
Oracle® XML Developer's Kit
Programmer's Guide

10g Release 3 (10.1.3)

B28236-01

February 2006

Oracle XML Developer's Kit Programmer's Guide, 10g Release 3 (10.1.3)

B28236-01

Copyright © 2003, 2006, Oracle. All rights reserved.

Primary Author: Jack Melnick

Contributing Author: Mark Bauer, Shelley Higgins, Steve Muench, Mark Scardina, Jinyu Wang

Contributor: Lance Ashdown, Sandeepan Banerjee, Sivasankaran Chandrasekar, Dan Chiba, Steve Ding,
Stanley Guan, Bill Han, K. Karun, Murali Krishnaprasad, Dmitry Lenkov, Roza Leyderman, Bruce
Lowenthal, Ian Macky, Anjana Manian, Meghna Mehta, Valarie Moore, Ravi Murthy, Anguel Novoselsky,
Tomas Saulys, Helen Slattery, Asha Tarachandani, Tim Yu, Jim Warner, Simon Wong, Kongyi Zhou

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments .. xv

Preface .. xvii

Audience.. xvii
Documentation Accessibility .. xvii
Structure ... xviii
Related Documents ... xix
Conventions ... xxi

What's New in Oracle XML Developer's Kit? ... xxv

Oracle Database 10g Release 1 (10.1) New Features in Oracle XML Developer's Kit xxv

1 Overview of XML Developer's Kit Components

Introducing Oracle XML Developer's Kit ... 1-1
Overview of Oracle XDK Components... 1-2

XDK Functionality Applied to XML Documents... 1-4
XML Parsers .. 1-4
XSL Transformation (XSLT) Processors.. 1-5
JAXB and C++ Class Generators.. 1-5
XML Schema Processor ... 1-6
XDK JavaBeans ... 1-6
Oracle XML SQL Utility (XSU) for Java.. 1-7
XSQL Pages Publishing Framework ... 1-7
TransX Utility.. 1-7
Soap Services... 1-8

Using XDK-supported Languages to Generate XML Documents .. 1-8
Using XSU for Java to Generate XML Documents.. 1-8
Using Oracle XDK Java Components to Generate XML Documents ... 1-9
Using Oracle XDK C Components to Generate XML Documents... 1-10
Using Oracle XDK C++ Components to Generate XML Documents...................................... 1-11

XDK and Application Development Tools .. 1-12
Browsers That Support XML... 1-13
Oracle XML Gateway ... 1-14
Oracle Data Provider for .NET.. 1-14
JDeveloper.. 1-15

iv

User Interface XML (UIX) .. 1-16
Recommended Books and Web Sites About XML ... 1-16

Using Oracle XML-Enabled Technology .. 1-17
Information for Using the XDK... 1-17
Information About Previous Oracle Releases ... 1-18
XML Standards That Oracle Supports ... 1-19
Maximum XML File Sizes.. 1-20

2 Getting Started with XDK Java Components

XDK Java Components Specifications ... 2-1
DOM Specifications ... 2-2
XSL Transformations Specifications.. 2-2

Installing XDK Java Components ... 2-3
XDK Java Components Directory Structure ... 2-4
XDK Java Components Environment Settings... 2-5

UNIX Environment Settings for XDK Java Components... 2-5
Windows Environment Settings for XDK Java Components .. 2-5

XDK Java Components Globalization Support ... 2-6
XDK Java Components Dependencies... 2-6
Verifying the XDK Java Components Version.. 2-7

3 XML Parser for Java

XML Parser for Java Overview .. 3-1
Namespace Support... 3-3
XML Parser for Java Validation Modes .. 3-3
Using DTDs with the XML Parser for Java .. 3-5

About DOM and SAX APIs.. 3-7
DOM: Tree-Based API ... 3-7
SAX: Event-Based API... 3-8
Guidelines for Using DOM and SAX APIs... 3-8

About XML Compressor ... 3-9
XML Serialization and Compression ... 3-10

Running the Sample Applications for XML Parser for Java... 3-10
Using XML Parser for Java: DOMParser Class.. 3-12

Without DTD Input... 3-12
With a DTD Input ... 3-12
Comments on Example 1: DOMSample.java .. 3-13
XML Parser for Java Example 1: DOMSample.java ... 3-14

Using XML Parser for Java: DOMNamespace Class .. 3-16
XML Parser for Java Example 2: Parsing a URL — DOMNamespace.java............................ 3-16

 Using XML Parser for Java: SAXParser Class ... 3-17
XML Parser for Java Example 3: Using the Parser and SAX API (SAXSample.java)............ 3-19
XML Parser for Java Example 4: (SAXNamespace.java) ... 3-22

Using the XML Parser for Java.. 3-25
Using DOM and SAX APIs for Java ... 3-25
Using Character Sets with the XML Parser for Java .. 3-28
General Questions About XML Parser for Java.. 3-31

v

Using JAXP ... 3-36
oraxml: XML Parser for Java Command-line ... 3-37

4 XSLT Processor for Java

XSLT Processor for Java Overview ... 4-1
Using XSLT Processor for Java... 4-1

XSLT Processor for Java Example.. 4-3
XSLT Command-Line Interface: oraxsl .. 4-5
XML Extension Functions for XSLT Processing ... 4-6

XSLT Processor for Java Extension Functions and Namespaces .. 4-6
Static Versus Non-Static Methods ... 4-7
Constructor Extension Function .. 4-7
Return Value Extension Function .. 4-7
Datatypes Extension Function.. 4-8
XSLT Processor for Java Built-In Extensions: ora:node-set and ora:output 4-8

Hints for Using the XSLT Processor for Java and XSL ... 4-11
Merging Two XML Documents .. 4-11
Extracting Embedded XML Using Only XSLT ... 4-13
Support of Output Method "html" in the XSL Parser .. 4-13
Creating an HTML Input Form... 4-14
Correct XSL Namespace URI... 4-14
XSL Processor Produces Multiple Outputs ... 4-14
Keeping White Spaces in Your Output .. 4-14
XDK Utilities That Translate Data from Other Formats to XML ... 4-14
Multiple Threads Using a Single XSLProcessor and Stylesheet... 4-14
Using Document Clones in Multiple Threads .. 4-15
Disabling Output Escaping Is Supported.. 4-15

5 XML Schema Processor for Java

What Is XML Schema?... 5-1
What Are DTDs?... 5-1

DTD Limitations... 5-1
Comparison of XML Schema Features to DTD Features .. 5-2
XML Schema Processor for Java Features .. 5-3

Supported Character Sets.. 5-4
Requirements to Run XML Schema Processor for Java.. 5-4

XML Schema Processor for Java Usage .. 5-4
Using the XML Schema API ... 5-5

XML Schema Processor for Java Sample Programs ... 5-6

6 Using JAXB Class Generator

What Is JAXB? ... 6-1
Replacing the XML Class Generator with JAXB Class Generator.. 6-1
Unmarshalling, Marshalling, and Validating Using JAXB .. 6-2
Using JAXB Class Generator.. 6-2
Features Not Supported in JAXB... 6-2

vi

JAXB Class Generator Command-Line Interface... 6-3
JAXB Compared with JAXP.. 6-3

7 XML SQL Utility (XSU)

What Is XML SQL Utility (XSU)?.. 7-1
Generating XML from the Database.. 7-2
Storing XML in the Database.. 7-2
Accessing XSU Functionality.. 7-2
XSU Features... 7-2

XSU Dependencies and Installation... 7-3
Dependencies of XSU .. 7-3
Installing XSU ... 7-3

Where XSU can be Installed... 7-4
XML SQL Utility in the Database .. 7-4
XML SQL Utility in the Middle Tier.. 7-4
XML SQL Utility in a Web Server.. 7-5

SQL-to-XML and XML-to-SQL Mapping Primer... 7-6
Default SQL-to-XML Mapping .. 7-6
Customizing the Generated XML: Mapping SQL to XML... 7-8
Default XML-to-SQL Mapping .. 7-9

How XML SQL Utility Works ... 7-10
Selecting with XSU.. 7-10
Queries That XSU Cannot Handle.. 7-10
Inserting with XSU.. 7-10
Updating with XSU... 7-11
Deleting with XSU... 7-12

Using the XSU Command-Line Front End OracleXML ... 7-12
Generating XML Using the XSU Command Line ... 7-12
XSU's OracleXML getXML Options ... 7-13
Inserting XML Using XSU's Command Line (putXML).. 7-14
XSU OracleXML putXML Options ... 7-14

XSU Java API.. 7-15
Generating XML with XSU's OracleXMLQuery ... 7-15

Generating XML from SQL Queries Using XSU .. 7-16
XSU Generating XML Example 1: Generating a String from Table employees (Java) 7-16
XSU Generating XML Example 2: Generating DOM from Table employees (Java) 7-19

Paginating Results: skipRows and maxRows.. 7-20
Keeping the Object Open for the Duration of the User's Session... 7-20
When the Number of Rows or Columns in a Row Is Too Large.. 7-20
keepObjectOpen Function ... 7-20
XSU Generating XML Example 3: Paginating Results: (Java) .. 7-21

Generating XML from ResultSet Objects... 7-21
XSU Generating XML Example 4: Generating XML from JDBC ResultSets (Java) 7-21
XSU Generating XML Example 5: Generating XML from Procedure Return Values........... 7-23

Raising NoRowsException .. 7-24
XSU Generating XML Example 6: No Rows Exception (Java) ... 7-24

Storing XML Back in the Database Using XSU OracleXMLSave .. 7-25

vii

Insert Processing Using XSU (Java API) ... 7-26
XSU Inserting XML Example 7: Inserting XML Values into All Columns (Java).................. 7-26
XSU Inserting XML Example 8: Inserting XML Values into Columns (Java) 7-27

Update Processing Using XSU (Java API) .. 7-28
XSU Updating XML Example 9: Updating a Table Using the keyColumns (Java)............... 7-28
XSU Updating XML Example 10: Updating a Specified List of Columns (Java)................... 7-29

Delete Processing Using XSU (Java API).. 7-30
XSU Deleting XML Example 11: Deleting Operations Per Row (Java) 7-30
XSU Deleting XML Example 12: Deleting Specified Key Values (Java).................................. 7-31

Advanced XSU Usage Techniques ... 7-31
XSU Exception Handling in Java .. 7-31
Hints for Using XML SQL Utility (XSU).. 7-32

8 XSQL Pages Publishing Framework

XSQL Pages Publishing Framework Overview ... 8-1
What Can I Do with Oracle XSQL Pages? .. 8-2
Where Can I Obtain Oracle XSQL Pages? .. 8-3
What Is Needed to Run XSQL Pages?... 8-3

Security Considerations for XSQL Pages .. 8-3
Install Your XSQLConfig.xml File in a Safe Directory.. 8-3
Disable Default Client Stylesheet Overrides .. 8-4
Be Alert for the Use of Substitution Parameters.. 8-4

What's New in XSQL Pages Release 10.1... 8-4
Overview of Basic XSQL Pages Features ... 8-5

Producing XML Datagrams from SQL Queries... 8-6
Transforming XML Datagrams into an Alternative XML Format.. 8-8
Transforming XML Datagrams into HTML for Display ... 8-10

Setting Up and Using XSQL Pages in Your Environment... 8-12
Using XSQL Pages with Oracle JDeveloper .. 8-12
Setting the CLASSPATH Correctly in Your Production Environment................................... 8-13
Setting Up the Connection Definitions .. 8-14
Using the XSQL Command-Line Utility.. 8-15

Overview of All XSQL Pages Capabilities ... 8-15
Using All of the Core Built-in Actions ... 8-15
Working with Array-Valued Parameters .. 8-31
Setting Array-Valued Page or Session Parameters from Strings ... 8-32
Binding Array-Valued Parameters in SQL and PL/SQL Statements...................................... 8-33
Supplying Multi-Valued Parameters on the Command Line... 8-35
Supplying Multi-Valued Parameters Programmatically with XSQLRequest........................ 8-36
Conditionally Executing Actions or Including Content with <xsql:if-param> 8-36
Optionally Setting an Error Parameter on Any Built-in Action ... 8-37
Aggregating Information Using <xsql:include-xsql>.. 8-38
Including XMLType Query Results ... 8-39
Handling Posted Information ... 8-41
Using Custom XSQL Action Handlers... 8-46

Description of XSQL Servlet Examples .. 8-47
Setting Up the Demo Data ... 8-49

viii

Advanced XSQL Pages Topics .. 8-50
Using a Custom XSQL Configuration File Name... 8-50
Understanding Client Stylesheet-Override Options.. 8-51
Controlling How Stylesheets Are Processed... 8-51
Using XSQL Configuration File to Tune Your Environment ... 8-54
Using the FOP Serializer to Produce PDF Output ... 8-61
Using XSQL Page Processor Programmatically ... 8-63
Writing Custom XSQL Action Handlers ... 8-64
Using Multi-Valued Parameters in Custom XSQL Actions.. 8-69
Writing Custom XSQL Serializers .. 8-69
Using a Custom XSQL Connection Manager for JDBC Datasources 8-72
Writing Custom XSQL Connection Managers.. 8-73
Providing a Custom XSQLErrorHandler Implementation ... 8-73
Providing a Custom XSQL Logger Implementation.. 8-74
Formatting XSQL Action Handler Errors.. 8-75

XSQL Servlet Limitations and Hints ... 8-76
HTTP Parameters with Multibyte Names... 8-76
CURSOR() Function in SQL Statements .. 8-76
Hints for Using the XSQL Servlet ... 8-76

9 Pipeline Definition Language for Java

Using Pipeline Definition Language.. 9-1
Example of a Pipeline Definition Language Application .. 9-2
The Command-line Pipeline Tool orapipe .. 9-5

10 XDK JavaBeans

Accessing Oracle XDK JavaBeans .. 10-1
Database Connectivity.. 10-1
XDK JavaBeans Overview ... 10-2

DOMBuilder JavaBean... 10-3
Use for Asynchronous Parsing in the Background.. 10-3
DOMBuilder JavaBean Usage ... 10-3

XSLTransformer JavaBean ... 10-4
XSLTransformer JavaBean: Regenerating HTML Only When Data Changes 10-5
How to Use XSLTransformer JavaBean... 10-5

DBAccess JavaBean... 10-6
DBAcess JavaBean Usage... 10-7

XMLDiff JavaBean .. 10-7
XMLCompress JavaBean.. 10-8
XMLDBAccess JavaBean.. 10-8
XSDValidator JavaBean.. 10-8
JavaBean Examples ... 10-8

Installing the JavaBean Examples... 10-9
XMLDiffSample.java... 10-10
XSDValidatorSample.java.. 10-10

ix

11 Using XDK and SOAP

What Is SOAP?... 11-1
What Are UDDI and WSDL? .. 11-2
What Is Oracle SOAP?.. 11-2

How Does Oracle SOAP Work?.. 11-2
Oracle SOAP and IDAP.. 11-3
What Is a SOAP Client?.. 11-4
SOAP Client API ... 11-4
What Is a SOAP Server? ... 11-4
Oracle SOAP Security Features... 11-5
SOAP Transports... 11-5
Administrative Clients ... 11-5
SOAP Request Handler .. 11-5
SOAP Provider Interface and Providers.. 11-5
Advantages of XML Over EDI .. 11-6

SOAP Example... 11-6
XML Features Used in the SOAP Example ... 11-7
Prerequisite Software for the SOAP Example... 11-7
How Is the SOAP Example Implemented? ... 11-7

12 TransX Utility

Overview of the TransX Utility... 12-1
Primary TransX Utility Features ... 12-1

Installing TransX Utility .. 12-3
Dependencies of TransX... 12-3
Installing TransX Using the Oracle Installer ... 12-3
Installing TransX Downloaded from OTN.. 12-4

TransX Utility Command-Line Syntax ... 12-4
TransX Utility Command-Line Examples ... 12-4

Sample Code for TransX Utility.. 12-5

13 Getting Started with XDK C Components

Specifications of XDK C/C++ Components ... 13-1
What Are the XDK C Components... 13-1
Installing the C Components of XDK... 13-2
Setting the UNIX Environment ... 13-2
Command Line Environment Setup .. 13-3
Setting the Windows Environment .. 13-4

Globalization Support for the C XDK Components .. 13-11

14 XML Parser for C

What Is the Unified C API for XDK and Oracle XML DB?... 14-1
Using DOM for XDK .. 14-2

Loading an XML Document with the C API... 14-2
Data Encoding of XML Documents for the C API ... 14-2

x

NULL-Terminated and Length-Encoded C API Functions .. 14-3
Error Handling .. 14-4
Installing the C API... 14-4

Using OCI and the C API... 14-4
XML Context.. 14-4
Creating XMLType Instances on the Client .. 14-5
XML Data on the Server ... 14-5
XMLType Functions and Descriptions .. 14-5
OCI Examples .. 14-6

Using the XML Parser for C... 14-9
Memory Allocation ... 14-10
Thread Safety ... 14-10
Data Types Index .. 14-10
Error Message Files ... 14-10

XML Parser for C Calling Sequence .. 14-10
Parser Calling Sequence ... 14-11

XML Parser for C Default Behavior... 14-12
DOM and SAX APIs Compared ... 14-13

Using the SAX API.. 14-13
Command Line Usage .. 14-13
Writing C Code to Use Supplied APIs... 14-14

Using the Sample Files... 14-14

15 XSLT Processors for C

XVM Processor... 15-1
XVM Usage Example.. 15-1
Command-Line Access of the XVM Processor ... 15-3
Accessing XVM Processor for C.. 15-3

XSL Processor ... 15-3
XSL Processor Usage Example .. 15-3
XPath Processor Usage Example .. 15-4
Command Line Usage of the XSL Processor... 15-4
Accessing Oracle XSL Processor for C ... 15-5

Using the Demo Files Included with the Software .. 15-5
Building the C Demo Programs for XSLT ... 15-6

16 XML Schema Processor for C

Oracle XML Schema Processor for C ... 16-1
Oracle XML Schema for C Features.. 16-1
Standards Conformance... 16-2
XML Schema Processor for C: Supplied Software ... 16-2

Invoking XML Schema Processor for C .. 16-2
XML Schema Processor for C Usage Diagram ... 16-2
How to Run XML Schema for C Sample Programs .. 16-3

xi

17 Getting Started with XDK C++ Components

Installation of the XDK C++ Components ... 17-1
Getting the C++ Components of XDK ... 17-1
Libraries in the UNIX Environment for C++ XDK... 17-2
Setting the UNIX Environment for C++ .. 17-2
Command Line Environment Setup .. 17-3
Windows Environment Setup for C++ XDK... 17-3
Setting the Windows Environment for C++ XDK.. 17-4

18 Unified C++ Interfaces

What is the Unified C++ API? .. 18-1
Accessing the C++ Interface .. 18-1
OracleXML Namespace .. 18-2

OracleXML Interfaces ... 18-2
Ctx Namespace ... 18-2

OracleXML Datatypes .. 18-2
Ctx Interfaces ... 18-2

IO Namespace .. 18-3
IO Datatypes .. 18-3
IO Interfaces ... 18-3

Tools Package ... 18-3
Tools Interfaces.. 18-4

Error Message Files ... 18-4

19 XML Parser for C++

Introduction to Parser for C++ .. 19-1
Dom Namespace .. 19-2

DOM Datatypes... 19-2
DOM Interfaces ... 19-2
DOM Traversal and Range Datatypes ... 19-3
DOM Traversal and Range Interfaces.. 19-3

Parser Namespace.. 19-4
GParser Interface ... 19-4
DOMParser Interface .. 19-4
SAXParser Interface .. 19-4

Thread Safety ... 19-4
XML Parser for C++ Usage .. 19-4
XML Parser for C++ Default Behavior .. 19-4
C++ Sample Files... 19-5

20 XSLT Processor for C++

Accessing XSLT for C++... 20-1
Xsl Namespace ... 20-1

Xsl Interfaces .. 20-1
XSLT for C++ DOM Interface Usage ... 20-2

xii

Invoking XSLT for C++ .. 20-2
Command Line Usage .. 20-2
Writing C++ Code to Use Supplied APIs .. 20-2

Using the Sample Files Included with the Software.. 20-2

21 XML Schema Processor for C++

Oracle XML Schema Processor for C++ .. 21-1
Oracle XML Schema for C++ Features... 21-1
Standards Conformance... 21-2

XML Schema Processor API .. 21-2
Invoking XML Schema Processor for C++ .. 21-2

Running the Provided XML Schema for C++ Sample Programs... 21-2

22 XPath Processor for C++

XPath Interfaces ... 22-1
Sample Programs... 22-1

23 XML Class Generator for C++

Accessing XML C++ Class Generator.. 23-1
Using XML C++ Class Generator ... 23-1

External DTD Parsing... 23-1
Error Message Files ... 23-1

XML C++ Class Generator Usage... 23-2
Input to the XML C++ Class Generator ... 23-2

Using the XML C++ Class Generator Examples.. 23-3
XML C++ Class Generator Example 1: XML — Input File to Class Generator, CG.xml...... 23-3
XML C++ Class Generator Example 2: DTD — Input File to Class Generator, CG.dtd....... 23-3
XML C++ Class Generator Example 3: CG Sample Program... 23-3

24 XSU for PL/SQL

XSU PL/SQL API ... 24-1
Generating XML with DBMS_XMLQuery().. 24-1
XSU Generating XML Example 1: Generating XML from Simple Queries (PL/SQL) 24-2
XSU Generating XML Example 2: Printing CLOB to Output Buffer....................................... 24-2
XSU Generating XML Example 3: Changing ROW and ROWSET Tag Names..................... 24-3
XSU Generating XML Example 4: Using setMaxRows() and setSkipRows()......................... 24-3

Setting Stylesheets in XSU (PL/SQL) .. 24-4
Binding Values in XSU (PL/SQL)... 24-4

XSU Generating XML Example 5: Binding Values to the SQL Statement 24-5
Storing XML in the Database Using DBMS_XMLSave... 24-5
Insert Processing Using XSU (PL/SQL API) .. 24-6

XSU Inserting XML Example 6: Inserting Values into All Columns (PL/SQL) 24-6
XSU Inserting XML Example 7: Inserting Values into Certain Columns (PL/SQL)............. 24-7

Update Processing Using XSU (PL/SQL API).. 24-8
XSU Updating XML Example 8: Updating XML Document Key Columns (PL/SQL) 24-8
XSU Updating XML Example 9: Specifying a List of Columns to Update (PL/SQL) 24-8

xiii

Delete Processing Using XSU (PL/SQL API) ... 24-9
XSU Deleting XML Example 10: Deleting Operations for Each Row (PL/SQL) 24-9
XSU Example 11: Deleting by Specifying the Key Values (PL/SQL).................................... 24-10
XSU Deleting XML Example 12: Reusing the Context Handle (PL/SQL)............................ 24-10
XSU Exception Handling in PL/SQL... 24-11

Glossary

Index

xiv

xv

Send Us Your Comments

Oracle XML Developer’s Kit Programmer’s Guide, 10g Release 3 (10.1.3)

B28236-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227. Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation
Server Technologies Documentation Manager
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xvi

xvii

Preface

This Preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Structure

■ Related Documents

■ Conventions

Audience
Oracle XML Developer's Kit Programmer's Guide introduces application developers to
the XML Developer's Kit (XDK) and how the various language components of the
XDK can work together to generate and store XML data in a database or in a
document outside the database. Examples and sample applications are introduced
where possible.

To use this document, you need familiarity with XML and a third-generation
programming language such as Java, C, or C++.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

xviii

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Structure
This document contains:

Chapter 1, "Overview of XML Developer's Kit Components"
Introduces the XDK parts and utilities used with them.

Chapter 2, "Getting Started with XDK Java Components"
How to install the XDK Java components.

Chapter 3, "XML Parser for Java"
Describes the XML parser for Java features.

Chapter 4, "XSLT Processor for Java"
Describes the XSLT processor for Java.

Chapter 5, "XML Schema Processor for Java"
Describes the XML schema processor Java.

Chapter 6, "Using JAXB Class Generator"
Describes JAXB, which replaces the XML class generator for Java.

Chapter 7, "XML SQL Utility (XSU)"
Describes the XML SQL utility for Java.

Chapter 8, "XSQL Pages Publishing Framework"
Describes this Java capability.

Chapter 9, "Pipeline Definition Language for Java"
Describes the implementation of the Pipeline Definition Language for Java.

Chapter 10, "XDK JavaBeans"
Describes the JavaBeans available.

Chapter 11, "Using XDK and SOAP"
A brief introduction to SOAP and the XDK.

Chapter 12, "TransX Utility"
The TransX Utility simplifies the loading of translated seed data and messages into a
database.

xix

Chapter 13, "Getting Started with XDK C Components"
How to install the XDK C components.

Chapter 14, "XML Parser for C"
You are requested to use the new unified C API for new XDK applications. The old C
functions are supported only for backward compatibility, but will not be enhanced.
Describes the C XML parser features.

Chapter 15, "XSLT Processors for C"
Describes the XSLT processor for C features.

Chapter 16, "XML Schema Processor for C"
Describes the XML schema processor for C features.

Chapter 17, "Getting Started with XDK C++ Components"
How to install the XDK C++ components.

Chapter 18, "Unified C++ Interfaces"
The unified C++ API is described. The interfaces are listed.

Chapter 19, "XML Parser for C++"
Describes the XML parser for C++ interfaces.

Chapter 20, "XSLT Processor for C++"
Describes the XSLT processor for C++ interfaces.

Chapter 21, "XML Schema Processor for C++"
Describes the XML schema processor for C++ interfaces.

Chapter 22, "XPath Processor for C++"
Describes the XPath C++ interfaces.

Chapter 23, "XML Class Generator for C++"
Describes the XML class generator for C++ features.

Chapter 24, "XSU for PL/SQL"
XML SQL Utility (XSU) PL/SQL API reflects the Java API in the generation and
storage of XML documents from and to a database.

Glossary
Defines terms of interest to readers of this manual, and related XML manuals. If a term
is used in this manual, a cross-reference to the definition is marked in bold.

Related Documents
For more information, see these Oracle resources:

■ Oracle XML DB Developer's Guide

■ Oracle XML API Reference

■ Oracle XML Java API Reference

xx

■ Oracle Streams Advanced Queuing User’s Guide and Reference

■ http://www.oracle.com/technology/tech/xml/

Many of the examples in this documentation are provided with your software in the
following directories:

■ $ORACLE_HOME/xdk/demo/java/

■ $ORACLE_HOME/xdk/demo/c/

■ $ORACLE_HOME/xdk/java/sample/

■ $ORACLE_HOME/rdbms/demo

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/

For additional information about XML, see:

■ WROX publications, especially XML Design and Implementation by Paul Spencer,
which covers XML, XSL, and development.

■ Building Oracle XML Applications by Steve Muench, O'Reilly,
http://www.oreilly.com/catalog/orxmlapp/

■ The XML Bible, http://www.ibiblio.org/xml/books/biblegold/

■ Oracle Database 10g XML & SQL by the Oracle XML Product Development Team,
http://www.osborne.com/oracle/

■ XML, Java, and the Future of the Web by Jon Bosak, Sun Microsystems,
http://www.ibiblio.org/bosak/xml/why/xmlapps.htm

■ XML for the Absolute Beginner by Mark Johnson, JavaWorld,
http://www.javaworld.com/jw-04-1999/jw-04-xml_p.html

■ XML And Databases by Ronald Bourret,
http://www.rpbourret.com/xml/XMLAndDatabases.htm

■ XML Specifications by the World Wide Web Consortium (W3C),
http://www.w3.org/XML/

■ XML.com, a broad collection of XML resources and commentary,
http://www.xml.com/

■ Annotated XML Specification by Tim Bray, XML.com,
http://www.xml.com/axml/testaxml.htm

xxi

■ The XML FAQ by the W3C XML Special Interest Group (the industry clearing
house for XML DTDs that allow companies to exchange XML data),
http://www.ucc.ie/xml/

■ XML.org, hosted by OASIS as a resource to developers of purpose-built XML
languages, http://xml.org/

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in a
glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, Recovery Manager keywords,
SQL keywords, SQL*Plus or utility
commands, packages and methods, as well
as system-supplied column names,
database objects and structures,
usernames, and roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executable programs, filenames, directory
names, and sample user-supplied
elements. Such elements include computer
and database names, net service names
and connect identifiers, user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to start SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name, and
location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font represents
placeholders or variables.

You can specify the parallel_clause.

Run old_release.SQL where old_release
refers to the release you installed prior to
upgrading.

xxii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text
as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and
provides examples of their use.

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.

Convention Meaning Example

[] Anything enclosed in brackets is optional. DECIMAL (digits [, precision])

{ } Braces are used for grouping items. {ENABLE | DISABLE}

| A vertical bar represents a choice of two
options.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Ellipsis points mean repetition in syntax
descriptions.

In addition, ellipsis points can mean an
omission in code examples or text.

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

Other symbols You must use symbols other than brackets
([]), braces ({ }), vertical bars (|), and
ellipsis points (...) exactly as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the order
and with the spelling shown. Because these
terms are not case sensitive, you can use
them in either UPPERCASE or lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates user-defined
programmatic elements, such as names of
tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

Choose Start >
menu item

How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

xxiii

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<), right
angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|), and
dash (-). The special character backslash (\)
is treated as an element separator, even
when it appears in quotes. If the filename
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive. The
escape character in a command prompt is
the caret (^). Your prompt reflects the
subdirectory in which you are working.
Referred to as the command prompt in this
manual.

C:\oracle\oradata>

Special characters The backslash (\) special character is
sometimes required as an escape character
for the double quotation mark (") special
character at the Windows command
prompt. Parentheses and the single
quotation mark (') do not require an escape
character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

C:\> exp HR/HR TABLES=emp QUERY=\"WHERE
job='REP'\"

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_NAMETNSListener

Convention Meaning Example

xxiv

ORACLE_HOME
and
ORACLE_BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components, all
subdirectories were located under a top
level ORACLE_HOME directory. The default
for Windows NT was C:\orant.

This release complies with Optimal
Flexible Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HOME directory. There is a top
level directory called ORACLE_BASE that
by default is
C:\oracle\product\10.1.0. If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\product\10.1.0\db_n,
where n is the latest Oracle home number.
The Oracle home directory is located
directly under ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Installation Guide
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the
ORACLE_BASE\ORACLE_HOME\rdbms\admin
directory.

Convention Meaning Example

xxv

What's New in Oracle XML Developer's Kit?

This section describes new features of the Oracle Database 10g Release 1 (10.1) and
provides pointers to additional information. New features information from previous
releases is also retained to help those users migrating to the current release.

The following sections describe the new features in Oracle XML Developer's Kit:

■ Oracle Database 10g Release 1 (10.1) New Features in Oracle XML Developer's Kit

Oracle Database 10g Release 1 (10.1) New Features in Oracle XML
Developer's Kit

This section contains new features in the Oracle XML Developer's Kit (XDK).

■ JAXB Class Generator

The JAXB compiler generates the interfaces and the implementation classes
corresponding to the XML Schema. The JAXB Class Generator, which is based on
the Java Specification Request (JSR) recommendation for JAXB, is to be used for
new applications. The Class Generator for Java is deprecated and replaced by the
JSR-31 implementation of XML Data Binding (JAXB). The runtime will be
supported so that the Java classes generated in older releases continue to work.

■ Unified API for C and C++

These sets of functions work in both XDK and XML DB and replace the C and C++
XDK functions of previous releases.

■ XDK C/C++ Components Change

Previously, the globalization support data environment variable setting was ORA_
NLS33. It has now been changed to ORA_NLS10.

■ Pipeline Definition Language

This W3C note is implemented for Java in the XDK.

■ XSLT Compiler and XSLT Virtual Machine (XVM)

See Also: Chapter 6, "Using JAXB Class Generator"

See Also: Chapter 14, "XML Parser for C" and Chapter 18,
"Unified C++ Interfaces"

See Also: Chapter 9, "Pipeline Definition Language for Java"

xxvi

For improved performance there are new interfaces for the XSL processor for C
and C++.

■ XSQL Pages Publishing Framework Updates

This chapter has been updated for this release.

■ Using SOAP

New sections are included, plus an example of a SOAP project is found in this
chapter:

■ New XML JavaBeans

XMLCompress, XMLDBAccess, and XSDValidator JavaBeans are now available in
the XDK.

■ XDK Java Components Changes

The XDK Java components in this release have several fixes for J2EE conformance
and XML 1.0 Conformance Test Suite. Some of the changes resulted in change in
behavior with respect to previous release. A few of them are listed below:

■ The default value of preserve whitewashes
[XMLParser.setPreserveWhitespace()] is now dependent on the
presence of a DTD. If a DTD is present, the default is false, else it is true.
Earlier the default was always false.

■ get Prefix(), getNamespaceURI(), and getLocalName() return null
instead of '""' (empty string), when not present in the element or attribute, or if
the node was created using DOM 1.0 methods.

The PL/SQL wrapper for parsing and transformation is replaced by the DBMS_
XMLPARSER, DBMS_XMLDOM and DBMS_XSLPROCESSOR packages.

JAXP 1.2 supports XML Schema validation.

XMLSAXSerializer provides support to handle the SAX output serialization.

■ Restructuring of XML Documentation

The following PL/SQL chapters are now located in the Oracle XML DB Developer's
Guide.

■ XML Parser for PL/SQL

■ XSLT Processor for PL/SQL

■ XML Schema Processor for PL/SQL

See Also: "XVM Processor" on page 15-1.

See Also: Chapter 8, "XSQL Pages Publishing Framework"

See Also: Chapter 11, "Using XDK and SOAP"

See Also: Chapter 10, "XDK JavaBeans"

See Also: "XDK Java Components Specifications" on page 2-1 for
specifications of the levels of the components in this release

Overview of XML Developer's Kit Components 1-1

1
Overview of XML Developer's Kit

Components

This chapter contains these topics:

■ Introducing Oracle XML Developer's Kit

■ XDK Functionality Applied to XML Documents

■ Using XDK-supported Languages to Generate XML Documents

■ XDK and Application Development Tools

■ Using Oracle XML-Enabled Technology

Introducing Oracle XML Developer's Kit
Oracle XML Developer's Kit (XDK) is a set of components, tools, and utilities that
eases the task of building and deploying XML-enabled applications.

Release notes for XDK are found in /xdk/doc/readme.html.

Table 1–1 summarizes the standards supported by the XDK Components:

Table 1–1 Standards Supported by XDK Components

Standard Java C C++

XML 1.0 (Second Edition) Full Full Full

XML Namespaces 1.0 Full Full Full

XML Base Only in XSLT Not supported Not supported

XML Schema 1.0 Full Full Full

DOM 1.0 Full Full Full

DOM 2.0 Core Full Full Full

DOM 2.0 Events Full Full Full

DOM 2.0 Transversal and Range Full Full Full

DOM 3.0 Load and Save (working
draft)

Partial Not supported Not supported

DOM 3.0 Validation (working draft) Full Not supported Not supported

SAX 1.0 Full Full Full

SAX 2.0 Core Full Full Full

SAX 2.0 Extension Full Full Full

Introducing Oracle XML Developer's Kit

1-2 Oracle XML Developer's Kit Programmer's Guide

Oracle has representatives participating actively in the following W3C Working
Groups:

■ XML Core

■ XML Schema

■ XML Query

■ XSL/XPath

■ XLink/XPointer

■ XML Namespaces

■ DOM

■ SAX

Oracle has representatives participating actively on the following JSR standards:

■ JAXB

■ JAXP

Overview of Oracle XDK Components
The XDK is fully supported and comes with a commercial redistribution license. To
provide a broad variety of deployment options, the XDK components are available for
Java, C, and C++. Table 1–2 lists and describes the Oracle XDK components.

XSLT 1.0 Full Full Full

XSLT 2.0 with backward
compatibility

Partial support Not supported Not supported

XPath 1.0 Full Full Full

XPath 2.0 with backward
compatibility (working draft)

Partial support Not supported Not supported

XML Pipeline 1.0 (Notes) Partial Not supported Not supported

JAXP 1.1 (JSR Standard) Full Not applicable Not applicable

JAXP 1.2 (JSR Standard) Full Not applicable Not applicable

JAXB 1.0 (JSR Standard) Partial support Not applicable Not applicable

Class Generator (Oracle proprietary
product)

Not applicable Not applicable Full

Table 1–1 (Cont.) Standards Supported by XDK Components

Standard Java C C++

Introducing Oracle XML Developer's Kit

Overview of XML Developer's Kit Components 1-3

Table 1–2 Overview of Oracle XDK Components

XDK
Component Description

Supported
Languages See Also

XML Parsers Create and parse XML using
industry standard DOM and SAX
interfaces.

Java, C, and
C++

Chapter 3, "XML Parser for Java"

Chapter 14, "XML Parser for C"

Chapter 19, "XML Parser for C++"

XSLT
Processors

Transforms or renders XML into
other text-based formats such as
HTML.

Java, C, and
C++

Chapter 4, "XSLT Processor for Java"

Chapter 15, "XSLT Processors for C"

Chapter 20, "XSLT Processor for C++"

XVM High performance XSLT
transformation engine that supports
compiled stylesheets.

C and C++ "XVM Processor" on page 15-1

XML Schema
Processors

Validates schemas. It allows use of
XML simple and complex
datatypes.

Java, C, and
C++

Chapter 5, "XML Schema Processor
for Java"

Chapter 16, "XML Schema Processor
for C"

Chapter 21, "XML Schema Processor
for C++"

JAXP Gives you the ability to use the
SAX, DOM, and XSLT processors,
or alternate processors, from your
Java application.

Java "Using JAXP" on page 3-36

JAXB Class
Generator

Creates Java classes based on an
XML Schema. Replaces XML Class
Generator for Java.

Java Chapter 6, "Using JAXB Class
Generator"

XML Class
Generator

Automatically generates C++
classes from DTDs and XML
Schemas to send XML data from
Web forms or applications.

C++ Chapter 23, "XML Class Generator
for C++"

XML SQL
Utility (XSU)
(XSU)

Generates XML documents, DTDs
and Schemas from SQL queries.
Maps any SQL query result to XML
and vice versa.

Java and
PL/SQL

Chapter 7, "XML SQL Utility (XSU)"

Chapter 24, "XSU for PL/SQL"

XSQL Servlet Combines XML, SQL, and XSLT in
the server to deliver dynamic Web
content.

Java Chapter 8, "XSQL Pages Publishing
Framework"

XML Pipeline
Definition
Language

Applies a set of XML processes
specified in a declarative XML
XPipe file.

Java Chapter 9, "Pipeline Definition
Language for Java"

XML
JavaBeans:

A set of bean encapsulations of
XDK components for ease of use of
Integrated Development
Environment (IDE), Java Server
Pages (JSP), and applets.

Java Chapter 10, "XDK JavaBeans"

XDK Functionality Applied to XML Documents

1-4 Oracle XML Developer's Kit Programmer's Guide

XDK Functionality Applied to XML Documents
To work with XML technology, you need to be familiar with the tools to parse XML,
validate XML against a DTD or XML schema, transform XML by applying a stylesheet,
and generate XML documents based on data selected from a database by means of
SQL statements. See Table 1–2, " Overview of Oracle XDK Components", column "See
Also," for cross-references to the components. XML Compressor supports only Java.
Figure 1–1 shows a simple overview of XDK.

Figure 1–1 XDK Functionality

XML Parsers
The XML Parsers read the XML document, and use either DOM APIs for navigating a
tree-like representation of the XML document, or a Simple API for XML (SAX)
event-based interface that requires less memory. The XML Parser for Java supports
JAXP. JAXP enables processing of XML documents using DOM, SAX, and XSLT
independently of the XML processor implementation. XML Compressor is also
integrated into the parser. This reduces the size of XML message payloads.

Figure 1–2 illustrates the Oracle XML Parsers functionality.

Oracle SOAP
Server

The Simple Object Access Protocol
(SOAP) is a lightweight protocol for
sending and receiving requests and
responses across the Internet.

Java Chapter 11, "Using XDK and SOAP"

TransX Utility Loads translated seed data and
messages into the database using
XML.

Java Chapter 12, "TransX Utility"

XML
Compressor

Binary compression and
decompression of XML documents.

Java "About XML Compressor" on
page 3-9

Table 1–2 (Cont.) Overview of Oracle XDK Components

XDK
Component Description

Supported
Languages See Also

XML
Parser

XML
Schema
Validator

SAX
XSLT

Processor

DOMXML
Documents

XML
Compressor

Compressed
XML

JAXB or
C++ Class
Generator

XML
Schema

XML
Output

Transformed
XML

Java or C++ Application

C++ or
Java

Classes

XSL
Stylesheet

XDK Functionality Applied to XML Documents

Overview of XML Developer's Kit Components 1-5

Figure 1–2 The XML Parsers: Java, C, C++

XSL Transformation (XSLT) Processors
The Oracle XSLT engine fully supports the W3C XSL Transformations
recommendation. It has the following features:

Enables standards-based transformation of XML information inside and outside the
database on any operating system.

The Oracle XML Parsers include an integrated XSL Transformation (XSLT) Processor
for transforming XML data using XSL stylesheets. Using the XSLT processor, you can
transform XML documents from XML to XML, to HTML, or to virtually any other
text-based format.

JAXB and C++ Class Generators
JAXB Class Generator creates a set of Java classes for creation of XML documents
corresponding to an input XML Schema. JAXB does not support DTDs. These classes
are then used in a Java application. The C++ Class Generator creates a set of C++
classes for creation of XML documents corresponding to an input DTD or XML
Schema. These classes are then used in a C++ application.

JAXB Class Generator supports data binding. An XML instance document can be
input to load the instance data at runtime directly into the generated classes from a
DTD. This improves memory usage and performance compared to DOM APIs.

See Also:

■ "XSLT Processor for Java Overview" on page 4-1.

■ Specifications and other information are found on the W3C site
at http://www.w3.org/Style/XSL

XML Parser for C++

XML Parser for C

XML Parser for Java

XML
document

or DTD

DOM / SAX for C++

DOM / SAX for C

DOM / SAX for Java

C++ Application

C Application

Java Application

Parsers

XDK Functionality Applied to XML Documents

1-6 Oracle XML Developer's Kit Programmer's Guide

Figure 1–3 Oracle JAXB Class Generator

XML Schema Processor
XML Schema was created by the W3C to describe the content and structure of XML
documents in XML, thus improving on DTDs. XML Schema Processor introduces the
concept of datatypes to XML. This allows data to be exchanged between databases
using XML syntax.

XDK JavaBeans
The Oracle XDK JavaBeans are a set of visual and non-visual beans that are useful in
creating a variety of XML-enabled Java applications or applets. XDK JavaBeans
comprises the following beans:

DOMBuilder
The DOMBuilder JavaBean is a non-visual bean. It builds a DOM Tree from an XML
document.

XSLTransformer
The XSLTransformer JavaBean is a non-visual bean. It accepts an XML file, applies
the transformation specified by an input XSL stylesheet and creates the resulting
output file.

DBAccess
DBAccess JavaBean maintains CLOB tables that contain multiple XML and text
documents.

XMLDiff
The XMLDiff JavaBean performs a tree comparison on two XML DOM trees.

XMLCompress
This JavaBean is an encapsulation of the XML compression functionality.

XMLDBAccess
This JavaBean is an extension of the DBAcess bean to support the XMLType column,
in which XML documents are stored in an Oracle Database table.

Valid XML
document
based on

DTD or XML
Schema

Oracle JAXB
Class Generator

Java Application

Parsed
DTD or
XML
Schema

XML Parser for Java

Jc
Jc

Jc
Jc

Java classes based
on DTD or XML Schema
(one class per element)

DTD or
XML Schema

XDK Functionality Applied to XML Documents

Overview of XML Developer's Kit Components 1-7

XSDValidator
This JavaBean is a class file that encapsulates the
oracle.xml.parser.schema.XSDValidator class and adds capabilities for
validating a DOM tree.

Oracle XML SQL Utility (XSU) for Java
XML SQL Utility is comprised of core Java class libraries that:

■ Automatically and dynamically render the results of arbitrary SQL queries into
canonical XML.

■ Support queries over richly-structured user-defined object types and object views,
including XMLType.

XML SQL Utility Java classes can be used for the following tasks:

■ Load data from an XML document into an existing database schema or view.

■ Support automatic XML insert of canonically-structured XML into any existing
table, view, object table, or object view. By combining with XSLT transformations,
virtually any XML document can be automatically inserted into the database.

Figure 1–4 shows the Oracle XML SQL Utility functionality for loading data from XML
documents into a database schema or view:

Figure 1–4 Oracle XML SQL Utility Functional Diagram

XSQL Pages Publishing Framework
The XSQL Pages Publishing Framework (XSQL Servlet) is a server component that
produces dynamic XML documents from one or more SQL queries of data objects. It
does this by processing an XSQL file, which is simply an XML file with a specific
structure and grammar. The XSQL Servlet uses Oracle's XML Parser to process this file
and pass any XSLT processing statements to its internal XSLT Processor while passing
the parameters and SQL statements between the tags to the XML SQL Utility. Results
from those queries are then received as either XML-formatted text or a JDBC
ResultSet object. If necessary, the query results can be further transformed into any
desired format using the built-in XSLT processor.

TransX Utility
The Oracle TransX Utility is a data transfer utility that enables you to populate your
database with multilingual data. It uses XML to specify the data, so that you can easily
transfer from XML to the database. It uses a simple data format that is intuitive for

Note: XSU for PL/SQL is also available. Oracle XML SQL Utility
(XSU) for Java has these features.

XML-SQL Utility
for Java

Oracle

XML
Document

Using XDK-supported Languages to Generate XML Documents

1-8 Oracle XML Developer's Kit Programmer's Guide

both developers and translators and it uses a validation capability that is less
error-prone than previous techniques.

Soap Services
Oracle SOAP Services is published, located and executed through the Web. It is
transport protocol-independent and operating system-independent. SOAP Services
provide the standard XML message format for all applications. With SOAP Services,
you can build messaging, RPC, and Web service applications with XML standards.

Using XDK-supported Languages to Generate XML Documents
Each of the language components will be employed to generate XML documents.

Using XSU for Java to Generate XML Documents
XSU can render the results of arbitrary SQL queries into canonical XML.

Generating XML from Query Results
Figure 1–5 shows how XML SQL Utility processes SQL queries and returns the results
as an XML document.

Figure 1–5 XML SQL Utility Processes SQL Queries and Returns the Result as an XML
Document

XML Document Structure: Columns Are Mapped to Elements
The structure of the resulting XML document has these attributes:

■ Columns are mapped to top level elements

■ Scalar values are mapped to elements with text-only content

■ Object types are mapped to elements with attributes appearing as sub-elements

■ Collections are mapped to lists of elements

SQL or Object
Queries

XML Document of
Query Results as a
string or DOM tree

XML-SQL Utility
for Java

Oracle

Store and retrieve
XML documents
in the database

Using XDK-supported Languages to Generate XML Documents

Overview of XML Developer's Kit Components 1-9

XSU Generates the XML Document as a String or DOM Element Tree
The XML SQL Utility (XSU) supports SAX event stream. XSU also generates either of
the following:

■ A string representation of the XML document. Use this representation if you are
returning the XML document to a requester.

■ An in-memory XML DOM tree of elements. Use this representation if you are
operating on the XML programmatically, for example, transforming it using the
XSLT Processor using DOM methods to search or modify the XML in some way.

■ A series of SAX events which can be used when simply retrieving XML especially
large documents or result sets.

XSU Generates a DTD Based on Queried Table's Schema
You can also use the XML SQL Utility (XSU) to generate a DTD or an XML Schema
based on the schema of the underlying table or view being queried. You can use the
generated DTD as input to the JAXB Class Generator for Java or the C++ Class
Generator. This generates a set of classes based on the DTD elements. You can then
write code that uses these classes to generate the infrastructure behind a Web-based
form.

Based on this infrastructure, the Web form can capture user data and create an XML
document compatible with the database schema. This data can then be written directly
to the corresponding database table or object view without further processing.

Using Oracle XDK Java Components to Generate XML Documents
Figure 1–6 shows the Oracle XDK Java components and how they can be used to
generate XML documents. Cross-references to XDK Java components are listed in
Table 1–2, " Overview of Oracle XDK Components".

In the Java environment, when a SQL query is sent, these are the possible ways of
processing the query using the Oracle XDK components:

■ By the XSQL Servlet (this includes using XSU and XML Parser for Java)

■ Directly by the XSU (this includes XML Parser for Java)

■ Directly by JDBC which then accesses XML Parser

Regardless of which way the stored XML data is generated from the database, the
resulting XML document output from the XML Parser for Java is further processed; it
is formatted and customized by applying stylesheets and processed by the XSLT.

See Also:

■ Chapter 7, "XML SQL Utility (XSU)"

■ "JAXB and C++ Class Generators" on page 1-5

Note: To write an XML document to a database table, where the
XML data does not match the underlying table structure, transform
the XML document before writing it to the database. For techniques
on doing this, see Chapter 7, "XML SQL Utility (XSU)".

Using XDK-supported Languages to Generate XML Documents

1-10 Oracle XML Developer's Kit Programmer's Guide

Figure 1–6 Generating XML Documents Using XDK Java Components

Using Oracle XDK C Components to Generate XML Documents
Figure 1–7 shows the Oracle XDK C language components used to generate XML
documents. Available XDK C components are listed in Table 1–2, " Overview of Oracle
XDK Components"

SQL queries can be sent to the database by Oracle Call Interface (OCI) or by the
Pro*C/C++ Precompiler.

The resulting XML data can be processed in the following ways:

■ With the XML Parser

■ From the CLOB as an XML document

This XML data is optionally transformed by the XSLT processor, viewed directly by an
XML-enabled browser, or sent for further processing to an application.

XSQL Servlet

Oracle database

XML documents stored:
· As single object with tags
 in CLOB or BLOB
· As data distributed
 untagged across tables
· Via views that combine
 the documents and data

XML SQL
Utility

Data OutQuery In

User / Browser /
Client Application

DTD or
XML
Schema

· Parsed DTD
 objects
· Parsed HTML

XML
Parser

JAXB
Class

Generator

JavaBeans

Formatted
and customized
XML Document

XML Document
with or without
a DTD or
XML Schema

Checks for
errors

XSLT
Processor

Integrated in
Jdeveloper

XSL
Stylesheet

SQL Query

XML
Parser

XSLT API is
in the XML
Parser

Creates Java
source files

B

C

A

Object
Relational
data

Oracle text

LOBs

JDBC

Dom or String

Stream Dom or Sax

XML Document from
LOB / XML Type

XML Parser
is within user
application

Browser /
Application

HTML

Text
XML

XML SQL Utility

XML
Parser

Using XDK-supported Languages to Generate XML Documents

Overview of XML Developer's Kit Components 1-11

Figure 1–7 Generating XML Documents Using XDK C Components

Using Oracle XDK C++ Components to Generate XML Documents
Figure 1–8 shows the Oracle XDK C++ components used to generate XML documents.
Available XDK C++ components are listed in Table 1–2, " Overview of Oracle XDK
Components"

In the C++ environment, when a user or client or application sends a SQL query, there
are two possible ways of processing the query using the XDK C++ components:

■ Directly by JDBC which then accesses the XML Parser

■ Through the Oracle C++ Call Interface (OCCI) or the Pro*C/C++ Precompiler

Oracle database

XML documents stored:
· As single object with tags
 in CLOB or BLOB
· As data distributed
 untagged across tables
· Via views that combine
 the documents and data

User / Browser /
Client Application

DTD or
XML
Schema

· Parsed DTD
 objects
· Parsed HTML

Formatted
and customized
XML Document

XML Document
with or without
a DTD or XML
Schema

XSLT
Processor

XSL
Stylesheet

SQL
Query

XML
Parser

XSLT API is
in the XML
Parser

Object
Relational
data Oracle

Text

LOBs

Stream DOM or Sax

XML Parser is
within the user
application

Browser /
Application

XML

OCI or
Pro*C/C++

Stream

XML Document from LOB / XML Type

XDK and Application Development Tools

1-12 Oracle XML Developer's Kit Programmer's Guide

Figure 1–8 Generating XML Documents Using XDK C++ Components

XDK and Application Development Tools
Figure 1–9 shows an overview of how the Oracle XML components enable
development of E-business solutions.

A user who is a consumer or works for a business, sends SQL queries to an Oracle
database either through a Java, C, or C++ application. These applications as well as
development tools such as XSQL Pages Publishing Framework, JDeveloper, and so on,
transform data from the database into XML documents. These XML documents are
input to XML-based business solutions for data exchange with other users, content
and data management, and other uses listed in the illustration.

Oracle database

XML documents stored:
· As single object with tags
 in CLOB or BLOB
· As data distributed
 untagged across tables
· Via views that combine
 the documents and data

User / Browser /
Client Application

DTD or
XML Schema

· Parsed DTD
 objects
· Parsed HTML

Formatted
and customized
XML Document

XML Document
with or without
a DTD or XML
Schema

XSLT
Processor

XSL
Stylesheet

SQL
Query

XML
Type

XSLT API is
in the XML
Parser

Object
Relational
data Oracle

Text

LOBs

Stream DOM or Sax

XML Document from LOB

XML Parser is
within the user
application

Browser or
Application

XML

OCCI or
Pro*C/C++

Class
Generator

Checks for
errors

Creates C++
source files

XDK and Application Development Tools

Overview of XML Developer's Kit Components 1-13

Figure 1–9 Oracle XML Components and E-Business Solutions

The following topics are presented in this section:

■ Browsers That Support XML

■ Oracle XML Gateway

■ JDeveloper

■ User Interface XML (UIX)

■ Recommended Books and Web Sites About XML

Browsers That Support XML
The following browsers support the display of XML:

■ Opera. XML, in version 4.0 and higher

■ Citec Doczilla. XML and SGML browser

■ Indelv. Displays XML documents only using XSL

Oracle Database

XML Data stored:
· In relational tables
· As XML documents in XMLType

Object
Relational
data Oracle

Text

XML Doc in CLOB or XMLType

To search and retrieve
XML documents stored
in CLOBS

Middle Tier:
· Oracle Application Server
· Apache Server
· Java-enabled web server

Programming APIs:
Support for
Java, C, and C++

XML
Documents

Web
Interface

User / Browser /
Client / Application
(Business or Consumer)

SQL Query

Business Data Exchange with
XML (data stored in or out of
database in relational tables
or LOBs)

Content and Document
management with XML
(XML documents stored
in or out of database)

XML Application in
the database or
middle tier

Typical XML-Based
Business Solutions

JDBC, OCI,
OCCI, or

Pro*C/C++

Oracle Development Tools:
· XSQL Pages Publishing Framework
· JDeveloper
· BC4J
· Oracle Reports
· UIX

B2B or B2C
XML Messaging

Using AQ
IDAP

XML Gateway

XDK and Application Development Tools

1-14 Oracle XML Developer's Kit Programmer's Guide

■ Mozilla Gecko. Supports XML, CSS1, and DOM1

■ HP ChaiFarer. Embedded environment that supports XML and CSS1

■ ICESoft embedded browser. Supports XML, DOM1, CSS1, and MathML

■ Microsoft IE5. Has a full XML parser, IE5.x or higher

■ Netscape 5.x or higher

Oracle XML Gateway
XML Gateway is a set of services that enables easy integration with the Oracle
E-Business Suite to create and consume XML messages triggered by business events. It
integrates with Oracle Streams Advanced Queuing to enqueue and dequeue a
message which is then transmitted to or from the business partner through any
message transport agent.

Oracle Data Provider for .NET
Oracle Data Provider for .NET (ODP.NET) is an implementation of a data provider for
the Oracle Database.

ODP.NET uses Oracle native APIs to offer fast and reliable access to Oracle data and
features from any .NET application. ODP.NET also uses and inherits classes and
interfaces available in the Microsoft .NET Framework Class Library.

ODP.NET enables the extraction of data from relational and object-relational tables and
views as XML documents using the Oracle XDK. The use of XML documents for
insert, update, and delete operations to the database server is also allowed.

 ODP.NET supports XML natively in the database, through Oracle XML Database
(Oracle XML DB).

ODP.NET supports XML with the following features:

■ Store XML data natively in the database server as the Oracle native type XMLType.

■ Access relational and object-relational data as XML data from an Oracle Database
instance into Microsoft .NET environment and process the XML using Microsoft
.NET framework.

■ Save changes to the database server using XML data.

For the .NET application developer, features include the following:

■ Enhancements to the OracleCommand, OracleConnection, and
OracleDataReader classes.

■ XML-specific classes:

– OracleXmlType

– OracleXmlStream

– OracleXmlQueryProperties

– OracleXmlSaveProperties

See Also:

■ Oracle Streams Advanced Queuing User’s Guide and Reference

■ Oracle XML DB Developer's Guide

See Also: Oracle Data Provider for .NET Developer's Guide

XDK and Application Development Tools

Overview of XML Developer's Kit Components 1-15

JDeveloper
Oracle JDeveloper is a J2EE development environment with end-to-end support for
developing, debugging, and deploying e-business applications. JDeveloper empowers
users with highly productive tools, such as the industry's fastest Java debugger, a new
profiler, and the innovative CodeCoach tool for code performance analysis and
improvement.

To maximize productivity, JDeveloper provides a comprehensive set of integrated
tools that support the complete development life cycle, from source code control,
modeling, and coding through debugging, testing, profiling, and deployment.
JDeveloper simplifies J2EE development by providing wizards, editors, visual design
tools, and deployment tools to create high-quality standard J2EE components,
including applets, JavaBeans, Java Server Pages (JSP), servlets, and Enterprise
JavaBeans (EJB). JDeveloper also provides a public API to extend and customize the
development environment and seamlessly integrate it with external products.

The Oracle XDK is integrated into JDeveloper, offering many ways to create, handle,
and transform XML. For example, with the XSQL Servlet, developers can query and
manipulate database information, generate XML documents, transform the documents
using XSLT stylesheets, and make them available on the Web.

JDeveloper has an integrated XML schema-driven code editor for working on XML
Schema-based documents such as XML schemas and XSLT stylesheets, with tag
insight to help you easily enter the correct elements and attributes as defined by the
schema.

An XML Schema Definition defines the structure of an XML document and is used in
the editor to validate the XML and help developers when typing. This feature is called
Code Insight and provides a list of valid alternatives for XML elements or attributes in
the document. Just by specifying the schema for a certain language, the editor can
assist you in creating a document in that markup language.

Oracle JDeveloper simplifies the task of working with Java application code and XML
data and documents at the same time. It features drag-and-drop XML development
modules. These include the following:

■ Color-coded syntax highlighting for XML

■ Built-in syntax checking for XML and Extensible Style Sheet Language (XSL)

■ XSQL Pages and Servlet support, where developers can edit and debug Oracle
XSQL Pages, Java programs that can query the database and return formatted
XML or insert XML into the database without writing code. The integrated servlet
engine enables you to view XML output generated by Java code in the same
environment as your program source, making it easy to do rapid, iterative
development and testing.

■ Includes Oracle's XML Parser for Java

■ Includes XSLT Processor

■ Related XDK for JavaBeans components

■ XSQL Page Wizard

■ XSQL Action Handlers

■ Schema-driven XML editor

XDK and Application Development Tools

1-16 Oracle XML Developer's Kit Programmer's Guide

User Interface XML (UIX)
UIX (User Interface XML) is a set of technologies that constitute a framework for
building Web applications. The main focus of UIX is the user presentation layer of an
application, with additional functionality for managing events and for managing the
state of the application flow. UIX is designed to create applications with page-based
navigation, such as an online human resources application, rather than full-featured
applications requiring advanced interaction, such as an integrated development
environment (IDE).

Recommended Books and Web Sites About XML
Here is another XML Frequently Asked Question site:

■ http://www.ucc.ie/xml/

Here are some books and Web sites about XML. URLs are often changed, so some
URLs in this list are not active links:

■ The publisher WROX has a number of helpful books. One of these, XML Design
and Implementation by Paul Spencer, covers XML, XSL and development.

■ Building Oracle XML Applications by Steve Muench (published by O'Reilly) See
http://www.oreilly.com/catalog/orxmlapp/

■ The XML Bible. See http://www.ibiblio.org/xml/books/biblegold/

■ Oracle9i XML Handbook by the Oracle XML Product Development Team at
http://www.osborne.com/oracle/

■ XML, Java, and the Future of the Web by Jon Bosak, Sun Microsystems
http://metalab.unc.edu/pub/sun-info/standards/xml/why/xml
apps.htm

■ XML for the Absolute Beginner by Mark Johnson, JavaWorld
http://www.javaworld.com/jw-04-1999/jw-04-xml_p.html

■ XML And Databases by Ronald Bourret, Technical University of Darmstadt
http://www.informatik.tu-darmstadt.de/DVS1/staff/bourret/
XML/

■ XMLAndDatabases.htm and the XML Specifications by the World Wide Web
Consortium (W3C) http://www.w3.org/XML/

■ XML.com, a broad collection of XML resources and commentary
http://www.xml.com/

■ Annotated XML Specification by Tim Bray, XML.com
http://www.xml.com/axml/testaxml.htm

See Also:

■ http://www.oracle.com/technology/products/jdev/

■ The online discussion forum for JDeveloper is located at
http://www.oracle.com/technology/forums

See Also: For sample JDeveloper Demonstration code for UIX:

■ http://www.oracle.com/technology/sample_code/prod
ucts/jdev/content.html

■ The complete UIX Developer's Guide is included in the
JDeveloper online help.

Using Oracle XML-Enabled Technology

Overview of XML Developer's Kit Components 1-17

■ The XML FAQ by the W3C XML Special Interest Group (the industry clearing
house for XML DTDs that allow companies to exchange XML data)
http://www.ucc.ie/xml/ XML.org

■ http://xml.org/

■ xDev (the DataChannel XML Developer pages)
http://xdev.datachannel.com/

Using Oracle XML-Enabled Technology
This section includes general information about Oracle XML-enabled technology,
contained in the topics:

■ Information for Using the XDK

■ Information About Previous Oracle Releases

■ XML Standards That Oracle Supports

■ Maximum XML File Sizes

Information for Using the XDK
Here are topics about using the XDK:

Using Apache Web Server Instead of the Oracle9i Application Server
You can use the Apache Web server which must now interact with Oracle through
JDBC or other means. You can use the XSQL servlet. This is a servlet that can run on
any servlet-enabled Web server. This runs on Apache and connects to the Oracle
database through a Java Database Connectivity (JDBC) driver.

Need for an XML Parser If all the XML Was Created By Programs
Whether you still need an XML parser if all XML was created by your programs
depends on what you intend to do with the generated XML. If your task is just to
generate XML and send it out then you might not need it. But if you wanted to
generate an XML DOM tree then you need the Parser. You also need it if you have
incoming XML documents and you want to parse and store them. See the XML SQL
utility for some help on this issue.

SQL*Loader and Nesting in XML Documents
If you have the following scenario:

...
 <something>
 <price>10.00</price>
 </something>
...
 ...
 ...
 <somethingelse>
 <price>55.00</price>
 </somethingelse>

Is there a way to uniquely identify the two <price> elements?

Answer: No. The field description in the control file can be nested, which is part of the
support for object relational columns. The data record to which this maps is, of course,

Using Oracle XML-Enabled Technology

1-18 Oracle XML Developer's Kit Programmer's Guide

flat but using all the data field description features of the SQL*Loader one can get a lot
done. For example:

sample.xml

<resultset>
 <emp>
 <first>...</first>
 <last>...</last>
 <middle>....</middle>
 </emp>
 <friend>
 <first>...</first>
 <last>...</last>
 <middle>....</middle>
 </friend>
</resultset>

sample.ctl -- field definition part of the SQL Loader control file

field list
(
 emp COLUMN OBJECT
 (
 first char(30) enclosed by "<first>" and "</first>",
 last char(30) enclosed by "<last>" and "</last>",
 middle char(30) enclosed by "<middle>" and "</middle>"
)
 friend COLUMN OBJECT
 (
 first char(30) enclosed by "<first>" and "</first>",
 last char(30) enclosed by "<last>" and "</last>",
 middle char(30) enclosed by "<middle>" and "</middle>"
)

Keep in mind that the COLUMN OBJECT field names have to match the object column
in the database. You will have to use a custom record terminator, otherwise it defaults
to newline (that is, the newline separates data for a complete database record).

If your XML is more complex and you are trying to extract only select fields, you can
use FILLER fields to reposition the scanning cursor, which scans from where it has left
off toward the end of the record (or for the first field, from the beginning of the
record).

The SQL*Loader has a very powerful text parser. You can use it for loading XML when
the document is very big.

Information About Previous Oracle Releases
These sections concern previous Oracle releases.

Using Oracle Database Version 7 and XML
You can go a long way with Oracle database version 7. The only problem is that you
cannot run any of the Java programs inside the server; that is, you cannot load all the
XML tools into the server. But you can connect to the database by downloading the
Oracle JDBC utility for Oracle database version 7 and run all the programs as
client-side utilities.

Using Oracle XML-Enabled Technology

Overview of XML Developer's Kit Components 1-19

Doing Data Transfers to Other Vendors Using XML from Oracle Release 7.3.4
Question: My company has Oracle release 7.3.4 and my group is thinking of using
XML for some data transfers between us and our vendors. It looks as if we need to
move to Oracle8i or higher in order to do so. Is there any way of leveraging Oracle
release 7 to do XML?

Answer: As long as you have the appropriate JDBC 1.1 drivers for Oracle release 7.3.4
you can use the XML SQL Utility to extract data in XML.

For JDBC drivers, refer to the following Web site for information about Oracle
database version 7 JDBC OCI and JDBC Thin Drivers:

http://www.oracle.com/technology/tech/java/

Using Versions Prior to Oracle8i and Oracle XML Tools?
If I am using an Oracle version earlier than Oracle8i, can I supply XML- based
applications using Oracle XML tools? If yes, then what are the licensing terms?

The Oracle XDKs for Java, C, and C++ can work outside the database, including the
XML SQL Utility and XSQL Pages framework. Licensing is the same, including free
runtime. See Oracle Technology Network (OTN) for the latest licenses.

XML Standards That Oracle Supports
Here are discussions about XML standards that Oracle supports.

B2B Standards and Development Tools that Oracle Supports
What B2B XML standards (such as ebXML, cxml, and BizTalk) does Oracle support?
What tools does Oracle offer to create B2B exchanges?

Oracle participates in several B2B standards organizations:

■ OBI (Open Buying on the Internet)

■ ebXML (Electronic Business XML)

■ RosettaNet (E-Commerce for Supply Chain in IT Industry)

■ OFX (Open Financial Exchange for Electronic Bill Presentment and Payment)

For B2B exchanges, Oracle provides several alternatives depending on customer
needs, such as the following:

■ Oracle Exchange delivers an out-of-the-box solution for implementing electronic
marketplaces

■ OracleAS Process Connect has B2B and capability.

■ Oracle Gateways for exchanges at data level

■ Oracle XML Gateway to transfer XML-based messages from our e-business suite.

The Oracle Internet support provides an integrated and solid platform for B2B
exchanges.

Oracle Corporation's Direction Regarding XML
Oracle Corporation's XML strategy is to use XML in ways that exploit all of the
benefits of the current Oracle technology stack. Today you can combine Oracle XML
components with the Oracle database and Streams to achieve conflict resolution,
transaction verification, and so on. Oracle is working to make future releases more

Using Oracle XML-Enabled Technology

1-20 Oracle XML Developer's Kit Programmer's Guide

seamless for these functions, as well as for functions such as distributed two phase
commit transactions.

The XMLType datatype is used for storing XML in a column in a table or view.

XML data is stored either in object-relational tables or views, or as CLOBs. XML
transactions are transactions with one of these datatypes and are handled using the
standard Oracle mechanisms, including rollback segments, locking, and logging.

From Oracle9i onward, Oracle supports sending XML payloads using Streams. This
involves making it possible to query XML from SQL.

Oracle is active in all XML standards initiatives, including W3C XML Working
Groups, Java Extensions for XML, Open Applications Group, and XML.org for
developing and registering specific XML schemas.

Oracle Corporation's Plans for XML Query
Oracle is participating in the W3C Working Group for XML Query. Oracle is
considering plans to implement a language that enables querying XML data, such as
in the XSQL proposal. While XSLT provides static XML transformation features, a
query language will add data query flexibility similar to what SQL does for relational
data.

Oracle has representatives participating actively in the following W3C Working
Groups related to XML and XSL: XML Schema, XML Query, XSL, XLink/XPointer,
XML Infoset, DOM, and XML Core.

Maximum XML File Sizes
Here are maximum XML file sizes.

Limitations on the Size of an XML File
There are no XML limitations to an XML file size except the limit of the operating
system.

Size Limit for XML Documents Generated from the Database
Oracle is not aware of any limits beyond those imposed by the object view and the
underlying table structure.

Maximum Size for an XML Document for PL/SQL
Is there a maximum size for an XML document to provide data for PL/SQL (or SQL)
across tables, given that no CLOBs are used? The size limit for an XML document
providing data for PL/SQL across tables should be what can be inserted into an object
view.

See Also: Oracle XML DB Developer's Guide

Getting Started with XDK Java Components 2-1

2
Getting Started with XDK Java Components

This chapter contains these topics:

■ XDK Java Components Specifications

■ Installing XDK Java Components

■ XDK Java Components Directory Structure

■ XDK Java Components Environment Settings

■ XDK Java Components Globalization Support

■ XDK Java Components Dependencies

■ Verifying the XDK Java Components Version

XDK Java Components Specifications
XDK Java components, release 10.1, are built on these specifications:

■ XML 1.0 (Second Edition)

■ DOM Level 2.0 Specifications

■ DOM Level 2.0 Core

■ DOM Level 2.0 Traversal and Range

■ DOM Level 2.0 Events

■ DOM Level 3.0 Specifications

■ DOM Level 3.0 Load and Save (internal draft version 10 October 2003)

■ DOM Level 3.0 Validation (Candidate Recommendation 30 July 2003)

■ SAX 2.0 and SAX Extensions

■ XSLT/XPath 2.0 Specifications

■ XSL Transformations (XSLT) 2.0 (working draft dated 02 May 2003)

■ XML Path Language (XPath) 2.0 (working draft dated 22 August 2003)

■ XPath 2.0 Data Model (working draft dated 11th November 2002)

■ XML Schema Specifications

■ XML Schema Part 0: Primer

■ XML Schema Part 1: Structures

■ XML Schema Part 2: Datatypes

XDK Java Components Specifications

2-2 Oracle XML Developer's Kit Programmer's Guide

■ XML Pipeline Definition Language 1.0

■ Java API for XML Processing 1.1 and 1.2 (JAXP)

■ Java Architecture for XML Binding 1.0 (JAXB)

DOM Specifications
In release 10.1, the DOM APIs include support for two new working drafts, DOM
Level 3 Validation and DOM Level 3 Load and Save.

Load and Save

The DOM Level 3 Load and Save module enables software developers to load and
save XML content inside conforming products. DOM 3.0 Core interface
DOMConfiguration is referred by DOM 3 Load and Save. Although DOM 3.0 Core is
not supported, a limited implementation of this interface is available.

The following configuration parameters are supported by XMLDOMBuilder which
implements LSParser:

■ "cdata-sections"

■ "validate"

■ "validate-if-schema"

■ "whitespace-in-element-content"

The following configuration parameters are supported by XMLDOMWriter which
implements LSSerializer:

■ "format-pretty-print"

■ "xml-declaration"

Validation

DOM 3.0 validation allows users to retrieve the metadata definitions from XML
schemas, query the validity of DOM operations and validate the DOM documents or
sub-trees against the XML schema.

Some DOM 3 Core functions referred by Validation are implemented, but Core itself is
not supported:

NameList and DOMStringList in DOM core are supported for validation purpose.

Validation is based on XML Schema, DTD needs to be converted to Schema first (use
DTDToSchema utility).

XSL Transformations Specifications
The XSLT processor adds support for the current working drafts of XSLT 2.0, XPath
2.0, and the shared XPath/XQuery data model.

For the XPath 2.0 specification, only the new XPath 2.0 grammar and backwards
compatibility with XPath 1.0 are supported.

These features of the specifications are not supported in release 10.1:

■ The functions in the Functions and Operators specification are not supported.
Only the functions from XSLT 1.0 specification are supported.

■ The validate and complex types in SequenceType expressions are not
supported.

Installing XDK Java Components

Getting Started with XDK Java Components 2-3

■ The new datatypes fn:yearMonthduration and fn:dayTimeDuration are
not supported.

■ The Schema Import and Static Typing features are not supported.

■ The XSLT instructions xsl:result-document and xsl:namespace are not
supported.

■ The XSLT instructions xsl:text and xsl:number use XSLT 1.0 semantics and
syntax.

■ The standard attributes are allowed only on xsl:stylesheet and literal result
elements, except for default-xpath-namespace and version.

■ The processor does not honor the following attributes:

■ [required] on xsl:param

■ [XML Schema related attributes, like xsl:validation and xsl:type, etc.

■ Regular expression functions are not supported.

■ Parameters are not passed through built-in templates.

■ xsl:sequence is not supported

Installing XDK Java Components
XDK Java components are included with the Oracle database and with the Oracle
application server. You can download the latest beta or production version of XDK
Java components from OTN as part of the XDK. The XDK Java components and
JavaBeans are now bundled together.

If you installed XDK with the Oracle database or the Oracle application server, you can
use this chapter as a reference.

If you download the XDK from OTN, follow these steps:

■ Go to the URL:

http://www.oracle.com/technology/tech/xml/xdk/content.html

■ Click the Software link on the right-side of the page.

■ Logon with your OTN username and password (registration is free if you do not
already have an account).

■ Select the Windows or UNIX download.

■ Select the appropriate download for your operating system.

■ Accept all terms of the licensing agreement and then download the software by
clicking the appropriate distribution.

■ Extract the files in the distribution:

■ Choose a directory under which you want the ./xdk directory and
subdirectories to go.

■ Change to that directory and then extract the XDK Java components
download archive file. For UNIX:

tar xvfz xdk_XXXX.tar.gz # UNIX. XXXX is the release name
Use WinZip visual archive extraction tool in Windows

XDK Java Components Directory Structure

2-4 Oracle XML Developer's Kit Programmer's Guide

XDK Java Components Directory Structure
After installing the XDK, the directory structure is:

-$XDK_HOME
 | - bin: executable files and setup script or batch files.
 | - lib: library files.
 | - xdk:
 | - admin: (Administration): SQL script and XSL Servlet Configuration
 file (XSQLConfig.xml).
 | - demo/java: demonstration code
 | - doc/java: documents including release notes and Javadoc HTML.
All the XDK Java components are certified and supported with JDK 1.2, JDK 1.3, and
JDK 1.4. Make sure that your CLASSPATH includes all the necessary libraries:

In addition, XML SQL Utility, XSQL Servlet, and TransX Utility all depend on JDBC
and globalization support libraries, which are listed in Table 2–2:

Table 2–1 XDK Java Components Libraries

Component Library Notes

XML Parser,
XSL Processor

xmlparserv2.jar XML Parser V2 for Java, which includes JAXP
1.1, DOM, SAX and XSLT APIs.

Message files
for XML
Parser.

xmlmesg.jar If you want to use XML Parser with a
language other than English, you need to set
this JAR file in your CLASSPATH.

XML Schema
Processor

xschema.jar XML Schema Processor for Java.

XML SQL
Utility

xsu12.jar XML SQL Utility for JDK 1.2 and later.

XSQL Servlet oraclesql.jar Oracle XSQL Servlet.

XSQL xsqlserializers.jar Oracle XSQL Serializers for FOP/PDF
Integration.

JAXB Class
Generator,
Pipeline
Processor,
Differ

xml.jar Class Generator for Java.

JavaBeans xmlcomp.jar

xmlcomp2.jar

JavaBeans Utilities.

TransX Utility transx.zip Oracle TransX Utility.

Table 2–2 JDBC and Globalization Support Libraries for XDK Java Components

Component Library Notes

JDBC classes12.zip JDBC for JDK 1.2 and later.

Globalization
Support

orai18n.jar Globalization support for JDK 1.2 and later.

XMLType xdb.jar XMLType Java APIs in $ORACLE_
HOME/rdbms/jlib/

JDeveloper
Runtime

jdev-rt.zip Java GUI libraries.

XDK Java Components Environment Settings

Getting Started with XDK Java Components 2-5

XDK Java Components Environment Settings
The UNIX and Windows environment settings are listed:

UNIX Environment Settings for XDK Java Components
This file sets up the environment:

$XDK_HOME/bin/env.csh

Table 2–3 lists the UNIX environment variables, with the ones that must be customized
each marked with "Yes":

Windows Environment Settings for XDK Java Components
This file sets up the environment:

%XDK_HOME%\bin\env.bat

Table 2–4 lists the Windows environment variables with the ones that must be
customized each marked with "Yes":

Table 2–3 UNIX Environment Settings for XDK Java Components

Variable Notes Yes/No

$JDBCVER JDBC version. For JDK 1.2 and later, set to 12. Yes

$JDKVER JDK version obtained by JDK -version.Default value is 1.2.2_07. Yes

$INSTALL_ROOT Installation root of XDK which is the directory $XDK_HOME. No

$JAVA_HOME Directory where the Java JDK, Standard Edition is installed. Yes

$CLASSPATHJ {ORACLE_HOME}/jdbc/lib/classes${JDBCVER}.zip:

${ORACLE_HOME}/jdbc/lib/nls_charset${JDBCVER}.jar

If you are running the XSU on a system different from where the Oracle
database is installed, you have to update your CLASSPATHJ setting with
the correct locations of the JDBC library (classes12.jar). The
orai18n.jar is needed to support certain character sets. See "XDK Java
Components Globalization Support" on page 2-6. Note that if you do not
have these libraries on your system, these are both available on OTN
(http://www.oracle.com/technology), as part of the JDBC driver
download.

Yes

$CLASSPATH Include the following:

.:${CLASSPATHJ}:${INSTALL_ROOT}/lib/xmlparserv2.jar:

${INSTALL_ROOT}/lib/xschema.jar:

${INSTALL_ROOT}/lib/xsu${JDBCVER}.jar:

${INSTALL_ROOT}/lib/oraclexsql.jar:

${INSTALL_ROOT}/lib/classgen.jar

No

$PATH ${JAVA_HOME}/bin:${PATH}:${INSTALL_ROOT}/bin No

$LD_LIBRARY_PATH For OCI JDBC connections:

${ORACLE_HOME}/lib:${LD_LIBRARY_PATH}

No

XDK Java Components Globalization Support

2-6 Oracle XML Developer's Kit Programmer's Guide

XDK Java Components Globalization Support
Here is a summary on the settings that relate to Globalization Support:

■ Using xmlmesg.jar: If you are using a language other than English you need to
set the xmlmesg.jar into your CLASSPATH to let the parser get correct messages
in your language.

■ Using orai18n.jar: If you are using a multibyte character set other than one of
the following,

■ UTF-8

■ ISO8859-1

■ JA16SJIS

then you must set this JAR file into your Java CLASSPATH so that JDBC can
convert the character set of the input file to the database character set during the
loading of XML files using either XSU, TransX or XSQL Servlet.

XDK Java Components Dependencies
Figure 2–1 shows the dependencies of XDK Java Components when using JDK 1.2 and
higher:

Table 2–4 Windows Environment Settings for XDK Java Components

Variable Notes Yes/No

%JDBCVER% JDBC version. If using JDK 1.2 and later, it should be set to 12. Yes

%JDKVER% JDK version which you can get from: JDK -version.Default value is 1.2.2_07. Yes

%INSTALL_ROOT% Installation root of XDK, which is the directory %XDK_HOME%. No

%JAVA_HOME% Directory where the Java SDK, Standard Edition is installed. Yes

%CLASSPATHJ% CLASSPATHJ=%ORACLE_HOME%\jdbc\lib\classes%JDBCVER%.zip;

%ORACLE_HOME%\jdbc\lib\nls_charset%JDBCVER%.jar

Yes

%CLASSPATH% .;%CLASSPATHJ%;%INSTALL_ROOT%\lib\xmlparserv2.jar;

%INSTALL_ROOT%\lib\xschema.jar;

%INSTALL_ROOT%\lib\xsu%JDBCVER%.jar;

%INSTALL_ROOT%\lib\oraclexsql.jar;%INSTALL_
ROOT%\lib\classgen.jar

No

%PATH% PATH=%JAVA_HOME%\bin;%ORACLE_HOME%\bin;%PATH%;%INSTALL_
ROOT%\bin

No

Verifying the XDK Java Components Version

Getting Started with XDK Java Components 2-7

Figure 2–1 XDK Java Components Dependencies Using JDK 1.2.x and Higher

After you correctly setup the environment, include all the necessary JAR files in your
CLASSPATH. You can then start writing your Java programs and compiling them with
the javac command:

javac your_program.java

If the compilation finishes without errors, then you can just test your program using
the command line or the Web Server.

Verifying the XDK Java Components Version
To obtain the version of XDK you are working with, compile and run the following
Java code (XDKVersion.java):

import java.net.URL;
import oracle.xml.parser.v2.XMLParser;
public class XDKVersion
{
 static public void main(String[] argv)
 {
 System.out.println("You are using version: ");
 System.out.println(XMLParser.getReleaseVersion());
 }

}

See Also: Chapter 3, "XML Parser for Java" for further discussion
of the XDK Java components

Class Generator
(classgen.jar)

XML Schema Processor
(xschema.jar)

JDBC Driver
(classes12.jar)

NLS
(orai18n.jar)

WebServer
 that
Supports
Java
Servlets

XML Parser / XSL Processor / XML Pipeline / JAXB
(xmlparserv2.jar, xmlmesg.jar)

JDK

XML SQL Utility
(xsu12.jar)

TransX Utility
(transx.zip)

XSQL Servlet
(oraclexsql.jar, xsqlserializers.jar)

Verifying the XDK Java Components Version

2-8 Oracle XML Developer's Kit Programmer's Guide

XML Parser for Java 3-1

3
XML Parser for Java

This chapter contains these topics:

■ XML Parser for Java Overview

■ About DOM and SAX APIs

■ About XML Compressor

■ Running the Sample Applications for XML Parser for Java

■ Using XML Parser for Java: DOMParser Class

■ Using XML Parser for Java: DOMNamespace Class

■ Using XML Parser for Java: SAXParser Class

■ Using the XML Parser for Java

■ Using JAXP

■ oraxml: XML Parser for Java Command-line

XML Parser for Java Overview
Oracle provides XML parsers for Java, C, C++, and PL/SQL. This chapter discusses
the parser for Java only. Each of these parsers is a standalone XML component that
parses an XML document (and possibly also a standalone document type definition
(DTD) or XML Schema) so that they can be processed by your application. In this
chapter, the application examples presented are written in Java.

XML Schema is a W3C XML recommendation effort to introduce the concept of data
types to XML documents and replace the syntax of DTDs with one which is based on
XML. The process of checking the syntax of XML documents against a DTD or XML
Schema is called validation.

To use an external DTD, include a reference to the DTD in your XML document.
Without it there is no way for the parser to know what to validate against. Including
the reference is the XML standard way of specifying an external DTD. Otherwise you
need to embed the DTD in your XML Document.

Figure 3–1 shows an XML document as input to the XML Parser for Java. The DOM or
SAX parser interface parses the XML document. The parsed XML is then transferred to
the application for further processing.

The XML Parser for Java includes an integrated XSL Transformation (XSLT) Processor
for transforming XML data using XSL stylesheets. Using the XSLT Processor, you can
transform XML documents from XML to XML, XML to HTML, or to virtually any
other text-based format.

XML Parser for Java Overview

3-2 Oracle XML Developer's Kit Programmer's Guide

If a stylesheet is used, the DOM or SAX interface also parses and outputs the XSL
commands. These are sent together with the parsed XML to the XSLT Processor where
the selected stylesheet is applied and the transformed (new) XML document is then
output. Figure 3–1 shows a simplified view of the XML Parser for Java.

Figure 3–1 XML Parser for Java

The XML Parser for Java processor reads XML documents and provides access to their
content and structure. An XML processor does its work on behalf of another module,
your application. This parsing process is illustrated in Figure 3–2.

Figure 3–2 XML Parsing Process

Original
XML

Document

Transformed
XML

Document

Parsed XML

Parsed XSL
Commands

XSL
Stylesheet

DOM Parser or
SAX Parser

XSLT Processor

DTD

Schema

Parsed
Data

Storage Units
(entities)

Unparsed
Data

Characters

Character
Data

Markup

XML
document

XML Parser
(Processor)

Content and StructureReads

XML Parser for Java Overview

XML Parser for Java 3-3

Namespace Support
The XML Parser for Java also supports XML Namespaces. Namespaces are a
mechanism to resolve or avoid name collisions between element types (tags) or
attributes in XML documents.

This mechanism provides "universal" namespace element types and attribute names.
Such tags are qualified by uniform resource identifiers (URIs), such as:

<oracle:EMP xmlns:oracle="http://www.oracle.com/xml"/>

For example, namespaces can be used to identify an Oracle <EMP> data element as
distinct from another company's definition of an <EMP> data element. This enables an
application to more easily identify elements and attributes it is designed to process.

The XML Parser for Java can parse universal element types and attribute names, as
well as unqualified "local" element types and attribute names.

XML Parser for Java Validation Modes
Validation involves checking whether or not the attribute names and element tags are
legal, whether nested elements belong where they are, and so on.

The DTD file defined in the <!DOCTYPE> declaration must be relative to the location
of the input XML document. Otherwise, you need to use the setBaseURL(url)
functions to set the base URL to resolve the relative address of the DTD if the input is
coming from InputStream.

If you are parsing an InputStream, the parser does not know where that
InputStream came from, so it cannot find the DTD in the same directory as the
current file. The solution is to setBaseURL() on DOMParser() to give the parser the
URL hint information to be able to derive the rest when it goes to get the DTD.

XML documents are made up of storage units called entities, which contain either
parsed or unparsed data. Parsed data is made up of characters, some of which form
character data, and some of which form markup.

