Page
	Configure the Response Filter
	Package the Response Filter Example
	Invoke the Response Filter Example

	Form Authentication Filter

	5 Understanding and Using Event Listeners
	Overview of How Event Listeners Work
	Event Listener Interfaces
	ServletContextListener Methods, ServletContextEvent Class
	ServletContextAttributeListener Methods, ServletContextAttributeEvent Class
	HttpSessionListener Methods, HttpSessionEvent Class
	HttpSessionAttributeListener Methods, HttpSessionBindingEvent Class
	HttpSessionActivationListener Methods
	HttpSessionBindingListener Methods
	ServletRequestListener Methods, ServletRequestEvent Class
	ServletRequestAttributeListener Methods, ServletRequestAttributeEvent Class

	Implementing and Configuring Event Listeners
	Implement the Listener Code
	Configure the Listener
	Physical File Required for Welcome File

	Session Lifecycle Listener Example
	Write the JSP Welcome Page
	Write the Session Creation Servlet
	Write the Session Invalidation Servlet
	Write the Session Lifecycle Listener Code
	Configure the Session Lifecycle Listener Example
	Package the Session Lifecycle Listener Example
	Invoke the Session Lifecycle Listener Example

	6 Developing Servlets
	Writing a Basic Servlet
	When to Implement Methods of the Servlet Interface
	When to Override the init() Method
	When to Override the doGet() or doPost() Method
	When to Override the doPut() Method
	When to Override the doDelete() Method
	When to Override the getServletInfo() Method
	When to Override the destroy() Method

	Setting Up the Response
	Step-by-Step Through a Simple Servlet

	Simple Servlet Example
	Write the Sample Code
	Compile the Sample Code

	Using HTML Forms and Request Parameters
	Using an HTML Form for User Input
	Displaying Request Parameter Data Specified in User Input
	Complete Example Using a Form and Request Parameters
	Using the POST Method for URL Security
	Calling Information Methods of the Request Object
	Complete Example Retrieving Request Information

	Dispatching to Other Servlets Through Includes and Forwards
	Basics of Includes and Forwards
	Why Use Includes and Forwards?
	Step-by-Step Through the Include or Forward Process
	Complete Example of a Servlet Include

	When to Use Filters for Pre-Processing and Post-Processing
	When to Use Event Listeners for Servlet Notification
	How to Display the Stack Trace
	Migrating an Application from Apache Tomcat to OC4J
	Pointers for Migrating from Tomcat to OC4J
	Introduction
	Migration Approach for Servlets
	Migrating a Simple Servlet
	Migrating a WAR File
	Migrating an Exploded Web Application
	Tips From the Field
	Make Sure to Use the Initial Slash "/" in Path Names
	JNDI Context Factory Summary
	Xerces and Xalan Require Additional Steps

	JNDI Lookups in Tomcat and OC4J
	Tomcat-to-OC4J JSP Compilation Issues
	Tomcat-to-OC4J Clustering Issues
	Basic Configuration in Tomcat and OC4J
	Network Considerations in Tomcat and OC4J
	State Persistence Mechanisms in Tomcat and OC4J
	Replication Algorithms in Tomcat and OC4J
	State Replication Transmission
	Application Design in Tomcat and OC4
	Load Balancing in Tomcat and OC4J

	7 7 Using Annotations for Services and Resource References
	Overview of How Annotations Work
	Annotations and Injection
	Annotations in OC4J
	EJB Annotation
	Resource Annotation
	Resources Annotation
	PostConstruct Annotation
	PreDestroy Annotation
	PersistenceUnit(s) Annotation
	PersistenceContext(s) Annotation
	WebServiceRef Annotation
	DeclaresRoles Annotation
	RunAs Annotation

	Annotation Rules and Guidelines
	How Annotations Affect Performance with Servlet Version 2.5
	Annotation Example

	8 Using JDBC or Enterprise JavaBeans
	Using JDBC in Servlets
	Why Use JDBC?
	Configuring a Data Source and Resource Reference
	Configure the Data Source
	Configure the Resource Reference

	Implementing JDBC Calls
	Database Query Servlet Example
	Configure the Data Source for the Query Servlet
	Write the HTML Welcome Page
	Write the Query Servlet
	Configure the Servlet and JNDI Resource Reference
	Package the Query Example
	Invoke the Query Example

	TopLink Servlet Examples

	Overview of Enterprise JavaBeans
	Why Use Enterprise JavaBeans?
	EJB Support in OC4J and Oracle Application Server
	Servlet-EJB Lookup Scenarios
	EJB Local Interfaces Versus Remote Interfaces
	Using the Remote Flag for Remote Lookup within the Same Application

	9 Best Practices and Performance
	Best Practices for Sessions
	Best Practices for Security
	Considerations for Thread Models
	Custom Thread Pool

	Best Practices for Performance
	Monitoring Performance
	Oracle Application Server Dynamic Monitoring Service

	A Web Module Administration
	Application Server Control Console Top-Level Web Module Pages
	How to Get to a Web Module Home Page
	Summary of Top-Level Web Module Pages

	Application Server Control Web Module Configuration Pages
	Configuration Properties Page
	Deployment Descriptor Viewing Pages
	Servlet Mappings Page
	Filter Mappings Page
	Resource Reference Mappings Page
	EJB Reference Mappings Page
	Environment Entry Mappings Page
	Resource Reference Lookup Context Page

	Summary of Web Module MBeans and Administration
	General Overview of OC4J MBean Administration
	Summary of OC4J Web Module MBeans

	B Web Module Configuration Files
	Overview of Web Application Configuration Files
	Standard web.xml Configuration File
	Oracle global-web-application.xml Configuration File
	Oracle orion-web.xml Configuration File
	Summary of Relationship Between Web Application Configuration Files

	Hierarchy of orion-web.xml and global-web-application.xml
	Elements and Attributes of orion-web.xml, global-web-application.xml
	<access-mask>
	<classpath>
	<context-attribute>
	<context-param-mapping>
	<ejb-ref-mapping>
	<env-entry-mapping>
	<expiration-setting>
	<group>
	<host-access>
	<ip-access>
	<jazn-web-app>
	<lookup-context>
	<mime-mappings>
	<ojsp-init>
	<orion-web-app>
	<request-tracker>
	<resource-env-ref-mapping>
	<resource-ref-mapping>
	<security-role-mapping>
	<service-ref-mapping>
	<servlet-chaining>
	<session-tracker>
	<session-tracking>
	<user>
	<virtual-directory>
	<web-app>
	<web-app-class-loader>

	C Third Party Licenses
	ANTLR
	The ANTLR License

	Apache
	The Apache Software License

	Apache SOAP
	Apache SOAP License

	Index
	Symbols
	A
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X

