
Oracle® Containers for J2EE
Enterprise JavaBeans Developer’s Guide

10g (10.1.3.1.0)

B28221-02

March 2007

Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide, 10g (10.1.3.1.0)

B28221-02

Copyright © 2002, 2007, Oracle. All rights reserved.

Primary Author: Peter Purich

Contributing Author: Debu Panda, Raghu Kodali

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xxi

Audience... xxi
Documentation Accessibility ... xxi
Related Documents .. xxii
Conventions .. xxii

Part I EJB Overview

1 Understanding Enterprise JavaBeans

What are Enterprise JavaBeans? .. 1-1
What is the Anatomy of an EJB 3.0 enterprise bean?.. 1-2
What is the Anatomy of an EJB 2.1 Enterprise Bean? ... 1-4
What is the Life Cycle of an Enterprise Bean? ... 1-5

Life Cycle Callback Methods on a Bean Class .. 1-6
Life Cycle Callback Interceptor Methods on an EJB 3.0 Interceptor Class 1-6
Life Cycle Callback Listener Methods on a JPA Entity Listener Class 1-6

What is EJB Context? ... 1-6
How do Annotations and Resource Injection Work? ... 1-7

Annotations in the Web Tier ... 1-9
Annotations and Inheritance... 1-9
Overriding Annotations With Deployment Descriptor Entries.. 1-20
OC4J Support for Annotation Attribute mappedName... 1-27

What is a Session Bean? ... 1-27
What is a Stateless Session Bean?.. 1-28

What is the Stateless Session Bean Life Cycle? .. 1-28
What is a Stateful Session Bean? ... 1-30

What is the Life Cycle of a Stateful Session Bean? .. 1-30
What is Session Context? ... 1-34

What is a JPA Entity? .. 1-34
What are JPA Entity Container-Managed Persistent Fields?.. 1-35
What are JPA Entity Container-Managed Relationship Fields?... 1-36
What is the JPA Entity Life Cycle? ... 1-37
What is a JPA Entity Primary Key? .. 1-38
How do you Query for a JPA Entity?... 1-39

Understanding the JPA EntityManager Query API ... 1-39

iv

Understanding JPA Entity Query Syntax... 1-39
What is an EJB 2.1 Entity Bean? .. 1-41

What is an EJB 2.1 Entity Bean With Container-Managed Persistence? 1-42
What are Container-Managed Persistent Fields? .. 1-42
What are Container-Managed Relationship Fields? ... 1-42
What is the Life Cycle of an EJB 2.1 Entity Bean With Container-Managed Persistence?
1-43
What is a Primary Key of an Entity Bean With Container-Managed Persistence? 1-45

What is an EJB 2.1 Entity Bean With Bean-Managed Persistence? .. 1-46
What are Bean-Managed Persistent Fields? ... 1-46
What are Bean-Managed Relationship Fields? .. 1-46
What is the Life Cycle of an EJB 2.1 Entity Bean With Bean-Managed Persistence? 1-46
What is a Primary Key of an Entity Bean With Bean-Managed Persistence? 1-47

What is Entity Context?.. 1-48
When Does Entity Bean Passivation Occur? ... 1-48
What are Entity Bean Commit Options?.. 1-48

Commit Options and CMP Applications ... 1-49
Commit Options and BMP Applications.. 1-50

How do you Query for an EJB 2.1 Entity Bean? ... 1-50
Understanding EJB 2.1 Query Syntax ... 1-50
Understanding Finder Methods .. 1-53
Understanding Select Methods.. 1-55

What is a Message-Driven Bean? ... 1-56
What is the Life Cycle of a Message-Driven Bean? .. 1-57
What is Message Driven Context? .. 1-58

Which Type of Enterprise Bean Should You Use? .. 1-58
Which Type of Session Bean Should You Use? .. 1-59
When do you use Bean-Managed Versus Container-Managed Persistence?......................... 1-59

How do you Avoid Database Resource Contention? ... 1-59
Transaction Isolation .. 1-60
Concurrency (Locking) Mode ... 1-60

2 Understanding EJB Application Development

Using EJB Development Tools... 2-1
Using JDeveloper ... 2-1
Using Eclipse... 2-1
Using TopLink Workbench .. 2-2

What OC4J Services Can You Use With an EJB? .. 2-2
How do you Package and Deploy an EJB Application? ... 2-3

Understanding Packaging .. 2-3
Understanding Deployment... 2-3

In What Order Does OC4J Deploy EJB Modules?.. 2-4
Understanding EJB Deployment Descriptor Files... 2-4
What is the ejb-jar.xml File?.. 2-5

EJB 3.0 ... 2-5
EJB 2.1 ... 2-5
XML Reference .. 2-5

v

What is the orion-ejb-jar.xml File? ... 2-6
EJB 3.0 ... 2-6
EJB 2.1 ... 2-6
XML Reference .. 2-6

What is the toplink-ejb-jar.xml File?.. 2-6
EJB 3.0 ... 2-7
EJB 2.1 ... 2-7
XML Reference .. 2-7

What is the ejb3-toplink-sessions.xml File?.. 2-7
EJB 3.0 ... 2-7
EJB 2.1 ... 2-8
XML Reference .. 2-8

What is the persistence.xml File? ... 2-8
Understanding OC4J Persistence Unit Defaults... 2-8
EJB 3.0 ... 2-9
EJB 2.1 ... 2-9
XML Reference .. 2-9

What is the orm.xml File? ... 2-9
EJB 3.0 .. 2-10
EJB 2.1 .. 2-10
XML Reference ... 2-10

How do you use an Enterprise Bean in Your Application? ... 2-10
Understanding Client Access .. 2-10
Understanding EJB 3.0 Interceptors ... 2-10

Interceptor Restrictions ... 2-11
Singleton Interceptors ... 2-12

Understanding EJB and Web Services ... 2-12
Understanding EJB Administration ... 2-12

Understanding EJB Persistence Services .. 2-12
Understanding EJB JNDI Services... 2-14
Understanding EJB Data Source Services .. 2-14

What Types of Data Source Does OC4J Support? .. 2-14
Managed Data Source ... 2-15
Native Data Source .. 2-15

How do you Define a Connection URL in OC4J? .. 2-15
What Transaction Types do Data Sources Support?.. 2-16
Where do you Configure Data Source Information in OC4J? .. 2-16
What is a Default Data Source?... 2-16
How Does OC4J Handle Multiple Data Sources? .. 2-17

Understanding EJB Transaction Services ... 2-17
Who Manages a Transaction?.. 2-17

What are Container-Managed Transactions? .. 2-18
What are Bean-Managed Transactions? ... 2-18

How are Transactions Handled When a Client Invokes a Business Method?....................... 2-19
How do You Participate in a Global or Two-Phase Commit (2PC) Transaction? 2-20

Understanding EJB Security Services ... 2-20
Understanding Message Services .. 2-20

vi

What Message Service Providers Can you use With Your MDB? ... 2-21
Oracle JMS Connector: J2EE Connector Architecture (J2CA)-Based Provider 2-21
OEMS JMS: In-Memory or File-Based Provider .. 2-23
OEMS JMS Database: Advanced Queueing (AQ)-Based Provider 2-24
Restrictions When Accessing a Message Service Provider Without a J2CA Resource
Adapter 2-25

Message Service Configuration Options: Annotations or XML? Attributes or Activation
Configuration Properties? 2-26

Message Service Configuration Using Annotations ... 2-26
Message Service Configuration Using XML .. 2-27

Configuring Message Services for Two-Phase Commit (2PC) Transactions.......................... 2-29
MDB Auto-Enlisting in Two-Phase Commit (2PC) XA Transactions 2-29

Understanding OC4J EJB Application Clustering Services.. 2-29
State Replication .. 2-30
Load Balancing .. 2-31

Understanding EJB Timer Services.. 2-31
Understanding Java EE Timer Services ... 2-32
Understanding OC4J Cron Timer Services.. 2-32

3 Understanding EJB Support in OC4J

EJB 3.0 Support ... 3-1
What JDK is Required?.. 3-2
How do You Define an EJB 3.0 Application?... 3-2
How Does OC4J Manage Persistence in an EJB 3.0 Application?... 3-2

TopLink Essentials JPA Persistence Provider... 3-2
JPA Persistence JAR Files... 3-2
Customizing the JPA Persistence Provider ... 3-3
Accessing TopLink API at Run Time With TopLink Essentials JPA Persistence 3-4
Accessing TopLink API at Run Time With TopLink JPA Preview Persistence................. 3-4

Migrating a 10.1.3.0 TopLink JPA Preview Application to 10.1.3.1 TopLink Essentials JPA . 3-5
Changes in OC4J Configuration Files .. 3-6
Changes in javax.persistence... 3-6
Changes in oracle.toplink.essentials.platform.database .. 3-10
Changes in Interceptor Support... 3-10
Acquiring an Entity Manager... 3-10
New JAR Files... 3-11

EJB 2.1 Support .. 3-11
What JDK is Required?... 3-11
How do you Define an EJB 2.1 Module? ... 3-11
How Does OC4J Manage Persistence in an EJB 2.1 Application?.. 3-12

TopLink EJB 2.1 Persistence Manager... 3-12
EJB 2.1 Persistence JAR Files .. 3-12
Customizing the TopLink EJB 2.1 Persistence Manager .. 3-13
Migrating to the TopLink EJB 2.1 Persistence Manager... 3-13

Part II EJB 3.0 Session Beans

vii

4 Implementing an EJB 3.0 Session Bean

Implementing an EJB 3.0 Stateless Session Bean .. 4-1
Implementing an EJB 3.0 Stateful Session Bean .. 4-2
Adapting an EJB 3.0 Stateless Session Bean for an EJB 2.1 Client.. 4-4

Using Annotations ... 4-4
Adapting an EJB 3.0 Stateful Session Bean for an EJB 2.1 Client ... 4-5

Using Annotations ... 4-5

5 Using an EJB 3.0 Session Bean

Configuring Passivation ... 5-1
Using Deployment XML ... 5-2

Configuring Passivation Criteria .. 5-2
Using Annotations ... 5-2
Using Deployment XML ... 5-3

Configuring Passivation Location... 5-3
Using Annotations ... 5-3
Using Deployment XML ... 5-4

Configuring a Life Cycle Callback Interceptor Method on an EJB 3.0 Session Bean 5-4
Using Annotations ... 5-4

Configuring a Life Cycle Callback Interceptor Method on an Interceptor Class of an EJB 3.0
Session Bean .. 5-5

Using Annotations ... 5-5
Configuring an Around Invoke Interceptor Method on an EJB 3.0 Session Bean 5-6

Using Annotations ... 5-7
Configuring an Around Invoke Interceptor Method on an Interceptor Class of an EJB 3.0
Session Bean ... 5-7

Using Annotations ... 5-8
Configuring an Interceptor Class for an EJB 3.0 Session Bean ... 5-8

Using Annotations ... 5-9
Creating an Interceptor Class.. 5-9
Associating an Interceptor Class With a Session Bean... 5-10
Specifying Singleton Interceptors in a Session Bean .. 5-10

Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 Session Bean 5-10
Using Annotations .. 5-11
Using Deployment XML .. 5-11

Part III JPA Entities

6 Implementing a JPA Entity

Implementing a JPA Entity... 6-1

7 Using Java Persistence API

Configuring a JPA Entity Primary Key .. 7-1
Configuring a JPA Entity Simple Primary Key Field.. 7-2

Using Annotations .. 7-2

viii

Configuring a JPA Entity Composite Primary Key Class .. 7-2
Using Annotations .. 7-3

Configuring JPA Entity Automatic Primary Key Generation ... 7-5
Using Annotations .. 7-5

Configuring Table and Column Information ... 7-6
Configuring the Primary Table .. 7-7

Using Annotations .. 7-7
Configuring a Secondary Table.. 7-7

Using Annotations .. 7-7
Configuring a Column .. 7-8

Using Annotations .. 7-8
Configuring a Join Column .. 7-8

Using Annotations .. 7-9
Configuring a Container-Managed Relationship Field for a JPA Entity 7-9
Configuring a Basic Mapping... 7-10

Using Annotations .. 7-10
Configuring a Large Object Mapping ... 7-10

Using Annotations .. 7-11
Configuring a Serialized Object Mapping... 7-11

Using Annotations .. 7-11
Configuring an One-to-One Mapping .. 7-11

Using Annotations .. 7-12
Configuring a Many-to-One Mapping.. 7-12

Using Annotations .. 7-12
Configuring an One-to-Many Mapping ... 7-12

Using Annotations .. 7-13
Configuring a Many-to-Many Mapping... 7-13

Using Annotations .. 7-13
Configuring an Aggregate Mapping ... 7-14

Using Annotations .. 7-14
Configuring Optimistic Lock Version Field .. 7-15

Using Annotations .. 7-15
Configuring Lazy Loading .. 7-16

Using Annotations .. 7-16
Configuring a Life Cycle Callback Method on a JPA Entity .. 7-16

Using Annotations .. 7-17
Configuring a Life Cycle Callback Listener Method on an Entity Listener Class of a JPA Entity...
7-17

Using Annotations .. 7-18
Configuring Inheritance for a JPA Entity ... 7-19

Joined Subclass .. 7-19
Single Table for Each Class Hierarchy ... 7-20
Using Annotations .. 7-20

Configuring Joined Subclass Inheritance With Annotations... 7-20
Configuring Single Table Inheritance With Annotations .. 7-21

ix

8 Implementing JPA Queries

Implementing a JPA Named Query .. 8-1
Using Annotations ... 8-1

Implementing a JPA Dynamic Query... 8-2
Using Java.. 8-2

Configuring TopLink Query Hints in a JPA Query... 8-3

Part IV EJB 3.0 Message-Driven Beans

9 Implementing an EJB 3.0 Message-Driven Bean

Implementing an EJB 3.0 MDB.. 9-1

10 Using an EJB 3.0 Message-Driven Bean

Configuring an EJB 3.0 MDB to Access a Message Service Provider Using J2CA 10-1
Using Annotations .. 10-2
Using Deployment XML .. 10-3

Configuring an EJB 3.0 MDB to Access a Message Service Provider Directly.......................... 10-3
Using Annotations .. 10-4
Using Deployment XML .. 10-5

Configuring Parallel Message Processing .. 10-5
Using Annotations .. 10-5
Using Deployment XML .. 10-7

Configuring Maximum Delivery Count ... 10-7
Using Annotations .. 10-7
Using Deployment XML .. 10-8

Configuring Connection Failure Recovery for an EJB 3.0 MDB .. 10-9
Using Annotations .. 10-9
Using Deployment XML .. 10-10

Configuring a Life Cycle Callback Interceptor Method on an EJB 3.0 MDB 10-11
Using Annotations .. 10-11

Configuring a Life Cycle Callback Interceptor Method on an Interceptor Class of an EJB 3.0
MDB ... 10-11

Using Annotations .. 10-12
Configuring an Around Invoke Interceptor Method on an EJB 3.0 MDB 10-13

Using Annotations .. 10-13
Configuring an Around Invoke Interceptor Method on an Interceptor Class of an EJB 3.0 MDB ..
10-14

Using Annotations .. 10-14
Configuring an Interceptor Class for an EJB 3.0 MDB .. 10-15

Using Annotations .. 10-15
Creating an Interceptor Class... 10-15
Associating an Interceptor Class With an MDB .. 10-16
Specifying Singleton Interceptors in an MDB.. 10-16

Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 MDB 10-17
Using Annotations .. 10-17
Using Deployment XML .. 10-18

x

Part V EJB 2.1 Session Beans

11 Implementing an EJB 2.1 Session Bean

Implementing an EJB 2.1 Stateless Session Bean ... 11-1
Using Java... 11-2
Using Deployment XML .. 11-3

Implementing an EJB 2.1 Stateful Session Bean ... 11-3
Using Java... 11-5
Using Deployment XML .. 11-6

Implementing the Home Interfaces... 11-6
Implementing the Remote Home Interface ... 11-6
Implementing the Local Home Interface ... 11-7

Implementing the Component Interfaces .. 11-8
Implementing the Remote Component Interface ... 11-8
Implementing the Local Component Interface... 11-9

Implementing the setSessionContext Method .. 11-9

12 Using an EJB 2.1 Session Bean

Configuring Passivation .. 12-1
Using Deployment XML .. 12-2

Configuring Passivation Criteria ... 12-2
Using Deployment XML .. 12-2

Configuring Passivation Location.. 12-3
Using Deployment XML .. 12-3

Configuring a Life Cycle Callback Method for an EJB 2.1 Session Bean 12-3
Using Java... 12-4

Part VI EJB 2.1 Entity Beans

13 Implementing an EJB 2.1 Entity Bean

Implementing an EJB 2.1 Entity Bean With Container-Managed Persistence 13-1
Using Java... 13-3
Using Deployment XML .. 13-5

Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence 13-6
Using Java... 13-8
Using Deployment XML .. 13-14
Implementing an ejbCreate Method for an EJB 2.1 Entity Bean With Bean-Managed Persistence
 13-15

Implementing the EJB 2.1 Home Interfaces ... 13-18
Implementing the Remote Home Interface ... 13-18
Implementing the Local Home Interface ... 13-19

Implementing the EJB 2.1 Component Interfaces... 13-19
Implementing the Remote Component Interface ... 13-19
Implementing the Local Component Interface... 13-20

Implementing the setEntityContext and unsetEntityContext Methods 13-20

xi

14 Using an EJB 2.1 Entity Bean With Container-Managed Persistence

Configuring a Primary Key for an EJB 2.1 Entity Bean With Container-Managed Persistence
14-2

Configuring a Primary Key Field for an EJB 2.1 Entity Bean With Container-Managed
Persistence 14-2

Using Deployment XML... 14-2
Configuring a Composite Primary Key Class for an EJB 2.1 Entity Bean With
Container-Managed Persistence 14-3

Using Java ... 14-3
Using Deployment XML... 14-4

Configuring Table and Column Information .. 14-4
Configuring Automatic Database Table Creation .. 14-5

Using Deployment XML .. 14-5
Configuring Default Relationship Generation ... 14-6

Using Deployment XML .. 14-6
Configuring a Container-Managed Persistent Field for an EJB 2.1 Entity Bean With
Container-Managed Persistence ... 14-7

Using Java... 14-8
Using Deployment XML .. 14-8

Configuring a Container-Managed Relationship Field for an EJB 2.1 Entity Bean With
Container-Managed Persistence ... 14-9

Using Java... 14-10
Using Deployment XML .. 14-10

Configuring a One-to-One Relationship .. 14-11
Using Deployment XML .. 14-11

Configuring a One-to-Many Relationship ... 14-11
Using Deployment XML .. 14-12

Configuring a Many-to-One Relationship ... 14-12
Using Deployment XML .. 14-12

Configuring a Many-to-Many Relationship .. 14-13
Using Deployment XML .. 14-13

Configuring Lazy Loading on Finder Methods... 14-14
Using Deployment XML .. 14-14

Configuring a Life Cycle Callback Method for an EJB 2.1 Entity Bean With Container-Managed
Persistence .. 14-15

Using Java... 14-15

15 Using an EJB 2.1 Entity Bean With Bean-Managed Persistence

Configuring a Primary Key for an EJB 2.1 Entity Bean With Bean-Managed Persistence...... 15-1
Configuring a Primary Key Field for an EJB 2.1 Entity Bean With Bean-Managed Persistence ...
15-2

Using Deployment XML... 15-2
Configuring a Primary Key Class for an EJB 2.1 Entity Bean With Bean-Managed Persistence....
15-2

Using Java ... 15-3
Using Deployment XML... 15-3

Configuring a Read-Only Entity Bean With Bean-Managed Persistence 15-4

xii

Using Deployment XML .. 15-4
Configuring Commit Options for an Entity Bean With Bean-Managed Persistence 15-5

Using Deployment XML .. 15-5
Configuring a Query for an EJB 2.1 Entity Bean With Bean-Managed Persistence 15-5

Implementing an ejbFindByPrimaryKey Method for an EJB 2.1 Entity Bean With
Bean-Managed Persistence 15-6
Implementing Other Finder Methods for a EJB 2.1 Entity Bean With Bean-Managed Persistence
15-6

Configuring a Life Cycle Callback Method for an EJB 2.1 Entity Bean With Bean-Managed
Persistence .. 15-7

Using Java... 15-7

16 Implementing EJB 2.1 Queries

Implementing an EJB 2.1 EJB QL Finder Method... 16-1
Using Java... 16-2
Using Deployment XML .. 16-3
Using TopLink Workbench ... 16-4

Implementing an EJB 2.1 EJB QL Select Method.. 16-4
Using Java... 16-5
Using Deployment XML .. 16-7
Using TopLink Workbench ... 16-7

OC4J EJB 2.1 EJB QL Extensions .. 16-7

Part VII EJB 2.1 Message-Driven Beans

17 Implementing an EJB 2.1 Message-Driven Bean

Implementing an EJB 2.1 MDB... 17-1
Using Java... 17-3
Using Deployment XML .. 17-4
Implementing the setMessageDrivenContext Method.. 17-6

18 Using an EJB 2.1 Message-Driven Bean

Configuring an EJB 2.1 MDB to Access a Message Service Provider Using J2CA 18-1
Using Deployment XML .. 18-2

Configuring an EJB 2.1 MDB to Access a Message Service Provider Directly.......................... 18-3
Using Deployment XML .. 18-4

Configuring an MDB for Fast Undeploy on Windows Operating System 18-5
Using System Properties .. 18-5

Configuring an MDB for Oracle RAC Failover... 18-6
Using Deployment XML .. 18-6
Using Java... 18-6

Configuring Parallel Message Processing .. 18-7
Using Deployment XML .. 18-7

Configuring Maximum Delivery Count ... 18-8
Using Deployment XML .. 18-8

Configuring Connection Failure Recovery for an EJB 2.1 MDB .. 18-9

xiii

Using Deployment XML .. 18-9
Configuring a Life Cycle Callback Method for an EJB 2.1 MDB... 18-10

Using Java... 18-11

Part VIII Configuring OC4J EJB Services

19 Configuring JNDI Services

Configuring Environment References .. 19-1
EJB Environment References ... 19-2
Resource Manager Connection Factory Environment References... 19-2
Environment Variable Environment References .. 19-3
Web Service Environment References ... 19-3
Persistence Context References ... 19-3
Where do you Configure an EJB Environment Reference? .. 19-3
Should you use Logical Names? ... 19-3

Configuring an Environment Reference to a Remote EJB: Clustered or Combined Web Tier and
EJB Tier .. 19-4

Configuring ejb-ref in the Client: No Indirection... 19-4
Configuring ejb-ref in the Client: Using ejb-link to Resolve Indirection 19-5
Configuring ejb-ref in the Client: Using orion-ejb-jar.xml ejb-ref-mapping to Resolve
Indirection 19-5

Configuring an Environment Reference to a Remote EJB: Unclustered Separate Web Tier and
EJB Tier .. 19-6

Using Deployment XML .. 19-7
Configuring an Environment Reference to a Local EJB... 19-9

Configuring ejb-local-ref in the Client: No Indirection ... 19-9
Configuring ejb-local-ref in the Client: Using ejb-link to Resolve Indirection..................... 19-10
Configuring ejb-local-ref in the Client: Using orion-ejb-jar.xml ejb-ref-mapping to Resolve
Indirection 19-10

Configuring an Environment Reference to a JDBC Data Source Resource Manager Connection
Factory.. 19-11

Using Deployment XML .. 19-12
Configuring an Environment Reference to a JMS Destination Resource Manager Connection
Factory (JMS 1.1) .. 19-13
Configuring an Environment Reference to a JMS Destination or Connection Resource Manager
Connection Factory (JMS 1.0).. 19-14

Using Deployment XML .. 19-14
Configuring an Environment Reference to an Environment Variable 19-16
Configuring an Environment Reference to a Web Service.. 19-17
Configuring an Environment Reference to a Persistence Context .. 19-18
Configuring the Initial Context Factory.. 19-19

Configuring the Default Initial Context Factory .. 19-19
Configuring an Oracle Initial Context Factory ... 19-20

Configuring the Naming Provider URL for OC4J and Oracle Application Server...... 19-20
Configuring the Naming Provider URL for OC4J Standalone.. 19-21

Setting JNDI Properties in an Enterprise Bean ... 19-22
Setting JNDI Properties With the JNDI Properties File ... 19-22

xiv

Setting JNDI Properties With System Properties ... 19-22
Setting JNDI Properties in the Initial Context... 19-23

Looking Up an EJB 3.0 Resource Manager Connection Factory... 19-23
Using Annotations .. 19-23
Using Initial Context... 19-23

Looking Up an EJB 3.0 Environment Variable... 19-23
Using Resource Injection.. 19-23
Using Initial Context... 19-25

Looking Up an EJB 2.1 Resource Manager Connection Factory... 19-25
Using Initial Context... 19-25

Looking Up an EJB 2.1 Enviornment Variable... 19-25
Using Initial Context... 19-25

20 Configuring Data Sources

Configuring a Data Source for an Oracle Database ... 20-1
Using Application Server Control Console ... 20-1
Using Deployment XML .. 20-2

Configuring a Data Source for a Third-Party Database... 20-2
Using Application Server Control Console ... 20-2
Using Deployment XML .. 20-3

Configuring a Default Data Source for an EJB 3.0 Application ... 20-3
Using Deployment XML .. 20-3

Configuring a Default Data Source for an EJB 2.1 Application ... 20-4
Using Deployment XML .. 20-4

Associating TopLink With an Oracle JDBC Driver .. 20-4
EJB 3.0 and EJB 2.1 non-CMP Applications... 20-4
EJB 2.1 CMP Applications.. 20-6
EIS AQ Connector Applications ... 20-9

21 Configuring Transaction Services

Configuring EJB 3.0 Transaction Management ... 21-1
Using Annotations .. 21-1
Using Deployment XML .. 21-2

Configuring an EJB 3.0 Transaction Attribute ... 21-2
Using Annotations .. 21-2
Using Deployment XML .. 21-4

Configuring EJB 2.1 Transaction Management ... 21-4
Using Deployment XML .. 21-4

Configuring an EJB 2.1 Transaction Attribute ... 21-4
Using Deployment XML .. 21-5

Configuring Transaction Timeouts .. 21-5
Configuring a Global Transaction Timeout .. 21-6

Using Application Server Control Console.. 21-6
Using Deployment XML... 21-6

Configuring a Transaction Timeout for a Session Bean .. 21-6
Using Annotations ... 21-6
Using Deployment XML... 21-7

xv

Configuring a Transaction Timeout for a Message-Driven Bean .. 21-7
Using Annotations ... 21-8
Using Deployment XML... 21-8

Transaction Best Practices .. 21-9
Using Container Managed Transactions With Datasource Connections 21-9
Using a Rollback Strategy .. 21-10

22 Configuring Security Services

Granting Permissions in Browser .. 22-1
Defining Users, Groups, and Roles in an EJB Application .. 22-1

Specifying Users and Groups.. 22-2
Specifying Logical Roles in the EJB Deployment Descriptor ... 22-3
Specifying a Role for an EJB Method ... 22-4

Using Annotations ... 22-4
Using Deployment XML... 22-5

Specifying Unchecked Security for EJB Methods... 22-6
Using Annotations ... 22-6
Using Deployment XML... 22-6

Specifying the runAs Security Identity.. 22-7
Using Annotations ... 22-7
Using Deployment XML... 22-7

Mapping Logical Roles to Users and Groups ... 22-8
Specifying a Default Role Mapping for Undefined Methods... 22-9
Specifying Users and Groups by the Client .. 22-10

Specifying Credentials in EJB Clients .. 22-10
Specifying Credentials in JNDI Properties .. 22-11
Specifying Credentials in the Initial Context .. 22-11
Specifying EJB Client Security Properties in the ejb_sec.properties File 22-12

Using EJB 3.0 Security Annotations... 22-12
Using Annotations .. 22-13

Retrieving Credentials From an Enterprise Bean Using the JAAS API 22-13
Defining a Custom JAAS Login Module for an EJB Application ... 22-13

23 Configuring Message Services

Configuring a J2CA Resource Adapter for use With Your Message Service Provider 23-1
J2CA Message Service Provider Connection Factory Names... 23-2
Installing and Configuring a J2CA Adapter ... 23-2
Configuring OC4J J2CA Resource Adapter Deployment XML Files 23-2

Configuring an OEMS JMS Message Service Provider... 23-3
OEMS JMS Destination and Connection Factory Names.. 23-3
Configuring jms.xml ... 23-4

Configuring an OEMS JMS Database Message Service Provider... 23-5
OEMS JMS Database Destination and Connection Factory Names .. 23-6
Installing and Configuring the OEMS JMS Database Provider ... 23-6
Configuring data-sources.xml... 23-8
Configuring application.xml or orion-application.xml ... 23-8

xvi

24 Configuring OC4J EJB Application Clustering Services

Configuring EJB 3.0 and EJB 2.1 Stateful Session Bean Replication Policy 24-1
Using Deployment XML .. 24-1

Overriding Application-Level Replication Policy in the orion-ejb-jar.xml File for EJB
Components 24-2

Configuring Static Retrieval Load Balancing .. 24-3
Using JNDI Properties .. 24-3

Configuring DNS Load Balancing... 24-3
Using JNDI Properties .. 24-4

Configuring Load Balancing Behavior ... 24-4
Using System Properties .. 24-4

25 Configuring Timer Services

Configuring an Enterprise Bean With a Java EE Timer ... 25-1
Configuring an Enterprise Bean With an OC4J Cron Timer... 25-3
Troubleshooting Timers ... 25-6

Retrieving Information About a Timer .. 25-7
Retrieving a Persisted Timer ... 25-7
Executing a Timer Within the Scope of a Transaction... 25-7
What Does a NoSuchObjectLocalException Mean With Timers?.. 25-7

Part IX Packaging and Deploying an EJB Application

26 Configuring Deployment Descriptor Files

Configuring the ejb-jar.xml File ... 26-1
Creating ejb-jar.xml During Migration .. 26-1
Creating the ejb-jar.xml File at Deployment Time ... 26-1
Creating ejb-jar.xml With JDeveloper .. 26-2

Configuring the toplink-ejb-jar.xml File .. 26-2
Creating toplink-ejb-jar.xml During Migration .. 26-2
Creating toplink-ejb-jar.xml With TopLink Workbench ... 26-2

Configuring the orion-ejb-jar.xml File.. 26-3
Configuring the ejb3-toplink-sessions.xml File.. 26-3

Creating ejb3-toplink-sessions.xml With TopLink Workbench ... 26-3
Configuring the persistence.xml File .. 26-3

Configuring the persistence.xml With a Named Persistence Unit File................................... 26-4
What Persistent Managed Classes Does This Persistence Unit Include?......................... 26-4

Configuring the persistence.xml File for the OC4J Default Persistence Unit......................... 26-5
Specifying a Data Source in a Persistence Unit... 26-5
Configuring Vendor Extensions in a Persistence Unit .. 26-5

TopLink JPA Extensions for JDBC (Java SE).. 26-7
TopLink JPA Extensions for Caching.. 26-9
TopLink JPA Extensions for Logging ... 26-13
TopLink JPA Extensions for Database, Session, and Application Server...................... 26-15
TopLink JPA Extensions for Customization .. 26-18
TopLink JPA Extensions for Schema Generation.. 26-21

xvii

27 Packaging an EJB Application

Packaging a JPA Entity Application .. 27-1
Packaging a Persistence Unit... 27-1

Creating a Persistence Archive .. 27-2
Packaging Persistence Unit Files Directly in Java EE Modules... 27-2

Packaging Mapping Metadata .. 27-2
Packaging an Application With Both EJB 3.0 and EJB 2.1 Enterprise Beans 27-3
Sharing Classes Between EJB Applications ... 27-3

Handling Out of Memory Exceptions at Run Time ... 27-4
Handling Class Cast Exceptions at Run Time .. 27-4

28 Deploying an EJB Application to OC4J

Deploying a Large EJB Application... 28-1
Tuning the VM to Avoid Out Of Memory Errors During Deployment 28-1
Configuring the Temp Directory to Avoid Out Of Memory Errors During Deployment .. 28-2
Disabling Batch Compilation to Avoid Out Of Memory Errors During Deployment 28-2

Deploying Incrementally... 28-2
Expanded Deployment... 28-4
Troubleshooting Application Deployment .. 28-4

Part X Using an EJB in Your Application

29 Accessing an Enterprise Bean From a Client

What Type of Client do you Have? .. 29-1
EJB Client.. 29-2
Standalone Java Client.. 29-2
Servlet or JSP Client .. 29-2

Configuring the Client ... 29-2
Configuring the Client Classpath for OC4J... 29-3
Selecting an Initial Context Factory Class ... 29-3
Specifying Security Credentials .. 29-4
Selecting an EJB Reference... 29-4

Accessing an EJB 3.0 Enterprise Bean.. 29-5
Using Annotations .. 29-5
Using Initial Context... 29-5

Looking Up the Remote Interface of an EJB 3.0 Enterprise Bean Using ejb-ref 29-5
Looking Up the Remote Interface of an EJB 3.0 Enterprise Bean Using location........... 29-6
Looking up the Local Interface of an EJB 3.0 Enterprise Bean Using local-ref 29-6
Looking up the Local Interface of an EJB 3.0 Enterprise Bean Using local-location 29-7

Accessing an EJB 3.0 Enterprise Bean in Another Application .. 29-7
Accessing a JPA Entity Using an EntityManager .. 29-8

Acquiring an EntityManager... 29-8
Acquiring the OC4J Default Entity Manager... 29-9
Acquiring a Named Entity Manager... 29-9
Acquiring an Entity Manager Using JNDI... 29-9
Acquiring an Entity Manager in a Web Client .. 29-10

xviii

Acquiring an Entity Manager in a Helper Class ... 29-11
Creating a New Entity Instance .. 29-12
Querying for a JPA Entity Using the EntityManager .. 29-13

Finding an Entity by Primary Key With the Entity Manager.. 29-13
Creating a Named Query With the EntityManager.. 29-13
Creating a Dynamic Java Persistence Query Language Query With the Entity Manager.......
29-14
Creating a Dynamic TopLink Expression Query With the EntityManager 29-14
Creating a Dynamic Native SQL Query With the EntityManager 29-15
Executing a Query.. 29-15

Modifying an Entity Instance .. 29-15
Using an Updating Query .. 29-16
Using the Entity’s Public API... 29-16
Refreshing From the Database ... 29-16
Removing an Entity ... 29-16
Using Flush ... 29-17

Detaching and Merging an Entity Bean Instance ... 29-17
Sending a Message to a JMS Destination Using EJB 3.0 ... 29-17
Accessing an EJB 3.0 EJBContext.. 29-20

Using Resource Injection.. 29-20
Accessing an EJB 2.1 Enterprise Bean.. 29-20

Accessing an EJB 2.1 Enterprise Bean Remotely... 29-21
Accessing an EJB 2.1 Enterprise Bean Locally .. 29-22
Accessing an EJB 2.1 Enterprise Bean Using RMI From a Standalone Java Client.............. 29-22
Accessing an EJB 2.1 Enterprise Bean From an EJB 3.0 Client.. 29-23

Accessing an EJB 2.1 Enterprise Bean in Another Application .. 29-24
Sending a Message to a JMS Destination Using EJB 2.1 ... 29-25
Accessing an EJB 2.1 EJBContext.. 29-27
Handling Parameters .. 29-28

Passing Parameters Into an Enterprise Bean... 29-28
Handling Parameters Returned by an Enterprise Bean .. 29-28

Handling Exceptions... 29-29
Recovering From a NamingException While Accessing a Remote Enterprise Bean 29-29
Recovering From a NullPointerException While Accessing a Remote Enterprise Bean.... 29-29
Recovering From Deadlock Conditions... 29-29

30 Using EJB and Web Services

Exposing a Stateless Session Bean as a Web Service.. 30-1
Using Annotations .. 30-1

Accessing a Web Service From an Enterprise Bean .. 30-2
Using Annotations .. 30-2
Using Initial Context... 30-3

31 Administrating an EJB Application

OC4J EJB JMX Support .. 31-1
Using Oracle Enterprise Manager 10g Application Server Control .. 31-1
Configuring EJB Logging .. 31-2

xix

Logging Namespaces.. 31-2
Logging Levels .. 31-3
Configuring Logging With Application Server Control Logging MBean 31-3
Configuring Logging Using the j2ee-logging.xml File .. 31-3
Configuring Logging Using System Properties.. 31-3
Configuring TopLink Logging.. 31-3
Configuring Oracle JMS Connector Logging.. 31-4

Managing the Bean Instance Pool .. 31-4
Configuring Bean Instance Pool Size ... 31-4

Using Annotations ... 31-4
Using Deployment XML... 31-5

Configuring Bean Instance Pool Timeouts for Session Beans .. 31-6
Using Annotations ... 31-6
Using Deployment XML... 31-7

Configuring Bean Instance Pool Timeouts for Entity Beans... 31-7
Using Deployment XML... 31-7

Starting and Stopping an EJB Application... 31-8
Troubleshooting an EJB Application... 31-8

Validating XML Files .. 31-8
Debugging the ejb-jar.xml File .. 31-8
Debugging Generated Wrapper Code ... 31-9

Preserving Generated Wrapper Code in the Default Directory.. 31-9
Preserving Generated Wrapper Code in a Directory You Specify 31-10
Modifying Generated Wrapper Code... 31-10
Disabling Generated Wrapper Code Preservation ... 31-10

32 Optimizing EJB Performance

Session Bean Performance... 32-1
Bean Instance Pooling... 32-1
Singleton Interceptors... 32-1

JPA Entity Performance .. 32-1
Bean Instance Pooling... 32-2
Fetch Type .. 32-2

Performance of an EJB 2.1 Entity Bean With Container-Managed Persistence......................... 32-2
Bean Instance Pooling... 32-2
Read-Only Entity Beans With Container-Managed Persistence .. 32-2

Performance of an EJB 2.1 Entity Bean With Bean-Managed Persistence.................................. 32-2
Read-Only Entity Beans With Bean-Managed Persistence ... 32-2
Commit Option A ... 32-3

Message-Driven Bean Performance... 32-3
Bean Instance Pooling... 32-3
Singleton Interceptors... 32-3

A XML Reference for orion-ejb-jar.xml Elements

OC4J and the orion-ejb-jar.xml File... A-1
TopLink Persistence Support .. A-2

xx

<orion-ejb-jar> ... A-3
<enterprise-beans>.. A-3

<persistence-manager> .. A-3
<session-deployment> ... A-4

Examples .. A-5
<session-deployment> Attributes .. A-5
<ior-security-config> .. A-9
<env-entry-mapping> .. A-9
<ejb-ref-mapping> .. A-9
<resource-ref-mapping> .. A-9
<resource-env-ref-mapping> .. A-10
<message-destination-ref-mapping> ... A-10

<entity-deployment> .. A-10
Examples .. A-11
<entity-deployment> Attributes... A-11
<ior-security-config> .. A-15
<primkey-mapping> .. A-15
<cmp-field-mapping> .. A-15
<finder-method> ... A-16
<env-entry-mapping> .. A-16
<ejb-ref-mapping> .. A-16
<service-ref-mapping>... A-17
<resource-ref-mapping> .. A-17
<resource-env-ref-mapping> .. A-17
<message-destination-ref-mapping> ... A-17
<commit-option> .. A-17

<message-driven-deployment> .. A-17
Examples .. A-18
<message-driven-deployment> Attributes ... A-18
<env-entry-mapping> .. A-21
<ejb-ref-mapping> .. A-21
<resource-ref-mapping> .. A-21
<resource-env-ref-mapping> .. A-21
<message-destination-ref-mapping> ... A-21
<config-property>... A-22

<assembly-descriptor> ... A-22
Examples .. A-23
<security-role-mapping> ... A-23
<message-destination-mapping> ... A-23
<default-method-access> ... A-23
<method> ... A-23

B J2CA Activation Configuration Properties

Glossary

Index

xxi

Preface

This guide gets you started building enterprise Java beans for Oracle Containers for
J2EE (OC4J) using:

■ Java Enterprise Edition (EE) 5 Enterprise JavaBeans (EJB) 3.0 and the TopLink Java
Persistence API (JPA) persistence provider.

■ J2EE 1.4 EJB 2.1 and the TopLink EJB 2.1 persistence manager.

It includes code examples to help you develop your application.

The Orion persistence manager is deprecated. Oracle recommends that you use OC4J
and the TopLink JPA persistence provider for new development. Using the migration
tool (see "Migrating to the TopLink EJB 2.1 Persistence Manager" on page 3-13), you
can easily migrate an existing OC4J application that uses EJB 2.0 entity beans with the
Orion persistence manager to use EJB 2.0 entity beans with the TopLink persistence
manager.

If you have questions about OC4J, see the OC4J user’s forum at
http://forums.oracle.com/forums/category.jspa?categoryID=13.

If you have questions or feedback about this documentation, see the documentation
feedback forum at
http://forums.oracle.com/forums/forum.jspa?forumID=165.

Audience
Anyone developing Enterprise JavaBeans for OC4J will benefit from reading this
guide. Written especially for programmers, it will also be of value to architects,
systems analysts, project managers, and others interested in EJB applications deployed
to OC4J.

This guide assumes that you already have a working knowledge of Java EE and the
EJB 3.0 and EJB 2.1 specifications.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be

xxii

accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see the following documents in the OC4J documentation set:

■ Oracle Application Server Release Notes for Microsoft Windows

■ Oracle Containers for J2EE Configuration and Administration Guide

■ Oracle Containers for J2EE Resource Adapter Administrator’s Guide

■ Oracle Containers for J2EE Developer’s Guide

■ Oracle Containers for J2EE Services Guide

■ Oracle Containers for J2EE Security Guide

■ Oracle Containers for J2EE Deployment Guide

■ Oracle Containers for J2EE Job Scheduler Developer’s Guide

■ Oracle Containers for J2EE Servlet Developer’s Guide

■ Oracle Application Server Annotations API Reference

■ Oracle TopLink Developer’s Guide

■ Oracle TopLink API Reference

■ EJB specifications: http://java.sun.com/products/ejb/docs.html.

■ EJB API documentation: http://www.javasoft.com.

■ EJB tutorials: http://java.sun.com/developer/onlineTraining/.

■ EJB design patterns: http://java.sun.com/blueprints/patterns/.

Conventions
The following text conventions are used in this document:

xxiii

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xxiv

Part I
EJB Overview

This part provides conceptual information to help you understand EJB architecture,
EJB application development, and OC4J EJB support.

This part contains the following chapters:

■ Chapter 1, "Understanding Enterprise JavaBeans"

■ Chapter 2, "Understanding EJB Application Development"

■ Chapter 3, "Understanding EJB Support in OC4J"

Understanding Enterprise JavaBeans 1-1

1
Understanding Enterprise JavaBeans

Java Enterprise Edition (Java EE) Enterprise JavaBeans (EJB) are a component
architecture that you use to develop and deploy object-oriented, distributed,
enterprise-scale applications. An application written according to the EJB architecture
is scalable, transactional, and secure. The component types that you can create are
commonly referred to as Enterprise JavaBeans.

This chapter describes the following:

■ What are Enterprise JavaBeans?

■ What is a Session Bean?

■ What is a JPA Entity?

■ What is an EJB 2.1 Entity Bean?

■ What is a Message-Driven Bean?

■ Which Type of Enterprise Bean Should You Use?

What are Enterprise JavaBeans?
The EJB architecture is flexible enough to implement the objects that Table 1–1 lists.

Table 1–1 EJB Types

Type Description See ...

Session An EJB 3.0 or EJB 2.1 component created by a client for the duration of a single
client/server session used to perform operations for the client.

"What is a Session Bean?" on
page 1-27

Stateless A session bean that does not maintain conversational state. Used for reusable
business services that are not connected to any specific client.

"What is a Stateless Session
Bean?" on page 1-28

Stateful A session bean that does maintain conversational state. Used for conversational
sessions with a single client (for the duration of its lifetime) that maintain state,
such as instance variable values or transactional state.

"What is a Stateful Session
Bean?" on page 1-30

Entity An EJB 3.0-compliant light-weight entity object that represents persistent data
stored in a relational database using the Java Persistence API (JPA) persistence
provider specified in its persistence unit (see "What is the persistence.xml File?"
on page 2-8).

"What is a JPA Entity?" on
page 1-34

Entity Bean An EJB 2.1 enterprise bean component that represents persistent data stored in a
relational database.

"What is an EJB 2.1 Entity
Bean?" on page 1-41

What are Enterprise JavaBeans?

1-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see: the following

■ What is the Anatomy of an EJB 3.0 enterprise bean?

■ What is the Anatomy of an EJB 2.1 Enterprise Bean?

■ What is the Life Cycle of an Enterprise Bean?

■ What is EJB Context?

■ How do Annotations and Resource Injection Work?

■ Which Type of Enterprise Bean Should You Use?

What is the Anatomy of an EJB 3.0 enterprise bean?
Using EJB 3.0, the interfaces for your EJB implementation are not restricted by EJB
type. For example, in your JPA entity implementation you may implement an EJB
using a plain old Java object (POJO) and any plain old Java interfaces (POJI): you do
not need to implement interfaces such as javax.ejb.EntityBean and you do not
need to provide separate interfaces that extend EJBHome, EJBLocalHome,
EJBObject, or EJBLocalObject. A client may instantiate an EJB 3.0 POJO entity
instance with new (or the EntityManager: see "How do you Query for a JPA Entity?"
on page 1-39). A client may instantiate an EJB 3.0 session bean using dependency
injection or JNDI lookup. For more information, see "EJB 3.0 Support" on page 3-1.

Table 1–2 lists the parts you create when developing an EJB 3.0 enterprise bean.

CMP An entity bean with container-managed persistence (CMP) is an entity bean that
delegates persistence management to the persistence manager used by the
container that hosts it.

"What is an EJB 2.1 Entity
Bean With
Container-Managed
Persistence?" on page 1-42

BMP An entity bean with bean-managed persistence (BMP) is an entity bean that
manages its own persistence.

"What is an EJB 2.1 Entity
Bean With Bean-Managed
Persistence?" on page 1-46

MDB A message-driven bean (MDB) is an EJB 3.0 or EJB 2.1 component that functions
as an asynchronous consumer of Java Message Service (JMS) messages.

"What is a Message-Driven
Bean?" on page 1-56

Table 1–2 Parts of an EJB 3.0 EJB

Part Type Description

Home interface POJI An optional POJI annotated with @Home that specifies an object
that the container itself implements: the home object. The @Home is
only provided to help EJB 3.0 beans interoperate with EJB 2.1
clients, if necessary. Most EJB 3.0 bean instances will not need to
provide a home interface.

Table 1–1 (Cont.) EJB Types

Type Description See ...

What are Enterprise JavaBeans?

Understanding Enterprise JavaBeans 1-3

As Figure 1–1 illustrates, to acquire an EJB 3.0 EJB instance, a Web client (such as a
servlet) or Java client uses JNDI, while an EJB client may use either JNDI or resource
injection. For more information about EJB clients, see "What Type of Client do you
Have?" on page 29-1.

For entity beans, EJB 3.0 provides an EntityManager that you use to create, find,
merge, and persist a JPA entity (see "How do you Query for a JPA Entity?" on
page 1-39).

Figure 1–1 A Client Using an EJB 3.0 Stateful Session Bean by Component Interface

The client in Figure 1–1 accesses the EJB as follows:

1. The client retrieves the component interface of the bean.

The servlet or Java client uses JNDI to look up an instance of Cart.

The EJB client uses resource injection by annotating a Cart instance variable with
the @EJB annotation: at run time, the EJB container will ensure that the variable is
initialized accordingly.