See Also:

■ Schema Primer at http://www.w3.org/TR/xmlschema-0/

■ Schema structures at
http://www.w3.org/TR/xmlschema-1/

■ Schema datatypes at
http://www.w3.org/TR/xmlschema-2/

■ Chapter 4, "XSLT Processor for Java"

■ Oracle XML DB Developer's Guide for a discussion of the
PL/SQL Parser

■ Oracle XML API Reference for methods of the XML Parser for
Java

See Also:

■ Chapter 5, "XML Schema Processor for Java"

■ Oracle XML API Reference for methods of the XML Parser for Java

■ http://www.w3.org/TR/1999/REC-xml-names-19990114/
for the W3C Recommendation for XML Namespaces

XML Parser for Java Overview

3-4 Oracle XML Developer's Kit Programmer's Guide

Markup encodes a description of the document's storage layout and logical structure.
XML provides a mechanism to impose constraints on the storage layout and logical
structure.

The parser method setValidationMode(mode) parses XML in the mode values
shown in Table 3–1.

In addition to the validator to build the schema itself, you can use XSDBuilder to
build schemas and set it to the validator using setXMLSchema() method. See code

Table 3–1 XML Parser for Java Validation Modes

Name of Mode Mode Value in Java Description

Non-Validating
Mode

NONVALIDATING The parser verifies that the XML is
well-formed and parses the data
into a tree of objects that can be
manipulated by the DOM API.

DTD Validating
Mode

DTD_VALIDATION The parser verifies that the XML is
well-formed and validates the XML
data against the DTD (if any).

Partial Validation
Mode

PARTIAL_VALIDATION Partial validation validates all or
part of the input XML document
according to the DTD or XML
Schema, if one is present. If one is
not present, the mode is set to
Non-Validating Mode. With this
mode, the schema validator locates
and builds schemas and validates
the whole or a part of the instance
document based on the
schemaLocation and
noNamespaceSchemaLocation
attributes. See code
exampleXSDSample.java in
directory
/xdk/demo/java/schema.

Schema Validation
Mode

SCHEMA_VALIDATION The XML Document is validated
according to the XML Schema
specified for the document.

Lax Validation SCHEMA_LAX_VALIDATION The validator tries to validate part
or all of the instance document as
long as it can find the schema
definition. It does not raise an error
if it cannot find the definition. This
is shown in the sample
XSDLax.java in the schema
directory.

Strict Validation SCHEMA_STRICT_VALIDATION The validator tries to validate the
whole instance document, raising
errors if it cannot find the schema
definition or if the instance does not
conform to the definition.

Auto Validation
Mode

See description. If a DTD is available, the mode
value is set to DTD_VALIDATION, if
a Schema is present then it is set to
SCHEMA_VALIDATION. If neither is
available, it is set to
NONVALIDATING mode value,
which is the default.

XML Parser for Java Overview

XML Parser for Java 3-5

example XSDSetSchema.java. By using the setXMLSchema() method, the
validation mode is automatically set to SCHEMA_STRICT_VALIDATION, and both
schemaLocation and noNamespaceSchemaLocation attributes are ignored. You
can also change the validation mode to SCHEMA_LAX_VALIDATION.

Using DTDs with the XML Parser for Java
The following is a discussion of the use of DTDs. It contains the sections:

■ Enabling DTD Caching

■ Recognizing External DTDs

■ Loading External DTDs from a JAR File

■ Checking the Correctness of Constructed XML Documents

■ Parsing a DTD Object Separately from an XML Document

■ XML Parsers Case-Sensitivity

■ Allowed File Extensions in External Entities

■ Creating a DOCUMENT_TYPE_NODE

■ Standard DTDs That Can be Used for Orders, Shipments, and So On

Enabling DTD Caching
DTD caching is optional and is not enabled automatically.

The XML Parser for Java provides for validating and non-validating DTD caching
through the setDoctype() function. After you set the DTD using this function,
XMLParser will cache this DTD for further parsing.

If your application has to parse several XML documents with the same DTD, after you
parse the first XML document, you can get the DTD from parser and set it back:

dtd = parser.getDoctype();
parser.setDoctype(dtd);

The parser will cache this DTD and use it for parsing the following XML documents.

Set the DOMParser.USE_DTD_ONLY_FOR_VALIDATION attribute, if the cached DTD
Object is used only for validation by:

parser.setAttribute(DOMParser.USE_DTD_ONLY_FOR_VALIDATION,Boolean.TRUE);

Otherwise, the XML parser will copy the DTD object and add it to the result DOM
tree.

The method to set the DTD is setDoctype(). Here is an example:

// Test using InputSource
parser = new DOMParser();
parser.setErrorStream(System.out);
parser.showWarnings(true);

FileReader r = new FileReader(args[0]);
InputSource inSource = new InputSource(r);
inSource.setSystemId(createURL(args[0]).toString());
parser.parseDTD(inSource, args[1]);
dtd = (DTD)parser.getDoctype();

r = new FileReader(args[2]);

XML Parser for Java Overview

3-6 Oracle XML Developer's Kit Programmer's Guide

inSource = new InputSource(r);
inSource.setSystemId(createURL(args[2]).toString());
// ********************
parser.setDoctype(dtd);
// ********************
parser.setValidationMode(DTD_VALIDATION);
parser.parse(inSource);

doc = (XMLDocument)parser.getDocument();
doc.print(new PrintWriter(System.out));

Recognizing External DTDs
To recognize external DTDs, the XML Parser for Java has the setBaseURL() method.

The way to redirect the DTD is by using resolveEntity():

1. Parse your External DTD using a DOM parser's parseDTD() method.

2. Call getDoctype() to get an instance of oracle.xml.parser.v2.DTD.

3. On the document where you want to set your DTD programmatically, use the call
setDoctype(yourDTD). Use this technique to read a DTD out of your product's
JAR file.

Loading External DTDs from a JAR File
The parser supports a base URL method (setBaseURL()), but that just points to a
place where all the DTDs are exposed.

Do the following steps:

1. Load the DTD as an InputStream:

InputStream is = YourClass.class.getResourceAsStream("/foo/bar/your.dtd");

This opens ./foo/bar/your.dtd in the first relative location on the CLASSPATH
that it can be found, including out of your JAR if it is in the CLASSPATH.

2. Parse the DTD:

DOMParser d = new DOMParser();
d.parseDTD(is, "rootelementname");
d.setDoctype(d.getDoctype());

3. Parse your document:

d.parse("yourdoc");

Checking the Correctness of Constructed XML Documents
No validation is done while creating the DOM tree using DOM APIs. So setting the
DTD in the document does not help validate the DOM tree that is constructed. The
only way to validate an XML file is to parse the XML document using the DOM parser
or the SAX parser.

Parsing a DTD Object Separately from an XML Document
The parseDTD() method enables you to parse a DTD file separately and get a DTD
object. Here is some sample code to do this:

DOMParser domparser = new DOMParser();
domparser.setValidationMode(DTD_VALIDATION);
/* parse the DTD file */

About DOM and SAX APIs

XML Parser for Java 3-7

domparser.parseDTD(new FileReader(dtdfile));
DTD dtd = domparser.getDoctype();

XML Parsers Case-Sensitivity
XML is inherently case-sensitive, therefore the parsers enforce case sensitivity in order
to be compliant. When you run in non-validation mode only well-formedness counts.
However <test></Test> signals an error even in non-validation mode.

Allowed File Extensions in External Entities
The file extension for external entities is unimportant so you can change it to any
convenient extension, including no extension.

Creating a DOCUMENT_TYPE_NODE
There is no way to create a new DOCUMENT_TYPE_NODE object using the DOM APIs.
The only way to get a DTD object is to parse the DTD file or the XML file using the
DOM parser, and then use the getDocType() method.

The following statement does not create a DTD object. It creates an XMLNode object
with the type set to DOCUMENT_TYPE_NODE, which in fact is not allowed. The
ClassCastException is raised because appendChild expects a DTD object (based
on the type).

appendChild(New XMLNode("test",Node.DOCUMENT_TYPE_NODE));

Standard DTDs That Can be Used for Orders, Shipments, and So On
Basic, standard DTDs to build on for orders, shipments, and acknowledgements are
found on this Web site, which has been set up for that purpose:

http://www.xml.org/

About DOM and SAX APIs
XML APIs for parsing are of two kinds:

■ DOM APIs (Tree-based)

■ SAX APIs (Event-based)

Consider the following simple XML document:

<?xml version="1.0"?>
 <EMPLIST>
 <EMP>
 <ENAME>MARY</ENAME>
 </EMP>
 <EMP>
 <ENAME>SCOTT</ENAME>
 </EMP>
 </EMPLIST>

DOM: Tree-Based API
A tree-based API (such as DOM) builds an in-memory tree representation of the XML
document. It provides classes and methods for an application to navigate and process
the tree.

In general, the DOM interface is most useful for structural manipulations of the XML
tree, such as reordering elements, adding or deleting elements and attributes,

About DOM and SAX APIs

3-8 Oracle XML Developer's Kit Programmer's Guide

renaming elements, and so on. For example, for the immediately preceding XML
document, the DOM creates an in-memory tree structure as shown inFigure 3–3.

SAX: Event-Based API
An event-based API (such as SAX) uses calls to report parsing events to the
application. Your Java application deals with these events through customized event
handlers. Events include the start and end of elements and characters.

Unlike tree-based APIs, event-based APIs usually do not build in-memory tree
representations of the XML documents. Therefore, in general, SAX is useful for
applications that do not need to manipulate the XML tree, such as search operations,
among others. The preceding XML document becomes a series of linear events as
shown in Figure 3–3.

Figure 3–3 Comparing DOM (Tree-Based) and SAX (Event-Based) APIs

Guidelines for Using DOM and SAX APIs
Here are some guidelines for using the DOM and SAX APIs:

DOM
■ Use the DOM API when you need to use random access.

■ Use DOM when you are performing XSL Transformations.

■ Use DOM when you are calling XPath. SAX does not support it.

■ Use DOM when you want to have tree iterations and need to walk through the
entire document tree.

■ Customize DOM tree building: org.w3c.dom.Is.DOMBuilderFilter.

■ Avoid parsing external DTDs if no validation is required:
DOMParser.set.Attribute(DOMParsser.STANDALONE,
Boolean.TRUE);.

<EMP> <EMP>

<EMPLIST>

<ENAME> <ENAME>

MARY SCOTT

The DOM interface creates a
TREE structure based on the
XML DocumentXML Document

<?XML Version = "1.0"?>
 <EMPLIST>
 <EMP>
 <ENAME>MARY</ENAME>
 </EMP>
 <EMP>
 <ENAME>SCOTT</ENAME>
 </EMP>
 </EMPLIST>

The SAX interface creates
a series of linear events
based on the XML
document

Useful for applications such
as search and retrieval that do
not change the "XML tree".

Useful for applications that include
changes eg. reordering, adding, or
deleting elements.

start document

start element: EMPLIST
start element: EMP
start element: ENAME
characters: MARY
end element: EMP

start element: EMP
start element: ENAME
characters: SCOTT
end element: EMP

end element: EMPLIST
end document

About XML Compressor

XML Parser for Java 3-9

■ Avoid including the DTD object in DOM unless necessary:
DOMParser.setAttribute(DOMParser.USE_DTD_ONLY_FOR_VALIDATION,
Boolean.TRUE);.

■ Use DTD caching for DTD validations: DOMParser.setDoctype(dtd);.

■ Build DOM asynchronously using DOM 3.0 Load and Save:
DOMImplementationLS.MODE_ASYNCHRONOUS.

■ A unified DOM API supports both XMLType columns and XML documents.

■ When using the DOM interface, use more attributes than elements in your XML to
reduce the pipe size.

SAX
■ Use the SAX API when your data is mostly streaming data.

■ Use SAX to save memory. DOM consumes more memory.

■ To increase the speed of retrieval of XML documents from a database, use the SAX
interface instead of DOM. Make sure to select the COUNT(*) of an indexed
column (the more selective the index the better). This way the optimizer can
satisfy the count query with a few inputs and outputs of the index blocks instead
of a full-table scan.

■ Use SAX 2.0, because SAX 1.0 is deprecated.

■ There are output options for SAX: print formats, XML declaration, CDATA, DTD.

■ Multi-task the SAX processing to improve throughput (using multi-handlers and
enabling multiple processing in callbacks). Multiple handler registrations per SAX
parsing: oracle.xml.parser.V2.XMLMultiHandler.

■ Use the built-in XML serializer to simplify output creation:
oracle.xml.parser.V2.XMLSAXSerializer.

About XML Compressor
The XML Compressor supports binary compression of XML documents. The
compression is based on tokenizing the XML tags. The assumption is that any XML
document has a repeated number of tags and so tokenizing these tags gives a
considerable amount of compression. Therefore the compression achieved depends on
the type of input document; the larger the tags and the lesser the text content, then the
better the compression.

The goal of compression is to reduce the size of the XML document without losing the
structural and hierarchical information of the DOM tree. The compressed stream
contains all the "useful" information to create the DOM tree back from the binary
format. The compressed stream can also be generated from the SAX events.

XML Parser for Java can also compress XML documents. Using the compression
feature, an in-memory DOM tree or the SAX events generated from an XML document
are compressed to generate a binary compressed output. The compressed stream
generated from DOM and SAX are compatible, that is, the compressed stream
generated from SAX can be used to generate the DOM tree and vice versa.

As with XML documents in general, you can store the compressed XML data output as
a BLOB (Binary Large Object) in the database.

See Also: "DOM Specifications" on page 2-2 for information on
what is supported for this release

Running the Sample Applications for XML Parser for Java

3-10 Oracle XML Developer's Kit Programmer's Guide

Sample programs to illustrate the compression feature are described in Table 3–2,
" XML Parser for Java Sample Programs".

XML Serialization and Compression
An XML document is compressed into a binary stream by means of the serialization of
an in-memory DOM tree. When a large XML document is parsed and a DOM tree is
created in memory corresponding to it, it may be difficult to satisfy memory
requirements and this can affect performance. The XML document is compressed into
a byte stream and stored in an in-memory DOM tree. This can be expanded at a later
time into a DOM tree without performing validation on the XML data stored in the
compressed stream.

The compressed stream can be treated as a serialized stream, but the information in the
stream is more controlled and managed, compared to the compression implemented
by Java's default serialization.

There are two kinds of XML compressed streams:

■ DOM based compression: The in-memory DOM tree, corresponding to a parsed
XML document, is serialized, and a compressed XML output stream is generated.
This serialized stream regenerates the DOM tree when read back.

■ SAX based compression: The compressed stream is generated when an XML file is
parsed using a SAX parser. SAX events generated by the SAX parser are handled
by the SAX compression utility, which handles the SAX events to generate a
compressed binary stream. When the binary stream is read back, the SAX events
are generated.

Running the Sample Applications for XML Parser for Java
The directory demo/java/parser contains some sample XML applications to show
how to use the XML Parser for Java. The following are the sample Java files in its
subdirectories (common, comp, dom, jaxp, sax, xslt):

Note: Oracle Text cannot search a compressed XML document.
Decompression reduces performance. If you are transferring files
between client and server, then HTTP compression can be easier.

Compression is supported only in the XDK Java components.

Table 3–2 XML Parser for Java Sample Programs

Sample Program Purpose

XSLSample A sample application using XSL APIs

DOMSample A sample application using DOM APIs

DOMNamespace A sample application using Namespace extensions to DOM APIs

DOM2Namespace A sample application using DOM Level 2.0 APIs

DOMRangeSample A sample application using DOM Range APIs

EventSample A sample application using DOM Event APIs

NodeIteratorSample A sample application using DOM Iterator APIs

TreeWalkerSample A sample application using DOM TreeWalker APIs

SAXSample A sample application using SAX APIs

Running the Sample Applications for XML Parser for Java

XML Parser for Java 3-11

The Tokenizer application implements XMLToken interface, which you must register
using the setTokenHandler() method. A request for the XML tokens is registered
using the setToken() method. During tokenizing, the parser does not validate the
document and does not include or read internal or external utilities.

To run the sample programs:

1. Use make (for UNIX) or make.bat (for Windows) in the directory
xdk/demo/java to generate .class files.

2. Add xmlparserv2.jar and the current directory to the CLASSPATH.

The following list does not have to be done in order, except for decompressing:

■ Run the sample programs for the DOM APIs and SAX APIs in each directory:

java classname sample_xml_file

■ Run the sample program for XSL APIs in its directory:

java XSLSample sample_xsl_file sample_xml_file

■ Run the sample program for Tokenizer APIs in its directory:

java Tokenizer sample_xml_file token_string

■ Run the sample program for compressing a DOM tree in its directory:

java DOMCompression sample.dat

The compressed output is generated in a file called xml.ser.

■ Run the sample program to build the DOM tree from the compressed stream if
you have done the last step.

java DOMDeCompression xml.ser

■ Run the sample program for compressing the SAX events in its directory

java SAXCompression sample.dat

■ Run the sample program for regenerating the SAX events from the compressed
stream if you have done the last step:

java SAXDeCompression xml.ser

SAXNamespace A sample application using Namespace extensions to SAX APIs

SAX2Namespace A sample application using SAX 2.0

Tokenizer A sample application using XMLToken interface APIs

DOMCompression A sample application to compress a DOM tree

DOMDeCompression A sample to read back a DOM from a compressed stream

SAXCompression A sample application to compress the SAX output from a SAX
Parser

SAXDeCompression A sample application to regenerate the SAX events from the
compressed stream

JAXPExamples Samples using the JAXP 1.1 API

Table 3–2 (Cont.) XML Parser for Java Sample Programs

Sample Program Purpose

Using XML Parser for Java: DOMParser Class

3-12 Oracle XML Developer's Kit Programmer's Guide

■ Run the sample program for the JAXP 1.1 API in its directory:

java JAXPExamples

The XML document file and stylesheets are given inside the program
JAXPExamples.java. The Content Handler is inside the Java file
oraContentHandler.java.

Using XML Parser for Java: DOMParser Class
To write DOM-based parser applications you can use the following classes:

■ DOMNamespace class

■ DOMParser class

■ XMLParser class

Since DOMParser extends XMLParser, all methods of XMLParser are also available
to DOMParser. Figure 3–4, "XML Parser for Java: DOMParser()" shows the main steps
you need when coding with the DOMParser class.

Without DTD Input
In some applications, it is not necessary to validate the XML document. In this case, a
DTD is not required.

1. A new DOMParser() is called. Some of the methods to use with this object are:

■ setValidateMode()

■ setPreserveWhiteSpace()

■ setDoctype()

■ setBaseURL()

■ showWarnings()

2. The results of DOMParser() are passed to XMLParser.parse() along with the
XML input. The XML input can be a file, a string buffer, or URL.

3. Use the XMLParser.getDocument() method.

4. Optionally, you can apply other DOM methods such as:

■ print()

■ DOMNamespace() methods

5. The Parser outputs the DOM tree XML (parsed) document.

6. Optionally, use DOMParser.reset() to clean up any internal data structures,
once the DOM API has finished building the DOM tree.

With a DTD Input
If validation of the input XML document is required, a DTD is used.

1. A new DOMParser() is called. The methods to apply to this object are:

■ setValidateMode()

■ setPreserveWhiteSpace()

■ setDocType()

Using XML Parser for Java: DOMParser Class

XML Parser for Java 3-13

■ setBaseURL()

■ showWarnings()

2. The results of DOMParser() are passed to XMLParser.parseDTD() method
along with the DTD input.

3. XMLParser.getDocumentType()method sends the resulting DTD object back
to the new DOMParser() and the process continues until the DTD has been
applied.

Figure 3–4 XML Parser for Java: DOMParser()

Comments on Example 1: DOMSample.java
These comments are for Example 1: DOMSample.java which follows immediately
after this section.

1. Declare a new DOMParser()instance:

DOMParser parser = new DOMParser();

2. The XML input is a URL generated from the input filename:

URL url = DemoUtil.createURL(argv[0]);

3. The DOMParser class has several methods you can use. The example uses:

parser.setErrorStream(System.err);

file, string
buffer, or URL

xml input

new
DOMParser()

XMLParser.
parse()

XMLParser.
getDocument

DTD input

XMLParser.
parseDTD()

Available properties:
· setValidationMode
 [default = not]
· setPreserveWhiteSpace
 [default = not]
· setDocType
 [if input type is a DTD]
· setBaseURL
 [refers other locations to
 base location if reading
 from outside source]
· showWarnings

Apply other
DOM methods

DOM
document

Typically Node
class methods

To print, use the
print method.
This is a
nonstandard
DOM method

XMLParser.
getDocument-

Type()

DTD
object

DOMParser.
reset()

XDK for Java: XML Parser for Java — DOM Parser()

Using XML Parser for Java: DOMParser Class

3-14 Oracle XML Developer's Kit Programmer's Guide

parser.setValidationMode(DTD_VALIDATION);
parser.showWarnings(true);

4. The input document is parsed:

parser.parse(url);

5. The DOM tree document is obtained:

XMLDocument doc = parser.getDocument();

6. This program applies the node class methods:

■ getElementsByTagName()

■ getTagName()

■ getAttributes()

■ getNodeName()

■ getNodeValue()

7. The attributes of each element are printed.

XML Parser for Java Example 1: DOMSample.java
This example shows the Java code that uses the preceding steps.

/* Copyright (c) Oracle Corporation 2000, 2001. All Rights Reserved. */

/**
 * DESCRIPTION
 * This file demonstates a simple use of the parser and DOM API.
 * The XML file that is given to the application is parsed and the
 * elements and attributes in the document are printed.
 * The use of setting the parser options is demonstrated.
 */

import java.net.URL;

import org.w3c.dom.Node;
import org.w3c.dom.Element;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.w3c.dom.NamedNodeMap;

import oracle.xml.parser.v2.DOMParser;
import oracle.xml.parser.v2.XMLDocument;

public class DOMSample
{
 static public void main(String[] argv)
 {
 try
 {
 if (argv.length != 1)
 {
 // Must pass in the name of the XML file.
 System.err.println("Usage: java DOMSample filename");

Note: No DTD input is shown in DOMSample.java.

Using XML Parser for Java: DOMParser Class

XML Parser for Java 3-15

 System.exit(1);
 }

 // Get an instance of the parser
 DOMParser parser = new DOMParser();

// Generate a URL from the filename.
 URL url = DemoUtil.createURL(argv[0]);

 // Set various parser options: validation on,
 // warnings shown, error stream set to stderr.
 parser.setErrorStream(System.err);
 parser.setValidationMode(DOMParser.DTD_VALIDATION);
 parser.showWarnings(true);

// Parse the document.
 parser.parse(url);

 // Obtain the document.
 XMLDocument doc = parser.getDocument();

 // Print document elements
 System.out.print("The elements are: ");
 printElements(doc);

 // Print document element attributes
 System.out.println("The attributes of each element are: ");
 printElementAttributes(doc);
 }
 catch (Exception e)
 {
 System.out.println(e.toString());
 }
 }

 static void printElements(Document doc)
 {
 NodeList nl = doc.getElementsByTagName("*");
 Node n;

 for (int i=0; i<nl.getLength(); i++)
 {
 n = nl.item(i);
 System.out.print(n.getNodeName() + " ");
 }

 System.out.println();
 }

 static void printElementAttributes(Document doc)
 {
 NodeList nl = doc.getElementsByTagName("*");
 Element e;
 Node n;
 NamedNodeMap nnm;

 String attrname;
 String attrval;
 int i, len;

Using XML Parser for Java: DOMNamespace Class

3-16 Oracle XML Developer's Kit Programmer's Guide

 len = nl.getLength();

 for (int j=0; j < len; j++)
 {
 e = (Element)nl.item(j);
 System.out.println(e.getTagName() + ":");
 nnm = e.getAttributes();

 if (nnm != null)
 {
 for (i=0; i<nnm.getLength(); i++)
 {
 n = nnm.item(i);
 attrname = n.getNodeName();
 attrval = n.getNodeValue();
 System.out.print(" " + attrname + " = " + attrval);
 }
 }
 System.out.println();
 }
 }
}

Using XML Parser for Java: DOMNamespace Class
Figure 3–3 illustrates the main processes involved when parsing an XML document
using the DOM interface. The following example illustrates how to use the
DOMNamespace class:

XML Parser for Java Example 2: Parsing a URL — DOMNamespace.java
See the comments in this source code for a guide to the use of methods. The program
begins with these comments:

/**
 * DESCRIPTION
 * This file demonstates a simple use of the parser and Namespace
 * extensions to the DOM APIs.
 * The XML file that is given to the application is parsed and the
 * elements and attributes in the document are printed.
 */

The methods used on XMLElement from the NSName interface, which provides
Namespace support for element and attribute names, are:

■ getQualifiedName() returns the qualified name

■ getLocalName() returns the local name

■ getNamespace() returns the resolved Namespace for the name

■ getExpandedName() returns the fully resolved name.

Here is a how they are used later in the code:

 // Use the methods getQualifiedName(), getLocalName(), getNamespace()
 // and getExpandedName() in NSName interface to get Namespace
 // information.

 qName = nsElement.getQualifiedName();
 System.out.println(" ELEMENT Qualified Name:" + qName);

Using XML Parser for Java: SAXParser Class

XML Parser for Java 3-17

 localName = nsElement.getLocalName();
 System.out.println(" ELEMENT Local Name :" + localName);

 nsName = nsElement.getNamespace();
 System.out.println(" ELEMENT Namespace :" + nsName);

 expName = nsElement.getExpandedName();
 System.out.println(" ELEMENT Expanded Name :" + expName);
 }

For the attributes, the method getNodeValue() returns the value of this node,
depending on its type. Here is another excerpt from later in this program:

 nnm = e.getAttributes();

 if (nnm != null)
 {
 for (i=0; i < nnm.getLength(); i++)
 {
 nsAttr = (XMLAttr) nnm.item(i);

 // Use the methods getExpandedName(), getQualifiedName(),
 // getNodeValue() in NSName
 // interface to get Namespace information.

 attrname = nsAttr.getExpandedName();
 attrqname = nsAttr.getQualifiedName();
 attrval = nsAttr.getNodeValue();

No DTD is input is shown in DOMNameSpace.java.

 Using XML Parser for Java: SAXParser Class
Applications can register a SAX handler to receive notification of various parser
events. XMLReader is the interface that an XML parser's SAX2 driver must implement.
This interface enables an application to set and query features and properties in the
parser, to register event handlers for document processing, and to initiate a document
parse.

All SAX interfaces are assumed to be synchronous: the parse methods must not return
until parsing is complete, and readers must wait for an event-handler callback to
return before reporting the next event.

This interface replaces the (now deprecated) SAX 1.0 Parser interface. The XMLReader
interface contains two important enhancements over the old parser interface:

■ It adds a standard way to query and set features and properties.

■ It adds Namespace support, which is required for many higher-level XML
standards.

Table 3–3 lists the SAXParser methods.

Using XML Parser for Java: SAXParser Class

3-18 Oracle XML Developer's Kit Programmer's Guide

Figure 3–5 shows the main steps for coding with the SAXParser class.

1. Create a new handler for the parser:

SAXSample sample = new SAXSample();

2. Declare a new SAXParser() object. Table 3–3 lists all the available methods.

Parser parser = new SAXParser;

3. Set validation mode as DTD_VALIDATION.

4. Convert the input file to URL and parse:

parser.parse(DemoUtil.createURL(argv[0].toString());

5. Parse methods return when parsing completes. Meanwhile the process waits for
an event-handler callback to return before reporting the next event.

6. The parsed XML document is available for output by this application. Interfaces
used are:

■ DocumentHandler

■ EntityResolver

■ DTDHandler

■ ErrorHandler

Table 3–3 SAXParser Methods

Method Description

getContentHandler() Returns the current content handler

getDTDHandler() Returns the current DTD handler

getEntityResolver() Returns the current entity resolver

getErrorHandler() Returns the current error handler

getFeature(java.lang.String name) Looks up the value of a feature

getProperty(java.lang.String name) Looks up the value of a property

setContentHandler(ContentHandler handler) Enables an application to register a content
event handler

setDocumentHandler(DocumentHandler handler) Deprecated as of SAX2.0; replaced by
setContentHandler()

setDTDHandler(DTDHandler handler) Enables an application to register a DTD
event handler

setEntityResolver(EntityResolver resolver) Enables an application to register an entity
resolver

setErrorHandler(ErrorHandler handler) Enables an application to register an error
event handler

setFeature(java.lang.String name, boolean value) Sets the state of a feature

setProperty(java.lang.String name,
java.lang.Object value)

Sets the value of a property

Using XML Parser for Java: SAXParser Class

XML Parser for Java 3-19

Figure 3–5 Using SAXParser Class

XML Parser for Java Example 3: Using the Parser and SAX API (SAXSample.java)
This example illustrates how you can use SAXParser class and several handler
interfaces. See the comments in this source code for a guide to the use of methods.

SAX is a standard interface for event-based XML parsing. The parser reports parsing
events directly through callback functions such as setDocumentLocator() and
startDocument(). This application uses handlers to deal with the different events.

/* Copyright (c) Oracle Corporation 2000, 2001. All Rights Reserved. */

/**
 * DESCRIPTION
 * This file demonstates a simple use of the parser and SAX API.
 * The XML file that is given to the application is parsed and
 * prints out some information about the contents of this file.
 */

import java.net.URL;

import org.xml.sax.Parser;
import org.xml.sax.Locator;
import org.xml.sax.AttributeList;
import org.xml.sax.HandlerBase;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

import oracle.xml.parser.v2.SAXParser;

public class SAXSample extends HandlerBase
{
 // Store the locator
 Locator locator;

 static public void main(String[] argv)
 {
 try

file,
string buffer,

or URL
xml input

new
SAXParser()

.parse()

Callback
methods

Methods
· setValidationMode
· setPreserveWhiteSpace
· setDocType
· setBaseURL
· setContentHandler
· setDTDHandler
· setEntity Resolver
· setErrorHandler

XML Parser for Java: SAXParser()

Using XML Parser for Java: SAXParser Class

3-20 Oracle XML Developer's Kit Programmer's Guide

 {
 if (argv.length != 1)
 {
 // Must pass in the name of the XML file.
 System.err.println("Usage: SAXSample filename");
 System.exit(1);
 }
 // Create a new handler for the parser
 SAXSample sample = new SAXSample();

 // Get an instance of the parser
 Parser parser = new SAXParser();

 // set validation mode
 ((SAXParser)parser).setValidationMode(SAXParser.DTD_VALIDATION);
 // Set Handlers in the parser
 parser.setDocumentHandler(sample);
 parser.setEntityResolver(sample);
 parser.setDTDHandler(sample);
 parser.setErrorHandler(sample);

 // Convert file to URL and parse
 try
 {
 parser.parse(DemoUtil.createURL(argv[0]).toString());
 }
 catch (SAXParseException e)
 {
 System.out.println(e.getMessage());
 }
 catch (SAXException e)
 {
 System.out.println(e.getMessage());
 }
 }
 catch (Exception e)
 {
 System.out.println(e.toString());
 }
 }

 //
 // Sample implementation of DocumentHandler interface.
 //

 public void setDocumentLocator (Locator locator)
 {
 System.out.println("SetDocumentLocator:");
 this.locator = locator;
 }

 public void startDocument()
 {
 System.out.println("StartDocument");
 }

 public void endDocument() throws SAXException
 {
 System.out.println("EndDocument");
 }

Using XML Parser for Java: SAXParser Class

XML Parser for Java 3-21

 public void startElement(String name, AttributeList atts)
 throws SAXException
 {
 System.out.println("StartElement:"+name);
 for (int i=0;i<atts.getLength();i++)
 {
 String aname = atts.getName(i);
 String type = atts.getType(i);
 String value = atts.getValue(i);

 System.out.println(" "+aname+"("+type+")"+"="+value);
 }

 }

 public void endElement(String name) throws SAXException
 {
 System.out.println("EndElement:"+name);
 }

 public void characters(char[] cbuf, int start, int len)
 {
 System.out.print("Characters:");
 System.out.println(new String(cbuf,start,len));
 }

 public void ignorableWhitespace(char[] cbuf, int start, int len)
 {
 System.out.println("IgnorableWhiteSpace");
 }

 public void processingInstruction(String target, String data)
 throws SAXException
 {
 System.out.println("ProcessingInstruction:"+target+" "+data);
 }

 //
 // Sample implementation of the EntityResolver interface.
 //

 public InputSource resolveEntity (String publicId, String systemId)
 throws SAXException
 {
 System.out.println("ResolveEntity:"+publicId+" "+systemId);
 System.out.println("Locator:"+locator.getPublicId()+" "+
 locator.getSystemId()+
 " "+locator.getLineNumber()+" "+locator.getColumnNumber());
 return null;
 }

 //
 // Sample implementation of the DTDHandler interface.
 //

Using XML Parser for Java: SAXParser Class

3-22 Oracle XML Developer's Kit Programmer's Guide

 public void notationDecl (String name, String publicId, String systemId)
 {
 System.out.println("NotationDecl:"+name+" "+publicId+" "+systemId);
 }

 public void unparsedEntityDecl (String name, String publicId,
 String systemId, String notationName)
 {
 System.out.println("UnparsedEntityDecl:"+name + " "+publicId+" "+
 systemId+" "+notationName);
 }

 //
 // Sample implementation of the ErrorHandler interface.
 //

 public void warning (SAXParseException e)
 throws SAXException
 {
 System.out.println("Warning:"+e.getMessage());
 }

 public void error (SAXParseException e)
 throws SAXException
 {
 throw new SAXException(e.getMessage());
 }

 public void fatalError (SAXParseException e)
 throws SAXException
 {
 System.out.println("Fatal error");
 throw new SAXException(e.getMessage());
 }
}

XML Parser for Java Example 4: (SAXNamespace.java)
See the comments in this source code for use of the SAX APIs.

/* Copyright (c) Oracle Corporation 2000, 2001. All Rights Reserved. */

/**
 * DESCRIPTION
 * This file demonstrates a simple use of the Namespace extensions to
 * the SAX 1.0 APIs.
 */

import java.net.URL;

import org.xml.sax.HandlerBase;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

// Extensions to the SAX Interfaces for Namespace support.
import oracle.xml.parser.v2.XMLDocumentHandler;
import oracle.xml.parser.v2.DefaultXMLDocumentHandler;
import oracle.xml.parser.v2.NSName;

Using XML Parser for Java: SAXParser Class

XML Parser for Java 3-23

import oracle.xml.parser.v2.SAXAttrList;

import oracle.xml.parser.v2.SAXParser;

public class SAXNamespace {

 static public void main(String[] args) {

 String fileName;

 //Get the file name

 if (args.length == 0)
 {
 System.err.println("No file Specified!!!");
 System.err.println("USAGE: java SAXNamespace <filename>");
 return;
 }
 else
 {
 fileName = args[0];
 }

 try {

 // Create handlers for the parser

 // Use the XMLDocumentHandler interface for namespace support
 // instead of org.xml.sax.DocumentHandler
 XMLDocumentHandler xmlDocHandler = new XMLDocumentHandlerImpl();

 // For all the other interface use the default provided by
 // Handler base
 HandlerBase defHandler = new HandlerBase();

 // Get an instance of the parser
 SAXParser parser = new SAXParser();

 // set validation mode
 ((SAXParser)parser).setValidationMode(SAXParser.DTD_VALIDATION);

 // Set Handlers in the parser
 // Set the DocumentHandler to XMLDocumentHandler
 parser.setDocumentHandler(xmlDocHandler);

 // Set the other Handler to the defHandler
 parser.setErrorHandler(defHandler);
 parser.setEntityResolver(defHandler);
 parser.setDTDHandler(defHandler);

 try
 {
 parser.parse(DemoUtil.createURL(fileName).toString());
 }
 catch (SAXParseException e)
 {
 System.err.println(args[0] + ": " + e.getMessage());
 }
 catch (SAXException e)

Using XML Parser for Java: SAXParser Class

3-24 Oracle XML Developer's Kit Programmer's Guide

 {
 System.err.println(args[0] + ": " + e.getMessage());
 }
 }
 catch (Exception e)
 {
 System.err.println(e.toString());
 }
 }

}

/***
 Implementation of XMLDocumentHandler interface. Only the new
 startElement and endElement interfaces are implemented here. All other
 interfaces are implemented in the class HandlerBase.
**/

class XMLDocumentHandlerImpl extends DefaultXMLDocumentHandler
{

 public void XMLDocumentHandlerImpl()
 {
 }

 public void startElement(NSName name, SAXAttrList atts) throws SAXException
 {

 // Use the methods getQualifiedName(), getLocalName(), getNamespace()
 // and getExpandedName() in NSName interface to get Namespace
 // information.

 String qName;
 String localName;
 String nsName;
 String expName;

 qName = name.getQualifiedName();
 System.out.println("ELEMENT Qualified Name:" + qName);

 localName = name.getLocalName();
 System.out.println("ELEMENT Local Name :" + localName);

 nsName = name.getNamespace();
 System.out.println("ELEMENT Namespace :" + nsName);

 expName = name.getExpandedName();
 System.out.println("ELEMENT Expanded Name :" + expName);

 for (int i=0; i<atts.getLength(); i++)
 {

 // Use the methods getQualifiedName(), getLocalName(), getNamespace()
 // and getExpandedName() in SAXAttrList interface to get Namespace
 // information.

 qName = atts.getQualifiedName(i);
 localName = atts.getLocalName(i);
 nsName = atts.getNamespace(i);

Using the XML Parser for Java

XML Parser for Java 3-25

 expName = atts.getExpandedName(i);

 System.out.println(" ATTRIBUTE Qualified Name :" + qName);
 System.out.println(" ATTRIBUTE Local Name :" + localName);
 System.out.println(" ATTRIBUTE Namespace :" + nsName);
 System.out.println(" ATTRIBUTE Expanded Name :" + expName);

 // You can get the type and value of the attributes either
 // by index or by the Qualified Name.

 String type = atts.getType(qName);
 String value = atts.getValue(qName);

 System.out.println(" ATTRIBUTE Type :" + type);
 System.out.println(" ATTRIBUTE Value :" + value);

 System.out.println();

 }
 }

 public void endElement(NSName name) throws SAXException
 {
 // Use the methods getQualifiedName(), getLocalName(), getNamespace()
 // and getExpandedName() in NSName interface to get Namespace
 // information.

 String expName = name.getExpandedName();
 System.out.println("ELEMENT Expanded Name :" + expName);
 }

}

Using the XML Parser for Java
Here are some helpful hints for using the XML Parser for Java. This section contains
these topics:

■ Using DOM and SAX APIs for Java

■ Using Character Sets with the XML Parser for Java

■ General Questions About XML Parser for Java

Using DOM and SAX APIs for Java
Here is some further information about the DOM and SAX APIs.

Using the DOM API to Count Tagged Elements
To get the number of elements in a particular tag using the parser, you can use the
getElementsByTagName() method that returns a node list of all descent elements
with a given tag name. You can then find out the number of elements in that node list
to determine the number of the elements in the particular tag.

Creating a Node with a Value to Be Set Later
If you check the DOM specification, referring to the table discussing the node type,
you will find that if you are creating an element node, its node value is null, and

Using the XML Parser for Java

3-26 Oracle XML Developer's Kit Programmer's Guide

cannot be set. However, you can create a text node and append it to the element node.
You can then put the value in the text node.

Traversing the XML Tree Using XPATH
You can traverse the tree by using the DOM API. Alternately, you can use the
selectNodes() method which takes XPath syntax to navigate through the XML
document. selectNodes() is part of oracle.xml.parser.v2.XMLNode.

Finding the First Child Node Element Value
Here is how to efficiently obtain the value of first child node of the element without
going through the DOM tree. If you do not need the entire tree, use the SAX interface
to return the desired data. Since it is event-driven, it does not have to parse the whole
document.

Using the XMLNode.selectNodes() Method
The selectNodes() method is used in XMLElement and XMLDocument nodes. This
method is used to extract contents from the tree or subtree based on the select patterns
allowed by XSL. The optional second parameter of selectNodes, is used to resolve
namespace prefixes (that is, it returns the expanded namespace URL given a prefix).
XMLElement implements NSResolver, so it can be sent as the second parameter.
XMLElement resolves the prefixes based on the input document. You can use the
NSResolver interface, if you need to override the namespace definitions. The
following sample code uses selectNodes.

public class SelectNodesTest {
public static void main(String[] args) throws Exception {
String pattern = "/family/member/text()";
String file = args[0];

if (args.length == 2)
 pattern = args[1];

DOMParser dp = new DOMParser();

dp.parse(createURL(file)); // Include createURL from DOMSample
XMLDocument xd = dp.getDocument();
XMLElement e = (XMLElement) xd.getDocumentElement();
NodeList nl = e.selectNodes(pattern, e);
for (int i = 0; i < nl.getLength(); i++) {
 System.out.println(nl.item(i).getNodeValue());
 }
 }
}

> java SelectNodesTest family.xml
Sarah
Bob
Joanne
Jim

> java SelectNodesTest family.xml //member/@memberid
m1
m2
m3
m4

Using the XML Parser for Java

XML Parser for Java 3-27

Generating an XML Document from Data in Variables
Here is an example of XML document generation starting from information contained
in simple variables, such as when a client fills in a Java form and wants to obtain an
XML document.

If you have two variables in Java:

String firstname = "Gianfranco";
String lastname = "Pietraforte";

The two ways to get this information into an XML document are as follows:

1. Make an XML document in a string and parse it:

String xml = "<person><first>"+firstname+"</first>"+
 "<last>"+lastname+"</last></person>";
DOMParser d = new DOMParser();
d.parse(new StringReader(xml));
Document xmldoc = d.getDocument();

2. Use DOM APIs to construct the document and append it together:

Document xmldoc = new XMLDocument();
Element e1 = xmldoc.createElement("person");
xmldoc.appendChild(e1);
Element e2 = xmldoc.createElement("first");
e1.appendChild(e2);
Text t = xmldoc.createText(firstname);
e2.appendChild(t);

Using the DOM API to Print Data in the Element Tags
For DOM, <name>macy</name> is actually an element named name with a child
node (Text Node) of value macy. The sample code is:

String value = myElement.getFirstChild().getNodeValue();

Building XML Files from Hash Table Value Pairs
If you have a hash table key = value name = george zip = 20000:

<key>value</key><name>george</name><zip>20000</zip>

1. Get the enumeration of keys from your hash table.

2. Loop while enum.hasMoreElements().

3. For each key in the enumeration, use the createElement() on DOM document
to create an element by the name of the key with a child text node with the value
of the value of the hash table entry for that key.

DOM Exception WRONG_DOCUMENT_ERR on Node.appendChild()
If you have the following code snippet:

 Document doc1 = new XMLDocument();
 Element element1 = doc1.creatElement("foo");
 Document doc2 = new XMLDocument();
 Element element2 = doc2.createElement("bar");
 element1.appendChild(element2);

You will get a DOM exception of WRONG_DOCUMENT_ERR on calling the
appendChild() routine, since the owner document of element1 is doc1 while that

Using the XML Parser for Java

3-28 Oracle XML Developer's Kit Programmer's Guide

of element2 is doc2. AppendChild() only works within a single tree and the
example uses two different ones. You need to use importNode() or adoptNode()
instead

Getting DOMException when Setting Node Value
If you create an element node, its nodeValue is null and hence cannot be set. You
get the following error:

oracle.xml.parser.XMLDOMException: Node cannot be modified while trying to set
 the value of a newly created node as below:
 String eName="Mynode";
 XMLNode aNode = new XMLNode(eName, Node.ELEMENT_NODE);
 aNode.setNodeValue(eValue);

Extracting Embedded XML from a CDATA Section
Here is an example to extract XML from the CDATA section of a DTD, which is:

<PAYLOAD>
<![CDATA[<?xml version = '1.0' encoding = 'ASCII' standalone = 'no'?>
<ADD_PO_003>
 <CNTROLAREA>
 <BSR>
 <VERB value="ADD">ADD</VERB>
 <NOUN value="PO">PO</NOUN>
 <REVISION value="003">003</REVISION>
 </BSR>
 </CNTROLAREA>
</ADD_PO_003>]]>
</PAYLOAD>

Extracting PAYLOAD to do Extra Processing You cannot use a different encoding on the
nested XML document included as text inside the CDATA, so having the XML
declaration of the embedded document seems of little value. If you do not need the
XML declaration, then embed the message as real elements into the <PAYLOAD>
instead of as a text chunk, which is what CDATA does for you.

Use the following code:

String s = YourDocumentObject.selectSingleNode("/OES_MESSAGE/PAYLOAD");

The data is not parsed because it is in a CDATA section when you select the value of
PAYLOAD.

You have asked for it to be a big text chunk, which is what it will give you. You must
parse the text chunk yourself (another benefit of not using the CDATA approach) this
way:

YourParser.parse(new StringReader(s));

where s is the string you got in the previous step.

Using Character Sets with the XML Parser for Java
Here are hints about character sets:

Reading a Unicode XML File
When reading an XML document stored in an operating system file, do not use the
FileReader class. Instead, use the XML Parser for Java to automatically detect the

Using the XML Parser for Java

XML Parser for Java 3-29

character encoding of the document. Given a binary input stream with no external
encoding information, the parser automatically figures out the character encoding
based on the byte order mark and encoding declaration of the XML document. Any
well-formed document in any supported encoding can be successfully parsed using
the following sample code:

import java.io.*;
import oracle.xml.parser.v2.*;
public class I18nSafeXMLFileReadingSample
{
public static void main(String[] args) throws Exception
{
// create an instance of the xml file
File file = new File("myfile.xml");
// create a binary input stream
FileInputStream fis = new FileInputStream(file);
// buffering for efficiency
BufferedInputStream in = new BufferedInputStream(fis);
// get an instance of the parser
DOMParser parser = new DOMParser();
// parse the xml file
parser.parse(in);
}

Writing an XML File in UTF-8
FileWriter class should not be used in writing XML files because it depends on the
default character encoding of the runtime environment. The output file can suffer from
a parsing error or data loss if the document contains characters that are not available in
the default character encoding.

UTF-8 encoding is popular for XML documents, but UTF-8 is not usually the default
file encoding of Java. Using a Java class that assumes the default file encoding can
cause problems. The following example shows how to avoid these problems:

mport java.io.*;
import oracle.xml.parser.v2.*;

public class I18nSafeXMLFileWritingSample
{
 public static void main(String[] args) throws Exception
 {
 // create a test document
 XMLDocument doc = new XMLDocument();
 doc.setVersion("1.0");
 doc.appendChild(doc.createComment("This is a test empty document."));
 doc.appendChild(doc.createElement("root"));

 // create a file
 File file = new File("myfile.xml");

 // create a binary output stream to write to the file just created
 FileOutputStream fos = new FileOutputStream(file);

 // create a Writer that converts Java character stream to UTF-8 stream
 OutputStreamWriter osw = new OutputStreamWriter(fos,"UTF8");

 // buffering for efficiency
 Writer w = new BufferedWriter(osw);

 // create a PrintWriter to adapt to the printing method

Using the XML Parser for Java

3-30 Oracle XML Developer's Kit Programmer's Guide

 PrintWriter out = new PrintWriter(w);

 // print the document to the file through the connected objects
 doc.print(out);
 }
}

Writing Parsing XML Stored in NCLOB with UTF-8 Encoding
The following problem with parsing XML stored in an NCLOB column using UTF-8
encoding was reported.

An XML sample that is loaded into the database contains two UTF-8 multibyte
characters: The text is supposed to be:

G(0xc2,0x82)otingen, Br(0xc3,0xbc)ck_W

A Java stored function was written that uses the default connection object to connect to
the database, runs a select query, gets the OracleResultSet, calls the getCLOB()
method and calls the getAsciiStream() method on the CLOB object. Then it
executes the following code to get the XML into a DOM object:

DOMParser parser = new DOMParser();
parser.setPreserveWhitespace(true);
parser.parse(istr);
// istr getAsciiStreamXMLDocument xmldoc = parser.getDocument();

The code throws an exception stating that the XML contains an invalid UTF-8
encoding. The character (0xc2, 0x82) is valid UTF-8. The character can be distorted
when getAsciiStream() is called.

To solve this problem, use getUnicodeStream() and getBinaryStream() instead
of getAsciiStream().

If this does not work, try to print out the characters to make sure that they are not
distorted before they are sent to the parser in step: parser.parse(istr)

Parsing a Document Containing Accented Characters
This is the way to parse a document containing accented characters:

DOMParser parser=new DOMParser();
parser.setPreserveWhitespace(true);
parser.setErrorStream(System.err);
parser.setValidationMode(false);
parser.showWarnings(true);
parser.parse (new FileInputStream(new File("PruebaA3Ingles.xml")));

Storing Accented Characters in an XML Document
If you have stored accented characters, for example, an é, in your XML file and then
attempt to parse the XML file with the XML Parser for Java, the parser may throw the
following exception:

'Invalid UTF-8 encoding'

You can read in accented characters in their hex or decimal format within the XML
document, for example:

é

but if you prefer not to do this, set the encoding based on the character set you were
using when you created the XML file. Try setting the encoding to ISO-8859-1 (Western

Using the XML Parser for Java

XML Parser for Java 3-31

European ASCII). Use that encoding or something different, depending on the tool or
operating system you are using.

If you explicitly set the encoding to UTF-8 (or do not specify it at all), the parser
interprets your accented character (which has an ASCII value > 127) as the first byte of
a UTF-8 multibyte sequence. If the subsequent bytes do not form a valid UTF-8
sequence, you get an error.

This error just means that your editor is not saving the file with UTF-8 encoding. For
example, it might be saving it with ISO-8859-1 encoding. The encoding is a particular
scheme used to write the Unicode character number representation to disk. Just
adding this string to the top of the document does not cause your editor to write out
the bytes representing the file to disk using UTF-8 encoding:

<?xml version="1.0" encoding="UTF-8"?>

Notepad uses UTF-8 on Windows systems.

You Cannot Dynamically Set the Encoding for an Input XML File
You need to include the proper encoding declaration in your document according to
the specification. You cannot use setEncoding() to set the encoding for your input
document. SetEncoding() is used with oracle.xml.parser.v2.XMLDocument
to set the correct encoding for the printing.

Using System.out.println() and Special Characters
You cannot use System.out.println(). You need to use an output stream which is
encoding aware (for example, OutputStreamWriter). You can construct an
OutputStreamWriter and use the write(char[], int, int) method to print.

/* Example */
OutputStreamWriter out = new OutputStreamWriter
(System.out, "8859_1");
/* Java enc string for ISO8859-1*/

General Questions About XML Parser for Java
These are general questions:

Including Binary Data in an XML Document
There is no way to directly include binary data within the document; however, there
are two ways to work around this:

■ Binary data can be referenced as an external unparsed entity that resides in a
different file.

■ Binary data can be uuencoded (meaning converted into ASCII data by UUENCODE
program) and be included in a CDATA section. The limitation on the encoding
technique is to ensure that it only produces legal characters for the CDATA section.

■ base64 is a command line utility which encodes and decodes files in a format used
by MIME-encoded documents.

Displaying an XML Document
If you are using IE5 as your browser you can display the XML document directly.
Otherwise, you can use the Oracle XSLT Processor version 2 to create the HTML
document using an XSL Stylesheet. The XDK JavaBeans also enable you to view your
XML document.

Using the XML Parser for Java

3-32 Oracle XML Developer's Kit Programmer's Guide

Including an External XML File in Another XML File
IE 5.0 will parse an XML file and show the parsed output. Just load the file as you load
an HTML page.

The following works, both browsing it in IE5 as well as parsing it with the XML Parser
for Java:

File: a.xml
<?xml version="1.0" ?>
<!DOCTYPE a [<!ENTITY b SYSTEM "b.xml">]>
 <a>&b;

File: b.xml
 <ok/>

When you browse and parse a.xml you get the following:

<a>
 <ok/>

You Do Not Need Oracle9i or Higher to Run XML Parser for Java
XML Parser for Java can be used with any of the supported version Java VMs. The
only difference with Oracle9i or higher, is that you can load it into the database and
use Oracle9i JVM which is an internal JVM. For other database versions or servers, you
simply run it in an external JVM and as necessary connect to a database through JDBC.

Inserting Characters <, >, ', ", and & into XML Documents
You must use the entity references:

■ > for greater than (>)

■ < for less than (<)

■ ' for an apostrophe or a single quote (')

■ " for straight double quotes (")

■ & for ampersand (&)

Invalid Special Characters in Tags
If you have a tag in XML <COMPANYNAME> and use A&B, the parser gives an error with
invalid character.

Special characters such as &, $, and #, and so on are not allowed to be used. If you are
creating an XML document from scratch, you can use a workaround by using only
valid NameChars. For example, <A_B>, <AB>, <A_AND_B> and so on. They are still
readable.

If you are generating XML from external data sources such as database tables, then
this is a problem which XML 1.0 does not address.

The datatype XMLType addresses this problem by offering a function which maps SQL
names to XML names. The SQL to XML name mapping function will escape invalid
XML NameChar in the format of _XHHHH_ where HHHH is a Unicode value of the
invalid character. For example, table name V$SESSION will be mapped to XML name
V_X0024_SESSION.

Finally, escaping invalid characters is a workaround to give people a way to serialize
names so that they can reload them somewhere else.

Using the XML Parser for Java

XML Parser for Java 3-33

Parsing XML from Data of Type String
Currently there is no method that can directly parse an XML document contained
within a string. You need to convert the string into an InputStream or
InputSource before parsing. An easy way is to create a ByteArrayInputStream
using the bytes in the string. For example:

/* xmlDoc is a String of xml */
byte aByteArr [] = xmlDoc.getBytes();
ByteArrayInputStream bais = new ByteArrayInputStream (aByteArr, 0,
aByteArr.length);
domParser.parse(bais);

Extracting Data from an XML Document into a String
Here is an example to do this:

XMLDocument Your Document;
/* Parse and Make Mods */
:
StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter(sw);
YourDocument.print(pw);
String YourDocInString = sw.toString();

Illegal Characters in XML Documents
If you limit it to 8-bit, then #x0-#x8; #xB, #xC, #xE, and #xF are not legal.

Using Entity References with the XML Parser for Java
If the XML Parser for Java does not expand entity references, such as &[whatever]
and instead, all values are null, how can you fix this?

You probably have a simple error defining or using your entities, since Oracle has
regression tests that handle entity references without error. A simple example is:]>
Alpha, then &status.

Merging XML Documents
This is done either using DOM or XSLT.

The XML Parser for Java Does Not Need a Utility to View the Parsed Output
The parsed external entity only needs to be a well-formed fragment. The following
program (with xmlparser.jar from version 1) in your CLASSPATH shows parsing
and printing the parsed document. It's parsing here from a string but the mechanism is
no different for parsing from a file, given its URL.

import oracle.xml.parser.*;
import java.io.*;
import java.net.*;
import org.w3c.dom.*;
import org.xml.sax.*;
/*
** Simple Example of Parsing an XML File from a String
** and, if successful, printing the results.
**
** Usage: java ParseXMLFromString <hello><world/></hello>
*/

See Also: "Merging Two XML Documents" on page 4-11

Using the XML Parser for Java

3-34 Oracle XML Developer's Kit Programmer's Guide

public class ParseXMLFromString {
 public static void main(String[] arg) throws IOException, SAXException {
 String theStringToParse =
 "<?xml version='1.0'?>"+
 "<hello>"+
 " <world/>"+
 "</hello>";
 XMLDocument theXMLDoc = parseString(theStringToParse);
 // Print the document out to standard out
 theXMLDoc.print(System.out);
 }
 public static XMLDocument parseString(String xmlString) throws
 IOException, SAXException {
 XMLDocument theXMLDoc = null;
 // Create an oracle.xml.parser.v2.DOMParser to parse the document.
 XMLParser theParser = new XMLParser();
 // Open an input stream on the string
 ByteArrayInputStream theStream =
 new ByteArrayInputStream(xmlString.getBytes());
 // Set the parser to work in non-Validating mode
 theParser.setValidationMode(DTD_validation);
 try {
 // Parse the document from the InputStream
 theParser.parse(theStream);
 // Get the parsed XML Document from the parser
 theXMLDoc = theParser.getDocument();
 }
 catch (SAXParseException s) {
 System.out.println(xmlError(s));
 throw s;
 }
 return theXMLDoc;
 }
 private static String xmlError(SAXParseException s) {
 int lineNum = s.getLineNumber();
 int colNum = s.getColumnNumber();
 String file = s.getSystemId();
 String err = s.getMessage();
 return "XML parse error in file " + file +
 "\n" + "at line " + lineNum + ", character " + colNum +
 "\n" + err;
 }
}

Support for Hierarchical Mapping
About the relational mapping of parsed XML data: some users prefer hierarchical
storage of parsed XML data. Will XMLType address this concern?

Many customers initially have this concern. It depends on what kind of XML data you
are storing. If you are storing XML datagrams that are really just encoding of relational
information (for example, a purchase order), then you will get much better
performance and much better query flexibility (in SQL) by storing the data contained
in the XML documents in relational tables, then reproduce on-demand an XML format
when any particular data needs to be extracted.

If you are storing documents that are mixed-content, like legal proceedings, chapters
of a book, reference manuals, and so on, then storing the documents in chunks and
searching them using Oracle Text's XML search capabilities is the best bet.

Using the XML Parser for Java

XML Parser for Java 3-35

The book, Building Oracle XML Applications, by Steve Muench, covers both of these
storage and searching techniques with lots of examples.

Support for Ambiguous Content Mode
Are there plans to add an ambiguous content mode to the XDK Parser for Java?

The XML Parser for Java implements all the XML 1.0 standard, and the XML 1.0
standard requires XML documents to have unambiguous content models. Therefore,
there is no way a compliant XML 1.0 parser can implement ambiguous content
models.

Generating an XML Document Based on Two Tables
If you want to generate an XML document based on two tables with a master detail
relationship. Suppose you have two tables:

■ PARENT with columns: ID and PARENT_NAME (Key = ID)

■ CHILD with columns: PARENT_ID, CHILD_ID, CHILD_NAME (Key = PARENT_
ID + CHILD_ID)

There is a master detail relationship between PARENT and CHILD. How can you
generate a document that looks like this?

<?xml version = '1.0'?>
 <ROWSET>
 <ROW num="1">
 <parent_name>Bill</parent_name>
 <child_name>Child 1 of 2</child_name>
 <child_name>Child 2 of 2</child_name>
 </ROW>
 <ROW num="2">
 <parent_name>Larry</parent_name>
 <child_name>Only one child</child_name>
 </ROW>
 </ROWSET>

Use an object view to generate an XML document from a master-detail structure. In
your case, use the following code:

create type child_type is object
(child_name <data type child_name>) ;
/
create type child_type_nst
is table of child_type ;
/

create view parent_child
as
select p.parent_name
, cast
 (multiset
 (select c.child_name
 from child c
 where c.parent_id = p.id
) as child_type_nst
) child_type
from parent p
/

See Also: http://www.xml.com/axml/target.html#determinism

Using JAXP

3-36 Oracle XML Developer's Kit Programmer's Guide

A SELECT * FROM parent_child, processed by an SQL to XML utility generates a
valid XML document for your parent child relationship. The structure does not look
like the one you have presented, though. It looks like this:

<?xml version = '1.0'?>
<ROWSET>
 <ROW num="1">
 <PARENT_NAME>Bill</PARENT_NAME>
 <CHILD_TYPE>
 <CHILD_TYPE_ITEM>
 <CHILD_NAME>Child 1 of 2</CHILD_NAME>
 </CHILD_TYPE_ITEM>
 <CHILD_TYPE_ITEM>
 <CHILD_NAME>Child 2 of 2</CHILD_NAME>
 </CHILD_TYPE_ITEM>
 </CHILD_TYPE>
 </ROW>
 <ROW num="2">
 <PARENT_NAME>Larry</PARENT_NAME>
 <CHILD_TYPE>
 <CHILD_TYPE_ITEM>
 <CHILD_NAME>Only one child</CHILD_NAME>
 </CHILD_TYPE_ITEM>
 </CHILD_TYPE>
 </ROW>
</ROWSET>

Using JAXP
The Java API for XML Processing (JAXP) enables you to use the SAX, DOM, and XSLT
processors from your Java application. JAXP enables applications to parse and
transform XML documents using an API that is independent of a particular XML
processor implementation.

JAXP has a pluggability layer that enables you to plug in an implementation of a
processor. The JAXP APIs have an API structure consisting of abstract classes
providing a thin layer for parser pluggability. Oracle has implemented JAXP based on
the Sun Microsystems reference implementation.

The sample programs JAXPExamples.java and ora.ContentHandler.java in
the directory xdk/demo/java/parser/jaxp demonstrate various ways that the
JAXP API can be used to transform any one of the classes of the interface Source:

■ DOMSource class

■ StreamSource class

■ SAXSource class

into any one of the classes of the interface Result:

DOMResult class

StreamResult class

SAXResult class

These transformations use XML documents as sample input, optional stylesheets as
input, and, optionally, a ContentHandler class defined in the file
oraContentHandler.java. For example, one method, identity, does an identity
transformation where the output XML document is the same as the input XML

oraxml: XML Parser for Java Command-line

XML Parser for Java 3-37

document. Another method, xmlFilterChain(), applies three stylesheets in a
chain.

Among the drawbacks of JAXP are the additional interface cost, features that are
behind "native" Parsers, and the fact that a DOM cannot be shared by processing
components.

oraxml: XML Parser for Java Command-line
oraxml is a command-line interface to parse an XML document. It checks for
well-formedness and validity.

To use oraxml ensure that the following is true:

■ Your CLASSPATH environment variable is set to point to the xmlparserv2.jar
file that comes with XML V2 Parser for Java. Because oraxml supports schema
validation, include xschema.jar also in your CLASSPATH.

■ Your PATH environment variable can find the Java interpreter that comes with the
JDK that you are using.

Table 3–4 lists the oraxml command line options.

See Also: More examples can be found at:

■ http://www.oracle.com/technology/tech/xml

■ http://java.sun.com/xml/jaxp/

■ and in the directory xdk/demo/java/parser/jaxp

Table 3–4 oraxml: Command Line Options

Option Purpose

-comp fileName Compresses the input XML file

-decomp fileName Decompresses the input compressed file

-dtd fileName Validates the input file with DTD Validation

-enc fileName Prints the encoding of the input file

-help Prints the help message

-log logfile Writes the errors to the output log file

-novalidate fileName Checks whether the input file is well-formed

-schema fileName Validates the input file with Schema Validation

-version Prints the release version

-warning Show warnings

oraxml: XML Parser for Java Command-line

3-38 Oracle XML Developer's Kit Programmer's Guide

XSLT Processor for Java 4-1

4
XSLT Processor for Java

This chapter contains these topics:

■ XSLT Processor for Java Overview

■ Using XSLT Processor for Java

■ XSLT Command-Line Interface: oraxsl

■ XML Extension Functions for XSLT Processing

■ Hints for Using the XSLT Processor for Java and XSL

XSLT Processor for Java Overview
Oracle provides eXtensible Stylesheet Language Transformation (XSLT) processing
for Java, C, C++, and PL/SQL. This chapter focuses on the XSLT Processor for Java.
XSLT is a W3C Internet standard that has a version 1.0, and also a 2.0 version currently
in process. XSLT also uses XPath, which is the navigational language used by XSLT
and has corresponding versions. The XSLT Processor for Java implements both the
XSLT and XPath 1.0 standards as well as a draft of the XSLT and XPath 2.0 standard.
Please see the README for the specific versions.

While XSLT is a function-based language that generally requires a DOM of the input
document and stylesheet to perform the transformation, the Java implementation uses
SAX, a stream-based parser to create a stylesheet object to perform transformations
with higher efficiency and less resources. This stylesheet object can be reused to
transform multiple documents without re-parsing the stylesheet.

The XSLT Processor for Java includes additional high performance features. It is
thread-safe to allow processing multiple files with a single XSLT Processor for Java
and stylesheet object. It is also safe to use clones of the document instance in multiple
threads.

Using XSLT Processor for Java
The XSLT Processor for Java operates on two inputs: the XML document to transform,
and the XSLT stylesheet that is used to apply transformations on the XML. Each of
these two can actually be multiple inputs. One stylesheet can be used to transform
multiple XML inputs. Multiple stylesheets can be mapped to a single XML input.

To implement the XSLT Processor in the XML Parser for Java use the XSLProcessor
class.

Figure 4–1 shows the overall process used by the XSLProcessor class. Here are the
steps:

Using XSLT Processor for Java

4-2 Oracle XML Developer's Kit Programmer's Guide

1. Create an XSLProcessor object and then use methods from the following list in
your Java code. Some of the available methods are:

■ removeParam() - remove parameter

■ RESETPARAM() - remove all parameters

■ setParam() - set parameters for the transformation

■ setBaseURL() - set a base URL for any relative references in the stylesheet

■ setEntityResolver() - set an entity resolver for any relative references in
the stylesheet

■ setLocale() - set locale for error reporting

2. Use one of the following input parameters to the method
XSLProcessor.newXSLStylesheet() to create a stylesheet object:

■ java.io.Reader

■ java.io.InputStream

■ XMLDocument

■ java.net.URL

This creates a stylesheet object that is thread-safe and can be used in multiple XSL
Processors.

3. Create a DOM object by passing one of the XML inputs in step 2, to the DOM
parser and creating an XML input object with parser.getDocument.

4. Your XML inputs and the stylesheet object are input (each using one of the input
parameters listed in 2) to the XSL Processor:

XSLProcessor.processXSL(xslstylesheet, xml instance)

The results of the XSL Transformation can be one of the following:

■ Create an XML document object

■ Write to an output stream

■ Report as SAX events

Using XSLT Processor for Java

XSLT Processor for Java 4-3

Figure 4–1 Using XSL Processor for Java

Unlike in HTML, in XML every start tag must have an ending tag and that the tags are
case sensitive.

XSLT Processor for Java Example
This example has many comments. It uses one XML document and one XSL stylesheet
as inputs.

public class XSLSample
{
 public static void main(String args[]) throws Exception
 {
 if (args.length < 2)
 {
 System.err.println("Usage: java XSLSample xslFile xmlFile.");
 System.exit(1);
 }

 // Create a new XSLProcessor.
 XSLProcessor processor = new XSLProcessor();

 // Register a base URL to resolve relative references
 // processor.setBaseURL(baseURL);

 // Or register an org.xml.sax.EntityResolver to resolve
 // relative references
 // processor.setEntityResolver(myEntityResolver);

Create an XML
document object

Write to an
output stream

Repart as
SAX events

XSLT
Transformation

XSLProcessor

XSLProcessor
object methods:
• removeParam()
• resetParam()
• setParam()
• setBaseURL()
• setEntityResolver()
• setLocale()

XSL input

java.io.Reader
java.io.InputStream
XMLDocument
java.net.URL

XML input

XSL Stylesheet
object

Using XSLT Processor for Java

4-4 Oracle XML Developer's Kit Programmer's Guide

 // Register an error log
 // processor.setErrorStream(new FileOutputStream("error.log"));

 // Set any global paramters to the processor
 // processor.setParam(namespace, param1, value1);
 // processor.setParam(namespace, param2, value2);

 // resetParam is for multiple XML documents with different parameters

 String xslFile = args[0];
 String xmlFile = args[1];

 // Create a XSLStylesheet
 // The stylesheet can be created using one of following inputs:
 //
 // XMLDocument xslInput = /* using DOMParser; see later in this code */
 // URL xslInput = new URL(xslFile);
 // Reader xslInput = new FileReader(xslFile);

 InputStream xslInput = new FileInputStream(xslFile);

 XSLStylesheet stylesheet = processor.newXSLStylesheet(xslInput);

 // Prepare the XML instance document
 // The XML instance can be given to the processor in one of
 // following ways:
 //
 // URL xmlInput = new URL(xmlFile);
 // Reader xmlInput = new FileReader(xmlFile);
 // InputStream xmlInput = new FileInputStream(xmlFile);
 // Or using DOMParser

 DOMParser parser = new DOMParser();
 parser.retainCDATASection(false);
 parser.setPreserveWhitespace(true);
 parser.parse(xmlFile);
 XMLDocument xmlInput = parser.getDocument();

 // Transform the XML instance
 // The result of the transformation can be one of the following:
 //
 // 1. Return a XMLDocumentFragment
 // 2. Print the results to a OutputStream
 // 3. Report SAX Events to a ContentHandler

 // 1. Return a XMLDocumentFragment
 XMLDocumentFragment result;
 result = processor.processXSL(stylesheet, xmlInput);

 // Print the result to System.out
 result.print(System.out);

 // 2. Print the results to a OutputStream
 // processor.processXSL(stylesheet, xmlInput, System.out);

 // 3. Report SAX Events to a ContentHandler
 // ContentHandler cntHandler = new MyContentHandler();
 // processor.processXSL(stylesheet, xmlInput, cntHandler);

XSLT Command-Line Interface: oraxsl

XSLT Processor for Java 4-5

 }
}

XSLT Command-Line Interface: oraxsl
oraxsl is a command-line interface used to apply a stylesheet on multiple XML
documents. It accepts a number of command-line options that determine its behavior.
oraxsl is included in the $ORACLE_HOME/bin directory. To use oraxsl ensure the
following:

■ Your CLASSPATH environment variable is set to point to the xmlparserv2.jar
file that comes with XML Parser for Java, version 2.

■ Your PATH environment variable can find the Java interpreter that comes with JDK
1.2 or higher.

Use the following syntax to invoke oraxsl:

oraxsl options source stylesheet result

oraxsl expects to be given a stylesheet, an XML file to transform, and optionally, a
result file. If no result file is specified, it outputs the transformed document to the
standard output. If multiple XML documents need to be transformed by a stylesheet,
use the -l or -d options in conjunction with the -s and -r options. These and other
options are described in Table 4–1.

See Also:

■ http://www.w3.org/TR/xslt which is the W3C Web site

■ http://www.w3.org/style/XSL/ for more information

■ "SAX: Event-Based API" on page 3-8

Table 4–1 oraxsl: Command Line Options

Option Purpose

-d directory Directory with files to transform (the default behavior is to
process all files in the directory). If only a certain subset of the
files in that directory, for example, one file, need to be
processed, this behavior must be changed by using -l and
specifying just the files that need to be processed. You can also
change the behavior by using the -x or -i option to select files
based on their extension).

-debug Debug mode (by default, debug mode is turned off).

-e error_log The file to write errors and warnings into.

-h Help mode (prints oraxsl invocation syntax).

-i source_extension Extensions to include (used in conjunction with -d. Only files
with the specified extension are selected).

-l xml_file_list List of files to transform (enables you to explicitly list the files
to be processed).

-o result_directory Directory to place results (this must be used in conjunction
with the -r option).

-p param_list List of Parameters.

XML Extension Functions for XSLT Processing

4-6 Oracle XML Developer's Kit Programmer's Guide

XML Extension Functions for XSLT Processing
XML extension functions for XSLT processing allow users of XSLT processor for Java
to call any Java method from XSL expressions.

While these are Oracle extensions, the XSLT 1.0 standard provides for
implementation-defined extension functions. Stylesheets using these functions may
not be interoperable when run on different processors.The functions are language and
implementation specific.

This section contains these topics:

■ XSLT Processor for Java Extension Functions and Namespaces

■ Static Versus Non-Static Methods

■ Constructor Extension Function

■ Return Value Extension Function

■ Datatypes Extension Function

■ XSLT Processor for Java Built-In Extensions: ora:node-set and ora:output

XSLT Processor for Java Extension Functions and Namespaces
Java extension functions belong to the namespace that starts with the following:

http://www.oracle.com/XSL/Transform/java/

An extension function that belongs to the following namespace refers to methods in
class classname:

http://www.oracle.com/XSL/Transform/java/classname

For example, the following namespace can be used to call java.lang.String
methods from XSL expressions:

-r result_extension Extension to use for results (if -d or -l is specified, this option
must be specified to specify the extension to be used for the
results of the transformation. So, if you specify the extension
"out", an input document "input_doc" is transformed to
"input_doc.out". By default, the results are placed in the
current directory. This can be changed by using the -o option
which enables you to specify a directory to hold the results).

-s stylesheet Stylesheet to use (if -d or -l is specified, this option needs to
be specified to specify the stylesheet to be used. The complete
path must be specified).

-t num_of_threads Number of threads to use for processing (using multiple
threads can provide performance improvements when
processing multiple documents).

-v Verbose mode (some debugging information is printed and can
help in tracing any problems that are encountered during
processing).

-w Show warnings (by default, warnings are turned off).

-x source_extension Extensions to exclude, used in conjunction with -d. All files
with the specified extension not selected.

Table 4–1 (Cont.) oraxsl: Command Line Options

Option Purpose

XML Extension Functions for XSLT Processing

XSLT Processor for Java 4-7

http://www.oracle.com/XSL/Transform/java/java.lang.String

Static Versus Non-Static Methods
If the method is a non-static method of the class, then the first parameter is used as the
instance on which the method is invoked, and the rest of the parameters are passed on
to the method.

If the extension function is a static method, then all the parameters of the extension
function are passed on as parameters to the static function.

XML Parser for Java - XSL Example 1: Static function
The following XSL, static function example prints out '13':

<xsl:stylesheet
 xmlns:math="http://www.oracle.com/XSL/Transform/java/java.lang.Math">
 <xsl:template match="/">
 <xsl:value-of select="math:ceil('12.34')"/>
</xsl:template>
</xsl:stylesheet>

Constructor Extension Function
The extension function new creates a new instance of the class and acts as the
constructor.

XML Parser for Java - XSL Example 2: Constructor Extension Function
The following constructor function example prints out 'HELLO WORLD':

<xsl:stylesheet
xmlns:jstring="http://www.oracle.com/XSL/Transform/java/java.lang.String">
 <xsl:template match="/">
 <!-- creates a new java.lang.String and stores it in the variable str1 -->
 <xsl:variable name="str1" select="jstring:new('Hello World')"/>
 <xsl:value-of select="jstring:toUpperCase($str1)"/>
</xsl:template>
</xsl:stylesheet>

Return Value Extension Function
The result of an extension function can be of any type, including the five types defined
in XSL and the additional simple XML Schema data types defined in XSLT 2.0:

■ NodeSet

■ Boolean

■ String

■ Number

■ ResultTree

They can be stored in variables or passed onto other extension functions.

Note: The XSL class loader only knows about statically added
JARs and paths in the CLASSPATH - and those specified by
wrapper.classpath.

XML Extension Functions for XSLT Processing

4-8 Oracle XML Developer's Kit Programmer's Guide

If the result is of one of the five types defined in XSL, then the result can be returned as
the result of an XSL expression.

XML Parser for Java XSL- XSL Example 3: Return Value Extension Function
Here is an XSL example illustrating the Return Value Extension function:

<!-- Declare extension function namespace -->
<xsl:stylesheet xmlns:parser =
 "http://www.oracle.com/XSL/Transform/java/oracle.xml.parser.v2.DOMParser"
 xmlns:document =
 "http://www.oracle.com/XSL/Transform/java/oracle.xml.parser.v2.XMLDocument" >

<xsl:template match ="/"> <!-- Create a new instance of the parser, store it in
 myparser variable -->
<xsl:variable name="myparser" select="parser:new()"/>
<!-- Call a non-static method of DOMParser. Since the method is a non-static
 method, the first parameter is the instance on which the method is called. This
 is equivalent to $myparser.parse('test.xml') -->
<xsl:value-of select="parser:parse($myparser, 'test.xml')"/>
<!-- Get the document node of the XML Dom tree -->
<xsl:variable name="mydocument" select="parser:getDocument($myparser)"/>
<!-- Invoke getelementsbytagname on mydocument -->
<xsl:for-each
 select="document:getElementsByTagName($mydocument,'elementname')">
...
</xsl:for-each> </xsl:template>
</xsl:stylesheet>

Datatypes Extension Function
Overloading based on number of parameters and type is supported. Implicit type
conversion is done between the five XSL types as defined in XSL. Type conversion is
done implicitly between (String, Number, Boolean, ResultTree) and from
NodeSet to (String, Number, Boolean, ResultTree). Overloading based on two
types which can be implicitly converted to each other is not permitted.

XML Parser for Java - XSL Example 4: Datatype Extension Function
The following overloading results in an error in XSL, since String and Number can
be implicitly converted to each other:

■ abc(int i){}

■ abc(String s){}

Mapping between XSL type and Java type is done as follows:

String -> java.lang.String
Number -> int, float, double
Boolean -> boolean
NodeSet -> XMLNodeList
ResultTree -> XMLDocumentFragment

XSLT Processor for Java Built-In Extensions: ora:node-set and ora:output
Here are the definitions of these Oracle XSL extensions; both are preceded by
xmlns:ora="http://www.oracle.com/XSL/Transform/java".

XML Extension Functions for XSLT Processing

XSLT Processor for Java 4-9

ora:output
This element can be used as a top-level element similar to xsl:output. It can have all
of the attributes of xsl:output, with similar functionality. It has an additional
attribute name, used as an identifier. When ora:output is used in a template, it can
only have the attributes use and href. use specifies the top-level ora:output to be
used, and href gives the output URL

ora:node-set
This built-in extension function converts a result tree fragment into a node-set.

Example of Use of Oracle XSL Extensions
The following example illustrates use of both ora:node-set and ora:output.

If you enter:

$ oraxsl foo.xml slides.xsl toc.html

where foo.xml is any input XML file. You get as output:

■ A toc.html slide file with a table of contents

■ A slide01.html file with slide 1

■ A slide02.html file with slide 2

<!--
 | Illustrate using ora:node-set and ora:output
 |
 | Both extensions depend on defining a namespace
 | with the uri of "http://www.oracle.com/XSL/Transform/java"
+-->
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:ora="http://www.oracle.com/XSL/Transform/java">

<!-- <xsl:output> affects the primary result document -->
<xsl:output mode="html" indent="no"/>

<!--
 | <ora:output> at the top-level enables all attributes
 | that <xsl:output> enables, but you must provide the
 | additional "name" attribute to assign a name to
 | these output settings to be used later.
+-->
<ora:output name="myOutput" mode="html" indent="no"/>
<!--
 | This top-level variable is a result-tree fragment
+-->
<xsl:variable name="fragment">
 <slides>
 <slide>
 <title>First Slide</title>
 <bullet>Point One</bullet>
 <bullet>Point Two</bullet>
 <bullet>Point Three</bullet>
 </slide>
 <slide>
 <title>Second Slide</title>
 <bullet>Point One</bullet>
 <bullet>Point Two</bullet>

XML Extension Functions for XSLT Processing

4-10 Oracle XML Developer's Kit Programmer's Guide

 <bullet>Point Three</bullet>
 </slide>
 </slides>
</xsl:variable>
<xsl:template match="/">
<!-- | We cannot "de-reference" a result-tree-fragment to
 | navigate into it with an XPath expression. However, using
 | the ora:node-set() built-in extension function, you can
 | "cast" a result-tree fragment to a node-set which *can*
 | then be navigated using XPath. Since we'll use the node-set
 | of <slides> twice later, we save the node-set in a variable.
+-->
<xsl:variable name="slides" select="ora:node-set($fragment)"/>
<!--
 | This <html> page will go to the primary result document.
 | It is a "table of contents" for the slide show, with
 | links to each slide. The "slides" will each be generated
 | into *secondary* result documents, each slide having
 | a file name of "slideNN.html" where NN is the two-digit
 | slide number
+-->
<html>
 <body>
 <h1>List of All Slides</h1>
<xsl:apply-templates select="$slides" mode="toc"/>
 </body>
</html>
<!--
 | Now go apply-templates to format each slide
+-->
<xsl:apply-templates select="$slides"/>
</xsl:template>
<!-- In 'toc' mode, generate a link to each slide we match -->
<xsl:template match="slide" mode="toc">

<xsl:value-of select="title"/>

</xsl:template>
<!--
 | For each slide matched, send the output for the current
 | <slide> to a file named "slideNN.html". Use the named
 | output style defined earlier called "myOutput".
<xsl:template match="slide">
<ora:output use="myOutput href="slide{format-number(position(),'00')}.html">
<html>
 <body>
<xsl:apply-templates select="title"/>

<xsl:apply-templates select="*[not(self::title)]"/>

 </body>
</html>
</ora:output>
</xsl:template>
<xsl:template match="bullet">
 <xsl:value-of select="."/>
</xsl:template>
<xsl:template match="title">
 <h1><xsl:value-of select="."/></h1>
</xsl:template>

Hints for Using the XSLT Processor for Java and XSL

XSLT Processor for Java 4-11

</xsl:stylesheet>

Hints for Using the XSLT Processor for Java and XSL
This section lists XSL and XSLT Processor for Java hints, and contains these topics:

■ Merging Two XML Documents

■ Extracting Embedded XML Using Only XSLT

■ Support of Output Method "html" in the XSL Parser

■ Creating an HTML Input Form

■ Correct XSL Namespace URI

■ XSL Processor Produces Multiple Outputs

■ Keeping White Spaces in Your Output

■ XDK Utilities That Translate Data from Other Formats to XML

■ Multiple Threads Using a Single XSLProcessor and Stylesheet

■ Using Document Clones in Multiple Threads

■ Disabling Output Escaping Is Supported

Merging Two XML Documents
To merge two XML documents, you can either use the DOM APIs or use XSLT-based
approaches.

If you use the DOM APIs, then you have to copy the DOM node from the source DOM
document before you can append it to the destination DOM document. This operation
is required to avoid DOM document ownership errors, like WRONG_DOCUMENT_ERR.
Both the importNode() method, introduced in DOM 2, and adoptNode() method,
introduced in DOM 3, can be used to copy and paste a DOM document fragment or a
DOM node across different XML documents.

Example: Using importNode() from DOM Level 2
Document doc1 = new XMLDocument();
Element element1 = doc1.createElement("foo");
Document doc2 = new XMLDocument();
Element element2 = doc2.createElement("bar");
element2 = doc1.importNode(element2);
element1.appendChild(element2);

Example: Using adoptNode from DOM Level 3
Document doc1 = new XMLDocument();
Element element1 = doc1.createElement("foo");
Document doc2 = new XMLDocument();
Element element2 = doc2.createElement("bar");
element2 = doc1.adoptNode(element2);
element1.appendChild(element2);

The difference between using adoptNode() and importNode() is that using
adoptNode(), the source DOM node is removed from the original DOM document,
while using importNode(), the source node is not altered or removed.

Hints for Using the XSLT Processor for Java and XSL

4-12 Oracle XML Developer's Kit Programmer's Guide

If the merging operation is simple, you can also use the XSLT-based approaches. For
example, you have two XML documents such as:

Example: demo1.xml
<messages>
 <msg>
 <key>AAA</key>
 <num>01001</num>
 </msg>
 <msg>
 <key>BBB</key>
 <num>01011</num>
 </msg>
</messages>

Example: demo2.xml
<messages>
 <msg>
 <key>AAA</key>
 <text>This is a Message</text>
 </msg>
 <msg>
 <key>BBB</key>
 <text>This is another Message</text>
 </msg>
</messages>

Here is an example stylesheet, that merges the two XML documents, demo1.xml and
demo2.xml, based on matching the <key/> element values.

Example: demomerge.xsl
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output indent="yes"/>
<xsl:variable name="doc2" select="document('demo2.xml')"/>
<xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="msg">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 <text><xsl:value-of select="$doc2/messages/msg[key=current()/key]/text"/>
 </text>
 </xsl:copy>
</xsl:template>
</xsl:stylesheet>

Enter the following at the command line:

$ oraxsl demo1.xml demomerge.xsl

Then, you get the following merged result:

<messages>
 <msg>
 <key>AAA</key>

Hints for Using the XSLT Processor for Java and XSL

XSLT Processor for Java 4-13

 <num>01001</num>
 <text>This is a Message</text>
 </msg>
 <msg>
 <key>BBB</key>
 <num>01011</num>
 <text>This is another Message</text>
 </msg>
</messages>

This method is obviously not as efficient for larger files as an equivalent database join
of two tables, but this illustrates the technique if you have only XML files to work
with.

Extracting Embedded XML Using Only XSLT
The content of your CDATA, it is just text. If you want the text content to be output
without escaping the angle-brackets:

<xsl:value-of select="/OES_MESSAGE/PAYLOAD" disable-output-escaping="yes"/>

Support of Output Method "html" in the XSL Parser
XSLT fully supports all options of <xsl:output>. Your XSL stylesheet must be a
well-formed XML document. Instead of using the
 element, you must use
.
The <xsl:output method="html"/> requests that when the XSLT engine writes
out the result of your transformation, it is a proper HTML document. What the XSLT
engine reads in must be well-formed XML.

Assume that you have an XSL stylesheet that performs XML to HTML conversion.
Everything works correctly with the exception of those HTML tags that end up as
empty elements, that is, <input type="text"/>. For example, the following
stylesheet creates an HTML document with an <input> element:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>
...
<input type="text" name="{NAME}" size="{DISPLAY_LENGTH}" maxlength="{LENGTH}">
</input>
...
</xsl:stylesheet>

It renders HTML in the format of

<HTML>...<input type="text" name="in1" size="10" maxlength="20"/>
...
</HTML>

While Internet Explorer can handle this, Netscape cannot. Is there any way to generate
completely cross-browser-compliant HTML with XSL?

The solution to this problem is that if you are seeing:

<input ... />

instead of:

<input ...></input>

Hints for Using the XSLT Processor for Java and XSL

4-14 Oracle XML Developer's Kit Programmer's Guide

then you are likely using the incorrect way of calling
XSLProcessor.processXSL(), since it appears that it is not doing the HTML
output for you. Use:

void processXSL(style,sourceDoc,PrintWriter)

instead of:

DocumentFragment processXSL(style,sourceDoc)

Creating an HTML Input Form
To generate an HTML form for inputting data using column names from the user_
tab_columns table here is the XSL code:

<xsl:template match="ROW">
<xsl:value-of select="COLUMN_NAME"/>
 <INPUT NAME="{COLUMN_NAME}"/>
</xsl:template>

Correct XSL Namespace URI
The following URI is correct:

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

If you use:

xmlns:xsl="-- any other string here --"

it does not give correct output.

XSL Processor Produces Multiple Outputs
The XML Parser for Java, release 2.0.2.8 and above, supports <ora:output> to
produce more than one result from one XML and XSL.

Keeping White Spaces in Your Output
Use this in your code, where (white spaces) means that you enter a space, newline, or
tab there:

<xsl:text>...(white spaces)</xsl:text>

XDK Utilities That Translate Data from Other Formats to XML
XSLT translates from XML to XML, or to HTML, or to another text-based format. What
about the other way around?