In both cases, the EJB container manages instantiation. A home interface is not
necessary.

Component interface POJI A mandatory POJI annotated with @Remote or @Local (default)
that specifies the business methods that you implement in the
bean and that a client can invoke. No other container service
methods need be implemented, unless you need to override
default container behavior. The bean class does not need to
implement this interface.

Bean implementation POJO A mandatory POJO that may optionally implement a component
interface and contains the Java code that implements the methods
defined in the optional home interface and component interface
(business methods). If necessary, you can optionally annotate any
method to serve as a container life cycle callback function.

Deployment descriptor ejb-jar.xml

orion-ejb-jar.xml

toplink-ejb-jar.xml

ejb3-toplink-sessions.xml

persistence.xml

orm.xml

Optional means of specifying attributes of the bean for
deployment. These designate configuration specifics, such as
environment, interface names, transactional support, type of EJB,
and persistence information. Because this metadata can be
expressed entirely through annotations (or defaults), deployment
descriptor XML files are less important in EJB 3.0. Configuration
in a deployment descriptor XML file overrides the corresponding
annotation configuration, if present. For more information, see
"Understanding EJB Deployment Descriptor Files" on page 2-4.

Table 1–2 (Cont.) Parts of an EJB 3.0 EJB

Part Type Description

What are Enterprise JavaBeans?

1-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

2. The client invokes a method defined in the component interface (remote or local
interface), which delegates the method call to the corresponding method in the
bean instance (through a stub).

3. The client can destroy the stateful session bean instance by invoking a method in
its component interface that is annotated in the bean instance with @Remove.

Stateless session beans do not require a remove method; the container removes
the bean if necessary. The container can also remove stateful session beans that
exceed their configured timeout or to maintain the maximum configured pool size.
Entities do not require a remove method; you use the EJB 3.0 EntityManager to
create and destroy entities.

What is the Anatomy of an EJB 2.1 Enterprise Bean?
Using EJB 2.1, the interfaces for your EJB implementation are based on EJB type. For
example, in your EJB 2.1 entity bean implementation, you must implement the
javax.ejb.EntityBean interface and you must provide separate interfaces that
extend EJBHome or EJBLocalHome and EJBObject or EJBLocalObject. A client
may instantiate an EJB 2.1 enterprise bean instance only with a create method that
your EJB home interface provides. For more information, see "EJB 2.1 Support" on
page 3-11.

Table 1–3 lists the parts you create when developing an EJB 2.1 enterprise bean.

A client uses the home interface to acquire an EJB 2.1 enterprise bean instance and
uses the component interface to invoke its business methods, as Figure 1–2 illustrates.
For more information about EJB clients, see "What Type of Client do you Have?" on
page 29-1.

Table 1–3 Parts of an EJB 2.1 EJB

Part Type Description

Home interface javax.ejb.EJBHome (remote)

javax.ejb.EJBLocalHome

Specifies the interface to an object that the container itself
implements: the home object. The home interface contains the life
cycle methods, such as the create methods that specify how a
bean is created.

Component interface javax.ejb.EJBObject (remote)

javax.ejb.EJBLocalObject

Specifies the business methods that you implement in the bean.
The bean must also implement additional container service
methods. The EJB container invokes these methods at different
times in the life cycle of a bean.

Bean implementation javax.ejb.SessionBean

javax.ejb.EntityBean

javax.ejb.MessageDrivenBean

Contains the Java code that implements the methods defined in
the home interface (life cycle methods), component interface
(business methods), and the required container methods
(container callback functions).

Deployment descriptor ejb-jar.xml

toplink-ejb-jar.xml

orion-ejb-jar.xml

Specifies attributes of the bean for deployment. These designate
configuration specifics, such as environment, interface names,
transactional support, type of EJB, and persistence information.

What are Enterprise JavaBeans?

Understanding Enterprise JavaBeans 1-5

Figure 1–2 A Client Using an EJB 2.1 Stateless Session Bean by Home and Component
Interface

The client in Figure 1–2 accesses the EJB as follows:

1. The client retrieves the home interface of the bean–typically, through JNDI.

2. The client invokes the create method on the home interface reference (home
object). This creates the bean instance and returns a reference to the component
interface (remote or local interface) of the bean.

3. The client invokes a method defined in the component interface (remote or local
interface), which delegates the method call to the corresponding method in the
bean instance (through a stub).

4. The client can destroy the bean instance by invoking the remove method that is
defined in the component interface (remote or local interface).

For some beans, such as stateless session beans, calling the remove method does
nothing: in this case, the container is responsible for removing the bean instance.

What is the Life Cycle of an Enterprise Bean?
The life cycle of an enterprise bean involves important events such as creation,
passivation, activation, and removal.

Each such event is associated with a callback method. You can define life cycle
callback methods on the following:

■ the enterprise bean class itself for any bean type (see "Life Cycle Callback Methods
on a Bean Class" on page 1-6)

■ an interceptor class of the enterprise bean for EJB 3.0 session and message-driven
beans (see "Life Cycle Callback Interceptor Methods on an EJB 3.0 Interceptor
Class" on page 1-6)

■ an entity listener class of a JPA entity (see "Life Cycle Callback Listener Methods
on a JPA Entity Listener Class" on page 1-6)

You can combine these options: for example, you can define some life cycle callbacks
as methods of a session bean class, and some in an interceptor class that you associate
with the session bean.

The container invokes the callback prior to, or immediately after the life cycle event
(depending on the event type).

The life cycle events associated with an enterprise bean and whether or not the
container or the bean provider is responsible for implementing callbacks is determined
by the type of enterprise beans you are developing (as specified in the appropriate EJB
interface).

What are Enterprise JavaBeans?

1-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For an EJB 3.0 enterprise bean, when the container is responsible for the life cycle
callback, you do not need to provide an implementation in your bean, unless you want
to perform some additional logic.

For an EJB 2.1 enterprise bean, even when the container is responsible for the life cycle
callback, and even if you do not want to perform additional logic, you must at least
provide an empty implementation of the life cycle methods to satisfy the requirements
of the applicable EJB interface.

For more information, see the following:

■ "What is the Stateless Session Bean Life Cycle?" on page 1-28

■ "What is the Life Cycle of a Stateful Session Bean?" on page 1-30

■ "What is the JPA Entity Life Cycle?" on page 1-37

■ "What is the Life Cycle of an EJB 2.1 Entity Bean With Container-Managed
Persistence?" on page 1-43

■ "What is the Life Cycle of an EJB 2.1 Entity Bean With Bean-Managed Persistence?"
on page 1-46

■ "What is the Life Cycle of a Message-Driven Bean?" on page 1-57

Life Cycle Callback Methods on a Bean Class
For any EJB 3.0 enterprise bean type, you can optionally annotate any EJB class
method as a life cycle method.

For an EJB 2.1 enterprise bean, you must at least provide an empty implementation of
the life cycle methods to satisfy the requirements of the applicable EJB interface.

Life Cycle Callback Interceptor Methods on an EJB 3.0 Interceptor Class
For an EJB 3.0 session bean or message-driven bean, you can optionally associate the
bean class with an interceptor class and annotate any interceptor class method as a life
cycle method.

For more information, see the following:

■ "Understanding EJB 3.0 Interceptors" on page 2-10

■ "Configuring a Life Cycle Callback Interceptor Method on an Interceptor Class of
an EJB 3.0 Session Bean" on page 5-5

■ "Configuring a Life Cycle Callback Interceptor Method on an Interceptor Class of
an EJB 3.0 MDB" on page 10-11

Life Cycle Callback Listener Methods on a JPA Entity Listener Class
For a JPA entity, you can associate the bean class with an entity listener class and
annotate any entity listener class method as a life cycle method.

For more information, see "Configuring a Life Cycle Callback Listener Method on an
Entity Listener Class of a JPA Entity" on page 7-17.

What is EJB Context?
The EJBContext interface provides an instance with access to the container-provided
run-time context of an EJB 2.1 enterprise bean instance. This interface is extended by
the SessionContext, EntityContext, and MessageDrivenContext interfaces to
provide additional methods specific to the enterprise interface Bean type.

What are Enterprise JavaBeans?

Understanding Enterprise JavaBeans 1-7

The javax.ejb.EJBContext interface has the following definition:

public interface EJBContext {
public EJBHome getEJBHome();
public Properties getEnvironment();
public Principal getCallerPrincipal();
public boolean isCallerInRole(String roleName);
public UserTransaction getUserTransaction();
public boolean getRollbackOnly();
public void setRollbackOnly();

}

A bean needs the EJB context when it wants to perform the operations listed in
Table 1–4.

Do not confuse EJBContext with IntialContext (see "Configuring the Initial
Context Factory" on page 19-19).

For more information, see the following:

■ "What is Session Context?" on page 1-34

■ "What is Entity Context?" on page 1-48

■ "What is Message Driven Context?" on page 1-58

■ "Accessing an EJB 2.1 EJBContext" on page 29-27

How do Annotations and Resource Injection Work?
Annotations allow you to control the behavior and deployment of your application.
You can use metadata annotations to specify expected requirements on container
behavior, to request the injection of services and resources, and to specify
object-relational mappings.

Using annotations, an EJB 3.0 enterprise bean may use dependency injection
mechanisms to acquire references to resources or other objects in its environment. For
example, you can use the following:

■ @Resource: to inject non-EJB resources such as a database connection.

■ @EJB: to inject an enterprise bean such as a session bean.

■ @PersistenceContext: to inject an EntityManager instance to create, read,
update, and delete EJB 3.0 entities.

Table 1–4 EJB 2.1 EJBContext Operations

Method Description

getEnvironment Get the values of properties for the bean.

getUserTransactio
n

Get a transaction context, which enables programmatic transaction demarcation when using
bean-managed transactions (BMT). This is valid only for beans that have been designated
transactional.

setRollbackOnly Set the current transaction so that it cannot be committed. Applicable only to container-managed
transactions.

getRollbackOnly Check whether the current transaction is marked for rollback only. Applicable only to
container-managed transactions.

getEJBHome Retrieve the object reference to the corresponding EJBHome (home interface) of the bean.

lookup Use JNDI to retrieve the bean by environment reference name. When using this method, you do not
prefix the bean reference with "java:comp/env".

What are Enterprise JavaBeans?

1-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

If an EJB 3.0 enterprise bean makes use of dependency injection, OC4J injects these
references after the bean instance is created, and before any business methods are
invoked.

If a dependency on the EJB context is declared, the EJB context is also injected (see
"What is EJB Context?" on page 1-6).

If dependency injection fails, OC4J discards the bean instance.

OC4J supports annotation inheritance (see "Annotations and Inheritance" on page 1-9).

In this release, you can use annotations and resource injection in the Web tier (see
"Annotations in the Web Tier" on page 1-9).

Annotations are another way of specifying an environment reference without having
to use XML. When you annotate a field or property, the container injects the value into
the bean on your behalf by looking it up from JNDI. When a reference is specified
using annotations, you can still look it up using JNDI. Example 1–1 shows how
annotations relate to JNDI. The annotations in this example correspond to the
ejb-jar.xml file equivalent in Example 1–2. Your code would have the exact same
behavior if this XML and JNDI was used instead.

You can override annotation configuration using deployment XML (see "Overriding
Annotations With Deployment Descriptor Entries" on page 1-20).

Example 1–1 Using Annotations and Resource Injection

@Stateless
@EJB(name="bean1", businessInterface=Bean1.class)
public class MyBean {

@EJB Bean2 bean2;

public void doSomething() {
// Bean2 is already injected and available
bean2.foo();
// or it can be looked up from JNDI
((Bean2)(new InitialContext().lookup("java:comp/env/bean2"))).foo();
// Bean1 has not been injected and is only available through JNDI
((Bean1)(new InitialContext().lookup("java:comp/env/bean1"))).foo();

}
}

Example 1–2 Equivalent ejb-jar.xml File Configuration

<ejb-local-ref>
<ejb-ref-name>bean1</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>Bean1.class</local>

</ejb-local-ref>

<ejb-local-ref>
<ejb-ref-name>bean2</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>Bean2.class</local>
<injection-target>

<injection-target-name>bean2</injection-target-name>
</injection-target>

</ejb-local-ref>

What are Enterprise JavaBeans?

Understanding Enterprise JavaBeans 1-9

Annotations in the Web Tier
In this release, OC4J supports annotations and resource injection in the Web tier. To use
annotations and resource injection in the Web tier, your client must use Java SE 1.5 and
Servlet 2.5 or later.

You can use the following annotations in the Web tier:

■ @EJB

■ @Resource and @Resources

■ @PersistenceUnit and @PersistenceUnits

■ @PersistenceContext and @PersistenceContexts

■ @WebServiceRef

■ @PostConstruct

■ @PreDestroy

■ @DeclaresRoles

■ @RunAs

For more information, see the following:

■ Oracle Containers for J2EE Servlet Developer’s Guide

■ "Acquiring an Entity Manager in a Web Client" on page 29-10

■ "Sending a Message to a JMS Destination Using EJB 3.0" on page 29-17

Annotations and Inheritance
Annotations participate in inheritance. To ensure that annotations are local to their
host class, consider the following:

■ Class-level annotations only affect the class they annotate and its members
(methods and fields). Annotations never affect a member declared by a superclass,
even if the member is not hidden or overridden by the subject subclass.

■ Explicit member-level annotations have priority over member-level annotations
implied by a class-level annotation, except for the cases when the annotation is
potentially additive (for example, interceptor annotations): if a member carries a
specific member-level annotation, any annotations of the same type implied by a
class-level annotation are ignored.

■ Interfaces implemented by a class never contribute annotations to the class itself or
to any of its members.

■ Members inherited from a superclass (the ones that are not hidden or overridden)
maintain the annotations they had in the class that declared them, including
member-level annotations implied by class-level annotations.

■ Member-level annotations on a hidden or overridden member are always ignored.

To find the annotation in-effect for a class member, you need to track down the last
nonhidden and nonoverridden declaration of the class member and examine it. If you
cannot find the annotation, then you have to examine the enclosing class declaration. If
this fails, do not consult any other source files.

Table 1–5 lists annotations and specifies how each of the annotations behave with
respect to inheritance in the bean class.

What are Enterprise JavaBeans?

1-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Table 1–5 Annotations and Inheritance

Annotations Reaction to Inheritance Comment OC4J Support

@Stateless

@Stateful

@MessageDriven

Superclass annotations are ignored.

Example:

@Stateful
class Base {}

@Stateless
class A extends Base {}

class B extends Base {}

where:

- bean Base is a stateful session bean;

- bean A is a stateless session bean: @Stateful
annotation of its parent bean Base does not apply
(is ignored);

- bean B is a POJO class: @Stateful annotation of
its parent bean Base does not apply (is ignored).

You must explicitly
define a bean class
through either a class
annotation or
deployment descriptor
XML file, even if the bean
is a subclass of another
bean class.

Yes.

OC4J ignores the
superclass-level
bean-type
annotations.

@Local

@Remote

@LocalHome

@Home

Superclass annotations are ignored.

You need to define the annotations properly to
avoid run-time issues.

Example:

@Local
interface Base {}

@Remote
interface A extends Base {}

interface B extends Base {}

where:

- Base is a local business interface;

- A is a remote interface: @Local annotation of its
parent bean Base does not apply (is ignored);

- B is a POJO interface: @Local annotation of its
parent bean Base does not apply (is ignored).

This also implies the
annotation on the bean.

Example:

@Stateful
@Local(I1.class)
class A {}

@Stateful
class B extends A {}

Note: unlike A, bean B
does not have I1
business interface.

Yes.

OC4J ignores the
superclass-level
bean-type
annotations.

@TransactionManagem
ent(TransactionMana
gementType.CONTAINE
R)

@TransactionManagemen
t(TransactionManagemen
tType.APPLICATION)

Superclass annotations are ignored.

Example:

@ TransactionManagement
(type=TransactionManagementType.CONTAINER)
class Base {}

@ TransactionManagement
(type=TransactionManagementType.APPLICATION)
class A extends Base {}

class B extends Base {}

where:

- A is a bean that uses bean-managed transactions;

- B is a bean that uses default container-managed
transactions.

No class-level transaction
management inheritance
means that a bean that
uses bean-managed
transactions and
container-managed
transactions will be
mixed in the application.
This might cause
run-time issues.

If not explicitly
annotated, a bean by
default uses
container-managed
transactions.

Yes.

OC4J ignores the
superclass-level
bean-type
annotation.

What are Enterprise JavaBeans?

Understanding Enterprise JavaBeans 1-11

@TransactionAttribu
te(TransactionAttri
buteType.REQUIRED)
{MANDATORY,
REQUIRED, REQUIRES_
NEW, SUPPORTS, NOT_
SUPPORTED, NEVER}

Method-level inheritance and "virtual method
annotation" inheritance are allowed.

Example:

@Transaction(REQUIRED)
class Base {

@Transaction(NONE)
public void foo() {...}
public void bar() {...}

}

class A extends Base {
public void foo() {...}

}

public class B extends Base {
@Transaction(NEW)
public void foo() {...}

}

@Transaction(NEW)
public class C extends Base {

public void foo() {...}
public void bar() {...}

}

@Transaction(NEW)
public class D extends Base {

public void bar() {...}
}

@Transaction(NEW)
public class E extends Base {

where:

- in bean A, the foo method is not annotated: bean
A overrides the foo method of its parent bean
Base without annotating this method. Therefor,
the foo method in bean A does not carry
@Transaction(NONE) annotation;

-in bean B, the @Transaction(NEW) annotation is
applicable to the foo method: bean B overrides the
foo method of its parent bean Base annotating
this method with @Transaction(NEW). As a
result, @Transaction(NONE) annotation from
the foo method of bean Base does not apply to
the overridden method in the child bean B;

- in bean C, the @Transaction(NEW) annotation
is applicable to the foo method: bean C overrides
the foo method of its parent bean Base without
annotating this method. Therefor, the foo method
in bean C does not carry @Transaction(NONE)
annotation. However, bean C has a class-level
annotation @Transaction(NEW), which is
applied to its foo method;

- in bean D, the @Transaction(NEW) annotation
is applicable to the bar method: bean D overrides
the bar method of its parent bean Base without
annotating this method. Therefor, the bar method
in bean C does not carry @Transaction(NONE)
annotation. However, bean C has a class-level
annotation @Transaction(NEW), which is
applied to its bar method;

Supports the "virtual
method annotation",
which is annotated at the
supercall class level and
applied to all methods in
the class.

For more information,
see JSR 250 at
http://jcp.org/en/
jsr/detail?id=250

Yes.

Table 1–5 (Cont.) Annotations and Inheritance

Annotations Reaction to Inheritance Comment OC4J Support

What are Enterprise JavaBeans?

1-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

@TransactionAttribu
te(TransactionAttri
buteType.REQUIRED){
MANDATORY,
REQUIRED, REQUIRES_
NEW, SUPPORTS, NOT_
SUPPORTED, NEVER}

(continues from
preceding row)

(continues from preceding row)

- in bean E, the @Transaction(REQUIRED)
annotation is applicable to the bar method: bean E
has a class-level annotation @Transaction(NEW),
but does not override the bar method of its parent
bean Base. Therefor, the bar method in bean E
carries the class-level @Transaction(REQUIRED)
annotation from its parent bean Base.

(continues from
preceding row)

(continues from
preceding row)

@EJB

@EJBs

All superclasses will be examined to discover all
uses of this annotation, including private methods
and fields, and private overridden methods (both
private in a parent and child).

Example:

@EJB(beanName = "Bean1"…)
public class Base {

@EJB(beanName =" Bean2"..)
private Bean2 b2;
@EJB(beanName =" Bean3"..)
protected void setB3(Bean3 b3){}

}

@EJB(beanName = "Bean4"…)
public class A extends Base {

@EJB(beanName =" Bean5"..)
private Bean5 b5;

}

public class B extends Base {}

When parsing bean A, all @EJB references defined
in superclasses, including Bean1, Bean2, Bean3,
Bean4 and Bean5 will be parsed and added. The
annotated fields and methods will also be injected.

When parsing bean B, all @EJB references defined
in superclasses, including Bean1, Bean2, Bean3,
Bean4 will be parsed and added. The annotated
fields and methods will also be injected.

Yes.

@PersistenceUnit

@PersistenceUnits

@PersistenceContext

@PersistenceContext
s

Similar to @EJB and @EJBs (see preceding row). Yes.

@Resources

@Resource

Similar to @EJB and @EJBs (see preceding row). Yes.

Table 1–5 (Cont.) Annotations and Inheritance

Annotations Reaction to Inheritance Comment OC4J Support

What are Enterprise JavaBeans?

Understanding Enterprise JavaBeans 1-13

@Interceptors

@ExcludeDefaultInte
rceptor

@ExcludeClassInterc
eptor

Inheritance is allowed.

Method-level business method interceptors are
invoked in addition to any default interceptors and
interceptors defined for the bean class (and its
superclasses).

Example:

Default interceptor: D1.class

@Interceptors({C1.class})
class Base {

@Interceptors({M1.class})
public void foo() {...}
public void bar() {...}

}

@Interceptors({C2.class})
class A extends Base {

public void foo() {...}
}

@Interceptors({C2.class})
class B extends Base {

@Interceptors({M2.class})
public void foo() {...}

}

@Interceptors({C2.class})
class C extends Base {

public void bar() {...}
}

@Interceptors({C3.class, C4.class})
class E extends Base {}

@Interceptors({C3.class, C4.class})
class F extends Base {

@ExcludedDefaultInterceptor
@ExcludedClassInterceptor
@Interceptors({M2.class})
public void bar() {...}

}

where:

- interceptors for the foo method in bean Base are
D1, C1, M1: D1 is the default interceptor; C1 is
defined as an interceptor on a bean class level; M1
defined as an interceptor for foo on a method
level;

- interceptors for the foo method in bean A are D1,
C2: D1 is the default interceptor; C1 is defined as an
interceptor on a bean class level. Bean A overrides
the foo method and does not define a
method-level interceptor for it;

Yes

Table 1–5 (Cont.) Annotations and Inheritance

Annotations Reaction to Inheritance Comment OC4J Support

What are Enterprise JavaBeans?

1-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

@Interceptors

@ExcludeDefaultInte
rceptor

@ExcludeClassInterc
eptor

(continues from
preceding row)

(continues from preceding row)

- interceptors for the foo method in bean B are D1,
C2, M2: D1 is the default interceptor; C2 is defined
as an interceptor on a bean class level; bean B
overrides the foo method and defines M2 as an
interceptor on a method level;

- interceptors for the bar method in bean C are D1,
C2: D1 is the default interceptor; C2 is defined as an
interceptor on a bean class level;

- interceptors for the bar method in bean E are D1,
C1: D1 is the default interceptor; bean E has a
class-level annotation
@Interceptors({C3.class, C4.class}),
but does not override the bar method of its parent
bean Base. Therefor, the bar method in bean E
carries the class-level
@Interceptors({C1.class}) annotation from
its parent bean Base.

- interceptor for the bar method in bean F is M2:
the default interceptor D1 is not applicable to this
method, because bar is annotated with
@ExcludeDefaultInterceptor; interceptors defined
at the class level are not applicable, because bar is
annotated with @ExcludeClassInterceptor.
Bean F overrides the bar method and provides it
with a @Interceptors({M2.class})
annotation, and only this annotation applies.

(continues from
preceding row)

(continues from
preceding row)

@AroundInvoke If a bean class has superclasses, any methods
annotated with @AroundInvoke and defined on
those superclasses will be invoked, with the most
general superclass first.

Example:

class Base {
@AroundInvoke
public Object foo(InvocationContext cts)

{...}
}

class A extends Base {
@AroundInvoke
public Object bar(InvocationContext cts)

{...}
}

class B extends Base {
public Object foo(InvocationContext cts)

{...}
}

where:

- in bean Base an interceptor method is foo();

- in bean A there are two interceptor methods–foo
and bar: the bar method is defined in bean A, and
the foo method is inherited by bean A from its
parent bean Base. foo will be invoked first, and
bar will be invoked second;

- there is no interceptor method in bean B: bean B
overrides the foo method without annotating it
with @AroundInvoke, therefor making it a
non-interceptor method.

If an interceptor class has
superclasses, the
interceptor methods
defined by the
interceptor class'
superclasses will be
invoked before the
interceptor method
defined by the
interceptor class, with
the most general
superclass first.

Yes.

Table 1–5 (Cont.) Annotations and Inheritance

Annotations Reaction to Inheritance Comment OC4J Support

What are Enterprise JavaBeans?

Understanding Enterprise JavaBeans 1-15

@PostConstruct

@PreDestroy

@PostActivate

@PrePessivate

If a bean class has superclasses, any life cycle
callback (interceptor) methods defined on the
superclasses will be invoked, with the most general
superclass first.

Note: overridden life cycle methods will not be
invoked.

Example:

class Base {
@PostConstruct
@PostActivate
void foo() {...}

}

class A extends Base {
@PostConstruct
void bar() {...}
@PostActivate
void ping() {...}

}

class B extends Base {
@PreDestroy
void foo() {...}

}

class C extends Base {
ejbCreate() {...}

}

class D extends Base {
@PostConstruct
ping() {...}
ejbCreate() {...}

}

where:

- in bean Base, there are two life cycle methods:
one post-construct method foo, and one
post-activate life cycle method foo;

- in bean A, there are two post-construct methods:
foo and bar. The foo method will be invoked
first, and bar will be invoked second. Also, bean A
has two post-activate life cycle methods: foo and
ping. The foo method will be invoked first, and
ping will be invoked second;

- in bean B, the foo method is overridden with
@PreDestroy annotation. Therefor, the
post-construct method is not defined in bean B,
and the post-activate life cycle method is not
defined. Only the pre-destroy life cycle method
foo is defined in bean B;

- in bean C, there are two post-construct methods:
foo, which is inherited from the parent beans
Base and which is invoked first, and ejbCreate,
which is defined by bean C and is invoked second;

- there is an error in bean D: the EJB 2.1-style life
cycle callback (for example, ejbCreate()
method) cannot coexist with the corresponding EJB
3.0-style (for example, @PostConstruct
annotation) callback in one bean class.

If an interceptor class has
superclasses, the life
cycle callback interceptor
methods defined by the
interceptor class'
superclasses will be
invoked before the life
cycle callback interceptor
method defined by the
interceptor class, with
the most general
superclass first.

Yes.

Table 1–5 (Cont.) Annotations and Inheritance

Annotations Reaction to Inheritance Comment OC4J Support

What are Enterprise JavaBeans?

1-16 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

@Timeout At most one timeout method is allowed in the
inheritance hierarchy.

Example:

class Base {
@Timeout
public void foo(Timer) {...}

}

class A extends Base {
@Timeout
public void bar(Timer) {...}

}

class B extends Base {
public void foo(Timer) {...}

}

class C extends Base implements TimedObject
{

public void ejbTimeout(Timer) {...}
}

where:

- foo is the timeout method in bean Base;

- there is an error in bean A: bar is the timeout
method defined in bean A. Bean A also inherits foo
timeout method from its parent bean Base. That
makes it two timeout methods in bean A, which is
not allowed;

- there is no timeout method in bean B: bean B
overrides the foo method without annotating it,
thus making a non-timeout method;

- there is an error in bean C: ejb Timeout is the
timeout method defined in bean C. In addition,
bean C inherits foo timeout method from its
parent bean Base. That makes it two timeout
methods in bean C, which is not allowed two
timeout methods in bean C.

If a method annotated in
both the base and the
superclass (different
method name), the
container will throw an
exception as the EJB 3.0
specification only allows
one timeout method for
each bean.

Yes.

Table 1–5 (Cont.) Annotations and Inheritance

Annotations Reaction to Inheritance Comment OC4J Support

What are Enterprise JavaBeans?

Understanding Enterprise JavaBeans 1-17

@Remove Multiple removes are allowed.

Example:

class Base {
@Remove
void foo() {...}

}

class A extends Base {
@Remove
void bar() {...}

}

class B extends Base {
void foo() {...}

}

class C extends Base {
@Remove
void foo(int) {...}

}

were:

- foo is the removal method in bean Base;

- foo and bar are the removal methods in bean A:
the bar method is explicitly defined as a removal
method in bean A; since bean A does not override
the foo method, it inherits foo as a removal
method from its parent bean Base;

- there is no removal method in bean B: bean B
overrides the foo method and does not supply it
with an annotation (the @Remove annotation of the
foo method in bean Base would have been
inherited, if the method was not overridden);

- foo() and foo(int) are the removal methods
in bean C: the foo(int) method is explicitly defined
as a removal method in bean C; since bean C does
not override the foo() method, it inherits foo()
as a removal method from its parent bean Base.

The @Remove annotation
is additive in nature:
more than one removal
method is allowed in a
bean.

Yes.

Table 1–5 (Cont.) Annotations and Inheritance

Annotations Reaction to Inheritance Comment OC4J Support

What are Enterprise JavaBeans?

1-18 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

@RolesAllowed

@DenyAll

@PermitAll

Only method-level inheritance is allowed.

Example:

@PermitAll
class Base {

@DenyAll
public void foo() {...}
void bar() {...}

}

class A extends Base {
public void foo() {...}

}

public class B extends Base {
@RolesAllowed({admin})
public void foo() {...}

}

@RolesAllowed({guest}, {admin})
public class C extends Base {

public void foo() {...}
void bar(){...}

}

@DenyAll
public class D extends Base {

public void bar() {...}
}

@RolesAllowed({guest}, {admin})
public class E extends Base {}

@RolesAllowed({guest}, {admin})
class F extends Base {

@RolesAllowed ({admin})
public void bar() {...}

}

where:

- in bean A, no security permissions are given (no
roles are allowed) in the foo method: bean A
cannot inherit any class-level annotations from its
parent class Base. Moreover, since bean A
overrides its parent’s foo method and does not
supply this overridden method with annotations,
the foo method in bean A acts as unannotated
method;

- in bean B, only admin role is allowed in the foo
method: bean B does not have its own class-level
annotations and cannot inherit any class-level
annotations from its parent class Base. However,
since bean B overrides its parent’s foo method and
supplies this overridden method with a
@RolesAllowed({admin}) annotation, the foo
method in bean B sets the admin role;

This is similar to the
transaction attribute
scenarios.

Note: EJB 3.0
specification states that
method-level security
annotation will override
the class-level
annotation. But for
ejb-jar.xml
method-permission, it is
addictive (or union of
both class and method
level roles). The example
of it is a bean F case.

Yes.

Table 1–5 (Cont.) Annotations and Inheritance

Annotations Reaction to Inheritance Comment OC4J Support

What are Enterprise JavaBeans?

Understanding Enterprise JavaBeans 1-19

@RolesAllowed

@DenyAll

@PermitAll

(continues from
preceding row)

(continues from preceding row)

- in bean C, guest and admin roles are allowed in
the foo method: bean C has its own class-level
annotation of
@RolesAllowed({guest},{admin}), but
cannot inherit any class-level annotations from its
parent class Base. Since bean C overrides its
parent’s foo method and does not supply this
overridden method with any annotations, the foo
method in bean C sets the guest and admin roles;

- in bean D, no roles are allowed (all denied) in the
bar method: bean D has its own class-level
annotation of @DenyAll, and cannot inherit any
class-level annotations from its parent class Base.
Since bean D overrides its parent’s bar method and
does not supply this overridden method with any
annotations, the bar method in bean D denies all
security permissions;

- in bean E, all the roles are allowed (permit all) in
the bar method: bean E has its own class-level
annotation of
@RolesAllowed({guest},{admin}), but
cannot inherit any class-level annotations from its
parent class Base. However, since bean E does not
override its parent’s bar method, bean E inherits
this methods from bean Base along with the
@PermitAll annotation applied to it;

- for explanations on bean F, see Comments
column.

(continues from
preceding row)

(continues from
preceding row)

@RunAs Class-level inheritance is not allowed.

Example:

@RunAs ("bob")
class Base {}

@RunAs ("joe")
class A extends Base {}

class B extends Base {}

where:

- run is defined as "joe" for bean A: as bean A cannot
inherit any annotations from its parent class, bean
A does not inherit run "bob" from its parent class
Base;

- run is not defined for bean B: as bean B cannot
inherit any annotations from its parent class, bean
B does not inherit role "bob" from its parent class
Base;

Yes.

Ignores the
superclass-level
bean type
annotation.

Table 1–5 (Cont.) Annotations and Inheritance

Annotations Reaction to Inheritance Comment OC4J Support

What are Enterprise JavaBeans?

1-20 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Overriding Annotations With Deployment Descriptor Entries
You can combine the use of annotations and deployment descriptors in the design of
your application. In this case, a deployment descriptor plays a role of an overriding
mechanism for the annotations. For a list of rules that apply when XML descriptor is
used to override annotations, see EJB 3.0 specification.

@DeclareRoles Class-level inheritance is not allowed.

Example:

@DeclareRoles ({"bob"})
class Base {}

@DeclareRoles ({"joe"})
class A extends Base {}

class B extends Base {}

where:

- bean A declares role "joe": as bean A cannot inherit
any annotations from its parent class, bean A does
not inherit role "bob" from its parent class Base;

- bean B does not declare any roles: as bean B
cannot inherit any annotations from its parent
class, it does not inherit role "bob" from its parent
class Base.

Yes.

@WebService Class-level inheritance is not allowed.

Example:

@WebServices
class Base {}

@Stateless
class A extends Base {}

where:

- bean A is not a Web Service end point, because it
does not inherit @WebService annotation from its
parent class Base.

Yes.

Ignores the
superclass-level
bean type
annotation.

@StatefulDeployemt

@StatelessDeployemt

@MessageDrivenDeplo
yemt

Class-level inheritance is not allowed.

Example:

@StatefulDeployment (timeout=60)
class Base {}

@StatefulDeployment (timeout=30)
class A extends Base {}

class B extends Base {}

where:

- bean A has a stateful deployment timeout of 30:
bean A cannot inherit any annotations from its
parent class, therefor bean A does not inherit a
stateful deployment timeout of 60 from its parent
class Base;

- bean B does not have a timeout: bean B cannot
inherit any annotations from its parent class,
therefor bean B does not inherit a stateful
deployment timeout of 60 from its parent class
Base;

These are OC4J-specific
annotations: they are not
defined in the EJB 3.0
specification.

Yes.

Ignores the
superclass-level
bean type
annotation.

Table 1–5 (Cont.) Annotations and Inheritance

Annotations Reaction to Inheritance Comment OC4J Support

What are Enterprise JavaBeans?

Understanding Enterprise JavaBeans 1-21

OC4J supports the annotations overriding rules defined in the EJB 3.0 specification. In
the current release of OC4J, if a deployment descriptor overriding violates these rules,
OC4J logs a warning, ignores the override, and uses the annotation configuration. For
example, if you annotate a class with a @Stateful annotation, and then in the
ejb-jar.xml file you override this with an <entity> entry, it would be a violation
of the overriding rule: you cannot override the bean type. OC4J will behave as follows:
it will log a warning, ignore the override, and continue to treat the class as a stateful
session bean.

Table 1–6 lists overriding rules for annotations with XML that are defined in EJB 3.0
specification, as well as the behavior of OC4J (10.1.3.1 release, EJB layer) with regards
to these rules.

Note: In future releases of OC4J, the warnings will be replaced with
exceptions that will fail the deployment.

Table 1–6 Overriding Annotations With XML

Scope Annotations XML
EJB 3.0 Specification
Overriding Rules

OC4J-specific
Behavior (10.1.3.1
Release)

Session
bean type

@Stateless

@Stateful

<session-type> Section 19.2 of the EJB 3.0
specification states that if the
bean's type has been
specified by means of the
@Stateless, @Stateful,
or @MessageDriven
annotation, its type cannot be
overridden by means of the
deployment descriptor. The
bean's type (and its session
type), if specified, must be
the same as that specified in
annotations.

If this rule is broken,
OC4J logs a
warning.

Note: in 11g release
of OC4J, the
container will throw
a validation
exception.

Transaction
type: BMT
or CMT

@TransactionManag
ement(Transaction
ManagementType.CO
NTAINER,
TransactionManage
mentType.APPLICAT
ION)

<transaction-type> Section 13.3.6 of the EJB 3.0
specification states that
transaction type override is
not allowed.

If this rule is broken,
OC4J logs a
warning.

Note: in 11g release
of OC4J, the
container will throw
a validation
exception.

Transaction
attribute

@TransactionAttri
bute(TransactionA
ttributeType.REQU
IRED){MANDATORY,
REQUIRED,
REQUIRES_NEW,
SUPPORTS, NOT_
SUPPORTED, NEVER}

<container-transaction>

<trans-attribute>

Section 13.3.7 of the EJB 3.0
specification states that XML
is served as an alternative to
metadata annotations to
specify the transaction
attributes (or as a means to
supplement or override
metadata annotations for
transaction attributes).
Transaction attributes
specified in the deployment
descriptor are assumed to
override or supplement
transaction attributes
specified in annotations.

OC4J complies with
the overriding rule.

What are Enterprise JavaBeans?

1-22 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Interceptor @Interceptors

@ExcludeDefaultIn
terceptor

@ExcludeClassInte
rceptor

<interceptor-binding>

<exclude-default-interce
ptors>

<exclude-class-intercept
ors>

<interceptor-order>

Section 12.8.2 of the EJB 3.0
specification states that the
binding of interceptors to
classes is additive. XML is
used to augment the
interceptors and interceptor
methods defined by means of
annotations. The specification
also states that XML may be
used as an alternative to
specify the invocation order
of interceptors or to override
the order specified in
metadata annotations.

OC4J does not allow
multiple
interceptor-ord
er definitions. It
cannot turn off
exclude-class-i
nterceptors and
exclude-default
-interceptors
flags if
interceptor-ord
er is used. It cannot
define
interceptor-cla
ss outside of
interceptor-ord
er. Those are not
defined in the EJB
3.0 specification.

Interceptor
callback

@PostConstruct

@PreDestroy

@PostActivate

@PrePessivate

@AroundInvoke

<post-construct-method>

<pre-destroy-method>

<post-activate-method>

<pre-passivate-method>

<around-invoke-method>

Section 12.8.1 of the EJB 3.0
specification states that at
most one method of a given
interceptor class can be
designated as an
around-invoke method,
post-construct method,
pre-destroy method,
pre-passivate method, or
post-activate method,
regardless of whether the
deployment descriptor is
used to define interceptors or
some combination of
annotations and deployment
descriptor elements is used.

OC4J adds the life
cycle callback
method to the
descriptor list
without validating
the singleton
restraint.

Security
identity

@DeclareRoles

@RunAs

<security-role>

<role-name>

Section 17.3.4 of the EJB 3.0
specification states that XML
<security-identity>
element can be used to
override a security identity
specified in metadata. The
value of the
<security-identity>
element is either
use-caller-identity or
run-as.

OC4J complies with
the overriding rule.

Table 1–6 (Cont.) Overriding Annotations With XML

Scope Annotations XML
EJB 3.0 Specification
Overriding Rules

OC4J-specific
Behavior (10.1.3.1
Release)

What are Enterprise JavaBeans?

Understanding Enterprise JavaBeans 1-23

Method
permission

@RolesAllowed

@DenyAll

@PermitAll

<method-permission> Section 17.3.2.2 of the EJB 3.0
specification states that the
specification of the
<method-permission>
element in XML is served as
an alternative to metadata
annotations to specify the
method permissions (or as a
means to supplement or
override metadata
annotations for method
permission values). Any
values explicitly specified in
the deployment descriptor
override any values specified
in annotations. The
granularity of overriding is at
the method level. The
method permissions relation
is defined as the union of all
the method permissions
defined in the individual
<method-permission>
elements.

OC4J complies with
the overriding rule.

EJB
reference

@EJB

@EJBs

<ejb-ref>

<ejb-local-ref>

Section 16.5.2.1 of the EJB 3.0
specification states that the
following rules apply to how
an XML entry may override
an @EJB / @EJBs annotation:

■ The relevant
deployment descriptor
entry is located based on
the JNDI name used
with the annotation
(either defaulted or
provided explicitly).

■ The type specified in the
deployment descriptor
using the <remote>,
<local>,
<remote-home>, or
<local-home> element
and any bean referenced
by the <ejb-link>
element must be
assignable to the type of
the field or property, or
the type specified by the
beanInterface
element of the @EJB
annotation.

■ The description, if
specified, overrides the
description element of
the annotation.

■ The injection target, if
specified, must name
exactly the annotated
field or property
method.

OC4J complies with
the overriding rule.

Table 1–6 (Cont.) Overriding Annotations With XML

Scope Annotations XML
EJB 3.0 Specification
Overriding Rules

OC4J-specific
Behavior (10.1.3.1
Release)

What are Enterprise JavaBeans?

1-24 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Resource
reference

@Resource

@Resources

<env-entry>

<resource-ref>

<resource-env-ref>

Section 16.2.3 of the EJB 3.0
specification states that the
following rules apply to how
a XML entry may override a
@Resource / @Resources
annotations:

■ The relevant
deployment descriptor
entry is located based on
the JNDI name used
with the annotation
(either defaulted or
provided explicitly).

■ The type specified in the
deployment descriptor
must be assignable to
the type of the field or
property, or the type
specified in the
@Resource annotation.

■ The description, if
specified, overrides the
description element of
the annotation.

■ The injection target, if
specified, must name
exactly the annotated
field or property
method.

■ The
<res-sharing-scope
> element, if specified,
overrides the shareable
element of the
annotation.

■ The <res-auth>
element, if specified,
overrides the
authenticationType
element of the
annotation.

OC4J complies with
the overriding rule.

Table 1–6 (Cont.) Overriding Annotations With XML

Scope Annotations XML
EJB 3.0 Specification
Overriding Rules

OC4J-specific
Behavior (10.1.3.1
Release)

What are Enterprise JavaBeans?

Understanding Enterprise JavaBeans 1-25

Persistence
unit

@PersistenceUnits

@PersistenceUnit

<persistence-units>

<persistence-unit>

Section 16.10.2.1 of the EJB
3.0 specification states that
the following rules apply to
how a XML entry may
override a
@PersistenceUnit /
@PersistenceUnits
annotation:

■ The relevant
deployment descriptor
entry is located based on
the JNDI name used
with the annotation
(either defaulted or
provided explicitly).

■ The
<persistence-unit-
name> element of the
deployment descriptor
overrides the unitName
element of the
annotation.

■ The injection target, if
specified, must name
exactly the annotated
field or property
method.

OC4J complies with
the overriding rule.

Table 1–6 (Cont.) Overriding Annotations With XML

Scope Annotations XML
EJB 3.0 Specification
Overriding Rules

OC4J-specific
Behavior (10.1.3.1
Release)

What are Enterprise JavaBeans?

1-26 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Persistence
context

@PersistenceConte
xt

@PersistenceConte
xts

<persistence-context>

<persistence-contexts>

Section 16.11.2 of the EJB 3.0
specification states that the
following rules apply to how
a XML entry may override a
@PersistenceContext /
@PersistenceContexts
annotation:

■ The relevant
deployment descriptor
entry is located based on
the JNDI name used
with the annotation
(either defaulted or
provided explicitly).

■ The
<persistence-conte
xt-type> element of
the deployment
descriptor overrides the
type element of the
annotation.

■ Any
<persistence-prope
rty> elements are
added to those specified
by the
@PersistenceContex
t /
@PersistenceContex
ts annotation. If the
name of a specified
property is the same as
one specified by the
@PersistenceContex
t annotation, the value
specified in the
annotation is
overridden.

■ The injection target, if
specified, must name
exactly the annotated
field or property
method.

OC4J complies with
the overriding rule.

Timeout @Timeout <timeout-method> Section 18.2.2.of the EJB 3.0
specification states that if the
@Timeout annotation is
used, or the bean implements
the TimedObject interface,
the <timeout-method>
XML, if specified, can only be
used to refer to the same
method.

OC4J complies with
the overriding rule.

Table 1–6 (Cont.) Overriding Annotations With XML

Scope Annotations XML
EJB 3.0 Specification
Overriding Rules

OC4J-specific
Behavior (10.1.3.1
Release)

What is a Session Bean?

Understanding Enterprise JavaBeans 1-27

OC4J Support for Annotation Attribute mappedName
OC4J supports @EJB and @Resource attribute mappedName. For these annotations,
mappedName is the equivalent of the location attribute of orion-ejb-jar.xml in
elements session-deployment, entity-deployment, and
message-driven-deployment.

OC4J does not support the mappedName attribute in @Stateless, @Stateful, or
@MessageDriven annotations.

What is a Session Bean?
A session bean is an EJB 3.0 or EJB 2.1 enterprise bean component created by a client
for the duration of a single client/server session. A session bean performs operations
for the client. Although a session bean can be transactional, it is not recoverable should
a system failure occur. Session bean objects are either stateless (see "What is a Stateless
Session Bean?" on page 1-28) or stateful: maintaining conversational state across
method calls and transactions (see "What is a Stateful Session Bean?" on page 1-30). If a
session bean maintains state, then OC4J manages this state if the object must be
removed from memory ("When Does Stateful Session Bean Passivation Occur?" on
page 1-32). However, the session bean object itself must manage its own persistent
data.

From a client’s perspective, a session bean is a nonpersistent object that implements
some business logic running on the application server. For example, in an on-line store

Remove @Remove
(retainIfExceptio
n=true|false)

<remove-method>

<retain-if-exception>

Section 4.3.11 of the EJB 3.0
specification states that the
XML
<retain-if-exception>
sub-element of the
<remove-method> element
may be explicitly specified to
override the
retainIfException value
specified or defaulted by the
@Remove annotation.

OC4J handles the
remove methods
properly on stateful
session beans.

Activation
configurati
on

@MessageDriven

activationConfig

<activation-config> Section 5.4.13 of the EJB 3.0
specification states that the
activation configuration
properties specified in the
deployment descriptor are
added to those specified by
means of the
@MessageDriven
annotation. If a property of
the same name is specified in
both, the deployment
descriptor value overrides
the value specified in the
annotation.

OC4J complies with
the overriding rule.

Note: there is a bug
in the current
release of OC4J: the
container does not
perform the
override at all times.
Instead, it creates a
new activation
configuration object
to the list.

Deploymen
t

@StatefulDeployem
t

@StatelessDeploye
mt

@MessageDrivenDep
loyemt

<session-deployment>

<message-driven-deployme
nt>

These annotations are not
defined in the EJB 3.0
specification: they are
OC4J-specific.

OC4J handles these
annotations in the
following way: if
applied, the
deployment settings
in XML will
override the
annotation.

Table 1–6 (Cont.) Overriding Annotations With XML

Scope Annotations XML
EJB 3.0 Specification
Overriding Rules

OC4J-specific
Behavior (10.1.3.1
Release)

What is a Session Bean?

1-28 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

application, you can use a session bean to implement a ShoppingCartBean that
provides a Cart interface that the client uses to invoke such methods as
purchaseItem and checkout.

Each client is allocated its own session object. A client does not directly access
instances of the session bean’s class: a client accesses a session object through the
session bean’s home ("Implementing the Home Interfaces" on page 11-6) and
component ("Implementing the Component Interfaces" on page 11-8) interfaces. The
client of a session bean may be a local client, a remote client, or a Web service client
(stateless session bean only), depending on the interface provided by the bean and
used by the client.

OC4J maintains a session context for each session bean instance (see "What is Session
Context?" on page 1-34) that you use to make callback requests to the container.

This section describes the following:

■ What is a Stateless Session Bean?

■ What is a Stateful Session Bean?

■ What is Session Context?

For more information, see the following:

■ "Implementing an EJB 3.0 Session Bean" on page 4-1

■ "Implementing an EJB 2.1 Session Bean" on page 11-1

What is a Stateless Session Bean?
A stateless session bean is a session bean with no conversational state. All instances of
a particular stateless session bean class are identical.