For HTML, you can use utilities like Tidy or JTidy to turn HTML into well-formed
HTML that can be transformed using XSLT. For unstructured text formats, you can try
utilities like XFlat at the following Web site:

http://www.unidex.com/xflat.htm

Multiple Threads Using a Single XSLProcessor and Stylesheet
Multiple threads can use a single XSLProcessor and XSLStylesheet instance to perform
concurrent transformations. As long as you are processing multiple files with no more

Hints for Using the XSLT Processor for Java and XSL

XSLT Processor for Java 4-15

than one XSLProcessor and XSLStylesheet instance for each XML file you can do this
simultaneously using threads.

Using Document Clones in Multiple Threads
It is safe to use clones of a document in multiple threads. The public void
setParam(String,String) throws XSLException method of class
oracle.xml.parser.v2.XSLStylesheet is supported. If you copy the global
area set up by the constructor to another thread then it works. That method is
supported since XML Parser for Java, release 2.0.2.5.

Disabling Output Escaping Is Supported
The XML Parser for Java provides an option to disable output escaping:

<xsl:text disable-output-escaping = "yes">

Hints for Using the XSLT Processor for Java and XSL

4-16 Oracle XML Developer's Kit Programmer's Guide

XML Schema Processor for Java 5-1

5
XML Schema Processor for Java

This chapter contains these topics:

■ What Is XML Schema?

■ What Are DTDs?

■ Comparison of XML Schema Features to DTD Features

■ XML Schema Processor for Java Features

■ XML Schema Processor for Java Usage

■ XML Schema Processor for Java Sample Programs

What Is XML Schema?
XML Schema was created by the W3C to use XML itself to describe the content and the
structure of XML documents. It includes most of the capabilities (it does not support
entity) of Document Type Description (DTD) and additional capabilities.

What Are DTDs?
A DTD is a mechanism provided by XML 1.0 for declaring constraints on XML
markup. DTDs allow the specification of the following:

■ Which elements or attributes can appear in your XML documents

■ Which elements or attributes can be inside the elements

■ The order the elements or attributes can appear

DTDs are also known as XML Markup Declarations.

XML Schema language serves a similar purpose to DTDs, but it is more flexible in
specifying XML document constraints and potentially more useful for certain
applications. Namespace support and datatypes support for elements and attributes
are both found in XML Schema.

XML Schema is also referred to as XML Schema Definition (XSD).

DTD Limitations
DTDs are considered to be deficient in handling certain applications. DTD limitations
include:

See Also:

■ http://www.w3.org/TR/xmlschema-0/

Comparison of XML Schema Features to DTD Features

5-2 Oracle XML Developer's Kit Programmer's Guide

■ DTD is not integrated with Namespace technology so users cannot import and
reuse code

■ DTD does not support datatypes other than character data, a limitation for
describing metadata standards and database schemas

Applications need to specify document structure constraints more flexibly than the
DTD can.

Comparison of XML Schema Features to DTD Features
Because of the inherent limitations of DTDs, the W3C is promoting XML Schema. XML
Schema enables you to specify type information and constraints.

Table 5–1 lists XML Schema features compared to DTD features. Note that most XML
Schema features include DTD features.

Table 5–1 XML Schema Features Compared to DTD Features

XML Schema Feature DTD Feature

Built-In Datatypes

XML schema specifies a set of built-in datatypes. Some of
them are defined and called primitive datatypes, and they
form the basis of the type system:

string, boolean, float, decimal, double,
duration, dateTime, time, date, gYearMonth,
gYear, gMonthDay, gMonth, gDay, Base64Binary,
HexBinary, anyURI, NOTATION, QName.

Others are derived datatypes that are defined in terms of
primitive types.

DTDs do not support
datatypes other than
character strings.

User-Defined Datatypes

Users can derive their own datatypes from the built-in
datatypes. There are three ways of datatype derivation:
restriction, list and union.

Restriction defines a more restricted datatype by applying
constraining facets to the base type

list simply allows a list of values of its item type

union defines a new type whose value can be of any of its
member types

For example, to specify that the value of publish-year type to
be within a specific range:

<SimpleType name = "publish-year">
 <restriction base="gYear">
 <minInclusive value="1970"/>
 <maxInclusive value="2000"/>
 </restriction>
</SimpleType>

The constraining facets are:

length, minLength, maxLength, pattern,
enumeration, whiteSpace, maxInclusive,
maxExclusive, minInclusive, minExclusive,
totalDigits, fractionDigits.

Some facets only apply to certain base types.

The publish-year element in
the DTD example cannot be
constrained further.

XML Schema Processor for Java Features

XML Schema Processor for Java 5-3

XML Schema Processor for Java Features
XML Schema Processor for Java, which is a part of the Oracle XDK Java components,
has the following features:

■ Fully supports the W3C XML Schema specifications of the Recommendation (May
2, 2001).

■ XML Schema Part 0: Primer

■ XML Schema Part 1: Structures

■ XML Schema Part 2: Datatypes

■ Supports streaming (SAX) precessing, constant memory usage, and linear
processing time.

■ Built on the XML Parser for Java v2.

Occurrence Indicators (Content Model or Structure)

In XML Schema, the structure (called complexType) of the
instance document or an element is defined in terms of model
group and attribute group. A model group may further
contain model groups or element particles, while attribute
group contains attributes. Wildcards can be used in both
model group and attribute group to indicate any element or
attribute. There are three kinds of model group: sequence, all,
and choice, representing the sequence, conjunction and
disjunction relationships among particles respectively. The
range of the number of occurrence of each particle can also be
specified.

Like the datatype, complexType can be derived from other
types. The derivation method can be either restriction or
extension. The derived type inherits the content of the base
type plus corresponding modifications. In addition to
inheritance, a type definition can make references to other
components. This feature allows a component to be defined
once and used in many other structures.

The type declaration and definition mechanism in XML
Schema is much more flexible and powerful than the DTD.

Control by DTDs over the
number of child elements in
an element are assigned
with the following symbols:

■ ? = zero or one.

■ * = zero or more

■ + = one or more

■ (none) = exactly one

Identity Constraints

XML Schema extends the concept of XML ID/IDREF
mechanism with the declarations of unique, key and keyref.
They are part of the type definition and allow not only
attributes, but also element contents as keys. Each constraint
has a scope within which it holds and the comparison is in
terms of their value rather than lexical strings.

 -

Import/Export Mechanisms (Schema Import, Inclusion and
Modification)

All components of a schema need not be defined in a single
schema file. XML Schema provides a mechanism of
assembling multiple schemas. Import is used to integrate
schemas of different namespace while inclusion is used to
add components of the same namespace. Components can
also be modified using redefinition when included.

You cannot use constructs
defined in external schemas.

Table 5–1 (Cont.) XML Schema Features Compared to DTD Features

XML Schema Feature DTD Feature

XML Schema Processor for Java Usage

5-4 Oracle XML Developer's Kit Programmer's Guide

Supported Character Sets
XML Schema Processor for Java supports documents in the following encodings:

■ BIG

■ EBCDIC-CP-*

■ EUC-JP

■ EUC-KR

■ GB2312

■ ISO-2022-JP

■ ISO-2022-KR

■ ISO-8859-1to -9

■ ISO-10646-UCS-2

■ ISO-10646-UCS-4

■ KOI8-R

■ Shift_JIS

■ US-ASCII

■ UTF-8

■ UTF-16

Requirements to Run XML Schema Processor for Java
To run XML Schema Processor for Java, you need the following:

■ Any operating system with Java 1.2 support

■ Java: JDK 1.2.x or higher.

Documentation for sample programs for Oracle XML Schema Processor for Java is
located in the file xdk/demo/java/schema/README.

XML Schema Processor for Java Usage
As shown in Figure 5–1, Oracle's XML Schema Processor for Java performs two major
tasks:

■ A builder (XSDBuilder) assembles schemas from XML Schema documents and
passes XML Schema object to the DOM or SAX parser.

■ A schema validator use the schemas to validate XML instance documents which
have been read by the DOM or SAX parser.

■ These results are passed on to a DOM builder or an application.

■ Error messages are output by the schema validator.

XML Schema Processor for Java Usage

XML Schema Processor for Java 5-5

Figure 5–1 XML Schema Processor for Java Usage

XML Schema can be used to define a class of XML documents. Instance document
describes an XML document that conforms to a particular schema.

Although these instances and schemas need not exist specifically as "documents", they
are commonly referred to as files. They may exist as any of the following:

■ Streams of bytes

■ Fields in a database record

■ Collections of XML Infoset "Information Items"

When building the schema, the builder first compiles an internal schema object, and
then calls the DOM Parser to parse the schema object into a corresponding DOM tree.

The validator works as a filter between the SAX Parser and your applications for the
instance document. The validator takes SAX events of the instance document as input
and validates them against the schema. If the validator detects invalid XML
components it sends an error messages.

The output of the validator is:

■ Input SAX events

■ Default values it supplies

■ Post-Schema Validation (PSV) information

Using the XML Schema API
The API of the XML Schema Processor for Java is simple. You can either use either of
the following:

■ setSchemaValidationMode() in the DOMParser as shown in
XSDSample.java.

■ Explicitly build the schema using XSDBuilder and set the schema for
XMLParser as shown in XSDSetSchema.java.

XML
Schema

XML
Schema
Object

XML
Instance

Document

DOM
or

SAX
Parser

XSD
Builder

PSV
+ Default

valueSchema
Validator

DOM Builder
or Application

Error
Messages

XML Schema Processor for Java Sample Programs

5-6 Oracle XML Developer's Kit Programmer's Guide

If you do not explicitly set a compiled schema for validation using XSDBuilder, make
sure that your instance document has the correct xsi:schemaLocation attribute
pointing to the schema file. Otherwise, the validation will not be performed.

There is no clean-up call similar to xmlclean. If you need to release all memory and
reset the state before validating a new XML document, terminate the context and start
over.

XML Schema Processor for Java Sample Programs
The sample XML Schema Processor for Java files provided in the directory
/xdk/demo/java/schema are described in Table 5–2:

To run the sample programs:

1. Execute the program make to generate .class files.

2. Add xmlparserv2.jar, and the current directory to the CLASSPATH.

The following steps can be done in any order:

■ Run the sample programs with the XXX.xml files:

java XSDSample report.xml
java XSDSetSchema report.xsd report.xml

Table 5–2 XML Schema Sample Files

File Description

cat.xsd The sample XML Schema definition file that supplies input to the
XSDSetSchema.java program. XML Schema Processor for Java
uses the XML Schema specification from cat.xsd to validate the
contents of catalogue.xml.

catalogue.xml The sample XML file that is validated by XML Schema processor
against the XML Schema definition file, cat.xsd, using the
program, XSDSetSchema.java.

catalogue_e.xml When XML Schema Processor for Java processes this sample XML
file using XSDSample.java, it generates XML Schema errors.

DTD2Schema.java This sample program converts a DTD (first argument) into an XML
Schema and uses it to validate an XML file (second argument).

report.xml The sample XML file that is validated by XML Schema Processor
for Java against the XML Schema definition file, report.xsd,
using the program, XSDSetSchema.java.

report.xsd The sample XML Schema definition file that is input to the
XSDSetSchema.java program. XML Schema Processor for Java
uses the XML Schema specification from report.xsd to validate
the contents of report.xml.

report_e.xml When XML Schema Processor for Java processes this sample XML
file using XSDSample.java, it generates XML Schema errors.

XSDSample.java Sample XML Schema Processor for Java program.

XSDSetSchema.java When this example is run with cat.xsd and catalogue.xml,
XML Schema Processor for Java uses the XML Schema specification
from cat.xsd to validate the contents of catalogue.xml.

XSDLax.java This example uses SCHEMA_LAX_VALIDATION.

embeded_xsql.xsd The input file for XSDLax.java.

embeded_xsql.xml The output file from XSDLax.java.

XML Schema Processor for Java Sample Programs

XML Schema Processor for Java 5-7

java XSDLax embeded_xsql.xsd embeded_xsql.xml

XML Schema Processor for Java uses the XML Schema specification from
report.xsd to validate the contents of report.xml.

■ Run each sample program with the catalogue.xml file. For example:

java XSDSample catalogue.xml
java XSDSetSchema cat.xsd catalogue.xml

XML Schema Processor for Java uses the XML Schema specification from
cat.xsd to validate the contents of catalogue.xml.

■ The following are samples that find XML Schema errors:

java XSDSample catalogue_e.xml
java XSDSample report_e.xml

■ Run the sample for converting a DTD to an XML Schema.

java DTD2Schema dtd2schema.dtd dtd2schema.xml

XML Schema Processor for Java Sample Programs

5-8 Oracle XML Developer's Kit Programmer's Guide

Using JAXB Class Generator 6-1

6
Using JAXB Class Generator

This chapter contains these topics:

■ What Is JAXB?

■ Replacing the XML Class Generator with JAXB Class Generator

■ Unmarshalling, Marshalling, and Validating Using JAXB

■ Using JAXB Class Generator

■ Features Not Supported in JAXB

■ JAXB Class Generator Command-Line Interface

■ JAXB Compared with JAXP

What Is JAXB?
Java Architecture for XML Binding (JAXB) consists of an API and tools that map to
and from XML data and Java objects. It is an implementation of the JSR-31 "The Java
Architecture for XML Binding (JAXB)", Version 1.0, recommendation of the JCP (Java
Community Process). JSR is a Java Specification Request of the JCP.

The JAXB compiler generates the interfaces and the implementation classes
corresponding to the XML Schema. The classes can be used to read, manipulate and
re-create XML documents. The JAXB compiler generates Java classes corresponding to
an XML Schema, and interfaces that are needed to access XML data. The Java classes,
which can be extended, give you access to the XML data without any specific
knowledge about the underlying data structure.

Replacing the XML Class Generator with JAXB Class Generator
You are requested to use JAXB Class Generator for new applications in order to use the
object binding feature for XML data. The Oracle9i Class Generator for Java is
deprecated. However, the Oracle9i Class Generator runtime was included in release
10.1 and is supported for the duration of the 10.x releases.

Note:

■ The JAXB specification is described at
http://java.sun.com/xml/jaxb/

■ JSR is described at http://jcp.org/en/jsr/overview

Unmarshalling, Marshalling, and Validating Using JAXB

6-2 Oracle XML Developer's Kit Programmer's Guide

Unmarshalling, Marshalling, and Validating Using JAXB
Unmarshalling is defined as moving data from an XML document to the Java
generated class objects. Each object is derived from an instance of the schema
component in the input document. Because of the inherent weaknesses of DTDs, they
are not supported by JAXB, but a DTD can be converted to an XML Schema that is
then used by JAXB.

Marshalling is defined as creating an XML document from Java objects by traversing a
content tree of instances of Java classes.

Validation is a prerequisite to marshalling if content has changed in the Java
representation. Validation is verifying that the content tree satisfies the constraints
defined in the schema. The tree is defined as valid when marshalling the tree generates
a document that is valid according to the source schema. If unmarshalling includes
validation that is error-free then the input document and the content tree are valid.
However, validation is not required during unmarshalling.

Validation comes in these forms:

■ Unmarshalling-time validation notifies the application of errors and warnings
during unmarshalling.

■ On-demand validation on a Java content tree when the application initiates it.

■ Fail-fast validation that gives immediate results.

Using JAXB Class Generator
To build a JAXB application, start with an XML Schema file. Build and use a JAXB
application by performing these steps:

1. Generate the Java source files by submitting the XML Schema file to the binding
compiler. The binding compiler could be invoked through the command-line
utility called orajaxb.

2. Compile the Java source code using JDK 1.3 or higher.

3. With the classes and the binding framework, write Java applications that:

– Build object trees representing XML data that is valid against the XML Schema
by either unmarshalling the data from a document or instantiating the classes
you created.

– Access and modify the data.

– Optionally validate the modifications to the data relative to the constraints
expressed in the XML Schema.

– Marshal the data to new XML documents.

Features Not Supported in JAXB
The Oracle release does not support the following:

■ The Javadoc generation.

■ The List and Union features of XML Schema.

■ SimpleType mapping to TypeSafe Enum class and IsSet property modifier.

See Also: http://java.sun.com/xml/jaxb/faq.html for
more information on JAXB

JAXB Compared with JAXP

Using JAXB Class Generator 6-3

■ XML Schema component "any" and substitution groups.

■ Customization of XML Schema to override the default binding of XML Schema
components.

■ On-demand validation of content tree.

JAXB Class Generator Command-Line Interface
The JAXB class generator command-line interface is accessed this way:

oracle.xml.jaxb.orajaxb [-options]

where the options are listed in Table 6–1:

JAXB Compared with JAXP
The following lists summarize the advantages of JAXB.

Use JAXB when you want to:

■ Access data in memory, but do not need DOM tree manipulation capabilities.

■ Build object representations of XML data.

For more information about JAXB:

The Java API for XML Processing (JAXP), that enables applications to parse and
transform XML documents using an API that is independent of a particular XML
processor implementation, is implemented by Oracle.

Use JAXP when you want to:

■ Have flexibility with regard to the way you access the data: either serially with
SAX or randomly in memory with DOM.

■ Use your same processing code with documents based on different schemas.

Table 6–1 JAXB Class Generator Command-line Interface

Option Description

-help Prints the help message text

-version Prints the release version

-outputDir OutputDir The directory in which to generate Java source

-schema SchemaFile The input schema file

-targetPkg targetPkg The target package name

-interface Generate only the interfaces

See Also:

■ Code examples are found with the XDK download and with
the JAXB code at $INSTALL_HOME/xdk/demo/java/jaxb

■ http://java.sun.com/xml/jaxb/ for documentation and
examples of the use of JAXB

■ Oracle XML API Reference for details of the JAXB API

See Also: "Using JAXP" on page 3-36

JAXB Compared with JAXP

6-4 Oracle XML Developer's Kit Programmer's Guide

■ Parse documents that are not necessarily valid.

■ Apply XSLT transforms.

■ Insert or remove objects from an object tree that represents XML data.

XML SQL Utility (XSU) 7-1

7
XML SQL Utility (XSU)

This chapter contains these topics:

■ What Is XML SQL Utility (XSU)?

■ XSU Dependencies and Installation

■ SQL-to-XML and XML-to-SQL Mapping Primer

■ How XML SQL Utility Works

■ Using the XSU Command-Line Front End OracleXML

■ XSU Java API

■ Generating XML with XSU's OracleXMLQuery

■ Paginating Results: skipRows and maxRows

■ Generating XML from ResultSet Objects

■ Raising NoRowsException

■ Storing XML Back in the Database Using XSU OracleXMLSave

■ Insert Processing Using XSU (Java API)

■ Update Processing Using XSU (Java API)

■ Delete Processing Using XSU (Java API)

■ Advanced XSU Usage Techniques

What Is XML SQL Utility (XSU)?
XML has become the format for data interchange, but at the same time, a substantial
amount of data resides in object-relational databases. It is therefore necessary to have
the ability to transform this object-relational data to XML.

XML SQL Utility (XSU) enables you to do these transformations:

■ XSU can transform data retrieved from object-relational database tables or views
into XML.

■ XSU can extract data from an XML document, and using a given mapping, insert
the data into appropriate columns or attributes of a table or a view.

■ XSU can extract data from an XML document and apply this data to updating or
deleting values of the appropriate columns or attributes.

What Is XML SQL Utility (XSU)?

7-2 Oracle XML Developer's Kit Programmer's Guide

Generating XML from the Database
When given a SELECT query, XSU queries the database and returns the results as an
XML document.

Storing XML in the Database
Given an XML document, XSU can extract the data from the document and insert it
into a table in the database.

Accessing XSU Functionality
XML SQL Utility functionality can be accessed in the following ways:

■ Through a Java API

■ Through a PL/SQL API

■ Through a Java command-line front end

XSU Features
■ Dynamically generates DTDs.

■ During generation, performs simple transformations, such as modifying default
tag names for the ROW element. You can also register an XSL transformation that
is then applied to the generated XML documents as needed.

■ Generates XML documents in their string or DOM representations.

■ Inserts XML into database tables or views. XSU can also update or delete records
from a database object, given an XML document.

■ Generates complex nested XML documents. XSU can also store them in relational
tables by creating object views over the flat tables and querying over these views.
Object views can create structured data from existing relational data using
object-relational infrastructure.

■ Generates an XML Schema given a SQL query.

■ Generates XML as a stream of SAX2 callbacks.

■ Supports XML attributes during generation. This provides an easy way to specify
that a particular column or group of columns must be mapped to an XML
attribute instead of an XML element.

■ Allows SQL identifier to XML identifier escaping. Sometimes column names are
not valid XML tag names. To avoid this you can either alias all the column names
or turn on tag escaping.

■ Supports XMLType columns in objects or tables.

See Also:

■ Oracle XML DB Developer's Guide, in particular, the chapter on
generating XML, for examples on using XSU with XMLType

■ Oracle XML API Reference for more information on the Java API

■ PL/SQL Packages and Types Reference

■ Chapter 24, "XSU for PL/SQL"

XSU Dependencies and Installation

XML SQL Utility (XSU) 7-3

XSU Dependencies and Installation
Important information about XSU:

Dependencies of XSU
XML SQL Utility (XSU) depends on the following components:

■ Database connectivity - JDBC drivers. XSU can work with any JDBC driver but it
is optimized for Oracle JDBC drivers. Oracle does not make any guarantee or
provide support for the XSU running against non-Oracle databases.

■ Oracle XML Parser, Version2 - xmlparserv2.jar. This file is included in the
Oracle installations. xmlparserv2.jar is also part of the XDK Java components
archive downloadable from Oracle Technology Network (OTN) Web site.

■ XSU also depends on the classes included in xdb.jar and servlet.jar. These
are present in Oracle installations. These are also included in the XDK Java
components archive downloadable from OTN.

Installing XSU
XSU is on the Oracle software CD, and it is also part of the XDK Java components
package available on OTN. The XSU comes in the form of two files:

■ $ORACLE_HOME/lib/xsu12.jar -- Contains all the Java classes that make up
XSU. xsu12.jar requires a minimum of JDK1.2 and JDBC2

■ $ORACLE_HOME/rdbms/admin/dbmsxsu.sql -- This is the SQL script that
builds the XSU PL/SQL API. Load xsu12.jar into the database before
dbmsxsu.sql is executed.

By default, the Oracle installer installs the XSU on the hard drive in the locations
specified in the previous bulleted paragraphs. It also loads the XSU into the database.

If XSU is not installed during the initial Oracle installation, it can be installed later. You
can either use Oracle Installer to install the XSU and its dependent components, or you
can download the latest XDK Java components from OTN.

To load the XSU into the database you need to take one of the following steps,
depending on how you installed XSU:

■ Oracle Installer installation: Change directory to your ORACLE_HOME directory,
then to rdbms/admin. Run initxml.sql.

■ OTN download installation: Change directory into the bin directory of the
downloaded and expanded XDK tree. Then run script xdk load. Windows users
run xdkload.bat.

Note: In Oracle9i, XMLGen was deprecated and is now no longer
included with Oracle software. The replacements for XMLGEN are
the packages DBMS_XMLQuery, used for XML generation, and
DBMS_XMLSave, used for DML and data manipulation.

Migration is simple: the method names are identical. The new XSU
for PL/SQL now contains more methods. All methods take the
context handle as the first argument.

Where XSU can be Installed

7-4 Oracle XML Developer's Kit Programmer's Guide

Where XSU can be Installed
XSU is written in Java, and can live in any tier that supports Java. XSU can be installed
on a client system.

XML SQL Utility in the Database
The Java classes that make up XSU can be loaded into a Java-enabled Oracle database.
XSU contains a PL/SQL wrapper that publishes the XSU Java API to PL/SQL, creating
a PL/SQL API. This way you can:

■ Write new Java applications that run inside the database and that can directly
access the XSU Java API

■ Write PL/SQL applications that access XSU through its PL/SQL API

■ Access XSU functionality directly through SQL

Figure 7–1 shows the typical architecture for such a system. XML generated from XSU
running in the database can be placed in advanced queues in the database to be
queued to other systems or clients. The XML can be used from within stored
procedures in the database or shipped outside through web servers or application
servers.

In Figure 7–1, all lines are bi-directional. Since XSU can generate as well as save data,
data can come from various sources to XSU running inside the database, and can be
put back in the appropriate database tables.

Figure 7–1 Running XML SQL Utility in the Database

XML SQL Utility in the Middle Tier
Your application architecture may need to use an application server in the middle tier,
separate from the database. The application tier can be an Oracle database, Oracle
Application Server, or a third party application server that supports Java programs.

Other Database,
Messaging Systems, . . .

Web
Server

Middle Tier
Application
Server

Internet
SQL
Tables
and
Views

Advanced
Queuing
(AQ) Application

Logic

XML SQL Utility
(Java / PL/SQL)

XML*

XML*

Oracle

User

XML*XML*XML*

* XML, HTML,
 XHTML, VML, . . .

Where XSU can be Installed

XML SQL Utility (XSU) 7-5

You can generate XML in the middle tier, from SQL queries or ResultSets, for
various reasons. For example, to integrate different JDBC data sources in the middle
tier. In this case you can install the XSU in your middle tier and your Java programs
can make use of XSU through its Java API.

Figure 7–2, shows how a typical architecture for running XSU in a middle tier. In the
middle tier, data from JDBC sources is converted by XSU into XML and then sent to
Web servers or other systems. Again, the whole process is bi-directional and the data
can be put back into the JDBC sources (database tables or views) using XSU. If an
Oracle database itself is used as the application server, then you can also use the
PL/SQL front-end instead of Java.

Figure 7–2 Running XML SQL Utility in the MIddle Tier

XML SQL Utility in a Web Server
Figure 7–3 XSU can live in the Web server, as long as the Web server supports Java
servlets. This way you can write Java servlets that use XSU to accomplish their task.

XSQL Servlet does just this. XSQL Servlet is a standard servlet provided by Oracle. It is
built on top of XSU and provides a template-like interface to XSU functionality. To do
XML processing in the Web server, you can use the XSQL Servlet, because it spares
you from the intricate servlet programming.

See: Chapter 8, "XSQL Pages Publishing Framework" for
information about using XSQL Servlet.

Other Database,
Messaging Systems, . . .

Web
Server

Middle Tier
Application Server
or
Oracle Database (Java
or PL/SQL front end)

InternetSQL
Tables
and
Views

Application
Logic

XML SQL Utility
(Java)

XML*

Any
Database

User

SQL data
(via JDBC) XML*XML*

* XML, HTML,
 XHTML, VML, . . .

SQL-to-XML and XML-to-SQL Mapping Primer

7-6 Oracle XML Developer's Kit Programmer's Guide

Figure 7–3 Running XML SQL Utility in a Web Server

SQL-to-XML and XML-to-SQL Mapping Primer
This section describes the mapping or transformation used to go from SQL to XML or
vice versa.

Default SQL-to-XML Mapping
Consider table emp1:

CREATE TABLE emp1
(
 empno NUMBER,
 ename VARCHAR2(20),
 job VARCHAR2(20),
 mgr NUMBER,
 hiredate DATE,
 sal NUMBER,
 deptno NUMBER
);

XSU can generate an XML document by specifying the query:

select * from emp1:

<?xml version='1.0'?>
<ROWSET>
 <ROW num="1">
 <EMPNO>7369</EMPNO>
 <ENAME>sMITH</ENAME>
 <JOB>clerk</JOB>
 <mgr>7902</mgr>
 <HIREDATE>12/17/1980 0:0:0</HIREDATE>
 <SAL>800</SAL>
 <DEPTNO>20</DEPTNO>
 </ROW>
 <!-- additional rows ... -->
</ROWSET>

In the generated XML, the rows returned by the SQL query are enclosed in a ROWSET
tag to constitute the <ROWSET> element. This element is also the root element of the
generated XML document.

■ The <ROWSET> element contains one or more <ROW> elements.

Web Server
(running Servlets)

InternetSQL
Tables
and
Views

Servlets
(XSQL servlets)

XML SQL Utility
(Java)

Any
Database

User

SQL data
(via JDBC) XML*

* XML, HTML,
 XHTML, VML, . . .

SQL-to-XML and XML-to-SQL Mapping Primer

XML SQL Utility (XSU) 7-7

■ Each of the <ROW> elements contain the data from one of the returned database
table rows. Specifically, each <ROW> element contains one or more elements whose
names and content are those of the database columns specified in the SELECT list
of the SQL query.

■ These elements, corresponding to database columns, contain the data from the
columns.

SQL-to-XML Mapping Against Object-Relational Schema
Here is a mapping against an object-relational schema: Consider the object type,
AddressType. It is an object type whose attributes are all scalar types and is created
as follows:

CREATE TYPE AddressType AS OBJECT (
 street VARCHAR2(40),
 city VARCHAR2(20),
 state CHAR(2),
 zip VARCHAR2(10)
);

The following type, EmployeeType, is also an object type but it has an empaddr
attribute that is of an object type itself, specifically, AddressType. Employee Type is
created as follows:

CREATE TYPE EmployeeType AS OBJECT
(
 empno NUMBER,
 ename VARCHAR2(20),
 salary NUMBER,
 empaddr AddressType
);

The following type, EmployeeListType, is a collection type whose elements are of
the object type, EmployeeType. EmployeeListType is created as follows:

CREATE TYPE EmployeeListType AS TABLE OF EmployeeType;

Finally, dept1 is a table with an object type column and a collection type column:
AddressType and EmployeeListType respectively.

CREATE TABLE dept1
(
 deptno NUMBER,
 deptname VARCHAR2(20),
 deptaddr AddressType,
 emplist EmployeeListType
)
NESTED TABLE emplist STORE AS emplist_table;

Assume that valid values are stored in table, dept1. For the query select * from
dept1, XSU generates the following XML document:

<?xml version='1.0'?>
<ROWSET>
 <ROW num="1">
 <DEPTNO>100</DEPTNO>
 <DEPTNAME>Sports</DEPTNAME>
 <DEPTADDR>
 <STREET>100 Redwood Shores Pkwy</STREET>
 <CITY>Redwood Shores</CITY>
 <STATE>CA</STATE>

SQL-to-XML and XML-to-SQL Mapping Primer

7-8 Oracle XML Developer's Kit Programmer's Guide

 <ZIP>94065</ZIP>
 </DEPTADDR>
 <EMPLIST>
 <EMPLIST_ITEM num="1">
 <EMPNO>7369</EMPNO>
 <ENAME>John</ENAME>
 <SALARY>10000</SALARY>
 <EMPADDR>
 <STREET>300 Embarcadero</STREET>
 <CITY>Palo Alto</CITY>
 <STATE>CA</STATE>
 <ZIP>94056</ZIP>
 </EMPADDR>
 </EMPLIST_ITEM>
 <!-- additional employee types within the employee list -->
 </EMPLIST>
 </ROW>
 <!-- additional rows ... -->
</ROWSET>

As in the last example, the mapping is canonical, that is, <ROWSET> contains <ROW>
elements that contain elements corresponding to the columns. As before, the elements
corresponding to scalar type columns simply contain the data from the column.

Mapping Complex Type Columns to XML

Things get more complex with elements corresponding to a complex type column. For
example, <DEPTADDR> corresponds to the DEPTADDR column which is of object type
ADDRESS. Consequently, <DEPTADDR> contains sub-elements corresponding to the
attributes specified in the type ADDRESS. These sub-elements can contain data or
sub-elements of their own, again depending if the attribute they correspond to is of a
simple or complex type.

Mapping Collections to XML

When dealing with elements corresponding to database collections, things are also
different. Specifically, the <EMPLIST> element corresponds to the EMPLIST column
which is of a EmployeeListType collection type. Consequently, the <EMPLIST>
element contains a list of <EMPLIST_ITEM> elements, each corresponding to one of
the elements of the collection.

Other observations to make about the preceding mapping are:

■ The <ROW> elements contain a cardinality attribute num.

■ If a particular column or attribute value is NULL, then for that row, the
corresponding XML element is left out altogether.

■ If a top level scalar column name starts with the at sign (@) character, then the
particular column is mapped to an XML attribute instead of an XML element.

Customizing the Generated XML: Mapping SQL to XML
Often, you need to generate XML with a specific structure. Since the desired structure
may differ from the default structure of the generated XML document, you want to
have some flexibility in this process. You can customize the structure of a generated
XML document using one of the following methods:

■ "Source Customizations"

■ "Mapping Customizations"

SQL-to-XML and XML-to-SQL Mapping Primer

XML SQL Utility (XSU) 7-9

■ "Post-Generation Customizations"

Source Customizations
Source customizations are done by altering the query or database schema. The
simplest and most powerful source customizations include the following:

■ In the database schema, create an object-relational view that maps to the desired
XML document structure.

■ In your query:

■ Use cursor subqueries, or cast-multiset constructs to get nesting in the XML
document that comes from a flat schema.

■ Alias column and attribute names to get the desired XML element names.

■ Alias top level scalar type columns with identifiers that begin with the at sign
(@) to have them map to an XML attribute instead of an XML element. For
example, SELECT empno AS "@empno",... FROM emp, results in an XML
document where the <ROW> element has an attribute EMPNO.

Mapping Customizations
XML SQL Utility enables you to modify the mapping it uses to transform SQL data
into XML. You can make any of the following SQL to XML mapping changes:

■ Change or omit the <ROWSET> tag.

■ Change or omit the <ROW> tag.

■ Change or omit the attribute num. This is the cardinality attribute of the <ROW>
element.

■ Specify the case for the generated XML element names.

■ Specify that XML elements corresponding to elements of a collection must have a
cardinality attribute.

■ Specify the format for dates in the XML document.

■ Specify that null values in the XML document have to be indicated using a
nullness attribute, rather then by omission of the element.

Post-Generation Customizations
Finally, if the desired customizations cannot be achieved with the foregoing methods,
you can write an XSL transformation and register it with XSU. While there is an XSLT
registered with the XSU, XSU can apply the XSLT to any XML it generates.

Default XML-to-SQL Mapping
XML to SQL mapping is just the reverse of the SQL to XML mapping.

Consider the following differences when mapping from XML to SQL, compared to
mapping from SQL to XML:

■ When going from XML to SQL, the XML attributes are ignored. Thus, there is
really no mapping of XML attributes to SQL.

■ When going from SQL to XML, mapping is performed from the ResultSet
created by the SQL query to XML. This way the query can span multiple database
tables or views. What is formed is a single ResultSet that is then converted into
XML. This is not the case when going from XML to SQL, where:

How XML SQL Utility Works

7-10 Oracle XML Developer's Kit Programmer's Guide

■ To insert one XML document into multiple tables or views, you must create an
object-relational view over the target schema.

■ If the view is not updatable, one solution is to use INSTEAD-OF-INSERT
triggers.

If the XML document does not perfectly map into the target database schema, there are
three things you can do:

■ Modify the Target. Create an object-relational view over the target schema, and
make the view the new target.

■ Modify the XML Document. Use XSLT to transform the XML document. The XSLT
can be registered with XSU so that the incoming XML is automatically
transformed, before any mapping attempts are made.

■ Modify XSU's XML-to-SQL Mapping. You can instruct XSU to perform case
insensitive matching of the XML elements to database columns or attributes.

■ You can tell XSU to use the name of the element corresponding to a database
row instead of ROW.

■ You can specify in XSU the date format to use when parsing dates in the XML
document.

How XML SQL Utility Works
This section describes how XSU works when performing the following tasks:

■ Selecting with XSU on page 7-10

■ Queries That XSU Cannot Handle

■ Inserting with XSU on page 7-10

■ Updating with XSU on page 7-11

■ Deleting with XSU on page 7-12

Selecting with XSU
XSU generation is simple. SQL queries are executed and the ResultSet is retrieved
from the database. Metadata about the ResultSet is acquired and analyzed. Using the
mapping described in "Default SQL-to-XML Mapping" on page 7-6, the SQL result set
is processed and converted into an XML document.

Queries That XSU Cannot Handle
There are certain types of queries that XSU cannot handle, especially those that mix
columns of type LONG or LONG RAW with CURSOR() expressions in the Select clause.
Please note that LONG and LONG RAW are two examples of datatypes that JDBC
accesses as streams and whose use is deprecated. If you migrate these columns to
CLOBs, then the queries will succeed.

Inserting with XSU
To insert the contents of an XML document into a particular table or view, XSU first
retrieves the metadata about the target table or view. Based on the metadata, XSU
generates a SQL INSERT statement. XSU extracts the data out of the XML document
and binds it to the appropriate columns or attributes. Finally the statement is executed.

How XML SQL Utility Works

XML SQL Utility (XSU) 7-11

For example, assume that the target table is dept1 and the XML document is the one
generated from dept1.

XSU generates the following INSERT statement.

INSERT INTO dept1 (deptno, deptname, deptaddr, emplist) VALUES (?,?,?,?)

Next, the XSU parses the XML document, and for each record, it binds the appropriate
values to the appropriate columns or attributes:

deptno <- 100
deptname <- SPORTS
deptaddr <- AddressType('100 Redwood Shores Pkwy','Redwood Shores',
 'CA','94065')
emplist <- EmployeeListType(EmployeeType(7369,'John',100000,
 AddressType('300 Embarcadero','Palo Alto','CA','94056'),...)

The statement is then executed. Insert processing can be optimized to insert in batches,
and commit in batches.

Updating with XSU
Updates and deletes differ from inserts in that they can affect more than one row in the
database table. For inserts, each ROW element of the XML document can affect at most
one row in the table, if there are no triggers or constraints on the table.

However, with both updates and deletes, the XML element can match more than one
row if the matching columns are not key columns in the table. For updates, you must
provide a list of key columns that XSU needs to identify the row to update. For
example, to update the DEPTNAME to SportsDept instead of Sports, you can have
an XML document such as:

<ROWSET>
 <ROW num="1">
 <DEPTNO>100</DEPTNO>
 <DEPTNAME>SportsDept</DEPTNAME>
 </ROW>
</ROWSET>

and supply the DEPTNO as the key column. This results in the following UPDATE
statement:

UPDATE dept1 SET deptname = ? WHERE deptno = ?

and bind the values this way:

deptno <- 100
deptname <- SportsDept

For updates, you can also choose to update only a set of columns and not all the
elements present in the XML document.

See Also:

■ "Default SQL-to-XML Mapping" on page 7-6

■ "Insert Processing Using XSU (Java API)" on page 7-26 for ore
detail on batching

See Also: "Update Processing Using XSU (Java API)" on
page 7-28

Using the XSU Command-Line Front End OracleXML

7-12 Oracle XML Developer's Kit Programmer's Guide

Deleting with XSU
For deletes, you can choose to give a set of key columns for the delete to identify the
rows. If the set of key columns are not given, then the DELETE statement tries to match
all the columns given in the document. For an XML document:

<ROWSET>
 <ROW num="1">
 <DEPTNO>100</DEPTNO>
 <DEPTNAME>Sports</DEPTNAME>
 <DEPTADDR>
 <STREET>100 Redwood Shores Pkwy</STREET>
 <CITY>Redwood Shores</CITY>
 <STATE>CA</STATE>
 <ZIP>94065</ZIP>
 </DEPTADDR>
 </ROW>
 <!-- additional rows ... -->
</ROWSET>

To delete, XSU builds a DELETE statement (one for each ROW element):

DELETE FROM dept1 WHERE deptno = ? AND deptname = ? AND deptaddr = ?

The binding is:

deptno <- 100
deptname <- sports
deptaddr <- addresstype('100 redwood shores pkwy','redwood city','ca',
 '94065')

Using the XSU Command-Line Front End OracleXML
XSU comes with a simple command line front end that gives you quick access to XML
generation and insertion.

The XSU command-line options are provided through the Java class, OracleXML.
Invoke it by calling:

java OracleXML

This prints the front end usage information. To run the XSU command-line front end,
first specify where the executable is located. Add the following to your CLASSPATH:

■ XSU Java library (xsu12.jar or xsu111.jar)

Also, since XSU depends on Oracle XML Parser and JDBC drivers, make the location
of these components known. To do this, the CLASSPATH must include the locations of:

■ Oracle XML Parser Java library (xmlparserv2.jar)

■ JDBC library (classes12.jar if using xsu12.jar or classes111.jar if
using xsu111.jar)

■ A JAR file for XMLType.

Generating XML Using the XSU Command Line
For XSU generation capabilities, use the XSU getXML parameter. For example, to
generate an XML document by querying the employees table in the hr schema, use:

See Also: "Delete Processing Using XSU (Java API)" on page 7-30

Using the XSU Command-Line Front End OracleXML

XML SQL Utility (XSU) 7-13

java OracleXML getXML -user "hr/hr" "select * from employees"

This performs the following tasks:

1. Connects to the current default database

2. Executes the query select * from employees

3. Converts the result to XML

4. Displays the result

The getXML parameter supports a wide range of options. They are explained in the
following section.

XSU's OracleXML getXML Options
Table 7–1 lists the OracleXML getXML options:

Table 7–1 XSU's OracleXML getXML Options

getXML Option Description

-user username/password Specifies the username and password to connect to the
database. If this is not specified, the user defaults to
scott/tiger. Note that the connect string is also being
specified. The username and password can be specified as
part of the connect string.

-conn JDBC_connect_string Specifies the JDBC database connect string. By default the
connect string is: "jdbc:oracle:oci:@"):

-withDTD Instructs the XSU to generate the DTD along with the XML
document.

-withSchema Instructs the XSU to generate the schema along with the
XML document.

-rowsetTag tag_name Specifies rowset tag (the tag that encloses all the XML
elements corresponding to the records returned by the
query). The default rowset tag is ROWSET. Specifying an
empty string for the rowset tells the XSU to completely
omit the rowset element.

-rowTag tag_name Specifies the row tag (the tag used to enclose the data
corresponding to a database row). The default row tag is
ROW. Specifying an empty string for the row tag tells the
XSU to completely omit the row tag.

-rowIdAttr row_id_attribute_name Names the attribute of the ROW element keeping track of the
cardinality of the rows. By default this attribute is called
num. Specifying an empty string ("") as the rowID attribute
will tell the XSU to omit the attribute.

 -rowIdColumn row_Id_column_name Specifies that the value of one of the scalar columns from
the query is to be used as the value of the rowID attribute.

-collectionIdAttr collection_id_
attribute name

Names the attribute of an XML list element keeping track of
the cardinality of the elements of the list (the generated
XML lists correspond to either a cursor query, or collection).
Specifying an empty string ("") as the rowID attribute will
tell the XSU to omit the attribute.

-useNullAttrId Tells the XSU to use the attribute NULL (TRUE/FALSE) to
indicate the nullness of an element.

-styleSheet stylesheet_URI Specifies the stylesheet in the XML PI (Processing
Instruction).

Using the XSU Command-Line Front End OracleXML

7-14 Oracle XML Developer's Kit Programmer's Guide

Inserting XML Using XSU's Command Line (putXML)
To insert an XML document into the employees table in the hr schema, use the
following syntax:

java OracleXML putXML -user "hr/hr" -fileName "/tmp/temp.xml" "employees"

This performs the following tasks:

1. Connects to the current database

2. Reads the XML document from the given file

3. Parses it, matches the tags with column names

4. Inserts the values appropriately into the employees table

XSU OracleXML putXML Options
Table 7–2 lists the putXML options:

-stylesheetType stylesheet_type Specifies the stylesheet type in the XML PI (Processing
Instruction).

-errorTag error tag_name Specifies the error tag - the tag to enclose error messages
that are formatted into XML.

-raiseNoRowsException Tells the XSU to raise an exception if no rows are returned.

-maxRows maximum_rows Specifies the maximum number of rows to be retrieved and
converted to XML.

-skipRows number_of_rows_to_skip Specifies the number of rows to be skipped.

-encoding encoding_name Specifies the character set encoding of the generated XML.

-dateFormat date_format Specifies the date format for the date values in the XML
document.

-fileName SQL_query_fileName

| sql_query

Specifies the file name that contains the query, or specify the
query itself.

-useTypeForCollElemTag Use type name for column-element tag (by default XSU uses
the column-name_item.

-setXSLTRef URI Set the XSLT external entity reference.

-useLowerCase

| -useUpperCase

Generate lowercase or uppercase tag names, respectively.
The default is to match the case of the SQL object names
from which the tags are generated.

-withEscaping There are characters that are legal in SQL object names but
illegal in XML tags. This option means that if such a
character is encountered, it is escaped rather than throwing
an exception.

-raiseException By default the XSU catches any error and produces the XML
error. This changes this behavior so the XSU actually throws
the raised Java exception.

Note: The XSU command line front end, putXML, currently only
publishes XSU insert functionality.

Table 7–1 (Cont.) XSU's OracleXML getXML Options

getXML Option Description

Generating XML with XSU's OracleXMLQuery

XML SQL Utility (XSU) 7-15

XSU Java API
The following two classes make up the XML SQL Utility Java API:

■ XSU API for XML generation: oracle.xml.sql.query.OracleXMLQuery

■ XSU API for XML save, insert, update, and delete:
oracle.xml.sql.dml.OracleXMLSave

Generating XML with XSU's OracleXMLQuery
The OracleXMLQuery class makes up the XML generation part of the XSU Java API.
Figure 7–4 illustrates the basic steps you need to take when using OracleXMLQuery to
generate XML:

1. Create a connection.

2. Create an OracleXMLQuery instance by supplying an SQL string or a
ResultSet object.

3. Obtain the result as a DOM tree or XML string.

Table 7–2 XSU's OracleXML putXML Options

putXML Options Description

-user username/password Specifies the username and password to connect to the database. If
this is not specified, the user defaults to scott/tiger. The
connect string is also being specified; the username and password
can be specified as part of the connect string.

-conn JDBC_connect_string Specifies the JDBC database connect string. By default the connect
string is: "jdbc:oracle:oci:@"):

-batchSize batching_size Specifies the batch size, that controls the number of rows that are
batched together and inserted in a single trip to the database to
improve performance.

-commitBatch commit_size Specifies the number of inserted records after which a commit is to
be executed. Note that if the autocommit is TRUE (the default), then
setting the commitBatch has no consequence.

-rowTag tag_name Specifies the row tag (the tag used to enclose the data
corresponding to a database row). The default row tag is ROW.
Specifying an empty string for the row tag tells XSU that no
row-enclosing tag is used in the XML document.

-dateFormat date_format Specifies the date format for the date values in the XML document.

-ignoreCase Makes the matching of the column names with tag names case
insensitive (for example, "EmpNo" will match with "EMPNO" if
ignoreCase is on).

-fileName file_name Specifies the XML document to insert, a local file.

-URL URL Specifies a URL to fetch the document from.

-xmlDoc xml_document Specifies the XML document as a string on the command line.

-tableName table The name of the table to put the values into.

-withEscaping If SQL to XML name escaping was used when generating the doc,
then this will turn on the reverse mapping.

-setXSLT URI XSLT to apply to the XML document before inserting.

-setXSLTRef URI Set the XSLT external entity reference.

Generating XML with XSU's OracleXMLQuery

7-16 Oracle XML Developer's Kit Programmer's Guide

Figure 7–4 Generating XML With XML SQL Utility for Java: Basic Steps

Generating XML from SQL Queries Using XSU
The following examples illustrate how XSU can generate an XML document in its
DOM or string representation given a SQL query. See Figure 7–5.

Figure 7–5 Generating XML With XML SQL Utility

XSU Generating XML Example 1: Generating a String from Table employees (Java)
1. Create a connection

■ Before generating the XML you must create a connection to the database. The
connection can be obtained by supplying the JDBC connect string. First register
the Oracle JDBC class and then create the connection, as follows

// import the Oracle driver..
import oracle.jdbc.*;

// Load the Oracle JDBC driver
DriverManager.registerDriver(new oracle.jdbc.OracleDriver());

// Create the connection.
Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:@","hr","hr");

JDBC Result
Set XML

String

DOM
object

Create JDBC
Connection

OracleXMLQuery
instance

Further
processing

SQL
Query

SQL
Query getXMLDOM

getXMLString

set
the options

REGISTER
Query

close

User / Browser /
Client /

Application

bind
values

Generated
XML

as DOM
User / Browser

Client /
Application

Generated
XML

as String

fetch
XML

Generating XML from the Database using the XML SQL Utility

Generating XML with XSU's OracleXMLQuery

XML SQL Utility (XSU) 7-17

Here, we use the default connection for the JDBC OCI driver. You can connect to
the scott schema supplying the password tiger.

You can also use the JDBC thin driver to connect to the database. The thin driver is
written in pure Java and can be called from within applets or any other Java
program.

■ Here is an example of connecting using the JDBC thin driver:

// Create the connection.
Connection conn =
 DriverManager.getConnection("jdbc:oracle:thin:@dlsun489:1521:ORCL",
 "hr","hr");

The thin driver requires you to specify the host name (dlsun489), port number
(1521), and the Oracle SID (ORCL), which identifies a specific Oracle instance on
the machine.

■ No connection is needed when run in the server. When writing server side Java
code, that is, when writing code that will run in the server, you need not establish
a connection using a username and password, since the server-side internal driver
runs within a default session. You are already connected. In this case call the
defaultConnection() on the oracle.jdbc.driver.OracleDriver()
class to get the current connection, as follows:

import oracle.jdbc.*;
// Load the Oracle JDBC driver
DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
Connection conn = new oracle.jdbc.OracleDriver().defaultConnection ();

The remaining discussion either assumes you are using an OCI connection from
the client or that you already have a connection object created. Use the appropriate
connection creation based on your needs.

2. Creating an OracleXMLQuery Class instance:

Once you have registered your connection, create an OracleXMLQuery class instance
by supplying a SQL query to execute as follows:

// import the query class in to your class
import oracle.xml.sql.query.OracleXMLQuery;

OracleXMLQuery qry = new OracleXMLQuery (conn, "select * from employees");

You are now ready to use the query class.

3. Obtain the result as a DOM tree or XML string:

See Also:: Oracle Database Java Developer's Guide for more details.

Note:

oracle.xml.sql.dataset.OracleXMLDataSetExtJdbc is
used only for Oracle JDBC, while
oracle.xml.sql.dataset.OracleXMLDataSetGenJdbc is
used for non-Oracle JDBC.

Generating XML with XSU's OracleXMLQuery

7-18 Oracle XML Developer's Kit Programmer's Guide

■ DOM object output. If, instead of a string, you wanted a DOM object, you can
simply request a DOM output as follows:

org.w3c.DOM.Document domDoc = qry.getXMLDOM();

and use the DOM traversals.

■ XML string output. You can get an XML string for the result by:

String xmlString = qry.getXMLString();

Here is a complete listing of the program to extract (generate) the XML string. This
program gets the string and prints it out to standard output:

import oracle.jdbc.*;
import oracle.xml.sql.query.OracleXMLQuery;
import java.lang.*;
import java.sql.*;

// class to test the String generation!
class testXMLSQL {

 public static void main(String[] argv)
 {

 try{
 // create the connection
 Connection conn = getConnection("hr","hr");

 // Create the query class.
 OracleXMLQuery qry = new OracleXMLQuery(conn, "select * from employees");

 // Get the XML string
 String str = qry.getXMLString();

 // Print the XML output
 System.out.println(" The XML output is:\n"+str);
 // Always close the query to get rid of any resources..
 qry.close();
 }catch(SQLException e){
 System.out.println(e.toString());
 }
 }

 // Get the connection given the user name and password..!
 private static Connection getConnection(String username, String password)
 throws SQLException
 {
 // register the JDBC driver..
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());

 // Create the connection using the OCI driver
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:@",username,password);

 return conn;
 }
}

Generating XML with XSU's OracleXMLQuery

XML SQL Utility (XSU) 7-19

How to Run This Program
To run this program:

1. Store the code in a file called testXMLSQL.java

2. Compile it using javac, the Java compiler

3. Execute it by specifying: java testXMLSQL

You must have the CLASSPATH pointing to this directory for the Java executable to
find the class. Alternatively use various visual Java tools including Oracle JDeveloper
to compile and run this program. When run, this program prints out the XML file to
the screen.

XSU Generating XML Example 2: Generating DOM from Table employees (Java)
DOM represents an XML document in a parsed tree-like form. Each XML entity
becomes a DOM node. Thus XML elements and attributes become DOM nodes while
their children become child nodes. To generate a DOM tree from the XML generated
by XSU, you can directly request a DOM document from XSU, as it saves the overhead
of having to create a string representation of the XML document and then parse it to
generate the DOM tree.

XSU calls the parser to directly construct the DOM tree from the data values. The
following example illustrates how to generate a DOM tree. The example steps through
the DOM tree and prints all the nodes one by one.

import org.w3c.dom.*;
import oracle.xml.parser.v2.*;
import java.sql.*;
import oracle.xml.sql.query.OracleXMLQuery;
import java.io.*;

 class domTest{

 public static void main(String[] argv)
 {
 try{
 // create the connection
 Connection conn = getConnection("hr","hr");

 // Create the query class.
 OracleXMLQuery qry = new OracleXMLQuery(conn, "select * from employees");

 // Get the XML DOM object. The actual type is the Oracle Parser's DOM
 // representation. (XMLDocument)
 XMLDocument domDoc = (XMLDocument)qry.getXMLDOM();

 // Print the XML output directly from the DOM
 domDoc.print(System.out);

 // If you instead want to print it to a string buffer you can do this.
 StringWriter s = new StringWriter(10000);
 domDoc.print(new PrintWriter(s));
 System.out.println(" The string version ---> "+s.toString());

 qry.close(); // Allways close the query!!
 }catch(Exception e){
 System.out.println(e.toString());
 }
 }

Paginating Results: skipRows and maxRows

7-20 Oracle XML Developer's Kit Programmer's Guide

 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:@",user,passwd);
 return conn;
 }
}

Paginating Results: skipRows and maxRows
In the examples shown so far, XML SQL Utility (XSU) takes the ResultSet or the
query, and generates the whole document from all the rows of the query. To obtain 100
rows at a time, you then have to fire off different queries to get the first 100 rows, the
next 100, and so on. Also it is not possible to skip the first five rows of the query and
then generate the result.

To obtain those results, use the XSU skipRows and maxRows parameter settings:

■ skipRows parameter, when set, forces the generation to skip the desired number
of rows before starting to generate the result.

■ maxRows limits the number of rows converted to XML.

For example, if you set skipRows to a value of 5 and maxRows to a value of 10, then
XSU skips the first 5 rows, then generates XML for the next 10 rows.

Keeping the Object Open for the Duration of the User's Session
In Web scenarios, you may want to keep the query object open for the duration of the
user's session. For example, consider the case of a Web search engine that gives the
results of a user's search in a paginated fashion. The first page lists 10 results, the next
page lists 10 more results, and so on.

To achieve this, request XSU to convert 10 rows at a time and keep the ResultSet state
active, so that the next time you ask XSU for more results, it starts generating from the
place the last generation finished.

When the Number of Rows or Columns in a Row Is Too Large
There is also the case when the number of rows, or number of columns in a row are
very large. In this case, you can generate multiple documents each of a smaller size.
These cases can be handled by using the maxRows parameter and the
keepObjectOpen function.

keepObjectOpen Function
Typically, as soon as all results are generated, OracleXMLQuery internally closes the
ResultSet, if it created one using the SQL query string given, since it assumes you
no longer want any more results. However, in the case described earlier, to maintain
that state, you need to call the keepObjectOpen function to keep the cursor active.
See the following example.

See Also: "XSU Generating XML Example 3: Paginating Results:
(Java)" on page 7-21

Generating XML from ResultSet Objects

XML SQL Utility (XSU) 7-21

XSU Generating XML Example 3: Paginating Results: (Java)
This example shows how you can use the XSU for Java API to generate an XML page:

import oracle.sql.*;
import oracle.jdbc.*;

import oracle.xml.sql.*;
import oracle.xml.sql.query.*;
import oracle.xml.sql.dataset.*;
import oracle.xml.sql.docgen.*;

import java.sql.*;
import java.io.*;

public class b
{
 public static void main(String[] args) throws Exception
 {

 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());

 Connection conn =
 DriverManager.getConnection"jdbc:oracle:oci:@", "hr", "hr"();

 Statement stmt =
conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_READ_ONLY);

 String sCmd = "SELECT FIRST_NAME, LAST_NAME FROM HR.EMPLOYEES";
 ResultSet rs = stmt.executeQuery(sCmd);

 OracleXMLQuery xmlQry = new OracleXMLQuery(conn, rs);
 xmlQry.keepObjectOpen(true);
 //xmlQry.setRowIdAttrName("");
 xmlQry.setRowsetTag("ROWSET");
 xmlQry.setRowTag("ROW");
 xmlQry.setMaxRows(20);

 //rs.beforeFirst();
 String sXML = xmlQry.getXMLString();
 System.out.println(sXML);
 }
}

Generating XML from ResultSet Objects
You saw how you can supply a SQL query and get the results as XML. In the last
example, you retrieved paginated results. However in Web cases, you may want to
retrieve the previous page and not just the next page of results. To provide this
scrollable functionality, you can use the Scrollable ResultSet. Use the ResultSet
object to move back and forth within the result set and use XSU to generate the XML
each time. The following example illustrates how to do this.

XSU Generating XML Example 4: Generating XML from JDBC ResultSets (Java)
This example shows you how to use the JDBC ResultSet to generate XML. Note that
using the ResultSet might be necessary in cases that are not handled directly by

Generating XML from ResultSet Objects

7-22 Oracle XML Developer's Kit Programmer's Guide

XSU, for example, when setting the batch size, binding values, and so on. This
example extends the previously defined pageTest class to handle any page.

public class pageTest
{
 Connection conn;
 OracleXMLQuery qry;
 Statement stmt;
 ResultSet rset;
 int lastRow = 0;

 public pageTest(String sqlQuery)
 {
 try{
 conn = getConnection("hr","hr");
 stmt = conn.createStatement();// create a scrollable Rset
 ResultSet rset = stmt.executeQuery(sqlQuery); // get the result set.
 qry = new OracleXMLQuery(conn,rset); // create an OracleXMLQuery
 // instance
 qry.keepCursorState(true); // Don't lose state after the first fetch
 qry.setRaiseNoRowsException(true);
 qry.setRaiseException(true);
 }
 catch (Exception e)
 {
 e.printStackTrace(System.out);
 }
 }

 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:@",user,passwd);
 return conn;
 }

 // Returns the next XML page..!
 public String getResult(int startRow, int endRow)
 {
 qry.setMaxRows(endRow-startRow); // set the max # of rows to retrieve..!
 return qry.getXMLString();
 }

 // Function to still perform the next page.
 public String nextPage()
 {
 String result = getResult(lastRow,lastRow+10);
 lastRow+= 10;
 return result;
 }

 public void close() throws SQLException
 {
 stmt.close(); // close the statement..
 conn.close(); // close the connection
 qry.close(); // close the query..
 }

Generating XML from ResultSet Objects

XML SQL Utility (XSU) 7-23

 public static void main(String[] argv)
 {
 String str;
 try{
 pageTest test = new pageTest("select * from employees");

 int i = 0;
 // Get the data one page at a time..!!!!!
 while ((str = test.getResult(i,i+10))!= null)
 {
 System.out.println(str);
 i+= 10;
 }
 test.close();
 }
 catch (Exception e)
 {
 e.printStackTrace(System.out);
 }
 }
}

XSU Generating XML Example 5: Generating XML from Procedure Return Values
The OracleXMLQuery class provides XML conversion only for query strings or
ResultSets. But in your application if you have PL/SQL procedures that return REF
cursors, how do you do the conversion?

In this case, you can use the earlier-mentioned ResultSet conversion mechanism to
perform the task. REF cursors are references to cursor objects in PL/SQL. These cursor
objects are valid SQL statements that can be iterated upon to get a set of values. These
REF cursors are converted into OracleResultSet objects in the Java world.

You can execute these procedures, get the OracleResultSet object, and then send
that to the OracleXMLQuery object to get the desired XML.

Consider the following PL/SQL function that defines a REF cursor and returns it:

CREATE OR REPLACE PACKAGE BODY testRef IS

 function testRefCur RETURN empREF is
 a empREF;
 begin
 OPEN a FOR select * from hr.employees;
 return a;
 end;
end;
/

Every time this function is called, it opens a cursor object for the query, select *
from employees and returns that cursor instance. To convert this to XML, you do
the following:

import org.w3c.dom.*;
import oracle.xml.parser.v2.*;
import java.sql.*;
import oracle.jdbc.*;
import oracle.xml.sql.query.OracleXMLQuery;
import java.io.*;
public class REFCURtest
{

Raising NoRowsException

7-24 Oracle XML Developer's Kit Programmer's Guide

 public static void main(String[] argv)
 throws SQLException
 {
 String str;
 Connection conn = getConnection("hr","hr"); // create connection

 // Create a ResultSet object by calling the PL/SQL function
 CallableStatement stmt =
 conn.prepareCall("begin ? := testRef.testRefCur(); end;");

 stmt.registerOutParameter(1,OracleTypes.CURSOR); // set the define type

 stmt.execute(); // Execute the statement.
 ResultSet rset = (ResultSet)stmt.getObject(1); // Get the ResultSet

 OracleXMLQuery qry = new OracleXMLQuery(conn,rset); // prepare Query class
 qry.setRaiseNoRowsException(true);
 qry.setRaiseException(true);
 qry.keepCursorState(true); // set options (keep the cursor active.
 while ((str = qry.getXMLString())!= null)
 System.out.println(str);

 qry.close(); // close the query..!

 // Note since we supplied the statement and resultset, closing the
 // OracleXMLquery instance will not close these. We need to
 // explicitly close this ourselves..!
 stmt.close();
 conn.close();
 }
 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:@",user,passwd);
 return conn;
 }

}

To apply the stylesheet, on the other hand, use the applyStylesheet() command.
This forces the stylesheet to be applied before generating the output.

Raising NoRowsException
When there are no rows to process, XSU simply returns a null string. However, it
might be desirable to get an exception every time there are no more rows present, so
that the application can process this through exception handlers. When the
setRaiseNoRowsException() is set, then whenever there are no rows to generate
for the output XSU raises an oracle.xml.sql.OracleXMLSQLNoRowsException.
This is a runtime exception and need not be caught unless needed.

XSU Generating XML Example 6: No Rows Exception (Java)
The following code extends the previous examples to use the exception instead of
checking for null strings:

Storing XML Back in the Database Using XSU OracleXMLSave

XML SQL Utility (XSU) 7-25

public class pageTest {
 // rest of the class definitions....

 public static void main(String[] argv)
 {
 pageTest test = new pageTest("select * from employees");

 test.qry.setRaiseNoRowsException(true); // ask it to generate exceptions
 try
 {
 while(true)
 System.out.println(test.nextPage());
 }
 catch(oracle.xml.sql.OracleXMLSQLNoRowsException e)
 {
 System.out.println(" END OF OUTPUT ");
 try{
 test.close();
 }
 catch (Exception ae)
 {
 ae.printStackTrace(System.out);
 }
 }
 }
}

Storing XML Back in the Database Using XSU OracleXMLSave
Now that you have seen how queries can be converted to XML, here is how you can
put the XML back into the tables or views using XSU. The class
oracle.xml.sql.dml.OracleXMLSave provides this functionality. It has methods
to insert XML into tables, update existing tables with the XML document, and delete
rows from the table based on XML element values.

In all these cases the given XML document is parsed, and the elements are examined
to match tag names to column names in the target table or view. The elements are
converted to the SQL types and then bound to the appropriate statement. The process
for storing XML using XSU is shown in Figure 7–6.

Note: Notice how the condition to check the termination changed
from checking if the result is NULL to an exception handler.

Insert Processing Using XSU (Java API)

7-26 Oracle XML Developer's Kit Programmer's Guide

Figure 7–6 Storing XML in the Database Using XSU

Consider an XML document that contains a list of ROW elements, each of which
constitutes a separate DML operation, namely, INSERT, UPDATE, or DELETE on the
table or view.

Insert Processing Using XSU (Java API)
To insert a document into a table or view, simply supply the table or the view name
and then the document. XSU parses the document (if a string is given) and then creates
an INSERT statement into which it binds all the values. By default, XSU inserts values
into all the columns of the table or view and an absent element is treated as a NULL
value. The following example shows you how the XML document generated from the
employees table, can be stored in the table with relative ease.

XSU Inserting XML Example 7: Inserting XML Values into All Columns (Java)
This example inserts XML values into all columns:

// This program takes as an argument the file name, or a url to
// a properly formated XML document and inserts it into the HR.EMPLOYEES table.
import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testInsert
{
 public static void main(String argv[])
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:@","hr","hr");

 OracleXMLSave sav = new OracleXMLSave(conn, "employees");
 sav.insertXML(sav.getURL(argv[0]));
 sav.close();
 }

close

REGISTER
the table

set
the options

insert
XML into

table

ser / Browser /
Client /

Application

Storing XML in the Database Using the XML SQL Utility

Insert Processing Using XSU (Java API)

XML SQL Utility (XSU) 7-27

}

An INSERT statement of the form:

INSERT INTO hr.employees (employee_id, last_name, job_id, manager_id,
 hire_date, salary, department_id) VALUES(?,?,?,?,?,?,?);

is generated, and the element tags in the input XML document matching the column
names are matched and their values bound.

If you store the following XML document:

<?xml version='1.0'?>
<ROWSET>
 <ROW num="1">
 <EMPLOYEE_ID>7369</EMPLOYEE_ID>
 <LAST_NAME>Smith</LAST_NAME>
 <JOB_ID>CLERK</JOB_ID>
 <MANAGER_ID>7902</MANAGER_ID>
 <HIRE_DATE>12/17/1980 0:0:0</HIRE_DATE>
 <SALARY>800</SALARY>
 <DEPARTMENT_ID>20</DEPARTMENT_ID>
 </ROW>
 <!-- additional rows ... -->
</ROWSET>

to a file and specify the file to the program described earlier, you get a new row in the
employees table containing the values 7369, Smith, CLERK, 7902,
12/17/1980,800,20 for the values named. Any element absent inside the row
element is taken as a NULL value.

XSU Inserting XML Example 8: Inserting XML Values into Columns (Java)
In certain cases, you may not want to insert values into all columns. This may be true
when the group of values that you are getting is not the complete set and you need
triggers or default values to be used for the rest of the columns. The code following
shows how this can be done.

Assume that you are getting the values only for the employee number, name, and job
and that the salary, manager, department number, and hire date fields are filled in
automatically. First create a list of column names that you want the INSERT statement
to work on and then pass it to the OracleXMLSave instance.

import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testInsert
{
 public static void main(String argv[])
 throws SQLException
 {
 Connection conn = getConnection("hr","hr");
 OracleXMLSave sav = new OracleXMLSave(conn, "hr.employees");

 String [] colNames = new String[3];
 colNames[0] = "EMPLOYEE_ID";
 colNames[1] = "LAST_NAME";
 colNames[2] = "JOB_ID";

 sav.setUpdateColumnList(colNames); // set the columns to update..!

 // Assume that the user passes in this document as the first argument!

Update Processing Using XSU (Java API)

7-28 Oracle XML Developer's Kit Programmer's Guide

 sav.insertXML(sav.getURL(argv[0]));
 sav.close();
 }
 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:@",user,passwd);
 return conn;
 }
}

An INSERT statement is generated

INSERT INTO hr.employees (employee_id, last_name, job_id) VALUES (?, ?, ?);

In the preceding example, if the inserted document contains values for the other
columns (HIRE_DATE, and so on), those are ignored. Also an insert operation is
performed for each ROW element that is present in the input. These inserts are batched
by default.

Update Processing Using XSU (Java API)
Now that you know how to insert values into the table from XML documents, see how
you can update only certain values. In an XML document, to update the salary of an
employee and the department that they work in:

<ROWSET>
 <ROW num="1">
 <EMPLOYEE_ID>7369</EMPLOYEE_ID>
 <SALARY>1800</SALARY>
 <DEPARTMENT_ID>30</DEPARTMENT_ID>
 </ROW>
 <ROW>
 <EMPLOYEE_ID>2290</EMPLOYEE_ID>
 <SALARY>2000</SALARY>
 <HIRE_DATE>12/31/1992</HIRE_DATE>
 <!-- additional rows ... -->
</ROWSET>

You can use the XSU to update the values. For updates, you must supply XSU with the
list of key column names. These form part of the WHERE clause in the UPDATE
statement. In the employees table shown earlier, employee number (employee_id)
column forms the key. Use this for updates.

XSU Updating XML Example 9: Updating a Table Using the keyColumns (Java)
This example updates table, emp, using keyColumns:

import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testUpdate
{
 public static void main(String argv[])
 throws SQLException
 {
 Connection conn = getConnection("hr","hr");
 OracleXMLSave sav = new OracleXMLSave(conn, "hr.employees");

Update Processing Using XSU (Java API)

XML SQL Utility (XSU) 7-29

 String [] keyColNames = new String[1];
 keyColNames[0] = "EMPLOYEE_ID";
 sav.setKeyColumnList(keyColNames);

 // Assume that the user passes in this document as the first argument!
 sav.updateXML(sav.getURL(argv[0]));
 sav.close();
 }
 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:@",user,passwd);
 return conn;
 }
}

In this example, two UPDATE statements are generated. For the first ROW element, you
generate an UPDATE statement to update the SALARY and HIRE_DATE fields as
follows:

UPDATE hr.employees SET salary = 2000 AND hire_date = 12/31/1992 WHERE employee_id = 2290;

For the second ROW element:

UPDATE hr.employees SET salary = 2000 AND hire_date = 12/31/1992 WHERE employee_id = 2290;

XSU Updating XML Example 10: Updating a Specified List of Columns (Java)
You may want to specify a list of columns to update. This speeds the processing since
the same UPDATE statement can be used for all the ROW elements. Also you can ignore
other tags in the XML document.

If you know that all the elements to be updated are the same for all the ROW elements
in the XML document, you can use the setUpdateColumnNames() function to set
the list of columns to update.

import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testUpdate
{
 public static void main(String argv[])
 throws SQLException
 {
 Connection conn = getConnection("hr","hr");
 OracleXMLSave sav = new OracleXMLSave(conn, "hr.employees");

 String [] keyColNames = new String[1];
 keyColNames[0] = "EMPLOYEE_ID";
 sav.setKeyColumnList(keyColNames);

 // you create the list of columns to update..!

Note: When you specify a list of columns to update, if an element
corresponding to one of the update columns is absent, it will be
treated as NULL.

Delete Processing Using XSU (Java API)

7-30 Oracle XML Developer's Kit Programmer's Guide

 // Note that if you do not supply this, then for each ROW element in the
 // XML document, you would generate a new update statement to update all
 // the tag values (other than the key columns)present in that element.
 String[] updateColNames = new String[2];
 updateColNames[0] = "SALARY";
 updateColNames[1] = "JOB_ID";
 sav.setUpdateColumnList(updateColNames); // set the columns to update..!

 // Assume that the user passes in this document as the first argument!
 sav.updateXML(sav.getURL(argv[0]));
 sav.close();
 }
 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:@",user,passwd);
 return conn;
 }
}

Delete Processing Using XSU (Java API)
When deleting from XML documents, you can set the list of key columns. These
columns are used in the WHERE clause of the DELETE statement. If the key column
names are not supplied, then a new DELETE statement is created for each ROW element
of the XML document, where the list of columns in the WHERE clause of the DELETE
statement will match those in the ROW element.

XSU Deleting XML Example 11: Deleting Operations Per Row (Java)
Consider this delete example:

import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testDelete
{
 public static void main(String argv[])
 throws SQLException
 {
 Connection conn = getConnection("hr","hr");
 OracleXMLSave sav = new OracleXMLSave(conn, "hr.employees");

 // Assume that the user passes in this document as the first argument!
 sav.deleteXML(sav.getURL(argv[0]));
 sav.close();
 }
 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:@",user,passwd);
 return conn;
 }
}

Advanced XSU Usage Techniques

XML SQL Utility (XSU) 7-31

Using the same XML document shown previously for the update example, you get
two DELETE statements:

DELETE FROM hr.employees WHERE employee_id=7369 AND salary=1800 AND department_id=30;
DELETE FROM hr.employees WHERE employee_id=2200 AND salary=2000 AND hire_date=12/31/1992;

The DELETE statements were formed based on the tag names present in each ROW
element in the XML document.

XSU Deleting XML Example 12: Deleting Specified Key Values (Java)
If instead, you want the DELETE statement to only use the key values as predicates,
you can use the setKeyColumn function to set this.

import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testDelete
{
 public static void main(String argv[])
 throws SQLException
 {
 Connection conn = getConnection("hr","hr");
 OracleXMLSave sav = new OracleXMLSave(conn, "hr.employees");

 String [] keyColNames = new String[1];
 keyColNames[0] = "EMPLOYEE_ID";
 sav.setKeyColumnList(keyColNames);

 // Assume that the user passes in this document as the first argument!
 sav.deleteXML(sav.getURL(argv[0]));
 sav.close();
 }
 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:@",user,passwd);
 return conn;
 }
}

Here is the single generated DELETE statement:

DELETE FROM hr.employees WHERE employee_id=?

Advanced XSU Usage Techniques
Here is more information about XSU.

XSU Exception Handling in Java
Exception handling is discussed next.

OracleXMLSQLException Class
XSU catches all exceptions that occur during processing and throws an
oracle.xml.sql.OracleXMLSQLException which is a runtime exception. The

Advanced XSU Usage Techniques

7-32 Oracle XML Developer's Kit Programmer's Guide

calling program thus does not have to catch this exception all the time, if the program
can still catch this exception and do the appropriate action. The exception class
provides functions to get the error message and also get the parent exception, if any.
For example, the program shown later, catches the run time exception and then gets
the parent exception.

OracleXMLNoRowsException Class
This exception is generated when the setRaiseNoRowsException is set in the
OracleXMLQuery class during generation. This is a subclass of the
OracleXMLSQLException class and can be used as an indicator of the end of row
processing during generation.

import java.sql.*;
import oracle.xml.sql.query.OracleXMLQuery;

public class testException
{
 public static void main(String argv[])
 throws SQLException
 {
 Connection conn = getConnection("hr","hr");

 // wrong query this will generate an exception
 OracleXMLQuery qry = new OracleXMLQuery(conn, "select * from employees
 where sd = 322323");

 qry.setRaiseException(true); // ask it to raise exceptions..!

 try{
 String str = qry.getXMLString();
 }catch(oracle.xml.sql.OracleXMLSQLException e)
 {
 // Get the original exception
 Exception parent = e.getParentException();
 if (parent instanceof java.sql.SQLException)
 {
 // perform some other stuff. Here you simply print it out..
 System.out.println(" Caught SQL Exception:"+parent.getMessage());
 }
 else
 System.out.println(" Exception caught..!"+e.getMessage());
 }
 }
 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:@",user,passwd);
 return conn;
 }
}

Hints for Using XML SQL Utility (XSU)
This section lists XSU hints.

Advanced XSU Usage Techniques

XML SQL Utility (XSU) 7-33

Schema Structure to use with XSU to Store XML
If you have the following XML in your customer.xml file:

<ROWSET>
 <ROW num="1">
 <CUSTOMER>
 <CUSTOMERID>1044</CUSTOMERID>
 <FIRSTNAME>Paul</FIRSTNAME>
 <LASTNAME>Astoria</LASTNAME>
 <HOMEADDRESS>
 <STREET>123 Cherry Lane</STREET>
 <CITY>SF</CITY>
 <STATE>CA</STATE>
 <ZIP>94132</ZIP>
 </HOMEADDRESS>
 </CUSTOMER>
 </ROW>
</ROWSET>

what database schema structure can you use to store this XML with XSU?

Since your example is more than one level deep (that is, it has a nested structure), you
can use an object-relational schema. The XML preceding will canonically map to such
a schema. An appropriate database schema is:

CREATE TYPE address_type AS OBJECT
 (
 street VARCHAR2(40),
 city VARCHAR2(20),
 state VARCHAR2(10),
 zip VARCHAR2(10)
);
 /
CREATE TYPE customer_type AS OBJECT
 (
customerid NUMBER(10),
firstname VARCHAR2(20),
lastname VARCHAR2(20),
homeaddress address_type
);
/
CREATE TABLE customer_tab (customer customer_type);

In case you wanted to load customer.xml by means of XSU into a relational schema,
you can still do it by creating objects in views on top of your relational schema.

For example, you can have a relational table that contains all the following
information:

CREATE TABLE cust_tab
 (customerid NUMBER(10),
 firstname VARCHAR2(20),
 lastname VARCHAR2(20),
 street VARCHAR2(40),
 city VARCHAR2(20),
 state VARCHAR2(20),
 zip VARCHAR2(20)
);

Then, you create a customer view that contains a customer object on top of it, as in the
following example:

Advanced XSU Usage Techniques

7-34 Oracle XML Developer's Kit Programmer's Guide

CREATE VIEW customer_view AS
SELECT customer_type(customerid, firstname, lastname,
address_type(street,city,state,zip)) customer
FROM cust_tab;

Finally, you can flatten your XML using XSLT and then insert it directly into your
relational schema. However, this is the least recommended option.

Storing XML Data Across Tables
Currently the XML SQL Utility (XSU) can only store data in a single table. It maps a
canonical representation of an XML document into any table or view. But there is a
way to store XML with XSU across tables. You can do this using XSLT to transform any
document into multiple documents and insert them separately. Another way is to
define views over multiple tables (using object views if needed) and then do the
insertions into the view. If the view is inherently non-updatable (because of complex
joins), then you can use INSTEAD OF triggers over the views to do the inserts.

Using XSU to Load Data Stored in Attributes
You have to use XSLT to transform your XML document; that is, you must change the
attributes into elements. XSU does assume canonical mapping from XML to a database
schema. This takes away a bit from the flexibility, forcing you to sometimes resort to
XSLT, but at the same time, in the common case, it does not burden you with having to
specify a mapping.

XSU is Case-Sensitive
By default, XSU is case sensitive. You have two options: use the correct case or use the
ignoreCase feature.

XSU Cannot Generate the Database Schema from a DTD
Due to a number of shortcomings of the DTD, this functionality is not available. The
W3C XML Schema recommendation is finalized, but this functionality is not available
yet in XSU.

Thin Driver Connect String Example for XSU
An example of an JDBC thin driver connect string is:

jdbc:oracle:thin:user/password@hostname:portnumber:DBSID;

Furthermore, the database must have an active TCP/IP listener. A valid OCI connect
string is:

jdbc:oracle:oci:user/password@hostname

XSU and COMMIT After INSERT, DELETE, or UPDATE
Does XML SQL Utility commit after it is done inserting, deleting, or updating? What
happens if an error occurs?

By default the XSU executes a number of INSERT, DELETE, or UPDATE statements at a
time. The number of statements batch together and executed at the same time can be
overridden using the setBatchSize feature.

Also, by default XSU does no explicit commits. If AUTOCOMMIT is on (default for the
JDBC connection), then after each batch of statement executions a commit occurs. You
can override this by turning AUTOCOMMIT off and then specifying after how many

Advanced XSU Usage Techniques

XML SQL Utility (XSU) 7-35

statement executions a commit occurs, which can be done using the
setCommitBatch feature.

If an error occurs, XSU rolls back to either the state the target table was in before the
particular call to XSU, or the state right after the last commit made during the current
call to XSU.

Mapping Table Columns to XML Attributes Using XSU
From XSU release 2.1.0 you can map a particular column or a group of columns to an
XML attribute instead of an XML element. To achieve this, you have to create an alias
for the column name, and prepend the at sign (@) before the name of this alias. For
example:

* Create a file called select.sql with the following content :
 SELECT empno "@EMPNO", ename, job, hiredate
 FROM emp
 ORDER BY empno

 * Call the XML SQL Utility :
 java OracleXML getXML -user "scott/tiger" \
 -conn "jdbc:oracle:thin:@myhost:1521:ORCL" \
 -fileName "select.sql"

 * As a result, the XML document will look like :
 <?xml version = '1.0'?>
 <ROWSET>
 <ROW num="1" EMPNO="7369">
 <ENAME>SMITH</ENAME>
 <JOB>CLERK</JOB>
 <HIREDATE>12/17/1980 0:0:0</HIREDATE>
 </ROW>
 <ROW num="2" EMPNO="7499">
 <ENAME>ALLEN</ENAME>
 <JOB>SALESMAN</JOB>
 <HIREDATE>2/20/1981 0:0:0</HIREDATE>
 </ROW>
 </ROWSET>

Since the XML document is created in a streamed manner, the following query:

SELECT ename, empno "@EMPNO", ...

does not generate the expected result. It is currently not possible to load XML data
stored in attributes. You will still need to use an XSLT transformation to change the
attributes into elements. XSU assumes canonical mapping from XML to a database
schema.

Note: All attributes must appear before any non-attribute.

Advanced XSU Usage Techniques

7-36 Oracle XML Developer's Kit Programmer's Guide

XSQL Pages Publishing Framework 8-1

8
XSQL Pages Publishing Framework

This chapter contains these topics:

■ XSQL Pages Publishing Framework Overview

■ Security Considerations for XSQL Pages

■ What's New in XSQL Pages Release 10.1

■ Overview of Basic XSQL Pages Features

■ Setting Up and Using XSQL Pages in Your Environment

■ Overview of All XSQL Pages Capabilities

■ Description of XSQL Servlet Examples

■ Advanced XSQL Pages Topics

■ XSQL Servlet Limitations and Hints

XSQL Pages Publishing Framework Overview
The Oracle XSQL Pages publishing framework is an extensible platform for easily
publishing XML information in any format you desire. It greatly simplifies combining
the power of SQL, XML, and XSLT to publish dynamic Web content based on database
information.

Using the XSQL publishing framework, anyone familiar with SQL can create and use
declarative templates called "XSQL pages" to:

■ Assemble dynamic XML "datagrams" based on parameterized SQL queries, and,

■ Transform these "data pages" to produce a final result in any desired XML, HTML,
or text-based format using an associated XSLT transformation.

Assembling and transforming information for publishing requires no programming. In
fact, most of the common things you will want to do can be easily achieved in a
declarative way. However, since the XSQL publishing framework is extensible, if one
of the built-in features does not fit your needs, you can easily extend the framework
using Java to integrate custom information sources or to perform custom server-side
processing.

Using the XSQL Pages framework, the assembly of information to be published is
cleanly separated from presentation. This simple architectural detail has profound
productivity benefits. It enables you to:

■ Present the same information in multiple ways, including tailoring the
presentation appropriately to the kind of client device making the request
(browser, cellular phone, PDA, and so on).

XSQL Pages Publishing Framework Overview

8-2 Oracle XML Developer's Kit Programmer's Guide

■ Reuse information easily by aggregating existing pages into new ones.

■ Revise and enhance the presentation independently of the information content
being presented.

What Can I Do with Oracle XSQL Pages?
Using server-side templates — known as "XSQL pages" due to their .xsql extension
— you can publish any information in any format to any device. The XSQL page
processor "engine" interprets, caches, and processes the contents of your XSQL page
templates. Figure 8–1 illustrates that the core XSQL page processor engine can be
"exercised" in four different ways:

■ From the command line or in batch using the XSQL Command-Line Utility

■ Over the Web, using the XSQL Servlet installed into your favorite Web server

■ As part of JSP applications, using <jsp:include> to include a template

■ Programmatically, with the XSQLRequest object, the engine's Java API

Figure 8–1 Understanding the Architecture of the XSQL Pages Framework

The same XSQL page templates can be used in any or all of these scenarios. Regardless
of the means by which a template is processed, the same basic steps occur to produce a
result. The XSQL page processor "engine":

1. Receives a request to process an XSQL template

2. Assembles an XML "datagram" using the result of one or more SQL queries

3. Returns this XML "datagram" to the requestor

4. Optionally transforms the "datagram" into any XML, HTML, or text format

During the transformation step in this process, you can use stylesheets that conform to
the W3C XSLT 1.0 standard to transform the assembled "datagram" into document
formats like:

■ HTML for browser display

■ Wireless Markup Language (WML) for wireless devices

■ Scalable Vector Graphics (SVG) for data-driven charts, graphs, and diagrams

■ XML Stylesheet Formatting Objects (XSL-FO), for rendering into Adobe PDF

Security Considerations for XSQL Pages

XSQL Pages Publishing Framework 8-3

■ Text documents, like e-mails, SQL scripts, Java programs, and so on

■ Arbitrary XML-based document formats

XSQL Pages bring this functionality to you by automating the use of underlying
Oracle XML components to solve many common cases without resorting to custom
programming. However, when only custom programming will do — as we'll see in the
Advanced Topics section of this chapter — you can augment the framework's built-in
actions and serializers to assemble the XSQL "datagrams" from any custom source and
serialize the datagrams into any desired format, without having to write an entire
publishing framework from scratch.

Where Can I Obtain Oracle XSQL Pages?
XSQL Servlet is provided with Oracle and is also available for download from the
OTN site.

Where indicated, the examples and demos described in this chapter are also available
from OTN.

What Is Needed to Run XSQL Pages?
To run the Oracle XSQL Pages publishing framework from the command-line, all you
need is a Java VM (1.1.8, 1.2.2, or 1.3). The XSQL Pages framework depends on two
underlying components in the Oracle XML Developer's Kit:

■ Oracle XML Parser and XSLT Processor (xmlparserv2.jar)

■ Oracle XML SQL Utility (xsu12.jar)

Both of their Java archive files must be present in the CLASSPATH where the XSQL
pages framework is running. Since most XSQL pages will connect to a database to
query information for publishing, the framework also depends on a JDBC driver. Any
JDBC driver is supported, but when connecting to Oracle, it's best to use the Oracle
JDBC driver (classes12.jar) for maximum functionality and performance.

Lastly, the XSQL publishing engine expects to read its configuration file (by default,
named XSQLConfig.xml) as a Java resource, so you must include the directory where
the configuration file resides in the CLASSPATH as well.

To use the XSQL Pages framework for Web publishing, you need a Web server that
supports Java Servlets.

Security Considerations for XSQL Pages
This section describes best practice security techniques for using the Oracle XSQL
Servlet.

Install Your XSQLConfig.xml File in a Safe Directory
The XSQLConfig.xml configuration file contains sensitive database
username/password information that must be kept secure on the server. This file

See Also: XSQL Servlet Release Notes on OTN at
http://www.oracle.com/technology/tech/xml/

See Also: For details on installing the XSQL Servlet on different
Web servers, configuring your environment, and running XSQL
Servlet, see the XSQL Servlet "Release Notes" on OTN at
http://www.oracle.com/technology/tech/xml

What's New in XSQL Pages Release 10.1

8-4 Oracle XML Developer's Kit Programmer's Guide

should not reside in any directory that is mapped to a virtual path of your Web server,
nor in any of its subdirectories. The read permissions of the configuration file need
only be granted such that the UNIX account that owns the servlet engine can read it.

Failure to follow this recommendation could mean that a user of your site could
accidentally, or intentionally, browse the contents of your configuration file.