A stateless session bean and its client do not share state or identity between method
invocations. A stateless session bean is strictly a single invocation bean. It is employed
for reusable business services that are not connected to any specific client, such as
generic currency calculations, mortgage rate calculations, and so on. Stateless session
beans may contain client-independent, read-only state across a call. Subsequent calls
are handled by other stateless session beans in the pool. The information is used only
for the single invocation.

OC4J maintains a pool of these stateless beans to service multiple clients. An instance
is taken out of the pool when a client sends a request. There is no need to initialize the
bean with any information.

The client of a stateless session bean may be a Web service client. Only a stateless
session bean may provide a Web service client view.

For more information, see the following:

■ "Implementing an EJB 3.0 Stateless Session Bean" on page 4-1

■ "Implementing an EJB 2.1 Stateless Session Bean" on page 11-1

■ "Exposing a Stateless Session Bean as a Web Service" on page 30-1

What is the Stateless Session Bean Life Cycle?
Figure 1–3 shows the life cycle of a stateless session bean. Annotations (such as
@PostConstruct) are applicable to EJB 3.0 stateless session beans only.

What is a Session Bean?

Understanding Enterprise JavaBeans 1-29

Figure 1–3 Stateless Session Bean Life Cycle

The life cycle for EJB 3.0 and EBJ 2.1 stateless session beans are identical. The
difference is in how you register life cycle callback methods (see Table 1–7 and
Table 1–8).

Table 1–7 lists the optional EJB 3.0 stateless session bean life cycle callback methods
you can define using annotations. For EJB 3.0 stateless session beans, you do not need
to implement these methods.

Table 1–8 lists the EJB 2.1 life cycle methods, as specified in the
javax.ejb.SessionBean interface, that a stateful session bean must implement.
For EJB 2.1 stateful session beans, you must at the least provide an empty
implementation for all callback methods.

For more information, see the following:

■ "What is the Life Cycle of an Enterprise Bean?" on page 1-5

■ "Configuring a Life Cycle Callback Interceptor Method on an EJB 3.0 Session Bean"
on page 5-4

■ "Configuring a Life Cycle Callback Interceptor Method on an Interceptor Class of
an EJB 3.0 Session Bean" on page 5-5

■ "Configuring a Life Cycle Callback Method for an EJB 2.1 Session Bean" on
page 12-3

Table 1–7 Life Cycle Methods for an EJB 3.0 Stateless Session Bean

Annotation Description

@PostConstruct This optional method is invoked for a stateful session bean before the first business method invocation on
the bean. This is at a point after which any dependency injection has been performed by the container.

@PreDestroy This optional method is invoked for a stateful session bean when the instance is in the process of being
removed by the container. The instance typically releases any resources that it has been holding.

Table 1–8 Life Cycle Methods for an EJB 2.1 Stateless Session Bean

EJB Method Description

ejbCreate The container invokes this method right before it creates the bean. Use this method to initialize
nonclient-specific information such as retrieving a data source.

ejbActivate This method is never called for a stateless session bean. Provide an empty implementation only.

ejbPassivate This method is never called for a stateless session bean. Provide an empty implementation only.

ejbRemove The container invokes this method before it ends the life of the stateless session bean. Use this method
to perform any required clean-up (for example, closing external resources such as a data source).

setSessionContext The container invokes this method after it first instantiates the bean. Use this method to obtain a
reference to the context of the bean. For more information, see "Implementing the setSessionContext
Method" on page 11-9.

What is a Session Bean?

1-30 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

What is a Stateful Session Bean?
A stateful session bean is a session bean that maintains conversational state.

Stateful session beans are useful for conversational sessions, in which it is necessary to
maintain state, such as instance variable values or transactional state, between method
invocations. These session beans are mapped to a single client for the life of that client.

A stateful session bean maintains its state between method calls. Thus, there is one
instance of a stateful session bean created for each client. Each stateful session bean
contains an identity and a one-to-one mapping with an individual client.

When the container determines that it must remove a stateful session bean from
memory (in order to release resources), the container maintains the bean’s state by
passivation (serializing the bean to disk). This is why the state that you passivate must
be serializable. However, this information does not survive system failures. When the
bean instance is requested again by its client, the container activates the previously
passivated bean instance.

The type of state that is saved does not include resources. The container invokes the
ejbPassivate method within the bean to provide the bean with a chance to clean up
its resources, such as sockets held, database connections, and hash tables with static
information. All these resources can be reallocated and re-created during the
ejbActivate method.

If the bean instance fails, the state can be lost, unless you take action within your bean
to continually save state. However, if you must make sure that state is persistently
saved in the case of failovers, you may want to use an entity bean for your
implementation. Alternatively, you could also use the SessionSynchronization
interface to persist the state transactionally.

For example, a stateful session bean could implement the server side of a shopping
cart on-line application, which would have methods to return a list of objects that are
available for purchase, put items in the customer's cart, place an order, change a
customer's profile, and so on.

For more information, see the following:

■ "Implementing an EJB 3.0 Stateful Session Bean" on page 4-2

■ "Implementing an EJB 2.1 Stateful Session Bean" on page 11-3

What is the Life Cycle of a Stateful Session Bean?
Figure 1–4 shows the life cycle of a stateful session bean. Annotations (such as
@PostConstruct) are applicable to EJB 3.0 stateful session beans only.

Note: You can turn off passivation for stateful session beans (see
"Configuring Passivation" on page 12-1).

What is a Session Bean?

Understanding Enterprise JavaBeans 1-31

Figure 1–4 Stateful Session Bean Life Cycle

The life cycle for EJB 3.0 and EBJ 2.1 stateful session beans are identical. The difference
is in how you register life cycle callback methods (see Table 1–9 and Table 1–10).

Table 1–9 lists the optional EJB 3.0 stateful session bean life cycle callback methods you
can define using annotations. For EJB 3.0 stateful session beans, you do not need to
implement these methods.

Table 1–10 lists the EJB 2.1 life cycle methods, as specified in the
javax.ejb.SessionBean interface, that a stateful session bean must implement.
For EJB 2.1 stateful session beans, you must at the least provide an empty
implementation for all callback methods.

Table 1–9 Life Cycle Methods for an EJB 3.0 Stateful Session Bean

Annotation Description

@PostConstruct This optional method is invoked for a stateful session bean before the first business method invocation on
the bean. This is at a point after which any dependency injection has been performed by the container.

@PreDestroy This optional method is invoked for a stateful session bean when the instance is in the process of being
removed by the container. The instance typically releases any resources that it has been holding.

@PrePassivate The container invokes this method right before it passivates a stateful session bean. For more information,
see the following:

■ "When Does Stateful Session Bean Passivation Occur?" on page 1-32

■ "What Object Types can be Passivated?" on page 1-33

■ "Where is a Passivated Stateful Session Bean Stored?" on page 1-34

@PostActivate The container invokes this method right after it reactivates a formerly passivated stateful session bean.

What is a Session Bean?

1-32 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see the following:

■ "What is the Life Cycle of an Enterprise Bean?" on page 1-5

■ "Configuring a Life Cycle Callback Interceptor Method on an EJB 3.0 Session Bean"
on page 5-4

■ "Configuring a Life Cycle Callback Interceptor Method on an Interceptor Class of
an EJB 3.0 Session Bean" on page 5-5

■ "Configuring a Life Cycle Callback Method for an EJB 2.1 Session Bean" on
page 12-3

When Does Stateful Session Bean Passivation Occur? Passivation enables the container to
preserve the conversational state of an inactive idle bean instance by serializing the
bean and its state into a secondary storage and removing it from memory. Before
passivation, the container invokes the PrePassivate or ejbPassivate method
enabling the bean developer to clean up held resources, such as database connections,
TCP/IP sockets, or any resources that cannot be transparently passivated using object
serialization. Only certain object types can be serialized and passivated (see "What
Object Types can be Passivated?" on page 1-33).

Passivation is enabled by default. For more information on enabling and disabling
passivation, see "Configuring Passivation" on page 12-1.

OC4J will passivate stateful session beans when any combination of the following
criteria is met:

■ exceed idle timeout;

■ exceed threshold for maximum number of instances or exceed absolute maximum
number of instances;

■ exceed threshold for maximum JVM memory consumption;

■ shutdown OC4J instance.

Passivation of beans is performed using the least recently used algorithm: of the beans
eligible for passivation, OC4J passivates the least used first.

In addition, you can specify how frequently OC4J checks this criterion and the number
of instances to passivate when the criterion is met.

Table 1–10 Life Cycle Methods for an EJB 2.1 Stateful Session Bean

EJB Method Description

ejbCreate The container invokes this method right before it creates the bean. Stateless session beans must do
nothing in this method. Stateful session beans can initiate state in this method.

ejbActivate The container invokes this method right after it reactivates the bean.

ejbPassivate The container invokes this method right before it passivates the bean. For more information, see the
following:

■ "When Does Stateful Session Bean Passivation Occur?" on page 1-32

■ "What Object Types can be Passivated?" on page 1-33

■ "Where is a Passivated Stateful Session Bean Stored?" on page 1-34

ejbRemove A container invokes this method before it ends the life of the session object. This method performs any
required clean-up (for example, closing external resources such as file handles).

setSessionContext The container invokes this method after it first instantiates the bean. Use this method to obtain a
reference to the context of the bean. For more information, see "Implementing the setSessionContext
Method" on page 11-9.

What is a Session Bean?

Understanding Enterprise JavaBeans 1-33

For information on configuring this criterion, see "Configuring Passivation Criteria" on
page 12-2.

If the passivation serialization fails, then the container attempts to recover the bean
back to memory as if nothing happened. No future passivation attempts will occur for
any beans that fail passivation. Also, if activation fails, the bean and its references are
completely removed from the container.

When a client invokes one of the methods of the passivated bean instance, the
preserved conversational state data is activated by deserializing the bean from
secondary storage, and bringing back into memory. Before activation, the container
invokes the ejbActivate method so that you can restore the resources released
during ejbPassivate. For more information on passivation, see the EJB
specification.

A stateful session bean can passivate only certain object types, as designated in "What
Object Types can be Passivated?" on page 1-33. If you do not prepare your stateful
session beans for passivation by releasing all resources and only letting state to exist
within the allowed object types, then passivation will always fail.

If new bean data is propagated to a passivated bean in a cluster, then the bean instance
data is overwritten by the propagated data.

What Object Types can be Passivated? When a stateful session bean is passivated, it is
serialized to secondary storage. To be successful, the conversational state of a bean
must consist of only primitive values and the following data types:

■ serializable object (you do not need to declare the field type as serializable as long
as the field is initialized with a subclass of the field type that is serializable);

■ null;

■ reference to an EJB business interface;

■ reference to an EJB remote interface, even if the stub class is not serializable;

■ reference to an EJB remote home interface, even if the stub class is not serializable;

■ reference to an EJB local interface, even if it is not serializable;

■ reference to an EJB local home interface, even if it is not serializable;

■ reference to the SessionContext object, even if it is not serializable;

■ reference to the environment naming context (that is, the java:comp/env JNDI
context) or any of its subcontexts;

■ reference to the UserTransaction interface;

■ reference to resource manager connection factory;

■ reference to an EntityManager object, even if it is not serializable;

■ reference to an EntityManagerFactory object, even if it is not serializable;

■ reference to javax.ejb.Timer object;

■ An object that is not directly serializable, but becomes serializable by replacing a
reference to an EJB business interface, EJB home and component interfaces, the
reference to the SessionContext object, the reference to the java:comp/env
JNDI context and its subcontexts, the reference to the UserTransaction
interface, and the reference to the EntityManager, EntityManagerFactory,
or both by serializable objects during the object’s serialization.

What is a JPA Entity?

1-34 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

You are responsible for ensuring that all nontransient fields are of these types after the
PrePassivate method (see "Configuring a Life Cycle Callback Interceptor Method
on an EJB 3.0 Session Bean" on page 5-4) or ejbPassivate method (see "Configuring
a Life Cycle Callback Method for an EJB 2.1 Session Bean" on page 12-3) completes.
Within this method, you must set all transient or nonserializable fields to null.

Where is a Passivated Stateful Session Bean Stored? By default, when OC4J passivates a
stateful session bean, it writes the serialized instance to <OC4J_
HOME>\j2ee\home\persistence.

Passivation uses space within this directory to store the passivated beans. If
passivation allocates large amounts of disk space, you may need to change the
directory to a place on your system where you have the space available (see
"Configuring Passivation Location" on page 12-3).

What is Session Context?
OC4J maintains a javax.ejb.SessionContext for each session bean instance and
makes this session context available to the beans. The bean may use the methods in the
session context to make callback requests to the container. In addition, you can use the
methods inherited from EJBContext (see "What is EJB Context?" on page 1-6).

For more information, see the following:

■ "Accessing an EJB 3.0 EJBContext" on page 29-20

■ "Accessing an EJB 2.1 EJBContext" on page 29-27

OC4J initializes the session context after it first instantiates the bean. It is the bean
provider’s responsibility to enable the bean to retrieve the session context. The
container will never call this method from within a transaction context. If the bean
does not save the session context at this point, the bean will never gain access to the
session context.

When the container calls this method, it passes the reference of the SessionContext
object to the bean. The bean can then store the reference for later use.

If the session bean instance stores in its conversational state an object reference to the
SessionContext (either with a setSessionContext method or using resource
injection), OC4J can save and restore the reference across the instance’s passivation.
OC4J can replace the original SessionContext object with a different and
functionally equivalent SessionContext object during activation.

What is a JPA Entity?
The Java Persistence API (JPA), part of the Java Enterprise Edition 5 (Java EE 5) EJB 3.0
specification, greatly simplifies Java persistence and provides an object-relational
mapping approach that lets you declaratively define how to map Java objects to
relational database tables in a standard, portable way that works both inside a Java EE
5 application server and outside an EJB container in a Java Standard Edition 5 (Java SE
5) application.

Using JPA, you can designate any POJO class as a JPA entity–a Java object whose
nontransient fields should be persisted to a relational database using the services of an

Note: OC4J does not support SessionContext method
getInvokedBusinessInterface. If you call this method, OC4J
throws an UnsupportedOperationException.

What is a JPA Entity?

Understanding Enterprise JavaBeans 1-35

entity manager obtained from a JPA persistence provider (either within a Java EE EJB
container or outside of an EJB container in a Java SE application).

An entity has the following characteristics:

■ it is EJB 3.0-compliant;

■ it is light-weight;

■ it manages persistent data in concert with a JPA entity manager;

■ it performs complex business logic;

■ it potentially uses several dependent Java objects;

■ it can be uniquely identified by a primary key.

Entities represent persistent data stored in a relational database automatically using
container-managed persistence.They are persistent because their data is stored
persistently in some form of data storage system, such as a database: they do survive a
server failure, failover, or a network failure. When an entity is reinstantiated, the state
of the previous instance is automatically restored.

An entity models a business entity or multiple actions within a single business
process. Entities are often used to facilitate business services that involve data and
computations on that data. For example, you might implement an entity to retrieve
and perform computation on items within a purchase order. Your entity can manage
multiple, dependent, persistent objects in performing its tasks.

Entities can represent fine-grained persistent objects, because they are not remotely
accessible components.

An entity can aggregate objects together and effectively persist data and related objects
using the transactional, security, and concurrency services of a JPA persistence
provider.

This section describes the following:

■ What are JPA Entity Container-Managed Persistent Fields?

■ What are JPA Entity Container-Managed Relationship Fields?

■ How do you Avoid Database Resource Contention?

■ What is the JPA Entity Life Cycle?

■ What is a JPA Entity Primary Key?

■ How do you Query for a JPA Entity?

For more information, see "Implementing a JPA Entity" on page 6-1.

What are JPA Entity Container-Managed Persistent Fields?
A container-managed persistent field is a state-field that represents data that must be
persisted to a database.

All the data members of a JPA entity are considered persistent fields unless annotated
with @Transient.

The JPA persistence provider that you specify in the entity’s persistence unit (see
"What is the persistence.xml File?" on page 2-8) is responsible for ensuring that
persistent fields are persisted to the database.

By default, a JPA persistence provider automatically configures a basic mapping for
most Java primitive types, wrappers of the primitive types, and enumerations. You

What is a JPA Entity?

1-36 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

can customize this mapping using the @Basic, @Enumerated, @Temporal, and
@Lob annotations.

What are JPA Entity Container-Managed Relationship Fields?
A container-managed relationship (CMR) field is an association-field that represents a
persistent relationship to one or more other EJB 3.0 entities or EJB 2.1
container-managed entity beans. For example, in an order management application,
the OrderEJB might be related to a collection of LineItemEJB beans and to a single
CustomerEJB bean.

All the data members of a JPA entity are considered persistent fields unless annotated
with @Transient.

The JPA persistence provider you specify in the entity’s persistence unit (see "What is
the persistence.xml File?" on page 2-8) is responsible for ensuring that persistent fields
are persisted to the database.

You must configure your entity (using annotations or persistence.xml) to specify
mappings to other entities. This configuration specifies how the entities relate to one
another and how a JPA persistence provider should map the reference to a relational
database.

For example, you can configure a relationship mapping for any persistent relationship
using relationship mapping annotations @OneToOne, @ManyToOne, @OneToMany,
and @ManyToMany.

An entity relationship has the following characteristics:

■ Multiplicity–there are four types of multiplicities all of which are supported by
Oracle Application Server: one-to-one, many-to-one, one-to-many, and
many-to-many.

■ Directionality–the direction of a relationship may be either bi-directional or
unidirectional. In a bi-directional relationship, each entity bean has a relationship
field that refers to the other bean. Through the relationship field, an entity bean's
code can access its related object. If an entity bean has a relative field, then it
"knows" about its related object. For example, if an ProjectEJB bean knows
what TaskEJB beans it has, and if each TaskEJB bean knows to which
ProjectEJB bean it belongs, then they have a bi-directional relationship. In a
unidirectional relationship, only one entity bean has a relationship field that refers
to the other. Oracle Application Server supports both unidirectional and
bi-directional relationships between enterprise beans.

■ Java Persistence query language support–JP QL is an extension of the Enterprise
JavaBeans query language (EJB QL) that adds bulk update and delete, JOIN,
GROUP BY, HAVING, projection, subqueries, and named parameters. It supports
both static and dynamic queries.

JP QL queries often navigate across relationships. The direction of a relationship
determines whether a query can navigate from one bean to another.

For more information, see the following:

■ "Configuring a Container-Managed Relationship Field for a JPA Entity" on
page 7-9

■ "Implementing JPA Queries" on page 8-1

What is a JPA Entity?

Understanding Enterprise JavaBeans 1-37

What is the JPA Entity Life Cycle?
Figure 1–5 shows the life cycle of a JPA entity.

Figure 1–5 JPA Entity Life Cycle

Table 1–11 lists the optional JPA entity life cycle callback methods you can define using
annotations. For EJB 3.0 entities, you do not need to implement these methods.

Table 1–11 Life Cycle Methods for a JPA Entity

Annotation Description

@PrePersist This optional method is invoked for an entity before the corresponding EntityManager persist operation
is executed. This callback will be invoked on all entities to which these operations are cascaded. If this
callback throws an Exception, it will cause the current transaction to be rolled back.

@PostPersist This optional method is invoked for an entity after the corresponding EntityManager persist operation is
executed. This callback will be invoked on all entities to which these operations are cascaded. This method
will be invoked after the database insert operation. This may be directly after the persist operation, a flush
operation, or at the end of a transaction. If this callback throws an Exception, it will cause the current
transaction to be rolled back.

@PreRemove This optional method is invoked for an entity before the corresponding EntityManager remove
operation is executed. This callback will be invoked on all entities to which these operations are cascaded.
If this callback throws an Exception, it will cause the current transaction to be rolled back.

@PostRemove This optional method is invoked for an entity after the corresponding EntityManager remove operation
is executed. This callback will be invoked on all entities to which these operations are cascaded. This
method will be invoked after the database delete operation. This may be directly after the remove
operation, a flush operation, or at the end of a transaction. If this callback throws an Exception, it will
cause the current transaction to be rolled back.

What is a JPA Entity?

1-38 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see the following:

■ "What is the Life Cycle of an Enterprise Bean?" on page 1-5

■ "Configuring a Life Cycle Callback Method on a JPA Entity" on page 7-16

■ "Configuring a Life Cycle Callback Listener Method on an Entity Listener Class of
a JPA Entity" on page 7-17

What is a JPA Entity Primary Key?
Each JPA entity must have a primary key that uniquely identifies it from other
instances. The primary key (or the fields contained within a complex primary key)
must be persistent fields.

All fields within the primary key are restricted to the following:

■ primitive object types;

■ serializable types;

■ types that can be mapped to SQL types.

In this release, you can define a primary key made up of a single, well-known
serializable Java primitive or object type. The primary key variable that is declared
within the bean class must be declared as public (see "Configuring a JPA Entity
Simple Primary Key Field" on page 7-2).

You can assign primary key values yourself, or more typically, you can create an
auto-generated primary key (see "Configuring JPA Entity Automatic Primary Key
Generation").

For more information, see "Configuring a JPA Entity Primary Key" on page 7-1

@PreUpdate This optional method is invoked before the database update operation on entity data. This may be at the
time of the entity state update, a flush operation, or at the end of a transaction.

OC4J calls this method only if it determines that an actual update is required (only if it is prepared to send
SQL to the database). Contrast this with a post-update callback which is called regardless of whether or not
an actual change was required.

@PostUpdate This optional method is invoked after the database update operation on entity data. This may be at the time
of the entity state update, a flush operation, or at the end of a transaction.

OC4J calls this method even if it determines that no actual update is required (even if it determines that no
SQL needs to be sent to the database). Use the pre-update callback if you want to be notified only when the
object has actually been changed.

@PostLoad This optional method is invoked after the entity has been loaded into the current persistence context from
the database or after the refresh operation has been applied to it and before a query result is returned or
accessed or an association is traversed.

Note: Once the primary key for an entity bean has been set, the EJB
3.0 specification forbids you from attempting to change it. Therefore,
do not expose the primary key set methods in an entity component
interface.

Table 1–11 (Cont.) Life Cycle Methods for a JPA Entity

Annotation Description

What is a JPA Entity?

Understanding Enterprise JavaBeans 1-39

How do you Query for a JPA Entity?
In EJB 3.0, you use a javax.persistence.EntityManager to create, find, merge,
and persist your EJB 3.0 entities. To find entities, you use the EntityManager query
API (see "Understanding the JPA EntityManager Query API" on page 1-39).

You can express your selection criteria using an appropriate query syntax (see
"Understanding JPA Entity Query Syntax" on page 1-39).

Using query hints, you can use EJB 3.0 JPA persistence provider vendor extensions to
this API (see "Configuring TopLink Query Hints in a JPA Query" on page 8-3).

Understanding the JPA EntityManager Query API
In EJB 3.0, you can use the javax.persistence.EntityManager and
javax.persistence.Query API to create and execute named queries or dynamic
queries.

Using Query API, you can bind parameters, configure hints, and control the number
of results returned.

For more information, see the following:

■ "What is a JPA Dynamic (Ad-Hoc) Query?" on page 1-39

■ "What is a JPA Named (Predefined) Query?" on page 1-39

■ "Querying for a JPA Entity Using the EntityManager" on page 29-13

What is a JPA Named (Predefined) Query? A named query is the EJB 3.0 improvement of
the EJB 2.1 finder method. In EJB 3.0, you can implement a named query using
metadata (see "Implementing a JPA Named Query" on page 8-1), and then create and
execute the query by name at run time (see "Creating a Named Query With the
EntityManager" on page 29-13).

OC4J supports both Java persistence query language and native SQL named queries.

What is a JPA Dynamic (Ad-Hoc) Query? A dynamic query is a query that you can
compose, configure, and execute at run time. You can use dynamic queries in addition
to named queries.

OC4J supports both Java persistence query language and native SQL named queries.

You can also create a dynamic query using the TopLink query and expression
framework (see "Creating a Dynamic TopLink Expression Query With the
EntityManager" on page 29-14).

Understanding JPA Entity Query Syntax
Table 1–16 summarizes the types of query syntax you can use to define queries for EJB
3.0 entities.

Oracle recommends the use of Java persistence query language, because it is both
portable and optimizable.

Table 1–12 OC4J JPA Entity Query Syntax Support

Query Syntax See Also

Java Persistence Query Language "Understanding Java Persistence Query Language Query Syntax" on page 1-40

Native SQL "Understanding Native SQL Query Syntax in EJB 2.1" on page 1-52

What is a JPA Entity?

1-40 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Understanding Java Persistence Query Language Query Syntax Java persistence query
language is a specification language used to define query semantics in a portable and
optimizable format.

Although similar to SQL, Java persistence query language offers significant
advantages over native SQL. While SQL applies queries against tables using column
names, Java persistence query language applies queries against EJB 3.0 entities using
the abstract schema name and the fields of the bean within the query. The Java
persistence query language statement retains the object terminology. The JPA
persistence provider translates the Java persistence query language statement to the
appropriate database SQL statement when the application is deployed. Thus, the JPA
persistence provider is responsible for converting the entity name and the names of its
persistent fields to the appropriate database table and column names. Java persistence
query language is portable to all databases supported by OC4J.

In EJB 3.0, Java persistence query language syntax includes everything that is in EJB
2.1 EJB QL (see "Understanding EJB 2.1 Query Syntax" on page 1-50), plus additional
features such as bulk update and delete, JOIN operations, GROUP BY, HAVING,
projection, subqueries, and the use of Java persistence query language in dynamic
queries using the EJB 3.0 EntityManager API (see "What is a JPA Dynamic (Ad-Hoc)
Query?" on page 1-39).

For more information, see the JSR-220 Enterprise JavaBeans v.3.0 Java Persistence API
specification, Chapter 4.

OC4J provides complete support for Java persistence query language with the
following important features:

■ Automatic Code Generation: Java persistence query language queries are defined
in the deployment descriptor of the entity bean. When enterprise beans are
deployed to Oracle Application Server, the container automatically translates the
queries into the SQL dialect of the target data store. Due to this translation, entity
beans with container-managed persistence are portable: their code is not tied to a
specific type of a data store.

■ Optimized SQL Code Generation: Further, in generating the SQL code, Oracle
Application Server makes several optimizations such as the use of bulk SQL,
batched statement dispatch, and so on to make database access efficient.

■ Support for Oracle and Non-Oracle Databases: Further, Oracle Application Server
provides the ability to execute Java persistence query language against any
database such as Oracle, MS SQL-Server, IBM DB/2, Informix, and Sybase.

■ Relationships: Oracle Application Server supports Java persistence query
language for both single entity beans and also with entity beans that have
relationships, with support for any type of multiplicity and directionality.

Using EJB 3.0, OC4J supports all of the enhanced Java persistence query language
features defined in the EJB 3.0 persistence specification, including SQRT and date,
time, and timestamp options.

Understanding Native SQL Query Syntax in EJB 3.0 In this release, the TopLink JPA
persistence provider takes the query syntax you specify (see "Understanding JPA
Entity Query Syntax" on page 1-39) and generates Sequential Query Language (SQL)
native to your underlying relational database.

Java persistence query language is the preferred syntax, because it is portable and
optimizable.

Native SQL is appropriate for taking advantage of advanced query features of your
underlying relational database that Java persistence query language does not support.

What is an EJB 2.1 Entity Bean?

Understanding Enterprise JavaBeans 1-41

OC4J supports native SQL in both named and dynamic queries.

What is an EJB 2.1 Entity Bean?
An entity bean is an EJB 2.1 enterprise bean component that manages persistent data,
performs complex business logic, potentially uses several dependent Java objects, and
can be uniquely identified by a primary key.

Entity beans persist business data using one of the two following methods:

■ Automatically by the container using an entity bean with container-managed
persistence (see "What is an EJB 2.1 Entity Bean With Container-Managed
Persistence?" on page 1-42)

■ Programmatically through methods implemented in an entity bean with
bean-managed persistence (see "What is an EJB 2.1 Entity Bean With
Bean-Managed Persistence?" on page 1-46). These methods use JDBC, SQLJ, or a
persistence framework (such as TopLink) to manage persistence.

For information on choosing between container-managed persistence and
container-managed persistence architectures, see "When do you use Bean-Managed
Versus Container-Managed Persistence?" on page 1-59.

Entity beans are persistent because their data is stored persistently in some form of
data storage, such as a database: entity beans survive a server failure, failover, or a
network failure. When an entity bean is reinstantiated, the state of the previous
instance is automatically restored. OC4J manages this state if the entity bean must be
removed from memory (see "When Does Entity Bean Passivation Occur?" on
page 1-48).

An entity bean models a business entity or multiple actions within a single business
process. Entity beans are often used to facilitate business services that involve data and
computations on that data. For example, you might implement an entity bean to
retrieve and perform computation on items within a purchase order. Your entity bean
can manage multiple, dependent, persistent objects in performing its tasks.

A common design pattern pairs entity beans with a session bean that acts as the client
interface. The entity bean functions as a coarse-grained object that encapsulates
functionality and represents persistent data and relationships to dependent (typically,
find-grained) objects. Thus, you decouple the client from the data so that if the data
changes, the client is not affected. For efficiency, the session bean can be collocated
with entity beans and can coordinate between multiple entity beans through their local
interfaces. This is known as a session facade design. See the http://java.sun.com
Web site for more information on session facade design.

An entity bean can aggregate objects together and effectively persist data and related
objects using container transactional, security, and concurrency services.

This section describes the following:

■ What is an EJB 2.1 Entity Bean With Container-Managed Persistence?

■ What is an EJB 2.1 Entity Bean With Bean-Managed Persistence?

■ What is Entity Context?

■ How do you Avoid Database Resource Contention?

■ How do you Query for an EJB 2.1 Entity Bean?

■ When Does Entity Bean Passivation Occur?

■ What are Entity Bean Commit Options?

What is an EJB 2.1 Entity Bean?

1-42 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see "Implementing an EJB 2.1 Entity Bean" on page 13-1.

What is an EJB 2.1 Entity Bean With Container-Managed Persistence?
When you choose to have the container manage your persistent data for an entity
bean, you define an entity bean with container-managed persistence. A class of an
entity bean with container-managed persistence is an abstract class (the container
provides the implementation class that is used at run time), whose persistent data is
specified as container-managed persistent fields (see "What are Container-Managed
Persistent Fields?" on page 1-42) for simple data, or as container-managed relationship
fields (see "What are Container-Managed Relationship Fields?" on page 1-42) for
relationships with other entity beans with container-managed persistence. In this case,
you do not have to implement some of the callback methods to manage persistence for
your bean's data (see "What is the Life Cycle of an EJB 2.1 Entity Bean With
Container-Managed Persistence?" on page 1-43), because the container stores and
reloads your persistent data to and from the database. When you use
container-managed persistence, the container invokes a persistence manager class that
provides the persistence management business logic. OC4J uses the TopLink
persistence manager by default. In addition, you do not have to provide management
for the primary key (see "What is a Primary Key of an Entity Bean With
Container-Managed Persistence?" on page 1-45): the container provides this key for the
bean.

For more information, see the following:

■ "Implementing an EJB 2.1 Entity Bean With Container-Managed Persistence" on
page 13-1

■ "What is Entity Context?" on page 1-48

■ "How do you Avoid Database Resource Contention?" on page 1-59

■ "How do you Query for an EJB 2.1 Entity Bean?" on page 1-50

■ "When Does Entity Bean Passivation Occur?" on page 1-48

■ "What are Entity Bean Commit Options?" on page 1-48

What are Container-Managed Persistent Fields?
A container-managed persistent field is a state-field that represents data that must be
persisted to a database.

By specifying a container-managed persistent field, you are instructing OC4J to take
responsibility for ensuring that the field’s value is persisted to the database. All other
fields in the entity bean with container-managed persistence are considered
nonpersistent (transient).

Using EJB 2.1, you must explicitly specify container-managed persistent fields (see
"Configuring a Container-Managed Persistent Field for an EJB 2.1 Entity Bean With
Container-Managed Persistence" on page 14-7).

What are Container-Managed Relationship Fields?
A container-managed relationship field is an association-field that represents a
persistent relationship to one or more other entity beans with container-managed
persistence. For example, in an order management application the OrderEJB might be
related to a collection of LineItemEJB beans and to a single CustomerEJB bean.

By specifying a container-managed relationship field, you are instructing OC4J to take
responsiblity for ensuring that a reference to one or more related entity beans with

What is an EJB 2.1 Entity Bean?

Understanding Enterprise JavaBeans 1-43

container-managed persistence is persisted to the database. For this reason, a
relationship between entity beans with container-managed persistence is often
referred to as container-managed relationship or a mapping from one entity bean with
container-managed persistence to another.

A container-managed relationship has the following characteristics:

■ Multiplicity–there are four types of multiplicities all of which are supported by
Oracle Application Server:

■ Directionality–the direction of a relationship may be either bi-directional or
unidirectional. In a bi-directional relationship, each entity bean has a relationship
field that refers to the other bean. Through the relationship field, an entity bean's
code can access its related object. If an entity bean has a relative field, then it
"knows" about its related object. For example, if an ProjectEJB bean knows
what TaskEJB beans it has and if each TaskEJB bean knows to which
ProjectEJB bean it belongs, then they have a bi-directional relationship. In a
unidirectional relationship, only one entity bean has a relationship field that refers
to the other. Oracle Application Server supports both unidirectional and
bi-directional relationships between enterprise beans.

■ EJB QL query support–EJB QL queries often navigate across relationships. The
direction of a relationship determines whether a query can navigate from one bean
to another. With OC4J, EJB QL queries can traverse container-managed
relationships with any type of multiplicity and with both unidirectional and
bi-directional relationships.

For more information, see the following:

■ "Configuring a Container-Managed Relationship Field for an EJB 2.1 Entity Bean
With Container-Managed Persistence" on page 14-9

■ "Implementing EJB 2.1 Queries" on page 16-1

What is the Life Cycle of an EJB 2.1 Entity Bean With Container-Managed
Persistence?
Figure 1–6 shows the life cycle of an EJB 2.1 entity bean with container-managed
persistence.

What is an EJB 2.1 Entity Bean?

1-44 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Figure 1–6 Life Cycle of EJB 2.1 Entity Bean With Container-Managed Persistence

Table 1–13 lists the EJB 2.1 enterprise bean’s life cycle methods, as specified in the
javax.ejb.EntityBean interface, that an entity bean with container-managed
persistence must implement. For EJB 2.1 entity beans with container-managed
persistence, you must at the least provide an empty implementation for all callback
methods.

Table 1–13 Life Cycle Methods for an EJB 2.1 Entity Bean With Container-Managed Persistence

EJB Method Description

ejbCreate You must implement an ejbCreate method corresponding to each create method declared in the home
interface. When the client invokes the create method, the container first invokes the constructor to
instantiate the object, then it invokes the corresponding ejbCreate method.

For an entity bean with container-managed persistence, use this method to initialize container-managed
persistent fields.

The return type of all ejbCreate methods is the type of the bean’s primary key.

Optionally, you can initialize the bean with a unique primary key and return it. If you rely on the container
to create and initialize the primary key, return null.

ejbPostCreate The container invokes this method after the environment is set. For each ejbCreate method, an
ejbPostCreate method must exist with the same arguments.

For an entity bean with container-managed persistence, you can leave this implementation empty, or use
your implementation to initialize parameters within or from the entity context.

ejbRemove The container invokes this method before it ends the life of the entity bean.

For an entity bean with container-managed persistence, you can leave this implementation empty, or use
your implementation to perform any required clean-up (for example, closing external resources such as file
handles).

ejbStore The container invokes this method right before a transaction commits. It saves the persistent data to an
outside resource, such as a database.

For an entity bean with container-managed persistence, you can leave this implementation empty.

What is an EJB 2.1 Entity Bean?

Understanding Enterprise JavaBeans 1-45

For more information, see the following:

■ "What is the Life Cycle of an Enterprise Bean?" on page 1-5

■ "Configuring a Life Cycle Callback Method for an EJB 2.1 Entity Bean With
Container-Managed Persistence" on page 14-15

What is a Primary Key of an Entity Bean With Container-Managed Persistence?
Each entity bean instance has a primary key that uniquely identifies it from other
instances. You must declare the primary key (or the fields contained within a complex
primary key) as a container-managed persistent field in the deployment descriptor.

All fields within the primary key are restricted to the following:

■ primitive object types;

■ serializable types;

■ types that can be mapped to SQL types.

You can define a primary key in one of the following ways:

■ Define a simple primary key made up of a single, well-known serializable Java
primitive or object type. The primary key variable that is declared within the bean
class must be declared as public (see "Configuring a Primary Key Field for an
EJB 2.1 Entity Bean With Container-Managed Persistence" on page 14-2).

■ Define a composite primary key class made up of one or more well-known
serializable Java primitive and object types within a <name>PK class that is
serializable (see "Configuring a Composite Primary Key Class for an EJB 2.1 Entity
Bean With Container-Managed Persistence").

Typically, you rely on OC4J to assign primary key values automatically. To configure
how OC4J assigns primary key values, you use TopLink persistence API. For more
information, see the following:

■ "Customizing the TopLink EJB 2.1 Persistence Manager" on page 3-13

■ "Understanding Sequencing in Relational Projects" in the Oracle TopLink Developer’s
Guide

ejbLoad The container invokes this method when the data should be reinitialized from the database. This normally
occurs after activation of an entity bean.

For an entity bean with container-managed persistence, you can leave this implementation empty.

ejbActivate The container calls this method directly before it activates an object that was previously passivated.
Perform any necessary reaquisition of resources in this method.

ejbPassivate The container calls this method before it passivates the object. Release any resources that can be easily
re-created in ejbActivate, and save storage space. Typically, you want to release resources that cannot
be passivated, such as sockets or database connections. Retrieve these resources in the ejbActivate
method.

Note: Once the primary key for an entity bean has been set, the EJB
2.1 specification forbids you from attempting to change it. Therefore,
do not expose the primary key set methods in an entity bean
component interface.

Table 1–13 (Cont.) Life Cycle Methods for an EJB 2.1 Entity Bean With Container-Managed Persistence

EJB Method Description

What is an EJB 2.1 Entity Bean?

1-46 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see "Configuring a Primary Key for an EJB 2.1 Entity Bean With
Container-Managed Persistence" on page 14-2.

What is an EJB 2.1 Entity Bean With Bean-Managed Persistence?
When you choose to manage your persistent data for an entity bean yourself, you
define an entity bean with bean-managed persistence. A class of an entity bean with
bean-managed persistence is a concrete class (you provide the implementation that is
used at run time), whose persistent data is specified as bean-managed persistent fields
(see "What are Bean-Managed Persistent Fields?" on page 1-46) for simple data, or as
bean-managed relationship fields (see "What are Bean-Managed Relationship Fields?"
on page 1-46) for relationships with other entity beans with bean-managed persistence.
In this case, you must implement all of the callback methods to manage persistence for
your bean's data, including storing and reloading your persistent data to and from the
database (see "What is the Life Cycle of an EJB 2.1 Entity Bean With Bean-Managed
Persistence?" on page 1-46). When you use bean-managed persistence, you must
supply the code that provides the persistence management business logic. In addition,
you must provide management for the primary key (see "What is a Primary Key of an
Entity Bean With Bean-Managed Persistence?" on page 1-47).

You can specify an entity bean with bean-managed persistence as read-only (see
"Configuring a Read-Only Entity Bean With Bean-Managed Persistence" on page 15-4)
and take advantage of the optimizations with which OC4J provides read-only entity
beans with bean-managed persistence depending on the commit option you choose
(see "What are Entity Bean Commit Options?" on page 1-48)

For more information, see the following:

■ "Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence" on
page 13-6

■ "What is Entity Context?" on page 1-48

■ "How do you Avoid Database Resource Contention?" on page 1-59

■ "How do you Query for an EJB 2.1 Entity Bean?" on page 1-50

■ "When Does Entity Bean Passivation Occur?" on page 1-48

■ "What are Entity Bean Commit Options?" on page 1-48

What are Bean-Managed Persistent Fields?
 With bean-managed persistence, the code that you write determines which fields of
an entity bean with bean-managed persistence are persistent.

What are Bean-Managed Relationship Fields?
With bean-managed persistence, the code that you write implements the relationships
between entity beans with bean-managed persistence.

What is the Life Cycle of an EJB 2.1 Entity Bean With Bean-Managed Persistence?
Table 1–14 lists the life cycle methods, as specified in the javax.ejb.EntityBean
interface, that an entity bean with bean-managed persistence must implement.

For an entity bean with bean-managed persistence, you must provide a complete
implementation of all life cycle methods.

What is an EJB 2.1 Entity Bean?

Understanding Enterprise JavaBeans 1-47

For more information, see the following:

■ "What is the Life Cycle of an Enterprise Bean?" on page 1-5

■ "Configuring a Life Cycle Callback Method for an EJB 2.1 Entity Bean With
Bean-Managed Persistence" on page 15-7

What is a Primary Key of an Entity Bean With Bean-Managed Persistence?
An entity bean primary key is a uniquely identifiable value that distinguishes one
instance of a particular type of entity bean class from another. Each entity bean has a
persistent identity associated with it. That is, the entity bean contains a unique identity
that can be retrieved if you have the primary key: given the primary key, a client can
retrieve the entity bean. If the bean is not available, the container instantiates the bean
and repopulates the persistent data for you.

The type for the unique key is defined by the bean provider.

All fields within the primary key are restricted to the following:

■ primitive object types;

■ serializable types;

■ types that can be mapped to SQL types;

■ types that are a legal Value Type in RMI-IIOP;

■ types that provide a suitable implementation of the hashCode() and
equals(Object) methods.

You can define a primary key in one of the following ways (in either case, for an entity
bean with bean-managed persistence, you create the primary key in the ejbCreate
method):

■ Define the type of the primary key to be a well-known Java type. The primary key
variable that is declared within the bean class must be declared as public (see

Table 1–14 EJB Life Cycle Methods for an Entity Bean With Bean-Managed Persistence

EJB Method Description

ejbCreate You must implement an ejbCreate method corresponding to each create method declared in the home
interface. When the client invokes the create method, the container first invokes the constructor to
instantiate the object, then it invokes the corresponding ejbCreate method. The ejbCreate method
performs the following:

■ creates any persistent storage for its data, such as database rows;

■ initializes a unique primary key and returns it.

ejbPostCreate The container invokes this method after the environment is set. For each ejbCreate method, an
ejbPostCreate method must exist with the same arguments. This method can be used to initialize
parameters within or from the entity context.

ejbRemove The container invokes this method before it ends the life of the session object. This method can perform any
required clean-up (for example, closing external resources such as file handles).

ejbStore The container invokes this method right before a transaction commits. It saves the persistent data to an
outside resource, such as a database.

ejbLoad The container invokes this method when the data should be reinitialized from the database. This usually
occurs after activation of an entity bean.

ejbActivate The container calls this method directly before it activates an object that was previously passivated. Perform
any necessary reaquisition of resources in this method.

ejbPassivate The container calls this method before it passivates the object. Release any resources that can be easily
re-created in ejbActivate, and save storage space. Typically, you want to release resources that cannot be
passivated, such as sockets or database connections. Retrieve these resources in the ejbActivate method.

What is an EJB 2.1 Entity Bean?

1-48 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

"Configuring a Primary Key Field for an EJB 2.1 Entity Bean With Bean-Managed
Persistence" on page 15-2).

■ Define the type of the primary key as a serializable object within a <name>PK class
that is serializable (see "Configuring a Primary Key Class for an EJB 2.1 Entity
Bean With Bean-Managed Persistence" on page 15-2).

What is Entity Context?
OC4J maintains a javax.ejb.EntityContext for each EJB 2.1 entity bean with
container-managed persistence or entity bean with bean-managed persistence instance
and makes this entity context available to the beans. The bean may use the methods in
the entity context to make callback requests to the container. In addition, you can use
the methods inherited from EJBContext (see "What is EJB Context?" on page 1-6).

For more information, see the following:

■ "Implementing the setEntityContext and unsetEntityContext Methods" on
page 13-20

■ "Accessing an EJB 2.1 EJBContext" on page 29-27.

When Does Entity Bean Passivation Occur?
Entity bean passivation applies only to EJB 2.1 entity beans with container-managed
persistence.

OC4J passivates an instance when the container decides to disassociate the instance
from an entity object identity, and to put the instance back into the pool of available
instances. OC4J calls the instance’s ejbPassivate method to give the instance the
chance to release any resources (typically, allocated in the ejbActivate method) that
should not be held while the instance is in the pool. This method executes with an
unspecified transaction context. The entity bean must not attempt to access its
persistent state or relationships using the accessor methods during this method.

What are Entity Bean Commit Options?
Commit options determine entity bean instance state at transaction commit time and
offer the flexibility to allow OC4J to optimize certain application conditions.

Table 1–15 lists the commit options as defined by the EJB 2.1 specification and
indicates which are supported by OC4J.

What is an EJB 2.1 Entity Bean?

Understanding Enterprise JavaBeans 1-49

Commit Options and CMP Applications
For an EJB 2.1 CMP application deployed to OC4J using the TopLink persistence
manager, by default, OC4J uses TopLink configuration to approximate commit option
C. This option provides the best performance and scalability over the widest range of
applications.

OC4J EJB 2.1 CMP conforms to option C in terms of life cycle method calls. However,
the TopLink persistence manager introduces the following innovations:

■ It provides caching using the TopLink cache.

■ It does not synchronize the instance with the data source at the beginning of every
transaction if the instance is already in the TopLink cache.

You can use locking or synchronization with a TopLink pessimistic or optimistic
locking policy to handle concurrent services to the same bean. This provides the best
performance for concurrent access of the same instance while guaranteeing an instance
is not updated with stale data.

For more information on making fine-grained TopLink configuration changes, see the
following:

■ "Customizing the TopLink EJB 2.1 Persistence Manager" on page 3-13

■ "Configuring Locking Policy" in the Oracle TopLink Developer’s Guide

Table 1–15 OC4J Support for Entity Bean Commit Options

Commit
Option

OC4J
Suppor
t Description

Instance
state
written to
database?

Instance
stays
ready

Instance
state
remains
valid Advantages Disadvantages

A 1

1 Entity beans with bean-managed persistence only (see "Commit Options and BMP Applications" on page 1-50).

Cached bean: At the end of
the transaction, the
instance stays in the ready
state (cached) and the
instance state is valid
(ejbLoad called once on
activation).

Least database
access.

Exclusive
access required.

Multiple
threads share
same bean
instance (poor
performance).

B Stale bean: At the end of
the transaction, the
instance stays in the ready
state (cached) but the
instance state is not valid:
ejbLoad and ejbStore
called for each transaction.

Moderate
database access.

Allows
concurrent
requests.

Overhead of
multiple bean
instances
representing
the same data.

Each
transaction calls
ejbLoad

C 2

2 Entity beans with container-managed persistence only (see "Commit Options and CMP Applications" on page 1-49).

Pooled bean: At the end of
the transaction, neither the
instance nor its state is
valid (instance will be
passivated and returned to
the pool). Every client call
causes an ejbActivate,
ejbLoad, then the
business method, then
ejbStore, and
ejbPassivate.

Best scalability.

Allows
concurrent
requests.

Need not hold on
to connections.

Most database
access (every
business
method call).

No caching.

What is an EJB 2.1 Entity Bean?

1-50 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Commit Options and BMP Applications
For an EJB 2.1 BMP application deployed to OC4J, you can configure commit option A
or C (see "Configuring Commit Options for an Entity Bean With Bean-Managed
Persistence" on page 15-5).