Disable Default Client Stylesheet Overrides
By default, the XSQL Page Processor allows the user to supply a stylesheet in the
request by passing a value for the special xml-stylesheet parameter. If you want
the stylesheet that is referenced inside your server-side XSQL page to be the only
stylesheet that is used, then you can include the allow-client-style="no"
attribute on the document element of your page. You also can globally change the
default setting to disallow client stylesheet overrides by changing a setting in your
XSQLConfig.xml file. If you do this, then only pages that will allow client stylesheet
overrides are ones that include the allow-client-style="yes" attribute on their
document element.

Be Alert for the Use of Substitution Parameters
With power comes responsibility. Any product such as XSQL Pages that supports the
use of lexical substitution variables in a SQL query can cause a developer problems.
Any time you deploy an XSQL page that allows important parts of a SQL statement
(or at the extreme, the entire SQL statement) to be substituted by a lexical parameter,
you must make sure that you have taken appropriate precautions against misuse.

For example, one of the demonstrations that comes with XSQL Pages is the "adhoc
query demo". It illustrates how the entire SQL statement of an <xsql:query> action
handler can be supplied as a parameter. This is a powerful capability when in the right
users hands, but be aware that if you deploy a similar kind of page to your product
system, then the user can execute any query that the database security privileges for
the connection associated with the page allows. The demo is setup to use a connection
that maps to the SCOTT account, so a user of the "adhoc query demo" can query any
data that SCOTT would be allowed to query from the SQL*Plus command line.

Techniques that can be used to make sure your pages are not abused include:

■ Making sure the database user account associated with the page has only the
privileges for reading the tables and views you want your users to see.

■ Using true bind variables instead of lexical bind variables when substituting single
values in a SELECT statement. If you need to make syntactic parts of your SQL
statement parameterized, then lexical parameters are the only way to proceed.
Otherwise, true bind variables are recommended, so that any attempt to pass an
invalid value will generate an error instead of producing an unexpected result.

What's New in XSQL Pages Release 10.1
The following list highlights the key new features added in the release 10.1 to the
XSQL Pages publishing framework. You can now:

■ Easily Work with Multi-Valued Parameters

■ Bind Multi-Valued Parameters as Collections in SQL and PL/SQL

■ Detect Action Handler Errors and React More Easily to Them

■ Conditionally Execute Actions or Include Content

Overview of Basic XSQL Pages Features

XSQL Pages Publishing Framework 8-5

■ Use JDBC Datasources from Your Servlet Container

■ Provide Custom XSQL Page Request Logging

■ Provide Custom XSQL Page Error Handling

■ Override the Name of the XSQL Configuration File

The XSQL servlet processor has the following new features in release 10.1:

■ Support for Multi-Valued Parameters: This allows users to work with parameters
whose values are arrays of strings. The most common scenario where
multi-valued parameters occur is when a user submits an HTML form containing
multiple occurrences of input controls that share the same name.

■ Conditionally Execute Actions or Include Content with xsql:if-param: The
new <xsql:if-param> action enables you to conditionally include the elements
and actions that are nested inside it if some condition is true.

■ New Commit="No" Flag on Actions That Performed an Implicit Commit: The
<xsql:delete-request, xsql:insert-request>,
xsql:insert-request, and <xsql:insert-parameter> action elements
each take a new optional commit attribute to control whether the action does an
implicit commit or not.

■ Optionally Set an Error Parameter on Any Built-in Action: It is often convenient to
know whether an action encountered a non-fatal error during its execution.

■ Use Your Servlet Container's DataSource Implementation: As an alternative to
defining your named connections in the XSQLConfig.xml file, you may now
alternatively use the data sources available through your servlet container's
implementation of JDBC data sources.

■ Provides Custom XSQLErrorHandler Implementation: A new interface is
introduced in release 1.1. oracle.xml.xsql.XSQLErrorHandler allows
developers to achieve a programmatic control of how errors are reported to
customize the treatment of the errors.

■ Provides Custom XSQLLogger Implementation: Two new interfaces are
introduced in release 10.1: oracle.xml.xsql.XSQLLoggerFactory and
oracle.xml.xsql.XSQLLogger allow developers to log XSQL page requests.

■ You can override the Default Name of the XSQLConfig.xml file: You can easily
provide different configuration files for test and production environments. For
example, releases 10.1 introduces two ways to override the file name.

■ By setting the Java System property xsql.config

■ By defining a servlet initialization parameter xsql.config

■ Support for Apache FOP 0.20.3: If you need to render PDF output from XSQL
pages, this release supports working with the 0.20.3 release candidate of Apache
FOP.

■ Set Preserve Whitespace Config Option: It is now possible to control whether or
not the XSQL Page Processor uses the XML Parser to parse XSQL page templates
and XSLT stylesheets with whitespace-preserving mode.

Overview of Basic XSQL Pages Features
In this section, we take a brief look at the most basic features you can exploit in your
server-side XSQL page templates:

Overview of Basic XSQL Pages Features

8-6 Oracle XML Developer's Kit Programmer's Guide

■ Producing XML Datagrams from SQL Queries

■ Transforming the XML Datagram into an Alternative XML Format

■ Transforming the XML Datagram into HTML for Display

Producing XML Datagrams from SQL Queries
It is extremely easy to serve database information in XML format over the Web using
XSQL pages. For example, let us see how simple it is to serve a real-time XML
"datagram" from Oracle, of all available flights landing today at JFK airport. Using
Oracle JDeveloper, or your favorite text editor, just build an XSQL page template like
the one following, and save it in a file named, AvailableFlightsToday.xsql:

<?xml version="1.0"?>
<xsql:query connection="demo" bind-params="City" xmlns:xsql="urn:oracle-xsql">
 SELECT Carrier, FlightNumber, Origin, TO_CHAR(ExpectedTime,'HH24:MI') AS Due
 FROM FlightSchedule
 WHERE TRUNC(ExpectedTime) = TRUNC(SYSDATE) AND Arrived = 'N'
 AND Destination = ? /* The ? is a bind variable being bound */
 ORDER BY ExpectedTime /* to the value of the City parameter */
</xsql:query>

With XSQL Servlet properly installed on your Web server, you just need to copy the
AvailableFlightsToday.xsql file preceding to a directory under your Web
server's virtual directory hierarchy. Then you can access the template through a Web
browser by requesting the URL:

http://yourcompany.com/AvailableFlightsToday.xsql?City=JFK

The results of the query in your XSQL page are materialized automatically as XML
and returned to the requester. This XML-based "datagram" is typically requested by
another server program for processing, but if you are using a browser such as Internet
Explorer 5.0, you can directly view the XML result as shown in Figure 8–2.

Overview of Basic XSQL Pages Features

XSQL Pages Publishing Framework 8-7

Figure 8–2 XML Result From XSQL Page (AvailableFlightsToday.xsq) Query

Let us take a closer look at the XSQL page template we used. Notice the XSQL page
begins with:

<?xml version="1.0"?>

This is because the XSQL template is itself an XML file (with an *.xsql extension)
that contains any mix of static XML content and XSQL "action elements". The
AvailableFlightsToday.xsql example preceding contains no static XML
elements, and just a single XSQL action element <xsql:query>. It represents the
simplest useful XSQL page we can build, one that just contains a single query.

Notice that the first (and in this case, only!) element in the page <xsql:query>
includes a special attribute that declares the xsql namespace prefix as a "synonym"
for the Oracle XSQL namespace identifier urn:oracle-xsql.

<xsql:query connection="demo" bind-params="City" xmlns:xsql="urn:oracle-xsql">

This first, outermost element — known at the "document element" — also contains a
connection attribute whose value "demo" is the name of one of the pre-defined
connections in the XSQL configuration file (by default, named XSQLConfig.xml):

<xsql:query connection="demo" bind-params="City" xmlns:xsql="urn:oracle-xsql">

Overview of Basic XSQL Pages Features

8-8 Oracle XML Developer's Kit Programmer's Guide

The details concerning the username, password, database, and JDBC driver that will
be used for the "demo" connection are centralized into the configuration file. Setting
up these connection definitions is discussed in a later section of this chapter.

Lastly, the <xsql:query> element contains a bind-params attribute that associates
the values of parameters in the request by name to bind parameters represented by
question marks in the SQL statement contained inside the <xsql:query> tag.

Note that if we wanted to include more than one query on the page, we need to invent
an XML element of our own creation to "wrap" the other elements like this:

<?xml version="1.0"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query bind-params="City">
 SELECT Carrier, FlightNumber, Origin, TO_CHAR(ExpectedTime,'HH24:MI') AS Due
 FROM FlightSchedule
 WHERE TRUNC(ExpectedTime) = TRUNC(SYSDATE) AND Arrived = 'N'
 AND Destination = ? /* The ? is a bind variable being bound */
 ORDER BY ExpectedTime /* to the value of the City parameter */
 </xsql:query>
 <!-- Other xsql:query actions can go here inside <page> and </page> -->
</page>

Notice in this example that the connection attribute and the xsql namespace
declaration always go on the document element, while the bind-params is specific to
the <xsql:query> action.

Transforming XML Datagrams into an Alternative XML Format
If the canonical <ROWSET> and <ROW> XML output from Figure 8–2 is not the XML
format you need, then you can associate an XSLT stylesheet to your XSQL page
template to transform this XML "datagram" in the server before returning the
information in any alternative format desired.

When exchanging data with another program, typically you will agree in advance
with the other party on a specific Document Type Definition (DTD) that describes the
XML format you will be exchanging. A DTD is in effect, a "schema" definition. It
formally defines what XML elements and attributes that a document of that type can
have.

Let us assume you are given the flight-list.dtd definition and are told to
produce your list of arriving flights in a format compliant with that DTD. You can use
a visual tool such as Extensibility's "XML Authority" to browse the structure of the
flight-list DTD as shown in Figure 8–3.

Overview of Basic XSQL Pages Features

XSQL Pages Publishing Framework 8-9

Figure 8–3 Exploring the "industry standard" flight-list.dtd using Extensibility's XML Authority

This shows that the standard XML formats for Flight Lists are:

■ <flight-list> element, containing one or more…

■ <flight> elements, having attributes airline and number, each of which contains
an…

■ <arrives> element.

By associating the following XSLT stylesheet, flight-list.xsl, with the XSQL
page, you can change the default <ROWSET> and <ROW> format of your arriving flights
into the "industry standard" DTD format.

<!-- XSLT Stylesheet to transform ROWSET/ROW results into flight-list format
 -->
<flight-list xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xsl:version="1.0">
 <xsl:for-each select="ROWSET/ROW">
 <flight airline="{CARRIER}" number="{FLIGHTNUMBER}">
 <arrives><xsl:value-of select="DUE"/></arrives>
 </flight>
 </xsl:for-each>
</flight-list>

The stylesheet is a template that includes the literal elements that you want produced
in the resulting document, such as, <flight-list>, <flight>, and <arrives>,
interspersed with special XSLT "actions" that allow you to do the following:

■ Loop over matching elements in the source document using <xsl:for-each>

■ Plug in the values of source document elements where necessary using
<xsl:value-of>

■ Plug in the values of source document elements into attribute values using
{something}

Note two things have been added to the top-level <flight-list> element in the
stylesheet:

■ xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

This defines the XML Namespace (xmlns) named "xsl" and identifies the uniform
resource locator string that uniquely identifies the XSLT specification. Although it

Overview of Basic XSQL Pages Features

8-10 Oracle XML Developer's Kit Programmer's Guide

looks just like a URL, think of the string
http://www.w3.org/1999/XSL/Transform as the "global primary key" for
the set of elements that are defined in the XSLT 1.0 specification. Once the
namespace is defined, we can then make use of the <xsl:XXX> action elements in
our stylesheet to loop and plug values in where necessary.

■ xsl:version="1.0"

This attribute identifies the document as an XSLT 1.0 stylesheet. A version
attribute is required on all XSLT Stylesheets for them to be valid and recognized by
an XSLT Processor.

Associate the stylesheet to your XSQL Page by adding an <?xml-stylesheet?>
processing instruction to the top of the page as follows:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="flight-list.xsl"?>
<xsql:query connection="demo" bind-params="City" xmlns:xsql="urn:oracle-xsql">
 SELECT Carrier, FlightNumber, Origin, TO_CHAR(ExpectedTime,'HH24:MI') AS Due
 FROM FlightSchedule
 WHERE TRUNC(ExpectedTime) = TRUNC(SYSDATE) AND Arrived = 'N'
 AND Destination = ? /* The ? is a bind variable being bound */
 ORDER BY ExpectedTime /* to the value of the City parameter */
</xsql:query>

This is the W3C Standard mechanism of associating stylesheets with XML documents
(http://www.w3.org/TR/xml-stylesheet). Specifying an associated XSLT
stylesheet to the XSQL page causes the requesting program or browser to see the XML
in the "industry-standard" format as specified by flight-list.dtd you were given
as shown in Figure 8–4.

Figure 8–4 XSQL Page Results in "industry standard" XML Format

Transforming XML Datagrams into HTML for Display
To return the same XML information in HTML instead of an alternative XML format,
simply use a different XSLT stylesheet. Rather than producing elements like

Overview of Basic XSQL Pages Features

XSQL Pages Publishing Framework 8-11

<flight-list> and <flight>, your stylesheet produces HTML elements like
<table>, <tr>, and <td> instead. The result of the dynamically queried information
then looks like the HTML page shown in Figure 8–5. Instead of returning "raw" XML
information, the XSQL Page leverages server-side XSLT transformation to format the
information as HTML for delivery to the browser.

Figure 8–5 Using an Associated XSLT Stylesheet to Render HTML

Similar to the syntax of the flight-list.xsl stylesheet, the
flight-display.xsl stylesheet looks like a template HTML page, with
<xsl:for-each>, <xsl:value-of> and attribute value templates like {DUE} to
plug in the dynamic values from the underlying <ROWSET> and <ROW> structured
XML query results.

<!-- XSLT Stylesheet to transform ROWSET/ROW results into HTML -->
<html xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xsl:version="1.0">
 <head><link rel="stylesheet" type="text/css" href="flights.css" /></head>
 <body>
 <center><table border="0">
 <tr><th>Flight</th><th>Arrives</th></tr>
 <xsl:for-each select="ROWSET/ROW">
 <tr>
 <td>
 <table border="0" cellspacing="0" cellpadding="4">
 <tr>
 <td></td>
 <td width="180">
 <xsl:value-of select="CARRIER"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="FLIGHTNUMBER"/>
 </td>
 </tr>
 </table>
 </td>
 <td align="center"><xsl:value-of select="DUE"/></td>
 </tr>
 </xsl:for-each>

Setting Up and Using XSQL Pages in Your Environment

8-12 Oracle XML Developer's Kit Programmer's Guide

 </table></center>
 </body>
</html>

You can see that by combining the power of:

■ Parameterized SQL statements to select any information you need from our Oracle
database,

■ Industry-standard XML as a portable, interim data exchange format

■ XSLT to transform XML-based "data pages" into any XML- or HTML-based format
you need

you can achieve very interesting and useful results quickly. You will see in later
sections that what you have seen earlier is just scratching the surface of what you can
do using XSQL pages.

Setting Up and Using XSQL Pages in Your Environment
You can develop and use XSQL pages in a variety of ways. We start by describing the
easiest way to get started, using Oracle JDeveloper, then cover the details you'll need
to understand to use XSQL pages in your production environment.

Using XSQL Pages with Oracle JDeveloper
The easiest way to work with XSQL pages during development is to use Oracle
JDeveloper. Versions 3.1 and higher of the JDeveloper IDE support color-coded syntax
highlighting, XML syntax checking, and easy testing of your XSQL pages. In addition,
the JDeveloper 3.2 release supports debugging XSQL pages and adds new wizards to
help create XSQL actions.

To create an XSQL page in a JDeveloper project, you can:

■ Click the plus icon at the top of the navigator to add a new or existing XSQL page
to your project

■ Select File | New... and select "XSQL" from the "Web Objects" tab of the gallery

To get assistance adding XSQL action elements like <xsql:query> to your XSQL
page, place the cursor where you want the new element to go and either:

■ Select XSQL Element... from the right mouse menu, or

■ Select Wizards | XSQL Element... from the IDE menu.

The XSQL Element wizard takes you through the steps of selecting which XSQL action
you want to use, and which attributes you need to provide.

Note: The stylesheet looks exactly like HTML, with one tiny
difference. It is well-formed HTML. This means that each opening
tag is properly closed (for example, <td>…</td>) and that empty
tags use the XML empty element syntax
 instead of just

.

See Also: For a detailed introduction to XSLT and a thorough
tutorial on how to apply XSLT to many different Oracle database
scenarios, see the book Building Oracle XML Applications, by Steve
Muench, from O'Reilly and Associates.

Setting Up and Using XSQL Pages in Your Environment

XSQL Pages Publishing Framework 8-13

To syntax-check an XSQL page template, you can select Check XML Syntax... at any
time from the right-mouse menu in the navigator after selecting the name of the XSQL
page you'd like to check. If there are any XML syntax errors, they will appear in the
message view and your cursor will be brought to the first one.

To test an XSQL page, simply select the page in the navigator and choose Run from the
right-mouse menu. JDeveloper automatically starts up a local Web-to-go Web server,
properly configured to run XSQL pages, and tests your page by launching your
default browser with the appropriate URL to request the page. Once you've run the
XSQL page, you can continue to make modifications to it in the IDE — as well as to
any XSLT stylesheets with which it might be associated — and after saving the files in
the IDE you can immediately refresh the browser to observe the effect of the changes.

Using JDeveloper, the "XSQL Runtime" library must be added to your project's library
list so that the CLASSPATH is properly setup. The IDE adds this entry automatically
when you go through the New Object gallery to create a new XSQL page, but you can
also add it manually to the project by selecting Project | Project Properties... and clicking
on the "Libraries" tab.

Setting the CLASSPATH Correctly in Your Production Environment
Outside of the JDeveloper environment, you need to make sure that the XSQL page
processor engine is properly configured to run. Oracle comes with the XSQL Servlet
pre-installed to the Oracle HTTP Server that accompanies the database, but using
XSQL in any other environment, you'll need to ensure that the Java CLASSPATH is
setup correctly.

There are three "entry points" to the XSQL page processor:

■ oracle.xml.xsql.XSQLServlet, the servlet interface

■ oracle.xml.xsql.XSQLCommandLine, the command-line interface

■ oracle.xml.xsql.XSQLRequest, the programmatic interface

Since all three of these interfaces, as well as the core XSQL engine itself, are written in
Java, they are very portable and very simple to setup. The only setup requirements are
to make sure the appropriate JAR files are in the CLASSPATH of the JavaVM that will
be running processing the XSQL Pages. The JAR files include:

■ oraclexsql.jar, the XSQL page processor

■ xmlparserv2.jar, the Oracle XML Parser for Java v2

■ xsu12.jar, the Oracle XML SQL utility

■ classes12.jar, the Oracle JDBC driver

In addition, the directory where XSQL Page Processor's configuration file (by default,
named XSQLConfig.xml) resides must also be listed as a directory in the
CLASSPATH.

Putting all this together, if you have installed the XSQL distribution in C:\xsql, then
your CLASSPATH is:

C:\xsql\lib\classes12.classes12.jar;C:\xsql\lib\xmlparserv2.jar;
C:\xsql\lib\xsu12.jar;C:\xsql\lib\oraclexsql.jar;
directory_where_XSQLConfig.xml_resides

On UNIX, if you extracted the XSQL distribution into your /web directory, the
CLASSPATH is:

/web/xsql/lib/classes12.jarclasses12.jar:/web/xsql/lib/xmlparserv2.jar:

Setting Up and Using XSQL Pages in Your Environment

8-14 Oracle XML Developer's Kit Programmer's Guide

/web/xsql/lib/xsu12.jar:/web/xsql/lib/oraclexsql.jar:
directory_where_XSQLConfig.xml_resides

To use the XSQL Servlet, one additional setup step is required. You must associate the
.xsql file extension with the XSQL Servlet Java class
oracle.xml.xsql.XSQLServlet. How you set the CLASSPATH of the Web
server's servlet environment and how you associate a Servlet with a file extension are
done differently for each Web server. The XSQL Servlet Release Notes contain detailed
setup information for specific Web servers you might want to use with XSQL Pages.

Setting Up the Connection Definitions
XSQL pages refer to database connections by using a short name for the connection
defined in the XSQL configuration file. Connection names are defined in the
<connectiondefs> section of the XSQL configuration file (by default, named
XSQLConfig.xml) like this:

<connectiondefs>
 <connection name="demo">
 <username>scott</username>
 <password>tiger</password>
 <dburl>jdbc:oracle:thin:@localhost:1521:testDB</dburl>
 <driver>oracle.jdbc.driver.OracleDriver</driver>
 <autocommit>false</autocommit>
 </connection>
 <connection name="lite">
 <username>system</username>
 <password>manager</password>
 <dburl>jdbc:Polite:POlite</dburl>
 <driver>oracle.lite.poljdbc.POLJDBCDriver</driver>
 </connection>
</connectiondefs>

For each connection, you can specify five pieces of information:

1. <username>

2. <password>

3. <dburl>, the JDBC connection string

4. <driver>, the fully-qualified class name of the JDBC driver to use

5. <autocommit>, optionally forces the AUTOCOMMIT to TRUE or FALSE

If the <autocommit> element is omitted, then the XSQL page processor will use the
JDBC driver's default setting of the AUTOCOMMIT flag.

Any number of <connection> elements can be placed in this file to define the
connections you need. An individual XSQL page refers to the connection it wants to
use by putting a connection="xxx" attribute on the top-level element in the page
(also called the "document element").

Note: For security reasons, when installing XSQL Servlet on your
production Web server, make sure the XSQLConfig.xml file does
not reside in a directory that is part of the Web server's virtual
directory hierarchy. Failure to take this precaution risks exposing
your configuration information over the Web.

Overview of All XSQL Pages Capabilities

XSQL Pages Publishing Framework 8-15

Using the XSQL Command-Line Utility
Often the content of a dynamic page will be based on data that is not frequently
changing in your environment. To optimize performance of your Web publishing, you
can use operating system facilities to schedule offline processing of your XSQL pages,
leaving the processed results to be served statically by your Web server.

You can process any XSQL page from the command line using the XSQL
command-line utility. The syntax is:

$ java oracle.xml.xsql.XSQLCommandLine xsqlpage [outfile] [param1=value1 ...]

If an outfile is specified, the result of processing xsqlpage is written to it,
otherwise the result goes to standard out. Any number of parameters can be passed to
the XSQL page processor and are available for reference by the XSQL page being
processed as part of the request. However, the following parameter names are
recognized by the command-line utility and have a pre-defined behavior:

■ xml-stylesheet=stylesheetURL

Provides the relative or absolute URL for a stylesheet to use for the request. Also
can be set to the string none to suppress XSLT stylesheet processing for debugging
purposes.

■ posted-xml=XMLDocumentURL

Provides the relative or absolute URL of an XML resource to treat as if it were
posted as part of the request.

■ useragent=UserAgentString

Used to simulate a particular HTTP User-Agent string from the command line so
that an appropriate stylesheet for that User-Agent type will be selected as part of
command-line processing of the page.

The /xdk/java/xsql/bin directory contains a platform-specific command script to
automate invoking the XSQL command-line utility. This script sets up the Java
runtime to run oracle.xml.xsql.XSQLCommandLine class.

Overview of All XSQL Pages Capabilities
So far we've only seen a single XSQL action element, the <xsql:query> action. This
is by far the most popular action, but it is not the only one that comes built-in to the
XSQL Pages framework. We explore the full set of functionality that you can exploit in
your XSQL pages in the following sections.

Using All of the Core Built-in Actions
This section provides a list of the core built-in actions, including a brief description of
what each action does, and a listing of all required and optional attributes that each
supports.

The <xsql:query> Action
The <xsql:query> action element executes a SQL select statement and includes a
canonical XML representation of the query's result set in the data page. This action
requires a database connection to be provided by supplying a
connection="connname" attribute on the document element of the XSQL page in
which it appears.

The syntax for the action is:

Overview of All XSQL Pages Capabilities

8-16 Oracle XML Developer's Kit Programmer's Guide

<xsql:query>
 SELECT Statement
</xsql:query>

Any legal SQL select statement is allowed. If the select statement produces no rows, a
fallback query can be provided by including a nested <xsql:no-rows-query> element
like this:

<xsql:query>
 SELECT Statement
 <xsql:no-rows-query>
 SELECT Statement to use if outer query returns no rows
 </xsql:no-rows-query>
</xsql:query>

An <xsql:no-rows-query> element can itself contain nested
<xsql:no-rows-query> elements to any level of nesting. The options available on
the <xsql:no-rows-query> are identical to those available on the <xsql:query>
action element.

By default, the XML produced by a query will reflect the column structure of its
resultset, with element names matching the names of the columns. Columns in the
result with nested structure like:

■ Object Types

■ Collection Types

■ CURSOR Expressions

produce nested elements that reflect this structure. The result of a typical query
containing different types of columns and returning one row might look like this:

<ROWSET>
 <ROW id="1">
 <VARCHARCOL>Value</VARCHARCOL>
 <NUMBERCOL>12345</NUMBERCOL>
 <DATECOL>12/10/2001 10:13:22</DATECOL>
 <OBJECTCOL>
 <ATTR1>Value</ATTR1>
 <ATTR2>Value</ATTR2>
 </OBJECTCOL>
 <COLLECTIONCOL>
 <COLLECTIONCOL_ITEM>
 <ATTR1>Value</ATTR1>
 <ATTR2>Value</ATTR2>
 </COLLECTIONCOL_ITEM>
 <COLLECTIONCOL_ITEM>
 <ATTR1>Value</ATTR1>
 <ATTR2>Value</ATTR2>
 </COLLECTIONCOL_ITEM>
 </COLLECTIONCOL>
 <CURSORCOL>
 <CURSORCOL_ROW>
 <COL1>Value1</COL1>
 <COL2>Value2</COL2>
 </CURSORCOR_ROW>
 </CURSORCOL>
 </ROW>
</ROWSET>

Overview of All XSQL Pages Capabilities

XSQL Pages Publishing Framework 8-17

A <ROW> element will repeat for each row in the result set. Your query can use
standard SQL column aliasing to rename the columns in the result, and in doing so
effectively rename the XML elements that are produced as well. Such column aliasing
is required for columns whose names otherwise are a illegal names for an XML
element.

For example, an <xsql:query> action like this:

<xsql:query>SELECT TO_CHAR(hire_date,'DD-MON') FROM employees</xsql:query>

produces an error because the default column name for the calculated expression will
be an illegal XML element name. You can fix the problem with column aliasing like
this:

<xsql:query>
 SELECT TO_CHAR(hire_date,'DD-MON') as hiredate FROM employees
</xsql:query>

The optional attributes listed in Table 8–1 can be supplied to control various aspects of
the data retrieved and the XML produced by the <xsql:query> action.

Table 8–1 Attributes for <xsql:query>

Attribute Name Description

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

date-format = "string" Date format mask to use for formatted date column/attribute
values in XML being queried. Valid values are those
documented for the java.text.SimpleDateFormat class.

error-param = "string" Name of a page-private parameter that must be set to the
string 'Error' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

error-statement =
"boolean"

If set to no, suppresses the inclusion of the offending SQL
statement in any <xsql-error> element generated. Valid
values are yes and no. The default value is yes.

fetch-size = "integer" Number of records to fetch in each round-trip to the database.
If not set, the default value is used as specified by the
/XSQLConfig/processor/default-fetch-size
configuration setting in XSQLConfig.xml

id-attribute = "string" XML attribute name to use instead of the default num attribute
for uniquely identifying each row in the result set. If the value
of this attribute is the empty string, the row id attribute is
suppressed.

id-attribute-column =
"string"

Case-sensitive name of the column in the result set whose
value must be used in each row as the value of the row id
attribute. The default is to use the row count as the value of the
row id attribute.

include-schema =
"boolean"

If set to yes, includes an inline XML schema that describes the
structure of the result set. Valid values are yes and no. The
default value is no.

max-rows = "integer" Maximum number of rows to fetch, after optionally skipping
the number of rows indicated by the skip-rows attribute. If
not specified, default is to fetch all rows.

Overview of All XSQL Pages Capabilities

8-18 Oracle XML Developer's Kit Programmer's Guide

The <xsql:dml> Action
You can use the <xsql:dml> action to perform any DML or DDL operation, as well as
any PL/SQL block. This action requires a database connection to be provided by
supplying a connection="connname" attribute on the document element of the XSQL
page in which it appears.

The syntax for the action is:

<xsql:dml>
 DML Statement or DDL Statement or PL/SQL Block
</xsql:dml>

Table 8–2 lists the optional attributes that you can use on the <xsql:dml> action.

null-indicator =
"boolean"

Indicates whether to signal that a column's value is NULL by
including the NULL="Y" attribute on the element for the
column. By default, columns with NULL values are omitted
from the output. Valid values are yes and no. The default
value is no.

row-element = "string" XML element name to use instead of the default <ROW>
element name for the entire rowset of query results. Set to the
empty string to suppress generating a containing <ROW>
element for each row in the result set.

rowset-element =
"string"

XML element name to use instead of the default <ROWSET>
element name for the entire rowset of query results. Set to the
empty string to suppress generating a containing <ROWSET>
element.

skip-rows = "integer" Number of rows to skip before fetching rows from the result
set. Can be combined with max-rows for stateless paging
through query results.

tag-case = "string" Valid values are lower and upper. If not specified, the default
is to use the case of column names as specified in the query as
corresponding XML element names.

Table 8–2 Attributes for <xsql:dml>

Attribute Name Description

commit = "boolean" If set to yes, calls commit on the current connection after a
successful execution of the DML statement. Valid values are
yes and no. The default value is no.

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

error-param = "string" Name of a page-private parameter that must be set to the
string 'Error' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

error-statement =
"boolean"

If set to no, suppresses the inclusion of the offending SQL
statement in any <xsql-error> element generated. Valid
values are yes and no. The default value is yes.

Table 8–1 (Cont.) Attributes for <xsql:query>

Attribute Name Description

Overview of All XSQL Pages Capabilities

XSQL Pages Publishing Framework 8-19

The <xsql:ref-cursor-function> Action
The <xsql:ref-cursor-function> action enables you to include the XML results
produced by a query whose result set is determined by executing a PL/SQL stored
function. This action requires a database connection to be provided by supplying a
connection="connname" attribute on the document element of the XSQL page in
which it appears.

By exploiting PL/SQL's dynamic SQL capabilities, the query can be dynamically and
conditionally (or conditionally) constructed by the function before a cursor handle to
its result set is returned to the XSQL page processor. As its name implies, the return
value of the function being invoked must be of type REF CURSOR.

The syntax of the action is:

<xsql:ref-cursor-function>
 [SCHEMA.][PACKAGE.]FUNCTION_NAME(args);
</xsql:ref-cursor-function>

With the exception of the fetch-size attribute, the optional attributes available for the
<xsql:ref-cursor-function> action are exactly the same as for the <xsql:query> action
that are listed Table 8–1.

For example, consider the PL/SQL package:

CREATE OR REPLACE PACKAGE DynCursor IS
 TYPE ref_cursor IS REF CURSOR;
 FUNCTION DynamicQuery(id NUMBER) RETURN ref_cursor;
END;
CREATE OR REPLACE PACKAGE BODY DynCursor IS
 FUNCTION DynamicQuery(id NUMBER) RETURN ref_cursor IS
 the_cursor ref_cursor;
 BEGIN
 -- Conditionally return a dynamic query as a REF CURSOR
 IF id = 1 THEN
 OPEN the_cursor -- An employees Query
 FOR 'SELECT employee_id, email FROM employees';
 ELSE
 OPEN the_cursor -- A departments Query
 FOR 'SELECT department_name, department_id FROM departments';
 END IF;
 RETURN the_cursor;
 END;
END;

An <xsql:ref-cursor-function> can include the dynamic results of the REF
CURSOR returned by this function by doing:

<xsql:ref-cursor-function>
 DynCursor.DynamicQuery(1);
</xsql:ref-cursor-function>

The <xsql:include-owa> Action
The <xsql:include-owa> action enables you to include XML content that has been
generated by a database stored procedure. This action requires a database connection
to be provided by supplying a connection="connname" attribute on the document
element of the XSQL page in which it appears.

The stored procedure uses the standard Oracle Web Agent (OWA) packages (HTP and
HTF) to "print" the XML tags into the server-side page buffer, then the XSQL page
processor fetches, parses, and includes the dynamically-produced XML content in the

Overview of All XSQL Pages Capabilities

8-20 Oracle XML Developer's Kit Programmer's Guide

data page. The stored procedure must generate a well-formed XML page or an
appropriate error is displayed.

The syntax for the action is:

<xsql:include-owa>
 PL/SQL Block invoking a procedure that uses the HTP and HTF (or HTF) packages
</xsql:include-owa>

Table 8–3 lists the optional attributes supported by this action.

Using Bind Variables
To parameterize the results of any of the preceding actions, you can use SQL bind
variables. This enables your XSQL page template to produce different results based on
the value of parameters passed in the request. To use a bind variable, simply include a
question mark anywhere in the statement where bind variables are allowed by SQL.
For example, your <xsql:query> action might contain the select statement:

SELECT s.ticker as "Symbol", s.last_traded_price as "Price"
 FROM latest_stocks s, customer_portfolio p
 WHERE p.customer_id = ?
 AND s.ticker = p.ticker

Using a question mark to create a bind-variable for the customer id. Whenever the
SQL statement is executed in the page, parameter values are bound to the bind
variable by specifying the bind-params attribute on the action element. Using the
example preceding, we can create an XSQL page that binds the indicated bind
variables to the value of the custid parameter in the page request like this:

<!-- CustomerPortfolio.xsql -->
<portfolio connnection="prod" xmlns:xsql="urn:oracle-xsql">
 <xsql:query bind-params="custid">
 SELECT s.ticker as "Symbol", s.last_traded_price as "Price"
 FROM latest_stocks s, customer_portfolio p
 WHERE p.customer_id = ?
 AND s.ticker = p.ticker
 </xsql:query>
</portfolio>

The XML data for a particular customer's portfolio can then be requested by passing
the customer id parameter in the request like this:

http://yourserver.com/fin/CustomerPortfolio.xsql?custid=1001

Table 8–3 Attributes for <xsql:include-owa>

Attribute Name Description

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

error-param = "string" Name of a page-private parameter that must be set to the
string 'Error' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

error-statement =
"boolean"

If set to no, suppresses the inclusion of the offending SQL
statement in any <xsql-error> element generated. Valid
values are yes and no. The default value is yes.

Overview of All XSQL Pages Capabilities

XSQL Pages Publishing Framework 8-21

The value of the bind-params attribute is a space-delimited list of parameter names
whose left-to-right order indicates the positional bind variable to which its value will
be bound in the statement. So, if your SQL statement has five question marks, then
your bind-params attribute needs a space-delimited list of five parameter names. If the
same parameter value needs to be bound to several different occurrences of a
question-mark-indicated bind variable, you simply repeat the name of the parameters
in the value of the bind-params attribute at the appropriate position. Failure to
include exactly as many parameter names in the bind-params attribute as there are
question marks in the query, will results in an error when the page is executed.

Bind variables can be used in any action that expects a SQL statement. The following
page gives additional examples:

<!-- CustomerPortfolio.xsql -->
<portfolio connnection="prod" xmlns:xsql="urn:oracle-xsql">
 <xsql:dml commit="yes" bind-params="useridCookie">
 BEGIN log_user_hit(?); END;
 </xsql:dml>
 <current-prices>
 <xsql:query bind-params="custid">
 SELECT s.ticker as "Symbol", s.last_traded_price as "Price"
 FROM latest_stocks s, customer_portfolio p
 WHERE p.customer_id = ?
 AND s.ticker = p.ticker
 </xsql:query>
 </current-prices>
 <analysis>
 <xsql:include-owa bind-params="custid userCookie">
 BEGIN portfolio_analysis.historical_data(?,5 /* years */, ?); END;
 </xsql:include-owa>
 </analysis>
</portfolio>

Using Lexical Substitution Parameters
For any XSQL action element, you can substitute the value of any attribute, or the text
of any contained SQL statement, by using a lexical substitution parameter. This
enables you to parameterize how the actions behave as well as substitute parts of the
SQL statements they perform. Lexical substitution parameters are referenced using the
syntax {@ParameterName}.

The following example illustrates using two lexical substitution parameters, one which
allows the maximum number of rows to be passed in as a parameter, and the other
which controls the list of columns to ORDER BY.

<!-- DevOpenBugs.xsql -->
<open-bugs connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query max-rows="{@max}" bind-params="dev prod">
 SELECT bugno, abstract, status
 FROM bug_table
 WHERE programmer_assigned = UPPER(?)
 AND product_id = ?
 AND status < 80
 ORDER BY {@orderby}
 </xsql:query>
</open-bugs>

This example can then show the XML for a given developer's open bug list by
requesting the URL:

http://yourserver.com/bug/DevOpenBugs.xsql?dev=smuench&prod=817

Overview of All XSQL Pages Capabilities

8-22 Oracle XML Developer's Kit Programmer's Guide

or using the XSQL Command-Line Utility to request:

$ xsql DevOpenBugs.xsql dev=smuench prod=817

We close by noting that lexical parameters can also be used to parameterize the XSQL
page connection, as well as parameterize the stylesheet that is used to process the page
like this:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="{@sheet}.xsl"?>
<!-- DevOpenBugs.xsql -->
<open-bugs connection="{@conn}" xmlns:xsql="urn:oracle-xsql">
 <xsql:query max-rows="{@max}" bind-params="dev prod">
 SELECT bugno, abstract, status
 FROM bug_table
 WHERE programmer_assigned = UPPER(?)
 AND product_id = ?
 AND status < 80
 ORDER BY {@orderby}
 </xsql:query>
</open-bugs>

Providing Default Values for Bind Variables and Parameters
It is often convenient to provide a default value for a bind variable or a substitution
parameter directly in the page. This allows the page to be parameterized without
requiring the requester to explicitly pass in all the values in each request.

To include a default value for a parameter, simply add an XML attribute of the same
name as the parameter to the action element, or to any ancestor element. If a value for
a given parameter is not included in the request, the XSQL page processor looks for an
attribute by the same name on the current action element. If it doesn't find one, it
keeps looking for such an attribute on each ancestor element of the current action
element until it gets to the document element of the page.

As a simple example, the following page defaults the value of the max parameter to 10
for both <xsql:query> actions in the page:

<example max="10" connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query max-rows="{@max}">SELECT * FROM TABLE1</xsql:query>
 <xsql:query max-rows="{@max}">SELECT * FROM TABLE2</xsql:query>
</example>

This example defaults the first query to have a max of 5, the second query to have a
max of 7 and the third query to have a max of 10.

<example max="10" connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query max="5" max-rows="{@max}">SELECT * FROM TABLE1</xsql:query>
 <xsql:query max="7" max-rows="{@max}">SELECT * FROM TABLE2</xsql:query>
 <xsql:query max-rows="{@max}">SELECT * FROM TABLE3</xsql:query>
</example>

Of course, all of these defaults are overridden if a value of max is supplied in the
request like:

http://yourserver.com/example.xsql?max=3

Bind variables respect the same defaulting rules, so a not very useful, yet educational
page, like this:

<example val="10" connection="demo" xmlns:xsql="urn:oracle-xsql">

Overview of All XSQL Pages Capabilities

XSQL Pages Publishing Framework 8-23

 <xsql:query tag-case="lower" bind-params="val val val">
 SELECT ? as somevalue
 FROM DUAL
 WHERE ? = ?
 </xsql:query>
</example>

returns the XML datagram:

<example>
 <rowset>
 <row>
 <somevalue>10</somevalue>
 </row>
 </row>
</example>

if the page were requested without any parameters, while a request like:

http://yourserver.com/example.xsql?val=3

returns:

<example>
 <rowset>
 <row>
 <somevalue>3</somevalue>
 </row>
 </row>
</example>

To illustrate an important point for bind variables, imagine removing the default value
for the val parameter from the page by removing the val attribute like this:

<example connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query tag-case="lower" bind-params="val val val">
 SELECT ? as somevalue
 FROM DUAL
 WHERE ? = ?
 </xsql:query>
</example>

Now a request for the page without supplying any parameters returns:

<example>
 <rowset/>
</example>

because a bind variable that is bound to a parameter with neither a default value nor a
value supplied in the request will be bound to NULL, causing the WHERE clause in
our example page preceding to return no rows.

Understanding the Different Kinds of Parameters
XSQL pages can make use of parameters supplied in the request, as well as
page-private parameters whose names and values are determined by actions in the
page. If an action encounters a reference to a parameter named param in either a
bind-params attribute or in a lexical parameter reference, the value of the param
parameter is resolved by using:

1. The value of the page-private parameter named param, if set, otherwise

Overview of All XSQL Pages Capabilities

8-24 Oracle XML Developer's Kit Programmer's Guide

2. The value of the request parameter named param, if supplied, otherwise

3. The default value provided by an attribute named param on the current action
element or one of its ancestor elements, otherwise

4. The value NULL for bind variables and the empty string for lexical parameters

For XSQL pages that are processed by the XSQL Servlet over HTTP, two additional
HTTP-specific type of parameters are available to be set and referenced. These are
HTTP-Session-level variables and HTTP Cookies. For XSQL pages processed through
the XSQL Servlet, the parameter value resolution scheme is augmented as follows. The
value of a parameter param is resolved by using:

1. The value of the page-private parameter param, if set, otherwise

2. The value of the cookie named param, if set, otherwise

3. The value of the session variable named param, if set, otherwise

4. The value of the request parameter named param, if supplied, otherwise

5. The default value provided by an attribute named param on the current action
element or one of its ancestor elements, otherwise

6. The value NULL for bind variables and the empty string for lexical parameters

The resolution order is arranged this way so that users cannot supply parameter
values in a request to override parameters of the same name that have been set in the
HTTP session — whose lifetime is the duration of the HTTP session and controlled by
your Web server — or set as cookies, which can bet set to "live" across browser
sessions.

The <xsql:include-request-params> Action
The <xsql:include-request-params> action enables you to include an XML
representation of all parameters in the request in your datagram. This is useful if your
associated XSLT stylesheet wants to refer to any of the request parameter values by
using XPath expressions.

The syntax of the action is:

<xsql:include-request-params/>

The XML included will have the form:

<request>
 <parameters>
 <paramname>value1</paramname>
 <ParamName2>value2</ParamName2>
 ...
 </parameters>
</request>

or the form:

<request>
 <parameters>
 <paramname>value1</paramname>
 <ParamName2>value2</ParamName2>
 ...
 </parameters>
 <session>
 <sessVarName>value1</sessVarName>
 ...

Overview of All XSQL Pages Capabilities

XSQL Pages Publishing Framework 8-25

 </session>
 <cookies>
 <cookieName>value1</cookieName>
 ...
 </cookies>
</request>

when processing pages through the XSQL Servlet.

This action has no required or optional attributes.

The <xsql:include-param> Action
The <xsql:include-param> action enables you to include an XML representation
of a single parameter in your datagram. This is useful if your associated XSLT
stylesheet wants to refer to the parameter's value by using an XPath expression.

The syntax of the action is:

<xsql:include-param name="paramname" />

This name attribute is required, and supplies the name of the parameter whose value
you want to include. This action has no optional attributes.

If you provide a simple parameter name like this:

<xsql:include-param name="productid"/>

Then the XML fragment included in the data page will be:

<productid>12345</productid>

If you use an array-parameter name to indicate that you want to treat the value as an
array, like this:

<xsql:include-param name="productid[]"/>

then the XML fragment will reflect all of the array values like this:

<productid>
 <value>12345<value>
 <value>33455</value>
 <value>88199</value>
</productid>

In this array-parameter name scenario, if productid happens to be a single-valued
parameter, then the fragment will look as if it were a one-element array like this:

<productid>
 <value>12345<value>
</productid>

The <xsql:include-xml> Action
The <xsql:include-xml> action includes the XML contents of a local, remote, or
database-driven XML resource into your datagram. The resource is specified either by
URL or a SQL statement.

The syntax for this action is:

<xsql:include-xml href="URL"/>

or

Overview of All XSQL Pages Capabilities

8-26 Oracle XML Developer's Kit Programmer's Guide

<xsql:include-xml>
 SQL select statement selecting a single row containing a single
 CLOB or VARCHAR2 column value
</xsql:include-xml>

The URL can be an absolute, http-based URL to retrieve XML from another Web site,
or a relative URL. The href attribute and the SQL statement are mutually exclusive. If
one is provided the other is not allowed.

Table 8–5 lists the attributes supported by this action. Attributes in bold are required.

The <xsql:include-posted-xml> Action
The <xsql:include-posted-xml> action includes the XML document that has
been posted in the request into the XSQL page. If an HTML form is posted instead of
an XML document, the XML included will be similar to that included by the
<xsql:include-request-params> action.

The <xsql:set-page-param> Action
The <xsql:set-page-param> action sets a page-private parameter to a value. The
value can be supplied by a combination of static text and other parameter values, or
alternatively from the result of a SQL select statement.

The syntax for this action is:

<xsql:set-page-param name="paramname" value="value"/>

or

<xsql:set-page-param name="paramname">
 SQL select statement
</xsql:set-page-param>

or

<xsql:set-page-param name="paramname" xpath="XPathExpression"/>

If you use the SQL statement option, a single row is fetched from the result set and the
parameter is assigned the value of the first column. This usage requires a database
connection to be provided by supplying a connection="connname" attribute on the
document element of the XSQL page in which it appears.

As an alternative to providing the value attribute, or a SQL statement, you can
supply the xpath attribute to set the page-level parameter to the value of an XPath
expression. The XPath expression is evaluated against an XML document or HTML
form that has been posted to the XSQL Page Processor. The value of the xpath
attribute can be any valid XPath expression, optionally built using XSQL parameters
as part of the attribute value like any other XSQL action element.

Table 8–4 Attributes for <xsql:include-xml>

Attribute Name Description

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

error-param = "string" Name of a page-private parameter that must be set to the
string 'Error' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

Overview of All XSQL Pages Capabilities

XSQL Pages Publishing Framework 8-27

Once a page-private parameter is set, subsequent action handlers can use this value as
a lexical parameter, for example {@po_id}, or as a SQL bind parameter value by
referencing its name in the bind-params attribute of any action handler that
supports SQL operations.

If you need to set several session parameter values based on the results of a single SQL
statement, instead of using the name attribute, you can use the names attribute and
supply a space-or-comma-delimited list of one or more session parameter names. For
example:

<xsql:set-page-param names="paramname1 paramname2 paramname3">
 SELECT expression_or_column1, expression_or_column2, expression_or_column3
 FROM table
 WHERE clause_identifying_a_single_row
</xsql:set-page-param>

Either the name or the names attribute is required. The value attribute and the
contained SQL statement are mutually exclusive. If one is supplied, the other must not
be.

Table 8–5 lists the attributes supported by this action. Attributes in bold are required.

Table 8–5 Attributes for <xsql:set-page-param>

Attribute Name Description

name = "string" Name of the page-private parameter whose value you want to
set.

names = "string string
..."

Space-or-comma-delimited list of the page parameter names
whose values you want to set. Either use the name or the
names attribute, but not both.

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

error-param = "string" Name of a page-private parameter that must be set to the
string 'Error' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

ignore-empty-value =
"boolean"

Indicates whether the page-level parameter assignment is
ignored if the value to which it is being assigned is an empty
string.

Valid values are yes and no. The default value is no.

treat-list-as-array =
"boolean"

Indicates whether the string-value being assigned to the
parameter is tokenized into an array of separate values before
assignment. If any comma is present in the string, then the
comma is used for separating tokens, otherwise spaces are
used.

Valid values are yes and no. The default value is yes if the
parameter name being set is an array parameter name (for
example, myparam[]), and default is no if the parameter name
being set is a simple-valued parameter name like myparam.

iquote-array-values =
"boolean"

If the parameter name being set is a simple-valued parameter
name (for example, myparam) and if the
treat-list-as-array="yes" has been specified, then specifying
quote-array-values="yes" will surround each string token with
single quotes before separating the values with commas. Valid
values are yes and no. The default value is no.

Overview of All XSQL Pages Capabilities

8-28 Oracle XML Developer's Kit Programmer's Guide

The <xsql:set-session-param> Action
The <xsql:set-session-param> action sets an HTTP session-level parameter to a
value. The value of the session-level parameter remains for the lifetime of the current
browser user's HTTP session, which is controlled by the Web server. The value can be
supplied by a combination of static text and other parameter values, or alternatively
from the result of a SQL select statement.

Since this feature is specific to Java Servlets, this action is only effective if the XSQL
page in which it appears is being processed by the XSQL Servlet. If this action is
encountered in an XSQL page being processed by the XSQL command-line utility or
the XSQLRequest programmatic API, this action is a no-op.

The syntax for this action is:

<xsql:set-session-param name="paramname" value="value"/>

or

<xsql:set-session-param name="paramname">
 SQL select statement
</xsql:set-session-param>

If you use the SQL statement option, a single row is fetched from the result set and the
parameter is assigned the value of the first column. This use requires a database
connection to be provided by supplying a connection="connname" attribute on the
document element of the XSQL page in which it appears.

If you need to set several session parameter values based on the results of a single SQL
statement, instead of using the name attribute, you can use the names attribute and
supply a space-or-comma-delimited list of one or more session parameter names. For
example:

<xsql:set-session-param names="paramname1 paramname2 paramname3">
 SELECT expression_or_column1, expression_or_column2, expression_or_column3
 FROM table
 WHERE clause_identifying_a_single_row
</xsql:set-session-param>

Either the name or the names attribute is required. The value attribute and the
contained SQL statement are mutually exclusive. If one is supplied, the other must not
be.

Table 8–6 lists the optional attributes supported by this action.

xpath =
"XPathExpression"

Sets the value of the parameter to an XPath expression
evaluated against an XML document or HTML form that has
been posted to the XSQL Page Processor.

Table 8–6 Attributes for <xsql:set-session-param>

Attribute Name Description

name = "string" Name of the session-level variable whose value you want to
set.

names = "string string
..."

Space-or-comma-delimited list of the session parameter names
whose values you want to set. Either use the name or the
names attribute, but not both.

Table 8–5 (Cont.) Attributes for <xsql:set-page-param>

Attribute Name Description

Overview of All XSQL Pages Capabilities

XSQL Pages Publishing Framework 8-29

The <xsql:set-cookie> Action
The <xsql:set-cookie> action sets an HTTP cookie to a value. By default, the
value of the cookie remains for the lifetime of the current browser, but its lifetime can
be changed by supplying the optional max-age attribute. The value to be assigned to
the cookie can be supplied by a combination of static text and other parameter values,
or alternatively from the result of a SQL select statement.

Since this feature is specific to the HTTP protocol, this action is only effective if the
XSQL page in which it appears is being processed by the XSQL Servlet. If this action is
encountered in an XSQL page being processed by the XSQL command-line utility or
the XSQLRequest programmatic API, this action is a no-op.

The syntax for this action is:

<xsql:set-cookie name="paramname" value="value"/>

or

<xsql:set-cookie name="paramname">
 SQL select statement
</xsql:set-cookie>

If you use the SQL statement option, a single row is fetched from the result set and the
parameter is assigned the value of the first column. This use requires a database
connection to be provided by supplying a connection="connname" attribute on the
document element of the XSQL page in which it appears.

If you need to set several cookie values based on the results of a single SQL statement,
instead of using the name attribute, you can use the names attribute and supply a
space-or-comma-delimited list of one or more cookie names. For example:

<xsql:set-cookie names="paramname1 paramname2 paramname3">
 SELECT expression_or_column1, expression_or_column2, expression_or_column3
 FROM table
 WHERE clause_identifying_a_single_row
</xsql:set-cookie>

Either the name or the names attribute is required. The value attribute and the
contained SQL statement are mutually exclusive. If one is supplied, the other must not

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

error-param = "string" Name of a page-private parameter that is set to the string
'Error' if a non-fatal error occurs while processing this action.
Valid value is any parameter name.

ignore-empty-value =
"boolean"

Indicates whether the session-level parameter assignment is
ignored if the value to which it is being assigned is an empty
string.

Valid values are yes and no. The default value is no.

only-if-unset =
"boolean"

Indicates whether the session variable assignment only occurs
when the session variable currently does not exists.

Valid values are yes and no. The default value is no.

Table 8–6 (Cont.) Attributes for <xsql:set-session-param>

Attribute Name Description

Overview of All XSQL Pages Capabilities

8-30 Oracle XML Developer's Kit Programmer's Guide

be. The number of columns in the select list must match the number of cookies being
set or an error message will result.

Table 8–7 lists the optional attributes supported by this action.

The <xsql:set-stylesheet-param> Action
The <xsql:set-stylesheet-param> action sets a top-level XSLT stylesheet
parameter to a value. The value can be supplied by a combination of static text and
other parameter values, or alternatively from the result of a SQL select statement. The
stylesheet parameter will be set on any stylesheet used during the processing of the
current page.

The syntax for this action is:

<xsql:set-stylesheet-param name="paramname" value="value"/>

or

<xsql:set-stylesheet-param name="paramname">
 SQL select statement

Table 8–7 Attributes for <xsql:set-cookie>

Attribute Name Description

name = "string" Name of the cookie whose value you want to set.

names = "string string
..."

Space-or-comma-delimited list of the cookie names whose
values you want to set. Either use the name or the names
attribute, but not both.

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

domain = "string" Domain in which cookie value is valid and readable. If domain
is not set explicitly, then it defaults to the fully-qualified host
name (for example, bigserver.yourcompany.com) of the
document creating the cookie.

error-param = "string" Name of a page-private parameter that is set to the string
'Error' if a non-fatal error occurs while processing this action.
Valid value is any parameter name.

ignore-empty-value =
"boolean"

Indicates whether the cookie assignment is ignored if the value
to which it is being assigned is an empty string.

Valid values are yes and no. The default value is no.

max-age = "integer" Sets the maximum age of the cookie in seconds. Default is to set
the cookie to expire when users current browser session
terminates.

only-if-unset =
"boolean"

Indicates whether the cookie assignment only occurs when the
cookie currently does not exists.

Valid values are yes and no. The default value is no.

path = "string" Relative URL path within domain in which cookie value is
valid and readable. If path is not set explicitly, then it defaults
to the URL path of the document creating the cookie.

immediate = "boolean" Indicates whether the cookie assignment is immediately visible
to the current page. Typically cookies set in the current request
are not visible until the browser sends them back to the server
in a subsequent request.Valid values are yes and no. The
default value is no.

Overview of All XSQL Pages Capabilities

XSQL Pages Publishing Framework 8-31

</xsql:set-stylesheet-param>

If you use the SQL statement option, a single row is fetched from the result set and the
parameter is assigned the value of the first column. This use requires a database
connection to be provided by supplying a connection="connname" attribute on the
document element of the XSQL page in which it appears.

If you need to set several stylesheet parameter values based on the results of a single
SQL statement, instead of using the name attribute, you can use the names attribute
and supply a space-or-comma-delimited list of one or more stylesheet parameter
names. For example:

<xsql:set-stylesheet-param names="paramname1 paramname2 paramname3">
 SELECT expression_or_column1, expression_or_column2, expression_or_column3
 FROM table
 WHERE clause_identifying_a_single_row
</xsql:set-stylesheet-param>

Either the name or the names attribute is required. The value attribute and the
contained SQL statement are mutually exclusive. If one is supplied, the other must not
be.

Table 8–8 lists the optional attributes supported by this action.

Working with Array-Valued Parameters
In addition to support for simple-string values, request parameters, session
parameters, and page-private parameters may have values that are arrays of strings.
To treat to the value of a parameter as an array, you add two empty square brackets to
the end of its name. For example, if an HTML form is posted having four occurrences
of a input control named productid, then to refer to the array-valued productid
parameter you use the notation productid[].

If you refer to an array-valued parameter as a lexical substitution parameter, either
inside an action handler attribute value or inside the content of an action handler
element, its value will be converted to a comma-delimited list of all non-null and
non-empty strings in the array in the order that they appear in the array. For example,
if you had a page like:

Table 8–8 Attributes for <xsql:set-stylesheet-param>

Attribute Name Description

name = "string" Name of the top-level stylesheet parameter whose value you
want to set.

names = "string string
..."

Space-or-comma-delimited list of the top-level stylesheet
parameter names whose values you want to set. Either use the
name or the names attribute, but not both.

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

error-param = "string" Name of a page-private parameter that has to be set to the
string 'Error' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

ignore-empty-value =
"boolean"

Indicates whether the stylesheet parameter assignment is to be
ignored if the value to which it is being assigned is an empty
string.

Valid values are yes and no. The default value is no.

Overview of All XSQL Pages Capabilities

8-32 Oracle XML Developer's Kit Programmer's Guide

<page xmlns:xsql="urn:oracle-xsql">
 <xsql:query>
 select description
 from product
 where productid in ({@productid[]}) /* Using lexical parameter */
 </xsql:query>
</page>

and the request contains four values for the productid parameter, then the
{@productid[]} lexical substitution expression will be replaced in the query by a
string like "111,222,333,444".

If you refer to an array-valued parameter without using the array-brackets notation on
the end of the name, then the value used will be the value of the first array entry

Setting Array-Valued Page or Session Parameters from Strings
You can set the value of a page-private parameter or session parameter to a
string-array value simply by using the array-brackets notation on the name like this:

<!-- Note, param name contains array brackets -->
<xsql:set-page-param name="names[]" value="Tom Jane Joe"/>

or similarly for session parameters:

<!-- Note, param name contains array brackets -->
<xsql:set-session-param name="dates[]" value="12-APR-1962 15-JUL-1968"/>

By default, when the name of the parameter being set is an name with array-brackets,
the value will be treated as a space-or-comma-delimited list and tokenized.

The resulting string array value will contain these separate tokens. In the examples
earlier, the names[] parameter is the string array {"Tom", "Jane", "Joe"} and the
dates[] parameter is the string array {"12-APR-1962", "15-JUL-1968"}.

In order to handle strings that contain spaces, the tokenization algorithm first checks
the string being tokenized for the presence of any commas. If at least one comma is
found in the string, then commas are used as the token delimiter. So, for example, the
following action:

<!-- Note, param name contains array brackets -->
<xsql:set-page-param name="names[]" value="Tom Jones,Jane York"/>

sets the value of the names[] parameter to the string array {"Tom Jones", "Jane
York"}.

Note: Use of a number inside the array brackets is not supported.
That is, you can refer to productid or productid[], but not
productid[2]. Only the request parameters, page-private
parameters, and session parameters can use string arrays. The
<xsql:set-stylesheet-param> and <xsql:set-cookie>
only support working with parameters as simple string values. To
refer to a multi-valued parameter in your XSLT stylesheet, use
<xsql:include-param> to include the multi-valued parameter
into your XSQL datapage, then use an appropriate XPath
expression in the stylesheet to refer to the values from the datapage.

Overview of All XSQL Pages Capabilities

XSQL Pages Publishing Framework 8-33

By default, when you set a parameter whose name does not end with the
array-brackets, then the string-tokenization does not occur. So, as in previous releases
of XSQL Pages, the following action:

<!-- Note, param name does NOT contain array brackets -->
<xsql:set-page-param name="names" value="Tom Jones,Jane York"/>

Sets a parameter named names to the literal string "Tom Jones,Jane York". For
convenience, you can optionally force the string to be tokenized by including the new
treat-list-as-array="yes" attribute on the <xsql:set-page-param> or
<xsql:set-session-param> actions. The result will be to assign a
comma-delimited string of the tokenized values to the parameter. For example, the
action:

<!-- Note, param name does NOT contain array brackets -->
<xsql:set-page-param name="names" value="Tom Jane Joe"
 treat-list-as-array="yes"/>

sets the names parameter to the literal string "Tom,Jane,Joe".

As a further convenience, when you are setting the value of a simple string-valued
parameter and you are tokenizing the value using treat-list-as-array="yes",
you can include the quote-array-values="yes" attribute to have the
comma-delimited values be surrounded by single-quotes. So, an action like this:

<!-- Note, param name does NOT contain array brackets -->
<xsql:set-page-param name="names" value="Tom Jones,Jane York,Jimmy"
 treat-list-as-array="yes"
 quote-array-values="yes"/>

assigns the literal string value "'Tom Jones','Jane York','Jimmy'" to the
names parameter.

Binding Array-Valued Parameters in SQL and PL/SQL Statements
Anywhere in XSQL Pages where string-valued scalar bind variables are supported,
you may also bind array-valued parameters by simply using the array-parameter
name (for example, myparam[]) in the list of parameter names that you supply for the
bind-params attribute.

This makes it very easy to process array-valued parameters in SQL statements and in
PL/SQL procedures. Array-valued parameters are bound as a nested table object type
named XSQL_TABLE_OF_VARCHAR that you must create in your current schema using
the DDL statement:

CREATE TYPE xsql_table_of_varchar AS TABLE OF VARCHAR2(2000);

While the type must have this exact name, XSQL_TABLE_OF_VARCHAR, you can
change the dimension of the VARCHAR2 string if desired. Of course, you have to make
it as long as any string value you expect to handle in your array-valued string
parameters.

Consider the following PL/SQL stored procedure:

FUNCTION testTableFunction(p_name XSQL_TABLE_OF_VARCHAR,
 p_value XSQL_TABLE_OF_VARCHAR)
RETURN VARCHAR2 IS
 lv_ret VARCHAR2(4000);
 lv_numElts INTEGER;
BEGIN
 IF p_name IS NOT NULL THEN

Overview of All XSQL Pages Capabilities

8-34 Oracle XML Developer's Kit Programmer's Guide

 lv_numElts := p_name.COUNT;
 FOR j IN 1..lv_numElts LOOP
 IF (j > 1) THEN
 lv_ret := lv_ret||':';
 END IF;
 lv_ret := lv_ret||p_name(j)||'='||p_value(j);
 END LOOP;
 END IF;
 RETURN lv_ret;
END;

The following page illustrates how to bind two array-valued parameters in a SQL
statement that uses this PL/SQL function taking XSQL_TABLE_OF_VARCHAR-typed
arguments.

<page xmlns:xsql="urn:oracle-xsql" connection="demo"
 someNames="aa,bb,cc" someValues="11,22,33">
 <xsql:query bind-params="someNames[] someValues[]">
 select testTableFunction(?,?) as example from dual
 </xsql:query>
</page>

This produces a resulting XML data page of:

<page someNames="aa,bb,cc" someValues="11,22,33">
 <ROWSET>
 <ROW num="1">
 <EXAMPLE>aa=11:bb=22:cc=33</EXAMPLE>
 </ROW>
 </ROWSET>
</page>

illustrating that the array-valued someNames[] and someValues[] parameters were
bound as table collection types and the values were iterated over and concatenated
together to produce the "aa=11:bb=22:cc=33" string value as the function's return
value.

You can mix any number of regular parameters and array-valued parameters in your
bind-params string. Just use the array-bracket notation for the ones you want to be
bound as arrays.

Since the array parameters are bound as nested table collection types, you can use the
TABLE() operator in combination with the CAST() operator in SQL to treat the
nested table bind variable value as a table of values to query against. This can be quite

Note: If you try the example earlier and you have not created the
XSQL_TABLE_OF_VARCHAR type as illustrated earlier, you will
receive an error like this:

<page someNames="aa,bb,cc" someValues="11,22,33">
 <xsql-error code="17074" action="xsql:query">
 <statement>
 select testTableFunction(?,?) as example from dual
 </statement>
 <message>
 invalid name pattern: SCOTT.XSQL_TABLE_OF_VARCHAR
 </message>
 </xsql-error>
</page>

Overview of All XSQL Pages Capabilities

XSQL Pages Publishing Framework 8-35

a powerful technique to use in sub-select clauses of a SQL statement (but it's not
limited to this). The following page illustrates using an array-valued parameter
containing employee id's to restrict the rows queried from the familiar EMPLOYEES
table in the HR schema.

<page xmlns:xsql="urn:oracle-xsql" connection="hr">
 <xsql:set-page-param name="someEmployees[]" value="196,197"/>
 <xsql:query bind-params="someEmployees[]">
 select first_name||' '||last_name as name, salary
 from employees
 where employee_id in (
 select * from TABLE(CAST(? as xsql_table_of_varchar))
)
 </xsql:query>
</page>

This produces a result like:

<page>
 <ROWSET>
 <ROW num="1">
 <NAME>Alana Walsh</NAME>
 <SALARY>3100</SALARY>
 </ROW>
 <ROW num="2">
 <NAME>Kevin Feeny</NAME>
 <SALARY>3000</SALARY>
 </ROW>
 </ROWSET>
</page>

These examples have shown using bind-params with <xsql:query>, but these
new features work for <xsql:dml>, <xsql:include-owa>,
<xsql:ref-cursor-function>, and any other actions that accept SQL or PL/SQL
statements as part of their functionality.

Finally, some users might ask, "Why doesn't XSQL support using PL/SQL index-by
tables instead of nested table collection types for binding string-array values?" The
simple answer is that PL/SQL index-by-tables do not work with the JDBC Thin driver.
They only work using the OCI JDBC driver. By using the nested table collection type
XSQL_TABLE_OF_VARCHAR we can use the array-valued parameters with both the
Thin driver and the OCI driver, without losing any of the programming flexibility of
working with the array of values in PL/SQL.

Supplying Multi-Valued Parameters on the Command Line
If you use the oracle.xml.xsql.XSQLCommandLine command-line utility to run
XSQL pages, you can supply multi-valued parameters to the XSQL page processor by
simply including the same parameter name on the command line multiple times like
this:

java oracle.xml.xsql.XSQLCommandLine SomePage.xsql user=Steve user=Paul user=Mary

This will result in having the user[] array-valued parameter set as a request
parameter to the value {"Steve","Paul","Mary"}.

Overview of All XSQL Pages Capabilities

8-36 Oracle XML Developer's Kit Programmer's Guide

Supplying Multi-Valued Parameters Programmatically with XSQLRequest
The XSQLRequest programmatic API to the XSQL Page engine already takes a
java.util.Dictionary of named parameters. Typically users have used a
Hashtable and called its put(name,value) method to add String-valued
parameters to the request. To add multi-valued parameters, simply put a value of type
String[] instead of type String.

Conditionally Executing Actions or Including Content with <xsql:if-param>
The <xsql:if-param> action enables you to conditionally include the elements and
actions (or actions) that are nested inside it if some condition is true. If the condition
evaluates to true, then all nested XML content and actions are included in the page. If
the condition evaluates to false, then none of the nested XML content or actions are
included (and hence none of the nested actions is executed).

You specify which parameter value will be evaluated by supplying the required name
attribute. Both simple parameter names as well as array-parameter names are
supported.

In addition to the name attribute, you must also pick exactly one of the following five
attributes to indicate how the parameter value (or values, in the array case) is tested:

1. exists="yes" or exists="no"

If you use exists="yes", then this tests whether the named parameter exists
and has a non-empty value. For an array-valued parameter, it tests whether the
array-parameter exists, and has at least one non-empty element. If you use
exists="no", then evaluates to true if the parameter does not exist, of if it exists
but has an empty value. For an array-valued parameter, it evaluates to true if the
parameter does not exist, or if all of the array elements are empty.

2. equals="stringValue"

This tests whether the named parameter equals the string value provided. By
default the comparison is an exact string match. For an array-valued parameter, it
tests whether any element in the array has the indicated value.

3. not-equals="stringValue"

This tests whether the named parameter does not equal the string value provided.
For an array-valued parameter, evaluates to true if none of the elements in the
array has the indicated value.

4. in-list="comma-or-space-separated-list"

This tests whether the named parameter matches any of the strings in the
provided list. The value of the in-list parameter is tokenized into an array
using commas as the delimiter if any commas are detected in the string, otherwise
using space as the delimiter. For an array-valued parameter, it tests whether any
element in the array matches some element in the list.

5. not-in-list="comma-or-space-separated-list"

This tests whether the named parameter does not match any of the strings in the
provided list. The value of the not-in-list parameter is tokenized into an array
using commas as the delimiter if any commas are detected in the string, otherwise
using space as the delimiter. For an array-valued parameter, it tests whether none
of the elements in the array matches any element in the list.

Overview of All XSQL Pages Capabilities

XSQL Pages Publishing Framework 8-37

For the equals, not-equals, in-list, and not-in-list tests, by default the
comparison is an exact string match. If you want a case-insensitive match, supply the
additional ignore-case="yes" attribute as well.

As with other XSQL actions, all of the attributes of the <xsql:if-param> action can
contain lexical substitution parameter expressions (for example, {@paramName}) if
needed.

Note that any XML content and XSQL action elements (or XSQL action elements) can
be nested inside an <xsql:if-param>, including other <xsql:if-param>
elements if needed.

For example, to test whether two different conditions are true, you can use nested
<xsql:if-param> elements like this:

<!--
| Set page param 'foo' to value "bar" if parameter 'a'
| exists, and if parameter 'b' has value equal to "X"
+-->
<xsql:if-param name="a" exists="yes">
 <xsql:if-param name="b" equals="X">
 <xsql:set-page-param name="foo" value="bar"/>
 </xsql:if-param>
</xsql:if-param>

Optionally Setting an Error Parameter on Any Built-in Action
It is often convenient to know whether an action encountered a non-fatal error during
its execution. For example, an attempt to insert a row or call a stored procedure can fail
with a database exception which will get included into your XSQL data page as an
<xsql-error> element.

Now you can optionally have any built-in XSQL action set a page-private parameter of
your choice when that action reports a non-fatal error by using the error-param
attribute on your action.

For example, to have the parameter named "dml-error" set if the statement inside
the <xsql:dml> action encounters a database error, use an action like this:

<xsql:dml error-param="dml-error" bind-params="val">
 insert into yourtable(somecol) values(?)
</xsql:dml>

If the execution of this action encounters an error, then the page-private parameter
named dml-error will be set to the string "Error".

If the execution of the action is successful, the error parameter is not assigned any
value. In the example earlier, this means that if the page-private parameter
dml-error already exists, it will retain its current value. If it does not exist, it will
continue to not exist.

By using this new error parameter in combination with <xsql:if-param> you can
achieve conditional behavior in your XSQL page template, depending on the success
or failure of certain actions. For example, assuming your connection definition sets the
AUTOCOMMIT flag to false on the connection named "demo" in the XSQL
configuration file (by default, named XSQLConfig.xml), then the following page

Note: If the parameter being tested does not exist, the test
evaluates to false.

Overview of All XSQL Pages Capabilities

8-38 Oracle XML Developer's Kit Programmer's Guide

illustrates how you might rollback the changes made by a previous action if a
subsequent action encounters an error.

<!-- NOTE: Connection "demo" must not set to autocommit! -->
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:dml error-param="dml-error" bind-params="val">
 insert into yourtable(somecol) values(?)
 </xsql:dml>
 <!-- This second statement will commit if it succeeds -->
 <xsql:dml commit="yes" error-param="dml-error" bind-params="val2">
 insert into anothertable(anothercol) values(?)
 </xsql:dml>
 <xsql:if-param name="dml-error" exists="yes">
 <xsql:dml>rollback</xsql:dml>
 </xsql:if-param>
</page>

If you've written any custom action handlers and your custom actions call
reportMissingAttribute(), reportError(), or
reportErrorIncludingStatement() to report non-fatal action errors, then they
will automatically pickup this new feature as well.

Aggregating Information Using <xsql:include-xsql>
The <xsql:include-xsql> action makes it very easy to include the results of one
XSQL page into another page. This enables you to easily aggregate content from a
page that you've already built and find another purpose for it. The examples that
follow illustrate two of the most common uses of <xsql:include-xsql>.

Assume you have an XSQL page that lists discussion forum categories:

<!-- Categories.xsql -->
<xsql:query connection="forum" xmlns:xsql="urn:oracle-xsql">
 SELECT name
 FROM categories
 ORDER BY name
</xsql:query>

You can include the results of this page into a page that lists the ten most recent topics
in the current forum like this:

<!-- TopTenTopics.xsql -->
<top-ten-topics connection="forum" xmlns:xsql="urn:oracle-xsql">
 <topics>
 <xsql:query max-rows="10">
 SELECT subject FROM topics ORDER BY last_modified DESC
 </xsql:query>
 </topics>
 <categories>
 <xsql:include-xsql href="Categories.xsql"/>
 </categories>
</top-ten-topics>

You can use <xsql:include-xsql> to include an existing page to apply an XSLT
stylesheet to it as well. So, if we have two different XSLT stylesheets:

■ cats-as-html.xsl, which renders the topics in HTML, and

■ cats-as-wml.xsl, which renders the topics in WML

Overview of All XSQL Pages Capabilities

XSQL Pages Publishing Framework 8-39

Then one approach for catering to two different types of devices is to create different
XSQL pages for each device. We can create:

<?xml version="1.0"?>
<!-- HTMLCategories.xsql -->
<?xml-stylesheet type="text/xsl" href="cats-as-html.xsl"?>
<xsql:include-xsql href="Categories.xsql" xmlns:xsql="urn:oracle-xsql"/>

which aggregates Categories.xsql and applies the cats-as-html.xsl
stylesheet, and another page:

<?xml version="1.0"?>
<!-- WMLCategories.xsql -->
<?xml-stylesheet type="text/xsl" href="cats-as-html.xsl"?>
<xsql:include-xsql href="Categories.xsql" xmlns:xsql="urn:oracle-xsql"/>

which aggregates Categories.xsql and applies the cats-as-wml.xsl stylesheet
for delivering to wireless devices. In this way, we've re-purposed the reusable
Categories.xsql page content in two different ways.

If the page being aggregated contains an <?xml-stylesheet?> processing
instruction, then that stylesheet is applied before the result is aggregated, so using
<xsql:include-xsql> you can also easily chain the application of XSLT stylesheets
together.

When one XSQL page aggregates another page's content using
<xsql:include-xsql> all of the request-level parameters are visible to the "nested"
page. For pages processed by the XSQL Servlet, this also includes session-level
parameters and cookies, too. As you expect, none of the aggregating page's page-private
parameters are visible to the nested page.

Table 8–9 lists the attributes supported by this action. Required attributes are in bold.

Including XMLType Query Results
Oracle9i introduced the XMLType for use with storing and querying XML-based
database content. You can exploit database XML features to produce XML for
inclusion in your XSQL pages using one of two techniques:

■ <xsql:query> handles any query including columns of type XMLType, however
it handles XML markup in CLOB/VARCHAR2 columns as literal text.

■ <xsql:include-xml> parses and includes a single CLOB or String-based XML
document retrieved from a query

The difference between the two approaches lies in the fact that the
<xsql:include-xml> action parses the literal XML appearing in a CLOB or

Table 8–9 Attributes for <xsql:include-xsql>

Attribute Name Description

href = "string" Relative or absolute URL of XSQL page to be included.

error-param = "string" Name of a page-private parameter that has to be set to the
string 'Error' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

reparse = "boolean" Indicates whether output of included XSQL page has to be
reparsed before it is included. Useful if included XSQL page is
selecting the text of an XML document fragment that the
including page wants to treat as elements.

Valid values are yes and no. The default value is no.

Overview of All XSQL Pages Capabilities

8-40 Oracle XML Developer's Kit Programmer's Guide

String-value to turn it on the fly into a tree of elements and attributes. On the other
hand, using the <xsql:query> action, XML markup appearing in CLOB or String
valued-columns is left as literal text.

Another difference is that while <xsql:query> can handle query results of any
number of columns and rows, the <xsql:include-xml> is designed to work on a
single column of a single row. Accordingly, when using <xsql:include-xml>, the
SELECT statement that appears inside it returns a single row containing a single
column. The column can either be a CLOB or a VARCHAR2 value containing a
well-formed XML document. The XML document will be parsed and included into
your XSQL page.

The following example uses nested xmlagg() functions to aggregate the results of a
dynamically-constructed XML document containing departments and nested
employees into a single XML "result" document, wrapped in a <DepartmentList>
element:

<xsql:query connection="hr" xmlns:xsql="urn:oracle-xsql">
 select XmlElement("DepartmentList",
 XmlAgg(
 XmlElement("Department",
 XmlAttributes(department_id as "Id"),
 XmlForest(department_name as "Name"),
 (select XmlElement("Employees",
 XmlAgg(
 XmlElement("Employee",
 XmlAttributes(employee_id as "Id"),
 XmlForest(first_name||' '||last_name as "Name",
 salary as "Salary",
 job_id as "Job")
)
)
)
 from employees e
 where e.department_id = d.department_id
)
)
)
) as result
 from departments d
 order by department_name
</xsql:query>

Considering another example, suppose you have a number of <Movie> XML
documents stored in a table of XmlType called MOVIES. Each document might look
something like this:

<Movie Title="The Talented Mr.Ripley" RunningTime="139" Rating="R">
<Director>
<First>Anthony</First>
<Last>Minghella</Last>
</Director>
<Cast>
<Actor Role="Tom Ripley">
<First>Matt</First>
<Last>Damon</Last>
</Actor>
<Actress Role="Marge Sherwood">
<First>Gwyneth</First>
<Last>Paltrow</Last>
</Actress>

Overview of All XSQL Pages Capabilities

XSQL Pages Publishing Framework 8-41

<Actor Role="Dickie Greenleaf">
<First>Jude</First>
<Last>Law</Last>
<Award From="BAFTA" Category="Best Supporting Actor"/>
</Actor>
</Cast>
</Movie>

You can use the built-in Oracle XPath query features to extract an aggregate list of all
cast members who have received Oscar awards from any movie in the database using
a query like this:

 select xmlelement("AwardedActors",
 xmlagg(extract(value(m),
 '/Movie/Cast/*[Award[@From="Oscar"]]')))
 from movies m

To include this query result of XMLType into your XSQL page, simply paste the query
inside an <xsql:query> element, and make sure you include an alias for the query
expression (for example "as result" following):

<xsql:query connection="orcl92" xmlns:xsql="urn:oracle-xsql">
 select xmlelement("AwardedActors",
 xmlagg(extract(value(m),
 '/Movie/Cast/*[Award[@From="Oscar"]]'))) as result
 from movies m
</xsql:query>

Note that again we use the combination of xmlelement() and xmlagg() to have the
 database aggregate all of the XML fragments identified by the query into
 single, well-formed XML document. The combination of xmlelement() and xmlagg()
 work together to produce a well-formed result like this:
<AwardedActors>
 <Actor>...</Actor>
 <Actress>...</Actress>
</AwardedActors>

Notice that you can use the standard XSQL Pages bind variable capabilities in the
middle of an XPath expression, too, if you concatenate the bind variable into the
expression. For example, to parameterize the value "Oscar" into a parameter named
award-from, you can use an XSQL Page like this:

<xsql:query connection="orcl92" xmlns:xsql="urn:oracle-xsql"
 award-from="Oscar" bind-params="award-from">
 /* Using a bind variable in an XPath expression */
 select xmlelement("AwardedActors",
 xmlagg(extract(value(m),
 '/Movie/Cast/*[Award[@From="'|| ? ||'"]]'))) as result
 from movies m
</xsql:query>

Handling Posted Information
In addition to simplifying the assembly and transformation of XML content, the XSQL
Pages framework makes it easy to handle posted XML content as well. Built-in actions
simplify the handling of posted information from both XML document and HTML
forms, and allow that information to be posted directly into a database table using the
underlying facilities of the Oracle XML SQL Utility.

Overview of All XSQL Pages Capabilities

8-42 Oracle XML Developer's Kit Programmer's Guide

The XML SQL Utility provides the ability to data database inserts, updates, and
deletes based on the content of an XML document in canonical form with respect to a
target table or view. For a given database table, the canonical XML form of its data is
given by one row of XML output from a SELECT * FROM tablename query against
it. Given an XML document in this canonical form, the XML SQL Utility can automate
the insert, update, and delete for you. By combining the XML SQL Utility with an
XSLT transformation, you can transform XML in any format into the canonical format
expected by a given table, and then ask the XML SQL Utility to insert, update, delete
the resulting canonical XML for you.

The following built-in XSQL actions make exploiting this capability easy from within
your XSQL pages:

■ <xsql:insert-request>

Insert the optionally transformed XML document that was posted in the request
into a table.Table 8–10 lists the required and optional attributes supported by this
action.

■ <xsql:update-request>

Update the optionally transformed XML document that was posted in the request
into a table or view. Table 8–11 lists the required and optional attributes supported
by this action.

■ <xsql:delete-request>

Delete the optionally transformed XML document that was posted in the request
from a table or view. Table 8–12 lists the required and optional attributes
supported by this action.

■ <xsql:insert-param>

Insert the optionally transformed XML document that was posted as the value of a
request parameter into a table or view. Table 8–13 lists the required and optional
attributes supported by this action.

If you target a database view with your insert, then you can create INSTEAD OF
INSERT triggers on the view to further automate the handling of the posted
information. For example, an INSTEAD OF INSERT trigger on a view can use
PL/SQL to check for the existence of a record and intelligently choose whether to do
an INSERT or an UPDATE depending on the result of this check.

Table 8–10 Attributes for <xsql:insert-request>

Attribute Name Description

table = "string" Name of the table, view, or synonym to use for inserting the
XML information.

transform = "URL" Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

columns = "string" Space-delimited or comma-delimited list of one or more
column names whose values will be inserted. If supplied, then
only these columns will be inserted. If not supplied, all
columns will be inserted, with NULL values for columns
whose values do not appear in the XML document.

commit = "boolean" If set to yes, calls commit on the current connection after a
successful execution of the insert. Valid values are yes and no.
The default value is yes.

Overview of All XSQL Pages Capabilities

XSQL Pages Publishing Framework 8-43

commit-batch-size =
"integer"

If a positive, nonzero number N is specified, then after each
batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

date-format = "string" Date format mask to use for interpreting date field values in
XML being inserted. Valid values are those documented for the
java.text.SimpleDateFormat class.

error-param = "string" Name of a page-private parameter that must be set to the
string 'Error' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

Table 8–11 Attributes for <xsql:update-request>

Attribute Name Description

table = "string" Name of the table, view, or synonym to use for inserting the
XML information.

key-columns = "string" Space-delimited or comma-delimited list of one or more
column names whose values in the posted XML document will
be used to identify the existing rows to update.

transform = "URL" Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

columns = "string" Space-delimited or comma-delimited list of one or more
column names whose values will be updated. If supplied, then
only these columns will be updated. If not supplied, all
columns will be updated, with NULL values for columns
whose values do not appear in the XML document.

commit = "boolean" If set to yes, calls commit on the current connection after a
successful execution of the update. Valid values are yes and
no. The default value is yes.

commit-batch-size =
"integer"

If a positive, nonzero number N is specified, then after each
batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

date-format = "string" Date format mask to use for interpreting date field values in
XML being inserted. Valid values are those documented for the
java.text.SimpleDateFormat class.

error-param = "string" Name of a page-private parameter that must be set to the
string 'Error' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

Table 8–12 Attributes for <xsql:delete-request>

Attribute Name Description

table = "string" Name of the table, view, or synonym to use for inserting the
XML information.

key-columns = "string" Space-delimited or comma-delimited list of one or more
column names whose values in the posted XML document will
be used to identify the existing rows to update.

Table 8–10 (Cont.) Attributes for <xsql:insert-request>

Attribute Name Description

Overview of All XSQL Pages Capabilities

8-44 Oracle XML Developer's Kit Programmer's Guide

Understanding Different XML Posting Options
There are three different ways that the XSQL pages framework can handle posted
information.

1. A client program can send an HTTP POST message that targets an XSQL page,
whose request body contains an XML document and whose HTTP header reports
a ContentType of "text/xml".

transform = "URL" Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

commit = "boolean" If set to yes, calls commit on the current connection after a
successful execution of the delete. Valid values are yes and no.
The default value is yes.

commit-batch-size =
"integer"

If a positive, nonzero number N is specified, then after each
batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

error-param = "string" Name of a page-private parameter that must be set to the
string 'Error' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

Table 8–13 Attributes for <xsql:insert-param>

Attribute Name Description

name = "string" Name of the parameter whose value contains XML to be
inserted.

table = "string" Name of the table, view, or synonym to use for inserting the
XML information.

transform = "URL" Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

columns = "string" Space-delimited or comma-delimited list of one or more
column names whose values will be inserted. If supplied, then
only these columns will be inserted. If not supplied, all
columns will be inserted, with NULL values for columns
whose values do not appear in the XML document.

commit = "boolean" If set to yes, calls commit on the current connection after a
successful execution of the insert. Valid values are yes and no.
The default value is yes.

commit-batch-size =
"integer"

If a positive, nonzero number N is specified, then after each
batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

date-format = "string" Date format mask to use for interpreting date field values in
XML being inserted. Valid values are those documented for the
java.text.SimpleDateFormat class.

error-param = "string" Name of a page-private parameter that must be set to the
string 'Error' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

Table 8–12 (Cont.) Attributes for <xsql:delete-request>

Attribute Name Description

Overview of All XSQL Pages Capabilities

XSQL Pages Publishing Framework 8-45

In this case, you can use the <xsql:insert-request>,
<xsql:update-request>, or the <xsql:delete-request> action and the
content of the posted XML will be insert, updated, or deleted in the target table as
indicated. If you transform the posted XML document using an XSLT
transformation, the posted XML document is the source document for this
transformation.

2. A client program can send an HTTP GET request for an XSQL page, one of whose
parameters contains an XML document.

In this case, you can use the <xsql:insert-param> action and the content of
the posted XML parameter value will be inserted in the target table as indicated. If
you transform the posted XML document using an XSLT transformation, the XML
document in the parameter value is the source document for this transformation.

3. A browser can submit an HTML form with method="POST" whose action targets
an XSQL page. In this case, by convention the browser sends an HTTP POST
message whose request body contains an encoded version of all of the HTML
form's fields and their values with a ContentType of
"application/x-www-form-urlencoded"

In this case, there request does not contain an XML document, but instead an
encoded version of the form parameters. However, to make all three of these cases
uniform, the XSQL page processor will (on demand) materialize an XML
document from the set of form parameters, session variables, and cookies
contained in the request. Your XSLT transformation then transforms this
dynamically-materialized XML document into canonical form for insert, update,
or delete using <xsql:insert>, <xsql:update-request>, or
<xsql:delete-request> respectively.