When you configure an entity bean with bean-managed persistence as read-only, OC4J
uses a special case of commit option A to improve performance. In this case, OC4J
caches the instance and does not update the instance or call ejbStore when the
transaction commits. For more information, see "Configuring a Read-Only Entity Bean
With Bean-Managed Persistence" on page 15-4.

You can use BMP commit option A and read-only entity beans with bean-managed
persistence independently (that is, you can configure an entity bean with
bean-managed persistence with commit option A without using read-only and you
can use read-only without configuring an entity bean with bean-managed persistence
with commit option A).

How do you Query for an EJB 2.1 Entity Bean?
To query for an EJB 2.1 entity bean instance, you use a finder or select method (see
"Understanding Finder Methods" on page 1-53 and "Understanding Select Methods"
on page 1-55).

In either case, you express your selection criteria using an appropriate query syntax
(see "Understanding EJB 2.1 Query Syntax" on page 1-50).

For more information, see "Implementing EJB 2.1 Queries" on page 16-1.

Understanding EJB 2.1 Query Syntax
Table 1–16 summarizes the types of query syntax you can use to define EJB queries.

Oracle recommends the use of EJB QL because it is both portable and optimizable.

Understanding EJB QL Query Syntax EJB QL is a specification language used to define
semantics of finder and select methods (see "Understanding Finder Methods" on
page 1-53 and "Understanding Select Methods" on page 1-55) in a portable and
optimizable format. You ensure that an EJB QL statement is associated with each
finder and select method.

Although similar to SQL, EJB QL offers significant advantages over native SQL. While
SQL applies queries against tables, using column names, EJB QL applies queries
against entity beans with container-managed persistence, using the abstract schema
name and the container-managed persistent and relationship fields of the bean within
the query. The EJB QL statement retains the object terminology. The container

Table 1–16 OC4J EJB 2.1 Query Syntax Support

Query Syntax See Also

EJB QL "Understanding EJB 2.1 Query Syntax" on page 1-50

TopLink "Understanding TopLink Query Syntax" on page 1-51

Predefined Finder "Predefined TopLink Finders" on page 1-53

Default Finder "Default TopLink Finders" on page 1-54

Custom Finder "Custom TopLink Finders" on page 1-55

Custom Select "Custom TopLink Select Methods" on page 1-56

Native SQL "Understanding Native SQL Query Syntax in EJB 2.1" on
page 1-52

What is an EJB 2.1 Entity Bean?

Understanding Enterprise JavaBeans 1-51

translates the EJB QL statement to the appropriate database SQL statement when the
application is deployed. Thus, the container is responsible for converting the entity
bean name, container-managed president field names, and container-managed
relationship field names to the appropriate database tables and column names. EJB QL
is portable to all databases supported by OC4J.

In EJB 2.1, EJB QL is a subset of SQL92, that includes extensions that allow navigation
over the relationships defined in an entity bean's abstract schema. The abstract schema
is part of an entity bean's deployment descriptor and defines the bean's persistent
fields and relationships. The term "abstract" distinguishes this schema from the
physical schema of the underlying data store. The abstract schema name is referenced
by EJB QL queries since the scope of an EJB QL query spans the abstract schemas of
related entity beans that are packaged in the same EJB JAR file.

For an entity bean with container-managed persistence, an EJB QL query must be
defined for every finder method (except findByPrimaryKey). Using OC4J with the
TopLink persistence manager, you can take advantage of predefined and default finder
and select methods (see "TopLink Finders" on page 1-53 and "Custom TopLink Select
Methods" on page 1-56). The EJB QL query determines the query that is executed by
the EJB container when the finder or select method is invoked.

Oracle Application Server provides complete support for EJB QL with the following
important features:

■ Automatic Code Generation: EJB QL queries are defined in the deployment
descriptor of the entity bean. When the enterprise beans are deployed to Oracle
Application Server, the container automatically translates the queries into the SQL
dialect of the target data store. Because of this translation, entity beans with
container-managed persistence are portable: their code is not tied to a specific type
of data store.

■ Optimized SQL Code Generation: Further, in generating the SQL code, Oracle
Application Server makes several optimizations such as the use of bulk SQL,
batched statement dispatch, and so on to make database access efficient.

■ Support for Oracle and Non-Oracle Databases: Further, Oracle Application Server
provides the ability to execute EJB QL against any database such as Oracle, MS
SQL-Server, IBM DB/2, Informix, and Sybase.

■ CMP with Relationships: Oracle Application Server supports EJB QL for both
single entity beans and also with entity beans that have relationships, with
support for any type of multiplicity and directionality.

Using EJB 2.1, OC4J provides proprietary EJB QL extensions to support SQRT and
date, time, and timestamp options not available in EJB 2.1 (see "OC4J EJB 2.1 EJB QL
Extensions" on page 16-7).

Understanding TopLink Query Syntax In this release, because TopLink is the default
persistence manager (see "TopLink EJB 2.1 Persistence Manager" on page 3-12), you
can express selection criteria for an EJB 2.1 finder or select method using the TopLink
query and expressions framework. This EJB QL alternative offers numerous
advantages (see "Advantages of TopLink Queries and Expressions" on page 1-52).

You can use the TopLink Workbench to customize your ejb-jar.xml file to create
advanced finder and select methods using the TopLink query and expression
framework.

You also can take advantage of the predefined and default finders and select methods
that the TopLink persistence manager provides (see "TopLink Finders" on page 1-53
and "Custom TopLink Select Methods" on page 1-56).

What is an EJB 2.1 Entity Bean?

1-52 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see the following:

■ "Understanding TopLink Queries" in the Oracle TopLink Developer’s Guide

■ "Understanding TopLink Expressions" in the Oracle TopLink Developer’s Guide.

■ "Configuring Named Queries at the Descriptor Level" in the Oracle TopLink
Developer’s Guide

■ "Using EJB Finders" in the Oracle TopLink Developer’s Guide

■ "Working with the ejb-jar.xml File" in the Oracle TopLink Developer’s Guide

Advantages of TopLink Queries and Expressions
Using the TopLink expressions framework, you can specify query search criteria based
on your domain object model.

Expressions offer the following advantages over SQL when you access a database:

■ Expressions are easier to maintain, because, like EJB QL, the database is
abstracted.

■ Changes to descriptors or database tables do not affect the querying structures in
the application.

■ Expressions enhance readability by standardizing the Query interface so that it
looks similar to traditional Java calling conventions. For example, the Java code
required to get the street name from the Address object of the Employee class
looks as follows:

emp.getAddress().getStreet().equals("Meadowlands");

The expression to get the same information is similar:

emp.get("address").get("street").equal("Meadowlands");

■ Expressions allow read queries to transparently query between two classes that
share a relationship. If these classes are stored in multiple tables in the database,
TopLink automatically generates the appropriate join statements to return
information from both tables.

■ Expressions simplify complex operations. For example, the following Java code
retrieves all employees that live on "Meadowlands" whose salary is greater than
10,000:

ExpressionBuilder emp = new ExpressionBuilder();
Expression exp = emp.get("address").get("street").equal("Meadowlands");
Vector employees = session.readAllObjects(Employee.class,
exp.and(emp.get("salary").greaterThan(10000)));

TopLink automatically generates the appropriate SQL from that code:

SELECT t0.VERSION, t0.ADDR_ID, t0.F_NAME, t0.EMP_ID, t0.L_NAME, t0.MANAGER_ID,
t0.END_DATE, t0.START_DATE, t0.GENDER, t0.START_TIME, t0.END_TIME,t0.SALARY
FROM EMPLOYEE t0, ADDRESS t1 WHERE (((t1.STREET = 'Meadowlands')AND (t0.SALARY
> 10000)) AND (t1.ADDRESS_ID = t0.ADDR_ID))

Understanding Native SQL Query Syntax in EJB 2.1 In this release, the TopLink persistence
manager takes the query syntax you specify ("Understanding EJB QL Query Syntax"
on page 1-50 or "Understanding TopLink Query Syntax" on page 1-51) and generates
Sequential Query Language (SQL) native to your underlying relational database.

EJB QL is the preferred syntax because it is portable and optimizable.

What is an EJB 2.1 Entity Bean?

Understanding Enterprise JavaBeans 1-53

Native SQL is appropriate for taking advantage of advanced query features of your
underlying relational database that EJB QL does not support.

Using EJB 2.1 and the TopLink query syntax, you can use the following:

■ default finders that take a native SQL string (see "Default TopLink Finders" on
page 1-54);

■ custom finder or select methods that use native SQL calls (see "TopLink Finders"
on page 1-53 and "Custom TopLink Select Methods" on page 1-56).

To use native SQL otherwise, you must use straight JDBC calls.

Understanding Finder Methods
A finder method is an EJB method the name of which begins with find that you
define in the Home interface of an EJB (see or "Implementing the EJB 2.1 Home
Interfaces" on page 13-18) and associate with a query to return one or more instances
of that EJB type. At deployment time, OC4J provides an implementation of this
method that executes the associated query.

Finder methods are the means by which clients retrieve EJB 2.1 entity beans with
container-managed persistence. Using EJB 2.1, you can do the following:

■ Expose any of the predefined and default finders that OC4J and the TopLink
persistence manager provide to all entity beans with container-managed
persistence (see "Predefined TopLink Finders" on page 1-53 and "Default TopLink
Finders" on page 1-54).

■ Define custom EJB QL finders (see "Implementing an EJB 2.1 EJB QL Finder
Method" on page 16-1) and custom TopLink finders (see "Custom TopLink
Finders" on page 1-55).

A finder that returns a single EJB instance has a return type of that EJB instance.

A finder that returns more than one EJB instance has a return type of Collection. If
no matches are found, an empty Collection is returned. To ensure that no
duplicates are returned, specify the DISTINCT keyword in the associated EJB query.

All finders throw FinderException.

At the very least, you must expose the findByPrimaryKey finder method to retrieve
a reference for each entity bean using its primary key.

TopLink Finders The TopLink persistence manager provides OC4J entity beans with a
variety of predefined (see "Predefined TopLink Finders" on page 1-53) and default (see
"Default TopLink Finders" on page 1-54) finders. You can expose these finders to your
clients as you would for any other finder. You do not need to specify a corresponding
query. You can also create custom TopLink finders (see "Custom TopLink Finders" on
page 1-55).

Predefined TopLink Finders
Table 1–17 lists the predefined finders you can expose for EJB 2.1 entity beans with
container-managed persistence. The TopLink persistence manager reserves the method
names listed in Table 1–17.

What is an EJB 2.1 Entity Bean?

1-54 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 1–4 shows an EJBHome that defines two predefined finders
(findByPrimaryKey and findManyBySQL). TopLink will provide the query
implementation for these finders.

Example 1–3 Specifying Predefined TopLink Finders

public interface EmpBeanHome extends EJBHome {
public EmpBean create(Integer empNo, String empName) throws CreateException;

/**
* Finder methods. These are implemented by the container. You can
* customize the functionality of these methods in the deployment
* descriptor through EJB-QL.
**/

// Predefined Finders: <query> element in ejb-jar.xml not required

public Topic findByPrimaryKey(Integer key) throws FinderException;
public Collection findManyBySQL(String sql, Vector args) throws FinderException

}

Default TopLink Finders
For each finder method defined in the home interface of an entity bean, whose name
matches findBy<CMP-FIELD-NAME> where <CMP-FIELD-NAME> is the name of a
persistent field on the bean, TopLink generates a finder implementation including a
TopLink query that uses the TopLink expressions framework. If the return type is a
single bean type, TopLink creates a
oracle.toplink.queryframework.ReadObjectQuery; if the return type is
Collection, TopLink creates a
oracle.toplink.queryframework.ReadAllQuery. You can expose these finders
to your clients as you would for any other finder. You do not need to specify a
corresponding query.

Example 1–4 shows an EJBHome that defines a default finder (findByEmpNo).
TopLink will provide the query implementation for this finder.

Table 1–17 Predefined TopLink CMP Finders

Method Arguments Return

findAll () Collection

findManyByEJBQL (String ejbql)
(String ejbql, Vector args)

Collection

findManyByQuery (DatabaseQuery query)
(DatabaseQuery query, Vector args)

Collection

findManyBySQL (String sql)
(String sql, Vector args)

Collection

findByPrimaryKey (Object primaryKeyObject) EJBObject or EJBLocalObject1

1 Depending on whether or not the finder is defined in the home or component interface.

findOneByEJBQL (String ejbql) Component interface

findOneByEJBQL (String ejbql, Vector args) EJBObject or EJBLocalObject1

findOneByQuery (DatabaseQuery query) Component interface

findOneByQuery (DatabaseQuery query, Vector args) EJBObject or EJBLocalObject1

findOneBySQL (String sql) Component interface

findOneBySQL (String sql, Vector args) EJBObject or EJBLocalObject1

What is an EJB 2.1 Entity Bean?

Understanding Enterprise JavaBeans 1-55

Example 1–4 Specifying Default TopLink Finders

public interface EmpBeanHome extends EJBHome {
public EmpBean create(Integer empNo, String empName) throws CreateException;

/**
* Finder methods. These are implemented by the container. You can
* customize the functionality of these methods in the deployment
* descriptor through EJB-QL.
**/

// Default Finder: <query> element in ejb-jar.xml not required

public Topic findByEmpNo(Integer empNo);

}

Custom TopLink Finders
You can take advantage of the TopLink query and expression framework to define
advanced finders, including Call, DatabaseQuery, primary key, Expression,
EJB QL, native SQL, and redirect finders (that delegate execution to the
implementation that you define as a static method on an arbitrary helper class).

Using EJB 2.1, to create custom TopLink finders, use your existing
toplink-ejb-jar.xml file with the TopLink Workbench (see "Using TopLink
Workbench" on page 16-4).

Understanding Select Methods
An entity bean select method is a query method intended for internal use within an
EJB 2.1 entity bean with container-managed persistence instance. You define a select
method as an abstract method of the abstract entity bean class itself and associate an
EJB QL query with it. You do not expose the select method to the client in the home or
component interface. You may define zero or more select methods. The container is
responsible for providing the implementation of the select method based on the
EJB QL query you associate with it.

You typically call a select method within a business method to retrieve the value of a
container-managed persistent field or entity bean references of container-managed
relationship fields. A select method executes in the transaction context determined by
the transaction attribute of the invoking business method.

A select method has the following signature:

public abstract <ReturnType> ejbSelect<METHOD>(...) throws FinderException

■ It must be declared as public and abstract.

■ The return type must conform to the select method return type rules (see "What
Type Can Your Select Method Return?" on page 1-56).

■ The method name must start with ejbSelect.

■ The method must throw javax.ejb.FinderException and may also throw
other application-specific exceptions as well.

Although the select method is not based on the identity of the entity bean instance on
which it is invoked, it can use the primary key of an entity bean as an argument. This
creates a query that is logically scoped to a particular entity bean instance.

Using EJB 2.1, you can define custom EJB QL select methods (see "Implementing an
EJB 2.1 EJB QL Select Method" on page 16-4) and you can define custom TopLink select
methods (see "Custom TopLink Select Methods" on page 1-56).

What is a Message-Driven Bean?

1-56 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

What Type Can Your Select Method Return? The select method return type is not restricted
to the entity bean type on which the select is invoked. Instead, it can return any type
corresponding to a container-managed persistent or container-managed relationship
field.

Your select method must conform to the following return type rules:

■ All values must be returned as Object; any primitive types are wrapped in their
corresponding Object types (for example, a primitive int is wrapped in an
Integer object).

■ Single object: If your select method returns only a single item, the container
returns the same type as specified in your select method signature.

If multiple objects are returned, a FinderException is raised.

If no objects are found, a FinderException is raised

■ Multiple objects: If your select method returns multiple items, you must define the
return type as a Collection.

Choose the Collection type to suit your needs. For example, a Collection may
include duplicates, a Set eliminates duplicates, and a SortedSet will return an
ordered Collection.

If no objects are found, an empty Collection is returned.

– Container-managed persistent values: If you return multiple
container-managed persistent values, the container returns a Collection of
objects whose type it determines from the EJB QL select statement.

– Container-managed relationship values: If you return multiple
container-managed relationship values, then, by default, the container returns
a Collection of objects whose type is the local bean interface type.

You can change this to the remote bean interface with annotations or
deployment XML configuration. For more information, see "Implementing an
EJB 2.1 EJB QL Select Method" on page 16-4.

Custom TopLink Select Methods Using EJB 2.1, you can create custom TopLink select
methods.

Using EJB 2.1, you can utilize the TopLink query and expression framework to define
advanced select methods that can use any of the TopLink query and expression
framework features, including Call, DatabaseQuery, Expression, EJB QL, and
native SQL. For more information, see "Using TopLink Workbench" on page 16-7.

What is a Message-Driven Bean?
A message-driven bean (MDB) is an EJB 3.0 or EJB 2.1 enterprise bean component that
functions as an asynchronous message consumer. An MDB has no client-specific state
but may contain message-handling state such as an open database connection or object
references to another EJB. A client uses an MDB to send messages to the destination
for which the bean is a message listener.

Using OC4J, you can use an MDB with a variety of message providers (see "What
Message Service Providers Can you use With Your MDB?" on page 2-21). You associate
the MDB with an existing message provider and the container handles much of the
setup required, as follows:

■ The EJB container creates a consumer of type QueueReceiver or
TopicSubscriber for the listener.

What is a Message-Driven Bean?

Understanding Enterprise JavaBeans 1-57

■ At deployment time, the EJB container registers the MDB with the consumer,
which is either a QueueReceiver or TopicSubscriber, and its factory.

■ The EJB container specifies the message acknowledgment mode.

■ The EJB container dequeues messages and passes them to the MDB using its
message listener method.

■ The EJB container sends an acknowledgment (if configured to do so).

The purpose of an MDB is to exist within a pool and to receive and process incoming
messages from a message provider. The container invokes a bean from the queue to
handle each incoming message from the queue. No object invokes an MDB directly: all
invocation for an MDB comes from the container. After the container invokes the
MDB, it can invoke other enterprise beans or Java objects to continue the request.

A MDB is similar to a stateless session bean, because it does not save conversational
state and is used for handling multiple incoming requests. Instead of handling direct
requests from a client, MDBs handle requests placed on a queue. Figure 1–7
demonstrates this by showing how clients place requests on a queue. The container
takes the requests off of the queue and gives the request to an MDB in its pool.

Figure 1–7 Message Driven Beans

This section describes the following:

■ What is the Life Cycle of a Message-Driven Bean?

■ What is Message Driven Context?

For more information, see the following:

■ "Implementing an EJB 3.0 Message-Driven Bean" on page 9-1

■ "Implementing an EJB 2.1 Message-Driven Bean" on page 17-1

What is the Life Cycle of a Message-Driven Bean?
Figure 1–8 shows the life cycle of a message-driven bean. Annotations (such as
@PostConstruct) are applicable to EJB 3.0 message-driven beans only.

Figure 1–8 Life Cycle of an EJB 2.1 MDB

The life cycle for EJB 3.0 (see Table 1–18) and EBJ 2.1 (see Table 1–19) message-driven
beans are identical. The difference is in how you register life cycle callback methods.

Which Type of Enterprise Bean Should You Use?

1-58 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Table 1–18 lists the optional EJB 3.0 message-driven bean life cycle callback methods
you can define using annotations. For EJB 3.0 message-driven beans, you do not need
to implement these methods.

Table 1–19 lists the EJB 2.1 life cycle methods, as specified in the
javax.ejb.MessageDrivenBean interface, that a message-driven bean must
implement. For EJB 2.1 message-driven beans, you must at the least provide an empty
implementation for all callback methods.

For more information, see the following:

■ "What is the Life Cycle of an Enterprise Bean?" on page 1-5

■ "Configuring a Life Cycle Callback Interceptor Method on an EJB 3.0 MDB" on
page 10-11

■ "Configuring a Life Cycle Callback Interceptor Method on an Interceptor Class of
an EJB 3.0 MDB" on page 10-11

■ "Configuring a Life Cycle Callback Method for an EJB 2.1 MDB" on page 18-10

What is Message Driven Context?
OC4J maintains a javax.ejb.MessageDrivenContext for each message-driven
bean instance and makes this message-driven context available to the beans. The bean
may use the methods in the message-driven context to make callback requests to the
container.

In addition, you can use the methods inherited from EJBContext (see "What is EJB
Context?" on page 1-6).

For more information, see the following:

■ "Accessing an EJB 3.0 EJBContext" on page 29-20

■ "Accessing an EJB 2.1 EJBContext" on page 29-27

Which Type of Enterprise Bean Should You Use?
This section describes the following:

■ Which Type of Session Bean Should You Use?

■ When do you use Bean-Managed Versus Container-Managed Persistence?

Table 1–18 Life Cycle Methods for an EJB 3.0 Message-Driven Bean

Annotation Description

@PostConstruct This optional method is invoked for a message-driven bean before the first business method invocation on
the bean. This is at a point after which any dependency injection has been performed by the container.

@PreDestroy This optional method is invoked for a message-driven bean when the instance is in the process of being
removed by the container. The instance typically releases any resources that it has been holding.

Table 1–19 Life Cycle Methods for an EJB 2.1 Message-Driven Bean

EJB Method Description

ejbCreate The container invokes this method right before it creates the bean. A message-driven bean must do nothing
in this method.

ejbRemove A container invokes this method before it ends the life of a MDB. Use this method to perform any required
clean-up (for example, closing external resources such as file handles).

How do you Avoid Database Resource Contention?

Understanding Enterprise JavaBeans 1-59

Which Type of Session Bean Should You Use?
Stateless session beans are useful mainly in middle-tier application servers that
provide a pool of beans to process frequent and brief requests.

When do you use Bean-Managed Versus Container-Managed Persistence?
In practical terms, Table 1–20 provides a definition for both BMP and CMP, and a
summary of the programmatic and declarative differences between them.

With CMP, you can build components to the EJB 2.0 specification that can save the
state of your EJB to any Java EE supporting application server and database without
having to create your own low-level JDBC-based persistence system.

With BMP, you can tailor the persistence layer of your application at the expense of
additional coding and support effort.

For more information, see the following:

■ "What is an EJB 2.1 Entity Bean With Container-Managed Persistence?" on
page 1-42

■ "What is an EJB 2.1 Entity Bean With Bean-Managed Persistence?" on page 1-46

How do you Avoid Database Resource Contention?
OC4J and the TopLink EJB 3.0 JPA persistence provider and EJB 2.1 persistence
manager use a combination of transaction isolation (see "Transaction Isolation" on
page 1-60) and concurrency mode (see "Concurrency (Locking) Mode" on page 1-60) to
avoid database resource contention and to permit concurrent access to database tables.

Table 1–20 Comparison of Bean-Managed and Container-Managed Persistence

Management Issues Bean-Managed Persistence Container-Managed Persistence

Persistence management You are required to implement the persistence
management within the ejbStore, ejbLoad,
ejbCreate, and ejbRemove EntityBean
methods. These methods must contain logic for
saving and restoring the persistent data.

For example, the ejbStore method must have
logic in it to store the entity bean's data to the
appropriate database. If it does not, the data can
be lost.

The management of the persistent data is done
for you. That is, the container invokes a
persistence manager on behalf of your bean.

You use ejbStore and ejbLoad for preparing
the data before the commit or for manipulating
the data after it is refreshed from the database.
The container always invokes the ejbStore
method right before the commit. In addition, it
always invokes the ejbLoad method right after
reinstating CMP data from the database.

Finder methods allowed The findByPrimaryKey method and other
finder methods are allowed.

The findByPrimaryKey method and other
finder methods clause are allowed.

Defining
container-managed
persistent fields

N/A Required within the EJB deployment descriptor.
The primary key must also be declared as a
container-managed persistent field.

Mapping
container-managed
persistent fields to
resource destination

N/A Required. Dependent on persistence manager.

Definition of persistence
manager

N/A Required within the Oracle-specific deployment
descriptor. By default,OC4J uses the TopLink
persistence manager.

How do you Avoid Database Resource Contention?

1-60 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Transaction Isolation
The degree to which concurrent (parallel) transactions on the same data are allowed to
interact is determined by the level of transaction isolation configured. ANSI/SQL
defines four levels of database transaction isolation as shown in Table 1–21. Each offers
a trade-off between performance and resistance from the following unwanted actions:

■ Dirty read: a transaction reads uncommitted data written by a concurrent
transaction.

■ Nonrepeatable read: a transaction rereads data and finds it has been modified by
some other transaction that was committed after the initial read operation.

■ Phantom read: a transaction re executes a query and the returned data has
changed due to some other transaction that was committed after the initial read
operation.

By default, OC4J and the TopLink EJB 3.0 JPA persistence provider and EJB 2.1
persistence manager provide read-committed transaction isolation.

To configure the transaction isolation mode, you must customize the TopLink EJB 3.0
JPA persistence provider or EJB 2.1 persistence manager.

For more information, see the following:

■ "Customizing the JPA Persistence Provider" on page 3-3

■ "Customizing the TopLink EJB 2.1 Persistence Manager" on page 3-13

■ "Unit of Work Transaction Isolation" in the Oracle TopLink Developer’s Guide

■ "Database Transaction Isolation Levels" in the Oracle TopLink Developer’s Guide

Concurrency (Locking) Mode
OC4J also provides concurrency modes for handling resource contention and parallel
execution within EJB 3.0 entities and EJB 2.1 entity beans with container-managed
persistence.

Entity beans with bean-managed persistence manage the resource locking within the
bean implementation themselves.

Concurrency modes include the following:

■ Optimistic Locking: Multiple users have read access to the data. When a user
attempts to make a change, the application checks a version field (also known as a
write-lock field) to ensure the data has not changed since the user read the data.

When optimistic locking is enabled, TopLink caches the value of this version field
as it reads an object from the data source. When the client attempts to write the
object, TopLink compares the cached version value with the current version value
in the data source in the following way:

Table 1–21 Transaction Isolation Levels

Transaction Isolation
Level Dirty Read Nonrepeatable Read Phantom Read

Read Uncommitted Yes Yes Yes

Read Committed No Yes Yes

Repeatable Read No No Yes

Serializable No No No

How do you Avoid Database Resource Contention?

Understanding Enterprise JavaBeans 1-61

■ If the values are the same, TopLink updates the version field in the object and
commits the changes to the data source.

■ If the values are different, the write operation is disallowed because another
client must have updated the object since this client initially read it.

■ Pessimistic Locking: The first user, who accesses the data with the purpose of
updating it, locks the data until completing the update. This manages resource
contention and does not allow parallel execution. Only one user at a time is
allowed to execute the entity bean at a single time.

■ Read-only: Multiple users can execute the entity bean in parallel. The container
does not allow any updates to the bean's state.

These concurrency modes are defined for each bean and apply on the transaction
boundaries.

By default, in EJB 3.0, the JPA persistence manager assumes that the application is
responsible for data consistency. Oracle recommends that you use the @Version
annotation to specify a version field and enable JPA-managed optimistic locking.

By default, in EJB 2.1, the TopLink persistence manager enforces optimistic locking by
using a code-generated numeric version field that TopLink updates each time an object
change is committed.

To configure the concurrency mode otherwise, you must customize the TopLink EJB
3.0 JPA persistence provider or EJB 2.1 persistence manager.

For more information, see the following:

■ "Customizing the JPA Persistence Provider" on page 3-3

■ "Customizing the TopLink EJB 2.1 Persistence Manager" on page 3-13

■ "Locking" in the Oracle TopLink Developer’s Guide

■ "Configuring Locking Policy" in the Oracle TopLink Developer’s Guide

■ "Configuring Read-Only Descriptors" in the Oracle TopLink Developer’s Guide

How do you Avoid Database Resource Contention?

1-62 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Understanding EJB Application Development 2-1

2
Understanding EJB Application

Development

This chapter describes the following:

■ Using EJB Development Tools

■ What OC4J Services Can You Use With an EJB?

■ How do you Package and Deploy an EJB Application?

■ How do you use an Enterprise Bean in Your Application?

Using EJB Development Tools
This section describes developing EJB applications using the following:

■ Using JDeveloper

■ Using Eclipse

■ Using TopLink Workbench

Using JDeveloper
Oracle JDeveloper greatly simplifies Java EE application development, packaging, and
deployment by providing extensive automation, a built-in OC4J for rapid deployment
and testing, and many other productivity enhancements. For example:

■ Developing session beans:
http://www.oracle.com/technology/products/jdev/101/viewlets/1
01/ejb30sessionbeanviewlet_viewlet_swf.htm

■ Developing entity beans:
http://www.oracle.com/technology/products/jdev/101/viewlets/1
01/ejb30entitybeanviewlet_viewlet_swf.htm

For more information on JDeveloper, see
http://www.oracle.com/technology/products/jdev/index.html.

Using Eclipse
Eclipse is a widely adopted integrated development environment that simplifies Java
EE application development, packaging, and deployment.

Oracle is developing extensible frameworks and exemplary tools on the Eclipse
platform for the definition and editing of Object-Relational (O/R) mappings for EJB
3.0 entities. EJB 3.0 O/R mapping support will focus on minimizing the complexity of

What OC4J Services Can You Use With an EJB?

2-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

mapping by providing creation and automated initial mapping wizards, and
programming assistance such as dynamic problem identification

For more information on EJB 3.0 support in Eclipse, see
http://www.eclipse.org/dali/.

Using TopLink Workbench
You can use the TopLink Workbench to create and configure the following:

■ EJB 3.0 toplink-ejb-jar.xml and ejb3-toplink-sessions.xml files

■ EJB 2.1 toplink-ejb-jar.xml file

■ ejb-jar.xml file

For more information, see the following:

■ "Understanding the TopLink Workbench" in the Oracle TopLink Developer’s Guide

■ "Understanding EJB Deployment Descriptor Files" on page 2-4

What OC4J Services Can You Use With an EJB?
Table 2–1 lists some of the important services that OC4J provides and shows the EJB
types with which you can use them.

For more information on OC4J services, see the appropriate OC4J guide as shown in
Table 2–2:

Table 2–1 OC4J Services and EJB Support

OC4J Service

Stateful
Session
Bean

Stateless
Session
Bean

EJB 3.0
Entities

CMP
Entity
Bean

BMP
Entity
Bean

Message
-Driven
Bean

"Understanding EJB Persistence Services" on page 2-12

"Understanding EJB JNDI Services" on page 2-14

"Understanding EJB Data Source Services" on page 2-14

"Understanding EJB Transaction Services" on page 2-17

"Understanding EJB Security Services" on page 2-20

"Understanding Message Services" on page 2-20

"Understanding OC4J EJB Application Clustering Services"
on page 2-29

"Understanding EJB Timer Services" on page 2-31

Table 2–2 Location of Information for Java EE Subjects

Java EE Subject The Subject is Documented in this OC4J Book

Optimization Oracle Application Server Performance Guide

Web Services Oracle Application Server Web Services Developer’s Guide

Security Oracle Containers for J2EE Security Guide

JNDI Oracle Containers for J2EE Services Guide

Data Source Oracle Containers for J2EE Services Guide

RMI and RMI/IIOP Oracle Containers for J2EE Services Guide

How do you Package and Deploy an EJB Application?

Understanding EJB Application Development 2-3

How do you Package and Deploy an EJB Application?
This section describes the following:

■ Understanding Packaging

■ Understanding Deployment

■ Understanding EJB Deployment Descriptor Files

Understanding Packaging
The Java EE architecture provides a variety of ways to package (or assemble) your
application and its various Java EE components.

The most efficient way to package a Java EE application is to use a Java EE tool such as
JDeveloper or Eclipse.

For more information, see the following:

■ "Using EJB Development Tools" on page 2-1

■ "Packaging an EJB Application" on page 27-1

■ Oracle Application Server Enterprise Deployment Guide

Understanding Deployment
After you package your Java EE application, to execute the application and make it
available to end users, you deploy it to OC4J.

The most efficient way to deploy a Java EE application to OC4J is to use Oracle
Enterprise Manager 10g Application Server Control.

For more information, see the following:

■ "In What Order Does OC4J Deploy EJB Modules?" on page 2-4

■ "Understanding EJB Deployment Descriptor Files" on page 2-4

■ "Using Oracle Enterprise Manager 10g Application Server Control" on page 31-1

■ "Deploying an EJB Application to OC4J" on page 28-1

■ Oracle Application Server Enterprise Deployment Guide

CSiV2 Oracle Containers for J2EE Services Guide

JMS Oracle Containers for J2EE Services Guide

Clustering Oracle Containers for J2EE Services Guide

Timers Oracle Containers for J2EE Services Guide

J2EE Connector Architecture (J2CA) Oracle Containers for J2EE Services Guide

Java Object Cache Oracle Containers for J2EE Services Guide

HTTPS Oracle Containers for J2EE Services Guide

Transactions (JTA) Oracle Containers for J2EE Services Guide

Default Persistence Oracle TopLink Developer’s Guide

Table 2–2 (Cont.) Location of Information for Java EE Subjects

Java EE Subject The Subject is Documented in this OC4J Book

How do you Package and Deploy an EJB Application?

2-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

In What Order Does OC4J Deploy EJB Modules?
OC4J deploys EJB modules in the order in which they appear in the
application.xml deployment descriptor. In general, loading order is
component-specific and based on natural ordering for each component type.

For example, consider the application.xml file shown in Example 2–1.

Example 2–1 application.xml

<application>
<display-name>master-application</display-name>
<module>
<ejb>ejb1.jar</ejb>

</module>
<module>
<ejb>ejb2.jar</ejb>

</module>
<module>
<java>appclient.jar</java>

</module>
<module>
<web>

<web-uri>clientweb.war</web-uri>
<context-root>webapp</context-root>

</web>
</module>
<module>
<ejb>ejb3.jar</ejb>

</module>

Based on this application.xml file, OC4J will load components in the following
order:

1. ejb1

2. ejb2

3. ejb3

4. clientweb.war

5. appclient.jar

Understanding EJB Deployment Descriptor Files
This section describes the various EJB deployment descriptor files that you use in EJB
applications deployed to OC4J.

Table 2–3 lists the various EJB deployment descriptor files that you use in EJB
applications deployed to OC4J. For each deployment descriptor file, it indicates the
EJB types to which the deployment descriptor applies and whether or not the
deployment descriptor is optional, required, or not applicable to the EJB specification
you are using.

Table 2–3 OC4J EJB Deployment Descriptor Files

Deployment Descriptor File
Session
Bean

JPA
Entity

EJB 2.1
Entity Bean

Message-
Driven Bean EJB 3.0 EJB 2.1

"What is the ejb-jar.xml File?" on page 2-5 Optional Required

"What is the orion-ejb-jar.xml File?" on
page 2-6

1 Optional Optional

"What is the toplink-ejb-jar.xml File?" on
page 2-6

Optional Required

How do you Package and Deploy an EJB Application?

Understanding EJB Application Development 2-5

What is the ejb-jar.xml File?
The ejb-jar.xml file is an EJB deployment descriptor file, and, when used, it
describes the following:

■ mandatory structural information about all included enterprise beans;

■ a descriptor for container managed relationships, if any;

■ an optional name of an ejb-client-jar file for the ejb-jar;

■ an optional application-assembly descriptor.

When it is required, the ejb-jar.xml file describes EJB information applicable to any
Java EE application server. This information may be augmented by application
server-specific EJB deployment descriptor files (see "What is the orion-ejb-jar.xml File?"
on page 2-6 and "What is the toplink-ejb-jar.xml File?" on page 2-6).

For more information, see "Configuring the ejb-jar.xml File" on page 26-1.

EJB 3.0
If you are using EJB 3.0, this deployment descriptor file is optional: you can use
annotations instead. In this release, OC4J supports the use of both EJB 3.0 annotations
and ejb-jar.xml for all options of session and message-driven beans. The
ejb-jar.xml file is not used for EJB 3.0 entities. Configuration in the ejb-jar.xml
file overrides annotations (see "Overriding Annotations With Deployment Descriptor
Entries" on page 1-20).

For EJB 30. entities, you must either use annotations or TopLink JPA persistence
provider deployment XML files (toplink-ejb-jar.xml and
ejb3-toplink-sessions.xml).

For more information, see:

■ "What is the toplink-ejb-jar.xml File?"

■ "What is the ejb3-toplink-sessions.xml File?"

EJB 2.1
If you are using EJB 2.1, this deployment descriptor file is required.

XML Reference
The XML reference for this deployment descriptor file depends on the EJB version you
are using.

For EJB 3.0, this deployment descriptor file conforms to the XML schema document
located at http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd.

"What is the ejb3-toplink-sessions.xml
File?" on page 2-7

Optional Not Applicable

"What is the persistence.xml File?" on
page 2-8

Optional Not Applicable

"What is the orm.xml File?" on page 2-9 Optional Not Applicable

1 <entity-deployment> element disable-default-persistent-unit attribute only.

Table 2–3 (Cont.) OC4J EJB Deployment Descriptor Files

Deployment Descriptor File
Session
Bean

JPA
Entity

EJB 2.1
Entity Bean

Message-
Driven Bean EJB 3.0 EJB 2.1

How do you Package and Deploy an EJB Application?

2-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For EJB 2.1, this deployment descriptor file conforms to the XML schema document
located at http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd.

What is the orion-ejb-jar.xml File?
The orion-ejb-jar.xml file is an EJB deployment descriptor file that contains all
OC4J-proprietary options. This file extends the configuration that you specify in the
ejb-jar.xml file (see "What is the ejb-jar.xml File?" on page 2-5).

For more information, see the following:

■ "Configuring the orion-ejb-jar.xml File" on page 26-3

■ "XML Reference for orion-ejb-jar.xml Elements" on page A-1

EJB 3.0
If you are using EJB 3.0, this file is optional. You can deploy without an
orion-ejb-jar.xml file and set OC4J-proprietary options using OC4J-proprietary
annotations (such as @StatelessDeployment, @StatefulDeployment, and
@MessageDrivenDeployment) or Application Server Control. Vendor extensions set
in the orion-ejb-jar.xml file override extensions set using OC4J-proprietary
annotations. Configuration in the orion-ejb-jar.xml file overrides annotations
(see "Overriding Annotations With Deployment Descriptor Entries" on page 1-20).

For more information, see the following:

■ "Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 Session Bean"
on page 5-10

■ "Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 MDB" on
page 10-17

EJB 2.1
If you are using EJB 2.1, orion-ejb-jar.xml file is mandatory for all
OC4J-proprietary options.

For more information, see "Customizing the TopLink EJB 2.1 Persistence Manager" on
page 3-13.

XML Reference
This deployment descriptor file conforms to the XML schema document at
http://www.oracle.com/technology/oracleas/schema/index.html.

What is the toplink-ejb-jar.xml File?
The toplink-ejb-jar.xml file (also known as the TopLink project.xml file) is
a TopLink JPA preview persistence configuration descriptor file, and, when used, it
describes TopLink project-level options (see "Configuring a Relational Project" in the
Oracle TopLink Developer’s Guide) such as TopLink descriptors and mappings.

Note: By default, OC4J uses the TopLink Essentials JPA persistence
provider. In this case, you can configure TopLink descriptor-level
options (including mappings) using TopLink JPA extensions
("Accessing TopLink API at Run Time With TopLink Essentials JPA
Persistence" on page 3-4).

How do you Package and Deploy an EJB Application?

Understanding EJB Application Development 2-7

For more information, see "Configuring the toplink-ejb-jar.xml File" on page 26-2.

EJB 3.0
If you are using EJB 3.0 with the default TopLink Essentials JPA persistence provider,
this file is not used.

If you are using EJB 3.0, the toplink-ejb-jar.xml file is only used to customize
TopLink JPA preview persistence provider configuration (see "Customizing the JPA
Persistence Provider" on page 3-3). If you use this file to customize the TopLink
persistence provider, you must also use an ejb3-toplink-sessions.xml file (see
"What is the ejb3-toplink-sessions.xml File?" on page 2-7).

EJB 2.1
If you are using EJB 2.1, the toplink-ejb-jar.xml file is optional. If you omit this
file from your application, you can configure OC4J to automatically construct it for
you (see "Configuring Default Relationship Generation" on page 14-6). Alternatively,
you can use this file to configure TopLink persistence options yourself (see
"Customizing the TopLink EJB 2.1 Persistence Manager" on page 3-13).

XML Reference
The toplink-ejb-jar.xml file conforms to the XML schema documents located at
<OC4J_HOME>\toplink\config\xsds. Oracle does not recommend manual
configuration of this file. To create and configure this file, use the TopLink Workbench
(see "Understanding the TopLink Workbench" in the Oracle TopLink Developer’s Guide).

What is the ejb3-toplink-sessions.xml File?
The ejb3-toplink-sessions.xml file is a TopLink JPA preview persistence
configuration descriptor file, and, when used with the TopLink JPA preview
persistence provider, it describes TopLink session-level options (see "Configuring
Server Sessions" in the Oracle TopLink Developer’s Guide) such as data sources, login
information, caching options, and logging. It is equivalent to the sessions.xml file
that TopLink users are familiar with.

This file provides a reference to the primary project (see "What is the
toplink-ejb-jar.xml File?" on page 2-6), if used.

For more information, see "Configuring the ejb3-toplink-sessions.xml File" on
page 26-3.

EJB 3.0
If you are using EJB 3.0 with the default TopLink Essentials JPA persistence provider,
this file is not used.

If you are using EJB 3.0, the ejb3-toplink-sessions.xml file is only used to
customize TopLink JPA preview persistence provider configuration (see "Customizing
the JPA Persistence Provider" on page 3-3). If you use this file to customize the

Note: By default, OC4J uses the TopLink Essentials JPA persistence
provider. In this case, you can configure TopLink session-level
options using TopLink JPA extensions ("Accessing TopLink API at
Run Time With TopLink Essentials JPA Persistence" on page 3-4).

How do you Package and Deploy an EJB Application?

2-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

TopLink JPA preview persistence provider, you may also use a
toplink-ejb-jar.xml file (see "What is the toplink-ejb-jar.xml File?" on page 2-6).

EJB 2.1
If you are using EJB 2.1, the ejb3-toplink-sessions.xml file is not used.

XML Reference
The ejb3-toplink-sessions.xml file conforms to the XML schema documents
located at <OC4J_HOME>\toplink\config\xsds. Oracle does not recommend
manual configuration of this file. To create and configure this file, use the TopLink
Workbench (see "Understanding the TopLink Workbench" in the Oracle TopLink
Developer’s Guide).

What is the persistence.xml File?
The persistence.xml file is a persistence descriptor file that you use to define one
or more persistence units in an EJB 3.0 application that uses entities.

In this release, you can define persistence.xml in an EJB JAR, WAR, or EAR.

A persistence unit defines an entity manager’s configuration. You specify a persistence
unit by name when you acquire an entity manager (see "Acquiring an EntityManager"
on page 29-8). Alternatively, you can take advantage of the OC4J default persistence
unit (see "Understanding OC4J Persistence Unit Defaults" on page 2-8).

A persistence unit is a logical grouping of the following:

■ Entity manager: including, entity manager provider, the entity managers obtained
from it, and entity manager configuration.

■ Data source (see "Specifying a Data Source in a Persistence Unit" on page 26-5).

■ Vendor extensions (see "Configuring Vendor Extensions in a Persistence Unit" on
page 26-5).

■ Persistent managed classes: the classes you intend to manage using an entity
manager, namely, entity classes, embeddable classes, and mapped superclasses
(see "What Persistent Managed Classes Does This Persistence Unit Include?" on
page 26-4).

All persistent managed classes in a given persistence unit must be collocated in
their mapping to a single database.

■ Mapping metadata: the information that describes how to map persistent
managed classes to database tables. You can specify mapping metadata using
annotations on persistent managed classes and orm.xml files (see "What is the
orm.xml File?" on page 2-9).

For more information, see the following:

■ "Configuring the persistence.xml File" on page 26-3

■ "Packaging a JPA Entity Application" on page 27-1

■ EJB 3.0 specification

Understanding OC4J Persistence Unit Defaults
To simplify persistence unit configuration, you can use the following OC4J features:

■ Smart Defaulting

How do you Package and Deploy an EJB Application?

Understanding EJB Application Development 2-9

■ Acquiring an Entity Manager by Default Persistence Unit Name

For more information, see the following:

■ "Configuring the persistence.xml File for the OC4J Default Persistence Unit" on
page 26-5

■ "Acquiring an EntityManager" on page 29-8

Smart Defaulting
 For EJB modules only, you can rely on OC4J to build a default persistence.xml file
and configure it with appropriate default values to define a default persistence unit
with a default name if:

■ You deploy an application without a persistence.xml and your application
contains at least one class annotated with @Entity.

■ You deploy an application with an empty persistence.xml.

Acquiring an Entity Manager by Default Persistence Unit Name
If your application specifies one and only one persistence unit (either explicitly or by
way of smart defaulting), you need not specify the persistence unit name when you
acquire an entity manager. In this case, OC4J defaults the persistence unit name.

To disable this feature, set orion-ejb-jar.xml file attribute
disable-default-persistent-unit to true.

If you disable this feature, you can still use the OC4J default persistence unit if you
specify an empty persistence unit in a persistence.xml file, then, when you
acquire an entity manager in that persistence unit’s scope, you do not need to specify a
persistence unit name. In this case, OC4J will use its own default persistence unit and
will assume that all JPA entity classes in the persistence unit root belong to that
persistence unit. You may specify one and only one such empty persistence unit in
your application.

EJB 3.0
If you are using EJB 3.0 entities, the persistence.xml file is mandatory (unless you
are using the OC4J default persistence unit).

EJB 2.1
If you are using EJB 2.1, the persistence.xml file is not used.

XML Reference
For EJB 3.0, this deployment descriptor file conforms to the XML schema document
defined in the EJB 3.0 specification at
http://java.sun.com/products/ejb/docs.html.

What is the orm.xml File?
The orm.xml file is the XML deployment descriptor you use to specify
object-relational mapping configuration. You can use an orm.xml file as an alternative
to annotations and to override annotations.

You can specify more than one orm.xml file and these files may be present anywhere
on the class path.

For more information, see the following:

How do you use an Enterprise Bean in Your Application?

2-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ "What is the persistence.xml File?" on page 2-8

■ "Packaging a JPA Entity Application" on page 27-1

EJB 3.0
If you are using EJB 3.0 entities, the orm.xml file is optional.

EJB 2.1
If you are using EJB 2.1, the orm.xml file is not used.

XML Reference
For EJB 3.0, this deployment descriptor file conforms to the XML schema document
defined in the EJB 3.0 specification at
http://java.sun.com/products/ejb/docs.html.

How do you use an Enterprise Bean in Your Application?
In general, you use an enterprise bean from a client (see "Understanding Client
Access" on page 2-10).

You can also use enterprise beans to implement fine-grained control over method
invocation flow (see "Understanding EJB 3.0 Interceptors" on page 2-10).

You can also use enterprise beans with Web services, either as a Web service client or
as a Web service endpoint (see "Understanding EJB and Web Services" on page 2-12).

In a deployed EJB application, you can exploit the component nature of a Java EE
application to monitor and control EJB performance and resource utilization (see
"Understanding EJB Administration" on page 2-12).

Understanding Client Access
In general, you use an enterprise bean from a client (see "What Type of Client do you
Have?" on page 29-1) to perform application tasks such as conducting a session,
persistence, or message handling. For more information, see "Accessing an Enterprise
Bean From a Client" on page 29-1.

Understanding EJB 3.0 Interceptors
An interceptor is a method that you associate with an EJB 3.0 session bean business
method or message-driven bean message listener method. When a client invokes such
a method, OC4J intercepts the client invocation and invokes your interceptor method
before allowing the client invocation to proceed.

You can define an interceptor method and interceptor life cycle callback methods on
the bean class or in a separate interceptor class that you associate with the bean.