When working with posted HTML forms, the dynamically materialized XML
document will have the following form:

<request>
 <parameters>
 <firstparamname>firstparamvalue</firstparamname>
 ...
 <lastparamname>lastparamvalue</lastparamname>
 </parameters>
 <session>
 <firstparamname>firstsessionparamvalue</firstparamname>
 ...
 <lastparamname>lastsessionparamvalue</lastparamname>
 </session>
 <cookies>
 <firstcookie>firstcookievalue</firstcookiename>
 ...
 <lastcookie>firstcookievalue</lastcookiename>
 </cookies>
</request>

If multiple parameters are posted with the same name, then they will automatically be
"row-ified" to make subsequent processing easier. This means, for example, that a
request which posts or includes the following parameters:

■ id = 101

■ name = Steve

■ id = 102

■ name = Sita

Overview of All XSQL Pages Capabilities

8-46 Oracle XML Developer's Kit Programmer's Guide

■ operation = update

Will create a "row-ified" set of parameters like:

<request>
 <parameters>
 <row>
 <id>101</id>
 <name>Steve</name>
 </row>
 <row>
 <id>102</id>
 <name>Sita</name>
 </row>
 <operation>update</operation>
 </parameters>
 ...
</request>

Since you will need to provide an XSLT stylesheet that transforms this materialized
XML document containing the request parameters into canonical format for your
target table, it might be useful to build yourself an XSQL page like this:

<!--
 | ShowRequestDocument.xsql
 | Show Materialized XML Document for an HTML Form
 +-->
<xsql:include-request-params xmlns:xsql="urn:oracle-xsql"/>

With this page in place, you can temporarily modify your HTML form to post to the
ShowRequestDocument.xsql page, and in the browser you will see the "raw" XML
for the materialized XML request document which you can save out and use to
develop the XSLT transformation.

Using Custom XSQL Action Handlers
When you need to perform tasks that are not handled by the built-in action handlers,
the XSQL Pages framework allows custom actions to be invoked to do virtually any
kind of job you need done as part of page processing. Custom actions can supply
arbitrary XML content to the data page and perform arbitrary processing. See Writing
Custom XSQL Action Handlers later in this chapter for more details on writing custom
action handlers in Java. Here we explore how to make use of a custom action handler,
once it's already created.

To invoke a custom action handler, use the built-in <xsql:action> action element. It
has a single, required attribute named handler whose value is the fully-qualified Java
class name of the action you want to invoke. The class must implement the
oracle.xml.xsql.XSQLActionHandler interface. For example:

<xsql:action handler="yourpackage.YourCustomHandler"/>

Any number of additional attribute can be supplied to the handler in the normal way.
For example, if the yourpackage.YourCustomHandler is expecting a attributes
named param1 and param2, you use the syntax:

<xsql:action handler="yourpackage.YourCustomHandler" param1="xxx" param2="yyy"/>

Some action handlers, perhaps in addition to attributes, may expect text content or
element content to appear inside the <xsql:action> element. If this is the case,
simply use the expected syntax like:

Description of XSQL Servlet Examples

XSQL Pages Publishing Framework 8-47

<xsql:action handler="yourpackage.YourCustomHandler" param1="xxx" param2="yyy">
 Some Text Goes Here
</xsql:action>

or this:

<xsql:action handler="yourpackage.YourCustomHandler" param1="xxx" param2="yyy">
 <some>
 <other/>
 <elements/>
 <here/>
 </some>
</xsql:action>

Description of XSQL Servlet Examples
Figure 8–14 lists the XSQL Servlet example applications supplied with the software in
the ./demo directory.

Table 8–14 XSQL Servlet Examples

Demonstration Name Description

Hello World

./demo/helloworld

Simplest possible XSQL page.

Do You XML Site
./demo/doyouxml

XSQL page which shows how a simple, data-driven Web site can be built using an
XSQL page which makes clever use of SQL, XSQL-substitution variables in the
queries, and XSLT for formatting the site.

Demonstrates using substitution parameters in both the body of SQL query
statements within <xsql:query> tags, as well as within the attributes to
<xsql:query> tags to control things like how many records to display and to
skip (for "paging" through query results in a stateless way).

Employee Page

./demo/emp

XSQL page showing XML data from the HR schema's EMPLOYEES table, using
XSQL page parameters to control what employees are returned and what
column(s) to use for the database sort.

Uses an associated XSLT Stylesheet for format the results as an HTML Form
containing the emp.xsql page as the form action so the user can refine their
search criteria.

Insurance Claim Page

./demo/insclaim

Demonstrates a number of sample queries over the richly-structured, Insurance
Claim object view. The insclaim.sql sets up the INSURANCE_CLAIM_VIEW
object view and populates some sample data.

Invalid Classes Page
./demo/classerr

XSQL Page which uses invalidclasses.xsl to format a "live" list of current Java class
compilation errors in your schema. The accompanying SQL script sets up the
XSQLJavaClassesView object view used by the demo. The master/detail
information from the object view is formatted into HTML by the
invalidclasses.xsl stylesheet in the server.

Description of XSQL Servlet Examples

8-48 Oracle XML Developer's Kit Programmer's Guide

Airport Code Validation
./demo/airport

XSQL page returns a "datagram" of information about airports based on their
three-letter codes and uses <xsql:no-rows-query> as alternative queries when
initial queries return no rows. After attempting to match the airport code passed
in, the XSQL page tries a fuzzy match based on the airport description.

airport.htm page demonstrates how to use the XML results of airport.xsql
page from a Web page using JavaScript to exploit built-in XML Document Object
Model (DOM) functionality in Internet Explorer 5.0.

When you enter the three-letter airport code on the Web page, a JavaScript fetches
the XML datagram from XSQL Servlet over the Web corresponding to the code you
entered. If the return indicates no match, the program collects a "picklist" of
possible matches based on information returned in the XML "datagram" from
XSQL Servlet

Airport Code Display
./demo/airport

Demonstrates using the same XSQL page as the previous example but supplying
an XSLT Stylesheet name in the request. This causes the airport information to be
formatted as an HTML form instead of being returned as raw XML.

Airport Code Display
./demo/airport

Demonstrates returning Airport information as a SOAP Service.

Emp/Dept Object Demo

./demo/empdept

Demonstrates using an object view to group master/detail information from two
existing flat tables like EMP and DEPT. The empdeptobjs.sql script creates the
object view (along with INSTEAD OF INSERT triggers allowing the master/detail
view to be used as an insert target of xsql:insert-request).

The empdept.xsl stylesheet illustrates an example of the simple form of an XSLT
stylesheet that can look just like an HTML page without the extra
xsl:stylesheet or xsl:transform at the top. This is part of the XSLT 1.0
specification called using a Literal Result Element as Stylesheet. It also
demonstrates how to generate an HTML page that includes the <link
rel="stylesheet"> to allow the generated HTML to fully leverage CSS for
centralized HTML style information, found in the coolcolors.css file.

Adhoc Query
Visualization

./demo/adhocsql

Demonstrates passing the entire SQL query and XSLT Stylesheet to use as
parameters to the server.

XML Document Demo
./demo/document

Demonstrates inserting XML documents into relational tables. The docdemo.sql
script creates a user-defined type called XMLDOCFRAG containing an attribute of
type CLOB.

Try inserting the text of the document in ./xsql/demo/xml99.xml and
providing the name xml99.xsl as the stylesheet, as well as
./xsql/demo/JDevRelNotes.xml with the stylesheet relnotes.xsl.

The docstyle.xsql page illustrates an example of the <xsql:include-xsql>
action element to include the output of the doc.xsql page into its own page
before transforming the final output using a client-supplied stylesheet name.

The demo uses the client-side XML features of Internet Explorer 5.0 to check the
document for well-formedness before allowing it to be posted to the server.

Table 8–14 (Cont.) XSQL Servlet Examples

Demonstration Name Description

Description of XSQL Servlet Examples

XSQL Pages Publishing Framework 8-49

Setting Up the Demo Data
To set up the demo data do the following:

1. Change directory to the ./demo directory.

2. In this directory, run SQLPLUS. Connect to your database as CTXSYS/CTXSYS —
the schema owner for Oracle Text (Intermedia Text) packages — and issue the
command

GRANT EXECUTE ON ctx_ddl TO scott;

3. Connect to your database as SYSTEM/MANAGER and issue the command:

GRANT QUERY REWRITE TO scott;

This allows SCOTT to create a function-based index that one of the demos uses to
perform case-insensitive queries on descriptions of airports.

4. Connect to your database as SCOTT/TIGER.

5. Run the script install.sql in the ./demo directory. This script runs all SQL
scripts for all the demos.

install.sql
@@insclaim/insclaim.sql
@@document/docdemo.sql
@@classerr/invalidclasses.sql
@@airport/airport.sql
@@insertxml/newsstory.sql
@@empdept/empdeptobjs.sql

6. Change directory to ./doyouxml subdirectory, and run the following:

imp scott/tiger file=doyouxml.dmp

XML Insert Request Demo
./demo/insertxml

Demonstrates posting XML from a client to an XSQL Page that handles inserting
the posted XML information into a database table using the
<xsql:insert-request> action element. The demo is setup to accept XML
documents in the moreover.com XML-based news format.

In this case, the program doing the posting of the XML is a client-side Web page
using Internet Explorer 5.0 and the XMLHttpRequest object from JavaScript. If
you look at the source for the insertnewsstory.xsql page, you'll see it's
specifying a table name and an XSLT Transform name. The
moreover-to-newsstory.xsl stylesheet transforms the incoming XML information
into the canonical format that the OracleXMLSave utility knows how to insert.

Try copying and pasting the example <article> element several times within the
<moreovernews> element to insert several new articles in one shot.

The newsstory.sql script shows how INSTEAD OF triggers can be used on the
database views into which you ask XSQL Pages to insert to the data to customize
how incoming data is handled, default primary key values, and so on.

SVG Demo

./demo/svg

The deptlist.xsql page displays a simple list of departments with hyperlinks
to the SalChart.xsql page. The SalChart.xsql page queries employees for a
given department passed in as a parameter and uses the associated
SalChart.xsql stylesheet to format the result into a Scalable Vector Graphics
drawing, a bar chart comparing salaries of the employees in that department.

PDF Demo

./demo/fop

emptable.xsql page displays a simple list of employees. The emptable.xsl
stylesheet transforms the datapage into the XSL-FO Formatting Objects which,
combined with the built-in FOP serializer, render the results in Adobe PDF format.

Table 8–14 (Cont.) XSQL Servlet Examples

Demonstration Name Description

Advanced XSQL Pages Topics

8-50 Oracle XML Developer's Kit Programmer's Guide

to import sample data for the "Do You XML? Site" demo.

7. To experience the Scalable Vector Graphics (SVG) demonstration, install an SVG
plug-in into your browser, such as Adobe SVG Plug-in.

Advanced XSQL Pages Topics
These sections discuss XSQL Pages advanced topics.

Using a Custom XSQL Configuration File Name
By default, the XSQL Pages framework expects its configuration file to be named
XSQLConfig.xml. When going between development, test, and production
environments, you might want to easily switch between different versions of an XSQL
configuration file. To override the name of the configuration file the XSQL page
processor will read, do one of the following:

Set the Java system property xsql.config. The simplest way is to specify a Java VM
command-line flag like -Dxsql.config=MyConfigFile.xml by defining a servlet
initialization parameter xsql.config

This is accomplished by adding an <init-param> element to your web.xml file as
part of the <servlet> tag that defines the XSQL Servlet as follows:

 :
 <servlet>
 <servlet-name>XSQL</servlet-name>
 <servlet-class>oracle.xml.xsql.XSQLServlet</servlet-class>
 <init-param>
 <param-name>xsql.config</param-name>
 <param-value>MyConfigFile.xml</param-value>
 <description>
 Please Use MyConfigFile.xml instead of XSQLConfig.xml
 </description>
 </init-param>
 </servlet>
 :

Of course, the servlet initialization parameter is only applicable to the servlet-based
use of the XSQL Pages engine. When using the XSQLCommandLine or XSQLRequest
programmatic interfaces, use the System parameter instead.

Note: The config file is always read from the CLASSPATH. For
example, if you specify a custom configuration parameter file
named MyConfigFile.xml, then the XSQL page processor will
attempt to read the XML file as a resource from the CLASSPATH. In
a J2EE-style servlet environment, that means you must put your
MyConfigFile.xml into the .\WEB-INF\classes directory (or
some other top-level directory that will be found on the
CLASSPATH). If both the servlet initialization parameter and the
System parameter are provided, the servlet initialization parameter
value is used.

Advanced XSQL Pages Topics

XSQL Pages Publishing Framework 8-51

Understanding Client Stylesheet-Override Options
If the current XSQL page being requested allows it, you can supply an XSLT stylesheet
URL in the request to override the default stylesheet that is used, or to apply a
stylesheet where none is applied by default. The client-initiated stylesheet URL is
provided by supplying the xml-stylesheet parameter as part of the request. The
valid values for this parameter are:

■ Any relative URL, interpreted relative to the XSQL page being processed

■ Any absolute URL using the http protocol scheme, provided it references a trusted
host (as defined in the XSQL configuration file, by default named
XSQLConfig.xml)

■ The literal value none

This last value, xml-stylesheet=none, is particularly useful during development
to temporarily "short-circuit" the XSLT stylesheet processing to see what XML
datagram your stylesheet is actually seeing. This can help understand why a stylesheet
might not be producing the expected results.

Client-override of stylesheets for an XSQL page can be disallowed either by:

■ Setting the allow-client-style configuration parameter to no in the XSQL
configuration file, or

■ Explicitly including an allow-client-style="no" attribute on the document
element of any XSQL page

If client-override of stylesheets has been globally disabled by default in the XSQL
configuration file, any page can still enable client-override explicitly by including an
allow-client-style="yes" attribute on the document element of that page.

Controlling How Stylesheets Are Processed
Here are some points to consider:

Controlling the Content Type of the Returned Document
Setting the content type of the information you serve is very important. It allows the
requesting client to correctly interpret the information that you send back.If your
stylesheet uses an <xsl:output> element, the XSQL Page Processor infers the media
type and encoding of the returned document from the media-type and encoding
attributes of <xsl:output>.

For example, the following stylesheet uses the
media-type="application/vnd.ms-excel" attribute on <xsl:output> to
transform the results of an XSQL page containing a standard query over the HR
schema's employees table into Microsoft Excel spreadsheet format.

<?xml version="1.0"?>
<!-- empToExcel.xsl -->
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html" media-type="application/vnd.ms-excel"/>
 <xsl:template match="/">
 <html>
 <table>
 <tr><th>Id</th><th>Email</th><th>Salary</th></tr>
 <xsl:for-each select="ROWSET/ROW">
 <tr>
 <td><xsl:value-of select="EMPLOYEE_ID"/></td>
 <td><xsl:value-of select="EMAIL"/></td>

Advanced XSQL Pages Topics

8-52 Oracle XML Developer's Kit Programmer's Guide

 <td><xsl:value-of select="SALARY"/></td>
 </tr>
 </xsl:for-each>
 </table>
 </html>
 </xsl:template>
</xsl:stylesheet>

An XSQL page that makes use of this stylesheet looks like this:

<?xml version="1.0"?>
<?xml-stylesheet href="empToExcel.xsl" type="text/xsl"?>
<xsql:query connection="hr" xmlns:xsql="urn:oracle-xsql">
 select EMPLOYEE_ID, EMAIL, SALARY from employees order by salary desc
</xsql:query>

Assigning the Stylesheet Dynamically
As we've seen, if you include an <?xml-stylesheet?> processing instruction at the
top of your .xsql file, it will be considered by the XSQL page processor for use in
transforming the resulting XML datagram. For example:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="emp.xsl"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query>
 SELECT * FROM employees ORDER BY salary DESC
 </xsql:query>
</page>

uses the emp.xsl stylesheet to transform the results of the employees query in the
server tier, before returning the response to the requestor. The stylesheet is accessed by
the relative or absolute URL provided in the href pseudo-attribute on the
<?xml-stylesheet?> processing instruction.

By including one or more parameter references in the value of the href
pseudo-attribute, you can dynamically determine the name of the stylesheet. For
example, this page selects the name of the stylesheet to use from a table by assigning
the value of a page-private parameter using a query.

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="{@sheet}.xsl"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:set-page-param bind-params="UserCookie" name="sheet">
 SELECT stylesheet_name
 FROM user_prefs
 WHERE username = ?
 </xsql:set-page-param>
 <xsql:query>
 SELECT * FROM employees ORDER BY salary DESC
 </xsql:query>
</page>

Processing Stylesheets in the Client
Some browsers like Microsoft's Internet Explorer 5.0 and higher support processing
XSLT stylesheets in the client. These browsers recognize the stylesheet to be processed
for an XML document in the same way that a server-side XSQL page does, using an
<?xml-stylesheet?> processing instruction. This is not a coincidence. The use of
<?xml-stylesheet?> for this purpose is part of the W3C Recommendation from
June 29, 1999 entitled "Associating Stylesheets with XML Documents, Version 1.0"

Advanced XSQL Pages Topics

XSQL Pages Publishing Framework 8-53

By default, the XSQL page processor performs XSLT transformations in the server,
however by adding on additional pseudo-attribute to your <?xml-stylesheet?>
processing instruction in your XSQL page — client="yes" — the page processor
will defer the XSLT processing to the client by serving the XML datagram "raw", with
the current <?xml-stylesheet?> at the top of the document.

One important point to note is that Internet Explorer 5.0 shipped in late 1998,
containing an implementation of the XSL stylesheet language that conformed to a
December 1998 Working Draft of the standard. The XSLT 1.0 Recommendation that
finally emerged in November of 1999 had significant changes from the earlier working
draft version on which IE5 is based. This means that IE5 browsers understand a
different "dialect" of XSLT than all other XSLT processors — like the Oracle XSLT
processor — which implement the XSLT 1.0 Recommendation syntax.

Toward the end of 2000, Microsoft released version 3.0 of their MSXML components as
a Web-downloadable release. This latest version does implement the XSLT 1.0 standard,
however in order for it to be used as the XSLT processor inside the IE5 browser, the
user must go through additional installation steps. There is no way for a server to
detect that the IE5 browser has installed the latest XSLT components, so until the
Internet Explorer 6.0 release emerges, which will contain the latest components by
default and which will send a detectable and different User-Agent string containing
the 6.0 version number, stylesheets delivered for client processing to IE5 browsers
have to use the earlier IE5-"flavor" of XSL.

What we need is a way to request that an XSQL page use different stylesheets
depending on the User-Agent making the request. Luckily, the XSQL Pages framework
makes this easy and we learn how in the next section.

Providing Multiple, UserAgent-Specific Stylesheets
You can include multiple <?xml-stylesheet?> processing instructions at the top of
an XSQL page and any of them can contain an optional media pseudo-attribute. If
specified, the media pseudo-attribute's value is compared case-insensitively with the
value of the HTTP header's User-Agent string. If the value of the media
pseudo-attribute matches a part of the User-Agent string, then the processor selects the
current <?xml-stylesheet?> processing instruction for use, otherwise it ignores it
and continues looking. The first matching processing instruction in document order
will be used. A processing instruction without a media pseudo-attribute matches all
user agents so it can be used as the fallback/default.

For example, the following processing instructions at the top of an .xsql file...

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" media="lynx" href="doyouxml-lynx.xsl" ?>
<?xml-stylesheet type="text/xsl" media="msie 5" href="doyouxml-ie.xsl" ?>
<?xml-stylesheet type="text/xsl" href="doyouxml.xsl" ?>
<page xmlns:xsql="urn:oracle-xsql" connection="demo">
 ...

will use doyouxml-lynx.xsl for Lynx browsers, doyouxml-ie.xsl for Internet
Explorer 5.0 or 5.5 browsers, and doyouxml.xsl for all others.

Table 8–15 summarizes all of the supported pseudo-attributes allowed on the
<?xml-stylesheet?> processing instruction.

Advanced XSQL Pages Topics

8-54 Oracle XML Developer's Kit Programmer's Guide

Using XSQL Configuration File to Tune Your Environment
You can use the XSQL configuration file (by default, named XSQLConfig.xml) to
tune your XSQL pages environment. Table 8–16 defines all of the parameters that can
be set.

Table 8–15 Pseudo-Attributes for <?xml-stylesheet?>

Attribute Name Description

type = "string" Indicates the MIME type of the associated stylesheet. For XSLT
stylesheets, this attribute must be set to the string text/xsl.

This attribute may be present or absent when using the
serializer attribute, depending on whether an XSLT
stylesheet has to execute before invoking the serializer, or not.

href = "URL" Indicates the relative or absolute URL to the XSLT stylesheet to
be used. If an absolute URL is supplied that uses the http
protocol scheme, the IP address of the resource must be a
trusted host listed in the XSQL configuration file (by default,
named XSQLConfig.xml).

media = "string" This attribute is optional. If provided, its value is used to
perform a case-insensitive match on the User-Agent string
from the HTTP header sent by the requesting device. The
current <?xml-stylesheet?> processing instruction will
only be used if the User-Agent string contains the value of
the media attribute, otherwise it is ignored.

client = "boolean" If set to yes, caused the XSQL page processor to defer the
processing of the associated XSLT stylesheet to the client. The
"raw" XML datagram will be sent to the client with the current
<?xml-stylesheet?> processing instruction at the top of the
document. The default if not specified is to perform the
transform in the server.

serializer = "string" By default, the XSQL page processor uses the:

■ XML DOM serializer if no XSLT stylesheet is used

■ XSLT processor's serializer, if XSLT stylesheet is used

Specifying this pseudo-attribute indicates that a custom
serializer implementation must be used instead.

Valid values are either the name of a custom serializer defined
in the <serializerdefs> section of the XSQL configuration
file (by default, named XSQLConfig.xml), or the string
java:fully.qualified.Classname. If both an XSLT
stylesheet and the serializer attribute are present, then the
XSLT transform is performed first, then the custom serializer is
invoked to render the final result to the OutputStream or
PrintWriter.

Advanced XSQL Pages Topics

XSQL Pages Publishing Framework 8-55

Table 8–16 XSQL Configuration File Settings

Configuration Setting Name Description

XSQLConfig/servlet/output-buffer-size Sets the size (in bytes) of the buffered
output stream. If your servlet engine
already buffers I/O to the Servlet
Output Stream, then you can set to 0
to avoid additional buffering.

Default value is 0. Valid value is any
non-negative integer.

XSQLConfig/servlet/suppress-mime-charset/media-type The XSQL Servlet sets the HTTP
ContentType header to indicate the
MIME type of the resource being
returned to the request. By default,
the XSQL Servlet includes the
optional character set information in
the MIME type. For a particular
MIME type, you can suppress the
inclusion of the character set
information by including a
<media-type> element, with the
desired MIME type as its contents.

You may list any number of
<media-type> elements.

Valid value is any string.

XSQLConfig/processor/character-set-conversion/default-charset By default, the XSQL page processor
does character set conversion on the
value of HTTP parameters to
compensate for the default character
set used by most servlet engines. The
default base character set used for
conversion is the Java character set
8859_1 corresponding to IANA's
ISO-8859-1 character set. If your
servlet engine uses a different
character set as its base character set
you can now specify that value here.

To suppress character set conversion,
specify the empty element <none/>
as the content of the
<default-charset> element,
instead of a character set name. This
is useful if you are working with
parameter values that are correctly
representable using your servlet
default character set, and eliminates a
small amount of overhead associated
with performing the character set
conversion.

Valid values are any Java character
set name, or the element <none/>.

Advanced XSQL Pages Topics

8-56 Oracle XML Developer's Kit Programmer's Guide

XSQLConfig/processor/reload-connections-on-error Connection definitions are cached
when the XSQL Page Processor is
initialized. Set this setting to yes to
cause the processor to reread the
XSQLConfig.xml file to reload
connection definitions if an attempt
is made to request a connection name
that's not in the cached connection
list. The yes setting is useful during
development when you might be
adding new <connection>
definitions to the file while the
servlet is running. Set to no to avoid
reloading the connection definition
file when a connection name is not
found in the in-memory cache.

Default is yes. Valid values are yes
and no.

XSQLConfig/processor/default-fetch-size Sets the default value of the row fetch
size for retrieving information from
SQL queries from the database. Only
takes effect if you are using the
Oracle JDBC Driver, otherwise the
setting is ignored. Useful for
reducing network round-trips to the
database from the servlet engine
running in a different tier.

Default is 50. Valid value is any
nonzero positive integer.

XSQLConfig/processor/page-cache-size Sets the size of the XSQL cache for
XSQL page templates. This
determines the maximum number of
XSQL pages that will be cached.
Least recently used pages get
"bumped" out of the cache if you go
beyond this number.

Default is 25. Valid value is any
nonzero positive integer.

XSQLConfig/processor/stylesheet-cache-size Sets the size of the XSQL cache for
XSLT stylesheets. This determines the
maximum number of stylesheets that
will be cached. Least recently used
stylesheets get "bumped" out of the
cache if you go beyond this number.

Default is 25. Valid value is any
nonzero positive integer.

XSQLConfig/processor/stylesheet-pool/initial Each cached stylesheet is actually a
pool of cached stylesheet instances to
improve throughput. Sets the initial
number of stylesheets to be allocated
in each stylesheet pool.

Default is 1. Valid value is any
nonzero positive integer.

Table 8–16 (Cont.) XSQL Configuration File Settings

Configuration Setting Name Description

Advanced XSQL Pages Topics

XSQL Pages Publishing Framework 8-57

XSQLConfig/processor/stylesheet-pool/increment Sets the number of stylesheets to be
allocated when the stylesheet pool
must grow due to increased load on
the server.

Default is 1. Valid value is any
nonzero positive integer.

XSQLConfig/processor/stylesheet-pool/timeout-seconds Sets the number of seconds of
inactivity that must transpire before a
stylesheet instance in the pool will be
removed to free resources as the pool
tries to "shrink" back to its initial size.

Default is 60. Valid value is any
nonzero positive integer.

XSQLConfig/processor/connection-pool/initial The XSQL page processor's default
connection manager implements
connection pooling to improve
throughput. This setting controls the
initial number of JDBC connections
to be allocated in each connection
pool.

Default is 2. Valid value is any
nonzero positive integer.

XSQLConfig/processor/connection-pool/increment Sets the number of connections to be
allocated when the connection pool
must grow due to increased load on
the server.

Default is 1. Valid value is any
nonzero positive integer.

XSQLConfig/processor/connection-pool/timeout-seconds Sets the number of seconds of
inactivity that must transpire before a
JDBC connection in the pool will be
removed to free resources as the pool
tries to "shrink" back to its initial size.

Default is 60. Valid value is any
nonzero positive integer.

XSQLConfig/processor/connection-pool/dump-allowed Determines whether a diagnostic
report of connection pool activity can
be requested by passing the
dump-pool=y parameter in the page
request.

Default is no. Valid value is yes or
no.

XSQLConfig/processor/connection-manager/factory Specifies the fully-qualified Java class
name of the XSQL connection
manager factory implementation. If
not specified, this setting defaults to
oracle.xml.xsql.XSQLConnect
ionManagerFactoryImpl.

Default is
oracle.xml.xsql.XSQLConnect
ionManagerFactoryImpl. Valid
value is any class name that
implements the
oracle.xml.xsql.XSQLConnect
ionManagerFactory interface.

Table 8–16 (Cont.) XSQL Configuration File Settings

Configuration Setting Name Description

Advanced XSQL Pages Topics

8-58 Oracle XML Developer's Kit Programmer's Guide

XSQLConfig/processor/owa/fetch-style Sets the default OWA Page Buffer
fetch style used by the
<xsql:include-owa> action.Valid
values are CLOB or TABLE, and the
default if not specified is CLOB.

If set to CLOB, the processor uses
temporary CLOB to retrieve the
OWA page buffer.

If set to TABLE the processor uses a
more efficient approach that requires
the existence of the Oracle
user-defined type named XSQL_
OWA_ARRAY which must be created
by hand using the DDL statement:

CREATE TYPE xsql_owa_array
AS TABLE OF VARCHAR2(32767)

XSQLConfig/processor/timing/page Determines whether a the XSQL page
processor adds an xsql-timing
attribute to the document element of
the page whose value reports the
elapsed number of milliseconds
required to process the page.

Default is no. Valid value is yes or
no.

XSQLConfig/processor/timing/action Determines whether a the XSQL page
processor adds comment to the page
just before the action element whose
contents reports the elapsed number
of milliseconds required to process
the action.

Default is no. Valid value is yes or
no.

XSQLConfig/processor/logger/factory Specifies the fully-qualified Java class
name of a custom XSQL logger
factory implementation. If not
specified, then no logger is used.

Valid value is any class name that
implements the
oracle.xml.xsql.XSQLLoggerF
actory interface.

XSQLConfig/processor/error-handler/class Specifies the fully-qualified Java class
name of a custom XSQL error
handler to be the default error
handler implementation. If not
specified, then the default error
handler is used.

Valid value is any class name that
implements the
oracle.xml.xsql.XSQLErrorHa
ndler interface.

Table 8–16 (Cont.) XSQL Configuration File Settings

Configuration Setting Name Description

Advanced XSQL Pages Topics

XSQL Pages Publishing Framework 8-59

XSQLConfig/processor/xml-parsing/preserve-whitespace Determines whether the XSQL page
processor preserves whitespace when
parsing XSQL page templates and
XSLT stylesheets.

The default value is true. Valid
values are true or false. Changing
the default to false can slightly speed
up the processing of XSQL pages and
stylesheets since ignoring whitespace
while parsing is faster than
preserving it.

XSQLConfig/processor/security/stylesheet/defaults/allow-client
-style

While developing an application, it is
frequently useful to take advantage
of the XSQL page processor's for each
request stylesheet override capability
by providing a value for the special
xml-stylesheet parameter in the
request. One of the most common
uses is to provide the
xml-stylesheet=none
combination to temporarily disable
the application of the stylesheet to
"peek" underneath at the raw XSQL
data page for debugging purposes.

When development is completed,
you can explicitly add the
allow-client-style="no"
attribute to the document element of
each XSQL page to prohibit client
overriding of the stylesheet in the
production application. However,
using this configuration setting, you
can globally change the default
behavior for allow-client-style
in a single place.

Note that this only provides the
default setting for this behavior. If the
allow-client-style="yes|no"
attribute is explicitly specified on the
document element for a given XSQL
page, its value takes precedence over
this global default.

Valid values are yes and no.

Table 8–16 (Cont.) XSQL Configuration File Settings

Configuration Setting Name Description

Advanced XSQL Pages Topics

8-60 Oracle XML Developer's Kit Programmer's Guide

XSQLConfig/processor/security/stylesheet/trusted-hosts/host XSLT stylesheets can invoke
extension functions. In particular, the
Oracle XSLT processor — which the
XSQL page processor uses to process
all XSLT stylesheets — supports Java
extension functions. Typically your
XSQL pages will refer to XSLT
stylesheets using relative URL's The
XSQL page processor enforces that
any absolute URL to an XSLT
stylesheet that is processed must be
from a trusted host whose name is
listed here in the configuration file.

You may list any number of <host>
elements inside the
<trusted-hosts> element. The
name of the local machine,
localhost, and 127.0.0.1 are
considered trusted hosts by default.

Valid values are any hostname or IP
address.

XSQLConfig/http/proxyhost Sets the name of the HTTP proxy
server to use when processing URLs
with the http protocol scheme.

Valid value is any hostname or IP
address.

XSQLConfig/http/proxyport Sets the port number of the HTTP
proxy server to use when processing
URLs with the http protocol scheme.

Valid value is any nonzero integer.

XSQLConfig/connectiondefs/connection Defines a "nickname" and the JDBC
connection details for a named
connection for use by the XSQL page
processor.

You may supply any number of
<connection> element children of
<connectiondefs>. Each
connection definition must supply a
name attribute, and may supply
appropriate children elements
<username>, <password>,
<driver>, <dburl>, and
<autocommit>.

XSQLConfig/connectiondefs/connection/username Defines the username for the current
connection.

XSQLConfig/connectiondefs/connection/password Defines the password for the current
connection.

XSQLConfig/connectiondefs/connection/dburl Defines the JDBC connection URL for
the current connection.

XSQLConfig/connectiondefs/connection/driver Specifies the fully-qualified Java class
name of the JDBC driver to be used
for the current connection. If not
specified, defaults to
oracle.jdbc.driver.OracleDr
iver.

Table 8–16 (Cont.) XSQL Configuration File Settings

Configuration Setting Name Description

Advanced XSQL Pages Topics

XSQL Pages Publishing Framework 8-61

Using the FOP Serializer to Produce PDF Output
Using the XSQL Pages framework's support for custom serializers, the
oracle.xml.xsql.serializers.XSQLFOPSerializer is provided for
integrating with the Apache FOP processor (http://xml.apache.org/fop). The FOP
processor renders a PDF document from an XML document containing XSL
Formatting Objects (http://www.w3.org/TR/xsl).

For example, given the following XSLT stylesheet, EmpTableFO.xsl:

<?xml version="1.0"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format" xsl:version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- defines the layout master -->
 <fo:layout-master-set>
 <fo:simple-page-master master-name="first"
 page-height="29.7cm"
 page-width="21cm"
 margin-top="1cm"
 margin-bottom="2cm"
 margin-left="2.5cm"
 margin-right="2.5cm">
 <fo:region-body margin-top="3cm"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <!-- starts actual layout -->
 <fo:page-sequence master-reference="first">

 <fo:flow flow-name="xsl-region-body">

 <fo:block font-size="24pt" line-height="24pt" font-weight="bold"
start-indent="15pt">
 Total of All Salaries is $<xsl:value-of select="sum(/ROWSET/ROW/SAL)"/>

XSQLConfig/connectiondefs/connection/autocommit Explicitly sets the Auto Commit flag
for the current connection. If not
specified, connection uses JDBC
driver's default setting for Auto
Commit.

XSQLConfig/serializerdefs/serializer Defines a named custom serializer
implementation.

You may supply any number of
<serializer> element children of
<serializerdefs>. Each must
specify both a <name> and a
<class> child element.

XSQLConfig/serializerdefs/serializer/name Defines the name of the current
custom serializer definition.

XSQLConfig/connectiondefs/connection/class Specifies the fully-qualified Java class
name of the current custom serializer.
The class must implement the
oracle.xml.xsql.XSQLDocumen
tSerializer interface.

Table 8–16 (Cont.) XSQL Configuration File Settings

Configuration Setting Name Description

Advanced XSQL Pages Topics

8-62 Oracle XML Developer's Kit Programmer's Guide

 </fo:block>

 <!-- Here starts the table -->
 <fo:block border-width="2pt">
 <fo:table>
 <fo:table-column column-width="4cm"/>
 <fo:table-column column-width="4cm"/>
 <fo:table-body font-size="10pt" font-family="sans-serif">
 <xsl:for-each select="ROWSET/ROW">
 <fo:table-row line-height="12pt">
 <fo:table-cell>
 <fo:block><xsl:value-of select="ENAME"/></fo:block>
 </fo:table-cell>
 <fo:table-cell>
 <fo:block><xsl:value-of select="SAL"/></fo:block>
 </fo:table-cell>
 </fo:table-row>
 </xsl:for-each>
 </fo:table-body>
 </fo:table>
 </fo:block>
 </fo:flow>
 </fo:page-sequence>
</fo:root>

For reference, in case you might want to customize the implementation, the source
code for the FOP Serializer provided in this release looks like this:

package oracle.xml.xsql.serializers;
import org.w3c.dom.Document;
import org.apache.log.Logger;
import org.apache.log.Hierarchy;
import org.apache.fop.messaging.MessageHandler;
import org.apache.log.LogTarget;
import oracle.xml.xsql.XSQLPageRequest;
import oracle.xml.xsql.XSQLDocumentSerializer;
import org.apache.fop.apps.Driver;
import org.apache.log.output.NullOutputLogTarget;
/**
 * Tested with the FOP 0.20.3RC release from 19-Jan-2002
 */
public class XSQLFOPSerializer implements XSQLDocumentSerializer {
 private static final String PDFMIME = "application/pdf";
 public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
 try {
 // First make sure we can load the driver
 Driver FOPDriver = new Driver();

Note: To use the XSQL FOP Serializer, you need to add these
additional Java archives to your server's CLASSPATH:

■ xsqlserializers.jar - supplied with Oracle XSQL

■ fop.jar - from Apache, version 0.20.3 or higher

■ batik.jar - from the FOP distribution

■ avalon-framework-4.0.jar - from FOP distribution

■ logkit-1.0.jar - from FOP distribution

Advanced XSQL Pages Topics

XSQL Pages Publishing Framework 8-63

 // Tell FOP not to spit out any messages by default.
 // You can modify this code to create your own FOP Serializer
 // that logs the output to one of many different logger targets
 // using the Apache LogKit API
 Logger logger=Hierarchy.getDefaultHierarchy().getLoggerFor("XSQLServlet");
 logger.setLogTargets(new LogTarget[]{new NullOutputLogTarget()});
 FOPDriver.setLogger(logger);
 // Some of FOP's messages appear to still use MessageHandler.
 MessageHandler.setOutputMethod(MessageHandler.NONE);
 // Then set the content type before getting the reader
 env.setContentType(PDFMIME);
 FOPDriver.setOutputStream(env.getOutputStream());
 FOPDriver.setRenderer(FOPDriver.RENDER_PDF); FOPDriver.render(doc);
 }
 catch (Exception e) {
 // Cannot write PDF output for the error anyway.
 // So maybe this stack trace will be useful info
 e.printStackTrace(System.err);
 }
 }
}

Using XSQL Page Processor Programmatically
The XSQLRequest class, enables you to utilize the XSQL page processor "engine"
from within your own custom Java programs. Using the API is simple. You construct
an instance of XSQLRequest, passing the XSQL page to be processed into the
constructor as one of the following:

■ String containing a URL to the page

■ URL object for the page

■ In-memory XMLDocument

Then you invoke one of the following methods to process the page:

■ process() to write the result to a PrintWriter or OutputStream, or

■ processToXML() to return the result as an XML Document

If you want to use the built-in XSQL Connection Manager — which implements JDBC
connection pooling based on XSQL configuration file definitions — then the XSQL
page is all you need to pass to the constructor. Optionally, you can pass in a custom
implementation for the XSQLConnectionManagerFactory interface as well, if you
want to use your own connection manager implementation.

Note that the ability to pass the XSQL page to be processed as an in-memory XML
Document object means that you can dynamically generate any valid XSQL page for
processing using any means necessary, then pass the page to the XSQL engine for
evaluation.

When processing a page, there are two additional things you may want to do as part of
the request:

■ Pass a set of parameters to the request

You accomplish this by passing any object that implements the Dictionary
interface, to the process() or processToXML() methods. Passing a
HashTable containing the parameters is one popular approach.

■ Set an XML document to be processed by the page as if it were the "posted XML"
message body

Advanced XSQL Pages Topics

8-64 Oracle XML Developer's Kit Programmer's Guide

You can do this using the setPostedDocument() method on the XSQLRequest
object.

Here is a simple example of processing a page using XSQLRequest:

import oracle.xml.xsql.XSQLRequest;
import java.util.Hashtable;
import java.io.PrintWriter;
import java.net.URL;
public class XSQLRequestSample {
 public static void main(String[] args) throws Exception {
 // Construct the URL of the XSQL Page
 URL pageUrl = new URL("file:///C:/foo/bar.xsql");
 // Construct a new XSQL Page request
 XSQLRequest req = new XSQLRequest(pageUrl);
 // Setup a Hashtable of named parameters to pass to the request
 Hashtable params = new Hashtable(3);
 params.put("param1","value1");
 params.put("param2","value2");
 /* If needed, treat an existing, in-memory XMLDocument as if
 ** it were posted to the XSQL Page as part of the request
 req.setPostedDocument(myXMLDocument);
 **
 */
 // Process the page, passing the parameters and writing the output
 // to standard out.
 req.process(params,new PrintWriter(System.out)
 ,new PrintWriter(System.err));
 }
}

Writing Custom XSQL Action Handlers
When the task at hand requires custom processing, and none of the built-in actions
does exactly what you need, you can augment your repertoire by writing your own
actions that any of your XSQL pages can use.

The XSQL page processor at its very core is an engine that processes XML documents
containing "action elements". The page processor engine is written to support any
action that implements the XSQLActionHandler interface. All of the built-in actions
implement this interface.

The XSQL Page Processor processes the actions in a page in the following way. For
each action in the page, the engine:

1. Constructs an instance of the action handler class using the default constructor

2. Initializes the handler instance with the action element object and the page
processor context by invoking the method init(Element
actionElt,XSQLPageRequest context)

3. Invokes the method that allows the handler to handle the action handleAction
(Node result)

For built-in actions, the engine knows the mapping of XSQL action element name to
the Java class that implements the action's handler. Table 8–17, " Built-In XSQL
Elements and Action Handler Classes" lists that mapping explicitly for your reference.
For user-defined actions, you use the built-in:

<xsql:action handler="fully.qualified.Classname" ... />

Advanced XSQL Pages Topics

XSQL Pages Publishing Framework 8-65

action whose handler attribute provides the fully-qualified name of the Java class
that implements the custom action handler.

Table 8–17 Built-In XSQL Elements and Action Handler Classes

XSQL Action Element
Handler Class in
oracle.xml.xsql.actions Description

<xsql:query> XSQLQueryHandler Execute an arbitrary SQL
statement and include its
result in canonical XML
format.

<xsql:dml> XSQLDMLHandler Execute a SQL DML
statement or a PL/SQL
anonymous block.

<xsql:set-stylesheet-param> XSQLStylesheetParameterHandler Set the value of a top-level
XSLT stylesheet parameter.

<xsql:insert-request> XSQLInsertRequestHandler Insert the XML document
(or HTML form) posted in
the request into a database
table or view.

<xsql:include-xml> XSQLIncludeXMLHandler Include arbitrary XML
resources at any point in
your page by relative or
absolute URL.

<xsql:include-request-params> XSQLIncludeRequestHandler Include all request
parameters as XML
elements in your XSQL
page.

<xsql:include-posted-xml> XSQLIncludePostedXMLHandler

<xsql:include-xsql> XSQLIncludeXSQLHandler Include the results of one
XSQL page at any point
inside another.

<xsql:include-owa> XSQLIncludeOWAHandler Include the results of
executing a stored
procedure that makes use
of the Oracle Web Agent
(OWA) packages inside the
database to generate XML.

<xsql:action> XSQLExtensionActionHandler Invoke a user-defined
action handler,
implemented in Java, for
executing custom logic
and including custom
XML information into
your XSQL page.

<xsql:ref-cursor-function> XSQLRefCursorFunctionHandler Includes the canonical
XML representation of the
result set of a cursor
returned by a PL/SQL
stored function.

<xsql:include-param> XSQLGetParameterHandler Include a parameter and
its value as an element in
your XSQL page.

<xsql:if-param> XSQLIfParamHandler Conditionally include
XML content and other
XSQL actions (or other
XSQL actions).

Advanced XSQL Pages Topics

8-66 Oracle XML Developer's Kit Programmer's Guide

All the demos are listed at http://localhost/xsql/index.html.

Writing your Own Action Handler
To create a custom Action Handler, you need to provide a class that implements the
oracle.xml.xsql.XSQLActionHandler interface. Most custom action handlers
extend oracle.xml.xsql.XSQLActionHandlerImpl that provides a default
implementation of the init() method and offers a set of useful helper methods that
will prove very useful.

When an action handler's handleAction method is invoked by the XSQL page
processor, the action implementation gets passed the root node of a DOM Document
Fragment to which the action handler appends any dynamically created XML content
that is returned to the page.

The XSQL Page Processor conceptually replaces the action element in the XSQL page
template with the content of this Document Fragment. It is completely legal for an
Action Handler to append nothing to this document fragment, if it has no XML
content to add to the page.

While writing you custom action handlers, several methods on the
XSQLActionHandlerImpl class are worth noting because they make your life a lot
easier. Table 8–18 lists the methods that will likely come in handy for you.

<xsql:set-session-param> XSQLSetSessionParamHandler Set an HTTP-Session level
parameter.

<xsql:set-page-param> XSQLSetPageParamHandler Set an HTTP-Session level
parameter. Set a page-level
(local) parameter that can
be referred to in
subsequent SQL
statements in the page.

<xsql:set-cookie> XSQLSetCookieHandler Set an HTTP Cookie.

<xsql:insert-param> XSQLInsertParameterHandler Inserts the XML document
contained in the value of a
single parameter.

<xsql:update-request> XSQLUpdateRequestHandler Update an existing row in
the database based on the
posted XML document
supplied in the request.

<xsql:delete-request> XSQLDeleteRequestHandler Delete an existing row in
the database based on the
posted XML document
supplied in the request.

<xsql:if-param> Includes nested actions
and literal XML content
(or literal XML content) if
some condition based on a
parameter value is true.

Table 8–17 (Cont.) Built-In XSQL Elements and Action Handler Classes

XSQL Action Element
Handler Class in
oracle.xml.xsql.actions Description

Advanced XSQL Pages Topics

XSQL Pages Publishing Framework 8-67

Table 8–18 Helpful Methods on oracle.xml.xsql.SQLActionHandlerImpl

Method Name Description

getActionElement Returns the current action element being handled

getActionElementContent Returns the text content of the current action element,
with all lexical parameters substituted appropriately.

getPageRequest Returns the current XSQL page processor context.
Using this object you can then do things like:

■ setPageParam()

Set a page parameter value

■ getPostedDocument()/setPostedDocument()

Get or set the posted XML document

■ translateURL()

Translate a relative URL to an absolute URL

■ getRequestObject()/setRequestObject()

Get or set objects in the page request context that
can be shared across actions in a single page.

■ getJDBCConnection()

Gets the JDBC connection in use by this page
(possible null if no connection in use).

■ getRequestType()

Detect whether you are running in the "Servlet",
"Command Line" or "Programmatic" context. For
example, if the request type is "Servlet" then you
can cast the XSQLPageRequest object to the more
specific XSQLServletPageRequest to access
addition Servlet-specific methods like
getHttpServletRequest,
getHttpServletResponse, and
getServletContext

getAttributeAllowingParam Retrieve the attribute value from an element, resolving
any XSQL lexical parameter references that might
appear in the attribute's value. Typically this method is
applied to the action element itself, but it is also useful
for accessing attributes of any of its sub-elements. To
access an attribute value without allowing lexical
parameters, use the standard getAttribute()
method on the DOM Element interface.

appendSecondaryDocument Append the entire contents of an external XML
document to the root of the action handler result
content.

addResultElement Simplify appending a single element with text content
to the root of the action handler result content.

firstColumnOfFirstRow Return the first column value of the first row of a SQL
statement passed in. Requires the current page to have
a connection attribute on its document element, or an
error is returned.

bindVariableCount Returns the number of tokens in the space-delimited
list of bind-params, indicating how many bind
variables are expected to be bound to parameters.

Advanced XSQL Pages Topics

8-68 Oracle XML Developer's Kit Programmer's Guide

The following example shows a custom action handler MyIncludeXSQLHandler that
leverages one of the built-in action handlers and then uses arbitrary Java code to
modify the resulting XML fragment returned by that handler before appending its
result to the XSQL page:

import oracle.xml.xsql.*;
import oracle.xml.xsql.actions.XSQLIncludeXSQLHandler;
import org.w3c.dom.*;
import java.sql.SQLException;
public class MyIncludeXSQLHandler extends XSQLActionHandlerImpl {
 XSQLActionHandler nestedHandler = null;
 public void init(XSQLPageRequest req, Element action) {
 super.init(req, action);
 // Create an instance of an XSQLIncludeXSQLHandler
 // and init() the handler by passing the current request/action
 // This assumes the XSQLIncludeXSQLHandler will pick up its
 // href="xxx.xsql" attribute from the current action element.
 nestedHandler = new XSQLIncludeXSQLHandler();
 nestedHandler.init(req,action);
 }
public void handleAction(Node result) throws SQLException {
 DocumentFragment df=result.getOwnerDocument().createDocumentFragment();
 nestedHandler.handleAction(df);
 // Custom Java code here can work on the returned document fragment
 // before appending the final, modified document to the result node.
 // For example, add an attribute to the first child
 Element e = (Element)df.getFirstChild();
 if (e != null) {
 e.setAttribute("ExtraAttribute","SomeValue");
 }
 result.appendChild(df);
 }
}

handleBindVariables Manage the binding of JDBC bind variables that appear
in a prepared statement with the parameter values
specified in the bind-params attribute on the current
action element. If the statement already is using a
number of bind variables prior to call this method, you
can pass the number of existing bind variable "slots" in
use as well.

reportErrorIncludingStatement Report an error, including the offending (SQL)
statement that caused the problem, optionally
including a numeric error code.

reportFatalError Report a fatal error.

reportMissingAttribute Report an error that a required action handler attribute
is missing using the standard <xsql-error> element.

reportStatus Report action handler status using the standard
<xsql-status> element.

requiredConnectionProvided Checks whether a connection is available for this
request, and outputs an "errorgram" into the page if no
connection is available.

variableValue Returns the value of a lexical parameter, taking into
account all scoping rules which might determine its
default value.

Table 8–18 (Cont.) Helpful Methods on oracle.xml.xsql.SQLActionHandlerImpl

Method Name Description

Advanced XSQL Pages Topics

XSQL Pages Publishing Framework 8-69

If you create custom action handlers that need to work differently based on whether
the page is being requested through the XSQL Servlet, the XSQL Command-line
Utility, or programmatically through the XSQLRequest class, then in your Action
Handler implementation you can call getPageRequest() to get a reference to the
XSQLPageRequest interface for the current page request. By calling
getRequestType() on the XSQLPageRequest object, you can see if the request is
coming from the "Servlet", "Command Line", or "Programmatic" routes respectively. If
the return value is "Servlet", then you can get access to the HTTP Servlet request,
response, and servlet context objects by doing:

XSQLServletPageRequest xspr = (XSQLServletPageRequest)getPageRequest();
if (xspr.getRequestType().equals("Servlet")) {
 HttpServletRequest req = xspr.getHttpServletRequest();
 HttpServletResponse resp = xspr.getHttpServletResponse();
 ServletContext cont = xspr.getServletContext();
 // do something fun here with req, resp, or cont however
 // writing to the response directly from a handler will
 // produce unexpected results. Allow the XSQL Servlet
 // or your custom Serializer to write to the servlet
 // response output stream at the write moment later when all
 // action elements have been processed.
}

Using Multi-Valued Parameters in Custom XSQL Actions
The base class for custom XSQL actions, XSQLActionHandlerImpl supports
working with array-named lexical parameter substitution and array-named bind
variables as well as simple-valued parameters. If your custom actions are use methods
like getAttributeAllowingParam(), getActionElementContent(), or
handleBindVariables() methods from this base class, you pickup the
multi-valued parameter functionality for free in your custom actions.

Use the getParameterValues() method on the XSQLPageRequest interface to
explicitly get a parameter value as a String[]. The helper method
variableValues() in XSQLActionHandlerImpl makes it easy to use this
functionality from within a custom action handler if you need to do so
programmatically.

Writing Custom XSQL Serializers
You can provide a user-defined serializer class to programmatically control how the
final XSQL datapage's XML document is serialized to a text or binary stream. A
user-defined serializer must implement the
oracle.xml.xsql.XSQLDocumentSerializer interface which comprises the
single method:

void serialize(org.w3c.dom.Document doc, XSQLPageRequest env) throws Throwable;

In this release, DOM-based serializers are supported. A future release may support
SAX2-based serializers as well. A custom serializer class is expected to perform the
following tasks in the correct order:

1. Set the content type of the serialized stream before writing any content to the
output PrintWriter (or OutputStream).

You set the type by calling setContentType() on the XSQLPageRequest that
is passed to your serializer. When setting the content type, you can either set just a
MIME type like this:

Advanced XSQL Pages Topics

8-70 Oracle XML Developer's Kit Programmer's Guide

env.setContentType("text/html");

or a MIME type with an explicit output encoding character set like this:

env.setContentType("text/html;charset=Shift_JIS");

2. Call getWriter() or getOutputStream() — but not both! — on the
XSQLPageRequest to get the appropriate PrintWriter or OutputStream
respectively to use for serializing the content.

For example, the following custom serializer illustrates a simple implementation
which simply serializes an HTML document containing the name of the document
element of the current XSQL data page:

package oracle.xml.xsql.serializers;
import org.w3c.dom.Document;
import java.io.PrintWriter;
import oracle.xml.xsql.*;

public class XSQLSampleSerializer implements XSQLDocumentSerializer {
 public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
 String encoding = env.getPageEncoding(); // Use same encoding as XSQL page
 // template. Set to specific
 // encoding if necessary
 String mimeType = "text/html"; // Set this to the appropriate content type
 // (1) Set content type using the setContentType on the XSQLPageRequest
 if (encoding != null && !encoding.equals("")) {
 env.setContentType(mimeType+";charset="+encoding);
 }
 else {
 env.setContentType(mimeType);
 }
 // (2) Get the output writer from the XSQLPageRequest
 PrintWriter e = env.getWriter();
 // (3) Serialize the document to the writer
 e.println("<html>Document element is "+
 doc.getDocumentElement().getNodeName()+
 "</html>");
 }
}

There are two ways to use a custom serializer, depending on whether you need to first
perform an XSLT transformation before serializing or not. To perform an XSLT
transformation before using a custom serializer, simply add the
serializer="java:fully.qualified.ClassName" in the
<?xml-stylesheet?> processing instruction at the top of your page like this:

<?xml version="1.0?>
<?xml-stylesheet type="text/xsl" href="mystyle.xsl"
 serializer="java:my.pkg.MySerializer"?>

If you only need the custom serializer, simply leave out the type and href attributes
like this:

<?xml version="1.0?>
<?xml-stylesheet serializer="java:my.pkg.MySerializer"?>

You can also assign a short name to your custom serializers in the
<serializerdefs> section of the XSQL configuration file (by default, named
XSQLConfig.xml) and then use the nickname (case-sensitive) in the serializer

Advanced XSQL Pages Topics

XSQL Pages Publishing Framework 8-71

attribute instead to save typing. For example, if you have the following in the XSQL
configuration file:

<XSQLConfig>
 <!--and so on. -->
 <serializerdefs>
 <serializer>
 <name>Sample</name>
 <class>oracle.xml.xsql.serializers.XSQLSampleSerializer</class>
 </serializer>
 <serializer>
 <name>FOP</name>
 <class>oracle.xml.xsql.serializers.XSQLFOPSerializer</class>
 </serializer>
 </serializerdefs>
</XSQLConfig>

then you can use the nicknames "Sample" and "FOP" (or "FOP") as shown in the
following examples:

<?xml-stylesheet type="text/xsl" href="emp-to-xslfo.xsl" serializer="FOP"?>

or

<?xml-stylesheet serializer="Sample"?>

The XSQLPageRequest interface supports both a getWriter() and a
getOutputStream() method. Custom serializers can call getOutputStream() to
return an OutputStream instance into which binary data (like a dynamically
produced GIF image, for example) can be serialized. Using the XSQL Servlet, writing
to this output stream results in writing the binary information to the servlet output
stream.

For example, the following serializer illustrates an example of writing out a dynamic
GIF image. In this example the GIF image is a static little "ok" icon, but it shows the
basic technique that a more sophisticated image serializer needs to use:

package oracle.xml.xsql.serializers;
import org.w3c.dom.Document;
import java.io.*;
import oracle.xml.xsql.*;

public class XSQLSampleImageSerializer implements XSQLDocumentSerializer {
 // Byte array representing a small "ok" GIF image
 private static byte[] okGif =
 {(byte)0x47,(byte)0x49,(byte)0x46,(byte)0x38,
 (byte)0x39,(byte)0x61,(byte)0xB,(byte)0x0,
 (byte)0x9,(byte)0x0,(byte)0xFFFFFF80,(byte)0x0,
 (byte)0x0,(byte)0x0,(byte)0x0,(byte)0x0,
 (byte)0xFFFFFFFF,(byte)0xFFFFFFFF,(byte)0xFFFFFFFF,(byte)0x2C,
 (byte)0x0,(byte)0x0,(byte)0x0,(byte)0x0,
 (byte)0xB,(byte)0x0,(byte)0x9,(byte)0x0,
 (byte)0x0,(byte)0x2,(byte)0x14,(byte)0xFFFFFF8C,
 (byte)0xF,(byte)0xFFFFFFA7,(byte)0xFFFFFFB8,(byte)0xFFFFFF9B,
 (byte)0xA,(byte)0xFFFFFFA2,(byte)0x79,(byte)0xFFFFFFE9,
 (byte)0xFFFFFF85,(byte)0x7A,(byte)0x27,(byte)0xFFFFFF93,
 (byte)0x5A,(byte)0xFFFFFFE3,(byte)0xFFFFFFEC,(byte)0x75,
 (byte)0x11,(byte)0xFFFFFF85,(byte)0x14,(byte)0x0,
 (byte)0x3B};

Advanced XSQL Pages Topics

8-72 Oracle XML Developer's Kit Programmer's Guide

 public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
 env.setContentType("image/gif");
 OutputStream os = env.getOutputStream();
 os.write(okGif,0,okGif.length);
 os.flush();
 }
}

Using the XSQL Command-line utility, the binary information is written to the target
output file. Using the XSQLRequest programmatic API, two constructors exist that
allow the caller to supply the target OutputStream to use for the results of page
processing.

Note that your serializer must either call getWriter() (for textual output) or
getOutputStream() (for binary output) but not both. Calling both in the same
request will raise an error.

Using a Custom XSQL Connection Manager for JDBC Datasources
As an alternative to defining your named connections in the XSQL configuration file,
you may use one of the two provided XSQLConnectionManager implementations that
let you use your servlet container's JDBC Datasource implementation and related
connection pooling features.

This XSQL Pages release comes with two of these alternative connection manager
implementations:

■ oracle.xml.xsql.XSQLDatasourceConnectionManager

Consider using this alternative connection manager if your servlet container's
datasource implementation does not use the Oracle JDBC driver under the covers.
Certain features of the XSQL Pages system will not be available when you are not
using an Oracle JDBC driver, like <xsql:ref-cursor-function> and
<xsql:include-owa>.

■ oracle.xml.xsql.XSQLOracleDatasourceConnectionManager

Consider using this alternative connection manager when you know that your
datasource implementation returns JDBC PreparedStatement and
CallableStatement objects that implement the
oracle.jdbc.PreparedStatement and
oracle.jdbc.CallableStatement interfaces respectively. The Oracle
Application Server has a datasource implementation that does this.

When using either of these alternative connection manager implementations, the value
of the connection attribute in your XSQL page template is the JNDI name used to
lookup your desired datasource. For example, the value of the connection attribute
might look something like:

■ jdbc/scottDS

■ java:comp/env/jdbc/MyDatasource

Remember that if you are not using the default XSQL Pages connection manager, then
any connection pooling functionality that you need must be provided by the
alternative connection manager implementation. In the case of the earlier two options
that are based on JDBC Datasources, you are relying on properly configuring your
servlet container to supply the connection pooling. See your servlet container's
documentation for instructions on how to properly configure the datasources to offer
pooled connections.

Advanced XSQL Pages Topics

XSQL Pages Publishing Framework 8-73

Writing Custom XSQL Connection Managers
You can provide a custom connection manager to replace the built-in connection
management mechanism. To provide a custom connection manager implementation,
you must provide:

1. A connection manager factory object that implements the
oracle.xml.xsql.XSQLConnectionManagerFactory interface.

2. A connection manager object that implements the
oracle.xml.xsql.XSQLConnectionManager interface.

Your custom connection manager factory can be set to be used as the default
connection manager factory by providing the class name in the XSQL configuration
file (by default, named XSQLConfig.xml) in the section:

<!--
 | Set the name of the XSQL Connection Manager Factory
 | implementation. The class must implement the
 | oracle.xml.xsql.XSQLConnectionManagerFactory interface.
 | If unset, the default is to use the built-in connection
 | manager implementation in
 | oracle.xml.xsql.XSQLConnectionManagerFactoryImpl
+-->
 <connection-manager>
 <factory>oracle.xml.xsql.XSQLConnectionManagerFactoryImpl</factory>
 </connection-manager>

In addition to specifying the default connection manager factory, a custom connection
factory can be associated with any individual XSQLRequest object using APIs
provided.

The responsibility of the XSQLConnectionManagerFactory is to return an instance
of an XSQLConnectionManager for use by the current request. In a multithreaded
environment like a servlet engine, it is the responsibility of the
XSQLConnectionManager object to insure that a single XSQLConnection instance
is not used by two different threads. This can be assured by marking the connection as
"in use" for the span of time between the invocation of the getConnection()
method and the releaseConnection() method. The default XSQL connection
manager implementation automatically pools named connections, and adheres to this
thread-safe policy.

If your custom implementation of XSQLConnectionManager implements the
optional oracle.xml.xsql.XSQLConnectionManagerCleanup interface as well,
then your connection manager will be given a chance to cleanup any resources it has
allocated. For example, if your servlet container invokes the destroy() method on
the XSQLServlet servlet, which can occur during online administration of the servlet
for example, this will give the connection manager a chance to clean up resources as
part of the servlet destruction process.

Providing a Custom XSQLErrorHandler Implementation
You may want to control how serious page processor errors (like a connection's being
unavailable) are reported to users. Writing a class that implements the
oracle.xml.xsql.XSQLErrorHandler interface enables you to do this. The
interface contains the single method:

public interface XSQLErrorHandler {
 public void handleError(XSQLError err, XSQLPageRequest env);
}

Advanced XSQL Pages Topics

8-74 Oracle XML Developer's Kit Programmer's Guide

You can provide a class that implements the XSQLErrorHandler interface to
customize how the XSQL page processor writes out any page processor error
messages. The new XSQLError object encapsulates the error information and
provides access to the error code, formatted error message, and so on.

For example, here is a sample implementation of XSQLErrorHandler:

package example;
import oracle.xml.xsql.*;
import java.io.*;
/**
 * Example of a custom XSQLErrorHandler implementation
 */
public class MyErrorHandler implements XSQLErrorHandler {
 public void logError(XSQLError err, XSQLPageRequest env) {
 // Must set the content type before writing anything out
 env.setContentType("text/html");
 PrintWriter pw = env.getErrorWriter();
 pw.println("<H1>ERROR</H1><hr>"+err.getMessage());
 }
}

You can control which custom XSQLErrorHandler implementation gets used in two
distinct ways:

1. You can define the name of a custom XSQLErrorHandler implementation class
in the XSQL configuration file (by default, named XSQLConfig.xml) by
providing the fully-qualified class name of your error handler class as the value of
the /XSQLConfig/processor/error-handler/class entry.

2. If the Page Processor can load this class and it correctly implements the
XSQLErrorHandler interface, then this class is used as a singleton and replaces
the default implementation globally, wherever page processor errors are reported.

3. You can override the error writer on a for each page basis using the new, optional
errorHandler (or xsql:errorHandler) attribute on the document element of
your page.

4. The value of this attribute is the fully-qualified class name of a class that
implements the XSQLErrorHandler interface. This class will be used to report
the errors for just this page and the class is instantiated on each page request by
the page engine.

You can use a combination of both approaches if needed.

Providing a Custom XSQL Logger Implementation
You can optionally register custom code to handle the logging of the start and end of
each XSQL page request. Your custom logger code must provide an implementation of
the two interfaces oracle.xml.xsql.XSQLLoggerFactory and
oracle.xml.xsql.XSQLLogger.

The XSQLLoggerFactory interface contains the single method:

public interface XSQLLoggerFactory {
 public XSQLLogger create(XSQLPageRequest env);
}

You can provide a class that implements the XSQLLoggerFactory interface to decide
how XSQLLogger objects are created (or reused) for logging. The XSQL Page
processor holds a reference to the XSQLLogger object returned by the factory for the

Advanced XSQL Pages Topics

XSQL Pages Publishing Framework 8-75

duration of a page request and uses it to log the start and end of each page request by
invoking the logRequestStart() and logRequestEnd() methods on it.

The XSQLLogger interface looks like this:

public interface XSQLLogger {
 public void logRequestStart(XSQLPageRequest env) ;
 public void logRequestEnd(XSQLPageRequest env);
}

The following two classes illustrate a trivial implementation of a custom logger. First is
the XSQLLogger implementation which notes the time the page request started and
then logs the page request end by printing the name of the page request and the
elapsed time to System.out:

package example;
import oracle.xml.xsql.*;
public class SampleCustomLogger implements XSQLLogger {
 long start = 0;
 public void logRequestStart(XSQLPageRequest env) {
 start = System.currentTimeMillis();
 }
 public void logRequestEnd(XSQLPageRequest env) {
 long secs = System.currentTimeMillis() - start;
 System.out.println("Request for " + env.getSourceDocumentURI()
 + " took "+ secs + "ms");
 }
}

Next, the factory implementation:

package example;
import oracle.xml.xsql.*;
public class SampleCustomLoggerFactory implements XSQLLoggerFactory {
 public XSQLLogger create(XSQLPageRequest env) {
 return new SampleCustomLogger();
 }
}

To register a custom logger factory, edit the XSQLConfig.xml file and provide the
name of your custom logger factory class as the content to the
/XSQLConfig/processor/logger/factory element like this:

<XSQLConfig>
 :
 <processor>
 :
 <logger>
 <factory>example.SampleCustomLoggerFactory</factory>
 </logger>
 :
 </processor>
</XSQLConfig>

By default, this <logger> section is commented out, and there is no default logger.

Formatting XSQL Action Handler Errors
Errors raised by the processing of any XSQL Action Elements are reported as XML
elements in a uniform way so that XSL Stylesheets can detect their presence and
optionally format them for presentation.

XSQL Servlet Limitations and Hints

8-76 Oracle XML Developer's Kit Programmer's Guide

The action element in error will be replaced in the page by:

<xsql-error action="xxx">

Depending on the error the <xsql-error> element contains:

■ A nested <message> element

■ A <statement> element with the offending SQL statement

Displaying Error Information on Screen
Here is an example of an XSLT stylesheet that uses this information to display error
information on the screen:

<xsl:if test="//xsql-error">
 <table style="background:yellow">
 <xsl:for-each select="//xsql-error">
 <tr>
 <td>Action</td>
 <td><xsl:value-of select="@action"/></td>
 </tr>
 <tr valign="top">
 <td>Message</td>
 <td><xsl:value-of select="message"/></td>
 </tr>
 </xsl:for-each>
 </table>
</xsl:if>

XSQL Servlet Limitations and Hints
XSQL Servlet has the following limitations:

HTTP Parameters with Multibyte Names
HTTP parameters with multibyte names, for example, a parameter whose name is in
Kanji, are properly handled when they are inserted into your XSQL page using
<xsql:include-request-params>. An attempt to refer to a parameter with a
multibyte name inside the query statement of an <xsql:query> tag will return an
empty string for the parameter's value.

As a workaround use a non-multibyte parameter name. The parameter can still have a
multibyte value which can be handled correctly.

CURSOR() Function in SQL Statements
If you use the CURSOR() function in SQL statements you may get an "Exhausted
ResultSet" error if the CURSOR() statements are nested and if the first row of the query
returns an empty result set for its CURSOR() function.

Hints for Using the XSQL Servlet
This section lists XSQL Servlet hints.

Specifying a DTD While Transforming XSQL Output to a WML Document
There is a way to specify a particular DTD while transforming XSQL output to a WML
document for a wireless application.

XSQL Servlet Limitations and Hints

XSQL Pages Publishing Framework 8-77

The way you do it is using a built-in facility of the XSLT stylesheet called
<xsl:output>. Here is an example:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output type="xml" doctype-system="your.dtd"/>
 <xsl:template match="/">
 </xsl:template>
 ...
 ...
</xsl:stylesheet>

This will produce an XML result with the following code in it:

<!DOCTYPE xxxx SYSTEM "your.dtd">

where "your.dtd" can be any valid absolute or relative URL.

Writing XSQL Servlet Conditional Statements
It is possible to write conditional statements in an XSQL file such as:

<xsql:choose>
 <xsql:when test="@security='admin'">
 <xsql:query>
 SELECT
 </xsql:query>
 </xsq:when>
 <xsql:when test="@security='user'">
 <xsql:query>
 SELECT
 </xsql:query>
 </xsql:when>
</xsql:if>

Use <xsql:ref-cursor-function> to call a PL/SQL procedure that conditionally
returns a REF CURSOR to the appropriate query.

Using a Value Retrieved in One Query in Another Query's Where Clause
If you have two queries in an XSQL file, you can use the value of a select list item of
the first query in the second query, using page parameters:

<page xmlns:xsql="urn:oracle-xsql" connection="demo">
 <!-- Value of page param "xxx" will be first column of first row -->
 <xsql:set-page-param name="xxx">
 select one from table1 where ...
 </xsl:set-param-param>
 <xsql:query bind-params="xxx">
 select col3,col4 from table2
 where col3 = ?
 </xsql:query>
</page>

Using the XSQL Servlet with Non-Oracle Databases
The XSQL Servlet can connect to any database that has JDBC support. Just indicate the
appropriate JDBC driver class and connection URL in the XSQL configuration file (by
default, named XSQLConfig.xml) connection definition. Of course, object/relational
functionality only works when using Oracle with the Oracle JDBC driver.

XSQL Servlet Limitations and Hints

8-78 Oracle XML Developer's Kit Programmer's Guide

Handling Multi-Valued HTML Form Parameters
There is a way to handle multi-valued HTML <form> parameters which are needed
for <input name="choices" type="checkbox">.

Use the parameter array notation on your parameter name (for example, choices[])
to refer to the array of values from the selected check boxes.

For example, if you have a multi-valued parameter named guy, then you can use the
array-parameter notation in an XSQL page like this:

<page xmlns:xsql="urn:oracle-xsql">
 <xsql:set-page-param name="guy-list" value="{@guy[]}"
 treat-list-as-array="yes"/>
 <xsql:set-page-param name="quoted-guys" value="{@guy[]}"
 treat-list-as-array="yes" quote-array-values="yes"/>
 <xsql:include-param name="guy-list"/>
 <xsql:include-param name="quoted-guys"/>
 <xsql:include-param name="guy[]"/>
</page>

If this page is requested with the URL following, containing multiple parameters of
the same name to produce a multi-valued attribute:

http://yourserver.com/page.xsql?guy=Curly&guy=Larry&guy=Moe

then the page returned will be:

<page>
 <guy-list>Curly,Larry,Moe</guy-list>
 <quoted-guys>'Curly','Larry','Moe'</quoted-guys>
 <guy>
 <value>Curly</value>
 <value>Larry</value>
 <value>Moe</value>
 </guy>
</page>

You can also use the value of the multi-valued page parameter preceding nonzero in a
SQL statement by using the following code:

<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:set-page-param name="quoted-guys" value="{@guy[]}"
 treat-list-as-array="yes" quote-array-values="yes"/>
 <xsql:query>
 SELECT * FROM sometable WHERE name IN ({@quoted-guys})
 </xsql:query>
</page>

Running the XSQL Servlet with Oracle Release 7.3
Make sure you're using the JDBC driver, which can connect to an Oracle release 7.3
database with no problems.

Out Variable is not Supported in <xsql:dml>
You cannot set parameter values by binding them in the position of OUT variables in
this release using <xsql:dml>. Only IN parameters are supported for binding. You
can create a wrapper procedure that constructs XML elements using the HTTP
package and then your XSQL page can invoke the wrapper procedure using
<xsql:include-owa> instead.

For an example, suppose you had the following procedure:

XSQL Servlet Limitations and Hints

XSQL Pages Publishing Framework 8-79

CREATE OR REPLACE PROCEDURE addmult(arg1 NUMBER,
 arg2 NUMBER,
 sumval OUT NUMBER,
 prodval OUT NUMBER) IS
BEGIN
 sumval := arg1 + arg2;
 prodval := arg1 * arg2;
END;

You can write the following procedure to wrap it, taking all of the IN arguments that
the procedure preceding expects, and then encoding the OUT values as a little XML
datagram that you print to the OWA page buffer:

CREATE OR REPLACE PROCEDURE addmultwrapper(arg1 NUMBER, arg2 NUMBER) IS
 sumval NUMBER;
 prodval NUMBER;
 xml VARCHAR2(2000);
BEGIN
 -- Call the procedure with OUT values
 addmult(arg1,arg2,sumval,prodval);
 -- Then produce XML that encodes the OUT values
 xml := '<addmult>'||
 '<sum>'||sumval||'</sum>'||
 '<product>'||prodval||'</product>'||
 '</addmult>';
 -- Print the XML result to the OWA page buffer for return
 HTP.P(xml);
END;

This way, you can build an XSQL page like this that calls the wrapper procedure:

<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:include-owa bind-params="arg1 arg2">
 BEGIN addmultwrapper(?,?); END;
 </xsql:include-owa>
</page>

This allows a request like the following:

http://yourserver.com/addmult.xsql?arg1=30&arg2=45

to return an XML datagram that reflects the OUT values like this:

<page>
 <addmult><sum>75</sum><product>1350</product></addmult>
</page>

Receiving "Unable to Connect" Errors
Suppose that you are unable to connect to a database and get errors running a
program like the helloworld.xsql sample:

Oracle XSQL Servlet Page Processor 9.0.0.0.0 (Beta)
XSQL-007: Cannot acquire a database connection to process page.
Connection refused(DESCRIPTION=(TMP=)(VSNNUM=135286784)(ERR=12505)
(ERROR_STACK=(ERROR=(CODE=12505)(EMFI=4))))

If you get this far, it's actually attempting the JDBC connection based on the
<connectiondef> information for the connection named demo, assuming you did
not modify the helloworld.xsql demo page.

XSQL Servlet Limitations and Hints

8-80 Oracle XML Developer's Kit Programmer's Guide

By default the XSQLConfig.xml file comes with the entry for the demo connection
that looks like this:

<connection name="demo">
 <username>scott</username>
 <password>tiger</password>
 <dburl>jdbc:oracle:thin:@localhost:1521:ORCL</dburl>
 <driver>oracle.jdbc.driver.OracleDriver</driver>
</connection>

The error you're getting is likely because of one of the following reasons:

1. Your database is not on the localhost machine.

2. Your database SID is not ORCL.

3. Your TNS Listener Port is not 1521.

Make sure those values are appropriate for your database and you have no problems.

Using Other File Extensions Besides .xsql
The .xsql extension is just the default extension used to recognize XSQL pages. You
can modify your servlet engine's configuration settings to associate any extension you
like with the oracle.xml.xsql.XSQLServlet servlet class using the same
technique that was used to associate the *.xsql extension with it.

Receiving "No Posted Document to Process" when you Try to Post XML
When trying to post XML information to an XSQL page for processing, it must be sent
by the HTTP POST method. This can be an HTTP POST-ed HTML Form or an XML
document sent by HTTP POST. If you try to use HTTP GET instead, there is no posted
document, and hence you get this error. Use HTTP POST instead to have the correct
behavior.

XSQL Supports SOAP
Your page can access contents of the inbound SOAP message using the
<xsql:set-page-param> action's xpath="XpathExpression" attribute.
Alternatively, your customer action handlers can gain direct access to the posted SOAP
message body by calling getPageRequest().getPostedDocument(). To create
the SOAP response body to return to the client, you can either use an XSLT stylesheet
or a custom serializer implementation to write out the XML response in an appropriate
SOAP-encoded format.

See the supplied AirportSOAP demo that comes with the XSQL Pages framework for
an example of using an XSQL page to implement a SOAP-based Web Service.

Passing the Connection for XSQL
Reference an XSQL parameter in your page's connection attribute, making sure to
define an attribute of the same name to serve as the default value for the connection
name. For example:

<xsql:query conn="testdb" connection="{@conn}" xmlns:xsql="urn:oracle-xsql">
 ...
</xsql:query>

If you retrieve this page without any parameters, the value of the conn parameter will
be testdb, so the page will use the connection named testdb defined in the XSQL
configuration file (by default, named XSQLConfig.xml). If instead you request the

XSQL Servlet Limitations and Hints

XSQL Pages Publishing Framework 8-81

page with conn=proddb, then the page will use the connection named proddb
instead.

Controlling How Database Connections and Passwords Are Stored
If you need a more sophisticated set of username and password management than the
one that is provided by default in XSQL using the XSQL configuration file.

You can completely redefine the way the XSQL Page Processor handles database
connections by creating your own implementation of the XSQLConnectionManager
interface. To achieve this, you need to write a class that implements the
oracle.xml.xsql.XSQLConnectionManagerFactory interface and a class that
implements the oracle.xml.xsql.XSQLConnectionManager interface, then
change the name of the XSQLConnectionManagerFactory class to use in your
XSQL configuration file. Once you've done this, your connection management scheme
will be used instead of the XSQL Pages default scheme.

Accessing Authentication Information in a Custom Connection Manager
If you want to use the HTTP authentication mechanism to get the username and
password to connect to the database. It is possible to get this kind of information in a
custom connection manager's getConnection() method.

The getConnection() method is passed an instance of the XSQLPageRequest
interface. From it, you can get the HTTP Request object by:

1. Testing the request type to make sure it's "Servlet"

2. Casting XSQLPageRequest to XSQLServletPageRequest

3. Calling getHttpServletRequest() on the result of (2)

You can then get the authentication information from that HTTP Request object.

Retrieving the Name of the Current XSQL Page
There is a way for an XSQL page to access its own name in a generic way at runtime in
order to construct links to the current page. You can use a helper method like this to
retrieve the name of the page inside a custom action handler:

// Get the name of the current page from the current page's URI
 private String curPageName(XSQLPageRequest req) {
 String thisPage = req.getSourceDocumentURI();;
 int pos = thisPage.lastIndexOf('/');
 if (pos >=0) thisPage = thisPage.substring(pos+1);
 pos = thisPage.indexOf('?');
 if (pos >=0) thisPage = thisPage.substring(0,pos-1);
 return thisPage;
 }

Resolving Errors When Using the FOP Serializer
You can format XML into PDF using Formatting Object (FOP). If you get an error
trying to use the FOP Serializer, typically the problem is that you do not have all of the
required JAR files in the CLASSPATH. The XSQLFOPSerializer class resides in the
separate xsqlserializers.jar file, and this must be in the CLASSPATH to use the
FOP integration.

Then, the XSQLFOPSerializer class itself has dependencies on several libraries from
Apache. For example, here is the source code for a FOP Serializer that works with the
Apache FOP 0.20.3RC release candidate of the FOP software:

XSQL Servlet Limitations and Hints

8-82 Oracle XML Developer's Kit Programmer's Guide

package sample;
import org.w3c.dom.Document;
import org.apache.log.Logger;
import org.apache.log.Hierarchy;
import org.apache.fop.messaging.MessageHandler;
import org.apache.log.LogTarget;
import oracle.xml.xsql.XSQLPageRequest;
import oracle.xml.xsql.XSQLDocumentSerializer;
import org.apache.fop.apps.Driver;
import org.apache.log.output.NullOutputLogTarget;

/**
 * Tested with the FOP 0.20.3RC release from 19-Jan-2002
 */
public class SampleFOPSerializer implements XSQLDocumentSerializer {
 private static final String PDFMIME = "application/pdf";
 public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
 try {
 // First make sure we can load the driver
 Driver FOPDriver = new Driver();
 // Tell FOP not to spit out any messages by default.
 // You can modify this code to create your own FOP Serializer
 // that logs the output to one of many different logger targets
 // using the Apache LogKit API
 Logger logger = Hierarchy.getDefaultHierarchy()
 .getLoggerFor("XSQLServlet");
 logger.setLogTargets(new LogTarget[]{new NullOutputLogTarget()});
 FOPDriver.setLogger(logger);
 // Some of FOP's messages appear to still use MessageHandler.
 MessageHandler.setOutputMethod(MessageHandler.NONE);
 // Then set the content type before getting the reader/
 env.setContentType(PDFMIME);
 FOPDriver.setOutputStream(env.getOutputStream());
 FOPDriver.setRenderer(FOPDriver.RENDER_PDF);
 FOPDriver.render(doc);
 }
 catch (Exception e) {
 // Cannot write PDF output for the error anyway.
 // So maybe this stack trace will be useful info
 e.printStackTrace(System.err);
 }
 }
}

This FOP serializer depends on having the following additional Apache JAR files in
the CLASSPATH at runtime:

1. fop.jar - Apache FOP Rendering Engine

2. batik.jar - Apache Batik SVG Rendering Engine

3. avalon-framework-4.0.jar - APIs for Apache Avalon Framework

4. logkit-1.0.jar - APIs for the Apache Logkit

See Also:

■ http://xml.apache.org/fop/

■ http://www.xml.com/pub/rg/75

XSQL Servlet Limitations and Hints

XSQL Pages Publishing Framework 8-83

Tuning XSQL Pages for Fastest Performance
The biggest thing that affects the performance is the size of the data you are querying
(and of course the pure speed of the queries). Assuming you have tuned your queries
and used bind variables instead of lexical bind variables wherever allowed by SQL,
then the key remaining tip is to make sure you are only querying the minimum
amount of data needed to render the needed result.

If you are querying thousands of rows of data, only to use your XSLT stylesheet to
filter the rows to present only 10 of those rows in the browser, then this is a bad choice.
Use the database's capabilities to the maximum to filter the rows and return only the
10 rows you care about if at all possible. Think of XSQL as a thin coordination layer
between Oracle database and the power of XSLT as a transformation language.

Using XSQL with Other Connection Pool Implementations
You can set up XSQL pages to use connections taken from a connection pool, if for
example, you are running XSQL servlet in a WebLogic Web server.

XSQL implements it's own connection pooling so in general you don't have to use
another connection pool, but if providing the JDBC connection string of appropriate
format is not enough to use the WebLogic pool, then you can create your own custom
connection manager for XSQL by implementing the interfaces
XSQLConnectionManagerFactory and XSQLConnectionManager.

Including XML Documents Stored in CLOBs in Your XSQL Page
Use <xsql:include-xml> with a query to retrieve the CLOB value.

Combining JavaServer Pages and XSQL in the Same Page
Is it possible to combine XSQL and JavaServer Pages (JSP) tags in the same page or do
you use include tags for that?

JSP and XSQL are two different models. JSP is a model that is based on writing streams
of characters to an output stream. XSQL is a model that is pure XML and XSLT-based.
At the end of the day, some result like HTML or XML comes back to the user, and
there really isn't anything that you can implement with XSQL that you cannot
implement in JSP by writing code and working with XML documents as streams of
characters, doing lots of internal reparsing. XSQL fits the architecture when customers
want to cleanly separate the data content (represented in XML) from the data
presentation (represented by XSLT stylesheets). Since it specializes in this XML/XSLT
architecture, it is optimized for doing that.

You can, for example, use <jsp:include> or <jsp:forward> to have a JSP page
include/forward to an XSQL page. This is the best approach.

Choosing a Stylesheet Based on Input Arguments
It is possible to change stylesheets dynamically based on input arguments.

You can achieve this by using a lexical parameter in the href attribute of your
xml-stylesheet processing instruction.

<?xml-stylesheet type="text/xsl" href="{@filename}.xsl"?>

The value of the parameter can be passed in as part of the request, or by using the
<xsql:set-page-param> you can set the value of the parameter based on a SQL
query.

XSQL Servlet Limitations and Hints

8-84 Oracle XML Developer's Kit Programmer's Guide

Sorting the Result Within the Page
The following question was presented:

I have a set of 100 records, and I am showing 10 at a time. On each column name I
have made a link. When that link is clicked, I want to sort the data in the page alone,
based on that column.

If you are writing for IE5 alone and receiving XML data, you can use Microsoft's XSL
to sort data in a page. If you are writing for another browser and the browser is getting
the data as HTML, then you have to have a sort parameter in XSQL script and use it in
ORDER BY clause. Just pass it along with the skip-rows parameter.

Pipeline Definition Language for Java 9-1

9
Pipeline Definition Language for Java

This chapter contains these topics:

■ Using Pipeline Definition Language

■ Example of a Pipeline Definition Language Application

■ The Command-line Pipeline Tool orapipe

Using Pipeline Definition Language
XML Pipeline definition Language from W3C, enables you to describe the processing
relations between XML resources. A pipeline document specifies input and output of
processes. A pipeline controller uses the pipeline document to execute the specified
processes.

Oracle XML Pipeline Processor is built upon the XML Pipeline Definition Language
Version 1.0, W3C Note 28 February 2002. The processor can take an input XML
pipeline document and execute the pipeline processes according to the derived
dependencies. The pipeline document is an XML document, and specifies the
processes to be executed in a declarative manner. In addition to the XML Pipeline
Processor, the XDK defines several Pipeline Processes which can be piped together in a
pipeline document.

There are some differences between the W3C Note and the Oracle implementation.
They are:

■ The parser processes (DOMParserProcess and SAXParserProcess) are
included in the XML pipeline (Section 1 of the note).

■ Currently XML Base is not supported (Section 2.1)

■ Only the final target output is checked to see if it is up-to-date with respect to the
available pipeline inputs. The intermediate output of every process is not checked
for being up-to-date. (Section 2.2).

■ For the select attribute, anything between double-quotes "" is considered to be a
string literal.

■ The processor throws an error if more that one process produces the same infoset
(Section 2.4.2.3).

■ The document element is not supported, because it is redundant functionality
(Section 2.4.2.8).

The Pipeline Definition Language is described at:

See Also: http://www.w3.org/TR/xml-pipeline/

Example of a Pipeline Definition Language Application

9-2 Oracle XML Developer's Kit Programmer's Guide

Example of a Pipeline Definition Language Application
The files for this example are in /xdk/demo/java/pipeline/. The application
PipelineSample.java calls the pipeline document (an instance of the Pipeline
Definition Language) named pipedoc.xml, which names book.xsl as the
stylesheet to be used, myresult.html as the output HTML file, and book.xml as
the XML document to be parsed. The processes are p2, p3, and p1 in the order given in
pipedoc.xml. However, the processes are run in the order p1, p2, p3.

To run this example:

1. Add xmlparserv2.jar and the current directory to the CLASSPATH.

2. Use make to generate .class files.

3. Run the sample program:

make demo

Or run:

java PipelineSample pipedoc.xml pipelog seq

The first argument (pipedoc.xml) is the required pipeline document. pipelog
is an optional log file that you name. If omitted, the default log file created is
pipeline.log.

seq can be either "para" or "seq", entered without the quotes. "seq" requests
sequential processing. If omitted, the default mode is processing parallel threads,
the same mode as if you entered "para".

4. View the pipeline target created, in this case myresult.html.

The error handler called by the Java program is PipelineSampleErrHdlr.java.

Here is book.xml, the input XML document with which you started the processing:

<?xml version="1.0"?>
<booklist>
 <book>
 <title>Twelve Red Herrings</title>
 <author>Jeffrey Archer</author>
 <publisher>Harper Collins</publisher>
 <price>7.99</price>
 </book>
 <book>
 <title language="English">The Eleventh Commandment</title>
 <author>Jeffrey Archer</author>
 <publisher>McGraw Hill</publisher>
 <price>3.99</price>
 </book>
 <book>
 <title language="English" country="USA">C++ Primer</title>
 <author>Lippmann</author>
 <publisher>Harper Collins</publisher>
 <price>4.99</price>
 </book>
 <book>
 <title>Emperor's New Mind</title>
 <author>Roger Penrose</author>
 <publisher>Oxford Publishing Company</publisher>
 <price>15.9</price>
 </book>
 <book>

Example of a Pipeline Definition Language Application

Pipeline Definition Language for Java 9-3

 <title>Evening News</title>
 <author>Arthur Hailey</author>
 <publisher>MaMillan Publishers</publisher>
 <price>9.99</price>
 </book>
</booklist>

Here is pipedoc.xml, the pipeline document:

<pipeline xmlns="http://www.w3.org/2002/02/xml-pipeline"
 xml:base="http://example.org/">

 <param name="target" select="myresult.html"/>

 <processdef name="domparser.p"
definition="oracle.xml.pipeline.processes.DOMParserProcess"/>
 <processdef name="xslstylesheet.p"
definition="oracle.xml.pipeline.processes.XSLStylesheetProcess"/>
 <processdef name="xslprocess.p"
definition="oracle.xml.pipeline.processes.XSLProcess"/>

 <process id="p2" type="xslstylesheet.p" ignore-errors="false">
 <input name="xsl" label="book.xsl"/>
 <outparam name="stylesheet" label="xslstyle"/>
 </process>

 <process id="p3" type="xslprocess.p" ignore-errors="false">
 <param name="stylesheet" label="xslstyle"/>
 <input name="document" label="xmldoc"/>
 <output name="result" label="myresult.html"/>
 </process>

 <process id="p1" type="domparser.p" ignore-errors="true">
 <input name="xmlsource" label="book.xml "/>
 <output name="dom" label="xmldoc"/>
 <param name="preserveWhitespace" select="true"></param>
 <error name="dom">
 <html xmlns="http://www/w3/org/1999/xhtml">
 <head>
 <title>DOMParser Failure!</title>
 </head>
 <body>
 <h1>Error parsing document</h1>
 </body>
 </html>
 </error>
 </process>

</pipeline>

The stylesheet book.xsl is listed next:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:output method="xml"/>

 <xsl:template match="/">

Example of a Pipeline Definition Language Application

9-4 Oracle XML Developer's Kit Programmer's Guide

 <HTML>
 <HEAD>
 </HEAD>
 <xsl:apply-templates/>
 </HTML>
 </xsl:template>

 <!-- document xsl:template -->

 <xsl:template match="booklist">
 <BODY BGCOLOR="#CCFFFF">
 <H1>List of books</H1>
 <P> This will illustrate the transformation of an XML file containing
 a list of books to an HTML table form </P>
 <xsl:apply-templates/>
 </BODY>
 </xsl:template>

 <xsl:template match="booklist/book">

<xsl:apply-templates/></BR>
 </xsl:template>

 <xsl:template match="booklist/book/title">
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="booklist/book/author">
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="booklist/book/publisher">
 </xsl:template>

 <xsl:template match="booklist/book/price">
 Price: $<xsl:apply-templates/>
 </xsl:template>

</xsl:stylesheet>

The output is myresult.html in the /log subdirectory

<?xml version = '1.0'?>
<HTML><HEAD/><BODY BGCOLOR="#CCFFFF"><H1>List of books</H1><P> This will
 illustrate the transformation of an XML file containing list of books to an
 HTML table form </P>

 Twelve Red Herrings
 Jeffrey Archer

 Price: $7.99

 The Eleventh Commandment
 Jeffrey Archer

 Price: $3.99

The Command-line Pipeline Tool orapipe

Pipeline Definition Language for Java 9-5

 C++ Primer
 Lippmann

 Price: $4.99

 Emperor's New Mind
 Roger Penrose

 Price: $15.9

 Evening News
 Arthur Hailey

 Price: $9.99

</BODY></HTML>

The Command-line Pipeline Tool orapipe
The command-line pipeline tool is named orapipe. Before running it for the first
time, add xmlparserv2.jar to your CLASSPATH. orapipe must have at least one
argument, the pipeline document (pipedoc.xml in the code example presented in
the preceding section).

To run orapipe, use the following syntax, where pipedoc is the required pipeline
document you prepare in advance:

orapipe options pipedoc

Table 9–1 describes the available options:

Table 9–1 orapipe: Command-line Options

Option Purpose

-help Prints the help message

-log logfile Writes errors and messages to the log file you name. The default is
pipeline.log.

-noinfo Do not log informational items. The default is on.

-nowarning Do not log any warnings. The default is on.

-validate Validate the input pipedoc with the pipeline schema. The default is do
not validate.

-version Prints the release version.

-sequential Executes the pipeline in sequential mode. The default is parallel.

The Command-line Pipeline Tool orapipe

9-6 Oracle XML Developer's Kit Programmer's Guide

XDK JavaBeans 10-1

10
XDK JavaBeans

This chapter contains these topics:

■ Accessing Oracle XDK JavaBeans

■ DOMBuilder JavaBean

■ XSLTransformer JavaBean

■ DBAccess JavaBean

■ XMLDiff JavaBean

■ XMLCompress JavaBean

■ XMLDBAccess JavaBean

■ XSDValidator JavaBean

■ JavaBean Examples

Accessing Oracle XDK JavaBeans
The Oracle XDK JavaBeans are provided as part of XDK with the Enterprise and
Standard Editions.

The following new JavaBeans were added in release 10.1:

■ XSDValidator - encapsulates oracle.xml.parser.schema.XSDValidator
class and adds capabilities for validating a DOM tree.

■ XMLCompress - encapsulates XML compression functionality.

■ XMLDBAccess - extension of DBAccess JavaBean to support the XMLType
column in which XML documents are stored in an Oracle database table.

XDK JavaBeans facilitate the addition of graphical interfaces to your XML
applications.

Bean encapsulation includes documentation and descriptors that can be accessed
directly from Java Integrated Development Environments like JDeveloper.

Database Connectivity
Database Connectivity is included with the XDK JavaBeans. The beans can now
connect directly to a JDBC-enabled database to retrieve and store XML and XSL files.

See Also: Oracle XML API Reference contains listings of the
methods in all the JavaBeans.

Accessing Oracle XDK JavaBeans

10-2 Oracle XML Developer's Kit Programmer's Guide

XDK JavaBeans Overview
XDK JavaBeans comprises the following beans:

DOMBuilder
The DOMBuilder JavaBean is a non-visual bean. It builds a DOM Tree from an XML
document.

The DOMBuilder JavaBean encapsulates the XML Parser for Java's DOMParser class
with a bean interface and extends its functionality to permit asynchronous parsing. By
registering a listener, Java applications can parse large or successive documents and
then allow control to return immediately to the caller.

XSLTransformer
The XSLTransformer JavaBean is a non-visual bean. It accepts an XML file, applies
the transformation specified by an input XSL stylesheet and creates the resulting
output file.

XSLTransformer JavaBean enables you to transform an XML document to almost
any text-based format including XML, HTML, and DDL, by applying the appropriate
XSL stylesheet.

■ When integrated with other beans, XSLTransformer JavaBean enables an
application or user to view the results of transformations immediately.

■ This bean can also be used as the basis of a server-side application or servlet to
render an XML document, such as an XML representation of a query result, into
HTML for display in a browser.

DBAccess
DBAccess JavaBean maintains CLOB tables that contain multiple XML and text
documents.

XMLDiff
The XMLDiff JavaBean performs a tree comparison on two XML DOM trees. It
displays the two XML DOM trees and shows the differences between the XML trees. A
node can be inserted, deleted, moved, or modified. Each of these operations is shown
in a different color or style.

XMLCompress
This JavaBean is an encapsulation of the XML compression functionality. The
supported functions are compression of the internal DOM tree obtained by means of a
DOMParser, compression of the SAX events thrown by the SAX parser, and
un-compression of the serialized XML data, returning an XMLDocument object.

XMLDBAccess
This JavaBean is an extension of the DBAcess bean to support the XMLType column,
in which XML documents are stored in an Oracle database table. Methods are
provided to list, delete, or retrieve XMLType instances and their tables.

See Also: "DOMBuilder JavaBean" on page 10-3

See Also: "XSLTransformer JavaBean" on page 10-4

DOMBuilder JavaBean

XDK JavaBeans 10-3

XSDValidator
This JavaBean is a class file that encapsulates the
oracle.xml.parser.schema.XSDValidator class and adds capabilities for
validating a DOM tree.

DOMBuilder JavaBean
DOMBuilder class implements an XML 1.0 parser according to the World Wide Web
Consortium (W3C) recommendation. It parses an XML document and builds a DOM
tree. The parsing is done in a separate thread and the DOMBuilderListener
interface must be used for notification when the tree is built.

Use for Asynchronous Parsing in the Background
The DOMBuilder bean encapsulates the XML Parser for Java with a bean interface. It
extends its functionality to permit asynchronous parsing. By registering a listener, a
Java application can parse documents and return control return to the caller.

Asynchronous parsing in a background thread can be used interactively in visual
applications. For example, when parsing a large file with the normal parser, the user
interface freezes until the parsing has completed. This can be avoided with the
DOMBuilder bean. After calling the DOMBuilder bean parse method, the application
can immediately regain control and display "Parsing, please wait". If a "Cancel" button
is included you can also cancel the operation. The application can continue when
domBuilderOver() method is called by DOMBuilder bean when background parsing
task has completed.

When parsing a large number of files, DOMBuilder JavaBean can save time. Response
times that are up to 40% faster have been recorded when compared to parsing the files
one by one.

DOMBuilder JavaBean Usage
Figure 10–1 illustrates DOMBuilder JavaBean usage.

1. The XML document to be parsed is input as a file, string buffer, or URL.

2. This inputs the method
DOMBuilder.addDOMBuilderListener(DOMBuilderListener) and adds
DOMBuilderListener.

3. The DOMBuilder.parser() method parses the XML document.

4. Optionally, the parsed result undergoes further processing.

5. DOMBuilderListener API is called using DOMBuilderOver() method. This is
called when it receives an asynchronous call from an application. This interface
must be implemented to receive notifications about events during asynchronous
parsing. The class implementing this interface must be added to the DOMBuilder
using addDOMBuilderListener method.

Available DOMBuilderListener methods are:

■ domBuilderError(DOMBuilderEvent). This method is called when parse
errors occur.

■ domBuilderOver(DOMBuilderEvent). This method is called when the
parse completes.

XSLTransformer JavaBean

10-4 Oracle XML Developer's Kit Programmer's Guide

■ domBuilderStarted(DOMBuilderEvent). This method is called when
parsing begins.

6. DOMBuilder.getDocument() fetches the resulting DOM document and
outputs the DOM document.

Figure 10–1 DOMBuilder JavaBean Usage

XSLTransformer JavaBean
The XSLTransformer JavaBean accepts an XML file and applies the transformation
specified by an input XSL stylesheet to create and output file. It enables you to
transform an XML document to almost any text-based format, including XML, HTML,
and DDL, by applying an XSL stylesheet.

When integrated with other beans, XSLTransformer JavaBean enables an application
or user to immediately view the results of transformations.

This bean can also be used as the basis of a server-side application or servlet to render
an XML document, such as an XML representation of a query result, into HTML for
display in a browser.

The XSLTransformer bean encapsulates the Java XML Parser XSLT processing
engine with a bean interface and extends its functionality to permit asynchronous

file,
string buffer,

or URL
xml input

see the list of
available
methods

DOMBuilder.
parse()

DOMBuilder.
addDOMBuilder

Listener()

.DOMBuilder
Listener()

DOM
Document

DOMBuilderListener.
DOMBuilderOver()

DOMBuilder.
getDocument()

perform other
tasks

.DOMBuilder
Error()

.DOMBuilder
Started()

async call

XSLTransformer JavaBean

XDK JavaBeans 10-5

transformation. By registering a listener, your Java application can transform large and
successive documents by having the control returned immediately to the caller.

XSL transformations can be time consuming. Use XSLTransformer bean in
applications that transform large numbers of files and it can concurrently transform
multiple files.

XSLTransformer bean can be used for visual applications for a responsive user
interface. There are similar issues here as with DOMBuilder.

By implementing XSLTransformerListener() method, the caller application can
be notified when the transformation is complete. The application is free to perform
other tasks in between requesting and receiving the transformation.

XSLTransformer JavaBean: Regenerating HTML Only When Data Changes
This scenario illustrates one way of applying XSLTransformer JavaBean.

1. Create a SQL query. Store the selected XML data in a CLOB table.

2. Using the XSLTransfomer JavaBean, create an XSL stylesheet and interactively
apply this to the XML data until you are satisfied with the data presentation. The
output can be HTML produced by the XSL transformation.

3. Now that you have the desired SQL (data selection) and XSL (data presentation),
create a trigger on the table or view used by your SQL query. The trigger can
execute a stored procedure. The stored procedure, do the following:

■ Run the query

■ Apply the stylesheet

■ Store the resulting HTML in a CLOB table

4. This process can repeat whenever the source data table is updated.

The HTML stored in the CLOB table always mirrors the last data stored in the
tables being queried. A JSP (JavaServer Page) can display the HTML.

In this scenario, multiple end users do not produce multiple data queries that
contribute to increased use of the database. The HTML is regenerated only when
the underlying data changes.

How to Use XSLTransformer JavaBean
Figure 10–2 illustrates XSLTransformer bean usage.

DBAccess JavaBean

10-6 Oracle XML Developer's Kit Programmer's Guide

Figure 10–2 XSLTransformer JavaBean Usage

1. An XSL stylesheet and XML document are input to the XSLTransformer using
the XSLTransfomer.addXSLTransformerListener
(XSLTransformerListener)method. This adds a listener.

2. The XSLTransfomer.processXSL() method initiates the XSL transformation
in the background.

3. Optionally, other work can be assigned to the XSLTransformer bean.

4. When the transformation is complete, an asynchronous call is made and the
XSLTransformerListener.xslTransformerOver() method is called. This
interface must be implemented to receive notifications about events during the
asynchronous transformation. The class implementing this interface must be
added to the XSLTransformer event queue using the method
addXSLTransformerListener.

5. The XSLTransformer.getResult() method returns the XML document
fragment for the resulting document.

6. It outputs the XML document fragment.

DBAccess JavaBean
DBAccess JavaBean maintains CLOB tables that can hold multiple XML and text
documents. Each table is created using the following statement:

CREATE TABLE tablename FILENAME CHAR(16) UNIQUE, FILEDATA CLOB) LOB(FILEDATA)
 STORE AS (DISABLE STORAGE IN ROW)

Each XML (or text) document is stored as a row in the table. The FILENAME field
holds a unique string used as a key to retrieve, update, or delete the row. Document

XSL
stylesheet,

XML document
input

see the list of
available
methods

XSLTransformer.
processXSL()

XSLTransformer.
addXSLTransformer

Listener()

XListener.
xslTransformer

Over()
async call

XML Document
fragment

XSLTransformer.
getResult()

perform other
tasks

XMLDiff JavaBean

XDK JavaBeans 10-7

text is stored in the FILEDATA field. This is a CLOB object. DBAccess bean does the
following tasks:

■ Creates and deletes CLOB tables

■ Lists a CLOB table's contents

■ Adds, replaces, or deletes text documents in the CLOB tables

DBAcess JavaBean Usage
Figure 10–3 illustrates the DBAccess bean usage. It shows how DBAccess bean
maintains, and manipulates XML documents stored in CLOBs.

Figure 10–3 DBAccess JavaBean Usage Diagram

XMLDiff JavaBean
The XMLDiff JavaBean performs a tree comparison on two XML DOM trees. It
displays the two XML trees and shows the differences between the XML trees. A node
can be inserted, deleted, moved, or modified. Each of these operations is shown in a
different color or style as in the following list:

■ Red—Used to show a modified Node or Attribute

■ Blue—Used to show a new Node or Attribute

■ Black—Used to show a deleted Node or Attribute

Moves will be displayed visually as a delete or insert operation.

You can generate the differences between the two XML trees in the form of XSL code.
The first XML file can be transformed into the second XML file by using the XSL code
generated.

Note: Currently you cannot customize the GUI display.

Loads
CLOB tables

Lists
CLOB tables

Manipulates
CLOB tables

Database

Stores

DB
Access
Bean

From:

SQL result_set
 files

CLOBs
Files

Text documents:

Adds
Replaces
Deletes

XMLCompress JavaBean

10-8 Oracle XML Developer's Kit Programmer's Guide

XMLCompress JavaBean
This bean class is a simple encapsulation of the XML Compression functionality. The
capabilities that are supported in this class are essentially compression of the internal
DOM tree obtained via a DOMParser,

Compression of the SAX events thrown by the SAX Parser, decompression of the
serialized XML data, returning an XMLDocument object. The input for compression
can be from an InputStream, a Java string, a database CLOB object, or an XMLType
object. In all cases the outputStream has to be set beforehand so that the compressed
data is written to it. If the input data is unparsed, the parsing for it is done with no
validation.

To use different parsing options, parse the document before input and then pass the
XMLDocument object to the compressor bean. The compression factor is a rough value
based on the file size of the input XML file and the compressed file. The limitation of
the compression factor method is that it can only be used when the compression is
done using the java.io.File objects as parameters.

XMLDBAccess JavaBean
This bean is an extension of the DBAcess bean to support the XMLType column, in
which XML documents are stored in an Oracle database table. Methods are provided
to list, delete, or retrieve XMLType instances and their tables.

XSDValidator JavaBean
This class file encapsulates the oracle.xml.parser.schema.XSDValidator class
and adds capabilities for validating a DOM tree. The schema document is a constant
and the validation is done for XML Documents that can be passed as InputStreams,
URLs, and so on.

The validation is done only after the DOM tree is built in all the cases. Nodes with
errors are returned in a vector of stack trees where the top element of the stack
represents the root node and child nodes are obtained by popping the elements of the
stack.

JavaBean Examples
The XDK JavaBean sample directory, /xdk/demo/java/transviewer/, contains
sample applications that illustrate how to use JavaBeans.

Table 10–1 lists the example files. The subsequent sections show how to install these
samples.

JavaBean Examples

XDK JavaBeans 10-9

Installing the JavaBean Examples
The JavaBeans require, as a minimum, JDK 1.2.2.

Here are the steps you take to generate the sample executables:

1. Download and install the following components used by the XDK JavaBeans:

■ Oracle JDBC Driver for thin client (file classes12.zip)

■ Oracle XML SQL Utility (xsu12.jar)

■ JAR file containing the XMLType definitions (file xdb.jar)

After installing these components, include the files in your CLASSPATH.

2. Change JDKPATH in Makefile to point to your JDK path. If you do not have an
ORACLE_HOME set, then set it to the root directory of your XDK JavaBeans
installation.

3. Generate .class files. Run the sample programs using the following commands,
which use labels in the file Makefile:

gmake sample3
gmake sample5
gmake sample6
gmake sample7
gmake sample10

Table 10–1 JavaBean Example Files

File Name Description

AsyncTransformSample.java. Sample nonvisual application using XSLTransformer
bean and DOMBuilder bean. It applies the XSLT stylesheet
specified in doc.xsl on all .xml files from the current
directory. The results are in the files with extension .log.

XMLDBAccessSample.java A non-GUI sample for the XMLDBAccess bean which
demonstrates the way that the XMLDBAccess bean APIs
can be used to store and retrieve the XML documents inside
the database, using XMLType tables.

To use XMLType, an Oracle9i, or later, installation is
necessary along with the xdb.jar. Sample5 will run
XMLDBAccessSample using the values for HOSTNAME,
PORT, SID, USERID, and PASSWORD as defined in the
Makefile. These must be modified if required. The file
booklist.xml is used to insert data into the database. The
output is copied to xmldbaccess.log.

XMLDiffSample.java Sample visual application that uses XMLDiff bean to find
differences between two XML files and generate an XSL
stylesheet. This stylesheet can be used to transform the first
input XML into the second input XML file. See
"XMLDiffSample.java" on page 10-10.

compviewer.java Sample visual application that uses XMLCompress bean to
compress an XML file or XML data from the database
obtained through SQL query or from a CLOB or an
XMLType Table. The application also lets you decompress
the compressed stream and view the resulting DOM tree.

XSDValidatorSample.java Sample application for XSDValidator bean. It takes two
arguments as input, an XML file and a schema file. The
error occurring during validation, including line numbers,
are displayed. See "XSDValidatorSample.java" on
page 10-10.

JavaBean Examples

10-10 Oracle XML Developer's Kit Programmer's Guide

XMLDiffSample.java
Sample6 is a demo for XMLDiff JavaBean. It invokes a GUI which allows you to
choose the input data files from the File menu using 'Compare XML Files' item.
The XSLT generated can be applied on input XML file1 using Transform menu.
The resulting XML file (which is the same as input file2) can be saved using 'Save'
As item under File menu. By default, the two XML files XMLDiffData1.txt and
XMLDiffData2.txt are compared and the output XSLT is stored as
XMLDiffSample.xsl.

If the input XML files have a DTD which accesses a URL outside the firewall, then
modify XMLDiffSample.java to include the proxy server settings before the
setFiles() call:

 /* Set proxy to access dtd through firewall */
 Properties p = System.getProperties();
 p.put("proxyHost", "www.proxyservername.com");
 p.put("proxyPort", "80");
 p.put("proxySet", "true");

You also have to import java.util.*;

XSDValidatorSample.java
Sample10 is a demonstration for the XSDValidator JavaBean. It takes as default the
data file purchaseorder.xml and the purchaseorder.xsd schema file. The
output displays the validation errors.

See Also: README contains details of the various programs
labelled sample3 through sample10.

Using XDK and SOAP 11-1

11
Using XDK and SOAP

This chapter contains these topics:

■ What Is SOAP?

■ What Are UDDI and WSDL?

■ What Is Oracle SOAP?

■ SOAP Example

What Is SOAP?
The term Web Services is used to describe a functionality made available by an entity
over the Web. It is an application that uses XML standards and is published, located
and executed through the Web.

The Simple Object Access Protocol (SOAP) is a lightweight protocol for sending and
receiving requests and responses across the Internet. Because it is based on XML and
simple transport protocols such as HTTP, it is not blocked by firewalls and is very easy
to use. SOAP is independent of operating system, implementation language, and any
single object model.

SOAP supports remote procedure calls. Its messages are only of the three types:

■ a request for a service, including input parameters

■ a response to the requested service, including return value and output parameters

■ an optional fault element containing error codes and information

SOAP messages consist of:

■ an envelope that contains the message, defines how to process the message, who
should process the message, and whether processing is optional or mandatory.
This is a required part.

■ encoding rules that describe the datatypes for the application. These rules define a
serialization mechanism that converts the application datatypes to XML and XML
to datatypes.

■ remote procedure call and responses definitions. This is called a body element and is
a required part.

SOAP 1.1 specification is a World Wide Web Consortium (W3C) note. The W3C XML
Protocol Working Group has been formed to create a standard that will supersede
SOAP 1.1. Oracle is a member of this group. The standard will be called SOAP 1.2.

A SOAP service remote procedure call (RPC) request and response sequence includes
the steps:

What Are UDDI and WSDL?

11-2 Oracle XML Developer's Kit Programmer's Guide

1. A SOAP client writes a request for service in a conforming XML document, using
either an editor or the Oracle SOAP client API.

2. The client sends the document to a SOAP Request Handler running as a servlet on
a Web server.

3. The Web Server dispatches the message as a service request to an appropriate
server-side application providing the requested service.

4. The application must verify that the message contains supported parts. The
response from the service is returned to the SOAP Request Handler servlet and
then to the caller using the SOAP payload format.

What Are UDDI and WSDL?
The Universal Description, Discovery and Integration (UDDI) specification provides a
platform-independent framework using XML to describe services, discover businesses,
and integrate business services on the Internet. The UDDI business registry is the
public database where companies are registered. The UDDI business registration is an
XML file with three sections:

■ white pages that include address, contact, and known identifiers

■ yellow pages include industrial categorization

■ green pages containing the technical information about exposed services

The Web Services Description Language (WSDL) is a general purpose XML language
for describing the interface, protocol bindings, and deployment details of Web
Services. WSDL provides a method of describing the abstract interface and arbitrary
network services. A WSDL service is registered or embedded in the UDDI registry.

The stack of protocol stack used in Web Services is summarized in the following list:

■ Universal Service Interoperability Protocols (WSDL, and so on.)

■ Universal Description, Discovery Integration (UDDI)

■ Simple Object Access Protocol (SOAP)

■ XML, XML Schema

■ Internet Protocols (HTTP, HTTPS, TCP/IP)

What Is Oracle SOAP?
Oracle SOAP is an implementation of the Simple Object Access Protocol. Oracle SOAP
is based on the SOAP open source implementation developed by the Apache Software
Foundation.

How Does Oracle SOAP Work?
Consider this example: a GetLastTradePrice SOAP request is sent to a
StockQuote service. The request takes a string parameter, the company stock symbol,
and returns a float in the SOAP response. The XML document represents the SOAP
message. The SOAP envelope element is the top element of the XML document. XML

See Also:

■ http://www.w3.org/TR/SOAP/

■ http://xml.apache.org/soap

What Is Oracle SOAP?

Using XDK and SOAP 11-3

namespaces are used to clarify SOAP identifiers from application-specific identifiers.
The following example uses HTTP as the transport protocol. The rules governing XML
payload format in SOAP are independent of the fact that the payload is carried in
HTTP. The SOAP request message embedded in the HTTP request is:

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"
<SOAP-ENV:Envelope xmlns:SOAP- ENV="http://schemas.xmlsoap.org/soap/
envelope/" SOAP-
ENV:encodingStyle="http://schemas.xnlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:GetLastTradePrice xmlns:m="Some-URI">
<symbol>ORCL</symbol>
<m:GetLastTradePrice>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Here is the response HTTP message:

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope xmlns:SOAP-
ENV=http://schemas.xmlsoap.org/soap//envelope/ SOAP-
ENV:encodingStyle="http://schemas.xnlsoap.org/soap/encoding/"/>
<SOAP-ENV:Body>
<m:GetLastTradePriceResponse xmlns:m="Some-URI">
<Price>34.5</Price>
</m:GetLastTradePriceResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Oracle SOAP and IDAP
IDAP is an XML-based specification to perform AQ operations. SOAP defines a
generic mechanism to invoke a service. IDAP defines these mechanisms to perform
AQ operations.

IDAP has the following key properties not defined by SOAP:

■ Transactional behavior - You can perform AQ operations in a transactional
manner. Your transaction can span multiple IDAP requests.

■ Security - All the IDAP operations can be done only by authorized and
authenticated users.

■ You can also perform AQ operations through the SOAP interface. AQ encapsulates
operations in IDAP format.

■ Character set transformations - This is a very important requirement for any
communication. Internet user's machine may have different character set id than
the server machine.

■ Extensible AQ Servlet for AQ Internet operations - The AQ servlet performing AQ
operations is extensible. You can specify time-out, connection pooling, TAF, apply
XML stylesheets, perform post AQ and pre-AQ database operations in the AQ
Servlet.

What Is Oracle SOAP?

11-4 Oracle XML Developer's Kit Programmer's Guide

There is no difference in SOAP and IDAP access to AQ except the line specifying the
namespace for the envelope.

For IDAP that line is:

<Envelope xmlns="http://ns.oracle.com/AQ/schemas/envelope">

While in SOAP, it is:

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

Everything else remains the same.

What Is a SOAP Client?
A SOAP client application represents a user-written application that makes SOAP
requests. The SOAP client has these capabilities:

■ Gathers all parameters that are needed to invoke a service.

■ Creates a SOAP service request message. This is an XML message that is built
according to the SOAP protocol and that contains all the values of all input
parameters encoded in XML. This process is called serialization.

■ Submits the request to a SOAP server using some transport protocol that is
supported by the SOAP server.

■ Receives a SOAP response message.

■ Determines the success or failure of the request by handling the SOAP Fault
element.

■ Converts the returned parameter from XML to native datatype. This process is
called deserialization.

■ Uses the result as needed.

SOAP Client API
SOAP clients generate the XML documents that compose a request for a SOAP service
and handle the SOAP response. Oracle SOAP processes requests from any client that
sends a valid SOAP request. To facilitate client development, Oracle SOAP includes a
SOAP client API that provides a generic way to invoke a SOAP service.

The SOAP client API supports a synchronous invocation model for requests and
responses. The SOAP client API makes it easier for you to write a Java client
application to make a SOAP request. The SOAP client API encapsulates the creation of
the SOAP request and the details of sending the request over the underlying transport
protocol. The SOAP client API also supports a pluggable transport, allowing the client
to easily change the transport (available transports include HTTP and HTTPS).

What Is a SOAP Server?
A SOAP server has the following capabilities:

■ The server receives the service request.

■ The server parses the XML request and then decides to execute the message or
reject it.

■ If the message is executed, the server determines if the requested service exists.

What Is Oracle SOAP?

Using XDK and SOAP 11-5

■ The server converts all input parameters from XML into datatypes that the service
understands.

■ The server invokes the service.

■ The return parameter is converted to XML and a SOAP response message is
generated.

■ The response message is sent back to the caller.

Oracle SOAP Security Features
Oracle SOAP uses the security capabilities in the transport to support secure access
and to support other security features. For example, using HTTPS, Oracle SOAP
provides confidentiality, authentication, and integrity over the Secure Sockets Layer
(SSL). Other security features such as logging and authorization are provided by the
service provider.

SOAP Transports
SOAP transports are the protocols that carry SOAP messages. Oracle SOAP supports
the following transports:

■ HTTP: This protocol is the basic SOAP transport. The Oracle SOAP Request
Handler Servlet manages HTTP requests and supplies responses directly over
HTTP. This protocol is becoming a standard because of its popularity.

■ HTTPS: The Oracle SOAP Request Handler Servlet manages HTTPS requests and
supplies responses, with different security levels supported.

Administrative Clients
SOAP administrative clients include the Service Manager and the Provider Manager.
These administrative clients are services that support dynamic deployment of new
services and new providers.

SOAP Request Handler
The SOAP Request Handler is a Java servlet that receives SOAP requests, looks up the
appropriate service provider, handles the service provider that invokes the requested
method (service), and returns the SOAP response, if any.

SOAP Provider Interface and Providers
Oracle SOAP includes a provider implementation for Java classes. Other providers can
be added.

Provider Interface
The provider interface allows the SOAP server to uniformly invoke service methods
regardless of the type of provider (Java class, stored procedure, or some other provider
type). There is one provider interface implementation for each type of service provider,
and it encapsulates all provider-specific information. The provider interface makes
SOAP implementation easily extensible to support new types of service providers.

Provider Deployment Administration
Oracle SOAP provides the provider deployment administration client to manage
provider deployment information.

SOAP Example

11-6 Oracle XML Developer's Kit Programmer's Guide

SOAP Services Provided
SOAP application developers provide SOAP services. These services are made
available using the supplied default Java class provider or custom providers. Oracle
SOAP includes a service deployment administration client that runs as a service to
manage SOAP services. SOAP services, including Java services, represent user-written
applications that are provided to remote SOAP clients.

Advantages of XML Over EDI
Here are facts about Electronic Data Interchange (EDI):

■ EDI is a difficult technology: EDI enables machine-to-machine communication in a
format that developers cannot easily read and understand.

■ EDI messages are very difficult to debug. XML documents are readable and easier
to edit.

■ EDI is not flexible: It is very difficult to add a new trading partner as part of an
existing system; each new trading partner requires its own mapping. XML is
extremely flexible and has the ability to add new tags on demand and to transform
an XML document into another XML document, for example, to map two different
formats of purchase order numbers.

■ EDI is expensive: developer training costs are high, and deployment of EDI
requires very powerful servers that need a specialized network. EDI runs on Value
Added Networks, which are expensive. XML works with inexpensive Web servers
over existing Internet connections.

SOAP Example
Consider an enterprise or government entity that has inventories to be maintained at
its headquarters, and at multiple remote branches. The SOAP solution to be described
in this chapter considers the headquarters as a message server and the branches as
message clients. Among the several tasks to be performed are:

■ Branch registration. Each branch must be known to headquarters for inventory
updates to be made.

■ Branch inventory management based on sales. The branches order more supplies
from headquarters when the item in the branch inventory is low.

■ Headquarters (HQ) inventory monitoring. The branches must be informed of new
items that headquarters has added to its inventory stock.

See Also: For more information about Oracle SOAP and Web
Services, including documentation and downloads, see:

■ http://www.oracle.com/technology/documentation/ia
s.html for the OracleAS SOAP Developer's Guide

■ Oracle Simple Object Access Protocol Developer's Guide

■ Oracle Streams Advanced Queuing User’s Guide and Reference for a
discussion of Internet access to AQ

■ Oracle XML API Reference

■ The SOAP API is on the Product CD, Disk 1, in file
doc/readmes/ADDEN_rdbms.htm

SOAP Example

Using XDK and SOAP 11-7

Consider HQ inventory monitoring and the task of informing the branches when a
new item is added to the HQ inventory. This example solves this problem with SOAP
messaging and several XML features.

The branches can be using non-Oracle databases, because SOAP is not dependent on
any DBMS. You can generalize this example so that it can be used for communicating
with customers, suppliers, or other entities that are not part of your organization.

XML Features Used in the SOAP Example
The SOAP messages employ the following features:

■ Advanced Queuing (AQ). This Oracle feature uses asynchronous communications
between applications and users, with transaction control and security. AQ keeps
users from being blocked when they enter new inventory items at HQ.

■ AQ provides the Java Messaging Service (JMS) APIs to enqueue and dequeue the
messages.

■ Columns with datatype XMLType are used to store SOAP messages in database
tables, so that data about new items will not be lost.

■ XML Compression reduces the payload size and speeds the transmission of
messages.

■ XSQL Servlet is used to publish content and for interacting with administrators.

■ The message server at HQ invokes remote procedure calling (RPC).

■ The SOAP call generates an HTTP request, encapsulates the inventory update
request in a SOAP message, and invokes the SOAP service on all branches.

■ Each branch either returns a confirmation or returns a fault (defined in the SOAP
standard) to the message server.

Prerequisite Software for the SOAP Example
■ Oracle Database

■ XML Developer's Kit (XDK), Java components

■ OC4J

■ The SOAP example, "Build an XML-Powered Distributed Application", can be
downloaded from the OTN:

How Is the SOAP Example Implemented?
An overview of the distributed inventory application is shown in the following
illustration:

See Also: Download the SOAP example at
http://www.oracle.com/technology/tech/xml/

SOAP Example

11-8 Oracle XML Developer's Kit Programmer's Guide

Figure 11–1 Using Soap in a Distributed Inventory Application

SOAP is used to manage inventory at each of the remote branches and at
headquarters. The headquarters inventory application is a message server and the
branch inventory application is a message client, each using SOAP services.

When headquarters adds a new item to its inventory, it broadcasts a message to all
remote client branches that have registered with the message server. A message broker
creates a message and pushes it onto the message queue, using AQ. AQ enables
asynchronous communications between user applications, providing transaction
control, security and preventing blocking of the entry of new items by the users at
headquarters.

A message dispatcher process, which is listening to the message queue, detects the
enqueued messages and calls the branches' SOAP services to dequeue the message
and to update their local inventories.

The messages are stored in the database with complete logging information. The
SOAP messages are stored in XMLType datatype instances and are thus a record of
sent and received messages. This insures data integrity in the inventories.

At headquarters a table is created initially that has three columns: an identification
number, a message of datatype XMLType, and a creation time.

XML Compression is another technology used to lower payloads, making throughput
greater in large applications.

Internet

Message

SOAPBeijing

Inventory

Message

SOAP

SOAP

SOAPLos Angeles

Inventory

Message

London

Inventory

Message

Atlanta

Inventory

Headquarters

Inventory

Message Broker

SOAP Example

Using XDK and SOAP 11-9

Setting Up the Tables and the SOAP Service
To store inventory data, log messages, and perform message queuing, run the
createdb.sql script from the downloaded source files to set up database schemas
for headquarters and a branch. This script calls a set of SQL scripts that creates a
headquarters user and a branch user with proper privileges. It also creates tables and
triggers for storing inventory information and messages and inserts sample data in
both schemas.

In the headquarters user schema, create a table named message_out_type. This
stores the inventory information update broadcast messages from headquarters to the
branches. There are three columns in the table: ID, MESSAGE, and CREATE_TIME. The
MESSAGE column datatype is XMLType.

Next, run the PL/SQL procedure, CREATE_QUEUE, that sets up message queues at
both headquarters and the branches. This procedure uses functions in the DBMS_
AQADM package to create the queue table, create the queue, and start the queue. Once
the queue is started, enqueuing and dequeuing operations on the message queue are
enabled.

The following PL/SQL procedure uses the SYS.AQ$_JMS_BYTES_MESSAGE message
type to manage the compressed SOAP messages. This creates a queue called
broadcastb_queue at the headquarters location:

begin
 create_queue('broadcastb_queue_tbl',
 'broadcastb_queue',
 'SYS.AQ$_JMS_BYTES_MESSAGE');
end;

The inventoryBranchServer Java class is the branch's service for inserting a new
item into the branch inventory. When this service program receives a SOAP request, it
decompresses the request content and saves it in the inventory_item table, using
Oracle XML SQL Utility (XSU) to insert the item into the database. Oracle XSU creates
canonical mappings between the XML document and database schema to perform
SQL data operations. See the file

client/src/oracle/xml/pm/demo/branch/service/inventoryServer.java

 in the downloaded software.

Requesting SOAP Service
The application makes requests to the headquarters SOAP service using a servlet
called insertItemServlet, a Java class that extends HttpServlet. This servlet
inserts a new item in the headquarters inventory.

The servlet request uses XSQL pages and the user's input in the application's Web
interface (click "New Items") to generate an XML document. Oracle XSU then directly
inserts the XML content into the database. The insertItemServlet performs
several actions. For example, to broadcast an update message to the branches, it:

■ Initializes the Message Dispatcher process.

■ Compresses the XML document by calling the CompressionAgent class.

■ Creates a SOAP message and stores it in the message logging table.

■ Pushes the compressed XML document onto the message queue (enqueue).

SOAP Example

11-10 Oracle XML Developer's Kit Programmer's Guide

Initializing the MessageDispatcher Process
When it is first called, insertItemServlet initializes the MessageDispatcher
object. This object is stored in the ServletContext when the process is successfully
initialized. This code initializes the MessageDispatcher object:

ServletContext context = getServletContext();
MessageDispatcher msgDispatcher =
 (MessageDispatcher)context.getAttribute("Dispatcher");

if (msgDispatcher == null) {
 System.out.println("Initialize Receiver.");
 msgDispatcher = new MesageDispatcher();
 context.setAttribute("Dispatcher",msgDispatcher);
 }

The MessageDispatcher Java class creates a MessageBroker, which in turn,
creates a MessageClient to monitor each message queue and dispatch messages to
the registered branches.

Compressing the XML Document
The following code from insertItemServlet creates the Compression Agent:

CompressionAgent cagent = new
 CompressionAgent("oracle:compression");
byte [] input = cagent.compression(m_content);

Creating a SOAP Message
The message is stored in a column defined as XMLType. The code from
insertItemServlet that creates the SOAP message and stores it in the MESSAGE_OUT_
XMLTYPE table is:

OraclePreparedStatement pstmt =
 (OraclePreparedStatement) conn.prepareStatement (
 "Insert into message_out_xmltype(message) values(?)");

m_content=createSOAPMessage(m_content);
oracle.xdb.XMLType xt = oracle.xdb.XMLType.createXML(conn,m_content);

pstmt.setObject(1, xt);
pstmt.execute();
Using XMLType lets us use XPATH with the sys.XMLType.extract() member
function to query the portions of the message documents:

select e.message.extract('//item_info')
 .getStringVal() as result
from message_out_xmltype;

Enqueuing the XML Document
The following code from insertItemServlet creates the MessageBroker and
enqueues the message:

MessageBroker mesgBroker =
 new MessageBroker("host_name",
 "Oracle_SID", "port_num",
 "thin", "cm", "cm", "broadcastb_queue");
mesgBroker.enqueueMessage(input);

SOAP Example

Using XDK and SOAP 11-11

When insertItemServlet finishes, the message is pushed onto the message queue
and the Oracle AQ and MessageDispatcher processes update the branch inventory
information. This ensures that the headquarters inventory system is not blocked
during the branch system updates.

Listing of the Java Source File inserItemServlet.java
This file is found at ./server/src/insertItemServlet.java:

/**
 * FileName: insertItemServlet.java
 * Description:
 * Insert new Inventory Item into HQ database and broadcase the message to
 * the branches.
 */
import java.io.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;

// XSU
import org.w3c.dom.*;
import oracle.xml.parser.v2.*;
import oracle.xml.sql.dml.OracleXMLSave;

// XMLType
import oracle.xdb.XMLType.*;
import oracle.jdbc.driver.*;
import oracle.sql.*;

// SOAP Message
import oracle.AQ.*;
import oracle.xml.pm.queue.*;
import oracle.xml.pm.compression.CompressionAgent;

// Configuration
import oracle.xml.pm.util.ConfigManager;

/**
 * This class implements Message Borker
 */
public class insertItemServlet extends HttpServlet
{
 String m_content=null;
 String m_dblink = null;
 String m_usr = null;
 String m_passwd = null;
 String m_hostname = null;
 String m_sid = null;
 String m_port = null;

 /**
 * Initialize global variables
 * @param config - ServletConfig
 * @exeception - ServletException thrown if super.init fails
 */
 public void init(ServletConfig config) throws ServletException
 {
 super.init(config);

SOAP Example

11-12 Oracle XML Developer's Kit Programmer's Guide

 // Initialize the JDBC Connection from Configuration Files
 try
 {
 ConfigManager xml_config = new ConfigManager("DEMOConfig.xml","cm");
 m_dblink = xml_config.dblink;
 m_usr= xml_config.usr;
 m_passwd = xml_config.passwd;
 m_hostname = xml_config.hostname;
 m_sid = xml_config.db_sid;
 m_port = xml_config.db_port;
 }
 catch(Exception ex)
 {
 // ex.printStackTrace();
 throw new ServletException(ex.getMessage());
 }
 }

 /**
 * HTTP Get
 * @param req - HttpServletRequest
 * @param res - HttpServletResponse
 * @exeception - IOException, ServletException
 */
 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws IOException, ServletException
 {
 doPost(req,res);
 }

 /**
 * HTTP POST
 * @param req - HttpServletRequest
 * @param res - HttpServletResponse
 * @exeception - IOException, ServletException
 */
 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws IOException, ServletException
 {
 ServletContext context = getServletContext();

 // Initialize MessageDispatcher for broadcast messages
 MessageDispatcher msgDispatcher =
 (MessageDispatcher) context.getAttribute("MessageDispatcher");

 if(msgDispatcher == null)
 {
 msgDispatcher = new MessageDispatcher("broadcastb_queue",m_hostname,
 m_sid, m_port, m_usr,m_passwd,m_dblink);
 context.setAttribute("MessageDispatcher",msgDispatcher);
 }

 // Initialize MessageBroker for broadcasting messages
 MessageBroker msgBroker = (MessageBroker)
 context.getAttribute("MessageBroker");
 if(msgBroker == null)
 {
 try
 {

SOAP Example

Using XDK and SOAP 11-13

 msgBroker = new MessageBroker(m_hostname, m_sid, m_port, "thin",m_usr,
 m_passwd,"broadcastb_queue",m_dblink);
 context.setAttribute("MessageBroker",msgBroker);
 }
 catch(Exception ex)
 {
 System.out.println("Error:"+ex.getMessage());
 }
 }

 PrintWriter out = res.getWriter();
 m_content = req.getParameter("content");

 // Save new Item information into database
 try
 {
 Connection conn = getConnection();

 OracleXMLSave sav = new OracleXMLSave(conn,"inventory_item_view");
 sav.insertXML(m_content);
 sav.close();
 conn.close();

 out.println("Insert Successful\n");
 }
 catch(Exception e)
 {
 out.println("Exception caught "+e.getMessage());
 return;
 }

 // Create and Enqueue the Message
 byte[] input = createMessage(m_content);
 msgBroker.enqueueBytesMessage(input);

 return;
 }

 // Subject to change to validate and using XML Update language
 // Since this message is not public we keep it with simplified SOAP format
 public byte[] createMessage(String content)
 {
 String message = null;

 message="<Envelope>"+
 "<Header>"+
 "<branch_sql>"+"select id,soapurl from branch"+"</branch_sql>"+
 "<objURI>"+"inventoryServer"+"</objURI>"+
 "<method>"+"addItem"+"</method>"+
 "</Header>"+
 "<Body>"+content+"</Body>"+
 "</Envelope>";

 // Compress the Message Content
 CompressionAgent cagent = new CompressionAgent("oracle:xml:compression");
 byte [] input = cagent.compress(message);

 return input;
 }

SOAP Example

11-14 Oracle XML Developer's Kit Programmer's Guide

 /**
 * Get JDBC Connection
 * @return Connection - JDBC Connection
 * @exception SQLException - thrown if the connection can't be gotten.
 */
 public Connection getConnection() throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 Connection conn =DriverManager.getConnection (m_dblink,m_usr,m_passwd);
 return conn;
 }
}

Queuing Messages with AQ
The MessageBroker class is the agent that communicates with the message queue
and invokes SOAP Remote Procedure Call (RPC).

The MessageBroker provides the following functionality:

Message Enqueuing and Dequeuing. AQ provides standard Java Message Service (JMS)
APIs to enqueue and dequeue the messages. Before these operations, however, you
need to get a QueueConnection, create a QueueSession with it, and get the
message queue. During each QueueSession, QueueSessioncommit() is used for
transactional control. If anything goes wrong when our messaging system sends
messages to the branches, the commit will not occur and the message will remain in
the database.

Invoking Remote SOAP Services. MessageBroker invokes the remote SOAP service
with RPCCall Agent (in the RPCCall Java class). The SOAP RPCCall creates a Call
object to specify the SOAP service and adds parameters to the parameters vector for
the Call object. The Call object will invoke the remote SOAP service and return
"Fault code" if there are errors. We define a Service object in the Service Java class to
describe the Service information.

The SOAP call will generate the HTTP request, encapsulate the inventory update
request in a SOAP message, and invoke the SOAP service on all branches. When
headquarters calls a branch inventory service, the branch sends a confirmation back to
it.

XML Compression
To make the messaging system more efficient, use XML compression. This lets you
compress or decompress a message by using Java object serialization, such as:

XMLDocument.writeExternal(...);
XMLDocument.readExternal(...);

Our sample application uses the CompressionAgent Java class to provide the
compress and decompress functionality. CompressionAgent includes both compress
and decompress methods. The compress method returns a byte array and the
decompress method returns an XML document.

Listing of the Java Source File MessageBroker.java
This lengthy source file is found at ./xmlagents/src/oracle/xml/pm/queue

Some of the more important functions are sendSOAPMessage(), which sends SOAP
files and dequeueTextMessage(), which dequeues information for each inventory
item.

SOAP Example

Using XDK and SOAP 11-15

Summary of the SOAP Example
Using AQ and XDK in a SOAP messaging system can greatly improve reliability and
performance. Inventory update messages are delivered quickly. If they cannot be
delivered, they are stored and logged for sending again. These features provide
reliable and asynchronous message queuing and speed the transfer of XML message
data.

SOAP Example

11-16 Oracle XML Developer's Kit Programmer's Guide

TransX Utility 12-1

12
TransX Utility

This chapter contains these topics:

■ Overview of the TransX Utility

■ Installing TransX Utility

■ TransX Utility Command-Line Syntax

■ Sample Code for TransX Utility

Overview of the TransX Utility
The TransX Utility simplifies the loading of translated seed data and messages into a
database. It also reduces globalization costs by:

■ Preparing strings to be translated.

■ Translating the strings.

■ Loading the strings to the database.

The TransX Utility minimizes translation data format errors and accurately loads the
translation contents into pre-determined locations in the database. Other advantages
of the TransX Utility are:

■ Translation vendors no longer have to work with unfamiliar SQL and PL/SQL
scripts.

■ Syntax errors due to varying Globalization Support settings are eliminated.

■ The UNISTR construct is no longer required for every piece of NCHAR data.

Development groups that need to load translated messages and seed data can use the
TransX Utility to simplify what it takes to meet globalization requirements. Once the
data is in a predefined format, the TransX Utility validates its format.

Choosing the correct encoding when loading translated data is automated because
loading with TransX takes advantage of XML which describes the encoding. This
means that loading errors due to incorrect encoding is impossible as long as the data
file conforms to the XML standard.

Primary TransX Utility Features
This section describes the following features of the TransX Utility:

■ Simplified Multilingual Data Loading

■ Simplified Data Format Support and Interface

Overview of the TransX Utility

12-2 Oracle XML Developer's Kit Programmer's Guide

■ Loading Dataset in the Standard XML Format

■ Handling Existing Data

■ Other TransX Utility Features

Simplified Multilingual Data Loading
Traditionally, the typical translation data loading method was to switch the NLS_LANG
setting when you switch files to be loaded. Each of the load files is encoded in a
particular character set suitable for the particular language. This was required because
translations must be done in the same file format (typically in a SQL script) as the
original.

The NLS_LANG setting changes as files are loaded to adapt to the character set that
corresponds to the language. The TransX Utility loading tool frees the development
and translation groups maintaining the correct character set throughout the process
until they successfully load the data into the database using XML.

Simplified Data Format Support and Interface
The TransX Utility data loading tool complies with a data format defined to be the
canonical method for the representation of any seed data to be loaded to the database.
The format is intuitive and easy to understand. The format is also simplified for
translation groups to use. The format specification defines how translators can
describe the data to load it in the expected way.

The data loading tool has a command-line interface and programmable API. Both of
them are straightforward and require little time to learn.

Loading Dataset in the Standard XML Format
Given the dataset (the input data) in the canonical format, the TransX Utility loads the
data into the designated locations in the database. It does not, however, create objects,
including the table that the data is going to be loaded to. In addition to literal values
represented in XML, the following expressions can be used to describe the data to be
loaded:

Constant Expression A constant expression allows you to specify a constant value. A
column with a fixed value for each row does not have to repeat the same value.

Sequence A column can be loaded with a value obtained from a sequence in the
database.

Query A SQL query can be used to load a column. A query can use parameters.

Handling Existing Data
The data loading tool determines whether there are duplicate rows in the database. It
also lets you choose how it processes duplicate rows from one of the options in the
following list. A row is considered duplicate if the values of all columns specified as
lookup-key are the same. The processing options are:

■ Skip the duplicate rows or leave them as they are (default)

■ Update or overwrite the duplicate rows with the data in provided dataset

■ Display an error

Installing TransX Utility

TransX Utility 12-3

Other TransX Utility Features
The lists describes other TransX Utility features:

■ Command-line Interface—The data loading tool provides easy-to-use commands.

■ User API—The data loading tool exposes a Java API.

■ Validation—The data loading tool validates the data format and reports errors.

■ White Space Handling—White space characters in the dataset are not significant,
unless otherwise specified in various granularity.

■ Unloading—Based on a query, the data loading tool exports the result into the
standard data format.

■ Intimacy with Translation Exchange Format—Designed for transformation to and
from translation exchange format

■ Localized User Interface—Messages are provided in many languages.

Installing TransX Utility
Here is how to install TransX, and the dependencies of TransX.

Dependencies of TransX
The Oracle TransX utility needs the following components in order to function:

■ Database connectivity -- JDBC drivers. The utility can work with any JDBC drivers
but is optimized for Oracle's JDBC drivers. Oracle does not guarantee or provide
support for TransX running against non-Oracle databases.

■ XML Parser -- Oracle XML Parser, Version 2. The Oracle XML Parser, Version 2, is
part of the Oracle database installations, and is also available from the Oracle
Technology Network (OTN) Web site.

■ XML Schema Processor -- Oracle XML Schema Processor. The Oracle XML Schema
Processor is part of the Oracle database installations, downloadable from the
Oracle Technology Network (OTN) Web site.

■ XML SQL Utility-- Oracle XML SQL Utility (XSU). The Oracle XSU is part of the
Oracle database installation, and is also available from Oracle Technology
Network (OTN) Web site.

Installing TransX Using the Oracle Installer
TransX is packaged with Oracle database. The TransX utility is made up of three
executable files:

■ $ORACLE_HOME/rdbms/jlib/transx.zip -- contains all the java classes which
make up TransX $ORACLE_HOME/rdbms/bin/transx -- a shell script to invoke
TransX from the UNIX command line.

■ $ORACLE_HOME\rdbms\bin\transx.bat -- a batch file to invoke TransX from
the Windows command line.

By default, the Oracle installer installs TransX on your hard drive in the locations
specified above.

TransX Utility Command-Line Syntax

12-4 Oracle XML Developer's Kit Programmer's Guide

Installing TransX Downloaded from OTN
Download the correct XDK Java components distribution archive from the Oracle
Technology Network. Expand the downloaded archive. Depending on the usage
scenario, perform the following install tasks:

To Use the TransX Front-end or Its Java API:
Set up the environment (that is, set CLASSPATH) using the env.xxx script (located in
the bin directory inside the directory created by extracting the XDK download
archive):

UNIX users: make sure that the path names in env.csh are correct and then enter:

source env.csh

If you are using a shell other than csh or tcsh, you will have to edit the file to use
your shell's syntax.

Windows users: make sure that the path names in env.bat are correct; execute the
file.

TransX Utility Command-Line Syntax
The following describes the command-line syntax for the TransX Utility.

java oracle.xml.transx.loader [options] connect_string username password
datasource [datasource]
java oracle.xml.transx.loader -v datasource [datasource]
java oracle.xml.transx.loader -x connect_string username password table [column]
java oracle.xml.transx.loader -s connect_string username password filename table
[column]

TransX Utility Command-Line Examples
The following are command-line examples for the TransX Utility:

java oracle.xml.transx.loader "dlsun9999:1521:mydb" scott tiger foo.xml
java oracle.xml.transx.loader "jdbc:oracle:oci:@mydb" scott tiger foo.xml
java oracle.xml.transx.loader -v foo.xml
java oracle.xml.transx.loader -x "dlsun9999:1521:mydb" scott tiger emp
java oracle.xml.transx.loader -s "dlsun9999:1521:mydb" scott tiger emp.xml emp
ename job

TransX Utility Command-line Parameters
Table 12–1 shows the command-line parameters.

Table 12–1 TransX Utility Command-line Parameters

Parameter Meaning

connect_string JDBC connect string You can omit the connect string information
through the '@' symbol. 'jdbc:oracle:thin:@' will be supplied.

username Database user name.

password Password for the database user name.

datasource An XML data source.

option Options in Table 12–2, " TransX Utility Command-line Options".

Sample Code for TransX Utility

TransX Utility 12-5

TransX Utility Command-line Options

Command-line Option Exceptions The following are the command-line option exceptions:

■ -u and -e are mutually exclusive

■ -v must be the only option followed by data, as in the examples

■ -x must be the only option followed by connect info and SQL query as in the
examples

Omitting all arguments will result in the display of the front-end usage information
shown in the table.

Sample Code for TransX Utility
The following is sample code for the TransX Utility:

Table 12–2 TransX Utility Command-line Options

Option Meaning Description

-u Update existing rows. When this option is specified, existing rows
are not skipped but updated. To exclude a
column from the update operation, specify
the useforupdate attribute to be "no".

-e Raise exception if a row is already
existing in the database.

When this option is specified, an exception
will be thrown if a duplicate row is found.
By default, duplicate rows are simply
skipped. Rows are considered duplicate if
the values for lookup-key column(s) in the
database and the dataset are the same.

-x Print data in the database in the
predefined format.

Similar to the -s option, it causes TransX to
perform the opposite operation of loading.
Unlike the -s option, it prints the output to
stdout. Note: Redirecting this output to a
file is discouraged, because intervention of
the operating system may result in data loss
due to unexpected transcoding.

-s Save data in the database into a file
in the predefined format.

This is an option to perform unloading. It
queries the database, formats the result into
the predefined XML format and stores it
under the specified file name.

-p Print the XML to load. Prints out the dataset for insert in the
canonical format of XSU.

-t Print the XML for update. Prints out the dataset for update in the
canonical format of XSU.

-o Omit validation (as the dataset is
parsed it is validated by default).

Causes TransX to skip the format validation,
which is performed by default.

-v Validate the data format and exit
without loading.

Causes TransX to perform validation and
exit.

-w Preserve white space. Causes TransX to treat whitespace characters
(such as \t, \r, \n, and ' ') as significant.
Consecutive whitespace characters in string
data elements are condensed into one space
character by default.

See Also: Oracle XML API Reference for complete details of the
Java API for TransX Utility

Sample Code for TransX Utility

12-6 Oracle XML Developer's Kit Programmer's Guide

String datasrc[] = {"data1.xml", "data2.xml", "data3.xml"};

// instantiate a loader
TransX transx = loader.getLoader();

// start a data loading session
transx.open(jdbc_con_str, usr, pwd);

// specify operation modes
transx.setLoadingMode(LoadingMode.SKIP_DUPLICATES);
transx.setValidationMode(false);

// load the dataset(s)
for (int i = 0 ; i < datasrc.length ; i++)
{
transx.load(datasrc[i]);
}

// cleanup
transx.close();

Getting Started with XDK C Components 13-1

13
Getting Started with XDK C Components

This chapter contains these topics:

■ Specifications of XDK C/C++ Components

■ Globalization Support for the C XDK Components

Specifications of XDK C/C++ Components
Oracle XDK C/C++ components are built on W3C recommendations. The list of
supported standards for release 10.1 are:

■ XML 1.0 (Second Edition)

■ DOM Level 2.0 Specifications

■ DOM Level 2.0 Core

■ DOM Level 2.0 Traversal and Range

■ SAX 2.0 and SAX Extensions

■ XSLT/XPath Specifications

■ XSL Transformations (XSLT) 1.0

■ XML Path Language (XPath) 1.0

■ XML Schema Specifications

■ XML Schema Part 0: Primer

■ XML Schema Part 1: Structures

■ XML Schema Part 2: Datatypes

What Are the XDK C Components
XDK C components are the basic building blocks for reading, manipulating,
transforming, and validating XML documents. Oracle XDK C components consist of
the following:

■ XML Parser for C: checks if an XML document is well-formed, and optionally
validates it against a DTD. The parser constructs an object tree which can be
accessed via a DOM interface or operates serially via a SAX interface.

■ XSLT Processor for C: provides the ability to format an XML document according
to a stylesheet bundled with the parser.

■ XVM: high performance XSLT transformation engine.

Specifications of XDK C/C++ Components

13-2 Oracle XML Developer's Kit Programmer's Guide

■ XML Schema Processor for C: supports parsing and validating XML files against
an XML Schema definition file.

Installing the C Components of XDK
If you have installed Oracle Database or Oracle Application Server, then you already
have the XDK C components installed. You can also download the latest versions of
XDK C components from OTN by following these steps:

1. Navigate to http://www.oracle.com/technology/tech/xml/.

2. Click the Software link in the right-hand bar.

3. Logon with your OTN username and password (registration is free if you don't
already have an account).

4. Select the Windows or UNIX version to download.

5. Accept all conditions in the licensing agreement.

6. Click the appropriate *.tar.gz or *.zip file.

7. Extract the files in the distribution:

a. Choose a directory under which you would like the xdk directory and
subdirectories to go.

b. Change to that directory; then extract the XDK download archive file using:

UNIX: tar xvfz xdk_xxx.tar.gz
Windows: use WinZip visual archive extraction tool

Setting the UNIX Environment
After installing the UNIX version of XDK, the directory structure is:

-$XDK_HOME
 | - bin: executable files
 | - lib: library files
 | - nls/data: Globalization Support data files(*.nlb)
 | - xdk
 | - demo/c: demonstration code
 | - doc/c: documentation
 | - public: header files
 | - mesg: message files (*.msb)

Here are all the libraries that come with the UNIX version of XDK C components:

The XDK C components (UNIX) depend on the Oracle CORE and Globalization
Support libraries in the following table:

See Also: "Using the XML Parser for C" on page 14-9 for further
discussion of the XDK C components.

Table 13–1 XDK C Components Libraries

Component Library Notes

XML Parser

XSLT Processor

XML Schema Processor

libxml10.a XML Parser for C, which includes DOM, SAX,
and XSLT APIs

XML Schema Processor for C

Specifications of XDK C/C++ Components

Getting Started with XDK C Components 13-3

Command Line Environment Setup
The parser may be called as an executable by invoking bin/xml, which has the
following options:

Check if the environment variable ORA_NLS10 is set to point to the location of the
Globalization Support data files. If you install the Oracle database, you can set it to be:

setenv ORA_NLS10 ${ORACLE_HOME}/nls/data

If no Oracle database is installed, you can use the Globalization Support data files that
come with the XDK release by setting:

setenv ORA_NLS10 ${XDK_HOME}/nls/data

Error message files are provided in the mesg subdirectory. Files ending in .msb are
machine-readable and needed at runtime; files ending in .msg are human-readable
and contain cause and action descriptions for each error. The messages files also exist
in the $ORACLE_HOME/xdk/mesg directory.

Table 13–2 Dependent Libraries of XDK C Components on UNIX

Component Library Notes

CORE Library libcore10.a Oracle CORE library

Globalization
Support Library

libnls10.a

libunls10.a

Oracle Globalization Support common library

Oracle Globalization Support library for Unicode
support

Table 13–3 Parser Command Line Options

Option Meaning

-c Conformance check only, no validation

-e encoding Specify default input file encoding ("incoding")

-E encoding Specify DOM/SAX encoding ("outcoding")

-f file File - Interpret as filespec, not URI

-h Help - show usage help and full list of flags

-i n Number of times to iterate the XSLT processing

-l language Language for error reporting

-n Traverse DOM and report number of elements

-o XSLoutfile Specify output file of XSLT processor

-p Print document after parsing

-r Do not ignore <xsl:output> instruction in XSLT
processing

-s stylesheet Style sheet - specifies the XSL style sheet

-v Version - display parser version and then exit

-V var value To test top level variables in CXSLT

-w Whitespace - preserve all whitespace

-W Warning - stop parsing after a warning

-x SAX - exercise SAX interface and print document

Specifications of XDK C/C++ Components

13-4 Oracle XML Developer's Kit Programmer's Guide

If you do not have an ORACLE_HOME, check if the environment variable ORA_XML_
MESG is set to point to the absolute path of the mesg directory. If the Oracle database is
installed, you can set ORA_XML_MESG, although this is not required:

setenv ORA_XML_MESG ${ORACLE_HOME}/xdk/mesg

If no Oracle database is installed, you must set the environment variable ORA_XML_
MESG to point to the absolute path of the mesg subdirectory:

setenv ORA_XML_MESG ${XDK_HOME}/xdk/mesg

The parser may also be invoked by writing code to use the supplied APIs. The code
must be compiled using the headers in the include subdirectory and linked against
the libraries in the lib subdirectory. See Makefile in the demo subdirectory for full
details of how to build your program.

To get the XDK version you are using on UNIX:

strings libxml10.a | grep -i Version

Setting the Windows Environment
These are the Windows libraries that come with the XDK C components:

The XDK C components (Windows) depend on the Oracle CORE and Globalization
Support libraries in the following table:

Environment for Command Line Usage
For the parser and schema validator options, see Table 13–3, " Parser Command Line
Options".

Check that the environment variable ORA_NLS10 is set to point to the location of the
Globalization Support encoding definition files. You can set it this way:

setenv ORA_NLS10 %ORACLE_HOME%\nls\data

If no Oracle database is installed, you can use the Globalization Support encoding
definition files that come with the XDK release (a subset of which are in the Oracle
database):

Table 13–4 XDK C Components Libraries on Windows

Component Library Notes

XML Parser

XSL Processor

XML Schema
Processor

oraxml10.lib

oraxml10.dll

XML Parser for C, which includes DOM, SAX, and
XSLT APIs

XML Schema Processor for C

Table 13–5 Dependent Libraries of XDK C Components on Windows

Component Library Notes

CORE Library oracore10.dll Oracle CORE library

Globalization
Support Library

oranls10.dll Oracle Globalization Support common library

Globalization
Support Library

oraunls10.dll Oracle Globalization Support library for Unicode
support

Specifications of XDK C/C++ Components

Getting Started with XDK C Components 13-5

set ORA_NLS10 =%XDK_HOME%\nls\data

Error message files are provided in the mesg subdirectory. Files ending in .msb are
machine-readable and needed at runtime; files ending in .msg are human-readable
and include cause and action descriptions for each error. The messages files also exist
in the $ORACLE_HOME/xdk/mesg directory.

If there is an Oracle database installed, you can set ORA_XML_MESG, although this is
not required:

set ORA_XML_MESG =%ORACLE_HOME%\xdk\mesg

If no Oracle database is installed, you must set the environment variable ORA_XML_
MESG to point to the absolute path of the mesg subdirectory:

set ORA_XML_MESG =%XDK_HOME%\xdk\mesg

In order to compile the sample code, you set the path for the cl compiler.

Go to the Start Menu and select Settings > Control Panel. In the pop-up window of
Control Panel, select System icon and double click. A window named System
Properties pops up. Select Environment Tab and input the path of cl.exe to the
PATH variable shown in Figure 13–1, "Setting the Path for the cl Compiler in
Windows".

Figure 13–1 Setting the Path for the cl Compiler in Windows

Specifications of XDK C/C++ Components

13-6 Oracle XML Developer's Kit Programmer's Guide

You need to update the Make.bat by adding the path of the libraries and the header
files to the compile and link commands as shown in the following example of a
Make.bat file:

:COMPILE
set filename=%1
cl -c -Fo%filename%.obj %opt_flg% /DCRTAPI1=_cdecl /DCRTAPI2=_cdecl /nologo /Zl
/Gy /DWIN32 /D_WIN32 /DWIN_NT /DWIN32COMMON /D_DLL /D_MT /D_X86_=1
/Doratext=OraText -I. -I..\..\..\include -
ID:\Progra~1\Micros~1\VC98\Include %filename%.c
goto :EOF

:LINK
set filename=%1
link %link_dbg% /out:..\..\..\..\bin\%filename%.exe /libpath:%ORACLE_HOME%\lib
/libpath:D:\Progra~1\Micros~1\VC98\lib /libpath:..\..\..\..\lib %filename%.obj
oraxml10.lib oracore10.lib oranls10.lib oraunls10.lib user32.lib kernel32.lib
msvcrt.lib ADVAPI32.lib oldnames.lib winmm.lib
:EOF

where:

D:\Progra~1\Micros~1\VC98\Include: is the path for header files and
D:\Progra~1\Micros~1\VC98\lib: is the path for library files.

Using the XDK C Components with Visual C++
If you are using Microsoft Visual C++ compiler:

Check that the environment variable ORA_NLS10 is set to point to the location of the
Globalization Support data files.

In order to use Visual C++, you need to employ the system setup for Windows to
define the environment variable.

Go to Start Menu and select Settings > Control Panel. In the pop up window of Control
Panel, select System icon and double click. A window named System Properties pops
up. Select Environment Tab and input ORA_NLS10, and its value d:\xdk\nls\data,
as shown in Figure 13–2:

Specifications of XDK C/C++ Components

Getting Started with XDK C Components 13-7

Figure 13–2 Setting Up the ORA_NLS10 Environment Variable

Check that the environment variable ORA_XML_MESG is set to point to the absolute
path of the mesg directory.

In order for Visual C++ to use the environment variable, you need to employ the
system setup for Windows to define the environment variable.

Go to the Start Menu and select Settings > Control Panel. In the pop-up window of
Control Panel, select System icon and double click. A window named System
Properties pops up. Select Environment Tab and input ORA_XML_MESG, as in
Figure 13–3, (the illustrations show screens for a previous release).

Specifications of XDK C/C++ Components

13-8 Oracle XML Developer's Kit Programmer's Guide

Figure 13–3 Setting Up the ORA_XML_MESG Environment Variable

Figure 13–4 shows the setup of the PATH for DLLs:

Specifications of XDK C/C++ Components

Getting Started with XDK C Components 13-9

Figure 13–4 Setup of the PATH for DLLs

After you open a workspace in Visual C++ and include the *.c files for your project,
you must set the path for the project. Go to the Tools menu and select Options. A
window will pop up. Select the Directory tab and set your include path as shown in
Figure 13–5:

Specifications of XDK C/C++ Components

13-10 Oracle XML Developer's Kit Programmer's Guide

Figure 13–5 Setting Your Include Path in Visual C++

Then set your library path as shown in Figure 13–6:

Figure 13–6 Setting Your Static Library Path in Visual C++

After setting the paths for the static libraries in %XDK_HOME%\lib, you also need to
set the library name in the compiling environment of Visual C++.

Go to the Project menu in the menu bar and select Settings. A window pops up. Please
select the Link tab in the Object/Library Modules field enter the name of XDK C
components libraries, as shown in Figure 13–7:

Globalization Support for the C XDK Components

Getting Started with XDK C Components 13-11

Figure 13–7 Setting Up the Static Libraries in Visual C++ Project

Optionally, compile and run the demo programs. Then you can start using C XDK
components.

Globalization Support for the C XDK Components
The parser supports over 300 IANA character sets. These character sets include the
following:

UTF-8, UTF-16, UTF16-BE, UTF16-LE, US-ASCII, ISO-10646-UCS-2, ISO-8859-{1-9,
13-15}, EUC-JP, SHIFT_JIS, BIG5, GB2312, GB_2312-80, HZ-GB-2312, KOI8-R, KSC5601,
EUC-KR, ISO-2022-CN, ISO-2022-JP, ISO-2022-KR, WINDOWS-{1250-1258},
EBCDIC-CP-{US,CA,NL,WT,DK,NO,FI,SE,IT,ES,GB,FR,HE,BE,CH,ROECE,YU,IS,AR1}
, IBM{037,273,277,278,280,284,285,297,420,424,437,500,775,850,852,855,857,00858,
860,861,863,865,866,869,870,871,1026,01140,01141,01142,01143,01144,01145,01146,
01147,01148}

Any alias of the above character sets that is found here may also be used. In addition,
any character set specified in Appendix A, Character Sets, of the Oracle Database
Globalization Support Guide can be used with the exception of IW7IS960.

However, it is recommended that you use IANA character set names for
interoperability with other XML parsers. Also note that XML parsers are only required
to support UTF-8 and UTF-16 so those character sets should be preferred.

In order to be able to use these encodings, you should have the ORACLE_HOME
environment variable set and pointing to the location of your Oracle installation. This
enables the use of the globalization support data files which contain data for all
supported encodings. On UNIX systems, they are usually in $ORACLE_
HOME/nls/data. On Windows, they are usually in %ORACLE_HOME%\nls\data. C
and C++ XDK releases that are downloaded from OTN contain an nls/data

Globalization Support for the C XDK Components

13-12 Oracle XML Developer's Kit Programmer's Guide

subdirectory. You must set the environment variable ORA_NLS10 to the absolute path
of the nls/data subdirectory if you do not have an Oracle installation.

The default input encoding ("incoding") is UTF-8. If an input document's encoding is
not self-evident (by HTTP character set, Byte Order Mark, XMLDecl, and so on), then
the default input encoding is assumed. It is recommended that you set the default
encoding explicitly if using only single byte character sets (such as US-ASCII or any of
the ISO-8859 character sets) since single-byte performance is by far the fastest. The flag
XML_FLAG_FORCE_INCODING says that the default input encoding should always be
applied to input documents, ignoring any BOM or XMLDecl. However, a protocol
declaration (such as HTTP character set) is always honored.

The data encoding for DOM and SAX ("outcoding") should be chosen carefully.
Single-byte encodings are the fastest, but can represent only a very limited set of
characters. Next fastest is Unicode (UTF-16), and slowest are the multibyte encodings
such as UTF-8. If input data cannot be converted to the outcoding without loss, an
error occurs. So for maximum utility, a Unicode-based outcoding should be used, since
Unicode can represent any character. If outcoding is not specified, it defaults to the
incoding of the first document parsed.

XML Parser for C 14-1

14
XML Parser for C

This chapter contains these topics:

■ What Is the Unified C API for XDK and Oracle XML DB?

■ Using DOM for XDK

■ Using OCI and the C API

■ Using the XML Parser for C

■ XML Parser for C Calling Sequence

■ XML Parser for C Default Behavior

■ DOM and SAX APIs Compared

■ Using the Sample Files

What Is the Unified C API for XDK and Oracle XML DB?
The single DOM is part of the unified C API, which is a C API for XML, whether the
XML is in the database or in documents outside the database. DOM means DOM 2.0
plus non-standard extensions in XDK for XML documents or for Oracle XML DB for
XML stored as an XMLType column in a table, usually for performance improvements.

The unified C API is a programming interface that includes the union of all
functionality needed by XDK and Oracle XML DB, with XSLT and XML Schema as
primary customers. The DOM 2.0 standard was followed as closely as possible, though
some naming changes were required when mapping from the objected-oriented DOM
specification to the flat C namespace (overloaded getName() methods changed to
getAttrName() and so on).

Unification of the functions is accomplished by conforming contexts: a top-level XML
context (xmlctx) intended to share common information between cooperating XML
components. Data encoding, error message language, low-level memory allocation
callbacks, and so on, are defined here. This information is needed before a document
can be parsed and DOM or SAX output.

Both the XDK and the Oracle XML DB need different startup and tear-down functions
for both contexts (top-level and service). The initialization function takes

Note: Use the new unified C API for new XDK and Oracle XML
DB applications. The old C functions are deprecated and supported
only for backward compatibility, but will not be enhanced. They
will be removed in a future release.

Using DOM for XDK

14-2 Oracle XML Developer's Kit Programmer's Guide

implementation-specific arguments and returns a conforming context. A conforming
context means that the returned context must begin with a xmlctx; it may have any
additional implementation-specific parts following that standard header.

Initialization (getting an xmlctx) is an implementation-specific step. Once that
xmlctx has been obtained, unified DOM calls are used, all of which take an xmlctx
as the first argument.

This interface (new for release 10.1) supersedes the existing C API. In particular, the
oraxml interfaces (top-level, DOM, SAX and XSLT) and oraxsd (Schema) interfaces
are deprecated.

Using DOM for XDK
When the XML resides in a traditional file system, or the Web, or something similar,
the XDK package is used. Again, only for startup are there any
implementation-specific steps.

First a top-level xmlctx is needed. This contains encoding information, low-level
memory callbacks, error message language, and encoding, and so on (in short, those
things which should remain consistent for all XDK components). An xmlctx is
allocated with XmlCreate().

xmlctx *xctx;
xmlerr err;

xctx = (xmlctx *) XmlCreate(&err, "xdk context", "data-encoding", "ascii", ...,
NULL);

Once the high-level XML context has been obtained, documents may be loaded and
DOM events generated. To generate DOM:

xmldocnode *domctx;
xmlerr err;

domctx = XmlLoadDom(xctx, &err, "file", "foo.xml", NULL);

To generate SAX events, a SAX callback structure is needed:

xmlsaxcb saxcb = {
 UserAttrDeclNotify, /* user's own callback functions */
 UserCDATANotify,
 ...
 };

if (XmlLoadSax(xctx, &saxcb, NULL, "file", "foo.xml", NULL) != 0)
 /* an error occured */

The tear-down function for an XML context, xmlctx, is XmlDestroy().

Loading an XML Document with the C API
Once an xmlctx is obtained, a serialized XML document is loaded with the
XmlLoadDom() or XmlLoadSax() functions. Given the Document node, all API
DOM functions are available.

Data Encoding of XML Documents for the C API
XML data occurs in many encodings. You have control over the encoding in three
ways:

Using DOM for XDK

XML Parser for C 14-3

■ specify a default encoding to assume for files that are not self-describing

■ specify the presentation encoding for DOM or SAX

■ re-encode when a DOM is serialized

Input data is always in some encoding. Some encodings are entirely self-describing,
such as UTF-16, which requires a specific BOM before the start of the actual data. A
document's encoding may also be specified in the XMLDecl or MIME header. If the
specific encoding cannot be determined, your default input encoding is applied. If no
default is provided by you, UTF-8 is assumed on ASCII platforms and UTF-E on
EBCDIC platforms.

A provision is made for cases when the encoding information of the input document is
corrupt. For example, if an ASCII document which contains an XMLDecl saying
encoding=ascii is blindly converted to EBCDIC, the new EBCDIC document
contains (in EBCDIC), an XMLDecl which claims the document is ASCII, when it is
not. The correct behavior for a program which is re-encoding XML data is to
regenerate the XMLDecl, not to convert it. The XMLDecl is metadata, not data itself.
However, this rule is often ignored, and then the corrupt documents result. To work
around this problem, an additional flag is provided which allows the input encoding
to be forcibly set, overcoming an incorrect XMLDecl.

The precedence rules for determining input encoding are as follows:

1. Forced encoding as specified by the user.

2. Protocol specification (HTTP header, and so on).

3. XMLDecl specification is used.

4. User's default input encoding.

5. The default: UTF-8 (ASCII platforms) or UTF-E (EBCDIC platforms).

Once the input encoding has been determined, the document can be parsed and the
data presented. You are allowed to choose the presentation encoding; the data will be
in that encoding regardless of the original input encoding.

When a DOM is written back out (serialized), you can choose at that time to re-encode
the presentation data, and the final serialized document can be in any encoding.

NULL-Terminated and Length-Encoded C API Functions
The native string representation in C is NULL-terminated. Thus, the primary DOM
interface takes and returns NULL-terminated strings. However, Oracle XML DB data
when stored in table form, is not NULL-terminated but length-encoded, so an additional
set of length-encoded APIs are provided for the high-frequency cases to improve
performance (if you deliberately choose to use them). Either set of functions works.

In particular, the following DOM functions are invoked frequently and have dual
APIs:

Caution: This can result in a fatal error if there is a conflict. For
example, the input document is UTF-16 and starts with a UTF-16
BOM, but the user specifies a forced UTF-8 encoding. Then the
parser will object about the conflict.

Using OCI and the C API

14-4 Oracle XML Developer's Kit Programmer's Guide

Error Handling
The API functions typically either return a numeric error code (0 for success, nonzero
on failure), or pass back an error code through a variable. In all cases, error codes are
stored and the last error can be retrieved with XmlDomGetLastError().

Error messages, by default, are output to stderr. However, you can register an error
message callback at initialization time. When an error occurs, that callback will be
invoked and no error printed.

Installing the C API
There are no special installation or first-use requirements. The XML DOM does not
require an ORACLE_HOME. It can run out of a reduced root directory such as those
provided on OTN releases.

However, since the XML DOM requires globalization support, the globalization
support data files must be present (and found through the environment variables
ORACLE_HOME or ORA_NLS10).

Using OCI and the C API
The C API for XML can be used for XMLType columns in the database. XML data that
is stored in a database table can be accessed in an Oracle Call Interface (OCI) program
by initializing the values of OCI handles, such as environment handle, service handle,
error handle, and optional parameters. These input values are passed to the function
OCIXmlDbInitXmlCtx() and an XML context is returned. After the calls to the C
API are made, the context is freed by the function OCIXmlDbFreeXmlCtx().

XML Context
An XML context is a required parameter in all the C DOM API functions. This opaque
context encapsulates information pertaining to data encoding, error message language,
and so on. The contents of this XML context are different for XDK applications and for
Oracle XML DB applications.

Table 14–1 NULL-Terminated and Length-Encoded C API Functions

NULL-Terminated API Length-Encoded API

XmlDomGetNodeName() XmlDomGetNodeNameLen()

XmlDomGetNodeLocal() XmlDomGetNodeLocalLen()

XmlDomGetNodeURI() XmlDomGetNodeURILen()

XmlDomGetNodeValue() XmlDomGetNodeValueLen()

XmlDomGetAttrName() XmlDomGetAttrNameLen()

XmlDomGetAttrLocal() XmlDomGetAttrLocalLen()

XmlDomGetAttrURI() XmlDomGetAttrURILen()

XmlDomGetAttrValue() XmlDomGetAttrValueLen()

Caution: Do not use an XML context for XDK in an XML DB
application, or an XML context for XML DB in an XDK application.

Using OCI and the C API

XML Parser for C 14-5

For Oracle XML DB, the two OCI functions that initialize and free an XML context
have as their prototypes:

xmlctx *OCIXmlDbInitXmlCtx (OCIEnv *envhp, OCISvcCtx *svchp, OCIError *errhp,
 ocixmldbparam *params, ub4 num_params);

void OCIXmlDbFreeXmlCtx (xmlctx *xctx);

Creating XMLType Instances on the Client
New XMLType instances on the client can be constructed using the XmlLoadDom()
calls. You first have to initialize the xmlctx, as in the example in Using DOM for XDK
on page 14-2. The XML data itself can be constructed from a user buffer, local file, or
URI. The return value from these is an (xmldocnode *) which can be used in the
rest of the common C API. Finally, the (xmldocnode *) can be cast to a (void *)
and directly provided as the bind value if required.

Empty XMLType instances can be constructed using the XmlCreateDocument() call.
This would be equivalent to an OCIObjectNew() for other types. You can operate on
the (xmldocnode *) returned by the above call and finally cast it to a (void *) if it
needs to be provided as a bind value.

XML Data on the Server
XML data on the server can be operated on by means of OCI statement calls. You can
bind and define XMLType values using xmldocnode, as with other object instances.
OCI statements are used to select XML data from the server. This data can be used in
the C DOM functions directly. Similarly, the values can be bound back to SQL
statements directly.

XMLType Functions and Descriptions
The following table describes a few of the functions for XML operations.

See Also:

■ Oracle Call Interface Programmer's Guide, "OCI XML DB
Functions" for reference material on the functions.

■ Oracle Call Interface Programmer's Guide, "OCI Support for XML"
for a discussion about OCI support for XML.

■ Oracle XML API Reference, "DOM APIs for C".

Table 14–2 XMLType Functions

Description Function Name

Create empty XMLType instance XmlCreateDocument()

Create from a source buffer XmlLoadDom() and so on

Extract an XPath expression XmlXPathEvalexpr() and family

Transform using an XSL stylesheet XmlXslProcess() and family

Check if an XPath exists XmlXPathEvalexpr() and family

Is document schema-based? XmlDomIsSchemaBased()

Get schema information XmlDomGetSchema()

Get document namespace XmlDomGetNodeURI()

Using OCI and the C API

14-6 Oracle XML Developer's Kit Programmer's Guide

OCI Examples
Here is an example of how to construct a schema-based document using the DOM API
and save it to the database (you must include the header files xml.h and
ocixmldb.h):

#include <xml.h>
#include <ocixmldb.h>
static oratext tlpxml_test_sch[] = "<TOP xmlns='example1.xsd'\n\
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' \n\
xsi:schemaLocation='example1.xsd example1.xsd'/>";

void example1()
{
 OCIEnv *envhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCIStmt *stmthp;
 OCIDuration dur;
 OCIType *xmltdo;

 xmldocnode *doc;
 ocixmldbparam params[1];
 xmlnode *quux, *foo, *foo_data;
 xmlerr err;

 /* Initialize envhp, svchp, errhp, dur, stmthp */
 /* */

 /* Get an xml context */
 params[0].name_ocixmldbparam = XCTXINIT_OCIDUR;
 params[0].value_ocixmldbparam = &dur;
 xctx = OCIXmlDbInitXmlCtx(envhp, svchp, errhp, params, 1);

 /* Start processing */
 printf("Supports XML 1.0: %s\n",
 XmlHasFeature(xctx, (oratext *) "xml", (oratext *) "1.0") ?
 "YES" : "NO");

 /* Parsing a schema-based document */
 if (!(doc = XmlLoadDom(xctx, &err, "buffer", tlpxml_test_sch,
 "buffer_length", sizeof(tlpxml_test_sch)-1,
 "validate", TRUE, NULL)))
 {
 printf("Parse failed, code %d\n");
 return;
 }

 /* Create some elements and add them to the document */
 top = XmlDomGetDocElem(xctx, doc);
 quux = (xmlnode *) XmlDomCreateElem(xctx ,doc, (oratext *) "QUUX");
 foo = (xmlnode *) XmlDomCreateElem(xctx, doc, (oratext *) "FOO");

Validate using schema XmlSchemaValidate()

Obtain DOM from XMLType Cast (void *) to (xmldocnode *)

Obtain XMLType from DOM Cast (xmldocnode *) to (void *)

Table 14–2 (Cont.) XMLType Functions

Description Function Name

Using OCI and the C API

XML Parser for C 14-7

 foo_data = (xmlnode *) XmlDomCreateText(xctx, doc, (oratext *)"foo's data");
 foo_data = XmlDomAppendChild(xctx, (xmlnode *) foo, (xmlnode *) foo_data);
 foo = XmlDomAppendChild(xctx, quux, foo);
 quux = XmlDomAppendChild(xctx, top, quux);

 XmlSaveDom(xctx, &err, top, "stdio", stdout, NULL);
 XmlSaveDom(xctx, &err, doc, "stdio", stdout, NULL);

 /* Insert the document to my_table */
 ins_stmt = "insert into my_table values (:1)";

 status = OCITypeByName(envhp, errhp, svchp, (const text *) "SYS",
 (ub4) strlen((char *)"SYS"), (const text *) "XMLTYPE",
 (ub4) strlen((char *)"XMLTYPE"), (CONST text *) 0,
 (ub4) 0, dur, OCI_TYPEGET_HEADER,
 (OCIType **) &xmltdo)) ;

 if (status == OCI_SUCCESS)
 {
 exec_bind_xml(svchp, errhp, stmthp, (void *)doc, xmltdo, ins_stmt));
 }

 /* free xml ctx */
 OCIXmlDbFreeXmlCtx(xctx);
}

/*--*/
/* execute a sql statement which binds xml data */
/*--*/
sword exec_bind_xml(svchp, errhp, stmthp, xml, xmltdo, sqlstmt)
OCISvcCtx *svchp;
OCIError *errhp;
OCIStmt *stmthp;
void *xml;
OCIType *xmltdo;
OraText *sqlstmt;
{
 OCIBind *bndhp1 = (OCIBind *) 0;
 OCIBind *bndhp2 = (OCIBind *) 0;
 sword status = 0;
 OCIInd ind = OCI_IND_NOTNULL;
 OCIInd *indp = &ind;

 if(status = OCIStmtPrepare(stmthp, errhp, (OraText *)sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT)) {
 return OCI_ERROR;
 }

 if(status = OCIBindByPos(stmthp, &bndhp1, errhp, (ub4) 1, (dvoid *) 0,
 (sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)) {
 return OCI_ERROR;
 }

 if(status = OCIBindObject(bndhp1, errhp, (CONST OCIType *) xmltdo,
 (dvoid **) &xml, (ub4 *) 0, (dvoid **) &indp, (ub4 *) 0)) {
 return OCI_ERROR;
 }

Using OCI and the C API

14-8 Oracle XML Developer's Kit Programmer's Guide

 if(status = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0, (ub4) OCI_DEFAULT)) {
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}

Here is an example of how to get a document from the database and modify it using
the DOM API:

#include <xml.h>
#include <ocixmldb.h>
sword example2()
{
 OCIEnv *envhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCIStmt *stmthp;
 OCIDuration dur;
 OCIType *xmltdo;

 xmldocnode *doc;
 xmlnodelist *item_list; ub4 ilist_l;
 ocixmldbparam params[1];
 text *sel_xml_stmt = (text *)"SELECT xml_col FROM my_table";
 ub4 xmlsize = 0;
 sword status = 0;
 OCIDefine *defnp = (OCIDefine *) 0;

 /* Initialize envhp, svchp, errhp, dur, stmthp */
 /* */

 /* Get an xml context */
 params[0].name_ocixmldbparam = XCTXINIT_OCIDUR;
 params[0].value_ocixmldbparam = &dur;
 xctx = OCIXmlDbInitXmlCtx(envhp, svchp, errhp, params, 1);

 /* Start processing */
 if(status = OCITypeByName(envhp, errhp, svchp, (const text *) "SYS",
 (ub4) strlen((char *)"SYS"), (const text *) "XMLTYPE",
 (ub4) strlen((char *)"XMLTYPE"), (CONST text *) 0,
 (ub4) 0, dur, OCI_TYPEGET_HEADER,
 (OCIType **) xmltdo_p)) {
 return OCI_ERROR;
 }

 if(!(*xmltdo_p)) {
 printf("NULL tdo returned\n");
 return OCI_ERROR;
 }

 if(status = OCIStmtPrepare(stmthp, errhp, (OraText *)selstmt,
 (ub4)strlen((char *)selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT)) {
 return OCI_ERROR;
 }

 if(status = OCIDefineByPos(stmthp, &defnp, errhp, (ub4) 1, (dvoid *) 0,
 (sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) OCI_DEFAULT)) {

Using the XML Parser for C

XML Parser for C 14-9

 return OCI_ERROR;
 }

 if(status = OCIDefineObject(defnp, errhp, (OCIType *) *xmltdo_p,
 (dvoid **) &doc,
 &xmlsize, (dvoid **) 0, (ub4 *) 0)) {
 return OCI_ERROR;
 }

 if(status = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0, (ub4) OCI_DEFAULT)) {
 return OCI_ERROR;
 }

 /* We have the doc. Now we can operate on it */
 printf("Getting Item list...\n");

 item_list = XmlDomGetElemsByTag(xctx,(xmlelemnode *) elem,(oratext *)"Item");
 ilist_l = XmlDomGetNodeListLength(xctx, item_list);
 printf(" Item list length = %d \n", ilist_l);

 for (i = 0; i < ilist_l; i++)
 {
 elem = XmlDomGetNodeListItem(xctx, item_list, i);
 printf("Elem Name:%s\n", XmlDomGetNodeName(xctx, fragelem));
 XmlDomRemoveChild(xctx, fragelem);
 }

 XmlSaveDom(xctx, &err, doc, "stdio", stdout, NULL);

 /* free xml ctx */
 OCIXmlDbFreeXmlCtx(xctx);

 return OCI_SUCCESS;
}

Using the XML Parser for C
The XML Parser for C is provided with the Oracle Database and the Oracle
Application Server. It is also available for download from
http://www.oracle.com/technology/tech/xml.