You can define only one non-life cycle callback interceptor for each bean: this method
is known as the javax.interceptor.AroundInvoke method. Each time a
business method is invoked, OC4J first invokes the AroundInvoke method. A life
cycle callback interceptor method is invoked only when the corresponding life cycle
event occurs.

An interceptor method you define in a separate interceptor class takes an invocation
context as argument: using this context, your interceptor method implementation can
access details of the original session bean business method or message-driven bean
message listener method invocation.

How do you use an Enterprise Bean in Your Application?

Understanding EJB Application Development 2-11

This section describes the following:

■ Interceptor Restrictions

■ Singleton Interceptors

For more information, see the following:

■ "Configuring a Life Cycle Callback Interceptor Method on an EJB 3.0 Session Bean"
on page 5-4

■ "Configuring a Life Cycle Callback Interceptor Method on an Interceptor Class of
an EJB 3.0 Session Bean" on page 5-5

■ "Configuring an Around Invoke Interceptor Method on an EJB 3.0 Session Bean"
on page 5-6

■ "Configuring an Interceptor Class for an EJB 3.0 Session Bean" on page 5-8

■ "Configuring a Life Cycle Callback Interceptor Method on an EJB 3.0 MDB" on
page 10-11

■ "Configuring a Life Cycle Callback Interceptor Method on an Interceptor Class of
an EJB 3.0 MDB" on page 10-11

■ "Configuring an Around Invoke Interceptor Method on an EJB 3.0 MDB" on
page 10-13

■ "Configuring an Interceptor Class for an EJB 3.0 MDB" on page 10-15

■ EJB 3.0 specification

Interceptor Restrictions
You can use interceptors with session beans (stateless and stateful) and
message-driven beans.

OC4J applies an interceptor to all business methods of a bean.

If there are multiple interceptors (one interceptor method and one or more interceptor
classes each with one interceptor method of their own), then each time a client invokes
a business method, OC4J first invokes the interceptor classes in the order in which
they are defined and then the interceptor method, before allowing the client invocation
to proceed.

An interceptor method may not be a business method.

An interceptor method must have the following signature:

Object <METHOD>(InvocationContext) throws Exception

An interceptor method may have public, private, protected, or package level access
but must not be declared as final or static.

Within an interceptor, you can use the InvocationContext to access client
invocation metadata.

Interceptor method invocations occur within the same transaction and security context
as the business method for which they are invoked.

Interceptor methods can mark their transaction for rollback by throwing a run-time
exception, or by calling setRollbackOnly using its EJBContext object as follows:

InvocationContext.getEJBContext().setRollbackOnly();

Interceptors may cause this rollback before or after they call
InvocationContext.proceed().

Understanding EJB Persistence Services

2-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see "Using a Rollback Strategy" on page 21-10.

When using container-managed transactions (see "What are Container-Managed
Transactions?" on page 2-18), interceptors must not use any resource-manager specific
transaction management methods that would interfere with the container’s
demarcation of transaction boundaries. For example, the interceptor must not use the
following methods of the java.sql.Connection interface: commit,
setAutoCommit, and rollback; or the following methods of the
javax.jms.Session interface: commit and rollback. Interceptors must not
attempt to obtain or use the javax.transaction.UserTransaction interface.

Singleton Interceptors
As specified in the EJB 3.0 specification, by default, OC4J creates bean interceptors: the
life cycle of a bean interceptor instance is the same as that of the bean instance with
which it is associated. When the bean instance is created, interceptor instances are
created for each interceptor class defined for the bean. These interceptor instances are
destroyed when the bean instance is removed. This allows you to store state in your
interceptors.

If your interceptors are stateless, you can use an OC4J optimization extension to the
EJB 3.0 specification that allows you to specify singleton interceptors. When you
configure a session bean or message-driven bean to use singleton interceptors and you
associate the bean with an interceptor class, OC4J creates a single instance of the
interceptor class that all bean instances share. This can reduce memory requirements
and life cycle overhead.

For more information, see the following:

■ "Specifying Singleton Interceptors in a Session Bean" on page 5-10

■ "Specifying Singleton Interceptors in an MDB" on page 10-16

Understanding EJB and Web Services
You can expose a stateless session bean as a Web service endpoint. Any EJB type can
be the client of a Web service.

For more information, see "Using EJB and Web Services" on page 30-1.

Understanding EJB Administration
After you deploy your Java EE application, you can use Java EE administration
features to monitor and optimize your application at run time.

For more information, see the following:

■ "Administrating an EJB Application" on page 31-1

■ "Optimizing EJB Performance" on page 32-1

Understanding EJB Persistence Services
OC4J supports the following persistence APIs:

■ TopLink EJB 3.0 JPA persistence provider (see "How Does OC4J Manage
Persistence in an EJB 3.0 Application?" on page 3-2)

■ TopLink EJB 2.1 persistence manager (see "How Does OC4J Manage Persistence in
an EJB 2.1 Application?" on page 3-12)

Understanding EJB Persistence Services

Understanding EJB Application Development 2-13

■ Orion EJB 2.0 persistence manager (deprecated: see the Oracle Containers for J2EE
Orion CMP Developer’s Guide)

OC4J chooses the type of persistence to use based on the type of object-relational
mappings you define and the presence or absence of certain deployment XML files.
How OC4J chooses depends on the type of EJB application you are deploying:

■ EJB 3.0 Applications

■ EJB 2.n Applications

EJB 3.0 Applications
OC4J uses the TopLink EJB 3.0 JPA persistence provider if you deploy EJB 3.0 entities
in an ejb.jar file without an ejb-jar.xml file, or if OC4J detects one or more EJB
3.0 annotations.

For more information, see the following:

■ "How do You Define an EJB 3.0 Application?" on page 3-2

■ "Customizing the JPA Persistence Provider" on page 3-3

EJB 2.n Applications
For EJB 2.1 and EJB 2.0 applications, OC4J uses the algorithm that Table 2–4
summarizes by your action. For example, if you deploy a CMP application without a
toplink-ejb-jar.xml file, OC4J uses the TopLink persistence manager and creates
default TopLink object-relational mappings.

Table 2–4 OC4J EJB 2.n Persistence Manager Selection

Your Action toplink-ejb-jar.xml orion-ejb-jar.xml
Persistence
Manager Mapping Type

1. Deploy. Absent Optional; if present,
contains no mappings and
no
persistence-manager
element.

Toplink Default TopLink

1. Deploy. Present Optional; if present,
contains no mappings and
no
persistence-manager
element.

Toplink TopLink as defined in
toplink-ejb-jar.xml
(default persistence
manager properties)

1. Edit the
orion-ejb-jar.xml file to
set persistence-manager
element name attribute to
toplink1.

2. Edit additional
persistence-manager
subentries1.

3. Deploy.

Present Optional; if present,
contains no mappings

Toplink TopLink as defined in
toplink-ejb-jar.xml
(custom persistence
manager properties)

1. Deploy. Absent Present and contains
Orion mappings;
persistence-manager
element is optional.

Orion Orion as defined in
orion-ejb-jar.xml

1. Edit the
orion-ejb-jar.xml file to
set persistence-manager
element name attribute to
orion1.

2. Deploy.

Absent Optional; if present,
contains no mappings

Orion Default Orion

Understanding EJB JNDI Services

2-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see the following:

■ "How do you Define an EJB 2.1 Module?" on page 3-11

■ "Customizing the TopLink EJB 2.1 Persistence Manager" on page 3-13

Understanding EJB JNDI Services
The Java Naming and Directory Interface (JNDI) provides your Java EE application
with a unified interface to multiple naming and directory services. You use JNDI to
organize and locate components in a distributed Java EE environment. You can define
environment references for Java EE components and associated JNDI properties.

You can use JNDI to look up and retrieve these components using the following:

■ JNDI initial context

■ EJB context

■ EJB 3.0 annotations and resource injection

For more information, see the following:

■ "Configuring JNDI Services" on page 19-1

■ "How do Annotations and Resource Injection Work?" on page 1-7

Understanding EJB Data Source Services
A data source is a Java object that represents the physical enterprise information
system to which OC4J persists entities. Your application uses a data source object to
retrieve a connection to the enterprise information system the data source represents.

This section describes the following:

■ What Types of Data Source Does OC4J Support?

■ How do you Define a Connection URL in OC4J?

■ What Transaction Types do Data Sources Support?

■ Where do you Configure Data Source Information in OC4J?

■ What is a Default Data Source?

■ How Does OC4J Handle Multiple Data Sources?

For more information, see the following:

■ "Configuring Data Sources" on page 20-1

■ "Data Sources" in the Oracle Containers for J2EE Services Guide

What Types of Data Source Does OC4J Support?
OC4J supports the following types of data sources:

■ Managed Data Source

■ Native Data Source

Table 2–5 lists the characteristics of these OC4J data sources.

1 See "<persistence-manager>" on page A-3.

Understanding EJB Data Source Services

Understanding EJB Application Development 2-15

Managed Data Source
A managed data source (see Example 2–2) is an OC4J-provided implementation of the
java.sql.DataSource interface that acts as a wrapper for a JDBC driver or data
source. You can associate a managed data source with a separate connection pool.
Multiple managed data sources may share the same connection pool.

Example 2–2 Managed Data Source

<connection-pool name="ScottConnectionPool">
<connection-factory

factory-class="oracle.jdbc.pool.OracleDataSource"
user="scott"
password="tiger"
url="jdbc:oracle:thin:@//localhost:1521/ORCL" >

</connection-factory>
</connection-pool>

<managed-data-source

name="OracleManagedDS"
jndi-name="jdbc/OracleDS"
connection-pool-name="ScottConnectionPool"

/>

For more information, see "Configuring a Data Source for an Oracle Database" on
page 20-1.

Native Data Source
A native data source (see Example 2–3) is a JDBC vendor-provided implementation of
the java.sql.DataSource interface. You use the connection pool provided by the
data source instance you choose. Each native data source must use its own connection
pool.

Example 2–3 Native Data Source

<native-data-source
name="nativeDataSource"
jndi-name="jdbc/nativeDS"
description="Native DataSource"
data-source-class="com.ddtek.jdbcx.sqlserver.SQLServerDataSource"
user="frank"
password="frankpw"
url="jdbc:datadirect:sqlserver://server_name:1433;User=usr;Password=pwd">

</native-data-source>

For more information, see "Configuring a Data Source for a Third-Party Database" on
page 20-2.

How do you Define a Connection URL in OC4J?
You specify a connection URL to tell OC4J where to find the underlying physical data
source.

Table 2–5 OC4J Data Source Type Characteristics

Characteristic Managed Native

Uses OC4J connection pool? Yes No

Connections can participate in global transactions? Yes No

Connections wrapped with an OC4J Connection proxy? Yes No

Understanding EJB Data Source Services

2-16 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

When you define a managed data source (see "Managed Data Source" on page 2-15),
the connection URL is an attribute of the connection pool you associate with it (see
Example 2–2).

When you define a native data source (see "Native Data Source" on page 2-15), the
connection URL is an attribute of the native data source (see Example 2–3).

When specifying the connection URL to an Oracle database, you must use a
service-based URL: that is, of the form host:port/SID (not host:port:SID), as
Example 2–4 shows.

Example 2–4 OC4J Service-Based Connection URL

url="jdbc:oracle:thin:@//localhost:1521/ORCL"

When specifying the connection URL to a non-Oracle database, you use a URL
appropriate for that system. Example 2–5 shows a typical connection URL for an
SQLServer database.

Example 2–5 Non-Oracle Connection URL

url="jdbc:datadirect:sqlserver://server_name:1433;User=usr;Password=pwd"

What Transaction Types do Data Sources Support?
Managed data sources support both local and global (two-phase commit) transactions.
By default, they are configured to support global transactions. For more information,
see "Configuring a Data Source for an Oracle Database" on page 20-1).

Native data sources support only local transactions.

Where do you Configure Data Source Information in OC4J?
In OC4J, you configure data source information in a data-sources.xml file.

You can include a data-sources.xml file in your EAR but OC4J does not support
multiple data-sources.xml files.

In an EJB 3.0 application, you associate a data source with a persistence unit (see
"Specifying a Data Source in a Persistence Unit" on page 26-5).

For more information, see the following:

■ "How Does OC4J Handle Multiple Data Sources?" on page 2-17

■ "What is a Default Data Source?" on page 2-16

What is a Default Data Source?
To simplify application configuration, you can define default data sources.

How you define a default data source depends on the type of the application from
which you want to access the default data source.

For information on how to configure data sources for different types of applications,
see the following:

■ "Configuring a Default Data Source for an EJB 3.0 Application" on page 20-3

■ "Configuring a Default Data Source for an EJB 2.1 Application" on page 20-4

Understanding EJB Transaction Services

Understanding EJB Application Development 2-17

How Does OC4J Handle Multiple Data Sources?
OC4J does not support multiple data sources within different entities in
orion-ejb-jar.xml file.

If your application is composed of more than one EAR and each EAR contains a
data-sources.xml, then, when you deploy your application, OC4J will use the last
entity bean’s data-source.xml file for all entity beans.

To accommodate this scenario, specify the data source in orion-application.xml
file or specify a default data source.

For more information, see the following:

■ "In What Order Does OC4J Deploy EJB Modules?" on page 2-4

■ "What is a Default Data Source?" on page 2-16

Understanding EJB Transaction Services
You can enable OC4J to manage transactions by using the Java Transaction API (JTA)
supported by the Java Transaction Service (JTS). Using annotations or the deployment
descriptor, you define the transactional properties of enterprise beans during design or
deployment, and then let OC4J take over the responsibility of transaction
management.

This section describes the following:

■ Who Manages a Transaction?

■ How are Transactions Handled When a Client Invokes a Business Method?

■ How do You Participate in a Global or Two-Phase Commit (2PC) Transaction?

For more information, see the following:

■ "Configuring Transaction Services" on page 21-1

■ "Transaction Best Practices" on page 21-9

■ "OC4J Transaction Support" in the Oracle Containers for J2EE Services Guide

Who Manages a Transaction?
A transaction can be managed by either the container (see "What are
Container-Managed Transactions?" on page 2-18) or the bean ("What are
Bean-Managed Transactions?" on page 2-18).

Container-managed transaction management is the default.

When configuring transaction management for your enterprise beans, consider the
following restrictions:

■ EJB 3.0 entities cannot be configured with a transaction management type. EJB 3.0
entities execute within the transactional context of the caller.

■ EJB 2.1 entity beans must always use container-managed transaction demarcation.
An EJB 2.1 entity bean must not be designated with bean-managed transaction
demarcation.

Note: Only flat transactions are supported; nested transactions are
not supported.

Understanding EJB Transaction Services

2-18 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For all other EJB types, you can choose either container-managed or bean-managed
transaction management.

For more information, see the following:

■ "Configuring EJB 3.0 Transaction Management" on page 21-1

■ "Configuring EJB 2.1 Transaction Management" on page 21-4

What are Container-Managed Transactions?
When you use container-managed transactions (CMT), your EJB delegates to the
container the responsibility to ensure that a transaction is started and committed when
appropriate.

All session and message-driven beans may use CMT.

EJB 2.1 entity beans must use CMT.

EJB 3.0 entities cannot be configured with a transaction management type. EJB 3.0
entities execute within the transactional context of the caller.

When developing an enterprise bean that uses CMT, consider the following:

■ Do not use resource manager-specific transaction management methods such as
java.sqlConnection methods commit, setAutoCommit, and rollback or
javax.jms.Session methods commit or rollback.

■ Do not obtain or use the javax.transaction.UserTransaction interface.

■ A stateful session bean using CMT may implement the
javax.ejb.SessionSynchronization interface.

■ An enterprise bean that uses CMT may use javax.ejb.EJBContext methods
setRollbackOnly and getRollbackOnly.

For an EJB that uses CMT, for each business method, you can also specify a transaction
attribute that determines how the container manages transactions when a client
invokes the method (see "How are Transactions Handled When a Client Invokes a
Business Method?" on page 2-19).

What are Bean-Managed Transactions?
When you use bean-managed transactions (BMT), the bean-provider is responsible for
ensuring that a transaction is started and committed when appropriate.

Only session and message-driven beans may use BMT.

When developing an EJB that uses BMT, consider the following:

■ Use the javax.transaction.UserTransaction methods begin and commit
to demarcate transactions.

■ A stateful session bean instance may, but is not required to, commit a started
transaction before a business method returns.

If a transaction has not been completed by the end of a business method, the
container retains the association between the transaction and the instance across
multiple client calls until the instance eventually completes the transaction.

■ A stateless session bean instance must commit any transactions that it started
before a business method or timeout callback method returns.

■ A message-driven bean instance must commit a transaction before a message
listener method or timeout callback method returns.

Understanding EJB Transaction Services

Understanding EJB Application Development 2-19

■ After starting a transaction, do not use resource-manager specific transaction
management methods such as java.sqlConnection methods commit,
setAutoCommit, and rollback or javax.jms.Session methods commit or
rollback.

■ A bean that uses BMT must not use EJBContext methods getRollbackOnly
and setRollbackOnly. It must use UserTransaction method getStatus
and rollback instead.

How are Transactions Handled When a Client Invokes a Business Method?
For an enterprise bean that uses CMT (see "What are Container-Managed
Transactions?" on page 2-18), you can specify a transaction attribute that determines
how the container must manage transactions when a client invokes a bean method.

You can specify a transaction attribute for each of the following types of bean method:

■ a method of a bean’s business interface;

■ a message listener method of a message-driven bean;

■ a timeout callback method;

■ a stateless session bean’s Web service endpoint method;

■ for EJB 2.1 and earlier, a method of a session or entity bean’s home or component
interface

Table 2–6 shows what transaction (if any) an EJB method invocation uses depending
on how its transaction attribute is configured and whether or not a client-controlled
transaction exists at the time the method is invoked.

OC4J starts a container-controlled transaction implicitly to satisfy the transaction
attribute configuration when a bean method is invoked in the absence of a
client-controlled transaction.

Oracle recommends that you do not make modifications to entity beans under
conditions identified as "Use no transaction". Oracle also recommends that you avoid
using the Supports transaction attribute because it leads to a non-transactional state
whenever the client does not explicitly provide a transaction.

Using TopLink CMP, a transaction must be present in order to modify an EJB 2.X CMP
entity bean: If no transaction is present, the TopLink persistence manager returns a
read-only copy of the bean.

For more information, see the following:

Table 2–6 EJB Transaction Support by Transaction Attribute

Transaction Attribute Client-Controlled Transaction Exists Client-Controlled Transaction Does Not Exist

Not Supported Container suspends the client transaction Use no transaction

Supports Use client-controlled transaction Use no transaction

Required1

1 For message-driven beans using the OEMS JMS (in-memory or file-based) message service provider, Required is supported only
if you access this message service provider using the Oracle JMS Connector. For more information, see "Restrictions When
Accessing a Message Service Provider Without a J2CA Resource Adapter" on page 2-25.

Use client-controlled transaction Container starts a new transaction

Requires New Container suspends the client transaction and
starts a new transaction

Container starts a new transaction

Mandatory Use client-controlled transaction Exception raised

Never Exception raised Use no transaction

Understanding EJB Security Services

2-20 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ "Configuring an EJB 3.0 Transaction Attribute" on page 21-2

■ "Configuring an EJB 2.1 Transaction Attribute" on page 21-4

■ "How Does OC4J Manage Persistence in an EJB 2.1 Application?" on page 3-12

How do You Participate in a Global or Two-Phase Commit (2PC) Transaction?
If all resources enlisted in a transaction are XA-compliant, then OC4J automatically
coordinates a global or two-phase commit transaction.

In this release of OC4J, transaction coordination functionality is now located in OC4J,
replacing in-database coordination, which is now deprecated. Also, the middle-tier
coordinator is now heterogeneous, meaning that it supports all XA-compatible
resources, not just those from Oracle.

The middle-tier coordinator supports the following:

■ any XA-compliant resource;

■ interpositioning and transaction inflow;

■ last resource commit optimization;

■ recovery logging;

For more information, see the following:

■ "Configuring Message Services for Two-Phase Commit (2PC) Transactions" on
page 2-29

■ "Middle-Tier Two-Phase Commit (2PC) Coordinator" in the Oracle Containers for
J2EE Services Guide

Understanding EJB Security Services
You can configure your EJB to use the Java EE security services that OC4J provides,
including the following:

■ Java 2 Security Model;

■ Java Authentication and Authorization Service (JAAS);

For more information, see the following:

■ "Configuring Security Services" on page 22-1

■ "Standard Security Concepts" in the Oracle Containers for J2EE Security Guide

Understanding Message Services
A message service provider is responsible for providing a destination to which clients
can send messages and from which message-driven beans can receive messages for
processing.

OC4J supports a variety of message service providers for both XA-enabled two-phase
commit (2PC) and non-XA enabled transactions.

You can access a message service provider directly or by way of a J2EE Connector
Architecture (J2CA) resource adapter such as Oracle JMS Connector. For more
information about the Oracle JMS Connector, see "Oracle JMS Connector: J2EE
Connector Architecture (J2CA)-Based Provider" on page 2-21.

Understanding Message Services

Understanding EJB Application Development 2-21

For more information, see the following:

■ "What is a Message-Driven Bean?" on page 1-56

■ "What Message Service Providers Can you use With Your MDB?" on page 2-21

■ "Message Service Configuration Options: Annotations or XML? Attributes or
Activation Configuration Properties?" on page 2-26

■ "Configuring Message Services for Two-Phase Commit (2PC) Transactions" on
page 2-29

■ "Configuring Message Services" on page 23-1

■ "Configuring an EJB 3.0 MDB to Access a Message Service Provider Using J2CA"
on page 10-1

■ "Configuring an EJB 3.0 MDB to Access a Message Service Provider Directly" on
page 10-3

■ "Configuring an EJB 2.1 MDB to Access a Message Service Provider Using J2CA"
on page 18-1

■ "Configuring an EJB 2.1 MDB to Access a Message Service Provider Directly" on
page 18-3

What Message Service Providers Can you use With Your MDB?
Using OC4J, you can use an MDB with any of the following Oracle Enterprise
Messaging Service (OEMS) providers:

■ Oracle JMS Connector: J2EE Connector Architecture (J2CA)-Based Provider

■ OEMS JMS: In-Memory or File-Based Provider

■ OEMS JMS Database: Advanced Queueing (AQ)-Based Provider

Oracle JMS Connector: J2EE Connector Architecture (J2CA)-Based Provider
The Oracle JMS Connector is a J2CA 1.5-compliant resource adapter that allows
OC4J-managed applications to have a unified mechanism to access any JMS provider
that implements JMS 1.1 or 1.02b. Using the Oracle JMS Connector, you can integrate
OC4J with various Oracle and non-Oracle JMS providers, as Figure 2–1 shows.

From the perspective of OC4J, J2CA is only used as a means of accessing a message
service provider for use with message-driven beans.

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see "Restrictions When Accessing a
Message Service Provider Without a J2CA Resource Adapter" on
page 2-25.

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see "Restrictions When Accessing a
Message Service Provider Without a J2CA Resource Adapter" on
page 2-25.

Understanding Message Services

2-22 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Oracle JMS Connector supports both XA factories for two-phase commit (2PC)
transactions and non-XA factories for transactions that do not require 2PC.

Figure 2–1 Demonstration of an MDB Interacting with a J2CA JMS Destination

Table 2–7 summarizes the JMS message service providers that the Oracle JMS
Connector supports.

For more information, see the following:

■ "Configuring a J2CA Resource Adapter for use With Your Message Service
Provider" on page 23-1

■ "Configuring OC4J J2CA Resource Adapter Deployment XML Files" on page 23-2

■ "How do You Participate in a Global or Two-Phase Commit (2PC) Transaction?" on
page 2-20

■ "Configuring an EJB 3.0 MDB to Access a Message Service Provider Using J2CA"
on page 10-1

■ "Configuring an EJB 2.1 MDB to Access a Message Service Provider Using J2CA"
on page 18-1

■ "Introducing Oracle JMS Support and Generic JMS Resource Adapter" in the
Oracle Containers for J2EE Resource Adapter Administrator’s Guide

■ "Overview: Administering Resource Adapters" in the Oracle Containers for J2EE
Resource Adapter Administrator’s Guide

Table 2–7 Oracle JMS Connector Support for JMS Message Service Providers

JMS Provider Version

OEMS JMS: In-Memory or File-Based Provider all

OEMS JMS Database: Advanced Queueing (AQ)-Based Provider all

IBM WebSphere MQ-based JMS Server Version 5.3 and 6.0

TIBCO Enterprise for JMS 3.1.0

SonicMQ 6.0

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see "Restrictions When Accessing a
Message Service Provider Without a J2CA Resource Adapter" on
page 2-25.

Understanding Message Services

Understanding EJB Application Development 2-23

OEMS JMS: In-Memory or File-Based Provider
OEMS JMS is a native Java JMS provider implementation that provides in-memory or
file-based persistence and is tightly integrated with OC4J. It is the default JMS
provider included with OC4J. Figure 2–2 shows how a client sends an asynchronous
request directly to the OEMS JMS queue or topic that is located internally within OC4J.
The MDB receives the message directly from OEMS JMS.

Figure 2–2 Demonstration of an MDB Interacting with an OEMS JMS Destination

You can access OEMS JMS directly or by way of the Oracle JMS Connector (see "Oracle
JMS Connector: J2EE Connector Architecture (J2CA)-Based Provider" on page 2-21).

OEMS JMS supports both XA factories for two-phase commit (2PC) transactions and
non-XA factories for transactions that do not require 2PC. For more information on
2PC support, see "How do You Participate in a Global or Two-Phase Commit (2PC)
Transaction?" on page 2-20. For more information on how to configure OEMS JMS to
support XA factories, see "Configuring jms.xml" on page 23-4.

For more information, see the following:

■ "Configuring an OEMS JMS Message Service Provider" on page 23-3

■ "Configuring an EJB 3.0 MDB to Access a Message Service Provider Using J2CA"
on page 10-1

■ "Configuring an EJB 3.0 MDB to Access a Message Service Provider Directly" on
page 10-3

Note: For a code example of configuring a J2CA message service
provider resource adapter and MDB application, see
http://www.oracle.com/technology/tech/java/oc4j/1013
/how_
to/how-to-gjra-with-oracleasjms/doc/how-to-gjra-with
-oracleasjms.html.

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see "Restrictions When Accessing a
Message Service Provider Without a J2CA Resource Adapter" on
page 2-25.

Understanding Message Services

2-24 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ "Configuring an EJB 2.1 MDB to Access a Message Service Provider Using J2CA"
on page 18-1

■ "Configuring an EJB 2.1 MDB to Access a Message Service Provider Directly" on
page 18-3

■ "Java Message Service (JMS)" in the Oracle Containers for J2EE Services Guide.

OEMS JMS Database: Advanced Queueing (AQ)-Based Provider
OEMS JMS Database is the JMS interface to the Oracle Database Streams Advanced
Queueing (AQ) feature. Oracle AQ is the Oracle database-integrated message queuing
feature built on the Oracle Streams information integration infrastructure that you
install and configure within an Oracle database (see Figure 2–3).

Figure 2–3 Demonstration of an MDB Interacting with an OEMS JMS Database
Destination

An MDB uses OEMS JMS Database as follows:

1. The MDB opens a JMS connection to the database using a data source with a
username and password. The data source represents the Oracle JMS provider and
uses a JDBC driver to facilitate the JMS connection.

2. The MDB opens a JMS session over the JMS connection.

3. Any message for the MDB is routed to the onMessage method of the MDB.

At any time, the client can send a message to the Oracle JMS topic or queue on which
MDBs are listening. The Oracle JMS topic or queue is located in the database.

Before using Oracle JMS, you must create the appropriate queue or table in the
database.

You can access OEMS JMS Database directly or by way of the Oracle JMS Connector
(see "Oracle JMS Connector: J2EE Connector Architecture (J2CA)-Based Provider" on
page 2-21).

Note: MDBs only work with certain versions of the Oracle
database. See the certification matrix in the JMS chapter of the
Oracle Containers for J2EE Services Guide for more information.

Understanding Message Services

Understanding EJB Application Development 2-25

OEMS JMS Database supports both XA factories for two-phase commit (2PC)
transactions and non-XA factories for transactions that do not require 2PC. For more
information on 2PC support, see "How do You Participate in a Global or Two-Phase
Commit (2PC) Transaction?" on page 2-20. For more information on how to configure
OEMS JMS to support XA factories, see step 2 in "Installing and Configuring the
OEMS JMS Database Provider" on page 23-6.

For more information, see the following:

■ "Configuring an OEMS JMS Database Message Service Provider" on page 23-5

■ "Configuring an EJB 3.0 MDB to Access a Message Service Provider Using J2CA"
on page 10-1

■ "Configuring an EJB 3.0 MDB to Access a Message Service Provider Directly" on
page 10-3

■ "Configuring an EJB 2.1 MDB to Access a Message Service Provider Using J2CA"
on page 18-1

■ "Configuring an EJB 2.1 MDB to Access a Message Service Provider Directly" on
page 18-3

■ Oracle Streams Advanced Queuing User's Guide and Reference

■ "Java Message Service (JMS)" in the Oracle Containers for J2EE Services Guide

Restrictions When Accessing a Message Service Provider Without a J2CA
Resource Adapter
Oracle recommends that you access a message service provider using a J2CA resource
adapter such as the Oracle JMS connector (see "Oracle JMS Connector: J2EE Connector
Architecture (J2CA)-Based Provider" on page 2-21).

If you choose not to use a J2CA resource adapter, consider the following restrictions:

■ If your MDB uses container-managed transactions and the transaction attribute is
set to Required or RequiresNew, you must use the Oracle JMS Connector.

■ To be enlisted in a global, two-phase commit (2PC) transaction, both the JMS
producer and consumer must come from a J2CA-based XA connection factory.

If a JMS producer or consumer is not derived from a J2CA-based XA connection
factory, it will not enlist in a global transaction (if present): in this case, JMS will
behave as though it is outside the global transaction, even if you create the
(non-J2CA) JMS session with a transaction parameter set to true, for example:

QueueConnection.createQueueSession(true,1)

In this case, you must invoke the Session methods commit or rollback
independent of any global transaction.

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see "Restrictions When Accessing a
Message Service Provider Without a J2CA Resource Adapter" on
page 2-25.

Understanding Message Services

2-26 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ If you are in a global transaction and you attempt to produce or consume a JMS
message from a producer or consumer that is not from a J2CA-based XA
connection factory, you will get a run-time JMS exception.

■ Container-Managed Transactions (CMT's) and Bean-Managed Transactions
(BMT's) with the OEMS JMS provider (see OEMS JMS: In-Memory or File-Based
Provider on page 2-23) are only supported through the use of a J2CA resource
adapter. These features will not be supported when using the
oc4j.jms.pseudoTransactionEnlistment backward compatibility flag (see
"MDB Auto-Enlisting in Two-Phase Commit (2PC) XA Transactions" on page 2-29).

Message Service Configuration Options: Annotations or XML? Attributes or Activation
Configuration Properties?

As Figure 2–4 shows, there are two ways to configure message service provider
options:

■ Message Service Configuration Using Annotations

■ Message Service Configuration Using XML

In general, Oracle recommends that you use activation configuration properties
instead of attributes, whether you choose annotations or XML.

Figure 2–4 Message Service Configuration Options

Message Service Configuration Using Annotations
Using annotations, you can configure message service options using the
@MessageDrivenDeployment or @MessageDriven annotation:
@MessageDrivenDeployment configuration overrides that in @MessageDriven.

If you use @MessageDrivenDeployment, you can configure message service options
using nested @ActivationConfigProperty annotations or using
@MessageDrivenDeployment attributes: @ActivationConfigProperty
configuration overrides @MessageDrivenDeployment attributes.

If you use @MessageDriven, you can configure message service options using nested
@ActivationConfigProperty annotations only.

Note: In 10.1.3.1 release, by default, OC4J auto-enlists MDB
connections only if the MDB uses J2CA and an XA factory. For more
information, see "MDB Auto-Enlisting in Two-Phase Commit (2PC)
XA Transactions" on page 2-29.

Understanding Message Services

Understanding EJB Application Development 2-27

If you configure using @MessageDrivenDeployment attributes, your application
can only access a message service provider without a J2CA resource adapter. If later
you decide to access your message service provider using a J2CA resource adapter,
your application will fail to deploy. If you configure using nested
@ActivationConfigProperty annotations, your application can access a message
service provider with or without a J2CA resource adapter. Oracle recommends that if
you configure using annotations, you should use the
@ActivationConfigProperty approach.

Example 2–6 shows both a @MessageDrivenDeployment and @MessageDriven
annotation using @ActivationConfigProperty annotations for message service
configuration. Note that the DestinationName activation configuration property in
the @MessageDrivenDeployment annotation overrides that in the
@MessageDriven annotation.

Example 2–6 @MessageDriven and @MessageDrivenDeployment Annotation for a J2CA
Message Service Provider

import javax.ejb.MessageDriven;
import oracle.j2ee.ejb.MessageDrivenDeployment;
import javax.ejb.ActivationConfigProperty;
import javax.jms.Message;
import javax.jms.MessageListener;

@MessageDriven(
activationConfig = {

@ActivationConfigProperty(
propertyName="DestinationName", propertyValue="OracleASjms/MyQueue"

)
}

)

@MessageDrivenDeployment(
activationConfig = {

@ActivationConfigProperty(
propertyName="DestinationName", propertyValue="OracleASjms/DeployedQueue"

),
@ActivationConfigProperty(

propertyName="ResourceAdapter", propertyValue="OracleASjms"
)

}
)

public class JCAQueueMDB implements MessageListener
{

public void onMessage(Message msg) {
...

}
}

Message Service Configuration Using XML
Using XML, you can configure message service options using the
orion-ejb-jar.xml file <message-driven-deployment> element or the
ejb-jar.xml file <message-driven> element: orion-ejb-jar.xml
configuration overrides that in ejb-jar.xml.

If you use the orion-ejb-jar.xml file <message-driven-deployment>
element, you can configure message service options using nested
<config-property> elements or using <message-driven-deployment>

Understanding Message Services

2-28 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

attributes: <config-property> configuration overrides
<message-driven-deployment> attributes.

If you use the ejb-jar.xml file <message-driven> element, you can configure
message service options using nested <activation-config-property> elements
only.

If you configure using orion-ejb-jar.xml file <message-driven-deployment>
element attributes, your application can only access a message service provider
without a J2CA resource adapter. If later you decide to access your message service
provider using a J2CA resource adapter, your application will fail to deploy. If you
configure using nested <config-property> elements, your application can access a
message service provider with or without a J2CA resource adapter. Oracle
recommends that if you configure using XML, you should use the
<config-property> approach.

Example 2–8 shows how to use <config-property> elements in the
orion-ejb-jar.xml file <message-driven-deployment> element and
Example 2–7 shows how to use <activation-config-property> elements in the
ejb-jar.xml file <message-driven> element. Note that the DestinationName
activation configuration property in the <message-driven-deployment> element
overrides that in the <message-driven> element. Also note that in the ejb-jar.xml
file <message-driven> element, <activation-config-property> elements are
contained in an <activation-config> element.

Example 2–7 ejb-jar.xml <activation-config-property>

<message-driven>
<ejb-name>JCA_QueueMDB</ejb-name>
<ejb-class>test.JCA_MDB</ejb-class>
<messaging-type>javax.jms.MessageListener</messaging-type>
<transaction-type>Container</transaction-type>
...
<activation-config>

<activation-config-property>
<activation-config-property-name>

DestinationName
</activation-config-property-name>
<activation-config-property-value>

OracleASJMSSubcontext
</activation-config-property-value>

</activation-config-property>
</activation-config>
...

</message-driven>

Example 2–8 orion-ejb-jar.xml <config-property>

<message-driven-deployment
name="JCA_QueueMDB"
resource-adapter="OracleASjms">
...
<config-property>

<config-property-name>
DestinationName

</config-property-name>
<config-property-value>

OracleASJMSRASubcontext
</config-property-value>

</config-property>
...

</message-driven-deployment>

Understanding OC4J EJB Application Clustering Services

Understanding EJB Application Development 2-29

Configuring Message Services for Two-Phase Commit (2PC) Transactions
OC4J supports 2PC transactions with XA-enabled resources (see "How do You
Participate in a Global or Two-Phase Commit (2PC) Transaction?" on page 2-20).

For more information on configuring JMS message service providers to be
XA-compliant, see the following:

■ Oracle JMS Connector: "Configuring OC4J J2CA Resource Adapter Deployment
XML Files" on page 23-2

■ OEMS JMS: "Configuring jms.xml" on page 23-4

■ OEMS JMS Database: step 2 in "Installing and Configuring the OEMS JMS
Database Provider" on page 23-6

MDB Auto-Enlisting in Two-Phase Commit (2PC) XA Transactions
In 10.1.2 and 10.1.3.0 releases of OC4J, both normal non-XA JMS connections as well as
XA JMS connections were automatically enlisted into an OC4J global transaction by
the native OEMS JMS provider. In 10.1.3.1 release, neither XA nor normal JMS
connections are enlisted into an OC4J global transaction. If you use the provided JMS
APIs, you should explicitly enlist an XA connection into an OC4J global transaction
using the javax.jms.XA* implementation of OEMS JMS. You should also explicitly
commit or rollback the local transaction of a given JMS session created from a non-XA
JMS connection.

For backward-compatibility reasons, it is still possible (but discouraged) to use the
auto-enlisting feature in 10.1.3.1 release. Disabled by default, you can enable
auto-enlisting by setting global OC4J system property
oc4j.jms.pseudoTransactionEnlistment to true.

A J2CA MDB configured to use an XA connection factory (thereby creating an XA
session) will auto-enlist as expected. Sessions created from non-XA factories will not
enlist. The oc4j.jms.pseudoTransactionEnlistment property is only required
to force enlistment of non-XA sessions. This is mostly a concern to legacy applications
that do not use J2CA.

For more information, see "Java Message Service (JMS)" in the Oracle Containers for
J2EE Services Guide.

Understanding OC4J EJB Application Clustering Services
Oracle Application Server provides an extensive suite of high availability and failover
options, including clustering–the distribution of application server and end-user
application components across multiple hosts configured with the appropriate means
of host-to-host communication.

OC4J application clustering is a state management service available to HTTP sessions
and stateful session beans. In this context, a cluster is defined as two or more OC4J

Note: In 10.1.3.1 release, by default, OC4J auto-enlists MDB
connections only if the MDB uses J2CA and an XA factory. For more
information, see "MDB Auto-Enlisting in Two-Phase Commit (2PC)
XA Transactions" on page 2-29.

Understanding OC4J EJB Application Clustering Services

2-30 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

server nodes hosting the same set of applications. In this release, configuration has
been simplified and made identical for both HTTP sessions and stateful session beans.

Transactions cannot failover. There is no reinstating an interrupted transaction in
another bean. Instead, the transaction rolls back and must start over. For more
information, see "Understanding EJB Transaction Services" on page 2-17.

The performance for clustering stateful session beans is dependent on the type of
replication (see "State Replication" on page 2-30) and load balancing (see "Load
Balancing" on page 2-31) options you choose.

You must choose the appropriate balance between replication frequency and
robustness: the more frequently you replicate, the smaller the window of opportunity
for losing state but the higher the load on the application server and network.

This section describes OC4J application clustering for stateful session beans, including
the following:

■ State Replication

■ Load Balancing

For more information, see the following:

■ "Configuring OC4J EJB Application Clustering Services" on page 24-1

■ "Clustering Overview" in the Oracle Containers for J2EE Configuration and
Administration Guide

■ "Application Clustering in OC4J" in the Oracle Containers for J2EE Configuration and
Administration Guide

■ "Oracle Application Server Cluster (OC4J) in Active-Active Topologies" in the
Oracle Application Server High Availability Guide

■ "Stateful Session EJB State Replication with Oracle Application Server Cluster
(OC4J)" in the Oracle Application Server High Availability Guide

State Replication
When you configure a replication policy for a clustered OC4J EJB application, OC4J
handles the replication of objects and values contained in stateful session bean
instances. Only stateful session beans can be clustered. Because stateless session beans
have no state to be replicated, they need not be clustered.

You must configure a replication policy to take advantage of failover: replication of
bean state, so that when the original bean terminates unexpectedly, the request can be
transparently forwarded to another OC4J process in the cluster.

If you only want to take advantage of load balancing, replication is not required (see
"Load Balancing" on page 2-31).

A replication policy determines the state replication trigger–the conditions under
which bean state is broadcast to all other OC4J processes in the cluster. For stateful
session beans, when replication is triggered, all the attributes of the stateful session
bean are replicated (regardless of whether or not they have changed).

Note: If you have a servlet (or other Web component) that invokes a
stateful session bean, you must configure both HTTP session and
stateful session bean clustering.

Understanding EJB Timer Services

Understanding EJB Application Development 2-31

Replication can have an impact on application server and network performance. The
fewer times the state is sent out, the better your performance. However, there is a
trade-off between performance and the confidence that the bean state is replicated to
cover for all areas of the bean instance failing.

For more information, see the following:

■ "Configuring EJB 3.0 and EJB 2.1 Stateful Session Bean Replication Policy" on
page 24-1

■ "Understanding OC4J EJB Application Clustering Services" on page 2-29

Load Balancing
Load balancing refers to how incoming client requests are distributed over all the
OC4J instances in your cluster. You can choose from among the following load
balancing strategies:

■ Replication-based: hen you configure a replication policy for a clustered OC4J EJB
application (see "State Replication" on page 2-30), OC4J will automatically select
an OC4J instance at random from the pool of OC4J instances in the cluster when
the first client request is serviced.

■ Static retrieval: If you decide not to use EJB replication, but you want to load
balance client requests across several statically specified OC4J processes, you can
use static retrieval by providing the URLs for all of these processes in the JNDI
URL property. For more information, see "Configuring Static Retrieval Load
Balancing" on page 24-3.

■ DNS: If you decide not to use EJB replication, but you want to load-balance client
requests across several DNS-managed OC4J processes, you can use DNS retrieval
by configuring your DNS server with a single hostname associated with the
desired OC4J host IP addresses and specifying this hostname in the JNDI URL
property. For more information, see "Configuring DNS Load Balancing" on
page 24-3.

For all load balancing strategies, you can configure how a client’s requests are load
balanced across the OC4J instances in your cluster (see "Configuring Load Balancing
Behavior" on page 24-4).

Understanding EJB Timer Services
You can set up a timer that invokes a timeout callback method at a specified time, after
a specified elapsed time, or at specified intervals.

For EJB 3.0 applications, using the @Timeout annotation, you can annotate any EJB
method as the timeout callback method.

For EJB 2.1 applications, your EJB must implement the TimedObject interface and
provide a timeout callback method named ejbTimeout.

Timers are for use in modeling of application-level processes, not for real-time events.

OC4J provides standard Java EE timers as well as a convenient Java EE timer extension
that allows configuration similar to the Unix cron utility.

Note: Timers apply to all EJB types except stateful session beans and
EJB 3.0 entities.

Understanding EJB Timer Services

2-32 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see:

■ "Understanding Java EE Timer Services" on page 2-32

■ "Understanding OC4J Cron Timer Services" on page 2-32

Timer and timeout callback methods should be called within a transaction. OC4J
supports transaction attribute REQUIRES_NEW for timeout callbacks. For more
information on transaction attributes, see "How are Transactions Handled When a
Client Invokes a Business Method?" on page 2-19).

An enterprise bean accesses EJB timer services by means of dependency injection,
through the EJBContext interface, or through lookup in the JNDI namespace.

For more information, see "Configuring Timer Services" on page 25-1.

Understanding Java EE Timer Services
The EJB timer service is a container-managed service you use to define callback
methods on your EJB that are scheduled for time-based events. The EJB timer service
provides a reliable and transactional notification service for timed events. Timer
notifications may be scheduled to occur at a specific time, after a specific elapsed
duration, or at specific recurring intervals. You can define callback methods on your
EJB to receive these time-based events. The Java EE timer service is implemented by
OC4J.

For more information, see "Configuring an Enterprise Bean With a Java EE Timer" on
page 25-1.

Understanding OC4J Cron Timer Services
In UNIX, you can schedule a cron timer to execute regularly at specified intervals.
Oracle has extended OC4J to support cron timers with EJB. You can use cron
expressions for scheduling timer events with EJB deployed to OC4J. Using an OC4J
cron timer, you can create timers that invoke a timeout callback method or any
arbitrary Java class’s main method.

For more information, see "Configuring an Enterprise Bean With an OC4J Cron Timer"
on page 25-3.

Understanding EJB Support in OC4J 3-1

3
Understanding EJB Support in OC4J

This chapter describes the following:

■ EJB 3.0 Support

■ EJB 2.1 Support

For more information, see Oracle Application Server Release Notes for Microsoft Windows.

EJB 3.0 Support
In this release, OC4J supports all but a small subset of the functionality specified in the
final EJB 3.0 specification
(http://jcp.org/aboutJava/communityprocess/pr/jsr220/index.html).

You may need to make minor code changes to your EJB 3.0 OC4J application after
OC4J is updated to full EJB 3.0 compliance. For more information, see "Migrating a
10.1.3.0 TopLink JPA Preview Application to 10.1.3.1 TopLink Essentials JPA" on
page 3-5.

In this release, OC4J supports the use of annotations, standard deployment XML
(ejb-jar.xml or orion-ejb-jar.xml), or both for all EJB 3.0 features except for
the object-relational entity mapping types (namely basic, binary large object (LOB),
serialized, one-to-one, many-to-one, one-to-many, many-to-many, and aggregate
mappings). For these, you must either use annotations or TopLink JPA persistence
provider customization.

OC4J supports the proprietary EJB 3.0 annotations that the Oracle Application Server
Annotations API Reference describes.

For more information, see:

■ "Implementing a JPA Entity" on page 6-1

■ "Customizing the JPA Persistence Provider" on page 3-3

In this release, OC4J supports resource injection in the Web tier. For more information,
see "Annotations in the Web Tier" on page 1-9.

This section describes the following:

■ What JDK is Required?

■ How do You Define an EJB 3.0 Application?

■ How Does OC4J Manage Persistence in an EJB 3.0 Application?

EJB 3.0 Support

3-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

What JDK is Required?
By default, if you are using EJB 3.0, then you must use JDK 1.5. By default, OC4J does
not support the use of EJB 3.0 and JDK 1.4.

OC4J supports the use of EJB 3.0 (excluding annotations and interceptors) with JDK 1.4
only with the TopLink JPA preview persistence provider. For more information, see the
discussion of system property default.persistence.provider in "JPA
Persistence JAR Files" on page 3-2.

How do You Define an EJB 3.0 Application?
For entities, OC4J assumes that the application is an EJB 3.0 application, if an EJB JAR
is deployed without an ejb-jar.xml file. For more information, see "Understanding
EJB Persistence Services" on page 2-12

For session beans and message-driven beans, OC4J assumes that the application is an
EJB 3.0 application if the ejb-jar.xml file <ejb-jar> element version attribute is
set to 3.0.

How Does OC4J Manage Persistence in an EJB 3.0 Application?
In an EJB 3.0 application, OC4J delegates persistence operations to a JPA persistence
provider: in this release, OC4J uses TopLink Essentials, the JPA persistence provider
for the EJB 3.0 Reference Implementation (see "TopLink Essentials JPA Persistence
Provider" on page 3-2).

TopLink Essentials JPA Persistence Provider
Oracle TopLink is an advanced, object-persistence and object-transformation
framework that provides development tools and run-time capabilities that reduce
development and maintenance efforts, and increase enterprise application
functionality.

In this release, OC4J manages EJB 3.0 entities using TopLink Essentials, the JPA
persistence provider for the EJB 3.0 Reference Implementation. For more information,
see "What is TopLink?" in the Oracle TopLink Developer’s Guide.

OC4J provides JAR files for both the classes that the EJB 3.0 persistence specification
mandates and the classes that make up the TopLink Essentials JPA persistence
provider implementation. For more information about persistence JAR files, see "JPA
Persistence JAR Files" on page 3-2.

For EJB 3.0 projects, you configure persistence properties through annotations or
persistence.xml file. OC4J translates this metadata into TopLink configuration. For
more information on customizing the TopLink Essentials EJB 3.0 JPA persistence
provider, see "Customizing the JPA Persistence Provider" on page 3-3.

JPA Persistence JAR Files
OC4J uses the JAR files that Table 3–1 lists to provide the TopLink Essentials JPA
persistence provider implementation. These JAR files are located in the <ORACLE_
HOME>/toplink/jlib directory.

 The system property default.persistence.provider determines which JPA
persistence provider implementation OC4J uses. The following are valid values:

■ essentials (default): OC4J uses the <ORACLE_
HOME>/j2ee/home/lib/persistence.jar to provide EJB 3.0 JPA classes that
the EJB 3.0 persistence specification mandates and <ORACLE_

EJB 3.0 Support

Understanding EJB Support in OC4J 3-3

HOME>/toplink/jlib/toplink-essentials.jar and
toplink-essentials-agent.jar for the persistence provider
implementation, providing full support for the final EJB 3.0 persistence
specification.

■ toplink: OC4J uses the <ORACLE_
HOME>/j2ee/home/lib/preview-persistence.jar to provide EJB 3.0 JPA
classes that the public review EJB 3.0 persistence specification mandated and
<ORACLE_HOME>/toplink/jlib/toplink.jar as the persistence provider
implementation, providing a JPA preview based on a subset of the functionality
specified in the EJB 3.0 public review draft. You can use this option to run an
application written to the preview API. Oracle does not recommend that you use
this option.

Customizing the JPA Persistence Provider
Typically, you use object-relational annotations (see "Configuring a
Container-Managed Relationship Field for a JPA Entity" on page 7-9) to specify how
you want OC4J to store a persistent field in the database and rely on the default
TopLink EJB 3.0 JPA persistence provider configuration for each such annotation.
However, you may wish to override this default behavior to suit your application
requirements. As well, although the TopLink EJB 3.0 JPA persistence provider is JPA
compliant, it provides additional extensions beyond what is defined in the JPA
specification.

You may customize the OC4J JPA persistence provider in any of the following ways:

■ Set vendor-specific query hints in a named or dynamic query (see "Configuring
TopLink Query Hints in a JPA Query" on page 8-3).

■ Set vendor-specific properties in the persistence.xml file using a
<properties> element or in the Map of properties passed into the
javax.persistence.Persistence method

Table 3–1 TopLink JAR Files

JAR File Contents

antlr.jar This JAR file contains the Antlr (ANother Tool for Language Recognition) tool.

toplink.jar This JAR file contains all the classes that comprise the TopLink API, including classes
with Oracle JDBC dependencies.

If you want to use an Oracle JDBC driver version different than the default version
installed with OC4J, see "Associating TopLink With an Oracle JDBC Driver" on
page 20-4.

toplink-essentials.jar This JAR file contains the open source JPA edition of TopLink, the JPA persistence
provider for the EJB 3.0 Reference Implementation.

toplink-essentials-agent.jar This JAR file contains the classes that TopLink uses to perform byte-code weaving on
JPA entities to automatically enable features such as ValueHolder indirection. You
invoke toplink-essentials-agent.jar by adding
-javaagent:toplink-essentials-agent.jar to your client JVM command line
or by using the toplink.weaving TopLink JPA extension that you can define in a
persistence.xml file. This option is not necessary on the server JVM command line.

This JAR file provides part of TopLink Essentials, the JPA persistence provider for the
EJB 3.0 Reference Implementation. It is used with toplink-essentials.jar.

This JAR is optional. It should never be placed on the classpath and should only be used
as part of -javaagent.

toplink-oc4j.jar This JAR contains the classes that TopLink uses to integrate with Oracle Containers for
J2EE.

This JAR file is only used in OC4J; the container is preconfigured to use
toplink-oc4j.jar. In a non-OC4J application, use toplink.jar.

EJB 3.0 Support

3-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

createEntityManagerFactory (see "Configuring Vendor Extensions in a
Persistence Unit" on page 26-5).

■ If you are using the TopLink Essentials persistence provider (default), you can
access TopLink API in a JPA entity application at run time by using TopLink JPA
extensions ("Accessing TopLink API at Run Time With TopLink Essentials JPA
Persistence" on page 3-4).

■ If you are using the TopLink JPA preview persistence provider, you can access the
TopLink API in a JPA entity application at run time by creating an
ejb3-toplink-sessions.xml and toplink-ejb-jar.xml file and
packaging them in the META-INF directory of the EJB-JAR that contains your EJB
3.0 entities (see "Accessing TopLink API at Run Time With TopLink JPA Preview
Persistence" on page 3-4).

■ Configure the TopLink EJB 3.0 JPA persistence provider to use an Oracle JDBC
driver version different than the default version installed with OC4J (see
"Associating TopLink With an Oracle JDBC Driver" on page 20-4).

Accessing TopLink API at Run Time With TopLink Essentials JPA Persistence
If you are using the TopLink Essentials JPA persistence provider (default), you access
TopLink API in a JPA entity application at run time by using TopLink JPA extensions
toplink.session.customizer and
toplink.descriptor.customizer.<ENTITY> (see Table 26–5 on page 26-20).

Accessing TopLink API at Run Time With TopLink JPA Preview Persistence
If you are using the TopLink JPA preview persistence provider, you access the TopLink
API in a JPA entity application at run time by creating an
ejb3-toplink-sessions.xml file (see "What is the ejb3-toplink-sessions.xml File?"
on page 2-7) and toplink-ejb-jar.xml (see "What is the toplink-ejb-jar.xml File?"
on page 2-6) file.

You package these files in the META-INF directory of the EJB-JAR that contains your
EJB 3.0 entities.

■ To customize TopLink session-level options, you only need an
ejb3-toplink-sessions.xml file.

■ To customize TopLink persistence-specific options, you need both an
ejb3-toplink-sessions.xml and toplink-ejb-jar.xml file.

You can use the TopLink API to customize persistence by overriding annotations or by
replacing annotations altogether. For example, you might use annotations for most of
your object-relational mappings and an ejb3-toplink-sessions.xml and
toplink-ejb-jar.xml file to specify object-relational mappings for a subset of
complex relationships not suited to annotation.

If the only JDK 1.5 language extension that your entity classes use are annotations, you
can use the TopLink Workbench to create and configure these files. Oracle
recommends using the TopLink Workbench to create and configure these files.

Note: By default, OC4J uses the TopLink Essentials JPA persistence
provider. In this case, you access TopLink API in a JPA entity
application at run time by using TopLink JPA extensions (see
"Accessing TopLink API at Run Time With TopLink Essentials JPA
Persistence" on page 3-4).

EJB 3.0 Support

Understanding EJB Support in OC4J 3-5

To customize the TopLink JPA preview persistence provider, do the following:

1. Create a relational TopLink Workbench project (see "Creating a Project" in the
Oracle TopLink Developer’s Guide).

2. Configure the TopLink Workbench project classpath to include your JDK 1.5
compiled entity classes (see "Configuring Project Classpath" in the Oracle TopLink
Developer’s Guide).

3. Configure the project deployment XML file name (as toplink-ejb-jar.xml)
and save location (see "Configuring Project Deployment XML Options" in the
Oracle TopLink Developer’s Guide).

4. Optionally, configure other TopLink project-level options (see "Configuring a
Relational Project" in the Oracle TopLink Developer’s Guide).

5. Configure TopLink relational descriptors for the entity classes you want to
customize (see "Creating a Relational Descriptor" in the Oracle TopLink Developer’s
Guide and "Configuring a Relational Descriptor" in the Oracle TopLink Developer’s
Guide).

6. Configure TopLink relational mappings for the persistent fields you want to
customize (see "Creating a Mapping" in the Oracle TopLink Developer’s Guide and
"Configuring a Relational Mapping" in the Oracle TopLink Developer’s Guide).

7. Export your TopLink Workbench project to the toplink-ejb-jar.xml XML file
(see "Exporting Deployment XML Information" in the Oracle TopLink Developer’s
Guide).

8. Create a TopLink sessions configuration file named
ejb3-toplink-sessions.xml (see "Creating a Server Session" in the Oracle
TopLink Developer’s Guide).

9. Set the ejb3-toplink-sessions.xml file primary project to your
toplink-ejb-jar.xml file (see "Configuring a Primary Mapping Project" in the
Oracle TopLink Developer’s Guide).

10. Optionally, configure any other TopLink session-level options (see "Configuring a
Server Session" in the Oracle TopLink Developer’s Guide).

11. Save your TopLink Workbench sessions configuration file.

12. Package the ejb3-toplink-sessions.xml and toplink-ejb-jar.xml file
in the META-INF directory of the EJB-JAR that contains your EJB 3.0 entities.

Migrating a 10.1.3.0 TopLink JPA Preview Application to 10.1.3.1 TopLink Essentials JPA
In 10.1.3.0 release, OC4J uses the TopLink JPA preview persistence provider based on a
subset of the functionality specified in the EJB 3.0 public review draft.

In 10.1.3.1 release, OC4J uses the TopLink Essentials JPA persistence provider, the JPA
persistence provider for the EJB 3.0 Reference Implementation, to provide full JPA
support according to the final EJB 3.0 specification.

You must make code changes to your JPA preview-based application before using it
with TopLink Essentials and the final EJB 3.0 API in OC4J 10.1.3.1.

In general, you should do the following:

Note: Alternatively, you can use JDeveloper to create the
ejb3-toplink-sessions.xml and toplink-ejb-jar.xml file
(see "Using EJB Development Tools". on page 2-1).

EJB 3.0 Support

3-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

1. Undeploy your preview-based application.

2. Upgrade OC4J from 10.1.3.0 to 10.1.3.1.

3. Make the necessary post-upgrade configuration file changes (see "Changes in
OC4J Configuration Files" on page 3-6).

4. Migrate your code to use the new EJB 3.0 API.

The following sections describe the important differences between the TopLink
JPA preview and full TopLink JPA to help you identify where changes must be
made:

■ "Changes in javax.persistence" on page 3-6

■ "Changes in oracle.toplink.essentials.platform.database" on page 3-10

■ "Changes in Interceptor Support" on page 3-10

■ "Acquiring an Entity Manager" on page 3-10

■ "New JAR Files" on page 3-11

5. Redeploy your updated application.

Changes in OC4J Configuration Files
After applying the 10.1.3.1.0 patch set to a 10.1.3.0.0 OC4J, you must manually edit
OC4J configuration files as follows:

1. Edit the <ORACLE_HOME>/j2ee/home/config/server.xml file and add the
following:

<shared-library name="oracle.persistence" version="1.0"
library-compatible="true">

<code-source path="../../../toplink/jlib/toplink-essentials.jar"/>
</shared-library>

2. Edit the <ORACLE_HOME>/j2ee/home/config/system-application.xml
file and add the following to the <imported-shared-libraries> element:

<import-shared-library name="oracle.persistence"/>

Changes in javax.persistence
Table 3–2 lists the additions, deletions, and changes made to the
javax.persistence package between 10.1.3.0 and 10.1.3.1. If your application uses
any of these classes, consult the latest EBJ 3.0 specification and JPA Javadoc for details.

Table 3–2 Changes to javax.persistence

10.1.3.0 10.1.3.1 Description

AccessMode deleted In 10.1.3.1 release, EJB 3.0 entities do not require local or remote interfaces.
Because all entity access is by way of an EntityManager, clients need not be
concerned about whether access is local or remote.

AccessType deleted In 10.1.3.1 release, the EJB 3.0 persistence specification requires the use of a
single access type in an entity hierarchy. The placement of the mapping
annotations determines the access type in effect.

N/A AssociationOverri
de

Added in 10.1.3.1 release as part of the changes made to annotations for
inheritance.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#AssociationOverride.

EJB 3.0 Support

Understanding EJB Support in OC4J 3-7

N/A AssociationOverri
des

Added in 10.1.3.1 release as part of the changes made to annotations for
inheritance.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#AssociationOverride
s.

Basic Basic In 10.1.3.1 release, attribute temporalType is omitted.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#Basic.

N/A DiscriminatorValu
e

Added in 10.1.3.1 release as part of the changes made to annotations for
inheritance.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#InheritanceAnnotati
ons

EmbeddableSuper
class

deleted Added in 10.1.3.1 release as part of the changes made to annotations for
inheritance.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#InheritanceAnnotati
ons

Entity Entity In 10.1.3.1 release, attribute access is omitted.

N/A EntityExistsExcep
tion

Added in 10.1.3.1 release.

EntityListener deleted In 10.1.3.1 release, use EntityListners instead.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#EntityListeners.

N/A EntityListeners Added in 10.1.3.1 release.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#EntityListeners.

EntityManager EntityManager In 10.1.3.1 release, EntityManager method getUserTransaction is named
getTransaction.

New methods added in 10.1.3.1 include the following:

■ setFlushMode

■ getFlushMode

■ lock

■ clear

■ joinTransaction

■ getDelegate

In 10.1.3.1 release, methods of this class throw additional exceptions such as
EntityExistsException and IllegalStateException, and, in some
cases, methods throw IllegalStateException instead of
IllegalArgumentException.

EntityNotFoundE
xception

EntityNotFoundExc
eption

In 10.1.3.1 release, this exception extends PersistenceException instead of
RuntimeException.

EntityTransacti
on

EntityTransaction New methods added in 10.1.3.1 release include the following:

■ setRollbackOnly

■ getRollbackOnly

EntityType deleted In 10.1.3.1 release, the EJB 3.0 specification removes the concept of BMP.

To develop and deploy a Java EE 5 BMP application, you must use the EJB 2.1
API.

Table 3–2 (Cont.) Changes to javax.persistence

10.1.3.0 10.1.3.1 Description

EJB 3.0 Support

3-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

N/A Enumerated Added in 10.1.3.1 release to support direct mappings of enumerated types.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#Enumerated.

N/A EnumType Added in 10.1.3.1 release to support direct mappings of enumerated types.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#Enumerated.

N/A ExcludeDefaultLis
teners

Added in 10.1.3.1 release to support managing life cycle callback default
listeners.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#ExcludeDefaultListe
ners.

N/A ExcludeSuperclass
Listeners

Added in 10.1.3.1 release to support managing life cycle callback superclass
listeners.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#ExcludeSuperclassLi
steners.

FlushMode deleted In 10.1.3.1 release, to set the flush mode, use the EntityManager method
setFlushMode to set the FlushModeType.

N/A GeneratedValue Added in 10.1.3.1 release to support automatic primary key (identity)
generation.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#GeneratedValue.

N/A GenerationType Added in 10.1.3.1 release to support automatic primary key (identity)
generation.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#GeneratedValue.

GeneratorType deleted In 10.1.3.1 release, use GeneratedValue attribute strategy to set the
GenerationType.

Inhertiance Inheritance In 10.1.3.1 release, the following attributes are omitted:

■ discriminatorType

■ discriminatorValue

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#InheritanceAnnotati
ons.

JoinColumn JoinColumn In 10.1.3.1 release, attribute secondaryTable is changed to table.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#JoinColumn.

JoinTable JoinTable In 10.1.3.1 release, attribute table (type Table) is changed to name (type
String).

The following attributes are added:

■ catalog

■ schema

■ uniqueConstraints

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#JoinTable.

Table 3–2 (Cont.) Changes to javax.persistence

10.1.3.0 10.1.3.1 Description

EJB 3.0 Support

Understanding EJB Support in OC4J 3-9

LobType deleted In 10.1.3.1 release, use direct mapping annotation @Lob to specify a Lob type. A
Lob may be either a binary or character type. The persistence provider infers
the Lob type from the type of the persistent field or property.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#Lob.

N/A LockModeType Added in 10.1.3.1 release.

N/A MappedSuperclass Added in 10.1.3.1 release as part of the changes made to annotations for
inheritance.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#MappedSuperclass.

NamedNativeQuer
y

NamedNativeQuery In 10.1.3.1 release, attribute queryString changed to query and attribute
hints was added.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#NamedNativeQuery.

NamedQuery NamedQuery In 10.1.3.1 release, attribute queryString changed to query and attribute
hints was added.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#NamedQuery.

NoResultExcepti
on

NoResultException In 10.1.3.1 release, this exception extends PersistenceException instead of
RuntimeException.

N/A OptimisticLockExc
eption

Added in 10.1.3.1 release.

PersistenceCont
ext

PersistenceContex
t

In 10.1.3.1 release, attribute properties was added.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#PersistenceContext.

N/A PersistenceProper
ty

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#PersistenceProperty.

N/A QueryHint For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#QueryHint.

N/A RollbackException Added in 10.1.3.1 release.

SecondaryTable SecondaryTable In 10.1.3.1 release, attribute pkJoin was changed to pkJoinColumns.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#SecondaryTable.

SequenceGenerat
or

SequenceGenerator In 10.1.3.1 release, the default for attribute initialValue changed from 0 to
1.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#SequenceGenerator.

N/A SqlResultSetMappi
ngs

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#SqlResultSetMapping
s.

Table Table In 10.1.3.1 release, attribute specified is omitted.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#Table.

Table 3–2 (Cont.) Changes to javax.persistence

10.1.3.0 10.1.3.1 Description

EJB 3.0 Support

3-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Changes in oracle.toplink.essentials.platform.database
In 10.1.3.1 release, the following new classes were added:

■ DerbyPlatform

■ JavaDBPlatform

■ PostgreSQLPlatform

Changes in Interceptor Support
If you are using TopLink JPA with OC4J, be aware of the fact that interceptors changed
substantially between the TopLink JPA preview and the final EJB 3.0 specification.

In the final EJB 3.0 specification, interceptors and life cycle event listeners are merged
and both use javax.interceptors.Interceptors. This will affect any code that
uses interceptors or life cycle event listeners, in particular session beans and
message-driven beans.

For more information, see the following:

■ "What is the Life Cycle of an Enterprise Bean?" on page 1-5

■ "Understanding EJB 3.0 Interceptors" on page 2-10.

Acquiring an Entity Manager
In 10.1.3.0 release, you use the java.persistence.setup.config property to
identify a class with the list of entities that an entity manager manages.

In 10.1.3.1 release, this property is obsolete. Instead, you must define managed entity
classes in a persistence unit as specified in the EJB 3.0 specification.

In 10.1.3.0 release, you inject an entity manager using the @Resource annotation.

In 10.1.3.1 release, you inject an entity manager using the @PersistenceContext
annotation:

@PersistenceContext protected EntityManager entityManager;

In 10.1.3.1 release, OC4J supports the use of @Resource to inject an entity manager for
backward compatibility. However, Oracle recommends that you use the

TableGenerator TableGenerator In 10.1.3.1 release, the following attributes were added:

■ catalog

■ schema

■ uniqueConstraints

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#TableGenerator.

N/A Temporal For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#Temporal.

TemporalType TemporalType In 10.1.3.1 release, enum value NONE is omitted.

For more information, see
http://www.oracle.com/technology/products/ias/toplink/jpa/
resources/toplink-jpa-annotations.html#Temporal.

TransactionRequ
iredException

TransactionRequir
edException

In 10.1.3.1 release, this exception extends PersistenceException instead of
RuntimeException.

Table 3–2 (Cont.) Changes to javax.persistence

10.1.3.0 10.1.3.1 Description

EJB 2.1 Support

Understanding EJB Support in OC4J 3-11

@PersistenceContext annotation instead to be compliant with the EJB 3.0
specification.

For more information, see the following:

■ "What is the persistence.xml File?" on page 2-8

■ "Acquiring an EntityManager" on page 29-8

■ http://www.oracle.com/technology/products/ias/toplink/jpa/resou
rces/toplink-jpa-annotations.html#EntityManagerAnnotations).

■ http://www.oracle.com/technology/products/ias/toplink/jpa/resou
rces/toplink-jpa-extensions.html#persistence-xml).

New JAR Files
In 10.1.3.0 release, OC4J uses the persistence-preview.jar and toplink.jar
file to provide the JPA preview implementation.

In 10.1.3.1 release, OC4J uses the persistence.jar and the
toplink-essentials.jar and toplink-essentials-agent.jar files to
provide the full JPA implementation.

In your IDE, ensure that any library definitions you may have associated with your
projects include only the 10.1.3.1 JPA libraries and exclude the old 10.1.3.0 libraries.

For more information about TopLink JAR files, see "JPA Persistence JAR Files" on
page 3-2.

EJB 2.1 Support
In this release, OC4J supports the functionality specified in the EJB 2.1 final release
specification (http://java.sun.com/products/ejb/docs.html).

This section describes the following:

■ What JDK is Required?

■ How do you Define an EJB 2.1 Module?

■ How Does OC4J Manage Persistence in an EJB 2.1 Application?

What JDK is Required?
If you are using EJB 2.1, then you must use JDK 1.4 or higher.

How do you Define an EJB 2.1 Module?
By default, module version - ejb-jar.xml file <ejb-jar> element version
attribute - is set to 2.x.

Typically, this value changes only if you explicitly set it to 3.0 or omit the
ejb-jar.xml file.

The CMP version - ejb-jar.xml file <cmp-version> element - is independent of
the EJB module version. For EJB 2.x CMP entity beans, you set <cmp-version> to
2.x.

Note that it is valid to have an EJB 3.0 module that uses both EJB 2.x CMP entity beans
and EJB 3.0 entities.

For more information, see "Understanding EJB Persistence Services" on page 2-12.

EJB 2.1 Support

3-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

How Does OC4J Manage Persistence in an EJB 2.1 Application?
OC4J delegates persistence operations to a persistence manager. In this release, OC4J
uses the TopLink persistence manager by default (see "TopLink EJB 2.1 Persistence
Manager" on page 3-12).

The Orion persistence manager is deprecated. Oracle recommends that you use OC4J
and the TopLink persistence manager for new development. Using the migration tool
(see "Migrating to the TopLink EJB 2.1 Persistence Manager" on page 3-13), you can
easily migrate an existing OC4J application that uses EJB 2.0 entity beans with the
Orion persistence manager to use EJB 2.0 entity beans with the TopLink persistence
manager. For more information about the Orion persistence manager, see the Oracle
Containers for J2EE Orion CMP Developer’s Guide.

TopLink EJB 2.1 Persistence Manager
Oracle TopLink is an advanced, object-persistence and object-transformation
framework that provides development tools and run-time capabilities that reduce
development and maintenance efforts, and increase enterprise application
functionality.

In this release, OC4J uses TopLink as the persistence manager for EJB 2.1 entity beans
with container-managed persistence. For more information about the TopLink
persistence manager, see "What is TopLink?" in the Oracle TopLink Developer’s Guide.

OC4J provides JAR files for the classes that make up the TopLink EJB 2.1 persistence
manager implementation. For more information about persistence JAR files, see "EJB
2.1 Persistence JAR Files" on page 3-12.

For EJB 2.1 projects, you use the TopLink Workbench (see "Understanding the TopLink
Workbench" in the Oracle TopLink Developer’s Guide) to configure persistence properties
in the toplink-ejb-jar.xml file (see "What is the toplink-ejb-jar.xml File?" on
page 2-6). When you migrate an Orion CMP application to TopLink persistence (see
"Migrating to the TopLink EJB 2.1 Persistence Manager" on page 3-13), the TopLink
migration tool automatically creates a TopLink Workbench project for you.

You can customize this configuration at run time using a TopLink customization class
(see "Customizing the TopLink EJB 2.1 Persistence Manager" on page 3-13).

EJB 2.1 Persistence JAR Files
OC4J uses the TopLink JAR files that Table 3–3 lists to provide the TopLink EJB 2.1
persistence manager implementation. These JAR files are located in the <ORACLE_
HOME>/toplink/jlib directory.

Table 3–3 TopLink JAR Files

JAR File Contents

antlr.jar This JAR contains the

EJB 2.1 Support

Understanding EJB Support in OC4J 3-13

Customizing the TopLink EJB 2.1 Persistence Manager
At run time, you can access TopLink persistence manager API to take advantage of
advanced TopLink features.

To access the TopLink persistence manager API in an EJB 2.1 CMP application, you can
include a TopLink customization class in your deployment JAR.

This optional Java class implements
oracle.toplink.ejb.cmp.DeploymentCustomization to allow deployment
customization of TopLink mapping and run-time configuration. At deployment time,
the TopLink runtime creates a new instance of this class and invokes its methods
beforeLoginCustomization (before the TopLink runtime logs in to the session)
and afterLoginCustomization (after the TopLink runtime logs in to the session),
passing in the TopLink session as a parameter.

Use your implementation of the beforeLoginCustomization method to configure
TopLink session attributes including cache coordination, parameterized SQL, native
SQL, batch writing/batch size, byte-array/string binding, login, event listeners, table
qualifier, and sequencing.

For EJB 2.1, you can use a TopLink customization class to access TopLink persistence
manager API not accessible from the TopLink Workbench GUI.

For more information, see the following:

■ "Configuring pm-properties" in the Oracle TopLink Developer’s Guide

■ Oracle TopLink API Reference

Migrating to the TopLink EJB 2.1 Persistence Manager
Using the TopLink migration tool, you can easily migrate an existing OC4J application
that uses EJB 2.0 entity beans with the Orion persistence manager to use EJB 2.0 entity
beans with the TopLink persistence manager.

For more information on using the TopLink migration tool, see "Migrating OC4J Orion
Persistence to OC4J TopLink Persistence" in the Oracle TopLink Developer’s Guide.

toplink.jar This JAR contains all the classes that comprise the TopLink API, including classes with
Oracle JDBC dependencies.

If you want to use an Oracle JDBC driver version different than the default version
installed with OC4J, see "Associating TopLink With an Oracle JDBC Driver" on
page 20-4.

toplink-agent.jar This JAR contains the classes that TopLink uses to perform byte-code weaving on EJB
2.1 entity bean classes to enable transparent one-to-one and many-to-one indirection
without requiring the use of a ValueHolder. You invoke toplink-agent.jar by
adding -javaagent:toplink-agent.jar to your application's JVM command line
– do not include this jar on the classpath of a TopLink application.

This JAR is optional. It should never be placed on the classpath and should only be
used as part of -javaagent.

toplink-oc4j.jar This JAR contains the classes that TopLink uses to integrate with Oracle Containers for
J2EE.

This JAR file is only used in OC4J; the container is preconfigured to use
toplink-oc4j.jar. In a non-OC4J application, use toplink.jar.

Table 3–3 (Cont.) TopLink JAR Files

JAR File Contents

EJB 2.1 Support

3-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Part II
EJB 3.0 Session Beans

This part provides procedural information on implementing and configuring EJB 3.0
session beans. For conceptual information, see Part I, "EJB Overview".

This part contains the following chapters:

■ Chapter 4, "Implementing an EJB 3.0 Session Bean"

■ Chapter 5, "Using an EJB 3.0 Session Bean"

Implementing an EJB 3.0 Session Bean 4-1

4
Implementing an EJB 3.0 Session Bean

This chapter explains how to implement an EJB 3.0 session bean, including the
following:

■ Implementing an EJB 3.0 Stateless Session Bean

■ Implementing an EJB 3.0 Stateful Session Bean

For more information, see the following:

■ "What is a Session Bean?" on page 1-27

■ "Using an EJB 3.0 Session Bean" on page 5-1

Implementing an EJB 3.0 Stateless Session Bean
EJB 3.0 greatly simplifies the development of stateless session beans, removing many
complex development tasks. For example:

■ The bean class can be a plain old Java object (POJO); it does not need to implement
javax.ejb.SessionBean.

■ The business interface is optional.

Home (javax.ejb.EJBHome and javax.ejb.EJBLocalHome) and component
(javax.ejb.EJBObject and javax.ejb.EJBLocalObject) business
interfaces are not required.

The EJB 3.0 local or remote client of a session bean written to the EJB 3.0 API
accesses a session bean through its business interface. The business interface of an
EJB 3.0 session bean is an ordinary Java interface, regardless of whether or not
local or remote access is provided for the bean.

■ Annotations are used for many features.

■ A SessionContext is not required: you can simply use this to resolve a session
bean to itself.

For more information, see the following:

■ "What is a Stateless Session Bean?" on page 1-28

■ "Adapting an EJB 3.0 Stateless Session Bean for an EJB 2.1 Client" on page 4-4

Implementing an EJB 3.0 Stateful Session Bean

4-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

To implement an EJB 3.0 stateless session bean, do the following:

1. Create the stateless session bean class.

You can create a plain old Java object (POJO) and define it as a stateless session
bean with the @Stateless annotation.

2. Implement your business methods.

3. Optionally, define life cycle callback methods using the appropriate annotations.

You do not need to define life cycle methods: OC4J provides an implementation
for all such methods. Define a method of your stateless session bean class as a life
cycle callback method only if you want to take some action of your own at a
particular point in the stateless session bean’s life cycle.

For more information, see "Configuring a Life Cycle Callback Interceptor Method
on an EJB 3.0 Session Bean" on page 5-4.

4. Optionally, define OC4J-proprietary deployment options.

In an EJB 3.0 application, you can do this by annotating your stateless session bean
class with the OC4J-proprietary oracle.j2ee.ejb.@StatelessDeployment
annotation (see "Configuring OC4J-Proprietary Deployment Options on an EJB 3.0
Session Bean" on page 5-10).

5. Complete the configuration of your session bean (see "Using an EJB 3.0 Session
Bean" on page 5-1).

Implementing an EJB 3.0 Stateful Session Bean
EJB 3.0 greatly simplifies the development of stateful session beans, removing many
complex development tasks. For example:

■ The bean class can be a POJO; it does not need to implement
javax.ejb.SessionBean.

■ The business interface is optional.

Home (javax.ejb.EJBHome and javax.ejb.EJBLocalHome) and component
(javax.ejb.EJBObject and javax.ejb.EJBLocalObject) business
interfaces are not required.

Note: You can download an EJB 3.0 stateless session bean code
example from:
http://www.oracle.com/technology/tech/java/oc4j/10
131/how_
to/how-to-ejb30-stateless-ejb/doc/how-to-ejb30-sta
teless-ejb.html.

Note: OC4J ignores the @Stateless attribute mappedName. For
more information, see "OC4J Support for Annotation Attribute
mappedName" on page 1-27.

Note: A stateless session bean does not need a remove method.

Implementing an EJB 3.0 Stateful Session Bean

Implementing an EJB 3.0 Session Bean 4-3

The EJB 3.0 local or remote client of a session bean written to the EJB 3.0 API
accesses a session bean through its business interface. The business interface of an
EJB 3.0 session bean is an ordinary Java interface, regardless of whether or not
local or remote access is provided for the bean.

■ Annotations are used for many features.

■ A SessionContext is not required: you can simply use this to resolve a session
bean to itself.

For more information, see the following:

■ "What is a Stateless Session Bean?" on page 1-28

■ "Adapting an EJB 3.0 Stateful Session Bean for an EJB 2.1 Client" on page 4-5

To implement an EJB 3.0 stateful session bean, do the following:

1. Create the stateful session bean class.

You can create a POJO and define it as a stateful session bean with the @Stateful
annotation.

2. Implement your business methods.

To define a method of your stateful session bean class as a remove method, use
the @Remove annotation.

3. Optionally, define life cycle callback methods using the appropriate annotations.

You do not need to define life cycle methods: OC4J provides an implementation
for all such methods. Define a method of your stateful session bean class as a life
cycle callback method only if you want to take some action of your own at a
particular point in the stateful session bean’s life cycle.

For more information, see "Configuring a Life Cycle Callback Interceptor Method
on an EJB 3.0 Session Bean" on page 5-4.

4. Optionally, define OC4J-proprietary deployment options.

In an EJB 3.0 application, you can do this by annotating your stateful session bean
class with the OC4J-proprietary oracle.j2ee.ejb.@StatefulDeployment
annotation (see "Configuring OC4J-Proprietary Deployment Options on an EJB 3.0
Session Bean" on page 5-10).

5. Complete the configuration of your session bean (see "Using an EJB 3.0 Session
Bean" on page 5-1).

Note: You can download an EJB 3.0 stateful session bean code
example from:
http://www.oracle.com/technology/tech/java/oc4j/10
131/how_
to/how-to-ejb30-stateful-ejb/doc/how-to-ejb30-stat
eful-ejb.html.

Note: OC4J ignores the @Stateful attribute mappedName.

Adapting an EJB 3.0 Stateless Session Bean for an EJB 2.1 Client

4-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Adapting an EJB 3.0 Stateless Session Bean for an EJB 2.1 Client
By associating an EJB 3.0 stateless session bean with EJB 2.1 home and component
interfaces (see "Using Annotations" on page 4-4), you can adapt an EJB 3.0 stateless
session bean so that an EJB 2.1 client can access it.

You can use this technique to manage the incremental migration of an EJB 2.1
application to EJB 3.0 or to give existing EJB 2.1 clients access to new development that
you implement using EJB 3.0.

For more information on EJB 2.1 home and component interfaces, see the following:

■ "Implementing the Home Interfaces" on page 11-6

■ "Implementing the Component Interfaces" on page 11-8

Using Annotations
To adapt an EJB 3.0 stateless session bean for an EJB 2.1 client, do the following:

1. Associate the EJB 2.1 home interfaces with the EJB 3.0 stateless session bean.

Use the @RemoteHome annotation for remote home interfaces, and the
@LocalHome annotation for local home interfaces:

@Stateless
@RemoteHome (value=Ejb21RemoteHome1.class)
@LocalHome (value=Ejb21LocalHome.class)
public class MyStatelessSB {
...
}

2. Consider the requirements for supporting the home interface’s create methods.

An EJB 3.0 stateless session bean does not require an ejbCreate method, even
when it has a home interface. Alternatively, you may define a post-construct life
cycle callback method (see "Configuring a Life Cycle Callback Interceptor Method
on an EJB 3.0 Session Bean" on page 5-4).

3. Associate the EJB 2.1 component interfaces with the EJB 3.0 stateless session bean.

Use the @Remote annotation for remote component interfaces, and the @Local
annotation for local component interfaces:

@Stateless
@Remote (value={Ejb21Remote1.class, Ejb21Remote2.class})
@Local (value={Ejb21Local.class})
public class MyStatelessSB {
...
}

Note: You may associate a stateless session bean with at most one
remote and one local home interface.

Note: You may associate a stateless session bean with one or more
remote and local component interfaces.

Adapting an EJB 3.0 Stateful Session Bean for an EJB 2.1 Client

Implementing an EJB 3.0 Session Bean 4-5

Adapting an EJB 3.0 Stateful Session Bean for an EJB 2.1 Client
By associating an EJB 3.0 stateful session bean with EJB 2.1 home and component
interfaces (see "Using Annotations" on page 4-5), you can adapt an EJB 3.0 stateful
session bean so that an EJB 2.1 client can access it.

You can use this technique to manage the incremental migration of an EJB 2.1
application to EJB 3.0 or to give existing EJB 2.1 clients access to new development that
you implement using EJB 3.0.

For more information on EJB 2.1 home and component interfaces, see: the following

■ "Implementing the Home Interfaces" on page 11-6

■ "Implementing the Component Interfaces" on page 11-8

Using Annotations
To adapt an EJB 3.0 stateful session bean for an EJB 2.1 client, do the following:

1. Associate the EJB 2.1 home interfaces with the EJB 3.0 stateful session bean.

Use the @RemoteHome annotation for remote home interfaces, and the
@LocalHome annotation for local home interfaces:

@Stateful
@RemoteHome (value=Ejb21RemoteHome1.class)
@LocalHome (value=Ejb21LocalHome.class)
public class MyStatefulSB {
...
}

2. Consider the requirements for supporting the home interface’s create methods.

For each create<METHOD> in the home interfaces, implement an initialization
method in your EJB 3.0 stateful session bean with the same signature (number,
order, and type of arguments), and annotate the method with @Init:

@Stateful
@RemoteHome (value=Ejb21RemoteHome1.class)
@LocalHome (value=Ejb21LocalHome.class)
public class MyStatefulSB {

private String message;
private String name;

...
// Corresponds to home interface method create()

@Init
public void initDefault() throws CreateException {

this.message = "Default Message";
this.name = "Default Name";

}

// Corresponds to home interface method createWithMessage(String)

@Init
public void initWithMsg(String message) throws CreateException {

Note: You may associate a stateful session bean with at most one
remote and one local home interface.

Adapting an EJB 3.0 Stateful Session Bean for an EJB 2.1 Client

4-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

this.message = message;
}

// Corresponds to home interface method createWithName(String)
// Use @Init attribute value to disambiguate createWithName(String)
// from createWithMessage(String).

@Init(value="createWithName")
public void initWithName(String message) throws CreateException {

this.name = name;
}

...
}

Initialization methods may have any method name. OC4J matches a home
interface create<METHOD> to a stateful session bean initialization method by
signature. Alternatively, you can use @Init attribute value to explicitly specify
the name of the home interface create<METHOD>. This is useful when two or
more home interface create<METHOD> methods have the same signature.

Initialization methods are invoked after the post-construct life cycle method is
invoked, if present (see "Configuring a Life Cycle Callback Interceptor Method on
an EJB 3.0 Session Bean" on page 5-4).

3. Associate the EJB 2.1 component interfaces with the EJB 3.0 stateful session bean.

Use the @Remote annotation for remote component interfaces, and the @Local
annotation for local component interfaces:

@Stateful
@Remote (value={Ejb21Remote1.class, EJB21Remote2.class})
@Local (value={Ejb21Local.class})
public class MyStatefulSB {
...
}

Note: You may associate a stateful session bean with one or more
remote and local component interfaces.

Using an EJB 3.0 Session Bean 5-1

5
Using an EJB 3.0 Session Bean

This chapter describes the various options that you must configure in order to use an
EJB 3.0 session bean.

Table 5–1 lists these options and indicates which are basic (applicable to most
applications), and which are advanced (applicable to more specialized applications)
The table also indicates which options are applicable to stateless session beans, and
which are applicable to stateful session beans.

For more information, see the following:

■ "What is a Session Bean?" on page 1-27

■ "Implementing an EJB 3.0 Session Bean" on page 4-1

Configuring Passivation
You can enable and disable passivation for stateful session beans using the
server.xml file (see "Using Deployment XML" on page 5-2).

You may choose to disable passivation for any of the following reasons:

Table 5–1 Configurable Options for an EJB 3.0 Session Bean

Options Stateless Stateful Type

"Configuring Passivation" on page 5-1 Advanced

"Configuring Passivation Criteria" on page 5-2 Advanced

"Configuring Passivation Location" on page 5-3 Advanced

"Configuring Bean Instance Pool Size" on page 31-4 Basic

"Configuring Bean Instance Pool Timeouts for Session Beans" on page 31-6 Advanced

"Configuring a Transaction Timeout for a Session Bean" on page 21-6 Advanced

"Configuring a Life Cycle Callback Interceptor Method on an EJB 3.0 Session Bean" on
page 5-4

Basic

"Configuring a Life Cycle Callback Interceptor Method on an Interceptor Class of an EJB 3.0
Session Bean" on page 5-5

Basic

"Configuring an Around Invoke Interceptor Method on an EJB 3.0 Session Bean" on page 5-6 Advanced

"Configuring an Around Invoke Interceptor Method on an Interceptor Class of an EJB 3.0
Session Bean" on page 5-7

Advanced

"Configuring an Interceptor Class for an EJB 3.0 Session Bean" on page 5-8 Advanced

"Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 Session Bean" on
page 5-10

Advanced

Configuring Passivation Criteria

5-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Incompatible object types: if you cannot represent the nontransient attributes of
your stateful session bean with object types supported by passivation (see "What
Object Types can be Passivated?" on page 1-33), you can exchange increased
memory consumption for the use of other object types by disabling passivation.

■ Performance: if you determine that passivation is a performance problem in your
application, you can exchange increased memory consumption for improved
performance by disabling passivation.

■ Secondary storage limitations: if you cannot provide sufficient secondary storage
(see "Configuring Passivation Location" on page 5-3), you can exchange increased
memory consumption for reduced secondary storage requirements by disabling
passivation.

For more information, see the following:

■ "When Does Stateful Session Bean Passivation Occur?" on page 1-32

■ "Configuring Passivation Criteria" on page 5-2

■ "Configuring Passivation Location" on page 5-3

Using Deployment XML
For an EJB 3.0 stateful session bean, you configure passivation in the server.xml file
as you would for an EJB 2.1 stateful session bean (see "Using Deployment XML" on
page 12-2).

Configuring Passivation Criteria
You can specify under what conditions OC4J passivates an EJB 3.0 stateful session
bean using OC4J-proprietary annotations (see "Using Annotations" on page 5-2) or
using the orion-ejb-jar.xml file (see "Using Deployment XML" on page 5-3).

Configuration in the orion-ejb-jar.xml file overrides the corresponding
configuration made using OC4J-proprietary annotations.

For more information, see the following:

■ "When Does Stateful Session Bean Passivation Occur?" on page 1-32

■ "Configuring Passivation" on page 5-1

■ "Configuring Passivation Location" on page 5-3

Using Annotations
You can specify OC4J-proprietary deployment options for an EJB 3.0 stateful session
bean using the @StatefulDeployment OC4J-proprietary annotation. Example 5–1
shows how to configure passivation criteria for an EJB 3.0 stateless session bean using
the following @StatefulDeployment annotation attributes:

■ idletime

■ memoryThreshold

■ maxInstances

■ maxInstancesThreshold

■ passivateCount

■ resourceCheckInterval

Configuring Passivation Location

Using an EJB 3.0 Session Bean 5-3

For more information on these @StatefulDeployment attributes, see Table A–1. For
more information on the @StatefulDeployment annotation, see "Configuring
OC4J-Proprietary Deployment Options on an EJB 3.0 Session Bean" on page 5-10.

Example 5–1 Configuring Passivation Criteria Using @StatefulDeployment

import javax.ejb.Stateless;
import oracle.j2ee.ejb.StatelessDeployment;

@Stateless
@StatefulDeployment(

idletime=100,
memoryThroshold=90,
maxInstances=10,
maxInstancesThreshold=80,
passivateCount=3,
resourceCheckInterval=90

)
public class HelloWorldBean implements HelloWorld {

public void sayHello(String name) {
System.out.println("Hello "+name +" from first EJB3.0");

}
}

Using Deployment XML
For an EJB 3.0 stateful session bean, you configure passivation criteria in the
orion-ejb-jar.xml file as you would for an EJB 2.1 stateful session bean (see
"Using Deployment XML" on page 12-2).

Configuring Passivation Location
You can specify the directory and file name to which OC4J serializes an EJB 3.0 stateful
session bean when passivated using OC4J-proprietary annotations (see "Using
Annotations" on page 5-3) or using the orion-ejb-jar.xml file (see "Using
Deployment XML" on page 5-4).

For more information, see the following:

■ "Where is a Passivated Stateful Session Bean Stored?" on page 1-34

■ "Configuring Passivation" on page 5-1

■ "Configuring Passivation Criteria" on page 5-2

Using Annotations
You can specify OC4J-proprietary deployment options for an EJB 3.0 stateful session
bean using the @StatefulDeployment OC4J-proprietary annotation. Example 5–1
shows how to configure the passivation location for an EJB 3.0 stateless session bean
using the @StatefulDeployment annotation persistenceFileName attribute.

For more information on this @StatefulDeployment attribute, see Table A–1. For
more information on the @StatefulDeployment annotation, see "Configuring
OC4J-Proprietary Deployment Options on an EJB 3.0 Session Bean" on page 5-10.

Example 5–2 Configuring Passivation Location Using @StatefulDeployment

import javax.ejb.Stateless;
import oracle.j2ee.ejb.StatelessDeployment;

Configuring a Life Cycle Callback Interceptor Method on an EJB 3.0 Session Bean

5-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

@Stateless
@StatefulDeployment(

persistenceFileNazme="C:\sfsb\sfsb.persistence",
)
public class HelloWorldBean implements HelloWorld {

public void sayHello(String name) {
System.out.println("Hello "+name +" from first EJB3.0");

}
}

Using Deployment XML
For an EJB 3.0 stateful session bean, you configure passivation location in the
orion-ejb-jar.xml file as you would for an EJB 2.1 stateful session bean (see
"Using Deployment XML" on page 12-3).

Configuring a Life Cycle Callback Interceptor Method on an EJB 3.0
Session Bean

You can specify an EJB 3.0 session bean class method as a callback interceptor method
for any of the following life cycle events (see "Using Annotations" on page 5-4):

■ Post-construct

■ Pre-destroy

■ Pre-passivate (stateful session beans only)

■ Post-activate (stateful session beans only)

The session bean class life cycle callback method must have the following signature:

void <METHOD>()

You can also specify one or more life cycle callback methods on an interceptor class
that you associate with an EJB 3.0 session bean (see "Configuring a Life Cycle Callback
Interceptor Method on an Interceptor Class of an EJB 3.0 Session Bean" on page 5-5).

For more information, see the following:

■ "What is the Stateless Session Bean Life Cycle?" on page 1-28

■ "What is the Life Cycle of a Stateful Session Bean?" on page 1-30

■ "Life Cycle Callback Methods on a Bean Class" on page 1-6

Using Annotations
You can specify an EJB 3.0 session bean class method as a life cycle callback method
using any of the following annotations:

■ @PostConstruct

■ @PreDestroy

■ @PrePassivate (stateful session beans only)

■ @PostActivate (stateful session beans only)

Note: Do not specify pre-passivate or post-activate life cycle callback
methods on a stateless session bean.

Configuring a Life Cycle Callback Interceptor Method on an Interceptor Class of an EJB 3.0 Session Bean

Using an EJB 3.0 Session Bean 5-5

Example 5–3 shows how to use the @PostConstruct annotation to specify EJB 3.0
stateful session bean class method initialize as a life cycle callback method.

Example 5–3 @PostConstruct

@Stateful
public class CartBean implements Cart {

private ArrayList items;

@PostConstruct
public void initialize() {

items = new ArrayList();
}

...
}

Configuring a Life Cycle Callback Interceptor Method on an Interceptor
Class of an EJB 3.0 Session Bean

You can designate an interceptor method on an interceptor class of an EJB 3.0 session
bean as a life cycle callback interceptor method.

To configure a life cycle callback interceptor method on an interceptor class, you must
do the following:

1. Create an interceptor class.

This can be any POJO class.

2. Implement the life cycle callback interceptor method.

Callback methods defined on a bean's interceptor class have the following
signature:

Object <METHOD>(InvocationContext)

3. Associate a life cycle event with the callback interceptor method (see "Using
Annotations" on page 5-5).

A life cycle event can only be associated with one callback interceptor method, but
a life cycle callback interceptor method may be used to interpose on multiple
callback events. For example, @PostConstruct and @PreDestroy may appear
only once in an interceptor class, but you may associate both @PostConstruct
and @PreDestroy with the same callback interceptor method.

4. Associate the interceptor class with your EJB 3.0 session bean (see "Configuring an
Interceptor Class for an EJB 3.0 Session Bean" on page 5-8).