It is located in $ORACLE_HOME/xdk/ on UNIX systems.

readme.html in the doc directory of the software archive contains release specific
information including bug fixes and API additions.

The XML Parser for C checks if an XML document is well-formed, and optionally,
validates it against a DTD. The parser constructs an object tree which can be accessed
through a DOM interface or the parser operates serially through a SAX interface.

You can post questions, comments, or bug reports to the XML Discussion Forum at
http://www.oracle.com/technology/tech/xml.

There are several sources of information on specifications:

XML Parser for C Calling Sequence

14-10 Oracle XML Developer's Kit Programmer's Guide

Memory Allocation
The memory callback functions XML_ALLOC_F and XML_FREE_F can be used if you
want to use your own memory allocation. If they are used, both of the functions
should be specified.

The memory allocated for parameters passed to the SAX callbacks or for nodes and
data stored with the DOM parse tree are not freed until one of the following is done:

■ XmlFreeDocument() is called.

■ XmlDestroy() is called.

Thread Safety
If threads are forked off somewhere in the init-parse-term sequence of calls, you get
unpredictable behavior and results.

Data Types Index
Table 14–3 lists the datatypes used in XML Parser for C.

Error Message Files
Error messages files are in the $ORACLE_HOME/xdk/mesg directory. You may set the
environment variable ORA_XML_MESG to point to the absolute path of the mesg
subdirectory, although this not required.

XML Parser for C Calling Sequence
Figure 14–1 describes the XML Parser for C calling sequence as follows:

1. XmlCreate() function initializes the parsing process.

2. The parsed item can be an XML document (file) or string buffer. The input is
parsed using the XmlLoadDom() function.

3. DOM or SAX API:

See Also:

■ Oracle XML API Reference "DOM APIs for C"

■ Oracle XML API Reference "SAX APIs for C"

■ Oracle XML API Reference "Callback APIs for C"

■ Oracle XML API Reference "Datatypes for C"

■ http://www.oracle.com/technology/tech/xml/

Table 14–3 Datatypes Used in XML Parser for C

Datatype Description

oratext String pointer

xmlctx Master XML context

xmlsaxcb SAX callback structure (SAX only)

ub4 32-bit (or larger) unsigned integer

uword Native unsigned integer

XML Parser for C Calling Sequence

XML Parser for C 14-11

DOM: If you are using the DOM interface, include the following steps:

■ The XmlLoadDom() function calls XmlDomGetDocElem().

■ This first step calls other DOM functions as required. These other DOM
functions are typically node or print functions that output the DOM
document.

■ You can first invoke XmlFreeDocument() to clean up any data structures
created during the parse process.

SAX: If you are using the SAX interface, include the following steps:

■ Process the results of the parser from XmlLoadSax() using callback
functions.

■ Register the callback functions. Note that any of the SAX callback functions
can be set to NULL if not needed.

4. Use XmlFreeDocument() to clean up the memory and structures used during a
parse, and go to Step 5. or return to Step 2.

5. Terminate the parsing process with XmlDestroy()

Parser Calling Sequence
The sequence of calls to the parser can be any of the following:

■ XmlCreate() - XmlLoadDom() - XmlDestroy()

■ XmlCreate() - XmlLoadDom() - XmlFreeDocument() -

XmlLoadDom() - XmlFreeDocument() - ... - XmlDestroy()

■ XmlCreate() - XmlLoadDom() -... - XmlDestroy()

XML Parser for C Default Behavior

14-12 Oracle XML Developer's Kit Programmer's Guide

Figure 14–1 XML Parser for C Calling Sequence

XML Parser for C Default Behavior
The following is the XML Parser for C default behavior:

■ Character set encoding is UTF-8. If all your documents are ASCII, you are
encouraged to set the encoding to US-ASCII for better performance.

■ Messages are printed to stderr unless an error handler is provided.

■ The default behavior for the parser is to check that the input is well-formed but
not to check whether it is valid. The property "validate" can be set to validate the
input. The default behavior for whitespace processing is to be fully conforming to
the XML 1.0 specification, that is, all whitespace is reported back to the application
but it is indicated which whitespace is ignorable. However, some applications may
prefer to set the property "discard-whitespace"which discards all whitespace
between an end-element tag and the following start-element tag.

Note: It is recommended that you set the default encoding
explicitly if using only single byte character sets (such as US-ASCII
or any of the ISO-8859 character sets) for performance up to 25%
faster than with multibyte character sets, such as UTF-8.

XmlLoadSax()
or

XmlLoadDom()

XmlCreate()error handler set

error callbacks

SAX callback set

xml input file, buffer,
db, URL, . . .

XmlDestroy()

XmlFreeDocument()SAX completes

DOM document

SAX:
callbacks invoked DOM constructedanother

DOM:
query, edit, . . .

another

DOM and SAX APIs Compared

XML Parser for C 14-13

DOM and SAX APIs Compared
Oracle XML parser for C checks if an XML document is well-formed, and optionally
validates it against a DTD. The parser constructs an object tree which can be accessed
through one of the following interfaces:

■ DOM: Tree-based APIs. A tree-based API compiles an XML document into an
internal tree structure, then allows an application to navigate that tree using the
Document Object Model (DOM), a standard tree-based API for XML and HTML
documents.

Tree-based APIs are useful for a wide range of applications, but they often put a
great strain on system resources, especially if the document is large (under very
controlled circumstances, it is possible to construct the tree in a lazy fashion to
avoid some of this problem). Furthermore, some applications need to build their
own, different data trees, and it is very inefficient to build a tree of parse nodes,
only to map it onto a new tree.

■ SAX: Event-based APIs. An event-based API, on the other hand, reports parsing
events (such as the start and end of elements) directly to the application through
callbacks, and does not usually build an internal tree. The application implements
handlers to deal with the different events, much like handling events in a
graphical user interface.

An event-based API provides a simpler, lower-level access to an XML document.
You can parse documents much larger than your available system memory, and
you can construct your own data structures using your callback event handlers.

Using the SAX API
To use SAX, an xmlsaxcb structure is initialized with function pointers and passed to
the XmlLoadSax() call. A pointer to a user-defined context structure can also be
included. That context pointer will be passed to each SAX function.

SAX Callback Structure
The SAX callback structure can be found at:

Command Line Usage
The XML Parser and XSLT Processor can be called as an executable by invoking
bin/xml:

xml [options] [document URI]
or
xml -f [options] [document filespec]

Table 14–4 lists the command line options.

See Also: Oracle XML API Reference, SAX

Table 14–4 XML Parser and XSLT Processor: Command Line Options

Option Description

-B BaseUri Set the Base URI for XSLT processor: BaseUri of
http://pqr/xsl.txt resolves pqr.txt to
http://pqr/pqr.txt

-c Conformance check only, no validation.

-e encoding Specify input file encoding.

Using the Sample Files

14-14 Oracle XML Developer's Kit Programmer's Guide

Writing C Code to Use Supplied APIs
XML Parser for C can also be invoked by writing code to use the supplied APIs. The
code must be compiled using the headers in the include/ subdirectory and linked
against the libraries in the lib/ subdirectory. Please see the Makefile in the
demo/c/ subdirectory for full details of how to build your program.

Using the Sample Files
The $ORACLE_HOME/xdk/demo/c/ directory contains several XML applications to
illustrate how to use the XML Parser for C with the DOM and SAX interfaces.

To build the sample programs, change directories to the sample directory ($ORACLE_
HOME/xdk/demo/c/ on UNIX) and read the README file. This file explains how to
build the sample programs.

Table 14–5 lists the sample files:

-E encoding Specify DOM or SAX encoding.

-f File - interpret as filespec, not URI.

-G xptrexprs Evaluates XPointer schema examples given in a file.

-h Help - show this usage. (-hh for more options.)

-hh Show complete options list.

-i n Number of times to iterate the XSLT processing.

-l language Language for error reporting.

-n Number - DOM traverse and report number of elements.

-o XSLoutfile Specifies output file of XSLT processor.

-p Print document and DTD structures after parse.

-P Pretty print from root element.

-PE encoding Specifies encoding for -P or -PP output.

-PP Pretty print from root node (DOC); includes XMLDecl.

-PX Include XMLDecl in output always.

-r Do not ignore <xsl:output> instruction in XSLT processing.

-s stylesheet Specifies the XSLT stylesheet.

-v Version - display parser version then exit.

-V var value Test top-level variables in C XSLT.

-w Whitespace - preserve all whitespace.

-W Warning - stop parsing after a warning.

-x Exercise SAX interface and print document.

Table 14–5 XML Parser for C Sample Files

Sample File Name Description

DOMNamespace.c Source for DOMNamespace program.

Table 14–4 (Cont.) XML Parser and XSLT Processor: Command Line Options

Option Description

Using the Sample Files

XML Parser for C 14-15

Table 14–6 lists the programs built by the sample files:

DOMNamespace.std Expected output from DOMNamespace.

DOMSample.c Source for DOMSample program.

DOMSample.std Expected output from DOMSample.

FullDOM.c Sample usage of DOM interface.

FullDOM.std Expected output from FullDOM.

Makefile Batch file for building sample programs.

NSExample.xml Sample XML file using namespaces.

SAXNamespace.c Source for SAXNamespace program.

SAXNamespace.std Expected output from SAXNamespace.

SAXSample.c Source for SAXSample program.

SAXSample.std Expected output from SAXSample.

XSLSample.c Source for XSLSample program.

XSLSample.std Expected output from XSLSample.

XVMSample.c Source for XVMSample program.

XVMSample.std Expected output from XVMSample.

XSLXPathSample.c Source for XSLXPathSample program.

XSLXPathSample.std Expected output from XSLXPathSample program.

XVMXPathSample.c Source for XVMXPathSample program.

XVMXPathSample.std Expected output from XVMXPathSample program.

class.xml XML file that may be used with XSLSample.

iden.xsl Stylesheet that may be used with XSLSample.

cleo.xml The Tragedy of Antony and Cleopatra, XML version of
Shakespeare's play.

Table 14–6 XML Parser for C: Sample Built Programs

Built Program Description

DOMSample A sample application using DOM APIs (shows an outline of
Cleopatra, that is, the XML elements ACT and SCENE).

SAXSample word A sample application using SAX APIs. Given a word, shows all
lines in the play Cleopatra containing that word. If no word is
specified, 'death' is used.

DOMNamespace Same as SAXNamespace, except using DOM interface.

SAXNamespace A sample application using Namespace extensions to SAX API;
prints out all elements and attributes of NSExample.xml
along with full namespace information.

FullDOM Sample usage of full DOM interface. Exercises all the calls.

Table 14–5 (Cont.) XML Parser for C Sample Files

Sample File Name Description

Using the Sample Files

14-16 Oracle XML Developer's Kit Programmer's Guide

XSLSample xmlfile xslss Sample usage of XSL processor. It takes two file names as
input, the XML file and XSL stylesheet

XVMSample xmlfile
xslfile

Sample usage of the XSLT Virtual Machine and Compiler. It
takes two files as input - the XML file and the XSL stylesheet.

XSLXPathSample
xmlfile xpathexpr

Sample usage of XSL/XPath processor. It takes an XML file
and an XPath expression as input. Generates the result of the
evaluated XPath expression.

XVMXPathSample
xmlfile xpathexpr

Sample usage of the XSLT Virtual Machine and Compiler. It
takes an XML file and an XPath expression as input. Generates
the result of the evaluated XPath expression.

Table 14–6 (Cont.) XML Parser for C: Sample Built Programs

Built Program Description

XSLT Processors for C 15-1

15
XSLT Processors for C

This chapter contains these topics:

■ XVM Processor

■ XSL Processor

■ Using the Demo Files Included with the Software

XVM Processor
The Oracle XVM Package implements the XSL Transformation (XSLT) language as
specified in the W3C Recommendation of 16 November 1999. The package includes
XSLT Compiler and XSLT Virtual Machine (XVM). The implementation by Oracle of
the XSLT compiler and the XVM enables compilation of XSLT (Version 1.0) into
bytecode format, which is executed by the virtual machine. XSLT Virtual Machine is
the software implementation of a "CPU" designed to run compiled XSLT code. The
virtual machine assumes a compiler compiling XSLT stylesheets to a sequence of
bytecodes or machine instructions for the "XSLT CPU". The bytecode program is a
platform-independent sequence of 2-byte units. It can be stored, cached and run on
different XVMs. The XVM uses the bytecode programs to transform instance XML
documents. This approach clearly separates compile-time from run-time computations
and specifies a uniform way of exchanging data between instructions. The benefits of
this approach are:

■ An XSLT stylesheet can be compiled, saved in a file, and re-used often, even on
different platforms.

■ The XVM is significantly faster and uses less memory than other XSL processors.

■ The bytecodes are not language-dependent. There is no difference between code
generated from a C or C++ XSLT compiler.

XVM Usage Example
A typical scenario of using the package APIs has the following steps:

1. Create and use an XML meta-context object.

Note: Use the new unified C API for new XDK and Oracle XML
DB applications. The old C functions are deprecated and supported
only for backward compatibility, but will not be enhanced. They
will be removed in a future release.

The new C API is described in Chapter 14, "XML Parser for C".

XVM Processor

15-2 Oracle XML Developer's Kit Programmer's Guide

xctx = XmlCreate(&err,...);

2. Create and use an XSLT compiler object.

comp = XmlXvmCreateComp(xctx);

3. Compile an XSLT stylesheet or XPath expression and store or cache the resulting
bytecode.

code = XmlXvmCompileFile(comp, xslFile, baseuri, flags, &err);

or

code = XmlXvmCompileDom (comp, xslDomdoc, flags, &err);

or

code = XmlXvmCompileXPath (comp, xpathexp, namespaces, &err);

4. Create and use an XVM object. The explicit stack size setting is needed when XVM
terminates with a "Stack Overflow" message or when smaller memory footprints
are required. See XmlXvmCreate().

vm = XmlXvmCreate(xctx, "StringStack", 32, "NodeStack", 24, NULL);

5. Set the output (optional). Default is a stream.

err = XmlXvmSetOutputDom (vm, NULL);

or

err = XmlXvmSetOutputStream(vm, &xvm_stream);

or

err = XmlXvmSetOutputSax(vm, &xvm_callback, NULL);

6. Set a stylesheet bytecode to the XVM object. Can be repeated with other bytecode.

len = XmlXvmGetBytecodeLength(code, &err);
err = XmlXvmSetBytecodeBuffer(vm, code, len);

or

err = XmlXvmSetBytecodeFile (vm, xslBytecodeFile);

7. Transform an instance XML document or evaluate a compiled XPath expression.
Can be repeated with the same or other XML documents.

err = XmlXvmTransformFile(vm, xmlFile, baseuri);

or

err = XmlXvmTransformDom (vm, xmlDomdoc);

or

obj = (xvmobj*)XmlXvmEvaluateXPath (vm, code, 1, 1, node);

8. Get the output tree fragment (if DOM output is set at step 5).

node = XmlXvmGetOutputDom (vm);

9. Delete the objects.

XSL Processor

XSLT Processors for C 15-3

XmlXvmDestroy(vm);
XmlXvmDestroyComp(comp);
XmlDestroy(xctx);

Command-Line Access of the XVM Processor
The XVM processor is accessed from the command-line this way:

xvm

Usage:

xvm options xslfile xmlfile
xvm options xpath xmlfile

Options:

-c Compile xslfile. The bytecode is in "xmlfile.xvm".
-ct Compile xslfile and transform xmlfile.
-t Transform xmlfile using bytecode from xslfile.
-xc Compile xpath. The bytecode is in "code.xvm".
-xct Compile and evaluate xpath with xmlfile.
-xt Evaluate XPath bytecode from xpath with xmlfile.

Examples:

xvm -ct db.xsl db.xml
xvm -t db.xvm db.xml
xvm -xct "doc/employee[15]/family" db.xml

Accessing XVM Processor for C
Oracle XVM Processor for C is provided with the database and the Application Server.
It is also available for download from the OTN site:

XSL Processor
The Oracle XSL/XPath Package implements the XSL Transformation (XSLT) language
as specified in the W3C Recommendation of 16 November 1999. The package includes
XSL Processor and XPath Processor. The Oracle implementation of XSL processor
follows the more common design approach, which melts 'compiler' and 'processor'
into one object.

XSL Processor Usage Example
A typical scenario of using the package APIs has the following steps:

1. Create and use an XML meta-context object.

xctx = XmlCreate(&err,...);

2. Parse the XSLT stylesheet.

xslDomdoc = XmlLoadDom(xctx, &err, "file", xslFile, "base_uri", baseuri, NULL);

3. Create an XSL Processor for the stylesheet

See Also:

■ Oracle XML API Reference "XSLTVM APIs for C"

■ http://otn.oracle.com/tech/xml/

XSL Processor

15-4 Oracle XML Developer's Kit Programmer's Guide

xslproc = XmlXslCreate (xctx, xslDomdoc, baseuri, &err);

4. Parse the instance XML document.

xmlDomdoc = XmlLoadDom(xctx, &err, "file", xmlFile, "base_uri", baseuri,
NULL);

5. Set the output (optional). Default is DOM.

err = XmlXslSetOutputStream(xslproc, &stream);

6. Transform the XML document. This step can be repeated with the same or other
XML documents.

err = XmlXslProcess (xslproc, xmlDomdoc, FALSE);

7. Get the output (if DOM).

node = XmlXslGetOutput(xslproc);

8. Delete objects.

XmlXslDestroy(xslproc);
XmlDestroy(xctx);

XPath Processor Usage Example
A typical scenario of using the package APIs has the following steps:

1. Create and use an XML meta-context object.

xctx = XmlCreate(&err,...);

2. Parse the XML document or get the current node from already existing DOM.

node = XmlLoadDom(xctx, &err, "file", xmlFile, "base_uri", baseuri, NULL);

3. Create an XPath processor.

xptproc = XmlXPathCreateCtx(xctx, NULL, node, 0, NULL);

4. Parse the XPath expression.

exp = XmlXPathParse (xptproc, xpathexpr, &err);

5. Evaluate the XPath expression.

obj = XmlXPathEval(xptproc, exp, &err);

6. Delete the objects.

XmlXPathDestroyCtx (xptproc);
XmlDestroy(xctx);

Command Line Usage of the XSL Processor
The Oracle XSL processor for C can be called as an executable by invoking bin/xsl:

xsl [switches] stylesheet instance
or
xsl -f [switches] [document filespec]

If no style sheet is provided, no output is generated. If there is a style sheet, but no
output file, output goes to stdout.

Using the Demo Files Included with the Software

XSLT Processors for C 15-5

Table 15–1 lists the command line options.

Accessing Oracle XSL Processor for C
Oracle XSL Processor for C is provided with the database and the Application Server.
It is also available for download from the OTN site:

Using the Demo Files Included with the Software
$ORACLE_HOME/xdk/demo/c/parser/ directory contains several XML applications
to illustrate how to use the XSLT for C.

Table 15–2 lists the files in that directory:

Table 15–1 XSLT Processor for C: Command Line Options

Option Description

-B BaseUri Set the Base URI for XSLT processor: BaseUri of
http://pqr/xsl.txt resolves pqr.txt to
http://pqr/pqr.txt

-e encoding Specify default input file encoding (-ee to force).

-E encoding Specify DOM or SAX encoding.

-f File - interpret as filespec, not URI.

-G xptrexprs Evaluates XPointer schema examples given in a file.

-h Help - show this usage. (Use -hh for more options.)

-hh Show complete options list.

-i n Number of times to iterate the XSLT processing.

-l language Language for error reporting.

-o XSLoutfile Specifies output file of XSLT processor.

-v Version - display parser version then exit.

-V var value Test top-level variables in C XSLT.

-w Whitespace - preserve all whitespace.

-W Warning - stop parsing after a warning.

See Also:

■ Oracle XML API Reference "XSLT APIs for C"

■ Oracle XML API Reference "XPath APIs for C"

■ http://otn.oracle.com/tech/xml/

Table 15–2 XSLT for C Demo Files

Sample File Name Description

XSLSample.c Source for XSLSample program

XSLSample.std Expected output from XSLSample

class.xml XML file that can be used with XSLSample

iden.xsl Stylesheet that can be used with XSLSample

cleo.xml XML version of Shakespeare's play

Using the Demo Files Included with the Software

15-6 Oracle XML Developer's Kit Programmer's Guide

Building the C Demo Programs for XSLT
Change directories to the demo directory and read the README file. This will explain
how to build the sample programs according to your operating system.

Here is the usage of XSLT processor sample XSLSample, which takes two files as
input, the XML file and the XSL stylesheet:

XSLSample xmlfile xslss

XVMSample.c Sample usage of XSLT Virtual Machine and compiler. It takes
two filenames as input - XML file and XSL stylesheet file.

XVMXPathSample.c Sample usage of XSLT Virtual Machine and compiler. It takes
XML file name and XPath expression as input. Generates the
result of the evaluated XPath expression.

XSLXPathSample.c Sample usage of XSL/XPath processor. It takes XML file name
and XPath expression as input. Generates the result of the
evaluated XPath expression.

Table 15–2 (Cont.) XSLT for C Demo Files

Sample File Name Description

XML Schema Processor for C 16-1

16
XML Schema Processor for C

This chapter contains these topics:

■ Oracle XML Schema Processor for C

■ Invoking XML Schema Processor for C

■ XML Schema Processor for C Usage Diagram

■ How to Run XML Schema for C Sample Programs

Oracle XML Schema Processor for C
The XML Schema Processor for C is a companion component to the XML Parser for C.
It allows support for simple and complex datatypes in XML applications.

The XML Schema Processor for C supports the W3C XML Schema Recommendation.
This makes writing custom applications that process XML documents straightforward,
and means that a standards-compliant XML Schema Processor is part of the XDK on
every operating system where Oracle is ported.

Oracle XML Schema for C Features
XML Schema Processor for C has the following features:

■ Supports simple and complex types

■ Built on XML Parser for C

■ Supports the W3C XML Schema Recommendation

Note: Use the new unified C API for new XDK and Oracle XML
DB applications. The old C functions are deprecated and supported
only for backward compatibility, but will not be enhanced. They
will be removed in a future release.

The new C API is described in Chapter 14, "XML Parser for C".

See Also: Chapter 3, "XML Parser for Java", for more information
about XML Schema and why you would want to use XML Schema.

See Also:

■ Oracle XML API Reference "Schema APIs for C"

■ /xdk/demo/c/schema/ - sample code

Invoking XML Schema Processor for C

16-2 Oracle XML Developer's Kit Programmer's Guide

Standards Conformance
The Schema Processor conforms to the following standards:

■ W3C recommendation for Extensible Markup Language (XML) 1.0

■ W3C recommendation for Document Object Model Level 1.0

■ W3C recommendation for Namespaces in XML

■ W3C recommendation for XML Schema

XML Schema Processor for C: Supplied Software
Table 16–1 lists the supplied files and directories for this release:

 Table 16–2 lists the included libraries:

Invoking XML Schema Processor for C
XML Schema Processor for C can be called as an executable by invoking bin/schema
in the install area. This takes two arguments:

■ XML instance document

■ Optionally, a default schema

The XML Schema Processor for C can also be invoked by writing code using the
supplied APIs. The code must be compiled using the headers in the include
subdirectory and linked against the libraries in the lib subdirectory. See Makefile in
the xdk/demo/c/schema subdirectory for details on how to build your program.

Error message files in different languages are provided in the mesg/ subdirectory.

XML Schema Processor for C Usage Diagram
Figure 16–1 describes the calling sequence for the XML Schema Processor for C, as
follows:

Table 16–1 XML Schema Processor for C: Supplied Files

Directory and Files Description

bin schema processor executable, schema

lib XML/XSL/Schema & support libraries

nls/data Globalization Support data files

xdk/demo/c/schema example usage of the Schema processor

xdk/include header files

xdk/mesg error message files

xdk/readme.html introductory file

Table 16–2 XML Schema Processor for C: Supplied Libraries

Included Library Description

libxml10.a XML Parser, XSL Processor, XML Schema Processor

libcore10.a CORE functions

libnls10.a Globalization Support

How to Run XML Schema for C Sample Programs

XML Schema Processor for C 16-3

The sequence of calls to the processor is: initialize, load, validate, validate, ..., validate,
terminate.

1. The initialize call is invoked once at the beginning of a session; it returns a schema
context which is used throughout the session.

2. Schema documents to be used in the session are loaded in advance.

3. The instance document to be validated is first parsed with the XML parser.

4. The top of the XML element subtree for the instance is then passed to the schema
validate function.

5. If no explicit schema is defined in the instance document, any pre-loaded schemas
will be used.

6. More documents can then be validated using the same schema context.

7. When the session is over, the Schema tear-down function is called, which releases
all memory allocated for the loaded schemas.

Figure 16–1 XML Schema Processor for C Usage Diagram

How to Run XML Schema for C Sample Programs
The directory xdk/demo/c/schema contains sample XML Schema applications that
illustrate how to use Oracle XML Schema Processor with its API. Table 16–3 lists the
provided sample files.

XMLSchemaLoad()

XMLSchemaDestroy()

Validation ResultsXMLSchemaValidate()

Parsed XML Doc Input

XMLSchemaSetValidateOptions()

XMLSchemaCreate()

How to Run XML Schema for C Sample Programs

16-4 Oracle XML Developer's Kit Programmer's Guide

To build the sample programs, run make.

To build the programs and run them, comparing the actual output to expected output:

make sure

Table 16–3 XML Schema for C Samples Provided

Sample File Description

Makefile Makefile to build the sample programs and run them, verifying
correct output.

xsdtest.c Program which invokes the XML Schema for C API

car.{xsd,xml,std} Sample schema, instance document, and expected
output respectively, after running xsdtest on them.

aq.{xsd,xml,std} Second sample schema, instance document, and expected
output respectively, after running xsdtest on them.

pub.{xsd,xml,std} Third sample schema, instance document, and expected
output respectively, after running xsdtest on them.

Getting Started with XDK C++ Components 17-1

17
Getting Started with XDK C++ Components

This chapter contains this topic:

■ Installation of the XDK C++ Components

Installation of the XDK C++ Components
XDK C++ components are the basic building blocks for reading, manipulating, and
transforming XML documents.

Oracle XDK C++ components consist of the following:

■ XML Parser for C++: supports parsing XML documents with the DOM or SAX
interfaces.

■ XSL Processor for C++: supports transforming XML documents.

■ XML Schema Processor for C++: supports parsing and validating XML files
against an XML Schema definition file (default extension.xsd).

■ Class Generator for C++: generates a set of C++ source files based on an input
DTD or XML Schema.

Getting the C++ Components of XDK
If you have installed the Oracle Database or Oracle Application Server, you will
already have the XDK C++ components installed. You can also download the latest
versions of XDK C++ components from OTN.

In order to download the XDK from OTN, follow these steps:

1. Go to the URL http://www.oracle.com/technology/tech/xml/

2. Click the XML Developer's Kit link.

3. Logon with your OTN username and password (registration is free if you don't
already have an account).

4. Select the version that you want to download.

5. Accept all conditions in the licensing agreement.

6. Click the appropriate *.tar.gz or *.zip file.

7. Extract the files in the distribution:

a. Choose a directory under which you would like the xdk directory and
subdirectories to go.

Installation of the XDK C++ Components

17-2 Oracle XML Developer's Kit Programmer's Guide

b. Change to that directory; then extract the XDK download archive file with the
tool:

UNIX: tar xvfz xdk_xxx.tar.gz
Windows: use WinZip visual archive extraction tool

Libraries in the UNIX Environment for C++ XDK
After installing the XDK, the directory structure is:

-$XDK_HOME
 | - bin: executable files
 | - lib: library files.
 | - nls/data: Globalization Support data files(*.nlb)
 | - xdk
 | - demo/cpp: demonstration code
 | - doc/cpp: documentation
 | - public: header files
 | - mesg: message files (*.msb)

The libraries that come with the UNIX version of XDK C++ components are listed in
the following table:

The XDK C++ components package depends on the Oracle CORE and Globalization
Support libraries, which are listed in the following table:

Setting the UNIX Environment for C++
Check that the environment variable ORA_NLS10 is set to point to the location of the
Globalization Support data files. If you install the Oracle database, you can set it to be:

setenv ORA_NLS10 ${ORACLE_HOME}/nls/data

If no Oracle database is installed, you must use the Globalization Support data files
that come with the XDK release:

setenv ORA_NLS10 ${XDK_HOME}/nls/data

Check that the environment variable ORA_XML_MESG is set to point to the absolute
path of the mesg directory. If you install the Oracle database, although this is not
required, you can set it to:

setenv ORA_XML_MESG ${ORACLE_HOME}/xdk/mesg

Table 17–1 XDK Libraries for C++ (UNIX)

Component Library Notes

XML Parser, XSL Processor,
XML Schema Processor,

Class Generator

libxml10.a XML Parser V2 for C++, which includes DOM,
SAX, and XSLT APIs, XML Schema Processor
for C++, Class Generator for C++

Table 17–2 Dependent Libraries of XDK C++ Components on UNIX

Component Library Notes

CORE Library libcore10.a Oracle CORE library

Globalization
Support Library

libnls10.a Oracle Globalization Support common library

Globalization
Support Library

libunls10.a Oracle Globalization Support library for Unicode
support

Installation of the XDK C++ Components

Getting Started with XDK C++ Components 17-3

If no Oracle database is installed, you must set it to be the directory of the error
message files that comes with the XDK release:

setenv ORA_XML_MESG ${XDK_HOME}/xdk/mesg

The XDK components can be invoked by writing your own programs to use the
supplied API. Compile the programs using the headers in the xdk/include/
subdirectory and link against the libraries in the lib/ subdirectory. See Makefile in
the xdk/demo/ subdirectory for full details of how to build your programs.

Command Line Environment Setup
The parser may be called as an executable by invoking bin/xml, which has the
following options:

To get the XDK version you are using on UNIX:

strings libxml10.a | grep -i Version

You can now use the Makefiles to compile and link the demo code and start
developing your program using XDK C++ components.

Windows Environment Setup for C++ XDK
These are the Windows libraries that come with the XDK C++ components:

The XDK C++ components (Windows) depends on the Oracle CORE and
Globalization Support libraries in the following table:

Environment for Command Line Usage on Windows
Check that the environment variable ORA_NLS10 is set to point to the location of the
Globalization Support data files. If you install the Oracle database:

See Also: For information about Command Line Parser usage, see
Table 13–3, " Parser Command Line Options"

Table 17–3 XDK C++ Components Libraries on Windows

Component Library Notes

XML Parser

XSL Processor

XML Schema
Processor

Class Generator

oraxml10.lib
oraxml10.dll

XML Parser V2 for C++, which includes DOM, SAX,
and XSLT APIs

XML Schema Processor for C++

Class Generator for C++

Table 17–4 Dependent Libraries of XDK C++ Components on Windows

Component Library Notes

CORE Library oracore10.dll Oracle CORE library

Globalization
Support Library

oranls.dll Oracle Globalization Support common library

Globalization
Support Library

oraunls.dll Oracle Globalization Support library for Unicode
support

Installation of the XDK C++ Components

17-4 Oracle XML Developer's Kit Programmer's Guide

set ORA_NLS10 = %ORACLE_HOME%\nls\data

If no Oracle database is installed, you must use the Globalization Support data files
that come with the XDK release:

set ORA_NLS10 =%XDK_HOME%\nls\data

Check that the environment variable ORA_XML_MESG is set to point to the absolute
path of the mesg directory. If you install the Oracle database, although it is not
required, you can set it to:

set ORA_XML_MESG =%ORACLE_HOME%\xdk\mesg

If no Oracle database is installed, you must set it to be the directory of the error
message files, which comes with the XDK release:

set ORA_XML_MESG =%XDK_HOME%\xdk\mesg

Setting the Windows Environment for C++ XDK
Set the path for cl compiler, if you need to compile the code using make.bat in a
command line.

Go to the Start Menu and select Settings > Control Panel. In the pop up window of
Control Panel, select System icon and double click. A window named System
Properties will pop up. Select Environment Tab and input the path of cl.exe to the
PATH variable shown in Figure 17–1.

See Also: For information about Command Line Parser usage, see
Table 13–3, " Parser Command Line Options"

Installation of the XDK C++ Components

Getting Started with XDK C++ Components 17-5

Figure 17–1 Setting the PATH for the cl Compiler

You must update the file Make.bat by adding the path of the libraries and header
files to the compile and link commands:

:COMPILE
set filename=%1
cl -c -Fo%filename%.obj %opt_flg% /DCRTAPI1=_cdecl /DCRTAPI2=_cdecl /nologo /Zl
/Gy /DWIN32 /D_WIN32 /DWIN_NT /DWIN32COMMON /D_DLL /D_MT /D_X86_=1
/Doratext=OraText -I. -I..\..\..\include -
ID:\Progra~1\Micros~1\VC98\Include %filename%.c
goto :EOF

:LINK
set filename=%1
link %link_dbg% /out:..\..\..\..\bin\%filename%.exe /libpath:%ORACLE_HOME%\lib
/libpath:D:\Progra~1\Micros~1\VC98\lib /libpath:..\..\..\..\lib %filename%.obj
oraxml10.lib oracore10.lib oranls10.lib oraunls10.lib user32.lib kernel32.lib
msvcrt.lib ADVAPI32.lib oldnames.lib winmm.lib
:EOF

where

D:\Progra~1\Micros~1\VC98\Include: is the path for header files and
D:\Progra~1\Micros~1\VC98\lib: is the path for library files.

Now you can start developing with XDK C++ components.

Installation of the XDK C++ Components

17-6 Oracle XML Developer's Kit Programmer's Guide

Using XDK C++ Components with Visual C++
Check that the environment variable ORA_NLS10 is set to point to the location of the
Globalization Support data files.

In order for Visual C++ to know the environment variable, you need to use the system
setup for Windows to define the environment variable.

Go to Start Menu and select Settings > Control Panel. In the pop-up window of
Control Panel, select System icon and double click. A window named System
Properties will be popped up. Select Environment Tab and input ORA_NLS10.

In order for Visual C++ to employ the environment variable, you need to use the
system setup for Windows to define the environment variable.

Go to the Start Menu and select Settings > Control Panel. In the pop-up window of
Control Panel, select System icon and double click. A window named System
Properties will pop up. Select Environment Tab and input the ORA_XML_MESG, as
shown in Figure 17–2:

Figure 17–2 Setting Up ORA_XML_MESG Environment Variable

Figure 17–3, "Setup of the PATH for DLLs" shows how to set up the PATH for DLL
libraries:

Installation of the XDK C++ Components

Getting Started with XDK C++ Components 17-7

Figure 17–3 Setup of the PATH for DLLs

After you open a workspace in Visual C++ and include the *.cpp files for your
project, you must set the path for the project. Go to the Tools menu and select Options.
A window will pop up. Select the Directory tab and set your include path as shown in
Figure 17–4:

Installation of the XDK C++ Components

17-8 Oracle XML Developer's Kit Programmer's Guide

Figure 17–4 Setting Your Include Path in Visual C++

Then set your library path as shown in Figure 17–5:

Figure 17–5 Setting Your Static Library Path in Visual C++

This illustration is of an Options window in Visual C++ as described in the section
"Using XDK C++ Components with Visual C++" that surrounds it. The tab
"Directories" is selected. The static library path is set in this window.

After setting the paths for the static libraries in %XDK_HOME%\lib, you also need to
set the library name in the compiling environment of Visual C++.

Installation of the XDK C++ Components

Getting Started with XDK C++ Components 17-9

Go to the Project menu in the menu bar and select Settings. A window will pop up.
Please select the Link tab in the Object/Library Modules field enter the name of XDK
C++ components libraries, as shown in Figure 17–6:

Figure 17–6 Setting Up the Static Libraries in Visual C++ Project

You can now compile and run the demo programs, and start using XDK C++
components.

See Also: Chapter 19, "XML Parser for C++" for further
discussion of the XDK C++ components

Installation of the XDK C++ Components

17-10 Oracle XML Developer's Kit Programmer's Guide

Unified C++ Interfaces 18-1

18
Unified C++ Interfaces

This chapter contains these topics:

■ What is the Unified C++ API?

■ Accessing the C++ Interface

■ OracleXML Namespace

■ Ctx Namespace

■ IO Namespace

■ Tools Package

■ Error Message Files

What is the Unified C++ API?
Unified C++ APIs for XML tools represent a set of C++ interfaces for Oracle XML
tools. This unified approach provides a generic, interface-based framework that allows
XML tools to be improved, updated, replaced, or added without affecting any
interface-based user code, and minimally affecting application drivers and, possibly,
application configuration. All three kinds of C++ interfaces: abstract classes, templates,
and implicit interfaces represented by generic template parameters, are used by the
unified framework.

Accessing the C++ Interface
The C++ interface is provided with the database and the Oracle Application Server
and is also available for download from the OTN site:
http://www.oracle.com/technology/tech/xml.

Sample files are located at xdk/demo/cpp.

Note: Use the new unified C++ API in xml.hpp for new XDK
applications. The old C++ API in oraxml.hpp is deprecated and
supported only for backward compatibility, but will not be
enhanced. It will be removed in a future release.

These C++ APIs support the W3C specification as closely as
possible; however, Oracle cannot guarantee that the specification is
fully supported by our implementation because the W3C
specification does not cover C++ implementations.

OracleXML Namespace

18-2 Oracle XML Developer's Kit Programmer's Guide

readme.html in the root directory of the software archive contains release specific
information including bug fixes and API additions.

OracleXML Namespace
OracleXml is the C++ namespace for all XML C++ interfaces. It contains common
interfaces and namespaces for different XDK packages. The following namespaces are
included:

■ Ctx - namespace for TCtx related declarations

■ Dom - namespace for DOM related declarations

■ Parser - namespace for parser and schema validator declarations

■ IO - namespace for input and output source declarations

■ Xsl - namespace for XSLT related declarations

■ XPath- namespace for XPath related declarations

■ Tools - namespace for Tools::Factory related declarations

OracleXml is fully defined in the file xml.hpp. Another namespace, XmlCtxNS,
visible to users, is defined in xmlctx.hpp. That namespace contains C++ definitions
of data structures corresponding to C level definitions of the xmlctx context and
related data structures. While there is no need for users to know details of that
namespace, xmlctx.hpp needs to be included in most application main modules.

Multiple encodings are currently supported on the base of the oratext type that is
currently supposed to be used by all implementations. All strings are represented as
oratext*.

OracleXML Interfaces
XMLException Interface - This is the root interface for all XML exceptions.

Ctx Namespace
The Ctx namespace contains data types and interfaces related to the TCtx interface.

OracleXML Datatypes
DATATYPE encoding - a particular supported encoding. The following kinds of
encodings (or encoding names) are supported:

■ data_encoding

■ default_input_encoding

■ input_encoding - overwrites the previous one

■ error_language - gets overwritten by the language of the error handler, if specified

DATATYPE encodings - array of encodings.

Ctx Interfaces
ErrorHandler Interface - This is the root error handler class. It deals with local
processing of errors, mainly from the underlying C implementation. It may throw
XmlException in some implementations. But this is not specified in its signature in
order to accommodate needs of all implementations. However, it can create exception

Tools Package

Unified C++ Interfaces 18-3

objects. The error handler is passed to the TCtx constructor when TCtx is initialized.
Implementations of this interface are provided by the user.

MemAllocator Interface - This is a simple root interface to make the TCtx interface
reasonably generic so that different allocator approaches can be used in the future. It is
passed to the TCtx constructor when TCtx is initialized. It is a low level allocator that
does not know the type of an object being allocated. The allocators with this interface
can also be used directly. In this case the user is responsible for the explicit
deallocation of objects (with dealloc).

If the MemAllocator interface is passed as a parameter to the TCtx constructor, then,
in many cases, it makes sense to overwrite the operator new. In this case all memory
allocations in both C and C++ can be done by the same allocator.

Tctx Interface - This is an implicit interface to XML context implementations. It is
primarily used for memory allocation, error (not exception) handling, and different
encodings handling. The context interface is an implicit interface that is supposed to be
used as type parameter. The name TCtx will be used as a corresponding type
parameter name. Its actual substitutions are instantiations of implementations
parameterized (templatized) by real context implementations. In the case of errors
XmlException might be thrown.

All constructors create and initialize context implementations. In a shared server
environment a separate context implementation has to be initialized for each thread.

IO Namespace
The IO namespace specifies interfaces for the different input and output options for all
XML tools.

IO Datatypes
Datatype InputSourceType specifies different kinds of input sources supported
currently. They include:

■ ISRC_URI - Input is to be read from the specified URI.

■ ISRC_FILE - Input is to be read from a file.

■ ISRC_BUFFER - Input is to be read from a buffer.

■ ISRC_DOM - Input is a DOM tree.

■ ISRC_CSTREAM - Input is a C level stream.

IO Interfaces
URISource - This is an interface to inputs from specified URIs.

FileSource - This is an interface to inputs from a file.

BufferSource - This is an interface to inputs from a buffer.

DOMSource - This is an interface to inputs from a DOM tree.

CStreamSource - This is an interface to inputs from a C level stream.

Tools Package
Tools is the package (sub-space of OracleXml) for types and interfaces related to the
creation and instantiation of Oracle XML tools.

Error Message Files

18-4 Oracle XML Developer's Kit Programmer's Guide

Tools Interfaces
FactoryException - Specifies tool's factory exceptions. It is derived from
XMLExceptions.

Factory - XML tools factory. Hides implementations of all XML tools and provides
methods to create objects representing these tools based on their ID values.

Error Message Files
Error message files are provided in the mesg subdirectory. The messages files also
exist in the $ORACLE_HOME/xdk/mesg directory. You can set the environment
variable ORA_XML_MESG to point to the absolute path of the mesg subdirectory,
although this not required.

See Also: Oracle XML API Reference

XML Parser for C++ 19-1

19
XML Parser for C++

This chapter contains these topics:

■ Introduction to Parser for C++

■ Dom Namespace

■ DOM Interfaces

■ Parser Namespace

■ Thread Safety

■ XML Parser for C++ Usage

■ XML Parser for C++ Default Behavior

■ C++ Sample Files

Introduction to Parser for C++
Oracle XML Parser for C++ checks if an XML document is well-formed, and optionally
validates it against a DTD or XML schema. The parser constructs an object tree which
can be accessed through one of the following two XML APIs:

■ DOM: Tree-based APIs. A tree-based API compiles an XML document into an
internal tree structure, then allows an application to navigate that tree using the
Document Object Model (DOM), a standard tree-based API for XML and HTML
documents.

■ SAX: Event-based APIs. An event-based API, on the other hand, reports parsing
events (such as the start and end of elements) directly to the application through a
user defined SAX even handler, and does not usually build an internal tree. The
application implements handlers to deal with the different events, much like
handling events in a graphical user interface.

Tree-based APIs are useful for a wide range of applications, but they often put a great
strain on system resources, especially if the document is large (under very controlled
circumstances, it is possible to construct the tree in a lazy fashion to avoid some of this
problem). Furthermore, some applications need to build their own, different data trees,
and it is very inefficient to build a tree of parse nodes, only to map it onto a new tree.

Note: Use the new unified C++ API in xml.hpp for new XDK
applications. The old C++ API in oraxml.hpp is deprecated and
supported only for backward compatibility, but will not be
enhanced. It will be removed in a future release.

Dom Namespace

19-2 Oracle XML Developer's Kit Programmer's Guide

Dom Namespace
This is the namespace for DOM-related types and interfaces.

DOM interfaces are represented as generic references to different implementations of
the DOM specification. They are parameterized by Node that supports various
specializations and instantiations. Of them, the most important is xmlnode which
corresponds to the current C implementation

These generic references do not have a NULL-like value. Any implementation must
never create a reference with no state (like NULL). If there is a need to signal that
something has no state, an exception should be thrown.

Many methods might throw the SYNTAX_ERR exception, if the DOM tree is incorrectly
formed, or throw UNDEFINED_ERR, in the case of wrong parameters or unexpected
NULL pointers. If these are the only errors that a particular method might throw, it is
not reflected in the method signature.

Actual DOM trees do not depend on the context, TCtx. However, manipulations on
DOM trees in the current, xmlctx-based implementation require access to the current
context, TCtx. This is accomplished by passing the context pointer to the constructor
of DOMImplRef. In multithreaded environment DOMImplRef is always created in the
thread context and, so, has the pointer to the right context.

DOMImplRef provides a way to create DOM trees. DomImplRef is a reference to the
actual DOMImplementation object that is created when a regular, non-copy
constructor of DomImplRef is invoked. This works well in a multithreaded
environment where DOM trees need to be shared, and each thread has a separate
TCtx associated with it. This works equally well in a single threaded environment.

DOMString is only one of the encodings supported by Oracle implementations. The
support of other encodings is an Oracle extension. The oratext* data type is used for
all encodings.

Interfaces represent DOM level 2 Core interfaces according to
http://www.w3.org/TR/DOM-Level-2-Core/core.html. These C++ interfaces
support the DOM specification as closely as possible. However, Oracle cannot
guarantee that the specification is fully supported by our implementation because the
W3C specification does not cover C++ binding.

DOM Datatypes
DATATYPE DomNodeType - Defines types of DOM nodes.

DATATYPE DomExceptionCode - Defines exception codes returned by the DOM API.

DOM Interfaces
DOMException Interface - See exception DOMException in the W3C DOM
documentation. DOM operations only raise exceptions in "exceptional" circumstances:
when an operation is impossible to perform (either for logical reasons, because data is
lost, or because the implementation has become unstable). The functionality of
XMLException can be used for a wider range of exceptions.

NodeRef Interface - See interface Node in the W3C documentation.

DocumentRef Interface - See interface Document in the W3C documentation.

DocumentFragmentRef Interface - See interface DocumentFragment in the W3C
documentation.

ElementRef Interface - See interface Element in the W3C documentation.

Dom Namespace

XML Parser for C++ 19-3

AttrRef Interface - See interface Attr in the W3C documentation.

CharacterDataRef Interface - See interface CharacterData in the W3C
documentation.

TextRef Interface - See Text nodes in the W3C documentation.

CDATASectionRef Interface - See CDATASection nodes in the W3C documentation.

CommentRef Interface - See Comment nodes in the W3C documentation.

ProcessingInstructionRef Interface - See PI nodes in the W3C documentation.

EntityRef Interface - See Entity nodes in the W3C documentation.

EntityReferenceRef Interface - See EntityReference nodes in the W3C
documentation.

NotationRef Interface - See Notation nodes in the W3C documentation.

DocumentTypeRef Interface - See DTD nodes in the W3C documentation.

DOMImplRef Interface - See interface DOMImplementation in the W3C DOM
documentation. DOMImplementation is fundamental for manipulating DOM trees.
Every DOM tree is attached to a particular DOM implementation object. Several DOM
trees can be attached to the same DOM implementation object. Each DOM tree can be
deleted and deallocated by deleting the document object. All DOM trees attached to a
particular DOM implementation object are deleted when this object is deleted.
DOMImplementation object is not visible to the user directly. It is visible through
class DOMImplRef. This is needed because of requirements in the case of
multithreaded environments

NodeListRef Interface - Abstract implementation of node list. See interface NodeList
in the W3C documentation.

NamedNodeMapRef Interface - Abstract implementation of a node map. See interface
NamedNodeMap in the W3C documentation.

DOM Traversal and Range Datatypes
DATATYPE AcceptNodeCode defines values returned by node filters provided by
the user and passed to iterators and tree walkers.

DATATYPE WhatToShowCode specifies codes to filter certain types of nodes.

DATATYPE RangeExceptionCode specifies Exception kinds that can be thrown by
the Range interface.

DATATYPE CompareHowCode specifies kinds of comparisons that can be done on
two ranges.

DOM Traversal and Range Interfaces
NodeFilter Interface - DOM 2 Node Filter.

NodeIterator Interface - DOM 2 Node Iterator.

TreeWalker Interface - DOM 2 TreeWalker.

DocumentTraversal Interface - DOM 2 interface.

RangeException Interface - Exceptions for DOM 2 Range operations.

Range Interface - DOM 2 Range.

DocumentRange Interface - DOM 2 interface.

Parser Namespace

19-4 Oracle XML Developer's Kit Programmer's Guide

Parser Namespace
DOMParser Interface - DOM parser root class.

GParser Interface - Root class for XML parsers.

ParserException Interface - Exception class for parser and validator.

SAXHandler Interface - Root class for current SAX handler implementations.

SAXHandlerRoot Interface - Root class for all SAX handlers.

SAXParser Interface - Root class for all SAX parsers.

SchemaValidator Interface - XML schema-aware validator.

GParser Interface
GParser Interface - Root class for all XML parser interfaces and implementations. It is
not an abstract class, that is, it is not an interface. It is a real class that allows users to
set and check parser parameters.

DOMParser Interface
DOMParser Interface - DOM parser root abstract class or interface. In addition to
parsing and checking that a document is well formed, DOMParser provides means to
validate the document against DTD or XML schema.

SAXParser Interface
SAXParser Interface - Root abstract class for all SAX parsers.

SAX Event Handlers
To use SAX, a SAX event handler class should be provided by the user and passed to
the SAXParser in a call to parse() or set before such call.

SAXHandlerRoot Interface - root class for all SAX handlers.

SAXHandler Interface - root class for current SAX handler implementations.

Thread Safety
If threads are forked off somewhere in the midst of the init-parse-term sequence of
calls, you will get unpredictable behavior and results.

XML Parser for C++ Usage
1. A call to Tools::Factory to create a parser initializes the parsing process.

2. The XML input can be any of the InputSource kinds (see IO namespace).

3. DOMParser invocation results in the DOM tree.

4. SAXParser invocation results in SAX events.

5. A call to parser destructor terminates the process.

XML Parser for C++ Default Behavior
The following is the XML Parser for C++ default behavior:

C++ Sample Files

XML Parser for C++ 19-5

■ Character set encoding is UTF-8. If all your documents are ASCII, you are
encouraged to set the encoding to US-ASCII for better performance.

■ Messages are printed to stderr unless msghdlr is specified.

■ XML Parser for C++ will check if an XML document is well-formed, and
optionally validate it against a DTD. The parser will construct an object tree which
can be accessed through a DOM interface or operate serially through a SAX
interface.

■ A parse tree which can be accessed by DOM APIs is built unless saxcb is set to
use the SAX callback APIs. Note that any of the SAX callback functions can be set
to NULL if not needed.

■ The default behavior for the parser is to check that the input is well-formed but
not to check whether it is valid. The flag XML_FLAG_VALIDATE can be set to
validate the input. The default behavior for whitespace processing is to fully
conform to the XML 1.0 spec, that is, all whitespace is reported back to the
application but it is indicated which whitespace is ignorable. However, some
applications may prefer to set the XML_FLAG_DISCARD_WHITESPACE which will
discard all whitespace between an end-element tag and the following
start-element tag.

■ In both of these cases, an event-based API provides a simpler, lower-level access to
an XML document: you can parse documents much larger than your available
system memory, and you can construct your own data structures using your
callback event handlers.

C++ Sample Files
xdk/demo/cpp/parser/ directory contains several XML applications to illustrate
how to use the XML Parser for C++ with the DOM and SAX interfaces.

Change directories to the sample directory ($ORACLE_HOME/xdk/demo/cpp on
Solaris, for example) and read the README file. This will explain how to build the
sample programs.

Table 19–1 lists the sample files in the directory. Each file *Main.cpp has a
corresponding *Gen.cpp and *Gen.hpp.

Note: It is recommended that you set the default encoding
explicitly if using only single byte character sets (such as US-ASCII
or any of the ISO-8859 character sets) for performance up to 25%
faster than with multibyte character sets, such as UTF-8.

Table 19–1 XML Parser for C++ Sample Files

Sample File Name Description

DOMSampleMain.cpp Sample usage of C++ interfaces of XML Parser and DOM.

FullDOMSampleMain.cpp Manually build DOM and then exercise.

SAXSampleMain.cpp Source for SAXSample program.

See Also: Oracle XML API Reference

C++ Sample Files

19-6 Oracle XML Developer's Kit Programmer's Guide

XSLT Processor for C++ 20-1

20
XSLT Processor for C++

This chapter contains these topics:

■ Accessing XSLT for C++

■ Xsl Namespace

■ XSLT for C++ DOM Interface Usage

■ Invoking XSLT for C++

■ Using the Sample Files Included with the Software

Accessing XSLT for C++
XSLT for C++ is provided with the database and the Application Server. It is also
available for download from the OTN site
http://www.oracle.com/technology/tech/xml.

Sample files are located at xdk/demo/cpp/new.

readme.html in the root directory of the software archive contains release specific
information including bug fixes and API additions.

Xsl Namespace
This is the namespace for XSLT compilers and transformers.

Xsl Interfaces
XslException Interface - Root interface for all XSLT-related exceptions.

Transformer Interface -Basic XSLT processor. This interface can be used to invoke all
XSLT processors.

CompTransformer Interface - Extended XSLT processor. This interface can be used
only with processors that create intermediate binary bytecode (currently XVM-based
processor only).

Note: Use the new unified C++ API in xml.hpp for new XDK
applications. The old C++ API in oraxml.hpp is deprecated and
supported only for backward compatibility, but will not be
enhanced. It will be removed in a future release.

See Also: "XVM Processor" on page 15-1

XSLT for C++ DOM Interface Usage

20-2 Oracle XML Developer's Kit Programmer's Guide

Compiler Interface - XSLT compiler. It is used for compilers that compile XSLT into
binary bytecode.

XSLT for C++ DOM Interface Usage
1. There are two inputs to XMLParser.xmlparse():

■ The XML document

■ The stylesheet to be applied to the XML document

2. Any XSLT processor is initiated by calling the tools factory to create a particular
XSLT transformer or compiler.

3. The stylesheet is supplied to any transformer by calling setXSL() member
functions.

4. The XML instance document is supplied as a parameter to the transform member
functions.

5. The resultant document (XML, HTML, VML, and so on) is typically sent to an
application for further processing. The document is sent as a DOM tree or as a
sequence of SAX events. SAX events are produced if a SAX event handler is
provided by the user.

6. The application terminates the XSLT processors by invoking their destructors.

Invoking XSLT for C++
XSLT for C++ can be invoked in two ways:

■ By invoking the executable on the command line

■ By writing C++ code and using the supplied APIs

Command Line Usage
XSLT for C++ can be called as an executable by invoking bin/xml.

Writing C++ Code to Use Supplied APIs
XSLT for C++ can also be invoked by writing code to use the supplied APIs. The code
must be compiled using the headers in the public subdirectory and linked against
the libraries in the lib subdirectory. Please see the Makefile or make.bat in
xdk/demo/cpp/new for full details of how to build your program.

Using the Sample Files Included with the Software
The $ORACLE_HOME/xdk/demo/cpp/parser/ directory contains several XML
applications to illustrate how to use the XSLT for C++.

Table 20–1 lists the sample files.

See Also: Oracle XML API Reference

See Also: Table 14–4, " XML Parser and XSLT Processor: Command Line
Options"

Using the Sample Files Included with the Software

XSLT Processor for C++ 20-3

Table 20–1 XSLT for C++ Sample Files

Sample File Name Description

XSLSampleMain.cpp
XSLSampleGen.cpp
XSLSampleGen.hpp

Sources for sample XSLT usage program. XSLSample takes
two arguments, the XSL stylesheet and the XML file. If you
redirect stdout of this program to a file, you may have some
output missing, depending on your environment.

XVMSampleMain.cpp
XVMSampleGen.cpp
XVMSampleGen.hpp

Sources for the sample XVM usage program.

Using the Sample Files Included with the Software

20-4 Oracle XML Developer's Kit Programmer's Guide

XML Schema Processor for C++ 21-1

21
XML Schema Processor for C++

This chapter contains these topics:

■ Oracle XML Schema Processor for C++

■ XML Schema Processor API

■ Running the Provided XML Schema for C++ Sample Programs

Oracle XML Schema Processor for C++
The XML Schema Processor for C++ is a companion component to the XML Parser for
C++ that allows support to simple and complex datatypes into XML applications.

The XML Schema Processor for C++ supports the W3C XML Schema
Recommendation. This makes writing custom applications that process XML
documents straightforward, and means that a standards-compliant XML Schema
Processor is part of the XDK on each operating system where Oracle is ported.

Oracle XML Schema for C++ Features
XML Schema Processor for C++ has the following features:

■ Supports simple and complex types

■ Built upon the XML Parser for C++

■ Supports the W3C XML Schema Recommendation

The XML Schema Processor for C++ class is
OracleXml::Parser::SchemaValidator.

Online Documentation
Documentation for Oracle XML Schema Processor for C++ is located in
/xdk/doc/cpp/schema directory in your install area.

Note: Use the new unified C++ API in xml.hpp for new XDK
applications. The old C++ API in oraxml.hpp is deprecated and
supported only for backward compatibility, but will not be
enhanced. It will be removed in a future release.

See Also: Oracle XML API Reference

XML Schema Processor API

21-2 Oracle XML Developer's Kit Programmer's Guide

Standards Conformance
The XML Schema Processor for C++ conforms to the following standards:

■ W3C recommendation for Extensible Markup Language (XML) 1.0

■ W3C recommendation for Document Object Model Level 1.0

■ W3C recommendation for Namespaces in XML 1.0

■ W3C recommendation for XML Schema 1.0

XML Schema Processor API
Interface SchemaValidator is an abstract template class to handle XML
schema-based validation of XML documents.

Invoking XML Schema Processor for C++
The XML Schema Processor for C++ can be called as an executable by invoking
bin/schema in the install area. This takes the arguments:

■ XML instance document

■ Optionally, a default schema

■ Optionally, the working directory

Table 21–1 lists the options (can be listed if the option is invalid or -h is the option):

The XML Schema Processor for C++ can also be invoked by writing code using the
supplied APIs. The code must be compiled using the headers in the include
subdirectory and linked against the libraries in the lib subdirectory. See Makefile
or Make.bat in the xdk/demo/cpp/schema directory for details on how to build
your program.

Error message files in different languages are provided in the mesg subdirectory.

Running the Provided XML Schema for C++ Sample Programs
The directory xdk/demo/cpp/schema contains a sample application that illustrates
how to use Oracle XML Schema Processor for C++ with its API. Table 21–2 lists the
sample files provided.

Table 21–1 XML Schema Processor for C++ Command Line Options

Option Description

-0 Always exit with code 0 (success).

-e encoding Specify default input file encoding.

-E encoding Specify output/data/presentation encoding.

-h Help. Prints these choices.

-i Ignore provided schema.

-o num Validation option.

-p Print document instance to stdout on success.

-u Force the Unicode path.

-v Version - display version, then exit.

Running the Provided XML Schema for C++ Sample Programs

XML Schema Processor for C++ 21-3

To build the sample programs, run make.

To build the programs and run them, comparing the actual output to expected output:

make sure

Table 21–2 XML Schema Processor for C++ Samples Provided

Sample File Description

Makefile Makefile to build the sample programs and run them, verifying
correct output.

xsdtest.cpp Trivial program which invokes the XML Schema for C++ API

car.{xsd,xml,std} Sample schema, instance document, expected
output respectively, after running xsdtest on them.

aq.{xsd,xml,std} Second sample schema's, instance document, expected
output respectively, after running xsdtest on them.

pub.{xsd,xml,std} Third sample schema's, instance document, expected
output respectively, after running xsdtest on them.

Running the Provided XML Schema for C++ Sample Programs

21-4 Oracle XML Developer's Kit Programmer's Guide

XPath Processor for C++ 22-1

22
XPath Processor for C++

This chapter contains these topics:

■ XPath Interfaces

■ Sample Programs

XPath Interfaces
Processor Interface - basic XPath processor interface that any XPath processor is
supposed to conform to.

CompProcessor Interface - extended XPath processor that adds an ability to use
XPath expressions pre-compiled into an internal binary representation. In this release
this interface represents Oracle virtual machine interface.

Compiler Interface - XPath compiler into binary representation.

NodeSetRef Interface - defines references to node sets when they are returned by the
XPath expression evaluation.

XPathException Interface - exceptions for XPath compilers and processors.

XPathObject Interface - interface for XPath 1.0 objects.

Sample Programs
Sample programs are located in xdk/demo/cpp/new.

The programs XslXPathSample and XvmXPathSample have sources:

 XslXPathSampleGen.hpp, XslXPathSampleGen.cpp, XslXPathSampleMain.cpp,
XslXPathSampleForce.cpp;

and XvmXPathSampleGen.hpp, XvmXPathSampleGen.cpp,
XvmXPathSampleMain.cpp, XvmXPathSampleForce.cpp.

Note: Use the new unified C++ API in xml.hpp for new XDK
applications. The old C++ API in oraxml.hpp is deprecated and
supported only for backward compatibility, but will not be
enhanced. It will be removed in a future release.

See Also: Oracle XML API Reference

Sample Programs

22-2 Oracle XML Developer's Kit Programmer's Guide

XML Class Generator for C++ 23-1

23
XML Class Generator for C++

This chapter contains these topics:

■ Accessing XML C++ Class Generator

■ Using XML C++ Class Generator

■ XML C++ Class Generator Usage

■ Using the XML C++ Class Generator Examples

Accessing XML C++ Class Generator
The XML C++ Class Generator is provided with the database and is also available for
download from the OTN site http://www.oracle.com/technology/tech/xml.

Using XML C++ Class Generator
The XML C++ Class Generator creates source files from an XML DTD or XML Schema.
The Class Generator takes the Document Type Definition (DTD) or the XML Schema,
and generates classes for each defined element. Those classes are then used in a C++
program to construct XML documents conforming to the DTD.

This is useful when an application wants to send an XML message to another
application based on an agreed-upon DTD or XML Schema, or as the back end of a
Web form to construct an XML document. Using these classes, C++ applications can
construct, validate, and print XML documents that comply with the input.

The Class Generator works in conjunction with the Oracle XML Parser for C++, which
parses the input and passes the parsed document to the class generator.

External DTD Parsing
The XML C++ Class Generator can also parse an external DTD directly without
requiring a complete (dummy) document by using the Oracle XML Parser for C++
routine xmlparsedtd().

The provided command-line program xmlcg has a '-d' option that is used to parse
external DTDs.

Error Message Files
Error message files are provided in the mesg/ subdirectory. The messages files also
exist in the $ORACLE_HOME/xdk/mesg directory. You may set the environment
variable ORA_XML_MESG to point to the absolute path of the mesg subdirectory
although this not required.

XML C++ Class Generator Usage

23-2 Oracle XML Developer's Kit Programmer's Guide

XML C++ Class Generator Usage
The standalone class generator can be called as an executable by invoking
bin/xmlcg.

1. The C++ command line class generator, bin/xmlcg is invoked in the following
way:

xmlcg [options] input_file

where the options are described in Table 23–1:

input_file name is the name of the parsed XML document with <!DOCTYPE>
definitions, or parsed DTD, or an XML Schema document. The XML document
must have an associated DTD.

The DTD input to the XML C++ Class Generator is an XML document containing
a DTD, or an external DTD. The document body itself is ignored; only the DTD is
relevant, though the document must conform to the DTD.

2. If invalid options, or no input is provided, a usage message with the above
information is output.

3. Two source files are output, a name.h header file and a C++ file, name.cpp. These
are named after the DTD file.

4. The output files are typically used to generate XML documents.

Constructors are provided for each class (element) that allow an object to be created in
the following two ways:

■ Initially empty, then adding the children or data after the initial creation

■ Created with the initial full set of children or initial data

A method is provided for #PCDATA (and Mixed) elements to set the data and, when
appropriate, set an element's attributes.

Input to the XML C++ Class Generator
The input is an XML document containing a DTD. The document body itself is
ignored; only the DTD is relevant, though the dummy document must conform to the
DTD. The underlying XML parser only accepts file names for the document and
associated external entities.

Table 23–1 Class Generator Options

Option Meaning

-d name Input is an external DTD or a DTD file. Generates name.cpp
and name.h.

-o directory Output directory for generated files (the default is the current
directory).

-e encoding Default input file encoding.

-h Show this usage help.

-v Show the class generator version validator options.

-s name Input is an XML Schema file with the given name. Generates
name.cpp and name.h.

Using the XML C++ Class Generator Examples

XML Class Generator for C++ 23-3

Using the XML C++ Class Generator Examples
Table 23–2 lists the demo XML C++ Class Generator files:

The make.bat batch file (on Windows NT) or Makefile (on UNIX) do the following:

■ Generate classes based on CG.xml into Sample.h and Sample.cpp

■ Compile the program CG.cpp (using Sample.h), and link this with the Sample
object into an executable named CG.exe in the...\bin (or .../bin) directory.

XML C++ Class Generator Example 1: XML — Input File to Class Generator, CG.xml
This XML file, CG.xml, inputs XML C++ Class Generator. It references the DTD file,
CG.dtd.

<?xml version="1.0"?>
<!DOCTYPE Sample SYSTEM "CG.dtd">
 <Sample>
 Be!
 <D attr="value"></D>
 <E>
 <F>Formula1</F>
 <F>Formula2</F>
 </E>
 </Sample>

XML C++ Class Generator Example 2: DTD — Input File to Class Generator, CG.dtd
This DTD file, CG.dtd is referenced by the XML file CG.xml. CG.xml inputs XML
C++ Class Generator.

<!ELEMENT Sample (A | (B, (C | (D, E))) | F)>
<!ELEMENT A (#PCDATA)>
<!ELEMENT B (#PCDATA | F)*>
<!ELEMENT C (#PCDATA)>
<!ELEMENT D (#PCDATA)>
<!ATTLIST D attr CDATA #REQUIRED>
<!ELEMENT E (F, F)>
<!ELEMENT F (#PCDATA)>

XML C++ Class Generator Example 3: CG Sample Program
The CG sample program, CG.cpp, does the following:

1. Initializes the XML parser.

Table 23–2 XML C++ Class Generator Files

File Name Description

CG.cpp Sample program

CG.xml XML file contains DTD and dummy document

CG.dtd DTD file referenced by CG.xml

Make.bat on Windows NT

Makefile on UNIX

Batch file (on Windows) or Make file (on UNIX) to generate
classes and build the sample programs.

README A readme file with these instructions

Using the XML C++ Class Generator Examples

23-4 Oracle XML Developer's Kit Programmer's Guide

2. Loads the DTD (by parsing the DTD-containing file-- the dummy document part is
ignored).

3. Creates some objects using the generated classes.

4. Invokes the validation function which verifies that the constructed classes match
the DTD.

5. Writes the constructed document to Sample.xml.

//
// NAME CG.cpp
// DESCRIPTION Demonstration program for C++ Class Generator usage
//

#ifndef ORAXMLDOM_ORACLE
include <oraxmldom.h>
#endif

#include <fstream.h>

#include "Sample.h"

#define DTD_DOCUMENT "CG.xml"
#define OUT_DOCUMENT Sample.xml"

int main()
{
 XMLParser parser;
 Document *doc;
 Sample *samp;
 B *b;
 D *d;
 E *e;
 F *f1, *f2;
 fstream *out;
 ub4 flags = XML_FLAG_VALIDATE;
 uword ecode;

 // Initialize XML parser
 cout << "Initializing XML parser...\n";
 if (ecode = parser.xmlinit())
 {
 cout << "Failed to initialize parser, code " << ecode << "\n";
 return 1;
 }

 // Parse the document containing a DTD; parsing just a DTD is not
 // possible yet, so the file must contain a valid document (which
 // is parsed but we're ignoring).
 cout << "Loading DTD from " << DTD_DOCUMENT << "...\n";
 if (ecode = parser.xmlparse((oratext *) DTD_DOCUMENT, (oratext *)0, flags))
 {
 cout << "Failed to parse DTD document " << DTD_DOCUMENT <<
 ", code " << ecode << "\n";
 return 2;
 }

 // Fetch dummy document
 cout << "Fetching dummy document...\n";

Using the XML C++ Class Generator Examples

XML Class Generator for C++ 23-5

 doc = parser.getDocument();

 // Create the constituent parts of a Sample
 cout << "Creating components...\n";
 b = new B(doc, (String) "Be there or be square");
 d = new D(doc, (String) "Dit dah");
 d->setattr((String) "attribute value");
 f1 = new F(doc, (String) "Formula1");
 f2 = new F(doc, (String) "Formula2");
 e = new E(doc, f1, f2);

 // Create the Sample
 cout << "Creating top-level element...\n";
 samp = new Sample(doc, b, d, e);

 // Validate the construct
 cout << "Validating...\n";
 if (ecode = parser.validate(samp))
 {
 cout << "Validation failed, code " << ecode << "\n";
 return 3;
 }

 // Write out doc
 cout << "Writing document to " << OUT_DOCUMENT << "\n";
 if (!(out = new fstream(OUT_DOCUMENT, ios::out)))
 {
 cout << "Failed to open output stream\n";
 return 4;
 }
 samp->print(out, 0);
 out->close();

 // Everything's OK
 cout << "Success.\n";

 // Shut down
 parser.xmlterm();
 return 0;
}

// end of CG.cpp

Using the XML C++ Class Generator Examples

23-6 Oracle XML Developer's Kit Programmer's Guide

XSU for PL/SQL 24-1

24
XSU for PL/SQL

This chapter contains these topics:

■ XSU PL/SQL API

■ Setting Stylesheets in XSU (PL/SQL)

■ Binding Values in XSU (PL/SQL)

■ Storing XML in the Database Using DBMS_XMLSave

■ Insert Processing Using XSU (PL/SQL API)

■ Update Processing Using XSU (PL/SQL API)

■ Delete Processing Using XSU (PL/SQL API)

XSU PL/SQL API
XML SQL Utility (XSU) PL/SQL API reflects the Java API in the generation and
storage of XML documents from and to a database. DBMS_XMLQuery and DBMS_
XMLSave are the two packages that reflect the functions in the Java classes -
OracleXMLQuery and OracleXMLSave. Both of these packages have a context
handle associated with them. Create a context by calling one of the constructor-like
functions to get the handle and then use the handle in all subsequent calls.

XSU Supports XMLType
From Oracle9i Release 2 (9.2), XSU supports XMLType. Using XSU with XMLType is
useful if, for example, you have XMLType columns in objects or tables.

Generating XML with DBMS_XMLQuery()
Generating XML results in a CLOB that contains the XML document. To use DBMS_
XMLQuery and the XSU generation engine, follow these steps:

1. Create a context handle by calling the DBMS_XMLQuery.getCtx function and
supplying it the query, either as a CLOB or a VARCHAR2.

2. Bind possible values to the query using the DBMS_XMLQuery.bind function. The
binds work by binding a name to the position. For example, the query can be

See Also:: Chapter 7, "XML SQL Utility (XSU)" for information
about XSU in general.

See Also: Oracle XML DB Developer's Guide, in particular, the
chapter on Generating XML, for examples on using XSU with
XMLType.

XSU PL/SQL API

24-2 Oracle XML Developer's Kit Programmer's Guide

select * from employees where employee_id = :EMPNO_VAR. Here
you are binding the value for the EMPNO_VAR using the setBindValue function.

3. Set optional arguments like the ROW tag name, the ROWSET tag name, or the
number of rows to fetch, and so on.

4. Fetch the XML as a CLOB using the getXML() functions. getXML() can be called
to generate the XML with or without a DTD or schema.

5. Close the context.

Here are some examples that use the DBMS_XMLQuery PL/SQL package.

XSU Generating XML Example 1: Generating XML from Simple Queries (PL/SQL)
In this example, you select rows from table employees, and obtain an XML document
as a CLOB. First get the context handle by passing in a query and then call the
getXMLClob routine to get the CLOB value. The document is in the same encoding as
the database character set.

declare
 queryCtx DBMS_XMLquery.ctxType;
 result CLOB;
begin

 -- set up the query context...!
 queryCtx := DBMS_XMLQuery.newContext('select * from employees');

 -- get the result..!
 result := DBMS_XMLQuery.getXML(queryCtx);
 -- Now you can use the result to put it in tables/send as messages..
 printClobOut(result);
 DBMS_XMLQuery.closeContext(queryCtx); -- you must close the query handle..
end;

XSU Generating XML Example 2: Printing CLOB to Output Buffer
printClobOut() is a simple function that prints the CLOB to the output buffer. If
you run this PL/SQL code in SQL*Plus, the result of the CLOB is printed to the screen.
Set the serveroutput to on in order to see the results. You may have to increase your
display buffer to see all the output:

set serveroutput on size 200000
set long 20000

Here is the code:

CCREATE OR REPLACE PROCEDURE printClobOut(result IN OUT NOCOPY CLOB) is
xmlstr varchar2(32767);
line varchar2(2000);
begin
 xmlstr := dbms_lob.SUBSTR(result,32767);
 loop
 exit when xmlstr is null;
 line := substr(xmlstr,1,instr(xmlstr,chr(10))-1);
 dbms_output.put_line('| '||line);
 xmlstr := substr(xmlstr,instr(xmlstr,chr(10))+1);
 end loop;
end;

XSU PL/SQL API

XSU for PL/SQL 24-3

XSU Generating XML Example 3: Changing ROW and ROWSET Tag Names
With the XSU PL/SQL API you can also change the ROW and the ROWSET tag names.
These are the default names placed around each row of the result, and round the
whole document, respectively. The procedures, setRowTagName and
setRowSetTagName accomplish this as shown in the following example:

--Setting the ROW tag names

declare
 queryCtx DBMS_XMLQuery.ctxType;
 result CLOB;
begin
 -- set the query context.
 queryCtx := DBMS_XMLQuery.newContext('select * from employees');

 DBMS_XMLQuery.setRowTag(queryCtx,'EMP'); -- sets the row tag name
 DBMS_XMLQuery.setRowSetTag(queryCtx,'EMPSET'); -- sets rowset tag name

 result := DBMS_XMLQuery.getXML(queryCtx); -- get the result

 printClobOut(result); -- print the result..!
 DBMS_XMLQuery.closeContext(queryCtx); -- close the query handle;
end;

The resulting XML document has an EMPSET document element. Each row is
separated using the EMP tag.

XSU Generating XML Example 4: Using setMaxRows() and setSkipRows()
The results from the query generation can be paginated by using:

■ setMaxRows function. This sets the maximum number of rows to be converted to
XML. This is relative to the current row position from which the last result was
generated.

■ setSkipRows function. This specifies the number of rows to skip before
converting the row values to XML.

For example, to skip the first 3 rows of the employees table and then print out the rest
of the rows 10 at a time, you can set the skipRows to 3 for the first batch of 10 rows
and then set skipRows to 0 for the rest of the batches.

As in the case of XML SQL Utility's Java API, call the keepObjectOpen() function to
ensure that the state is maintained between fetches. The default behavior is to close the
state after a fetch. For multiple fetches, you must determine when there are no more
rows to fetch. This can be done by setting the setRaiseNoRowsException(). This
causes an exception to be raised if no rows are written to the CLOB. This can be caught
and used as the termination condition.

-- Pagination of results

--Setting the ROW tag names

declare
 queryCtx DBMS_XMLQuery.ctxType;
 result CLOB;
begin
 -- set the query context.
 queryCtx := DBMS_XMLQuery.newContext('select * from employees');

Setting Stylesheets in XSU (PL/SQL)

24-4 Oracle XML Developer's Kit Programmer's Guide

 DBMS_XMLQuery.setRowTag(queryCtx,'EMP'); -- sets the row tag name
 DBMS_XMLQuery.setRowSetTag(queryCtx,'EMPSET'); -- sets rowset tag name

 result := DBMS_XMLQuery.getXML(queryCtx); -- get the result

 printClobOut(result); -- print the result..!
 DBMS_XMLQuery.closeContext(queryCtx); -- close the query handle;
end;

Setting Stylesheets in XSU (PL/SQL)
The XSU PL/SQL API provides the ability to set stylesheets on the generated XML
documents as follows:

■ Set the stylesheet header in the result XML. To do this, use
setStylesheetHeader() procedure, to set the stylesheet header in the result.
This simply adds the XML processing instruction to include the stylesheet.

■ Apply a stylesheet to the result XML document, before generation. This method is
a huge performance win since otherwise the XML document has to be generated
as a CLOB, sent to the parser again, and then have the stylesheet applied. XSU
generates a DOM document, calls the parser, applies the stylesheet and then
generates the result. To apply the stylesheet to the resulting XML document, use
the setXSLT() procedure. This uses the stylesheet to generate the result.

Binding Values in XSU (PL/SQL)
The XSU PL/SQL API provides the ability to bind values to the SQL statement. The
SQL statement can contain named bind variables. The variables must be prefixed with
a colon (:) to declare that they are bind variables. To use the bind variable follow these
steps:

1. Initialize the query context with the query containing the bind variables. For
example, the following statement registers a query to select the rows from the
employees table with the where clause containing the bind variables
:EMPLOYEE_ID and :FIRST_NAME. You will bind the values for employee
number and employee first name later.

queryCtx = DBMS_XMLQuery.getCtx('select * from employees where employee_id =
 :EMPLOYEE_ID and first_name = :FIRST_NAME');

2. Set the list of bind values. The clearBindValues() clears all the bind variables
set. The setBindValue() sets a single bind variable with a string value. For
example, you will set the empno and ename values as shown later:

DBMS_XMLQuery.clearBindValues(queryCtx);
DBMS_XMLQuery.setBindValue(queryCtx,'EMPLOYEE_ID',20);
DBMS_XMLQuery.setBindValue(queryCtx,'FIRST_NAME','John');

3. Fetch the results. This will apply the bind values to the statement and then get the
result corresponding to the predicate employee_id = 20 and first_name =
'John'.

DBMS_XMLQuery.getXMLClob(queryCtx);

4. Re-bind values if necessary. For example to change the FIRST_NAME alone to
scott and reexecute the query,

DBMS_XMLQuery.setBindValue(queryCtx,'FIRST_NAME','Scott');

Storing XML in the Database Using DBMS_XMLSave

XSU for PL/SQL 24-5

The rebinding of FIRST_NAME will now use Scott instead of John.

XSU Generating XML Example 5: Binding Values to the SQL Statement
The following example illustrates the use of bind variables in the SQL statement:

declare
 queryCtx DBMS_XMLquery.ctxType;
 result CLOB;
begin

queryCtx := DBMS_XMLQuery.newContext('select * from employees where employee_id
 = :EMPLOYEE_ID and first_name = :FIRST_NAME');

--No longer needed:
--DBMS_XMLQuery.clearBindValues(queryCtx);
DBMS_XMLQuery.setBindValue(queryCtx,'EMPLOYEE_ID',100);
DBMS_XMLQuery.setBindValue(queryCtx,'FIRST_NAME','Steven');

result := DBMS_XMLQuery.getXML(queryCtx);

--printClobOut(result);

DBMS_XMLQuery.setBindValue(queryCtx,'FIRST_NAME','Neena');

result := DBMS_XMLQuery.getXML(queryCtx);

--printClobOut(result);
end;

create or replace procedure insProc(xmlDoc IN CLOB, tableName IN VARCHAR2) is
 insCtx DBMS_XMLSave.ctxType;
 rows number;
 begin
 insCtx := DBMS_XMLSave.newContext(tableName); -- get the context handle
 rows := DBMS_XMLSave.insertXML(insCtx,xmlDoc); -- this inserts the document
 DBMS_XMLSave.closeContext(insCtx); -- this closes the handle
end;

Storing XML in the Database Using DBMS_XMLSave
To use DBMS_XMLSave and XML SQL Utility storage engine, follow these steps:

1. Create a context handle by calling the DBMS_XMLSave.getCtx function and
supplying it the table name to use for the DML operations.

2. For inserts. You can set the list of columns to insert into using the
setUpdateColNames function. The default is to insert values into all the
columns.

For updates. The list of key columns must be supplied. Optionally the list of
columns to update may also be supplied. In this case, the tags in the XML
document matching the key column names will be used in the WHERE clause of
the UPDATE statement and the tags matching the update column list will be used
in the SET clause of the UPDATE statement.

For deletes. The default is to create a WHERE clause to match all the tag values
present in each ROW element of the document supplied. To override this behavior
you can set the list of key columns. In this case only those tag values whose tag

Insert Processing Using XSU (PL/SQL API)

24-6 Oracle XML Developer's Kit Programmer's Guide

names match these columns will be used to identify the rows to delete (in effect
used in the WHERE clause of the DELETE statement).

3. Supply an XML document to the insertXML, updateXML, or deleteXML
functions to insert, update and delete respectively.

4. You can repeat the last operation any number of times.

5. Close the context.

Use the same examples as for the Java case, OracleXMLSave class examples.

Insert Processing Using XSU (PL/SQL API)
To insert a document into a table or view, simply supply the table or the view name
and then the XML document. XSU parses the XML document (if a string is given) and
then creates an INSERT statement, into which it binds all the values. By default, XSU
inserts values into all the columns of the table or view and an absent element is treated
as a NULL value.

The following code shows how the document generated from the employees table
can be put back into it with relative ease.

XSU Inserting XML Example 6: Inserting Values into All Columns (PL/SQL)
This example creates a procedure, insProc, which takes in:

■ An XML document as a CLOB

■ A table name to put the document into

and then inserts the XML document into the table:

create or replace procedure insProc(xmlDoc IN CLOB, tableName IN VARCHAR2) is
 insCtx DBMS_XMLSave.ctxType;
 rows number;
 begin
 insCtx := DBMS_XMLSave.newContext(tableName); -- get the context handle
 rows := DBMS_XMLSave.insertXML(insCtx,xmlDoc); -- this inserts the document
 DBMS_XMLSave.closeContext(insCtx); -- this closes the handle
end;

This procedure can now be called with any XML document and a table name. For
example, a call of the form:

execute insProc(xmlDocument, 'hr.employees');

generates an INSERT statement of the form:

INSERT INTO hr.employees (employee_id, last_name, job_id, manager_id, hire_date,
 salary, department_id VALUES(?,?,?,?,?,?,?);

and the element tags in the input XML document matching the column names will be
matched and their values bound. For the code snippet shown earlier, if you send it the
following XML document:

<?xml version='1.0'?>
<ROWSET>
 <ROW num="1">
 <EMPLOYEE_ID>7369</EMPLOYEE_ID>
 <LAST_NAME>Smith</LAST_NAME>
 <JOB_ID>CLERK</JOB_ID>
 <MANAGER_ID>7902</MANAGER_ID>

Insert Processing Using XSU (PL/SQL API)

XSU for PL/SQL 24-7

 <HIRE_DATE>12/17/1980 0:0:0</HIRE_DATE>
 <SALARY>800</SALARY>_
 <DEPARTMENT_ID>20</DEPARTMENT_ID>
 </ROW>
 <!-- additional rows ... -->
</ROWSET>

you would have a new row in the employees table containing the values 7369, Smith,
CLERK, 7902, 12/17/1980, 800, 20 for the columns named. Any element absent inside
the row element would is considered a null value.