For more information, see the following:

■ "What is the Stateless Session Bean Life Cycle?" on page 1-28

■ "What is the Life Cycle of a Stateful Session Bean?" on page 1-30

■ "Life Cycle Callback Interceptor Methods on an EJB 3.0 Interceptor Class" on
page 1-6

Using Annotations
You can specify an interceptor class method as an EJB 3.0 session bean life cycle
callback method using any of the following annotations:

Configuring an Around Invoke Interceptor Method on an EJB 3.0 Session Bean

5-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ @PostConstruct

■ @PreDestroy

■ @PrePassivate (stateful session beans only)

■ @PostActivate (stateful session beans only)

Example 5–4 shows an interceptor class for a stateful session bean. It designates
method myPrePassivateInterceptorMethod as the life cycle callback interceptor
method for the pre-passivate life cycle event using the @PrePassivate annotation. It
also designates method myPostConstructInterceptorMethod as the life cycle
callback interceptor method for both the post-construct and post-activate life cycle
events using the @PostConstruct and @PostActivate annotations. OC4J invokes
the appropriate life cycle method only when the appropriate life cycle event occurs.
OC4J invokes all other non-life cycle interceptor methods (such as
myInterceptorMethod) each time you invoke a session bean business method (see
"Configuring an Interceptor Class for an EJB 3.0 Session Bean" on page 5-8).

Example 5–4 Interceptor Class

public class MyStatefulSessionBeanInterceptor {
...
protected void myInterceptorMethod (InvocationContext ctx) {

...
ctx.proceed();
...

}

@PostConstruct
@PostActivate
protected void myPostConstructInterceptorMethod (InvocationContext ctx) {

...
ctx.proceed();
...

}
@PrePassivate
protected void myPrePassivateInterceptorMethod (InvocationContext ctx) {

...
ctx.proceed();
...

}
}

Configuring an Around Invoke Interceptor Method on an EJB 3.0 Session
Bean

You can specify one nonbusiness method as the interceptor method for a stateless or
stateful session bean. Each time a client invokes a session bean business method, OC4J
intercepts the invocation and invokes the interceptor method. The client invocation
proceeds only if the interceptor method returns InvocationContext.proceed().

An interceptor method has the following signature:

Object <METHOD>(InvocationContext) throws Exception

An interceptor method may have public, private, protected, or package level access,
but must not be declared as final or static.

You can specify this method on the EJB 3.0 session bean class (see "Using Annotations"
on page 5-7) or on an interceptor class that you associate with an EJB 3.0 session bean

Configuring an Around Invoke Interceptor Method on an Interceptor Class of an EJB 3.0 Session Bean

Using an EJB 3.0 Session Bean 5-7

(see "Configuring an Around Invoke Interceptor Method on an Interceptor Class of an
EJB 3.0 Session Bean" on page 5-7).

For more information, see "Understanding EJB 3.0 Interceptors" on page 2-10.

Using Annotations
Example 5–5 shows how to designate a method of a session bean class as an
interceptor method using the @AroundInvoke annotation. Each time a client invokes
a business method of this stateless session bean, OC4J intercepts the invocation and
invokes the interceptor method myInterceptor. The client invocation proceeds only
if the interceptor method returns InvocationContext.proceed().

Example 5–5 @AroundInvoke in an EJB 3.0 Session Bean

@Stateless
public class HelloWorldBean implements HelloWorld {

public void sayHello() {
System.out.println("Hello!");

}

@AroundInvoke
protected Object myInterceptor(InvocationContext ctx) throws Exception {

Principal p = ctx.getEJBContext().getCallerPrincipal;
if (!userIsValid(p)) {

throw new SecurityException(
"Caller: '" + p.getName() +
"' does not have permissions for method " + ctx.getMethod()

);
}
return ctx.proceed();

}
}

Configuring an Around Invoke Interceptor Method on an Interceptor Class
of an EJB 3.0 Session Bean

You can specify one nonbusiness method as the interceptor method for a stateless or
stateful session bean. Each time a client invokes a session bean business method, OC4J
intercepts the invocation and invokes the interceptor method. The client invocation
proceeds only if the interceptor method returns InvocationContext.proceed().

You can specify this method on an interceptor class that you associate with an EJB 3.0
session bean or on the EJB 3.0 session bean class itself (see "Configuring an Around
Invoke Interceptor Method on an EJB 3.0 Session Bean" on page 5-6).

To configure an interceptor method on an interceptor class, you must do the following:

1. Create an interceptor class.

This can be any POJO class.

2. Implement the interceptor method.

An interceptor method has the following signature:

Object <METHOD>(InvocationContext) throws Exception

An interceptor method may have public, private, protected, or package level
access but must not be declared as final or static.

Configuring an Interceptor Class for an EJB 3.0 Session Bean

5-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

3. Designate the method as the interceptor method (see "Using Annotations" on
page 5-8).

4. Associate the interceptor class with your EJB 3.0 session bean (see "Configuring an
Interceptor Class for an EJB 3.0 Session Bean" on page 5-8).

For more information, see "Understanding EJB 3.0 Interceptors" on page 2-10.

Using Annotations
Example 5–6 shows how to specify interceptor class method myInterceptor as the
interceptor method of an EJB 3.0 session bean using the @AroundInvoke annotation.
After you associate this interceptor class with a session bean ("Configuring an
Interceptor Class for an EJB 3.0 Session Bean" on page 5-8), each time you invoke a
session bean business method, OC4J intercepts the invocation and invokes the
myInterceptor method. The client invocation proceeds only if this method returns
InvocationContext.proceed().

Example 5–6 Interceptor Class

public class MyInterceptor {
...
@AroundInvoke
protected Object myInterceptor(InvocationContext ctx) throws Exception {

Principal p = ctx.getEJBContext().getCallerPrincipal;
if (!userIsValid(p)) {

throw new SecurityException(
"Caller: '" + p.getName() +
"' does not have permissions for method " + ctx.getMethod()

);
}
return ctx.proceed();

}

@PreDestroy
public void myPreDestroyMethod (InvocationContext ctx) {

...
ctx.proceed();
...

}
}

Configuring an Interceptor Class for an EJB 3.0 Session Bean
An interceptor class is a class, distinct from the bean class itself, whose methods are
invoked in response to business method invocations and life cycle events on the bean.
You can associate a bean class can with any number of interceptor classes.

You can associate an interceptor class with an EJB 3.0 stateless or stateful session bean.

To configure an EJB 3.0 session bean with an interceptor class, you must do the
following:

1. Create an interceptor class (see "Creating an Interceptor Class" on page 5-9).

This can be any POJO class.

2. Implement interceptor methods in the interceptor class.

An interceptor method has the following signature:

Object <METHOD>(InvocationContext) throws Exception

Configuring an Interceptor Class for an EJB 3.0 Session Bean

Using an EJB 3.0 Session Bean 5-9

An interceptor method may have public, private, protected, or package level
access, but must not be declared as final or static.

You can annotate an interceptor method as a life cycle callback (see "Configuring a
Life Cycle Callback Interceptor Method on an Interceptor Class of an EJB 3.0
Session Bean" on page 5-5) or as an AroundInvoke method (see "Configuring an
Around Invoke Interceptor Method on an Interceptor Class of an EJB 3.0 Session
Bean" on page 5-7).

3. Associate the interceptor class with your EJB 3.0 session bean (see "Associating an
Interceptor Class With a Session Bean" on page 5-10).

4. Optionally configure the session bean to use singleton interceptors (see
"Specifying Singleton Interceptors in a Session Bean" on page 5-10).

For more information, see "Understanding EJB 3.0 Interceptors" on page 2-10.

Using Annotations
This section describes the following:

■ Creating an Interceptor Class

■ Associating an Interceptor Class With a Session Bean

■ Specifying Singleton Interceptors in a Session Bean

Creating an Interceptor Class
Example 5–7 shows how to specify an AroundInvoke interceptor method and a life
cycle callback interceptor method in an interceptor class for an EJB 3.0 session bean.
After you associate this interceptor class with a session bean (see Example 5–8), each
time you invoke a session bean business method, OC4J invokes the AroundInvoke
method myInterceptor. When the appropriate life cycle event occurs, OC4J invokes
the corresponding life cycle callback interceptor method such as
myPreDestroyMethod.

Example 5–7 Interceptor Class

public class MyInterceptor {
...
@AroundInvoke
protected Object myInterceptor(InvocationContext ctx) throws Exception {

Principal p = ctx.getEJBContext().getCallerPrincipal;
if (!userIsValid(p)) {

throw new SecurityException(
"Caller: '" + p.getName() +
"' does not have permissions for method " + ctx.getMethod()

);
}
return ctx.proceed();

}

@PreDestroy
public void myPreDestroyMethod (InvocationContext ctx) {

...
ctx.proceed();
...

}
}

Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 Session Bean

5-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Associating an Interceptor Class With a Session Bean
You can associate an interceptor class with an EJB 3.0 session bean using the
@Interceptors annotation. Example 5–8 shows how to associate the interceptor
class from Example 5–7 with an EJB 3.0 session bean class.

Note that the life cycle method for @PostConstruct is a method of the EJB 3.0
session bean class itself (for more information, see "Configuring a Life Cycle Callback
Interceptor Method on an EJB 3.0 Session Bean" on page 5-4), while the life cycle
method for @PreDestroy is a life cycle callback interceptor method on the interceptor
class associated with this session bean (see "Configuring a Life Cycle Callback
Interceptor Method on an Interceptor Class of an EJB 3.0 Session Bean" on page 5-5).

Example 5–8 Associating an Interceptor Class With an EJB 3.0 Session Bean

@Stateful
@Interceptors(MyInterceptor.class)
public class CartBean implements Cart {

private ArrayList items;

@PostConstruct
public void initialize() {

items = new ArrayList();
}
...

}

Specifying Singleton Interceptors in a Session Bean
As Example 5–9 shows, you can configure OC4J to use singleton interceptor classes by
setting the @StatelessDeployment or @StatefulDeployment attribute
interceptorType to singleton. All instances of this session bean will share the
same instance of MyInterceptor. The MyInterceptor class must be stateless.

For more information about this attribute, see Table A–1. For more information on
singleton interceptors, see "Singleton Interceptors" on page 2-12.

Example 5–9 Specifying a Singleton Interceptor Class with an EJB 3.0 Stateful Session
Bean

@Stateful
@StatefulDeployment(interceptorType="singleton")
@Interceptors(MyInterceptor.class)
public class CartBean implements Cart {

private ArrayList items;

@PostConstruct
public void initialize() {

items = new ArrayList();
}
...

}

Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 Session
Bean

You can configure OC4J-proprietary deployment options for an EJB 3.0 session bean
using OC4J-proprietary annotations (see "Using Annotations" on page 5-11) or using
the orion-ejb-jar.xml file (see "Using Deployment XML" on page 5-11).

Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 Session Bean

Using an EJB 3.0 Session Bean 5-11

Configuration in the orion-ejb-jar.xml file overrides the corresponding
configuration made using OC4J-proprietary annotations.

Using Annotations
You can specify OC4J-proprietary deployment options for an EJB 3.0 session bean
using the following OC4J-proprietary annotations:

■ @StatelessDeployment: for stateless session beans.

■ @StatefulDeployment: for stateful session beans.

Example 5–10 shows how to configure OC4J-proprietary deployment options for an
EJB 3.0 stateless session bean using the @StatelessDeployment annotation.

For more information on @StatelessDeployment attributes, see Table A–1.

Example 5–10 @StatelessDeployment

import javax.ejb.Stateless;
import oracle.j2ee.ejb.StatelessDeployment;

@Stateless
@StatelessDeployment(

minInstances=5,
poolCacheTimeout=90

)
public class HelloWorldBean implements HelloWorld {

public void sayHello(String name) {
System.out.println("Hello "+name +" from first EJB3.0");

}
}

Example 5–11 shows how to configure OC4J-proprietary deployment options for an
EJB 3.0 stateful session bean using the @StatefulDeployment annotation.

For more information on @StatefulDeployment attributes, see Table A–1.

Example 5–11 @StatefulDeployment

import javax.ejb.Stateful
import oracle.j2ee.ejb.StatefulDeployment;

@Stateful
@StatefulDeployment(

idletime=100
passivateCount=3

)
public class CartBean implements Cart {

private ArrayList items;
...

}

Using Deployment XML
You can specify OC4J-proprietary deployment options using the
orion-ejb-jar.xml file element <session-deployment> as Example 5–12
shows.

For more information on the <session-deployment> element, see
"<session-deployment>" on page A-4.

Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 Session Bean

5-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 5–12 orion-ejb-jar.xml File <session-deployment> Element

<?xml version="1.0" encoding="utf-8"?>
<orion-ejb-jar

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/oracleas/schema/orion-ejb-jar-10_

0.xsd"
deployment-version="10.1.3.1.0"
deployment-time="10b1fb5cdd0"
schema-major-version="10"
schema-minor-version="0"

>
<enterprise-beans>

<session-deployment
name="MBeanServerEjb"
call-timeout="0"
location="MBeanServerEjb"
local-location="admin_ejb_MBeanServerEjbLocal"
timeout="0"
...

>
</session-deployment>

...
</enterprise-beans>
...

</orion-ejb-jar>

Part III
JPA Entities

This part provides procedural information on implementing and configuring JPA
entities and JPA entity queries. For conceptual information, see Part I, "EJB Overview".

This part contains the following chapters:

■ Chapter 6, "Implementing a JPA Entity"

■ Chapter 7, "Using Java Persistence API"

■ Chapter 8, "Implementing JPA Queries"

Implementing a JPA Entity 6-1

6
Implementing a JPA Entity

This chapter explains how to implement a JPA entity.

For more information, see the following:

■ "What is a JPA Entity?" on page 1-34

■ "Using Java Persistence API" on page 7-1

Implementing a JPA Entity
EJB 3.0 greatly simplifies the development of enterprise beans, removing many
complex development tasks. For example:

■ The bean class can be a POJO; it does not need to implement
javax.ejb.EntityBean.

■ The business interface is optional. It can be a plain old Java interface (POJI).

Home (javax.ejb.EJBHome and javax.ejb.EJBLocalHome) and component
(javax.ejb.EJBObject and javax.ejb.EJBLocalObject) business
interfaces are not required.

■ Annotations are used for many features, including container-managed
relationships (object-relational mapping).

■ An EntityContext is not required: you can simply use this to resolve an entity
to itself.

For more information, see "What is a JPA Entity?" on page 1-34.

To implement a JPA entity, do the following:

1. Create the entity bean class.

You can create a POJO and define it as an entity bean with container-managed
persistence using the @Entity annotation.

All data members are by default considered container-managed persistent fields,
unless annotated with @Transient.

Note: You can download a JPA entity code example from:
http://www.oracle.com/technology/tech/java/oc4j/1013
1/how_
to/how-to-ejb30-entity-ejb/doc/how-to-ejb30-entity-e
jb.html.

Implementing a JPA Entity

6-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

2. Define how OC4J persists your entity bean class to a database using the @Table
and @Column annotations.

If you do not have an existing database schema, you can delegate table and
column definition to OC4J by omitting these annotations: at deployment time,
OC4J will create default table and column names based on class and data member
names.

For more information, see "Configuring Table and Column Information" on
page 7-6.

3. Define one data member as the primary key field with the @Id annotation.

You can annotate the data member itself or its getter method. For more
information, see "Configuring a JPA Entity Primary Key" on page 7-1.

4. Define container-managed relationships using the appropriate object-relational
mapping annotations, such as @OneToOne.

For more information, see "Configuring a Container-Managed Relationship Field
for a JPA Entity" on page 7-9.

5. Optionally, define finders and queries using the @NamedQuery annotation.

At run time, you can use the predefined finders (see "Predefined TopLink Finders"
on page 1-53) and default finders (see "Default TopLink Finders" on page 1-54) that
the TopLink persistence manager provides.

For more information, see "Implementing JPA Queries" on page 8-1.

6. Optionally, define life cycle callback methods using the appropriate annotations.

You do not need to define life cycle methods: OC4J provides an implementation
for all such methods. Define a method of your entity bean class as a life cycle
callback method only if you want to take some action of your own at a particular
point in the entity bean’s life cycle.

For more information, see "Configuring a Life Cycle Callback Method on a JPA
Entity" on page 7-16.

7. Complete the configuration of your entity bean (see "Using Java Persistence API"
on page 7-1).

Using Java Persistence API 7-1

7
Using Java Persistence API

This chapter describes the various options that you can configure in order to use a JPA
entity.

Table 7–1 lists these options and indicates which are basic (applicable to most
applications) and which are advanced (applicable to more specialized applications).

For more information, see the following:

■ "What is a JPA Entity?" on page 1-34

■ "Implementing a JPA Entity" on page 6-1

Configuring a JPA Entity Primary Key
Every JPA entity must have a primary key.

You can specify a primary key as a single primitive, or JDK object type entity field (see
"Configuring a JPA Entity Simple Primary Key Field" on page 7-2).

Table 7–1 Configurable Options for a JPA Entity

Options Type

"Configuring a JPA Entity Primary Key" on page 7-1 Basic

"Configuring Table and Column Information" on page 7-6 Basic

"Configuring a Container-Managed Relationship Field for a JPA Entity" on page 7-9 Basic

"Configuring a Basic Mapping" on page 7-10 Basic

"Configuring a Large Object Mapping" on page 7-10 Advanced

"Configuring a Serialized Object Mapping" on page 7-11 Advanced

"Configuring an One-to-One Mapping" on page 7-11 Basic

"Configuring a Many-to-One Mapping" on page 7-12 Basic

"Configuring an One-to-Many Mapping" on page 7-12 Basic

"Configuring a Many-to-Many Mapping" on page 7-13 Basic

"Configuring an Aggregate Mapping" on page 7-14 Advanced

"Configuring Optimistic Lock Version Field" on page 7-15 Advanced

"Implementing JPA Queries" on page 8-1 Basic

"Configuring Inheritance for a JPA Entity" on page 7-19 Advanced

"Configuring Lazy Loading" on page 7-16 Basic

"Configuring a Life Cycle Callback Method on a JPA Entity" on page 7-16 Advanced

"Configuring a Life Cycle Callback Listener Method on an Entity Listener Class of a JPA Entity" on page 7-17 Advanced

Configuring a JPA Entity Primary Key

7-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

You can specify a composite primary key made up of one or more primitive, or JDK
object types using a separate composite primary key class (see "Configuring a JPA
Entity Composite Primary Key Class" on page 7-2).

You can either assign primary key values yourself, or you can associate a primary key
field with a primary key value generator (see "Configuring JPA Entity Automatic
Primary Key Generation" on page 7-5).

Configuring a JPA Entity Simple Primary Key Field
The simplest primary key is one you specify as a single primitive or JDK object type
entity field (see "Using Annotations" on page 7-2).

Using Annotations
Example 7–1 shows how to use the @Id annotation to specify an entity field as the
primary key. In this example, primary key values are generated using a table generator
(see "Configuring JPA Entity Automatic Primary Key Generation" on page 7-5).

Example 7–1 Primary Key Using @Id

@Id(generate=TABLE, generator="ADDRESS_TABLE_GENERATOR")
@TableGenerator(

name="ADDRESS_TABLE_GENERATOR",
tableName="EMPLOYEE_GENERATOR_TABLE",
pkColumnValue="ADDRESS_SEQ"

)
@Column(name="ADDRESS_ID")
public Integer getId() {

return id;
}

Configuring a JPA Entity Composite Primary Key Class
A composite primary key is usually made up of two or more primitive or JDK object
types. Composite primary keys typically arise when mapping from legacy databases
when the database key is comprised of several columns. You can specify such a
composite primary key with a separate composite primary key class (see "Using
Annotations" on page 7-3)

A composite primary key class has the following characteristics:

■ It is a POJO class.

■ It must be public and must have a public no-argument constructor.

■ If you use property-based access, the properties of the primary key class must be
public or protected.

■ It must be serializable.

■ It must define equals and hashCode methods.

The semantics of value equality for these methods must be consistent with the
database equality for the database types to which the key is mapped.

Note: For a JPA entity primary key field code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#id

Configuring a JPA Entity Primary Key

Using Java Persistence API 7-3

You can make the composite primary key class either an embedded class owned by
the entity class, or a nonembedded class whose fields you map to multiple fields or
properties of the entity class. In the latter case, the names of primary key fields or
properties in the composite primary key class and those of the entity class must
correspond and their types must be the same.

Using Annotations
Example 7–2 shows a typical embeddable composite primary key class. Example 7–3
shows how to configure a JPA entity with this embedded composite primary key class
using the @EmbeddedId annotation.

Example 7–2 Embeddable Composite Primary Key Class

@Embeddable
public class EmployeePK implements Serializable {

private String name;
private long id;

public EmployeePK() {
}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public long getId() {
return id;

}

public void setId(long id) {
this.id = id;

}

public int hashCode() {
return (int) name.hashCode() + id;

}

public boolean equals(Object obj) {
if (obj == this) return true;
if (!(obj instanceof EmployeePK)) return false;
if (obj == null) return false;
EmployeePK pk = (EmployeePK) obj;
return pk.id == id && pk.name.equals(name);

}
}

Example 7–3 JPA Entity With an Embedded Composite Primary Key Class

@Entity
public class Employee implements Serializable {

EmployeePK primaryKey;

public Employee() {
}

@EmbeddedId
public EmployeePK getPrimaryKey() {

return primaryKey;

Configuring a JPA Entity Primary Key

7-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

}

public void setPrimaryKey(EmployeePK pk) {
primaryKey = pk;

}

...
}

Example 7–5 shows a nonembedded composite primary key class. In this class, fields
empName and birthDay must correspond in name and type to properties in the entity
class. Example 7–5 shows how to configure a JPA entity with this nonembedded
composite primary key class using the @IdClass annotation. Because entity class
fields empName and birthDay are used in the primary key, you must also annotate
them using the @Id annotation.

Example 7–4 Non-Embedded Composite Primary Key Class

public class EmployeePK implements Serializable {
private String empName;
private Date birthDay;

public EmployeePK() {
}

public String getName() {
return empName;

}

public void setName(String name) {
empName = name;

}

public long getDateOfBirth() {
return birthDay;

}

public void setDateOfBirth(Date date) {
birthDay = date;

}

public int hashCode() {
return (int) empName.hashCode();

}

public boolean equals(Object obj) {
if (obj == this) return true;
if (!(obj instanceof EmployeePK)) return false;
if (obj == null) return false;
EmployeePK pk = (EmployeePK) obj;
return pk.birthDay == birthDay && pk.empName.equals(empName);

}
}

Example 7–5 JPA Entity With a Mapped Composite Primary Key Class

@IdClass(EmployeePK.class)
@Entity
public class Employee {

@Id String empName;
@Id Date birthDay;

...
}

Configuring a JPA Entity Primary Key

Using Java Persistence API 7-5

Configuring JPA Entity Automatic Primary Key Generation
Typically, you associate a primary key field (see "Configuring a JPA Entity Simple
Primary Key Field") with a primary key value generator so that when an entity
instance is created, a new, unique primary key value is assigned automatically.

Table 7–2 lists the types of primary key value generators that you can define.

Using Annotations
Example 7–6 shows how to use the @TableGenerator annotation to specify a
primary key value generator based on a database table. The TopLink JPA persistence
provider will attempt to create this table at deployment time: if it cannot, then you
must follow your database documentation to ensure that this table exists before
deployment. When a new instance of Address is created, a new value for entity field
id is obtained from ADDRESS_GENERATOR_TABLE. In this case, you must set the
@GeneratedValue annotation attribute strategy to TABLE and generator to
ADDRESS_TABLE_GENERATOR.

Example 7–6 GeneratedValue Strategy Table: @TableGenerator

@Entity
@Table(name="EJB_ADDRESS")
public class Address implements Serializable {
...

@TableGenerator(
name="ADDRESS_TABLE_GENERATOR",
tableName="ADDRESS_GENERATOR_TABLE",
pkColumnValue="ADDRESS_SEQ"

)
@Id @GeneratedValue(strategy="TABLE", generator="ADDRESS_TABLE_GENERATOR")

Table 7–2 JPA Entity Primary Key Value Generators

Type Description For more information, see ...

Generated Id Table A database table that the container uses to store generated primary
key values for entities. Typically shared by multiple entity types that
use table-based primary key generation. Each entity type will
typically use its own row in the table to generate the primary key
values for that entity class. Primary key values are positive integers.

"Table Sequencing" in the Oracle
TopLink Developer’s Guide

Table Generator A primary key generator, which you can reference by name, defined
at one of the package, class, method, or field level. The level at which
you define it will depend upon the desired visibility and sharing of
the generator. No scoping or visibility rules are actually enforced.
Oracle recommends that you define the generator at the level for
which it will be used.

This generator is based on a database table.

"Table Sequencing" in the Oracle
TopLink Developer’s Guide

Sequence Generator A primary key generator which you can reference by name, defined at
one of the package, class, method, or field level. The level, at which
you define it, will depend upon the desired visibility and sharing of
the generator. No scoping or visibility rules are actually enforced.
Oracle recommends that you define the generator at the level for
which it will be used.

This generator is based on a sequence object that the database server
provides.

"Native Sequencing With an
Oracle Database Platform" in the
Oracle TopLink Developer’s Guide

"Native Sequencing With a
Non-Oracle Database Platform"
in the Oracle TopLink Developer’s
Guide

Note: For an EJB 3.0 automatic primary key generation code
example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#sequencing

Configuring Table and Column Information

7-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

@Column(name="ADDRESS_ID")
public Integer getId() {

return id;
}

...
}

Example 7–7 shows how to use the @SequenceGenerator annotation to specify a
primary key value generator based on a sequence object provided by the database. The
TopLink JPA persistence provider will attempt to create this object at deployment time:
if it cannot, then you must follow your database documentation to ensure that this
sequence object exists before deployment. When a new instance of Address is created,
a new value for entity field id is obtained from database sequence object ADDRESS_
SEQ. In this case, you must set the @GeneratedValue annotation attribute strategy
to SEQUENCE and generator to ADDRESS_SEQUENCE_GENERATOR.

Example 7–7 GeneratedValue Strategy Sequence: @SequenceGenerator

@Entity
@Table(name="EJB_ADDRESS")
public class Address implements Serializable {
...

@SequenceGenerator(
name="ADDRESS_SEQUENCE_GENERATOR",
sequenceName="ADDRESS_SEQ"

)
@Id @GeneratedValue(strategy="SEQUENCE", generator="ADDRESS_SEQUENCE_GENERATOR")
@Column(name="ADDRESS_ID")
public Integer getId() {

return id;
}

...
}

Example 7–8 shows how to use the @GeneratedValue annotation to specify a
primary key value generator based on a primary key identity column (autonumber
column). When a new instance of Address is persisted, the database assigns a value
to the identity column. In this case, the TopLink JPA persistence provider re-reads the
inserted row and updates the in-memory Address entity to set id to this value.

Example 7–8 @GeneratedValue Strategy Identity

@Entity
@Table(name="EJB_ADDRESS")
public class Address implements Serializable {
...

@Id @GeneratedValue(strategy="IDENTITY")
public Integer getId() {

return id;
}

...
}

Configuring Table and Column Information
You can define the characteristics of the database table into which the TopLink entity
manager persists your entity, including the following:

■ Configuring the Primary Table

■ Configuring a Secondary Table

Configuring Table and Column Information

Using Java Persistence API 7-7

■ Configuring a Column

■ Configuring a Join Column

This is particularly important if you have an existing database schema.

If you do not have an existing database schema, you can delegate table and column
definition to OC4J by omitting this configuration: at deployment time, OC4J will create
default table and column names based on class and data member names.

Configuring the Primary Table
The primary table is the table into which the TopLink entity manager persists your
entity: in particular, it is the table that stores the entity’s primary key (see "Configuring
a JPA Entity Primary Key" on page 7-1). Optionally, you can also specify one or more
secondary tables (see "Configuring a Secondary Table" on page 7-7), if the entity’s
persistent data is stored across multiple tables.

You define the primary table at the entity class level.

Using Annotations
Example 7–9 shows how to use the @Table annotation to define the primary table for
the Employee class. The TopLink entity manager will persist instances of this entity to
a table named EJB_EMPLOYEE.

Example 7–9 @Table

@Entity
@Table(name="EJB_EMPLOYEE")
public class Employee implements Serializable {
...
}

Configuring a Secondary Table
Specifying one or more secondary tables indicates that the entity’s persistent data is
stored across multiple tables. You must first specify a primary table (see "Configuring
the Primary Table" on page 7-7) before you can specify any secondary tables.

You define a secondary table at the entity class level.

If you specify one or more secondary tables, you can specify the secondary table name
in the column definition (see "Configuring a Column" on page 7-8) for persistent fields
that are stored in that table. This enables the distribution of entity persistent fields
across multiple tables.

Using Annotations
Example 7–10 shows how to use the @SecondaryTable annotation to specify that
some of the entity’s persistent data is stored in a table named EJB_SALARY.

Note: You can download a JPA entity table and column code
example from:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html.

Configuring Table and Column Information

7-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 7–10 @SecondaryTable

@Entity
@Table(name="EJB_EMPLOYEE")
@SecondaryTable(name="EJB_SALARY")
public class Employee implements Serializable {
...
}

Configuring a Column
The column is, by default, the name of the column in the primary table (see
"Configuring the Primary Table" on page 7-7), into which the TopLink entity manager
stores the field’s value.

You define the column at one of the property (getter or setter method) or field level of
your entity.

If you specified one or more secondary tables (see "Configuring a Secondary Table" on
page 7-7), you can specify the secondary table name in the column definition. This
enables the distribution of entity persistent fields across multiple tables.

Using Annotations
Example 7–11 shows how to use the @Column annotation to specify column F_NAME in
the primary table for field firstName.

Example 7–11 @Column for the Primary Table

@Column(name="F_NAME")
public String getFirstName() {

return firstName;
}

Example 7–12 shows how to use the @Column annotation to specify column SALARY
in secondary table EMP_SALARY for field salary.

Example 7–12 @Column for a Secondary Table

@Column(name="SALARY", secondaryTable="EMP_SALARY")
public String getSalary() {

return salary;
}

Configuring a Join Column
A join column specifies a mapped, foreign key column for joining an entity association
or a secondary table.

You can define a join column with the following:

■ a secondary table (see Example 7–13);

■ an one-to-one mapping (see Example 7–14);

■ a many-to-one mapping (see Example 7–15);

■ an one-to-many mapping (see Example 7–16);

Configuring a Container-Managed Relationship Field for a JPA Entity

Using Java Persistence API 7-9

Using Annotations
Example 7–13 shows how to use the @JoinColumn annotation to specify a join
column with a secondary table. For more information, see "Configuring a Secondary
Table" on page 7-7.

Example 7–13 @JoinColumn With a Secondary Table

@Entity
@Table(name="EJB_EMPLOYEE")
@SecondaryTable(name="EJB_SALARY")
@JoinColumn(name="EMP_ID", referencedColumnName="EMP_ID")
public class Employee implements Serializable {
...
}

Example 7–14 shows how to use the @JoinColumn annotation to specify a join
column with an one-to-one mapping. For more information, see "Configuring an
One-to-One Mapping" on page 7-11.

Example 7–14 @JoinColumn With an One-to-One Mapping

@OneToOne(cascade=ALL, fetch=LAZY)
@JoinColumn(name="ADDR_ID")
public Address getAddress() {

return address;
}

Example 7–15 shows how to use the @JoinColumn annotation to specify a join
column with a many-to-one mappiong. For more information, see "Configuring a
Many-to-One Mapping" on page 7-12.

Example 7–15 @JoinColumn With a Many-to-One Mapping

@ManyToOne(cascade=PERSIST, fetch=LAZY)
@JoinColumn(name="MANAGER_ID", referencedColumnName="EMP_ID")
public Employee getManager() {

return manager;
}

Example 7–16 shows how to use the @JoinColumn annotation to specify a join
column with an one-to-many mapping. Fore more information, see "Configuring an
One-to-Many Mapping" on page 7-12.

Example 7–16 @JoinColumn With an One-to-Many Mapping

@OneToMany(cascade=PERSIST)
@JoinColumn(name="MANAGER_ID", referencedColumnName="EMP_ID")
public Collection getManagedEmployees() {

return managedEmployees;
}

Configuring a Container-Managed Relationship Field for a JPA Entity
In a JPA entity, you define container-managed relationship (CMR) fields (see "What are
JPA Entity Container-Managed Relationship Fields?" on page 1-36) as follows:

■ "Configuring a Basic Mapping" on page 7-10

■ "Configuring a Large Object Mapping" on page 7-10

■ "Configuring a Serialized Object Mapping" on page 7-11

Configuring a Basic Mapping

7-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ "Configuring an One-to-One Mapping" on page 7-11

■ "Configuring a Many-to-One Mapping" on page 7-12

■ "Configuring an One-to-Many Mapping" on page 7-12

■ "Configuring a Many-to-Many Mapping" on page 7-13

Configuring a Basic Mapping
Use a basic mapping to map an field that contains a primitive or JDK object value. For
example, use a basic mapping to store a String attribute in a VARCHAR column.

You define a basic mapping at one of the property (getter or setter method) or field
level of your entity.

Optionally, you can define the strategy for fetching data from the database (see
"Configuring Lazy Loading" on page 7-16.

For more information, see "Understanding Direct-to-Field Mapping" in the Oracle
TopLink Developer’s Guide.

Using Annotations
Example 7–17 shows how to use the @Basic annotation to specify a basic mapping for
field firstName.

Example 7–17 @Basic

@Basic()
@Column(name="F_NAME")
public String getFirstName() {

return firstName;
}

Configuring a Large Object Mapping
Use a large object (LOB) mapping to specify that a persistent property or field should
be persisted as a LOB to a database-supported LOB type. A LOB may be either a
binary (BLOB) or character (CLOB) type.

You define a large object mapping at one of the property (getter or setter method) or
field level of your entity.

For more information, see the following:

■ "Understanding Direct-to-Field Mapping" in the Oracle TopLink Developer’s Guide

Note: You can download a JPA entity container-managed
relationship field code example from:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html.

Note: For an EJB 3.0 basic mapping code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#basic.

Configuring an One-to-One Mapping

Using Java Persistence API 7-11

■ "Using a Converter Mapping" in the Oracle TopLink Developer’s Guide

■ "Type Conversion Converter" in the Oracle TopLink Developer’s Guide

Using Annotations
Example 7–18 shows how to use the @Lob annotation to specify a large object mapping
for field image.

Example 7–18 @Lob

@Lob(fetch=EAGER, type=BLOB)
@Column(name="IMAGE")
public Byte[] getImage() {

return image;
}

Configuring a Serialized Object Mapping
Use a serialized object mapping to specify that a persistent property should be
persisted as a serialized stream of bytes.

You define a serialized object at one of the property (getter or setter method) or field
level of your entity.

For more information, see the following:

■ "Understanding Direct-to-Field Mapping" in the Oracle TopLink Developer’s Guide

■ "Using a Converter Mapping" in the Oracle TopLink Developer’s Guide

■ "Serialized Object Converter" in the Oracle TopLink Developer’s Guide

Using Annotations
Example 7–19 shows how to use the @Serialized annotation to specify a serialized
object mapping for field picture.

Example 7–19 @Serialized

@Serialized(fetch=EAGER)
@Column(name="PICTURE")
public Byte[] getPicture() {

return picture;
}

Configuring an One-to-One Mapping
Use an one-to-one mapping to represent simple pointer references between two Java
objects. In Java, a single pointer stored in an attribute represents the mapping between
the source and target objects. Relational database tables implement these mappings
using foreign keys.

You define an one-to-one mapping at one of the property (getter or setter method) or
field level of your entity.

For more information, see "Understanding One-to-One Mapping" in the Oracle TopLink
Developer’s Guide.

Configuring a Many-to-One Mapping

7-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Using Annotations
Example 7–20 shows how to use the @OneToOne annotation to specify an one-to-one
mapping for field address.

Example 7–20 @OneToOne

@OneToOne(cascade=ALL, fetch=LAZY)
@JoinColumn(name="ADDR_ID")
public Address getAddress() {

return address;
}

Configuring a Many-to-One Mapping
Use a many-to-one mapping to represent simple pointer references between two Java
objects. In Java, a single pointer stored in an attribute represents the mapping between
the source and target objects. Relational database tables implement these mappings
using foreign keys.

You define a many-to-one mapping at one of the property (getter or setter method) or
field level of your entity.

For more information, see "Understanding One-to-One Mapping" in the Oracle TopLink
Developer’s Guide.

Using Annotations
Example 7–21 shows how to use the @ManyToOne annotation to specify a many-to-one
mapping for field manager.

Example 7–21 @ManyToOne

@ManyToOne(cascade=PERSIST, fetch=LAZY)
@JoinColumn(name="MANAGER_ID", referencedColumnName="EMP_ID")
public Employee getManager() {

return manager;
}

Configuring an One-to-Many Mapping
Use an one-to-many mapping to represent the relationship between a single source
object and a collection of target objects. This relationship is a good example of
something that is simple to implement in Java using a Vector (or other collection
types) of target objects, but difficult to implement using relational databases.

Note: For an EJB 3.0 basic mapping code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#onetoone.

Note: For an EJB 3.0 basic mapping code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#manytoone.

Configuring a Many-to-Many Mapping

Using Java Persistence API 7-13

You define a one-to-many mapping at one of the property (getter or setter method) or
field level of your entity.

For more information, see "Understanding One-to-Many Mapping" in the Oracle
TopLink Developer’s Guide.

Using Annotations
Example 7–22 shows how to use the @OneToMany annotation to specify an
one-to-many mapping for field managedEmployees.

Example 7–22 @OneToMany

@OneToMany(cascade=PERSIST)
@JoinColumn(name="MANAGER_ID", referencedColumnName="EMP_ID")
public Collection getManagedEmployees() {

return managedEmployees;
}

Configuring a Many-to-Many Mapping
Use a many-to-many mapping to represent the relationships between a collection of
source objects and a collection of target objects. This mapping requires the creation of
an intermediate table (the association table) for managing the associations between the
source and target records.

You define a many-to-many mapping at one of the property (getter or setter method)
or field level of your entity.

For more information, see "Understanding Many-to-Many Mapping" in the Oracle
TopLink Developer’s Guide.

Using Annotations
Example 7–23 shows how to use the @ManyToMany annotation to specify a
many-to-many mapping for field projects and how to use the @JoinTable
annotation to specify an association table.

Example 7–23 @ManyToMany

@ManyToMany(cascade=PERSIST)
@JoinTable(

name="EJB_PROJ_EMP",
joinColumns=@JoinColumn(name="EMP_ID", referencedColumnName="EMP_ID"),
inverseJoinColumns=@JoinColumn(name="PROJ_ID", referencedColumnName="PROJ_ID")

)
public Collection getProjects() {

Note: For an EJB 3.0 basic mapping code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#onetomany.

Note: For an EJB 3.0 basic mapping code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#manytomany.

Configuring an Aggregate Mapping

7-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

return projects;
}

Configuring an Aggregate Mapping
Two entities–an owning (parent or source) entity and an owned (child or target)
entity–are related by aggregation if there is a strict one-to-one relationship between
them and all the attributes of the owned entity can be retrieved from the same table(s)
as the owning entity. This means that if the owning entity exists, then the owned entity
must also exist and if the owning entity is destroyed, then the owned entity is also
destroyed.

An aggregate mapping lets you associate data members in the owned entity with
fields in the owning entity’s underlying database tables.

In the owning entity, you designate the owned field or setter as embedded.

In owned entity, you designate the class as embeddable and associate it with the
owning entity’s table name.

In the owning entity, you can override any column specifications (see "Configuring a
Column" on page 7-8) made in the owned entity.

For more information, see "Understanding Aggregate Mapping" in the Oracle TopLink
Developer’s Guide.

Using Annotations
Example 7–24 shows how to use the @Embedded annotation to specify an aggregate
mapping for field period. This field contains an instance of EmploymentPeriod.
Example 7–25 shows how to use the @Embeddable annotation to specify the
EmploymentPeriod entity class as being eligible for use in an aggregate mapping
and how to use the @Table annotation (see "Configuring the Primary Table" on
page 7-7) to associate this class with the owning entity’s table.

Example 7–24 @Embedded

@Entity
@Table(name="EJB_EMPLOYEE")
public class Employee implements Serializable {
...

@Embedded
public EmploymentPeriod getPeriod() {

return period;
}

...
}

Example 7–25 @Embeddable

@Embeddable
@Table(name="EJB_EMPLOYEE")
public class EmploymentPeriod implements Serializable {

Note: For an EJB 3.0 basic mapping code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#embedded.

Configuring Optimistic Lock Version Field

Using Java Persistence API 7-15

private Date startDate;
private Date endDate;

...
}

You can use the @AttributeOverride in the owning entity (see Example 7–26) to
override the column definitions made in the owned entity (see Example 7–27).

Example 7–26 @Embedded and @AttributeOverride

@Entity
@Table(name="EJB_EMPLOYEE")
public class Employee implements Serializable {
...

@Embedded({
@AttributeOverride(name="startDate", column=@Column("EMP_START")),
@AttributeOverride(name="endDate", column=@Column("EMP_END"))}

)
public EmploymentPeriod getPeriod() {

return period;
}

...
}

Example 7–27 @Embeddable and @Column

@Embeddable
@Table(name="EJB_EMPLOYEE")
public class EmploymentPeriod implements Serializable {

@Column("START_DATE")
private Date startDate;

@Column("END_DATE")
private Date endDate;

...
}

Configuring Optimistic Lock Version Field
You can specify an entity field to function as a version field for use in a TopLink
optimistic version locking policy. OC4J uses this version field to ensure integrity when
reattaching (see "Detaching and Merging an Entity Bean Instance" on page 29-17) and
for overall optimistic concurrency control.

You define the optimistic lock version field at one of the property (getter or setter
method) or field level of your entity.

For more information, see "Optimistic Version Locking Policies" in the Oracle TopLink
Developer’s Guide.

Using Annotations
Example 7–28 shows how to use the @Version annotation to define an optimistic
version locking policy using column VERSION.

Example 7–28 @Version

@Version
@Column(name="VERSION")
public int getVersion() {

return version;

Configuring Lazy Loading

7-16 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

}

Configuring Lazy Loading
For all EJB 3.0 mapping types (basic and relationship mappings), you can define the
strategy for fetching data from the database as one of the following:

■ FetchType.LAZY: when the entity is retrieved, the persistent field value is not
retrieved. The value is retrieved if and when the field is accessed.

■ FetchTyep.EAGER: when the entity is retrieved, the persistent field value is also
retrieved.

By default, all persistent fields are fetched eagerly.

If you are using finders in your EJB 3.0 application, you can configure lazy loading at
the finder level. This is an Oracle-specific option that you configure using the EJB 2.1
orion-ejb-jar.xml file. For more information, see "Configuring Lazy Loading on
Finder Methods" on page 14-14.

Using Annotations
Example 7–29 shows how to use the @Basic annotation to define a fetch strategy of
LAZY.

Example 7–29 @Basic Fetch Attribute

@Basic(fetch=FetchType.LAZY)
@Column(name="F_NAME")
public String getFirstName() {

return firstName;
}

Configuring a Life Cycle Callback Method on a JPA Entity
You can specify a JPA entity class method as a callback method for any of the
following life cycle events:

■ Pre-persist

■ Post-persist

■ Pre-remove

■ Post-remove

■ Pre-update

■ Post-update

■ Post-load

The entity class method must have the following signature:

int <METHOD>()

The entity class method can have any method name as long as it does not begin with
ejb.

For more information, see the following:

■ "What is the JPA Entity Life Cycle?" on page 1-37

Configuring a Life Cycle Callback Listener Method on an Entity Listener Class of a JPA Entity

Using Java Persistence API 7-17

■ "Life Cycle Callback Methods on a Bean Class" on page 1-6

■ "Descriptor Event Manager" in the Oracle TopLink Developer’s Guide

■ "Configuring a Domain Object Method as an Event Handler" in the Oracle TopLink
Developer’s Guide

Using Annotations
You can specify a JPA entity class method as a life cycle callback method using any of
the following annotations:

■ @PrePersist

■ @PostPersist

■ @PreRemove

■ @PostRemove

■ @PreUpdate

■ @PostUpdate

■ @PostLoad

Example 7–30 shows how to use the @PrePersist annotation to specify JPA entity
class method initialize as a life cycle callback method.

Example 7–30 @PrePersist

@Entity
@Table(name="EJB_PROJECT")
public class Project implements Serializable {

...
@Id()
@Column(name="PROJECT_ID", primaryKey=true)
public Integer getId() {

return id;
}

...

@PrePersist
public int initialize() {

...
}

}

Configuring a Life Cycle Callback Listener Method on an Entity Listener
Class of a JPA Entity

You can designate an entity listener method on an entity listener class of a JPA entity
as a life cycle callback method.

To configure a life cycle callback listener method on an entity listener class, you must
do the following:

Note: For an EJB 3.0 life cycle callback method code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30mappingannotations/doc/how-to
-ejb30-mapping-annotations.html#callbacks.

Configuring a Life Cycle Callback Listener Method on an Entity Listener Class of a JPA Entity

7-18 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

1. Create an entity listener class.

This can be any POJO class.

2. Implement the life cycle callback listener method in the entity listener class.

Callback methods defined on a JPA entity listener class have the following
signature:

void <METHOD>(Object)

You may specify an argument type of Object or the type of the JPA entity class
that you will associate the entity listener class with.

3. Associate a life cycle event with the callback listener method.

You may associate a life cycle event with one and only one callback listener
method, but you may associate a given callback listener method with more than
one life cycle event.

For more information, see the following:

■ "Using Annotations" on page 7-18

4. Associate the interceptor class with your JPA entity.

For more information, see the following:

■ "Using Annotations" on page 7-18

For more information, see the following:

■ "What is the JPA Entity Life Cycle?" on page 1-37

■ "Life Cycle Callback Listener Methods on a JPA Entity Listener Class" on page 1-6

Using Annotations
You can specify a JPA entity listener method as a life cycle callback method using any
of the following annotations:

■ @PrePersist

■ @PostPersist

■ @PreRemove

■ @PostRemove

■ @PreUpdate

■ @PostUpdate

■ @PostLoad

Example 7–31 shows how to use the @PostConstruct and @PreDestroy annotation
to specify JPA entity listener methods myPostConstruct and myPreDestroy as life
cycle callback methods, respectively.

Example 7–31 @PrePersist Life Cycle Listener Callback Method

public class MyProjectEntityListener {
...
@PostConstruct
public void myPostConstruct (Project obj) { // or just Object

...
}

Configuring Inheritance for a JPA Entity

Using Java Persistence API 7-19

@PreDestroy
public void myPreDestroy (Project obj) { // or just Object

...
}

}

You can associate an entity listener class with a JPA entity using the
@EntityListeners annotation. Example 7–32 shows how to associate the entity
listener class from Example 7–31 with a JPA entity class.

Note that the life cycle method for @PrePersist is a method of the JPA entity class
itself (for more information, see "Configuring a Life Cycle Callback Method on a JPA
Entity" on page 7-16).

Example 7–32 Associating an Entity Listener Class With a JPA Entity

@Entity
@EntityListeners(MyProjectEntityListener.class)
@Table(name="EJB_PROJECT")
public class Project implements Serializable {

...
@Id
@Column(name="PROJECT_ID", primaryKey=true)
public Integer getId() {

return id;
}

...

@PrePersist
public int initialize() {

...
}

}

Configuring Inheritance for a JPA Entity
OC4J supports the following inheritance strategies for mapping a class or class
hierarchy to a relational database schema:

■ Joined Subclass

■ Single Table for Each Class Hierarchy

You can configure either approach using annotations (see "Using Annotations" on
page 7-20).

Joined Subclass
In this strategy, fields that are specific to a subclass are mapped to a different table
than the fields that are common to the parent class, and a join is performed to
instantiate the subclass.

The root of the class hierarchy is represented by a single table. Each subclass is
represented by a separate table that contains the columns that are specific to the

Note: For an EJB 3.0 inheritance code example, see:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30inheritance/doc/how-to-ejb30-
inheritance.html.