XSU Inserting XML Example 7: Inserting Values into Certain Columns (PL/SQL)
In certain cases, you may not want to insert values into all columns. This might be true
when the values that you are getting is not the complete set and you need triggers or
default values to be used for the rest of the columns. The code that appears later shows
how this can be done.

Assume that you are getting the values only for the employee number, name, and job,
and that the salary, manager, department number and hiredate fields are filled in
automatically. You create a list of column names that you want the insert to work on
and then pass it to the DBMS_XMLSave procedure. The setting of these values can be
done by calling setUpdateColumnName() procedure repeatedly, passing in a
column name to update every time. The column name settings can be cleared using
clearUpdateColumnNames().

create or replace procedure testInsert(xmlDoc IN clob) is
 insCtx DBMS_XMLSave.ctxType;
 doc clob;
 rows number;
begin

 insCtx := DBMS_XMLSave.newContext('hr.employees'); -- get the save context..!

 DBMS_XMLSave.clearUpdateColumnList(insCtx); -- clear the update settings

 -- set the columns to be updated as a list of values..
 DBMS_XMLSave.setUpdateColumn(insCtx,'EMPLOYEE_ID');
 DBMS_XMLSave.setUpdateColumn(insCtx,'LAST_NAME');
 DBMS_XMLSave.setUpdatecolumn(insCtx,'JOB_ID');

 -- Now insert the doc. This will only insert into EMPLOYEE_ID, LAST_NAME, and
 -- JOB_ID columns
 rows := DBMS_XMLSave.insertXML(insCtx, xmlDoc);
 DBMS_XMLSave.closeContext(insCtx);

end;
/
If you call the procedure passing in a CLOB as a document, an INSERT statement of
the form:

INSERT INTO hr.employees (employee_id, last_name, job_id) VALUES (?, ?, ?);

is generated. Note that in the earlier example, if the inserted document contains values
for the other columns (HIRE_DATE, and so on), those are ignored.

An insert is performed for each ROW element that is present in the input. These inserts
are batched by default.

Update Processing Using XSU (PL/SQL API)

24-8 Oracle XML Developer's Kit Programmer's Guide

Update Processing Using XSU (PL/SQL API)
Now that you know how to insert values into the table from XML documents, let us
see how to update only certain values. If you get an XML document to update the
salary of an employee and also the department that she works in:

<ROWSET>
 <ROW num="1">
 <EMPLOYEE_ID>7369</EMPLOYEE_ID>
 <SALARY>1800</SALARY>
 <DEPARTMENT_ID>30</DEPARTMENT_ID>
 </ROW>
 <ROW>
 <EMPLOYEE_ID>2290</EMPLOYEE_ID>
 <SAARY>2000</SALARY>
 <HIRE_DATE>12/31/1992</HIRE_DATE>
 <!-- additional rows ... -->
</ROWSET>

you can call the update processing to update the values. In the case of update, you
need to supply XSU with the list of key column names. These form part of the WHERE
clause in the UPDATE statement. In the employees table shown earlier, the employee
number (EMPLOYEE_ID) column forms the key and you use that for updates.

XSU Updating XML Example 8: Updating XML Document Key Columns (PL/SQL)
Consider the PL/SQL procedure:

create or replace procedure testUpdate (xmlDoc IN clob) is
 updCtx DBMS_XMLSave.ctxType;
 rows number;
begin

 updCtx := DBMS_XMLSave.newContext('hr.employees'); -- get the context
 DBMS_XMLSave.clearUpdateColumnList(updCtx); -- clear the update settings..

 DBMS_XMLSave.setKeyColumn(updCtx,'EMPLOYEE_ID'); -- set EMPLOYEE_ID as key
column
 rows := DBMS_XMLSave.updateXML(updCtx,xmlDoc); -- update the table.
 DBMS_XMLSave.closeContext(updCtx); -- close the context..!

end;
/

In this example, when the procedure is executed with a CLOB value that contains the
document described earlier, two UPDATE statements would be generated. For the first
ROW element, you would generate an UPDATE statement to update the fields as shown
next:

UPDATE hr.employees SET salary = 1800 AND department_id = 30 WHERE employee_id = 7369;

and for the second ROW element,

UPDATE hr.employees SET salary = 2000 AND hire_date = 12/31/1992 WHERE employee_id = 2290;

XSU Updating XML Example 9: Specifying a List of Columns to Update (PL/SQL)
You may want to specify the list of columns to update. This would speed up the
processing since the same UPDATE statement can be used for all the ROW elements.
Also you can ignore other tags which occur in the document. Note that when you

Delete Processing Using XSU (PL/SQL API)

XSU for PL/SQL 24-9

specify a list of columns to update, an element corresponding to one of the update
columns, if absent, will be treated as NULL.

If you know that all the elements to be updated are the same for all the ROW elements
in the XML document, then you can use the setUpdateColumnName() procedure to
set the column name to update.

create or replace procedure testUpdate(xmlDoc IN CLOB) is
 updCtx DBMS_XMLSave.ctxType;
 rows number;
begin

 updCtx := DBMS_XMLSave.newContext('hr.employees');
 DBMS_XMLSave.setKeyColumn(updCtx,'EMPLOYEE_ID'); -- set EMPLOYEE_ID as key
column

 -- set list of columnst to update.
 DBMS_XMLSave.setUpdateColumn(updCtx,'SALARY');
 DBMS_XMLSave.setUpdateColumn(updCtx,'JOB_ID');

 rows := DBMS_XMLSave.updateXML(updCtx,xmlDoc); -- update the XML document..!
 DBMS_XMLSave.closeContext(updCtx); -- close the handle

end;

Delete Processing Using XSU (PL/SQL API)
For deletes, you can set the list of key columns. These columns will be put as part of
the WHERE clause of the DELETE statement. If the key column names are not supplied,
then a new DELETE statement will be created for each ROW element of the XML
document where the list of columns in the WHERE clause of the DELETE will match
those in the ROW element.

XSU Deleting XML Example 10: Deleting Operations for Each Row (PL/SQL)
Consider the delete example shown here:

create or replace procedure testDelete(xmlDoc IN clob) is
 delCtx DBMS_XMLSave.ctxType;
 rows number;
begin

 delCtx := DBMS_XMLSave.newContext('hr.employees');
 DBMS_XMLSave.setKeyColumn(delCtx,'EMPLOYEE_ID');

 rows := DBMS_XMLSave.deleteXML(delCtx,xmlDoc);
 DBMS_XMLSave.closeContext(delCtx);
end;

If you use the same XML document shown for the update example, you would end up
with two DELETE statements,

DELETE FROM hr.employees WHERE employee_id=7369 AND salary=1800 AND department_id=30;
DELETE FROM hr.employees WHERE employee_id=2200 AND salary=2000 AND hire_date=12/31/1992;

The DELETE statements were formed based on the tag names present in each ROW
element in the XML document.

Delete Processing Using XSU (PL/SQL API)

24-10 Oracle XML Developer's Kit Programmer's Guide

XSU Example 11: Deleting by Specifying the Key Values (PL/SQL)
If instead you want the delete to only use the key values as predicates, you can use the
setKeyColumn function to set this.

create or replace package testDML AS
 saveCtx DBMS_XMLSave.ctxType := null; -- a single static variable

 procedure insertXML(xmlDoc in clob);
 procedure updateXML(xmlDoc in clob);
 procedure deleteXML(xmlDoc in clob);

 end;

create or replace package body testDML AS

 rows number;

 procedure insertXML(xmlDoc in clob) is
 begin
 rows := DBMS_XMLSave.insertXML(saveCtx,xmlDoc);
 end;

 procedure updateXML(xmlDoc in clob) is
 begin
 rows := DBMS_XMLSave.updateXML(saveCtx,xmlDoc);
 end;

 procedure deleteXML(xmlDoc in clob) is
 begin
 rows := DBMS_XMLSave.deleteXML(saveCtx,xmlDoc);
 end;

begin
 saveCtx := DBMS_XMLSave.newContext('hr.employees'); -- create the context once
 DBMS_XMLSave.setKeyColumn(saveCtx, 'EMPLOYEE_ID'); -- set the key column name.
end;

Here a single DELETE statement of the form,

DELETE FROM hr.employees WHERE employee_id=?

will be generated and used for all ROW elements in the document.

XSU Deleting XML Example 12: Reusing the Context Handle (PL/SQL)
In all the three cases described earlier (insert, update, and delete) the same context
handle can be used to do more than one operation. That is, you can perform more than
one insert using the same context provided all of those inserts are going to the same
table that was specified when creating the save context. The context can also be used
to mix updates, deletes, and inserts.

For example, the following code shows how one can use the same context and settings
to insert, delete, or update values depending on the user's input.

The example uses a PL/SQL supplied package static variable to store the context so
that the same context can be used for all the function calls.

create or replace package testDML AS
 saveCtx DBMS_XMLSave.ctxType := null; -- a single static variable

Delete Processing Using XSU (PL/SQL API)

XSU for PL/SQL 24-11

 procedure insert(xmlDoc in clob);
 procedure update(xmlDoc in clob);
 procedure delete(xmlDoc in clob);

 end;
/

create or replace package body testDML AS

 procedure insert(xmlDoc in clob) is
 row number;
 begin
 row := DBMS_XMLSave.insertXML(saveCtx, xmlDoc);
 end;

 procedure update(xmlDoc in clob) is
 begin
 row := DBMS_XMLSave.updateXML(saveCtx, xmlDoc);
 end;

 procedure delete(xmlDoc in clob) is
 begin
 row := DBMS_XMLSave.deleteXML(saveCtx, xmlDoc);
 end;

 begin
 saveCtx := DBMS_XMLSave.newContext('hr.employees'); -- create the context
once..!
 DBMS_XMLSave.setKeyColumn(saveCtx, 'EMPLOYEE_ID'); -- set the key column
name.
 end;
end;
/

In the earlier package, you create a context once for the whole package (thus the
session) and then reuse the same context for performing inserts, updates and deletes.

Users of this package can now call any of the three routines to update the employees
table:

testDML.insert(xmlclob);
testDML.delete(xmlclob);
testDML.update(xmlclob);

All of these calls would use the same context. This would improve the performance of
these operations, particularly if these operations are performed frequently.

XSU Exception Handling in PL/SQL
Here is an XSU PL/SQL exception handling example:

declare
 queryCtx DBMS_XMLQuery.ctxType;
 result clob;
 errorNum NUMBER;
 errorMsg VARCHAR2(200);

Note: The key column EMPNO would be used both for updates
and deletes as a way of identifying the row.

Delete Processing Using XSU (PL/SQL API)

24-12 Oracle XML Developer's Kit Programmer's Guide

begin

 queryCtx := DBMS_XMLQuery.newContext('select * from employees where df = dfdf');

 -- set the raise exception to true..
 DBMS_XMLQuery.setRaiseException(queryCtx, true);
 DBMS_XMLQuery.setRaiseNoRowsException(queryCtx, true);

 -- set propagate original exception to true to get the original exception..!
 DBMS_XMLQuery.propagateOriginalException(queryCtx,true);
 result := DBMS_XMLQuery.getXML(queryCtx);

 exception
 when others then
 -- get the original exception
 DBMS_XMLQuery.getExceptionContent(queryCtx,errorNum, errorMsg);
 dbms_output.put_line(' Exception caught ' || TO_CHAR(errorNum)
 || errorMsg);
end;
/

Glossary-1

Glossary

access control entry (ACE)

An entry in the access control list that grants or denies access to a given principal.

access control list (ACL)

A list of access control entries that determines which principals have access to a given
resource or resources.

ACE

Access Control Entry. See access control entry.

ACL

Access Control List. See access control list.

API

Application Program Interface. See application program interface.

application programming interface (API)

A set of public programmatic interfaces that consist of a language and message format
to communicate with an operating system or other programmatic environment, such
as databases, Web servers, JVMs, and so forth. These messages typically call functions
and methods available for application development.

application server

A server designed to host applications and their environments, permitting server
applications to run. A typical example is OAS, which is able to host Java, C, C++, and
PL/SQL applications in cases where a remote client controls the interface. See also
Oracle Application Server.

attribute

A property of an element that consists of a name and a value separated by an equals
sign and contained within the start-tags after the element name. In this example,
<Price units='USD'>5</Price>, units is the attribute and USD is its value,
which must be in single or double quotes. Attributes may reside in the document or
DTD. Elements may have many attributes but their retrieval order is not defined.

BFILE

External binary files that exist outside the database tablespaces residing in the
operating system. BFILEs are referenced from the database semantics, and are also
known as External LOBs.

Glossary-2

binary large object (BLOB)

A large object datatype whose content consists of binary data. Additionally, this data is
considered raw because its structure is not recognized by the database.

BLOB

See binary large object.

Business-to-Business (B2B)

A term describing the communication between businesses in the selling of goods and
services to each other. The software infrastructure to enable this is referred to as an
exchange.

Business-to-Consumer (B2C)

A term describing the communication between businesses and consumers in the
selling of goods and services.

callback

A programmatic technique in which one process starts another and then continues.
The second process then calls the first as a result of an action, value, or other event.
This technique is used in most programs that have a user interface to allow continuous
interaction.

cartridge

A stored program in Java or PL/SQL that adds the necessary functionality for the
database to understand and manipulate a new datatype. Cartridges interface through
the Extensibility Framework within Oracle8 or later. Oracle Text is such a cartridge,
adding support for reading, writing, and searching text documents stored within the
database.

Cascading Style Sheets

A simple mechanism for adding style (fonts, colors, spacing, and so on) to Web
documents.

CDATA

See character data.

CGI

See Common Gateway Interface.

character data (CDATA)

Text in a document that should not be parsed is put within a CDATA section. This
allows for the inclusion of characters that would otherwise have special functions,
such as &, <, >, and so on. CDATA sections can be used in the content of an element or
in attributes.

child element

An element that is wholly contained within another, which is referred to as its parent
element. For example <Parent><Child></Child></Parent> illustrates a child
element nested within its parent element.

Class Generator

A utility that accepts an input file and creates a set of output classes that have
corresponding functionality. In the case of the XML Class Generator, the input file is a

Glossary-3

DTD and the output is a series of classes that can be used to create XML documents
conforming with the DTD.

CLASSPATH

The operating system environmental variable that the JVM uses to find the classes it
needs to run applications.

client/server

The term used to describe the application architecture where the actual application
runs on the client but accesses data or other external processes on a server across a
network.

character large object (CLOB)

The LOB datatype whose value is composed of character data corresponding to the
database character set. A CLOB can be indexed and searched by the Oracle Text search
engine.

CLOB

See character large object.

command line

The interface method in which the user enters in commands at the command
interpreter prompt.

Common Gateway Interface (CGI)

The programming interfaces enabling Web servers to run other programs and pass
their output to HTML pages, graphics, audio, and video sent to browsers.

Common Object Request Broker API (CORBA)

An Object Management Group standard for communicating between distributed
objects across a network. These self-contained software modules can be used by
applications running on different platforms or operating systems. CORBA objects and
their data formats and functions are defined in the Interface Definition Language
(IDL), which can be compiled in a variety of languages including Java, C, C++,
Smalltalk and COBOL.

Common Oracle Runtime Environment (CORE)

The library of functions written in C that provides developers the ability to create code
that can be easily ported to virtually any platform and operating system.

Content

The body of a resource is what you get when you treat the resource like a file and ask
for its contents. Content is always an XMLType.

CORBA

See Common Object Request Broker API.

CSS

See Cascading Style Sheets.

Database Access Descriptor (DAD)

A DAD is a named set of configuration values used for database access. A DAD
specifies information such as the database name or the Oracle Net service name, the

Glossary-4

ORACLE_HOME directory, and Globalization Support configuration information such as
language, sort type, and date language.

datagram

A text fragment, which may be in XML format, that is returned to the requester
embedded in an HTML page from a SQL query processed by the XSQL Servlet.

DBUriType

The datatype used for storing instances of the datatype that permits XPath-based
navigation of database schemas.

DOCTYPE

The term used as the tag name designating the DTD or its reference within an XML
document. For example, <!DOCTYPE person SYSTEM "person.dtd"> declares
the root element name as person and an external DTD as person.dtd in the file system.
Internal DTDs are declared within the DOCTYPE declaration.

Document Location Hint

Oracle XML DB uses the Document Location Hint to determine which XML schemas
are relevant to processing the instance document. It assumes that the Document
Location Hint will map directly to the URL used when registering the XML schema
with the database. When the XML schema includes elements defined in multiple
namespaces, an entry must occur in the schemaLocation attribute for each of the
XML schemas. Each entry consists of the namespace declaration and the Document
Location Hint. The entries are separated from each other by one or more whitespace
characters. If the primary XML schema does not declare a target namespace, then the
instance document also needs to include a noNamespaceSchemaLocation attribute
that provides the Document Location Hint for the primary XML schema.

Document Object Model (DOM)

An in-memory tree-based object representation of an XML document that enables
programmatic access to its elements and attributes. The DOM object and its interface is
a W3C recommendation. It specifies the Document Object Model of an XML
Document including the APIs for programmatic access. DOM views the parsed
document as a tree of objects.

Document Type Definition (DTD)

A set of rules that define the allowable structure of an XML document. DTDs are text
files that derive their format from SGML and can either be included in an XML
document by using the DOCTYPE element or by using an external file through a
DOCTYPE reference.

DOM

See Document Object Model.

DOM fidelity

To assure the integrity and accuracy of this data, for example, when regenerating XML
documents stored in Oracle XML DB, Oracle XML DB uses a data integrity
mechanism, called DOM fidelity. DOM fidelity refers to when the returned XML
documents are identical to the original XML document, particularly for purposes of
DOM traversals. Oracle XML DB assures DOM fidelity by using a binary attribute,
SYS_XDBPD$.

Glossary-5

DTD

See Document Type Definition.

EDI

Electronic Data Interchange.

element

The basic logical unit of an XML document that can serve as a container for other
elements such as children, data, and attributes and their values. Elements are
identified by start-tags, such as <name>, and end-tags, such as </name>, or in the case
of empty elements, <name/>.

empty element

An element without text content or child elements. It can only contain attributes and
their values. Empty elements are of the form <name/> or <name></name>, where
there is no space between the tags.

Enterprise JavaBean (EJB)

An independent program module that runs within a JVM on the server. CORBA
provides the infrastructure for EJBs, and a container layer provides security,
transaction support, and other common functions on any supported server.

empty element

An element without text content or child elements. It may only contain attributes and
their values. Empty elements are of the form <name/> or <name></name> where
there is no space between the tags.

entity

A string of characters that may represent either another string of characters or special
characters that are not part of the document character set. Entities and the text that is
substituted for them by the parser are declared in the DTD.

existsNode

The SQL operator that returns a TRUE or FALSE based upon the existence of an XPath
within an XMLType.

eXtensible Markup Language (XML)

An open standard for describing data developed by the World Wide Web Consortium
(W3C) using a subset of the SGML syntax and designed for Internet use.

eXtensible Stylesheet Language (XSL)

The language used within stylesheets to transform or render XML documents. There
are two W3C recommendations covering XSL stylesheets—XSL Transformations
(XSLT) and XSL Formatting Objects (XSLFO).

XSL consists of two W3C recommendations: XSL Transformations for transforming
one XML document into another and XSL Formatting Objects for specifying the
presentation of an XML document. XSL is a language for expressing stylesheets. It
consists of two parts:

■ A language for transforming XML documents (XSLT), and

■ An XML vocabulary for specifying formatting semantics (XSLFO).

Glossary-6

An XSL stylesheet specifies the presentation of a class of XML documents by
describing how an instance of the class is transformed into an XML document that
uses the formatting vocabulary.

eXtensible Stylesheet Language Formatting Object (XSLFO)

The W3C standard specification that defines an XML vocabulary for specifying
formatting semantics. See FOP.

eXtensible Stylesheet Language Transformation (XSLT)

Also written as XSL-T. The XSL W3C standard specification that defines a
transformation language to convert one XML document into another.

extract

The SQL operator that retrieves fragments of XML documents stored as XMLType.

Folder

A directory or node in the Oracle XML DB repository that contains or can contain a
resource. A folder is also a resource.

Foldering

A feature in Oracle XML DB that allows content to be stored in a hierarchical structure
of resources.

FOP

Print formatter driven by XSL formatting objects. It is a Java application that reads a
formatting object tree and then renders the resulting pages to a specified output.
Output formats currently supported are PDF, PCL, PS, SVG, XML (area tree
representation), Print, AWT, MIF and TXT. The primary output target is PDF.

function-based index

A database index that, when created, permits the results of known queries to be
returned much more quickly.

HASPATH

The SQL operator that is part of Oracle Text and used for querying XMLType
datatypes for the existence of a specific XPath.

hierarchical indexing

The data relating a folder to its children is managed by the Oracle XML DB
hierarchical index, which provides a fast mechanism for evaluating path names similar
to the directory mechanisms used by operating system filesystems. Any path
name-based access will normally use the Oracle XML DB hierarchical index.

HTML

See Hypertext Markup Language.

HTTP

See Hypertext Transport Protocol.

HTTPS

See Hypertext Transport Protocol, Secure.

Glossary-7

HTTPUriType

The datatype used for storing instances of the datatype that permits XPath-based
navigation of database schemas in remote databases.

hypertext

The method of creating and publishing text documents in which users can navigate
between other documents or graphics by selecting words or phrases designated as
hyperlinks.

Hypertext Markup Language (HTML)

The markup language used to create the files sent to Web browsers and that serves as
the basis of the World Wide Web. The next version of HTML will be called XHTML
and will be an XML application.

Hypertext Transport Protocol (HTTP)

The application protocol used for transporting HTML files across the Internet between
Web servers and browsers.

Hypertext Transport Protocol, Secure (HTTPS)

The use of Secure Sockets Layer (SSL) as a sub-layer under the regular HTTP
application layer. Developed by Netscape.

iAS

See Internet Application Server.

IDE

See Integrated Development Environment.

iFS

See Internet File System.

INPATH

The SQL operator that is part of Oracle Text and is used for querying XMLType
datatypes for searching for specific text within a specific XPath.

instantiate

A term used in object-based languages such as Java and C++ to refer to the creation of
an object of a specific class.

Integrated Development Environment (IDE)

A set of programs designed to aid in the development of software run from a single
user interface. JDeveloper is an IDE for Java development, because it includes an
editor, compiler, debugger, syntax checker, help system, and so on, to permit Java
software development through a single user interface.

interMedia

The collection of complex datatypes and their access in Oracle. These include text,
video, time-series, and spatial data.

Internet Inter-ORB Protocol (IIOP)

The protocol used by CORBA to exchange messages on a TCP/IP network such as the
Internet.

Glossary-8

J2EE

See Java 2 Platform, Enterprise Edition.

Java

A high-level programming language developed and maintained by Sun Microsystems
where applications run in a virtual machine known as a JVM. The JVM is responsible
for all interfaces to the operating system. This architecture permits developers to create
Java applications that can run on any operating system or platform that has a JVM.

Java 2 Platform, Enterprise Edition (J2EE)

The Java platform (Sun Microsystems) that defines multitier enterprise computing.

Java API for XML Processing (JAXP)

Enables applications to parse and transform XML documents using an API that is
independent of a particular XML processor implementation.

Java Architecture for XML Binding (JAXB)

API and tools that map to and from XML documents and Java objects. A JSR
recommendation.

JavaBeans

An independent program module that runs within a JVM, typically for creating user
interfaces on the client. Also known as Java Bean. The server equivalent is called an
Enterprise JavaBean (EJB). See also Enterprise JavaBean.

Java Database Connectivity (JDBC)

The programming API that enables Java applications to access a database through the
SQL language. JDBC drivers are written in Java for platform independence but are
specific to each database.

Java Developer's Kit (JDK)

The collection of Java classes, runtime, compiler, debugger, and usually source code
for a version of Java that makes up a Java development environment. JDKs are
designated by versions, and Java 2 is used to designate versions from 1.2 onward.

Java Naming and Directory Interface (JNDI)

A programming interface from Sun for connecting Java programs to naming and
directory services such as DNS, LDAP, and NDS. Oracle XML DB Resource API for
Java/JNDI supports JNDI.

Java Runtime Environment (JRE)

The collection of complied classes that make up the Java virtual machine on a
platform. JREs are designated by versions, and Java 2 is used to designate versions
from 1.2 onward.

JavaServer Pages (JSP)

An extension to the servlet functionality that enables a simple programmatic interface
to Web pages. JSPs are HTML pages with special tags and embedded Java code that is
executed on the Web server or application server providing dynamic functionality to
HTML pages. JSPs are actually compiled into servlets when first requested and run in
the JVM of the server.

Glossary-9

Java Specification Request (JSR)

A recommendation of the Java Community Process organization (JCP), such as JAXB.

Java Virtual Machine (JVM)

The Java interpreter that converts the compiled Java bytecode into the machine
language of the platform and runs it. JVMs can run on a client, in a browser, in a
middle tier, on an intranet, on an application server, or in a database server.

JAXB

See Java Architecture for XML Binding.

JAXP

See Java API for XML Processing.

JDBC

See Java Database Connectivity.

JDeveloper

Oracle Java IDE that enables application, applet, and servlet development and
includes an editor, compiler, debugger, syntax checker, help system, an integrated
UML class modeler, and so on. JDeveloper has been enhanced to support XML-based
development by including the Oracle XDK Java components, integrated for easy use
along with XML support, in its editor.

JDK

See Java Developer's Kit.

JNDI

See Java Naming and Directory Interface

JSR

See Java Specification Request

JVM

See Java virtual machine.

large object (LOB)

The class of SQL data type that is further divided into Internal LOBs and External
LOBs. Internal LOBs include BLOBs, CLOBs, and NCLOBs while External LOBs include
BFILEs. See also BFILEs, binary large object, character large object, national character
large object.

lazy type conversions

A mechanism used by Oracle XML DB to only convert the XML data for Java when the
Java application first asks for it. This saves typical type conversion bottlenecks with
JDBC.

listener

A separate application process that monitors the input process.

LOB

See large object.

Glossary-10

name-level locking

Oracle XML DB provides for name-level locking rather than collection-level locking.
When a name is added to a collection, an exclusive write lock is not placed on the
collection, only that name within the collection is locked. The name modification is put
on a queue, and the collection is locked and modified only at commit time.

namespace

The term to describe a set of related element names or attributes within an XML
document. The namespace syntax and its usage is defined by a W3C
Recommendation. For example, the <xsl:apply-templates/ > element is
identified as part of the XSL namespace. Namespaces are declared in the XML
document or DTD before they are used, with the following attribute syntax:
xmlns:xsl="http://www.w3.org/TR/WD-xsl".

national character large object (NCLOB)

The LOB datatype whose value is composed of character data corresponding to the
database national character set.

NCLOB

See national character large object.

node

In XML, the term used to denote each addressable entity in the DOM tree.

notation attribute declaration

In XML, the declaration of a content type that is not part of those understood by the
parser. These types include audio, video, and other multimedia.

An-tier

The designation for a computer communication network architecture that consists of
one or more tiers made up of clients and servers. Typically two-tier systems are made
up of one client level and one server level. A three-tier system utilizes two server tiers,
typically a database server as one and a Web or application server along with a client
tier.

OAG

Open Applications Group.

OASIS

See Organization for the Advancement of Structured Information.

Object Request Broker (ORB)

Software that manages message communication between requesting programs on
clients and between objects on servers. ORBs pass the action request and its
parameters to the object and return the results back. Common implementations are
JCORB and EJBs. See also CORBA.

OCT

See Ordered Collection in Tables.

OC4J

Oracle Containers for J2EE, a J2EE deployment tool that comes with JDeveloper.

Glossary-11

Oracle Application Server (Oracle AS)

The Oracle Application Server product integrates all the core services and features
required for building, deploying, and managing high-performance, n-tier,
transaction-oriented Web applications within an open standards framework.

ORACLE_HOME

The operating system environmental variable that identifies the location of the Oracle
database installation for use by applications.

Oracle Content Management SDK

The Oracle file system and Java-based development environment that either runs
inside the database or on a middle tier and provides a means of creating, storing, and
managing multiple types of documents in a single database repository. Formerly
known as Oracle Internet File System.

Ordered Collection in Tables (OCT)

When elements of a VARRAY are stored in a separate table, they are referred to as an
Ordered Collection in Tables.

Oracle Text

An Oracle tool that provides full-text indexing of documents and the capability to do
SQL queries over documents, along with XPath-like searching.

Oracle XML DB

A high-performance XML storage and retrieval technology provided with Oracle
database server. It is based on the W3C XML data model.

Oracle9i JVM

The Java Virtual Machine that runs within the memory space of the Oracle database.

ORB

See Object Request Broker.

Organization for the Advancement of Structured Information (OASIS)

An organization of members chartered with promoting public information standards
through conferences, seminars, exhibits, and other educational events. XML is a
standard that OASIS is actively promoting as it is doing with SGML.

parent element

An element that surrounds another element, which is referred to as its child element.
For example, <Parent><Child></Child></Parent> illustrates a parent element
wrapping its child element.

parser

In XML, a software program that accepts as input an XML document and determines
whether it is well-formed and, optionally, valid. The Oracle XML Parser supports both
SAX and DOM interfaces.

Parsed Character Data (PCDATA)

The element content consisting of text that should be parsed but is not part of a tag or
nonparsed data.

Glossary-12

path name

The name of a resource that reflects its location in the repository hierarchy. A path
name is composed of a root element (the first /), element separators (/) and various
sub-elements (or path elements). A path element may be composed of any character in
the database character set except ("\", "/"). These characters have a special meaning
for Oracle XML DB. Forward slash is the default name separator in a path name and
backward slash may be used to escape characters.

PCDATA

See Parsed Character Data.

PDA

Personal Digital Assistant, such as a Palm Pilot.

Pipeline Definition Language

W3C recommendation that enables you to describe the processing relations between
XML resources.

PL/SQL

The Oracle procedural database language that extends SQL. It is used to create
programs that can be run within the database.

principal

An entity that may be granted access control privileges to an Oracle XML DB resource.
Oracle XML DB supports as principals:

■ Database users.

■ Database roles. A database role can be understood as a group, for example, the
DBA role represents the DBA group of all the users granted the DBA role.

Users and roles imported from an LDAP server are also supported as a part of the
database general authentication model.

prolog

The opening part of an XML document containing the XML declaration and any DTD
or other declarations needed to process the document.

PUBLIC

The term used to specify the location on the Internet of the reference that follows.

RDF

Resource Definition Framework.

renderer

A software processor that produces a document in a specified format.

repository

The set of database objects, in any schema, that are mapped to path names. There is
one root to the repository ("/") which contains a set of resources, each with a path
name.

resource

An object in the repository hierarchy.

Glossary-13

resource name

The name of a resource within its parent folder. Resource names must be unique
(potentially subject to case-insensitivity) within a folder. Resource names are always in
the UTF-8 character set (NVARCHAR2).

result set

The output of a SQL query consisting of one or more rows of data.

root element

The element that encloses all the other elements in an XML document and is between
the optional prolog and epilog. An XML document is only permitted to have one root
element.

SAX

See Simple API for XML.

schema

The definition of the structure and data types within a database. It can also be used to
refer to an XML document that support the XML Schema W3C recommendation.

schema evolution

The process used to modify XML schemas that are registered with Oracle XML DB.
Oracle XML DB provides the PL/SQL procedure DBMS_XMLSCHEMA.CopyEvolve().
This copies existing XML instance documents to temporary tables, drops and
re-registers the XML schema with Oracle XML DB, and copies the XML instance
documents to the new XMLType tables.

Secure Sockets Layer (SSL)

The primary security protocol on the Internet; it utilizes a public key /private key
form of encryption between browsers and servers.

Server-Side Include (SSI)

The HTML command used to place data or other content into a Web page before
sending it to the requesting browser.

servlet

A Java application that runs in a server, typically a Web or application server, and
performs processing on that server. Servlets are the Java equivalent to CGI scripts.

session

The active connection between two tiers.

SGML

See Structured Generalized Markup Language.

Simple API for XML (SAX)

An XML standard interface provided by XML parsers and used by event-based
applications.

Simple Object Access Protocol (SOAP)

An XML-based protocol for exchanging information in a decentralized, distributed
environment.

Glossary-14

SOAP

See Simple Object Access Protocol.

SQL

See Structured Query Language.

SQL/XML

An ANSI specification for representing XML in SQL. Oracle SQL includes SQL/XML
functions that query XML. The specification is not yet completed.

SSI

See Server-side Include.

SSL

See Secure Sockets Layer.

Structured Generalized Markup Language (SGML)

An ISO standard for defining the format of a text document implemented using
markup and DTDs.

Structured Query Language (SQL)

The standard language used to access and process data in a relational database.

stylesheet

In XML, the term used to describe an XML document that consists of XSL processing
instructions used by an XSL processor to transform or format an input XML document
into an output one.

SYSTEM

Specifies the location on the host operating system of the reference that follows.

SYS_XMLAGG

The native SQL function that returns as a single XML document the results of a
passed-in SYS_XMLGEN SQL query. This can also be used to instantiate an XMLType.

SYS_XMLGEN

The native SQL function that returns as an XML document the results of a passed-in
SQL query. This can also be used to instantiate an XMLType.

tag

A single piece of XML markup that delimits the start or end of an element. Tags start
with < and end with >. In XML, there are start-tags (<name>), end-tags (</name>),
and empty tags (<name/>).

TransX Utility

TransX Utility is a Java API that simplifies the loading of translated seed data and
messages into a database.

UDDI

See Universal Description, Discovery and Integration.

UIX

See User Interface XML.

Glossary-15

Uniform Resource Identifier (URI)

The address syntax that is used to create URLs and XPaths.

Uniform Resource Locator (URL)

The address that defines the location and route to a file on the Internet. URLs are used
by browsers to navigate the World Wide Web and consist of a protocol prefix, port
number, domain name, directory and subdirectory names, and the file name. For
example http://otn.oracle.com:80/tech/xml/index.htm specifies the
location and path a browser will travel to find the OTN XML site on the World Wide
Web.

Universal Description, Discovery and Integration (UDDI)

This specification provides a platform-independent framework using XML to describe
services, discover businesses, and integrate business services on the Internet.

URI

See Uniform Resource Identifier.

URL

See Uniform Resource Locator.

User Interface XML (UIX)

A set of technologies that constitute a framework for building web applications.

valid

The term used to refer to an XML document when its structure and element content is
consistent with that declared in its referenced or included DTD.

W3C

See World Wide Web Consortium (W3C).

WebDAV

See World Wide Web distributed authoring and versioning.

Web Request Broker (WRB)

The cartridge within OAS that processes URLs and sends them to the appropriate
cartridge.

Web Services Description Language (WSDL)

A general purpose XML language for describing the interface, protocol bindings, and
deployment details of Web services.

well-formed

The term used to refer to an XML document that conforms to the syntax of the XML
version declared in its XML declaration. This includes having a single root element,
properly nested tags, and so forth.

Working Group (WG)

The committee within the W3C that is made up of industry members that implement
the recommendation process in specific Internet technology areas.

Glossary-16

World Wide Web Consortium (W3C)

An international industry consortium started in 1994 to develop standards for the
World Wide Web. It is located at http://www.w3c.org.

World Wide Web Distributed Authoring and Versioning (WebDAV)

The Internet Engineering Task Force (IETF) standard for collaborative authoring on the
Web. Oracle XML DB Foldering and Security features are WebDAV-compliant.

wrapper

The term describing a data structure or software that wraps around other data or
software, typically to provide a generic or object interface.

WSDL

See Web Services Description Language.

World Wide Web

A worldwide hypertext system that uses the Internet and the HTTP protocol.

XDBbinary

An XML element defined by the Oracle XML DB schema that contains binary data.
XDBbinary elements are stored in the repository when completely unstructured binary
data is uploaded into Oracle XML DB.

XDK

See XML Developer's Kit.

XLink

The XML Linking language consisting of the rules governing the use of hyperlinks in
XML documents. These rules are being developed by the XML Linking Group under
the W3C recommendation process. This is one of the three languages XML supports to
manage document presentation and hyperlinks (XLink, XPointer, and XPath).

XML

See eXtensible Markup Language.

XML Base

A W3C recommendation that describes the use of the xml:base attribute, which can
be inserted in an XML document to specify a base URI other than the base URI of the
document or external entity. The URIs in the document are resolved by means of the
given base.

XML Developer's Kit (XDK)

The set of libraries, components, and utilities that provide software developers with
the standards-based functionality to XML-enable their applications. In the case of the
Oracle Java components of XDK, the kit contains an XML parser, an XSLT processor,
the XML Class Generator, the JavaBeans, and the XSQL Servlet.

XML Gateway

A set of services that allows for easy integration with the Oracle E-Business Suite to
create and consume XML messages triggered by business events.

Glossary-17

XML Query

The on-going effort of the W3C to create a standard for the language and syntax to
query XML documents.

XML Schema

W3C is creating a standard to enable the use of simple data types and complex
structures within an XML document. It addresses areas currently lacking in DTDs,
including the definition and validation of data types. Oracle XML Schema Processor
automatically ensures validity of XML documents and data used in e-business
applications, including online exchanges. It adds simple and complex datatypes to
XML documents and replaces DTD functionality with an XML Schema definition XML
document.

XMLSchema-instance mechanism

Allows Oracle XML DB protocol servers to recognize that an XML document inserted
into Oracle XML DB repository is an instance of a registered XML schema. This means
that the content of the instance document is automatically stored in the default table
defined by that XML schema. Defined by the W3C XML Schema working group and
based on adding attributes that identify the target XML schema to the root element of
the instance document. These attributes are defined by the XMLSchema-instance
namespace.

XMLSchema-instance namespace

Used to identify an instance document as a member of the class defined by a particular
XML schema. You must declare the XMLSchema-instance namespace by adding a
namespace declaration to the root element of the instance document. For example:
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance.

XML schema registration

When using Oracle XML DB, you must first register your XML schema. You can then
use the XML schema URLs while creating XMLType tables, columns, and views.

XML SQL Utility (XSU)

This Oracle utility can generate an XML document (string or DOM) given a SQL query
or a JDBC ResultSet object. It can also extract the data from an XML document, then
insert the data into a DB table, update a DB table, or delete corresponding data from a
DB table.

XMLType

XMLType is an Oracle datatype that stores XML data using an underlying CLOB
column or object-relational columns within a table or view.

XMLType views

Oracle XML DB provides a way to wrap existing relational and object-relational data
in XML format. This is especially useful if, for example, your legacy data is not in XML
but you have to migrate it to an XML format.

XPath

The open standard syntax for addressing elements within a document used by XSL
and XPointer. XPath is currently a W3C recommendation. It specifies the data model
and grammar for navigating an XML document utilized by XSLT, XLink and XML
Query.

Glossary-18

XPath rewrite

Can be used when the XMLType is stored in structured storage (object-relational) using
an XML schema. Queries using XPath can potentially be rewritten directly to
underlying object-relational columns. XPath query rewrite is used for XPaths in SQL
functions such as existsNode(), extract(), extractValue(), and
updateXML(). It enables the XPath to be evaluated against the XML document
without constructing the XML document in memory.

XPointer

The term and W3C recommendation to describe a reference to an XML document
fragment. An XPointer can be used at the end of an XPath-formatted URI. It specifies
the identification of individual entities or fragments within an XML document using
XPath navigation.

XSL

See eXtensible Stylesheet Language.

XSLFO

See eXtensible Stylesheet Language Formatting Object.

XSLT

See eXtensible Stylesheet Language Transformation.

XVM

Oracle's XSLT Virtual Machine is the software implementation of a "CPU" designed to
run compiled XSLT code. The concept of virtual machine assumes a compiler
compiling XSLT stylesheets to a program of byte-codes, or machine instructions for the
"XSLT CPU".

XSQL

The designation used by the Oracle Servlet providing the ability to produce dynamic
XML documents from one or more SQL queries and optionally transform the
document in the server using an XSL stylesheet.

XSU

See XML SQL Utility.

Index-1

Index

Symbols
&, 3-32
', 3-32
>, 3-32
<, 8-29
<, 3-32
", 3-32
<xsql:dml> action, 8-18
<xsql:include-owa> action, 8-19
<xsql:include-param> action, 8-25
<xsql:include-posted-xml> action, 8-26
<xsql:include-request-params> action, 8-24
<xsql:include-xml> action, 8-25
<xsql:include-xsql> action, 8-38
<xsql:query> action, 8-15
<xsql:ref-cursor-function> action, 8-19
<xsql:set-page-param> action, 8-26
<xsql:set-session-param> action, 8-28
<xsql:set-stylesheet-param> action, 8-30

A
accented characters, 3-30
access control entry, definition, Glossary-1
access control list, definition, Glossary-1
ACE, definition, Glossary-1
ACL, definition, Glossary-1
action, 8-29
ambiguous content mode, 3-35
Apache Web Server, 1-17
API, definition, Glossary-1
Application Program Interface,

definition, Glossary-1
application server, definition, Glossary-1
asynchronous parsing, 10-3
attribute, definition, Glossary-1

B
B2B standards, 1-19
B2B, definition, Glossary-2
B2C, definition, Glossary-2
based on two tables, 3-35
BFILES, definition, Glossary-1
binary data, 3-31

binary large object, definition, Glossary-2
binding

clearBindValues(), 24-4
setBindValue, 24-2
values to queries in XSU PL/SQL API, 24-1

BLOB, definition, Glossary-2
browser support for XML, 1-13
Built-in Action Handler, 8-69
Built-in Action Handler, XSQL, 8-69
Business-to-Business, definition, Glossary-2
Business-to-Consumer, definition, Glossary-2

C
C++ class generator, 1-5
C++ interface, 18-1
callback, definition, Glossary-2
cartridge, definition, Glossary-2
Cascading Style Sheets, definition, Glossary-2,

Glossary-3
CDATA Section, 3-28
CDATA, definition, Glossary-2
character sets

XML Schema Processor for Java, supported
by, 5-4

characters, special
inserting in XML documents, 3-32

Class Generator
XML C++, 23-1

Class Generator, definition, Glossary-2
classes

DOMBuilder(), 10-3
setSchemaValidationMode(), 5-5

CLASSPATH
configuring to run XSU, 7-12
XSQL Pages, 8-13

CLASSPATH, definition, Glossary-3
clearBindValues(), 24-4
clearUpdateColumnNames(), 24-7
client/server, definition, Glossary-3
CLOB, definition, Glossary-3
command-line interface

oraxml, 3-37
Common Gateway Interface (CGI),

definition, Glossary-3
Common Object Request Broker API,

Index-2

definition, Glossary-3
Common Oracle Runtime Environment,

definition, Glossary-3
compression of XML, 3-10
connecting

to a database with a thin driver, 7-17
to the database, 7-16

Connection Definitions, 8-14
Content, definition, Glossary-3
context, creating one in XSU PL/SQL API, 24-11
CORBA, definition, Glossary-3
CORE, definition, Glossary-3
creating a node, 3-25
creating context handles

getCtx, 24-1
CURSOR() function, 8-76
custom connection manager, 8-81

D
DAD, definition, Glossary-3
data compression, XML Parser for Java, 3-9
Data Provider for .NET, 1-14
data variables into XML, 3-27
Database Access Descriptor, definition, Glossary-3
datagram, definition, Glossary-4
DB Access JavaBean, 10-2
DBAccess JavaBean, 1-6
DBMS_XMLQuery

bind, 24-1
clearBindValues(), 24-4
getXMLClob, 24-4

DBMS_XMLQuery(), 24-1
DBMS_XMLSave, 24-5

deleteXML, 24-6
getCtx, 24-5
insertXML, 24-6
updateXML, 24-6

DBMS_XMLSave(), 24-5
DBURITYPE, definition, Glossary-4
Default SQL to XML Mapping, 7-6
delete

using XSU, 7-12, 7-30
delete processing, 7-30, 24-9
development tools, 1-12
differ (XMLDiff) bean, 10-7
DOCTYPE, definition, Glossary-4
document clones in multiple threads, 4-15
Document Location Hint, definition, Glossary-4
Document Object Model, definition, Glossary-4
Document Type Definition, definition, Glossary-4
DOCUMENT_TYPE_NODE, 3-7
DOM

API, 3-25
specifications, 2-2
tree-based API, 3-7

DOM and SAX APIs, 3-7, 14-13
guidelines for usage, 3-8

DOM fidelity, definition, Glossary-4
DOM, definition, Glossary-4

DOMBuilder Bean, 1-6, 10-2, 10-3
asynchronous parsing, 10-3

DOMException when Setting Node Value, 3-28
DOMNamespace() class, 3-16
DOMNamespace.java sample, 3-16
DOMParser class, 3-12
DOMSample.java, 3-13
DOMSample.java sample, 3-14
DTD

limitations, 5-1
DTD caching enabling, 3-5
DTD, definition, Glossary-4
DTDs

external, 3-6
Web site with examples, 3-7

E
EDI, definition, Glossary-5
EJB, definition, Glossary-5
Electronic Data Interchange, definition, Glossary-5
element, definition, Glossary-5
empty element, definition, Glossary-5
encoding, setting, 3-31
Enterprise JavaBean, definition, Glossary-5
entity references, 3-32, 3-33
entity, definition, Glossary-5
existsNode, definition, Glossary-5
eXtensible Stylesheet Language Formatting Object,

definition, Glossary-6
eXtensible Stylesheet Language Transformation,

definition, Glossary-6
eXtensible Stylesheet Language,

definition, Glossary-5
external XML document, 3-32
extract, definition, Glossary-6

F
FAQ

XSU, 7-32
file extensions allowed, 3-7
FileReader not for system files, 3-28
Folder, definition, Glossary-6
Foldering, definition, Glossary-6
FOP

errors, 8-81
serializer, 8-49
serializer to produce PDF, 8-61

FOP, definition, Glossary-6
function-based index, definition, Glossary-6

G
generated XML

customizing, 7-8
generating XML, 7-12, 7-21

using DBMS_XMLQuery, 24-1
using XSU command line, getXML, 7-12

getCtx, 24-1, 24-5
getXML, 7-12

Index-3

getXMLClob, 24-4

H
hash tables values into XML, 3-27
HASPATH, definition, Glossary-6
hierarchical indexing, definition, Glossary-6
hierarchical mapping, 3-34
HTML

translate to XML, 4-14
HTML Form Parameters, 8-78
HTML, definition, Glossary-7
HTTP Parameters, 8-76
HTTP POST method, 8-80
HTTP, definition, Glossary-7
HTTPS, definition, Glossary-7
HTTPURITYPE, definition, Glossary-7
Hypertext Markup Language, definition, Glossary-7
Hypertext Transport Protocol, definition, Glossary-7
Hypertext Transport Protocol, Secure,

definition, Glossary-7
hypertext, definition, Glossary-7

I
IDAP, 11-3
IDE, definition, Glossary-7
IIOP, definition, Glossary-7
INPATH, definition, Glossary-7
insert, XSU, 7-10
inserting special characters into XML, 3-32
inserting XML

using XSU, 7-26
insertXML, 24-6
instantiate, definition, Glossary-7
Integrated Development Environment,

definition, Glossary-7
interMedia, definition, Glossary-7
invalid characters, 3-32

J
JAR files, DTDs, 3-6
Java 2 Platform, Enterprise Edition,

definition, Glossary-8
Java API for XML Processing (JAXP),

definition, Glossary-8
Java Architecture for XML Binding (JAXB),

definition, Glossary-8
Java Components

specification, 2-1
Java components

directories, 2-3, 2-4
environment in UNIX, 2-4, 2-5
environment in Windows, 2-5
installation, 2-3

Java Database Connectivity, definition, Glossary-8
Java Naming and Directory Interface,

definition, Glossary-8
Java Runtime Environment, definition, Glossary-8
Java, definition, Glossary-8

JavaBean, definition, Glossary-8
JAXB

API reference, 6-3
binding compiler orajaxb, 6-2
class generator, 1-5, 6-2
code, 6-3
command-line interface, 6-3
compared with JAXP, 6-1, 6-3
examples, 6-3
features not supported, 6-2
marshalling and unmarshalling, 6-3
validating, 6-3
what is, 6-1

JAXP
compared with JAXB, 6-3

JAXP (Java API for XML Processing), 3-36
JDBC driver, 7-17
JDBC, definition, Glossary-8, Glossary-9
JDeveloper, 1-15
JDeveloper, definition, Glossary-9
JDK, definition, Glossary-8
JNDI, definition, Glossary-8
JRE, definition, Glossary-8
JSP, definition, Glossary-8
JSR, definition, Glossary-9
JVM, definition, Glossary-9

K
keepObjectOpen(), 7-20, 24-3

L
lazy type conversions, definition, Glossary-9
listener, definition, Glossary-9
LOB, definition, Glossary-9

M
mapping

hierarchical, 3-34
primer, XSU, 7-6

maxRows, 7-20
merging XML documents, 3-33
method

getDocument(), DOMBuilder Bean, 10-4
methods

addXSLTransformerListener(), 10-6
domBuilderError(), 10-3
DOMBuilderOver(), 10-3
domBuilderStarted(), 10-4

Microsoft .NET, 1-14
multiple outputs, 4-14

N
name-level locking, definition, Glossary-10
namespace, definition, Glossary-10
namespaces

XML, 3-3
national character large object,

Index-4

definition, Glossary-10
NCLOB, definition, Glossary-10
.NET, 1-14
no rows exception, 7-24
node, child, 3-26
node, definition, Glossary-10
notation attribute declaration,

definition, Glossary-10
n-tier, definition, Glossary-10

O
OAG, definition, Glossary-10
OASIS, definition, Glossary-11
OC4J, definition, Glossary-10
OCI examples, 14-6
Open Applications Group, definition, Glossary-10
ora

node-set, 4-8
output, 4-8

Oracle Application Server, definition, Glossary-11
Oracle Content Management SDK,

definition, Glossary-11
Oracle release 7.3, using, 1-18
Oracle Text, definition, Glossary-11
Oracle XML DB, definition, Glossary-11
ORACLE_HOME, definition, Glossary-11
Oracle9i JVM, 3-32
Oracle9i JVM, definition, Glossary-11
OracleXML

putXML, 7-14
XSU command line, 7-12

OracleXml namespace, 18-2
OracleXMLNoRowsException, 7-32
OracleXMLQuery, 7-15
OracleXMLSave, 7-15, 7-25, 7-26, 7-28, 7-30
OracleXMLSQLException, 7-31
orajaxb binding compiler, 6-2
orapipe, pipeline tool, 9-5
oraxml, 3-37
oraxsl

command line interfaces, 4-5
ORB, definition, Glossary-10
Ordered Collection in Tables,

definition, Glossary-11
Out Variable, using xsql

dml, 8-78
Output Escaping, 4-15

P
paginating results, 7-20
parent element, definition, Glossary-11
parseDTD() method, 3-6
Parser for Java, 3-1

constructor extension functions, 4-7
oraxsl, 4-5
return value extension function, 4-7
supported database, 3-32
using DTDs, 3-5
validation modes, 3-3

Parser for Java, overview, 3-1
Parser for Java, removing, 3-31
parser, definition, Glossary-11
parsers

case-sensitive, 3-7
path name, definition, Glossary-12
PCDATA, definition, Glossary-11
PDA, definition, Glossary-12
PDF results using FOP, 8-49
Personal Digital Assistant, definition, Glossary-12
Pipeline

command-line tool, 9-5
example, 9-2

Pipeline Definition Language, 9-1
Pipeline Definition Language,

definition, Glossary-12
PL/SQL

binding values in XSU, 24-4
generating XML with DBMS_XMLQuery, 24-1
XSU, 24-1

PL/SQL, definition, Glossary-12
principal, definition, Glossary-12
printing data, 3-27
processing

delete, 24-9
insert, 7-26
insert in PL/SQL, 24-6
update, 7-28, 24-8

prolog, definition, Glossary-12
PUBLIC, definition, Glossary-12
putXML, 7-14

Q
Query, XML, 1-20

R
readme, XDK, 1-1
release notes, XDK, 1-1
renderer, definition, Glossary-12
repository, definition, Glossary-12
Resource Definition Framework,

definition, Glossary-12
resource name, definition, Glossary-13
resource, definition, Glossary-12
result set objects, 7-21
result set, definition, Glossary-13
root element, definition, Glossary-13

S
SAX

event -based API, 3-8
SAX API, 3-7, 14-13
SAX, definition, Glossary-13
SAXNamespace.java sample, 3-22
SAXParser() class, 3-17
SAXSample.java sample, 3-19
schema evolution, definition, Glossary-13
schema, definition, Glossary-13

Index-5

Secure Sockets Layer, definition, Glossary-13
security, XSQL Pages, 8-3
select

with XSU, 7-10
Server-Side Include (SSI), definition, Glossary-13
Servlet Conditional Statements, 8-77
servlet, definition, Glossary-13
servlet, XSQL, 8-1
session, definition, Glossary-13
setBindValue, 24-2
setKeyColumn, 7-31
setKeyColumn(), 24-10
setMaxRows, 24-3
setRaiseNoRowsException(), 24-3
setSkipRows, 24-3
setStylesheetHeader(), 24-4
setUpdateColumnName(), 24-7, 24-9
setUpdateColumnNames()

XML SQL Utility (XSU)
setUpdateColumnNames(), 7-29

setXSLT(), 24-4
SGML, definition, Glossary-14
Simple API for XML, definition, Glossary-13
Simple Object Access Protocol (SOAP),

definition, Glossary-13
skipRows, 7-20
SOAP

distributed inventory application figure, 11-7
example, 11-6
server, 11-4
what is, 11-1

SOAP, definition, Glossary-14
sorting result, 8-84
special characters, 3-31
SQL*Loader

nesting support, 1-17
SQL, definition, Glossary-14
SQL/XML, definition, Glossary-14
SSI, definition, Glossary-13
storing XML, 7-25

using XSU command line, putXML, 7-14
storing XML in the database, 24-5
string data, 3-32, 3-33
stylesheet, definition, Glossary-14
stylesheet, input argument, 8-83
stylesheets

XSU, 24-4
SYS_XMLAGG, definition, Glossary-14
SYS_XMLGEN, definition, Glossary-14
SYSTEM, definition, Glossary-14
System.out.println(), 3-31

T
tag, definition, Glossary-14
thin driver

connecting XSU, 7-17
TransX Utility, 12-1

command-line syntax, 12-4
sample code, 12-5

TransXUtility, definition, Glossary-14
Tuning with XSQL, 8-54

U
UDDI, 11-2
UIX, 1-16
UIX, definition, Glossary-15
Unicode in a system file, 3-28
Uniform Resource Identifier, definition, Glossary-15
Uniform Resource Locator, definition, Glossary-15
update processing, 24-8
update, XSU, 7-11
updating

table using keyColumns, XSU, 7-28
using XSU, 7-28

URI, definition, Glossary-15
URL, definition, Glossary-15
usage techniques, 7-31
User Interface XML, 1-16
User Interface XML (UIX), definition, Glossary-15
UTF-16 Encoding, 3-30
UTF-8 encoding, 3-30
UTF-8 output, 3-29

V
valid, definition, Glossary-15
validation

auto validation mode, 3-4
DTD validating Mode, 3-4
partial validation mode, 3-4
schema validation, 3-4
schema validation mode, 3-4

W
W3C, definition, Glossary-16
Web Request Broker, definition, Glossary-15
web services, 11-1
WebDAV, definition, Glossary-15, Glossary-16
well-formed, definition, Glossary-15
WG, definition, Glossary-15
WML Document, 8-76
World Wide Web Consortium,

definition, Glossary-16
World Wide Web Distributed Authoring and

Versioning, definition, Glossary-16
World Wide Web, definition, Glossary-16
wrapper, definition, Glossary-16
WRB, definition, Glossary-15
WRONG_DOCUMENT_ERR, 3-27
WSDL, 11-2

X
XDBbinary, definition, Glossary-16
XDK

functionality illustration, 1-4
XDK C components

parts, 13-1

Index-6

XDK C++ components
installation, 17-1

XDK components, 1-1
XDK for Java

globalization support, 2-6
XDK JavaBeans, 10-1
XDK version

using Java, 2-7
XDK, definition, Glossary-16
XLink, definition, Glossary-16
XML

direction and plans, 1-19
serialization/compression, 3-10

XML Base, 1-1
XML Base, definition, Glossary-16
XML books, 1-16
XML C++ Class Generator, 23-1
XML Compressor, 3-9
XML Developer's Kit (XDK), definition, Glossary-16
XML discussion forum, 14-9
XML document, 3-35

displaying, 3-31
external, 3-32

XML documents
generating from C, 1-10
generating from C++, 1-11
generating from Java, 1-9
illegal characters, 3-33
merging, 3-33

XML Gateway, 1-14
XML Gateway, definition, Glossary-16
XML Namespaces, 3-3
XML Namespaces 1.0, 1-1
XML output in UTF-8, 3-29
XML Parser

oraxml command-line interface, 3-37
XML Parser for C

sample programs, 15-6
XML Parser for Java

compression
XML data, using XML Parser for Java, 3-9

XML parsers
XML program-created, 1-17

XML Query, definition, Glossary-17
XML Schema

compared to DTD, 5-1
DTD limitations, 5-1
explained, 5-1
features, 5-2
processor for Java

how to run the sample program, 5-6
supported character sets, 5-4
usage, 5-4

processor for Java features, Oracle's, 5-3
XML schema registration, definition, Glossary-17
XML Schema, definition, Glossary-17
XML schema, definition, 3-1
XML SQL Utility, Glossary-17
XML SQL Utility (XSU), 1-7, 24-1

advanced techniques, exception handling

(PL/SQL), 24-11
binding values

PL/SQL API, 24-4
clearBindValues() with PL/SQL API, 24-4
command line usage, 7-12
connecting to the database, 7-16
connecting with a thin driver, 7-17
connecting with OCI* JDBC driver, 7-17
customizing generated XML, 7-8
DBMS_XMLQuery, 24-1
DBMS_XMLSave(), 24-5
deletes, 7-12
deleting from XML documents, 7-30
dependencies and installation, 7-3
explained, 7-1
for Java, 7-15
getXML command line, 7-12
getXMLClob, 24-4
how it works, 7-10
inserting with command line and putXML, 7-14
inserting XML into database, 7-26
inserts, 7-10
keepObjectOpen function, 7-20
mapping primer, 7-6
OracleXLlQuery API, 7-15
OracleXMLSave API, 7-15
putting XML back in database with

OracleXMLSave, 7-25
selects, 7-10
setKeycolumn function, 7-31
setRaiseNoRowsException(), 24-3
setting stylesheets, PL/SQL, 24-4
updates, 7-11
updating, 7-28
updating XML documents in tables, 7-28

XML SQL Utility XSU)
setXSLT(), 24-4

XML SQL Utility(XSU)
creating context handles with getCtx, 24-1

XML standards for B2B, 1-19
XML Tree, Traversing, 3-26
XML Web sites, 1-16
XML, definition, Glossary-5
xmlcg usage, 23-2
XMLCompress JavaBean, 1-6, 10-2
XMLDBAccess JavaBean, 1-6, 10-2
XMLDBAccess Javabean, 10-8
XMLDiff Bean, 10-7
XMLDiff JavaBean, 1-6, 10-2
XMLGEN, is obsolete. See DBMS_XMLQUERY and

DBMS_XMLSAVE, 7-3
XMLNode.selectNodes() method, 3-26
XMLSchema-instance mechanism,

definition, Glossary-17
XMLSchema-instance namespace,

definition, Glossary-17
XMLType views, definition, Glossary-17
XPath rewrite, definition, Glossary-18
XPath, definition, Glossary-17
XPointer, definition, Glossary-18

Index-7

XSDBuilder, 3-4
XSL

document clones, 4-15
keeping white spaces, 4-14
multiple threads, 4-14
produces multiple output, 4-14

XSL namespace
URI, 4-14

XSL Parser for Java
output method html, 4-13

XSL processor, 15-3
XSL stylesheets

setStylesheetHeader() in XSU PL/SQL, 24-4
setXSLT() with XSU PL/SQL, 24-4

XSL Transformation (XSLT) Processor, 1-5, 3-1, 3-3
XSL Transformation (XSLT) Processor for Java, 4-1
XSL Transformations Specifications, 2-2
XSL, definition, Glossary-5
XSLFO, definition, Glossary-6
XSLT

ora
node-set built in extension, 4-8
output built in extension, 4-8

XSLTransformer bean, 10-4
XSLT compiler, 15-1
XSLT Processor for Java

hints for using, 4-11
XSLT, definition, Glossary-6
XSLTransformer JavaBean, 1-6, 10-2, 10-4
XSLValidator JavaBean, 1-7, 10-3
XSQL

action handler errors, 8-75
advanced topics, 8-50
built-in action handler elements, 8-69
CLOBs, 8-83
compared to JSP, 8-83
connection, 8-80
connection pool, 8-83
current page name, 8-81
errors, 8-79
non-Oracle databases, 8-77
setting up demos, 8-49
SOAP support, 8-80
stylesheets, 8-51
tuning, 8-83
two queries, 8-77

xsql
set-cookie>, 8-29

XSQL Pages
extensions, 8-80

XSQL Pages security, 8-3
XSQL servlet

hints, 8-76
XSQL Servlet examples, 8-47
XSQL, definition, Glossary-18
XSQLCommandLine Utility, 8-15
XSQLConfig.xml, 8-54
XSU

client-side, 7-12
FAQ, 7-32

generating XML, 7-12
generating XML strings from a table,

example, 7-16
insert processing in PL/SQL, 24-6
mapping primer, 7-6
PL/SQL, 24-1
stylesheets, 24-4
usage guidelines, 7-6
using, 7-1
where you can run, 7-4

XSU (XML SQL Utility), 1-7
xvm

XSLT compiler, 15-3
XVM (XSLT Virtual Machine) processor, 15-1
XVM, definition, Glossary-18

Index-8

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	What's New in Oracle XML Developer's Kit?
	Oracle Database 10g Release 1 (10.1) New Features in Oracle XML Developer's Kit

	1 Overview of XML Developer's Kit Components
	Introducing Oracle XML Developer's Kit
	Overview of Oracle XDK Components

	XDK Functionality Applied to XML Documents
	XML Parsers
	XSL Transformation (XSLT) Processors
	JAXB and C++ Class Generators
	XML Schema Processor
	XDK JavaBeans
	DOMBuilder
	XSLTransformer
	DBAccess
	XMLDiff
	XMLCompress
	XMLDBAccess
	XSDValidator

	Oracle XML SQL Utility (XSU) for Java
	XSQL Pages Publishing Framework
	TransX Utility
	Soap Services

	Using XDK-supported Languages to Generate XML Documents
	Using XSU for Java to Generate XML Documents
	Generating XML from Query Results
	XML Document Structure: Columns Are Mapped to Elements
	XSU Generates the XML Document as a String or DOM Element Tree
	XSU Generates a DTD Based on Queried Table's Schema

	Using Oracle XDK Java Components to Generate XML Documents
	Using Oracle XDK C Components to Generate XML Documents
	Using Oracle XDK C++ Components to Generate XML Documents

	XDK and Application Development Tools
	Browsers That Support XML
	Oracle XML Gateway
	Oracle Data Provider for .NET
	JDeveloper
	User Interface XML (UIX)
	Recommended Books and Web Sites About XML

	Using Oracle XML-Enabled Technology
	Information for Using the XDK
	Using Apache Web Server Instead of the Oracle9i Application Server
	Need for an XML Parser If all the XML Was Created By Programs
	SQL*Loader and Nesting in XML Documents

	Information About Previous Oracle Releases
	Using Oracle Database Version 7 and XML
	Doing Data Transfers to Other Vendors Using XML from Oracle Release 7.3.4
	Using Versions Prior to Oracle8i and Oracle XML Tools?

	XML Standards That Oracle Supports
	B2B Standards and Development Tools that Oracle Supports
	Oracle Corporation's Direction Regarding XML
	Oracle Corporation's Plans for XML Query

	Maximum XML File Sizes
	Limitations on the Size of an XML File
	Size Limit for XML Documents Generated from the Database
	Maximum Size for an XML Document for PL/SQL

	2 Getting Started with XDK Java Components
	XDK Java Components Specifications
	DOM Specifications
	XSL Transformations Specifications

	Installing XDK Java Components
	XDK Java Components Directory Structure
	XDK Java Components Environment Settings
	UNIX Environment Settings for XDK Java Components
	Windows Environment Settings for XDK Java Components

	XDK Java Components Globalization Support
	XDK Java Components Dependencies
	Verifying the XDK Java Components Version

	3 XML Parser for Java
	XML Parser for Java Overview
	Namespace Support
	XML Parser for Java Validation Modes
	Using DTDs with the XML Parser for Java
	Enabling DTD Caching
	Recognizing External DTDs
	Loading External DTDs from a JAR File
	Checking the Correctness of Constructed XML Documents
	Parsing a DTD Object Separately from an XML Document
	XML Parsers Case-Sensitivity
	Allowed File Extensions in External Entities
	Creating a DOCUMENT_TYPE_NODE
	Standard DTDs That Can be Used for Orders, Shipments, and So On

	About DOM and SAX APIs
	DOM: Tree-Based API
	SAX: Event-Based API
	Guidelines for Using DOM and SAX APIs
	DOM
	SAX

	About XML Compressor
	XML Serialization and Compression

	Running the Sample Applications for XML Parser for Java
	Using XML Parser for Java: DOMParser Class
	Without DTD Input
	With a DTD Input
	Comments on Example 1: DOMSample.java
	XML Parser for Java Example 1: DOMSample.java

	Using XML Parser for Java: DOMNamespace Class
	XML Parser for Java Example 2: Parsing a URL - DOMNamespace.java

	Using XML Parser for Java: SAXParser Class
	XML Parser for Java Example 3: Using the Parser and SAX API (SAXSample.java)
	XML Parser for Java Example 4: (SAXNamespace.java)

	Using the XML Parser for Java
	Using DOM and SAX APIs for Java
	Using the DOM API to Count Tagged Elements
	Creating a Node with a Value to Be Set Later
	Traversing the XML Tree Using XPATH
	Finding the First Child Node Element Value
	Using the XMLNode.selectNodes() Method
	Generating an XML Document from Data in Variables
	Using the DOM API to Print Data in the Element Tags
	Building XML Files from Hash Table Value Pairs
	DOM Exception WRONG_DOCUMENT_ERR on Node.appendChild()
	Getting DOMException when Setting Node Value
	Extracting Embedded XML from a CDATA Section
	Extracting PAYLOAD to do Extra Processing

	Using Character Sets with the XML Parser for Java
	Reading a Unicode XML File
	Writing an XML File in UTF-8
	Writing Parsing XML Stored in NCLOB with UTF-8 Encoding
	Parsing a Document Containing Accented Characters
	Storing Accented Characters in an XML Document
	You Cannot Dynamically Set the Encoding for an Input XML File
	Using System.out.println() and Special Characters

	General Questions About XML Parser for Java
	Including Binary Data in an XML Document
	Displaying an XML Document
	Including an External XML File in Another XML File
	You Do Not Need Oracle9i or Higher to Run XML Parser for Java
	Inserting Characters <, >, ', ", and & into XML Documents
	Invalid Special Characters in Tags
	Parsing XML from Data of Type String
	Extracting Data from an XML Document into a String
	Illegal Characters in XML Documents
	Using Entity References with the XML Parser for Java
	Merging XML Documents
	The XML Parser for Java Does Not Need a Utility to View the Parsed Output
	Support for Hierarchical Mapping
	Support for Ambiguous Content Mode
	Generating an XML Document Based on Two Tables

	Using JAXP
	oraxml: XML Parser for Java Command-line

	4 XSLT Processor for Java
	XSLT Processor for Java Overview
	Using XSLT Processor for Java
	XSLT Processor for Java Example

	XSLT Command-Line Interface: oraxsl
	XML Extension Functions for XSLT Processing
	XSLT Processor for Java Extension Functions and Namespaces
	Static Versus Non-Static Methods
	XML Parser for Java - XSL Example 1: Static function

	Constructor Extension Function
	XML Parser for Java - XSL Example 2: Constructor Extension Function

	Return Value Extension Function
	XML Parser for Java XSL- XSL Example 3: Return Value Extension Function

	Datatypes Extension Function
	XML Parser for Java - XSL Example 4: Datatype Extension Function

	XSLT Processor for Java Built-In Extensions: ora:node-set and ora:output
	ora:output
	ora:node-set
	Example of Use of Oracle XSL Extensions

	Hints for Using the XSLT Processor for Java and XSL
	Merging Two XML Documents
	Example: Using importNode() from DOM Level 2
	Example: Using adoptNode from DOM Level 3
	Example: demo1.xml
	Example: demo2.xml
	Example: demomerge.xsl

	Extracting Embedded XML Using Only XSLT
	Support of Output Method "html" in the XSL Parser
	Creating an HTML Input Form
	Correct XSL Namespace URI
	XSL Processor Produces Multiple Outputs
	Keeping White Spaces in Your Output
	XDK Utilities That Translate Data from Other Formats to XML
	Multiple Threads Using a Single XSLProcessor and Stylesheet
	Using Document Clones in Multiple Threads
	Disabling Output Escaping Is Supported

	5 XML Schema Processor for Java
	What Is XML Schema?
	What Are DTDs?
	DTD Limitations

	Comparison of XML Schema Features to DTD Features
	XML Schema Processor for Java Features
	Supported Character Sets
	Requirements to Run XML Schema Processor for Java

	XML Schema Processor for Java Usage
	Using the XML Schema API

	XML Schema Processor for Java Sample Programs

	6 Using JAXB Class Generator
	What Is JAXB?
	Replacing the XML Class Generator with JAXB Class Generator
	Unmarshalling, Marshalling, and Validating Using JAXB
	Using JAXB Class Generator
	Features Not Supported in JAXB
	JAXB Class Generator Command-Line Interface
	JAXB Compared with JAXP

	7 XML SQL Utility (XSU)
	What Is XML SQL Utility (XSU)?
	Generating XML from the Database
	Storing XML in the Database
	Accessing XSU Functionality
	XSU Features

	XSU Dependencies and Installation
	Dependencies of XSU
	Installing XSU

	Where XSU can be Installed
	XML SQL Utility in the Database
	XML SQL Utility in the Middle Tier
	XML SQL Utility in a Web Server

	SQL-to-XML and XML-to-SQL Mapping Primer
	Default SQL-to-XML Mapping
	SQL-to-XML Mapping Against Object-Relational Schema
	Mapping Complex Type Columns to XML
	Mapping Collections to XML

	Customizing the Generated XML: Mapping SQL to XML
	Source Customizations
	Mapping Customizations
	Post-Generation Customizations

	Default XML-to-SQL Mapping

	How XML SQL Utility Works
	Selecting with XSU
	Queries That XSU Cannot Handle
	Inserting with XSU
	Updating with XSU
	Deleting with XSU

	Using the XSU Command-Line Front End OracleXML
	Generating XML Using the XSU Command Line
	XSU's OracleXML getXML Options
	Inserting XML Using XSU's Command Line (putXML)
	XSU OracleXML putXML Options

	XSU Java API
	Generating XML with XSU's OracleXMLQuery
	Generating XML from SQL Queries Using XSU
	XSU Generating XML Example 1: Generating a String from Table employees (Java)
	How to Run This Program

	XSU Generating XML Example 2: Generating DOM from Table employees (Java)

	Paginating Results: skipRows and maxRows
	Keeping the Object Open for the Duration of the User's Session
	When the Number of Rows or Columns in a Row Is Too Large
	keepObjectOpen Function
	XSU Generating XML Example 3: Paginating Results: (Java)

	Generating XML from ResultSet Objects
	XSU Generating XML Example 4: Generating XML from JDBC ResultSets (Java)
	XSU Generating XML Example 5: Generating XML from Procedure Return Values

	Raising NoRowsException
	XSU Generating XML Example 6: No Rows Exception (Java)

	Storing XML Back in the Database Using XSU OracleXMLSave
	Insert Processing Using XSU (Java API)
	XSU Inserting XML Example 7: Inserting XML Values into All Columns (Java)
	XSU Inserting XML Example 8: Inserting XML Values into Columns (Java)

	Update Processing Using XSU (Java API)
	XSU Updating XML Example 9: Updating a Table Using the keyColumns (Java)
	XSU Updating XML Example 10: Updating a Specified List of Columns (Java)

	Delete Processing Using XSU (Java API)
	XSU Deleting XML Example 11: Deleting Operations Per Row (Java)
	XSU Deleting XML Example 12: Deleting Specified Key Values (Java)

	Advanced XSU Usage Techniques
	XSU Exception Handling in Java
	OracleXMLSQLException Class
	OracleXMLNoRowsException Class

	Hints for Using XML SQL Utility (XSU)
	Schema Structure to use with XSU to Store XML
	Storing XML Data Across Tables
	Using XSU to Load Data Stored in Attributes
	XSU is Case-Sensitive
	XSU Cannot Generate the Database Schema from a DTD
	Thin Driver Connect String Example for XSU
	XSU and COMMIT After INSERT, DELETE, or UPDATE
	Mapping Table Columns to XML Attributes Using XSU

	8 XSQL Pages Publishing Framework
	XSQL Pages Publishing Framework Overview
	What Can I Do with Oracle XSQL Pages?
	Where Can I Obtain Oracle XSQL Pages?
	What Is Needed to Run XSQL Pages?

	Security Considerations for XSQL Pages
	Install Your XSQLConfig.xml File in a Safe Directory
	Disable Default Client Stylesheet Overrides
	Be Alert for the Use of Substitution Parameters

	What's New in XSQL Pages Release 10.1
	Overview of Basic XSQL Pages Features
	Producing XML Datagrams from SQL Queries
	Transforming XML Datagrams into an Alternative XML Format
	Transforming XML Datagrams into HTML for Display

	Setting Up and Using XSQL Pages in Your Environment
	Using XSQL Pages with Oracle JDeveloper
	Setting the CLASSPATH Correctly in Your Production Environment
	Setting Up the Connection Definitions
	Using the XSQL Command-Line Utility

	Overview of All XSQL Pages Capabilities
	Using All of the Core Built-in Actions
	The <xsql:query> Action
	The <xsql:dml> Action
	The <xsql:ref-cursor-function> Action
	The <xsql:include-owa> Action
	Using Bind Variables
	Using Lexical Substitution Parameters
	Providing Default Values for Bind Variables and Parameters
	Understanding the Different Kinds of Parameters
	The <xsql:include-request-params> Action
	The <xsql:include-param> Action
	The <xsql:include-xml> Action
	The <xsql:include-posted-xml> Action
	The <xsql:set-page-param> Action
	The <xsql:set-session-param> Action
	The <xsql:set-cookie> Action
	The <xsql:set-stylesheet-param> Action

	Working with Array-Valued Parameters
	Setting Array-Valued Page or Session Parameters from Strings
	Binding Array-Valued Parameters in SQL and PL/SQL Statements
	Supplying Multi-Valued Parameters on the Command Line
	Supplying Multi-Valued Parameters Programmatically with XSQLRequest
	Conditionally Executing Actions or Including Content with <xsql:if-param>
	Optionally Setting an Error Parameter on Any Built-in Action
	Aggregating Information Using <xsql:include-xsql>
	Including XMLType Query Results
	Handling Posted Information
	Understanding Different XML Posting Options

	Using Custom XSQL Action Handlers

	Description of XSQL Servlet Examples
	Setting Up the Demo Data

	Advanced XSQL Pages Topics
	Using a Custom XSQL Configuration File Name
	Understanding Client Stylesheet-Override Options
	Controlling How Stylesheets Are Processed
	Controlling the Content Type of the Returned Document
	Assigning the Stylesheet Dynamically
	Processing Stylesheets in the Client
	Providing Multiple, UserAgent-Specific Stylesheets

	Using XSQL Configuration File to Tune Your Environment
	Using the FOP Serializer to Produce PDF Output
	Using XSQL Page Processor Programmatically
	Writing Custom XSQL Action Handlers
	Writing your Own Action Handler

	Using Multi-Valued Parameters in Custom XSQL Actions
	Writing Custom XSQL Serializers
	Using a Custom XSQL Connection Manager for JDBC Datasources
	Writing Custom XSQL Connection Managers
	Providing a Custom XSQLErrorHandler Implementation
	Providing a Custom XSQL Logger Implementation
	Formatting XSQL Action Handler Errors
	Displaying Error Information on Screen

	XSQL Servlet Limitations and Hints
	HTTP Parameters with Multibyte Names
	CURSOR() Function in SQL Statements
	Hints for Using the XSQL Servlet
	Specifying a DTD While Transforming XSQL Output to a WML Document
	Writing XSQL Servlet Conditional Statements
	Using a Value Retrieved in One Query in Another Query's Where Clause
	Using the XSQL Servlet with Non-Oracle Databases
	Handling Multi-Valued HTML Form Parameters
	Running the XSQL Servlet with Oracle Release 7.3
	Out Variable is not Supported in <xsql:dml>
	Receiving "Unable to Connect" Errors
	Using Other File Extensions Besides .xsql
	Receiving "No Posted Document to Process" when you Try to Post XML
	XSQL Supports SOAP
	Passing the Connection for XSQL
	Controlling How Database Connections and Passwords Are Stored
	Accessing Authentication Information in a Custom Connection Manager
	Retrieving the Name of the Current XSQL Page
	Resolving Errors When Using the FOP Serializer
	Tuning XSQL Pages for Fastest Performance
	Using XSQL with Other Connection Pool Implementations
	Including XML Documents Stored in CLOBs in Your XSQL Page
	Combining JavaServer Pages and XSQL in the Same Page
	Choosing a Stylesheet Based on Input Arguments
	Sorting the Result Within the Page

	9 Pipeline Definition Language for Java
	Using Pipeline Definition Language
	Example of a Pipeline Definition Language Application
	The Command-line Pipeline Tool orapipe

	10 XDK JavaBeans
	Accessing Oracle XDK JavaBeans
	Database Connectivity
	XDK JavaBeans Overview
	DOMBuilder
	XSLTransformer
	DBAccess
	XMLDiff
	XMLCompress
	XMLDBAccess
	XSDValidator

	DOMBuilder JavaBean
	Use for Asynchronous Parsing in the Background
	DOMBuilder JavaBean Usage

	XSLTransformer JavaBean
	XSLTransformer JavaBean: Regenerating HTML Only When Data Changes
	How to Use XSLTransformer JavaBean

	DBAccess JavaBean
	DBAcess JavaBean Usage

	XMLDiff JavaBean
	XMLCompress JavaBean
	XMLDBAccess JavaBean
	XSDValidator JavaBean
	JavaBean Examples
	Installing the JavaBean Examples
	XMLDiffSample.java
	XSDValidatorSample.java

	11 Using XDK and SOAP
	What Is SOAP?
	What Are UDDI and WSDL?
	What Is Oracle SOAP?
	How Does Oracle SOAP Work?
	Oracle SOAP and IDAP
	What Is a SOAP Client?
	SOAP Client API
	What Is a SOAP Server?
	Oracle SOAP Security Features
	SOAP Transports
	Administrative Clients
	SOAP Request Handler
	SOAP Provider Interface and Providers
	Provider Interface
	Provider Deployment Administration
	SOAP Services Provided

	Advantages of XML Over EDI

	SOAP Example
	XML Features Used in the SOAP Example
	Prerequisite Software for the SOAP Example
	How Is the SOAP Example Implemented?
	Setting Up the Tables and the SOAP Service
	Requesting SOAP Service
	Initializing the MessageDispatcher Process
	Compressing the XML Document
	Creating a SOAP Message
	Enqueuing the XML Document
	Listing of the Java Source File inserItemServlet.java
	Queuing Messages with AQ
	Message Enqueuing and Dequeuing.
	Invoking Remote SOAP Services.

	XML Compression
	Listing of the Java Source File MessageBroker.java
	Summary of the SOAP Example

	12 TransX Utility
	Overview of the TransX Utility
	Primary TransX Utility Features
	Simplified Multilingual Data Loading
	Simplified Data Format Support and Interface
	Loading Dataset in the Standard XML Format
	Constant Expression
	Sequence
	Query

	Handling Existing Data
	Other TransX Utility Features

	Installing TransX Utility
	Dependencies of TransX
	Installing TransX Using the Oracle Installer
	Installing TransX Downloaded from OTN
	To Use the TransX Front-end or Its Java API:

	TransX Utility Command-Line Syntax
	TransX Utility Command-Line Examples
	TransX Utility Command-line Parameters
	TransX Utility Command-line Options
	Command-line Option Exceptions

	Sample Code for TransX Utility

	13 Getting Started with XDK C Components
	Specifications of XDK C/C++ Components
	What Are the XDK C Components
	Installing the C Components of XDK
	Setting the UNIX Environment
	Command Line Environment Setup
	Setting the Windows Environment
	Environment for Command Line Usage
	Using the XDK C Components with Visual C++

	Globalization Support for the C XDK Components

	14 XML Parser for C
	What Is the Unified C API for XDK and Oracle XML DB?
	Using DOM for XDK
	Loading an XML Document with the C API
	Data Encoding of XML Documents for the C API
	NULL-Terminated and Length-Encoded C API Functions
	Error Handling
	Installing the C API

	Using OCI and the C API
	XML Context
	Creating XMLType Instances on the Client
	XML Data on the Server
	XMLType Functions and Descriptions
	OCI Examples

	Using the XML Parser for C
	Memory Allocation
	Thread Safety
	Data Types Index
	Error Message Files

	XML Parser for C Calling Sequence
	Parser Calling Sequence

	XML Parser for C Default Behavior
	DOM and SAX APIs Compared
	Using the SAX API
	SAX Callback Structure

	Command Line Usage
	Writing C Code to Use Supplied APIs

	Using the Sample Files

	15 XSLT Processors for C
	XVM Processor
	XVM Usage Example
	Command-Line Access of the XVM Processor
	Accessing XVM Processor for C

	XSL Processor
	XSL Processor Usage Example
	XPath Processor Usage Example
	Command Line Usage of the XSL Processor
	Accessing Oracle XSL Processor for C

	Using the Demo Files Included with the Software
	Building the C Demo Programs for XSLT

	16 XML Schema Processor for C
	Oracle XML Schema Processor for C
	Oracle XML Schema for C Features
	Standards Conformance
	XML Schema Processor for C: Supplied Software

	Invoking XML Schema Processor for C
	XML Schema Processor for C Usage Diagram
	How to Run XML Schema for C Sample Programs

	17 Getting Started with XDK C++ Components
	Installation of the XDK C++ Components
	Getting the C++ Components of XDK
	Libraries in the UNIX Environment for C++ XDK
	Setting the UNIX Environment for C++
	Command Line Environment Setup
	Windows Environment Setup for C++ XDK
	Environment for Command Line Usage on Windows

	Setting the Windows Environment for C++ XDK
	Using XDK C++ Components with Visual C++

	18 Unified C++ Interfaces
	What is the Unified C++ API?
	Accessing the C++ Interface
	OracleXML Namespace
	OracleXML Interfaces

	Ctx Namespace
	OracleXML Datatypes
	Ctx Interfaces

	IO Namespace
	IO Datatypes
	IO Interfaces

	Tools Package
	Tools Interfaces

	Error Message Files

	19 XML Parser for C++
	Introduction to Parser for C++
	Dom Namespace
	DOM Datatypes
	DOM Interfaces
	DOM Traversal and Range Datatypes
	DOM Traversal and Range Interfaces

	Parser Namespace
	GParser Interface
	DOMParser Interface
	SAXParser Interface
	SAX Event Handlers

	Thread Safety
	XML Parser for C++ Usage
	XML Parser for C++ Default Behavior
	C++ Sample Files

	20 XSLT Processor for C++
	Accessing XSLT for C++
	Xsl Namespace
	Xsl Interfaces

	XSLT for C++ DOM Interface Usage
	Invoking XSLT for C++
	Command Line Usage
	Writing C++ Code to Use Supplied APIs

	Using the Sample Files Included with the Software

	21 XML Schema Processor for C++
	Oracle XML Schema Processor for C++
	Oracle XML Schema for C++ Features
	Online Documentation

	Standards Conformance

	XML Schema Processor API
	Invoking XML Schema Processor for C++

	Running the Provided XML Schema for C++ Sample Programs

	22 XPath Processor for C++
	XPath Interfaces
	Sample Programs

	23 XML Class Generator for C++
	Accessing XML C++ Class Generator
	Using XML C++ Class Generator
	External DTD Parsing
	Error Message Files

	XML C++ Class Generator Usage
	Input to the XML C++ Class Generator

	Using the XML C++ Class Generator Examples
	XML C++ Class Generator Example 1: XML - Input File to Class Generator, CG.xml
	XML C++ Class Generator Example 2: DTD - Input File to Class Generator, CG.dtd
	XML C++ Class Generator Example 3: CG Sample Program

	24 XSU for PL/SQL
	XSU PL/SQL API
	Generating XML with DBMS_XMLQuery()
	XSU Generating XML Example 1: Generating XML from Simple Queries (PL/SQL)
	XSU Generating XML Example 2: Printing CLOB to Output Buffer
	XSU Generating XML Example 3: Changing ROW and ROWSET Tag Names
	XSU Generating XML Example 4: Using setMaxRows() and setSkipRows()

	Setting Stylesheets in XSU (PL/SQL)
	Binding Values in XSU (PL/SQL)
	XSU Generating XML Example 5: Binding Values to the SQL Statement

	Storing XML in the Database Using DBMS_XMLSave
	Insert Processing Using XSU (PL/SQL API)
	XSU Inserting XML Example 6: Inserting Values into All Columns (PL/SQL)
	XSU Inserting XML Example 7: Inserting Values into Certain Columns (PL/SQL)

	Update Processing Using XSU (PL/SQL API)
	XSU Updating XML Example 8: Updating XML Document Key Columns (PL/SQL)
	XSU Updating XML Example 9: Specifying a List of Columns to Update (PL/SQL)

	Delete Processing Using XSU (PL/SQL API)
	XSU Deleting XML Example 10: Deleting Operations for Each Row (PL/SQL)
	XSU Example 11: Deleting by Specifying the Key Values (PL/SQL)
	XSU Deleting XML Example 12: Reusing the Context Handle (PL/SQL)
	XSU Exception Handling in PL/SQL

	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