Configuring Inheritance for a JPA Entity

7-20 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

subclass (not inherited from its superclass), as well as the column that represent the
subclass’s primary key. If the subclass does not have any additional state over its
superclass, a separate table is not required.

If the subclass table has primary key column, it serves as a foreign key to the primary
key of the superclass table. If the subclass table primary key column name is the same
as that of the primary key column of the superclass table, OC4J infers this relationship.
If the subclass table primary key column name is not the same as that of the primary
key column of the superclass table (or, if the subclass table does not have primary key
column), you must specify a subclass table column to use to join the primary table of
an entity subclass to the primary table of its superclass.

The primary table of the superclass also has a column that serves as a discriminator
column, that is, a column whose value identifies the specific subclass to which the
instance that is represented by the row belongs.

For more information, see "Configuring Joined Subclass Inheritance With Annotations"
on page 7-20.

Single Table for Each Class Hierarchy
In this strategy, all the classes in a hierarchy are mapped to a single table. The table
has a column that serves as a discriminator column. Each subclass that adds additional
state maps to this new state only in this single table. Such columns are only used by
that subclass.

For more information, see "Configuring Single Table Inheritance With Annotations" on
page 7-21.

Using Annotations
This section describes the following:

■ Configuring Joined Subclass Inheritance With Annotations

■ Configuring Single Table Inheritance With Annotations

Configuring Joined Subclass Inheritance With Annotations
The following examples show how to configure inheritance using a joined subclass
approach (see "Joined Subclass" on page 7-19): Example 7–33 shows how to use the
@Inheritance annotation in the base class Project. Example 7–34 and
Example 7–35 show how to use the @Inheritance annotation in derived classes
LargeProject and SmallProject, respectively.

The primary table is EJB_PROJECT to which both Project and SmallProject are
mapped. EJB_PROJECT has a discriminator column called PROJ_TYPE that
represents Project, LargeProject and SmallProject with values P, L and S,
respectively. LargeProject adds additional state to Project, so is mapped to its
own table, EJB_LPROJECT, which contains fields specific to LargeProject, such as
BUDGET. Note that EJB_LPROJECT does not have a primary key column; instead it
has a foreign key (PROJ_ID) that has the same name as the primary key of EJB_
PROJECT.

Note that in Example 7–34, because the LargeProject class primary key column
name (LARGE_PROJECT_ID) is not the same as that of the primary key column of the
superclass table (ID), you must use the @InheritanceJoinColumn annotation to
specify the column used to join the LargeProject primary table to the primary table
of its superclass.

Configuring Inheritance for a JPA Entity

Using Java Persistence API 7-21

Example 7–33 @Inheritance: Base Class Project in Joined Subclass Inheritance

@Entity
@Table(name="EJB_PROJECT")
@Inheritance(strategy=JOINED, discriminatorValue="P")
@DiscriminatorColumn(name="PROJ_TYPE")
public class Project implements Serializable {
...

@Id()
@Column(name="PROJECT_ID", primaryKey=true)
public Integer getId() {

return id;
}

...
}

Example 7–34 @Inheritance: Derived Class LargeProject in Joined Subclass Inheritance

@Entity
@Table(name="EJB_LPROJECT")
@Inheritance(discriminatorValue="L")
@InheritanceJoinColumn(name="LARGE_PROJECT_ID")
public class LargeProject extends Project {
...

@Id()
@Column(name="LARGE_PROJECT_ID", primaryKey=true)
public Integer getProjectId() {

return projectId;
}

...
}

Example 7–35 @Inheritance: Derived Class SmallProject in Joined Subclass Inheritance

@Entity
@Table(name="EJB_PROJECT")
@Inheritance(discriminatorValue="S")
public class SmallProject extends Project {
...
}

Configuring Single Table Inheritance With Annotations
The following examples show how to configure inheritance using a single table for
each class hierarchy approach (see "Single Table for Each Class Hierarchy" on
page 7-20): Example 7–33 shows how to use the @Inheritance annotation in the base
class Project. Example 7–34 and Example 7–35 show how the @Inheritance
annotation is not needed in derived classes LargeProject and SmallProject,
respectively.

The primary table is EJB_PROJECT, to which both Project and SmallProject are
mapped. The EJB_PROJECT table would contain all the columns for Project and an
additional column (BUDGET) used only by LargeProject.

Example 7–36 @Inheritance: Base Class Project in Single Table Inheritance

@Entity
@Table(name="EJB_PROJECT")
@Inheritance(strategy=SINGLE_TABLE, discriminatorValue="P")
@DiscriminatorColumn(name="PROJ_TYPE")
public class Project implements Serializable {
...

Configuring Inheritance for a JPA Entity

7-22 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

}

Example 7–37 @Inheritance: Derived Class LargeProject in Single Table Inheritance

@Entity
@Inheritance(discriminatorValue="L")
public class LargeProject extends Project {
...
}

Example 7–38 @Inheritance: Derived Class SmallProject in Single Table Inheritance

@Entity
@Inheritance(discriminatorValue="S")
public class SmallProject extends Project {
...
}

Implementing JPA Queries 8-1

8
Implementing JPA Queries

This section describes how to create predefined, static queries that you can access at
run time, including the following:

■ Implementing a JPA Named Query

■ Implementing a JPA Dynamic Query

■ Configuring TopLink Query Hints in a JPA Query

For more information, see "How do you Query for a JPA Entity?" on page 1-39.

Implementing a JPA Named Query
A named query is a predefined query that you create and associate with a
container-managed entity (see "Using Annotations" on page 8-1). At deployment time,
OC4J stores named queries on the EntityManager. At run time, you can use the
EntityManager to acquire, configure, and execute a named query.

For more information, see the following:

■ "Acquiring an EntityManager" on page 29-8

■ "Creating a Named Query With the EntityManager" on page 29-13

■ "Executing a Query" on page 29-15

Using Annotations
Example 8–1 shows how to use the @NamedQuery annotation to define a Java
persistence query language query that you can acquire by name
findAllEmployeesByFirstName at run time using the EntityManager.

Example 8–1 Implementing a Query Using @NamedQuery

@Entity
@NamedQuery(

name="findAllEmployeesByFirstName",
queryString="SELECT OBJECT(emp) FROM Employee emp WHERE emp.firstName = 'John'"

)
public class Employee implements Serializable {
...
}

Example 8–2 shows how to use the @NamedQuery annotation to define a Java
persistence query language query that takes a parameter named firstname.
Example 8–3 shows how you use the EntityManager to acquire this query and use
Query method setParameter to set the firstname parameter. For more

Implementing a JPA Dynamic Query

8-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

information on using the EntityManager with named queries, see "Querying for a JPA
Entity Using the EntityManager" on page 29-13.

Optionally, you can configure your named query with query hints to use JPA
persistence provider vendor extensions (see "Configuring TopLink Query Hints in a
JPA Query" on page 8-3).

Example 8–2 Implementing a Query With Parameters Using @NamedQuery

@Entity
@NamedQuery(

name="findAllEmployeesByFirstName",
queryString="SELECT OBJECT(emp) FROM Employee emp WHERE emp.firstName = :firstname"

)
public class Employee implements Serializable {
...
}

Example 8–3 Setting Parameters in a Named Query

Query queryEmployeesByFirstName = em.createNamedQuery("findAllEmployeesByFirstName");
queryEmployeeByFirstName.setParameter("firstName", "John");
Collection employees = queryEmployessByFirstName.getResultList();

Implementing a JPA Dynamic Query
Using EntityManager methods createQuery or createNativeQuery, you can
create a Query object dynamically at run time (see "Using Java" on page 8-2). Using
the Query methods getResultList, getSingleResult, or executeUpdate you
can execute the query (see "Executing a Query" on page 29-15).

Optionally, you can configure your named query with query hints to use JPA
persistence provider vendor extensions (see "Configuring TopLink Query Hints in a
JPA Query" on page 8-3).

For more information, see the following:

■ "Acquiring an EntityManager" on page 29-8

■ "Creating a Dynamic Java Persistence Query Language Query With the Entity
Manager" on page 29-14

■ "Creating a Dynamic TopLink Expression Query With the EntityManager" on
page 29-14

■ "Creating a Dynamic Native SQL Query With the EntityManager" on page 29-15

■ "Executing a Query" on page 29-15

Using Java
Example 8–4 shows how to create a dynamic EJB QL query with parameters and how
to execute the query. In this example, the query returns multiple results so Query
method getResultList is used.

Example 8–4 Implementing and Executing a Dynamic Query

Query queryEmployeeByFirstName = entityManager.createQuery(
"SELECT OBJECT(emp) FROM Employee emp WHERE emp.firstName = :firstname"

);

Configuring TopLink Query Hints in a JPA Query

Implementing JPA Queries 8-3

queryEmployeeByFirstName.setParameter("firstName", "Joan");

Collection employees = queryEmployeeByFirstName.getResultList();

Configuring TopLink Query Hints in a JPA Query
Table 8–1 lists the TopLink EJB 3.0 JPA persistence provider query hints you can
specify when you construct a JPA query, as Example 8–5 shows, or when you specify a
JPA query using the @QueryHint annotation, as Example 8–6 shows. When you set a
hint, you can set the value using the corresponding public static final field in
the appropriate configuration class in oracle.toplink.essentials.config as
follows:

■ PessimisticLock

■ TopLinkQueryHints

■ HintValues

Example 8–5 Specifying a TopLink JPA Query Hint

import oracle.toplink.essentials.config.HintValues;
import oracle.toplink.essentials.config.TopLinkQueryHints;

Customer customer = (Customer)entityMgr.createNamedQuery("findCustomerBySSN").
setParameter("SSN", "123-12-1234").setHint(TopLinkQueryHints.BIND_PARAMETERS,
HintValues.PERSISTENCE_UNIT_DEFAULT).getSingleResult();

Example 8–6 Specifying a TopLink JPA Query Hint With @QueryHint

import oracle.toplink.essentials.config.HintValues;
import oracle.toplink.essentials.config.TopLinkQueryHints;

@Entity
@NamedQuery(

name="findAllEmployees",
query="SELECT * FROM EMPLOYEE WHERE MGR=1"
hints={

@QueryHint={name=TopLinkQueryHints.BIND_PARAMETERS, value=HintValues.PERSISTENCE_
UNIT_DEFAULT}

}
)
public class Employee implements Serializable {

...
}

Note: To access these classes, put the appropriate OC4J persistence
JAR on your classpath (see "JPA Persistence JAR Files" on page 3-2).

Configuring TopLink Query Hints in a JPA Query

8-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Table 8–1 TopLink JPA Query Hints

Hint Usage Default

toplink.jdbc.bin
d-parameters

Control whether or not the query uses parameter binding. For more
information, see "Parameterized SQL (Binding) and Prepared Statement
Caching" in the Oracle TopLink Developer’s Guide.

Valid values: oracle.toplink.essentials.config.HintValues

■ true: bind all parameters.

■ false: do not bind all parameters.

■ PersistenceUnitDefault: use the parameter binding setting made
in your TopLink session’s database login.

For more information, see "Configuring JDBC Options" in the Oracle
TopLink Developer’s Guide.

Example: JPA Query API

import oracle.toplink.essentials.config.HintValues;
import oracle.toplink.essentials.config.TopLinkQueryHints;
query.setHint(TopLinkQueryHints.BIND_PARAMETERS, HintValues.TRUE);

Example: @QueryHint

import oracle.toplink.essentials.config.HintValues;
import oracle.toplink.essentials.config.TargetDatabase;
@QueryHint(name=TopLinkQueryHints.BIND_PARAMETERS,
value=HintValues.PERSISTENCE_UNIT_DEFAULT);

PersistenceUnitDe
fault

toplink.pessimis
tic-lock

Control whether or not pessimistic locking is used.

Valid values:
oracle.toplink.essentials.config.PessimisticLock

■ NoLock: pessimistic locking is not used.

■ Lock: TopLink issues a SELECT.... FOR UPDATE.

■ LockNoWait: TopLink issues a SELECT.... FOR UPDATE NO WAIT.

Example: JPA Query API

import oracle.toplink.essentials.config.PessimisticLock;
import oracle.toplink.essentials.config.TopLinkQueryHints;
query.setHint(TopLinkQueryHints.PESSIMISTIC_LOCK,
PessimisticLock.LockNoWait);

Example: @QueryHint

import oracle.toplink.essentials.config.PessimisticLock;
import oracle.toplink.essentials.config.TopLinkQueryHints;
@QueryHint(name=TopLinkQueryHints.PESSIMISTIC_LOCK,
value=PessimisticLock.LockNoWait);

NoLock

toplink.refresh Control whether or not to update the TopLink session cache with objects that
the query returns.

Valid values: oracle.toplink.essentials.config.HintValues

■ true: refresh cache.

■ false: do not refresh cache.

Example: JPA Query API

import oracle.toplink.essentials.config.HintValues;
import oracle.toplink.essentials.config.TopLinkQueryHints;
query.setHint(TopLinkQueryHints.REFRESH, HintValues.TRUE);

Example: @QueryHint

import oracle.toplink.essentials.config.HintValues;
import oracle.toplink.essentials.config.TopLinkQueryHints;
@QueryHint(name=TopLinkQueryHints.REFRESH, value=HintValues.TRUE);

false

Part IV
EJB 3.0 Message-Driven Beans

This part provides procedural information on implementing and configuring EJB 3.0
message-driven beans. For conceptual information, see Part I, "EJB Overview".

This part contains the following chapters:

■ Chapter 9, "Implementing an EJB 3.0 Message-Driven Bean"

■ Chapter 10, "Using an EJB 3.0 Message-Driven Bean"

Implementing an EJB 3.0 Message-Driven Bean 9-1

9
Implementing an EJB 3.0 Message-Driven

Bean

This chapter explains how to implement an EJB 3.0 message-driven bean (MDB).

For more information, see the following:

■ "What is a Message-Driven Bean?" on page 1-56

■ "Using an EJB 3.0 Message-Driven Bean" on page 10-1

Implementing an EJB 3.0 MDB
EJB 3.0 greatly simplifies the development of enterprise beans, removing many
complex development tasks. For example:

■ The bean class can be a POJO; it does not need to implement
javax.ejb.MessageDrivenBean.

■ Annotations are used for many features, including the message destination and
topic (or queue) factory.

■ You can use injection to acquire a MessageDrivenEntityContext.

For more information, see "What is a Message-Driven Bean?" on page 1-56.

To implement an EJB 3.0 message-driven bean, do the following:

1. Configure your message service provider.

For more information, see the following:

■ "What Message Service Providers Can you use With Your MDB?" on page 2-21

■ "Configuring Message Services" on page 23-1

2. Create the message-driven bean class.

You can create a POJO and define it as a message-driven bean with the
@MessageDriven annotation.

Note: You can download an EJB 3.0 message-driven bean code
example from:
http://www.oracle.com/technology/tech/java/oc4j/1013
1/how_to/how-to-ejb30-mdb/doc/how-to-ejb30-mdb.html.

Note: OC4J ignores the @MessageDriven attribute mappedName.

Implementing an EJB 3.0 MDB

9-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

3. Configure message service provider information as follows:

You can define this information with the @ActivationConfigProperty
annotation.

For more information, see the following:

■ "Configuring an EJB 3.0 MDB to Access a Message Service Provider Using
J2CA" on page 10-1

■ "Configuring an EJB 3.0 MDB to Access a Message Service Provider Directly"
on page 10-3

4. Add a data member for the MessageDrivenContext.

You can use resource injection to easily initialize this data member without getter
and setter methods.

5. Implement the appropriate message listener interface as follows:

For a JMS message-driven bean, implement the javax.jms.MessageListener
interface to provide the onMessages method with the following signature:

public void onMessage(javax.jms.Message message)

This method processes the incoming message. Most MDBs receive messages from
a queue or a topic, then invoke an entity bean to process the request contained
within the message.

In this method, you can use the MessageDrivenContext to acquire and
configure a javax.ejb.TimerService if you implemented the TimedObject
interface (see step 6).

6. Optionally, implement the javax.ejb.TimedObject interface.

Implement the ejbTimeout method with the following signature:

public void ejbTimeout(javax.ejb.Timer timer)

7. Optionally, define life cycle callback methods using the appropriate annotations.

You do not need to define life cycle methods: OC4J provides an implementation
for all such methods. Define a method of your message-driven bean class as a life
cycle callback method only if you want to take some action of your own at a
particular point in the message-driven bean’s life cycle.

For more information, see "Configuring a Life Cycle Callback Interceptor Method
on an EJB 3.0 MDB" on page 10-11.

8. Optionally, define OC4J-proprietary deployment options.

In an EJB 3.0 application, you can do this by annotating your message-driven bean
class with the OC4J-proprietary
oracle.j2ee.ejb.@MessageDrivenDeployment annotation (see
"Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 MDB" on
page 10-17).

9. Complete the configuration of your message-driven bean (see "Using an EJB 3.0
Message-Driven Bean" on page 10-1).

Using an EJB 3.0 Message-Driven Bean 10-1

10
Using an EJB 3.0 Message-Driven Bean

This chapter describes the various options that you must configure in order to use an
EJB 3.0 message-driven bean.

Table 10–1 lists these options and indicates which are basic (applicable to most
applications) and which are advanced (applicable to more specialized applications).

For more information, see the following:

■ "What is a Message-Driven Bean?" on page 1-56

■ "Implementing an EJB 3.0 Message-Driven Bean" on page 9-1

Configuring an EJB 3.0 MDB to Access a Message Service Provider Using
J2CA

You can configure an EJB 3.0 MDB to access a message service provider using a J2CA
resource adapter, such as the Oracle JMS Connector.

You can do this using annotations (see "Using Annotations" on page 10-2) or
deployment XML (see "Using Deployment XML" on page 10-3).

Table 10–1 Configurable Options for an EJB 3.0 Message-Driven Bean

Options Type

"Configuring an EJB 3.0 MDB to Access a Message Service Provider Using J2CA" on page 10-1 Basic

"Configuring an EJB 3.0 MDB to Access a Message Service Provider Directly" on page 10-3 Basic

"Configuring an MDB for Fast Undeploy on Windows Operating System" on page 18-5 Advanced

"Configuring an MDB for Oracle RAC Failover" on page 18-6 Advanced

"Configuring Bean Instance Pool Size" on page 31-4 Basic

"Configuring a Transaction Timeout for a Message-Driven Bean" on page 21-7 Advanced

"Configuring Parallel Message Processing" on page 10-5 Advanced

"Configuring Maximum Delivery Count" on page 10-7 Advanced

Configuring Connection Failure Recovery for an EJB 3.0 MDB on page 10-9 Advanced

"Configuring a Life Cycle Callback Interceptor Method on an EJB 3.0 MDB" on page 10-11 Basic

"Configuring a Life Cycle Callback Interceptor Method on an Interceptor Class of an EJB 3.0 MDB" on page 10-11 Advanced

"Configuring an Around Invoke Interceptor Method on an EJB 3.0 MDB" on page 10-13 Advanced

"Configuring an Around Invoke Interceptor Method on an Interceptor Class of an EJB 3.0 MDB" on page 10-14 Advanced

"Configuring an Interceptor Class for an EJB 3.0 MDB" on page 10-15 Advanced

"Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 MDB" on page 10-17 Advanced

Configuring an EJB 3.0 MDB to Access a Message Service Provider Using J2CA

10-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

OC4J supports both XA factories for two-phase commit (2PC) transactions, and
non-XA factories for transactions that do not require 2PC.

For more information, see:

■ "Oracle JMS Connector: J2EE Connector Architecture (J2CA)-Based Provider" on
page 2-21

■ "Message Service Configuration Options: Annotations or XML? Attributes or
Activation Configuration Properties?" on page 2-26

■ "How do You Participate in a Global or Two-Phase Commit (2PC) Transaction?" on
page 2-20

Using Annotations
To configure an EJB 3.0 MDB to access a JMS message service provider using a J2CA
resource adapter:

1. Specify the name of the resource adapter.

You may use either the OC4J-proprietary @MessageDrivenDeployment
annotation resourceAdapter attribute (as Example 10–1 shows) or the equivalent
orion-ejb-jar.xml file <message-driven-deployment> element
resource-adapter attribute (see "Using Deployment XML" on page 10-3).

2. Specify the required activation configuration properties.

You may specify activation configuration properties using any combination of
@MessageDrivenDeployment and @MessageDriven annotation (as
Example 10–1 shows) and deployment XML (see "Using Deployment XML" on
page 10-3).

For more information, see:

■ "J2CA Activation Configuration Properties" on page B-1

■ "Message Service Configuration Options: Annotations or XML? Attributes or
Activation Configuration Properties?" on page 2-26

Example 10–1 shows how to configure a message-driven bean to use the Oracle JMS
resource adapter named OracleASjms. It assumes that you defined connection
factory OracleASjms/MyQCF in oc4j-ra.xml file and destination name
OracleASjms/MyQueue in oc4j-connectors.xml file when you configured your
message service provider. You can define either XA-enabled factories for two-phase
commit (2PC) support, or non-XA factories if 2PC support is not required. For more
information on configuring a J2CA message service provider, see "Configuring a J2CA
Resource Adapter for use With Your Message Service Provider" on page 23-1.

Example 10–1 @MessageDriven and @MessageDrivenDeployment Annotation for a
J2CA Message Service Provider

import javax.ejb.MessageDriven;
import oracle.j2ee.ejb.MessageDrivenDeployment;
import javax.ejb.ActivationConfigProperty;

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see "Restrictions When Accessing a
Message Service Provider Without a J2CA Resource Adapter" on
page 2-25.

Configuring an EJB 3.0 MDB to Access a Message Service Provider Directly

Using an EJB 3.0 Message-Driven Bean 10-3

import javax.jms.Message;
import javax.jms.MessageListener;

@MessageDriven(
activationConfig = {

@ActivationConfigProperty(
propertyName="ConnectionFactoryJndiName", propertyValue="OracleASjms/MyQCF"),

@ActivationConfigProperty(
propertyName="DestinationName", propertyValue="OracleASjms/MyQueue"),

@ActivationConfigProperty(
propertyName="DestinationType", propertyValue="javax.jms.Queue"),

@ActivationConfigProperty(
propertyName="messageSelector", propertyValue="RECIPIENT = 'simple_jca_test'")

})

// associate MDB with the resource adapter
@MessageDrivenDeployment(resourceAdapter = "OracleASjms")

public class JCAQueueMDB implements MessageListener {
public void onMessage(Message msg) {

...
}

}

The actual names you use depend on your message service provider installation. For
more information, see "J2CA Message Service Provider Connection Factory Names" on
page 23-2.

Using Deployment XML
To configure an EJB 3.0 MDB to access a JMS message service provider using a J2CA
resource adapter by using deployment XML, you must use both ejb-jar.xml and
orion-ejb.jar.xml files, as you would for an EJB 2.1 MDB (see "Using
Deployment XML" on page 18-2).

You can override annotation configuration (see "Using Annotations" on page 10-2), if
present, with this deployment XML configuration.

Configuring an EJB 3.0 MDB to Access a Message Service Provider
Directly

You can configure an EJB 3.0 MDB to access a message service provider directly
(without a J2CA resource adapter).

You can do this by using annotations (see "Using Annotations" on page 10-4) or
deployment XML (see "Using Deployment XML" on page 10-5).

OC4J supports both XA factories for two-phase commit (2PC) transactions and
non-XA factories for transactions that do not require 2PC.

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see:

■ "Restrictions When Accessing a Message Service Provider Without
a J2CA Resource Adapter" on page 2-25.

■ "Configuring an EJB 3.0 MDB to Access a Message Service
Provider Using J2CA" on page 10-1

Configuring an EJB 3.0 MDB to Access a Message Service Provider Directly

10-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see:

■ "OEMS JMS: In-Memory or File-Based Provider" on page 2-23

■ "OEMS JMS Database: Advanced Queueing (AQ)-Based Provider" on page 2-24

■ "Message Service Configuration Options: Annotations or XML? Attributes or
Activation Configuration Properties?" on page 2-26

■ "How do You Participate in a Global or Two-Phase Commit (2PC) Transaction?" on
page 2-20

Using Annotations
To configure an EJB 3.0 MDB to access a JMS message service provider using a J2CA
resource adapter:

1. Specify the required activation configuration properties.

You may specify activation configuration properties using any combination of
@MessageDrivenDeployment annotation, @MessageDriven annotation, and
deployment XML.

For more information, see:

■ "J2CA Activation Configuration Properties" on page B-1

■ "Message Service Configuration Options: Annotations or XML? Attributes or
Activation Configuration Properties?" on page 2-26

Example 10–11 shows how to configure a message-driven bean to access a JMS
message service provider directly (without a J2CA resource adapter). It assumes that
you defined connection factory jms/MyQCF and queue jms/MyQueue when you
configured your message service provider. You can define either XA-enabled factories
for two-phase commit (2PC) support or non-XA factories if 2PC support is not
required. For more information on configuring a message service provider, see
"Configuring Message Services" on page 23-1.

Example 10–2 @MessageDriven Annotation for a Non-J2CA Message Service Provider

import javax.ejb.ActivationConfigProperty;
import javax.ejb.MessageDriven;
import javax.jms.Message;
import javax.jms.TextMessage;
import javax.jms.MessageListener;

@MessageDriven(
messageListenerInterface=MessageListener.class,
activationConfig = {

@ActivationConfigProperty(
propertyName="connectionFactoryJndiName", propertyValue="jms/MyQCF"),

@ActivationConfigProperty(
propertyName="destinationName", propertyValue="jms/MyQueue"),

@ActivationConfigProperty(
propertyName="destinationType", propertyValue="javax.jms.Queue"),

@ActivationConfigProperty(
propertyName="messageSelector", propertyValue="RECIPIENT = 'simple_test'")

})

public class QueueMDB implements MessageListener {
public void onMessage(Message msg) {

...
}

}

Configuring Parallel Message Processing

Using an EJB 3.0 Message-Driven Bean 10-5

The actual names you use depend on your message service provider installation. For
more information, see the following:

■ "OEMS JMS Destination and Connection Factory Names" on page 23-3

■ "OEMS JMS Database Destination and Connection Factory Names" on page 23-6

Using Deployment XML
To configure an EJB 3.0 MDB to access a JMS message service provider directly
(without a J2CA resource adapter) by using deployment XML, you must use both
ejb-jar.xml and orion-ejb.jar.xml files, as you would for an EJB 2.1 MDB (see
"Using Deployment XML" on page 18-4).

You can override annotation configuration (see "Using Annotations" on page 10-4), if
present, with this deployment XML configuration.

Configuring Parallel Message Processing
By default, OC4J uses one receiver thread to poll for messages from the message
location.

Having more than one receiver thread allows messages to be received in parallel
which can improve performance.

If your message location is a Topic, the number of receiver threads is fixed to one.

If your message location is a Queue, you can configure the number of receiver threads
using OC4J-proprietary annotations (see "Using Annotations" on page 10-5) or using
the orion-ejb-jar.xml file (see "Using Deployment XML" on page 10-7).

Note that the minimum number of bean instances in the MDB pool should be at least
the same as the number of receiver threads to avoid blocking receiver threads from
acquiring a bean instance from the pool to process messages.

For more information, see:

■ "Message Service Configuration Options: Annotations or XML? Attributes or
Activation Configuration Properties?" on page 2-26

■ "Configuring Bean Instance Pool Size" on page 31-4

Using Annotations
How you configure this option depends on how you access your message-service
provider you are using:

■ Accessing a Message Service Provider Using a J2CA Resource Adapter

■ Accessing a Message Service Provider Without Using a J2CA Resource Adapter

Accessing a Message Service Provider Using a J2CA Resource Adapter
If you access your message-service provider using a J2CA resource adapter, set
activation configuration property ReceiverThreads, as Example 10–3 shows.

For more information on ReceiverThreads, see Table B–2.

Example 10–3 Configuring Parallel Message Processing for a J2CA Adapter Message
Service Provider

import javax.ejb.MessageDriven;
import oracle.j2ee.ejb.MessageDrivenDeployment;

Configuring Parallel Message Processing

10-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

import javax.ejb.ActivationConfigProperty;
import javax.jms.Message;
import javax.jms.MessageListener;

@MessageDriven(
activationConfig = {

@ActivationConfigProperty(propertyName="ReceiverThreads", propertyValue="3"),
...

}
)

@MessageDrivenDeployment(
resourceAdapter = "OracleASjms",
...

)

public class JCAQueueMDB implements MessageListener {
public void onMessage(Message msg) {

...
}

}

Accessing a Message Service Provider Without Using a J2CA Resource Adapter
If you access your message-service provider directly (without using aJ2CA resource
adapter), set OC4J-proprietary annotation @MessageDrivenDeployment attribute
listenerThreads, as Example 10–4 shows.

For more information on this @MessageDrivenDeployment attribute, see Table A–3.
For more information on the @MessageDrivenDeployment annotation, see
"Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 MDB" on
page 10-17.

Example 10–4 Configuring Parallel Message Processing for a Non-J2CA Adapter
Message Service Provider

import javax.ejb.MessageDriven;
import oracle.j2ee.ejb.MessageDrivenDeployment;
import javax.jms.Message;
import javax.jms.MessageListener;

@MessageDriven(

...
)

@MessageDrivenDeployment(
listenerThreads=3

)

public class QueueMDB implements MessageListener {
public void onMessage(Message msg) {

...

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see:

■ "Restrictions When Accessing a Message Service Provider Without
a J2CA Resource Adapter" on page 2-25.

■ "Configuring an EJB 3.0 MDB to Access a Message Service
Provider Using J2CA" on page 10-1

Configuring Maximum Delivery Count

Using an EJB 3.0 Message-Driven Bean 10-7

}
}

Using Deployment XML
For an EJB 3.0 message-driven bean, you configure parallel message processing in the
orion-ejb-jar.xml file as you would for an EJB 2.1 message-driven bean (see
"Using Deployment XML" on page 18-7).

Configuring Maximum Delivery Count
You can configure the maximum number of times OC4J will attempt the immediate
redelivery of a message to the message-driven bean's message listener method (for
example, the onMessage method for a JMS message listener) if that method returns
failure (fails to invoke an acknowledgment operation, throws an exception, or both).

After this number of redeliveries, the message is deemed undeliverable and is handled
according to the policies of your message service provider. For example, OEMS JMS
will put the message on its exception queue (jms/Oc4jJmsExceptionQueue).

You can configure the maximum delivery count using OC4J-proprietary annotations
(see "Using Annotations" on page 10-7) or using the orion-ejb-jar.xml file (see
"Using Deployment XML" on page 10-8).

For more information, see "Message Service Configuration Options: Annotations or
XML? Attributes or Activation Configuration Properties?" on page 2-26.

Using Annotations
How you configure this option depends on the type of message-service provider you
are using:

■ Accessing a Message Service Provider Using a J2CA Resource Adapter

■ Accessing a Message Service Provider Without Using a J2CA Resource Adapter

Accessing a Message Service Provider Using a J2CA Resource Adapter
If you access your message-service provider using a J2CA resource adapter, set
activation configuration property MaxDeliveryCnt, as Example 10–5 shows.

For more information on MaxDeliveryCnt, see Table B–2.

Example 10–5 Configuring Maximum Delivery Count for a J2CA Adapter Message
Service Provider

import javax.ejb.MessageDriven;
import oracle.j2ee.ejb.MessageDrivenDeployment;
import javax.ejb.ActivationConfigProperty;
import javax.jms.Message;
import javax.jms.MessageListener;

@MessageDriven(
activationConfig = {

@ActivationConfigProperty(propertyName="MaxDeliveryCnt", propertyValue="3"),
...

}
)

@MessageDrivenDeployment(
resourceAdapter = "OracleASjms",

Configuring Maximum Delivery Count

10-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

...
)

public class JCAQueueMDB implements MessageListener {
public void onMessage(Message msg) {

...
}

}

Accessing a Message Service Provider Without Using a J2CA Resource Adapter
If you access your message-service provider directly (without using a J2CA resource
adapter), set OC4J-proprietary annotation @MessageDrivenDeployment attribute
maxDeliveryCount, as Example 10–6 shows.

For more information on this @MessageDrivenDeployment attribute, see Table A–3.
For more information on the @MessageDrivenDeployment annotation, see
"Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 MDB" on
page 10-17.

Example 10–6 Configuring Maximum Delivery Count for a Non-J2CA Adapter Message
Service Provider

import javax.ejb.MessageDriven;
import oracle.j2ee.ejb.MessageDrivenDeployment;
import javax.jms.Message;
import javax.jms.MessageListener;

@MessageDriven(
...

)

@MessageDrivenDeployment(
maxDeliveryCount=3

)

public class QueueMDB implements MessageListener {
public void onMessage(Message msg) {

...
}

}

Using Deployment XML
For an EJB 3.0 message-driven bean, you configure the maximum delivery count in the
orion-ejb-jar.xml file as you would for an EJB 2.1 message-driven bean (see
"Using Deployment XML" on page 18-8).

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see:

■ "Restrictions When Accessing a Message Service Provider Without
a J2CA Resource Adapter" on page 2-25.

■ "Configuring an EJB 3.0 MDB to Access a Message Service
Provider Using J2CA" on page 10-1

Configuring Connection Failure Recovery for an EJB 3.0 MDB

Using an EJB 3.0 Message-Driven Bean 10-9

Configuring Connection Failure Recovery for an EJB 3.0 MDB
You can configure how a message-driven bean’s listener thread responds to connection
failures due to such events as network and JMS server outages.

These options are applicable to only container-managed transactions in a
message-driven bean.

You can configure connection failure recovery options using OC4J-proprietary
annotations (see "Using Annotations" on page 10-9) or using the
orion-ejb-jar.xml file (see "Using Deployment XML" on page 10-10).

For more information, see:

■ "Understanding OC4J EJB Application Clustering Services" on page 2-29

■ "Message Service Configuration Options: Annotations or XML? Attributes or
Activation Configuration Properties?" on page 2-26

Using Annotations
How you configure this option depends on the type of message-service provider you
are using:

■ Accessing a Message Service Provider Using a J2CA Resource Adapter

■ Accessing a Message Service Provider Without Using a J2CA Resource Adapter

Accessing a Message Service Provider Using a J2CA Resource Adapter
If you access your message-service provider using a J2CA resource adapter, the Oracle
JMS Connector does an infinite retry of polling for the JMS resource and this retry
interval can be configured in the activation config property,
EndpointFailureRetryInterval as Example 10–5 shows.

Note that the recovery of message after retry does not guarantee message ordering,
and messages can be lost or duplicated when MDB subscription to the JMS topic is
non-durable.

For more information, see EndpointFailureRetryInterval in Table B–2.

Example 10–7 Configuring Connection Failure Recovery for a J2CA Adapter Message
Service Provider

import javax.ejb.MessageDriven;
import oracle.j2ee.ejb.MessageDrivenDeployment;
import javax.ejb.ActivationConfigProperty;
import javax.jms.Message;
import javax.jms.MessageListener;

@MessageDriven(
activationConfig = {

@ActivationConfigProperty(
propertyName="EndpointFailureRetryInterval",
propertyValue="20000"

),
...

}
)

@MessageDrivenDeployment(
resourceAdapter = "OracleASjms",
...

)

Configuring Connection Failure Recovery for an EJB 3.0 MDB

10-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

public class JCAQueueMDB implements MessageListener {
public void onMessage(Message msg) {

...
}

}

Accessing a Message Service Provider Without Using a J2CA Resource Adapter
If you access your message-service provider directly (without using a J2CA resource
adapter), set OC4J-proprietary annotation @MessageDrivenDeployment attributes
dequeueRetryCount and dequeueRetryInterval as Example 10–8 shows.

For more information on this @MessageDrivenDeployment attribute, see Table A–3.
For more information on the @MessageDrivenDeployment annotation, see
"Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 MDB" on
page 10-17.

Example 10–8 Configuring Connection Failure Recovery for a Non-J2CA Adapter
Message Service Provider

import javax.ejb.MessageDriven;
import oracle.j2ee.ejb.MessageDrivenDeployment;
import javax.jms.Message;
import javax.jms.MessageListener;

@MessageDriven(
...

)

@MessageDrivenDeployment(
dequeueRetryCount=3,
dequeueRetryInterval=90

)

public class QueueMDB implements MessageListener {
public void onMessage(Message msg) {

...
}

}

Using Deployment XML
For an EJB 3.0 message-driven bean, you configure the dequeue retry in the
orion-ejb-jar.xml file as you would for an EJB 2.1 message-driven bean (see
"Using Deployment XML" on page 18-8).

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see:

■ "Restrictions When Accessing a Message Service Provider Without
a J2CA Resource Adapter" on page 2-25.

■ "Configuring an EJB 3.0 MDB to Access a Message Service
Provider Using J2CA" on page 10-1

Configuring a Life Cycle Callback Interceptor Method on an Interceptor Class of an EJB 3.0 MDB

Using an EJB 3.0 Message-Driven Bean 10-11

Configuring a Life Cycle Callback Interceptor Method on an EJB 3.0 MDB
You can specify an EJB 3.0 message-driven bean class method as a callback method for
any of the following life cycle events (see "Using Annotations" on page 10-11):

■ Post-construct

■ Pre-destroy

The message-driven bean class life cycle callback method must have the following
signature:

void <METHOD>()

You can also specify one or more life cycle callback methods on an interceptor class
that you associate with an EJB 3.0 message-driven bean (see "Configuring a Life Cycle
Callback Interceptor Method on an Interceptor Class of an EJB 3.0 MDB" on
page 10-11).

For more information, see the following:

■ "What is the Life Cycle of a Message-Driven Bean?" on page 1-57

■ "Life Cycle Callback Methods on a Bean Class" on page 1-6

Using Annotations
You can specify an EJB 3.0 message-driven bean class method as a life cycle callback
method using any of the following annotations:

■ @PostConstruct

■ @PreDestroy

Example 10–9 shows how to use the @PostConstruct annotation to specify EJB 3.0
message-driven bean class method initialize as a life cycle callback method.

Example 10–9 @PostConstruct in an EJB 3.0 Message-Driven Bean

@MessageDriven
public class MessageLogger implements MessageListener {

@Resource javax.ejb.MessageDrivenContext mc;

public void onMessage(Message message) {
....
}

@PostConstruct
public void initialize() {

// Initialization logic
}

...
}

Configuring a Life Cycle Callback Interceptor Method on an Interceptor
Class of an EJB 3.0 MDB

You can designate an interceptor method on an interceptor class of an EJB 3.0
message-driven bean as a life cycle callback interceptor method.

To configure a life cycle callback interceptor method on an interceptor class, you must
do the following:

Configuring a Life Cycle Callback Interceptor Method on an Interceptor Class of an EJB 3.0 MDB

10-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

1. Create an interceptor class.

This can be any POJO class.

An interceptor class must have a public no-argument constructor.

2. Implement the life cycle callback interceptor method.

Callback methods defined on a bean's interceptor class have the following
signature:

Object <METHOD>(InvocationContext)

3. Associate a life cycle event with the callback interceptor method.

A life cycle event can only be associated with one callback interceptor method, but
a life cycle callback interceptor method may be used to interpose on multiple
callback events. For example, @PostConstruct and @PreDestroy may appear
only once in an interceptor class but you may associate both @PostConstruct
and @PreDestroy with the same callback interceptor method.

For more information, see the following:

■ "Using Annotations" on page 10-12

4. Associate the interceptor class with your EJB 3.0 message-driven bean (see
"Configuring an Interceptor Class for an EJB 3.0 MDB" on page 10-15).

For more information, see the following:

■ "What is the Life Cycle of a Message-Driven Bean?" on page 1-57

■ "Life Cycle Callback Interceptor Methods on an EJB 3.0 Interceptor Class" on
page 1-6

Using Annotations
You can specify an interceptor class method as an EJB 3.0 message-driven bean life
cycle callback method using any of the following annotations:

■ @PostConstruct

■ @PreDestroy

Example 10–10 shows an interceptor class using @PostConstruct and
@PreDestroy annotations to identify myPostConstructMethod and
myPreDestroyMethod as life cycle callback interceptor methods. OC4J invokes the
appropriate life cycle method only when the appropriate life cycle event occurs. OC4J
invokes all other non-life cycle interceptor methods (such as
myInterceptorMethod) each time you invoke a message-driven bean business
method (see "Configuring an Interceptor Class for an EJB 3.0 MDB" on page 10-15).

Example 10–10 Interceptor Class

public class MyInterceptor {
...
public void myInterceptorMethod (InvocationContext ctx) {

...
ctx.proceed();
...

}

@PostConstruct
public void myPostContructMethod (InvocationContext ctx) {

...

Configuring an Around Invoke Interceptor Method on an EJB 3.0 MDB

Using an EJB 3.0 Message-Driven Bean 10-13

ctx.proceed();
...

}

@PreDestroy
public void myPreDestroyMethod (InvocationContext ctx) {

...
ctx.proceed();
...

}
}

Configuring an Around Invoke Interceptor Method on an EJB 3.0 MDB
You can specify one nonbusiness method as the interceptor method for an EJB 3.0
message-driven bean. Each time the onMessage method is invoked, OC4J intercepts
the invocation and invokes the interceptor method. The onMessage method
invocation proceeds only if the interceptor method returns
InvocationContext.proceed().

An interceptor method has the following signature:

Object <METHOD>(InvocationContext) throws Exception

An interceptor method may have public, private, protected, or package level access,
but must not be declared as final or static.

You can specify this method on the EJB 3.0 message-driven bean class (see "Using
Annotations" on page 10-13) or on an interceptor class that you associate with an EJB
3.0 message-driven bean (see "Configuring an Around Invoke Interceptor Method on
an Interceptor Class of an EJB 3.0 MDB" on page 10-14).

For more information, see "Understanding EJB 3.0 Interceptors" on page 2-10.

Using Annotations
Example 10–11 shows how to designate a method of a message-driven bean class as an
interceptor method using the @AroundInvoke annotation. Each time the onMessage
method is invoked, OC4J intercepts the invocation and invokes the interceptor method
myInterceptor. The onMessage method invocation proceeds only if the interceptor
method returns InvocationContext.proceed().

Example 10–11 @AroundInvoke in an EJB 3.0 Message-Driven Bean

@MessageDriven
public class MessageLogger implements MessageListene {

@Resource javax.ejb.MessageDrivenContext mc;

public void onMessage(Message message) {
....
}

@AroundInvoke
public Object myInterceptor(InvocationContext ctx) throws Exception {

if (!userIsValid(ctx. getEJBContext().getCallerPrincipal())) {
throw new SecurityException(

"Caller: '" + ctx.getEJBContext().getCallerPrincipal().getName() +
"' does not have permissions for method " + ctx.getMethod()

);
}
return ctx.proceed();

Configuring an Around Invoke Interceptor Method on an Interceptor Class of an EJB 3.0 MDB

10-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

}
}

Configuring an Around Invoke Interceptor Method on an Interceptor Class
of an EJB 3.0 MDB

You can specify one nonbusiness method as the interceptor method for an EJB 3.0
message-driven bean. Each time the onMessage method is invoked, OC4J intercepts
the invocation and invokes the interceptor method. The onMessage invocation
proceeds only if the interceptor method returns InvocationContext.proceed().

You can specify this method on an interceptor class that you associate with an EJB 3.0
MDB or on the EJB 3.0 MDB class itself (see "Configuring an Around Invoke
Interceptor Method on an EJB 3.0 MDB" on page 10-13).

To configure an interceptor method on an interceptor class, you must do the following:

1. Create an interceptor class.

This can be any POJO class.

2. Implement the interceptor method.

An interceptor method has the following signature:

Object <METHOD>(InvocationContext) throws Exception

An interceptor method may have public, private, protected, or package level
access, but must not be declared as final or static.

3. Designate the method as the interceptor method (see "Using Annotations" on
page 10-14).

4. Associate the interceptor class with your EJB 3.0 MDB (see "Configuring an
Interceptor Class for an EJB 3.0 MDB" on page 10-15).

For more information, see "Understanding EJB 3.0 Interceptors" on page 2-10.

Using Annotations
Example 10–12 shows how to specify interceptor class method myInterceptor as the
interceptor method of an EJB 3.0 MDB using the @AroundInvoke annotation. After
you associate this interceptor class with an MDB ("Configuring an Interceptor Class for
an EJB 3.0 MDB" on page 10-15), each time the onMessage method is invoked, OC4J
intercepts the invocation and invokes the interceptor method myInterceptor. The
onMessage method invocation proceeds only if the interceptor method returns
InvocationContext.proceed().

Example 10–12 Interceptor Class

public class MyInterceptor {
...
@AroundInvoke
protected Object myInterceptor(InvocationContext ctx) throws Exception {

Principal p = ctx.getEJBContext().getCallerPrincipal;
if (!userIsValid(p)) {

throw new SecurityException(
"Caller: '" + p.getName() +
"' does not have permissions for method " + ctx.getMethod()

);
}
return ctx.proceed();

}

Configuring an Interceptor Class for an EJB 3.0 MDB

Using an EJB 3.0 Message-Driven Bean 10-15

@PreDestroy
public void myPreDestroyMethod (InvocationContext ctx) {

...
ctx.proceed();
...

}
}

Configuring an Interceptor Class for an EJB 3.0 MDB
An interceptor class is a class, distinct from the bean class itself, whose methods are
invoked in response to business method invocations and life cycle events on the bean.
You can associate a bean class can with any number of interceptor classes.

You can associate an interceptor class with an EJB 3.0 message-driven bean.

To configure an EJB 3.0 message-driven bean with an interceptor class, you must do
the following:

1. Create an interceptor class (see "Creating an Interceptor Class" on page 10-15).

This can be any POJO class.

2. Implement interceptor methods in the interceptor class.

An interceptor method has the following signature:

Object <METHOD>(InvocationContext) throws Exception

An interceptor method may have public, private, protected, or package level
access, but must not be declared as final or static.

You can annotate an interceptor method as a life cycle callback (see "Configuring a
Life Cycle Callback Interceptor Method on an Interceptor Class of an EJB 3.0 MDB"
on page 10-11) or as an AroundInvoke method (see "Configuring an Around
Invoke Interceptor Method on an Interceptor Class of an EJB 3.0 MDB" on
page 10-14).

3. Associate the interceptor class with your EJB 3.0 message-driven bean (see
"Associating an Interceptor Class With an MDB" on page 10-16).

4. Optionally configure the message-driven bean to use singleton interceptors (see
"Specifying Singleton Interceptors in an MDB" on page 10-16).

Using Annotations
This section describes the following:

■ Creating an Interceptor Class

■ Associating an Interceptor Class With an MDB

■ Specifying Singleton Interceptors in an MDB

Creating an Interceptor Class
Example 10–13 shows how to specify an AroundInvoke interceptor method and a life
cycle callback interceptor method in an interceptor class for an EJB 3.0 message-driven
bean. After you associate this interceptor class with a message-driven bean (see
Example 10–14), each time the onMessage method is invoked, OC4J intercepts the
invocation and invokes the AroundInvoke method myInterceptor. When the

Configuring an Interceptor Class for an EJB 3.0 MDB

10-16 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

appropriate life cycle event occurs, OC4J invokes the corresponding life cycle callback
interceptor method such as myPreDestroyMethod.

Example 10–13 Interceptor Class

public class MyInterceptor {
...
@AroundInvoke
protected Object myInterceptor(InvocationContext ctx) throws Exception {

Principal p = ctx.getEJBContext().getCallerPrincipal;
if (!userIsValid(p)) {

throw new SecurityException(
"Caller: '" + p.getName() +
"' does not have permissions for method " + ctx.getMethod()

);
}
return ctx.proceed();

}

@PreDestroy
public void myPreDestroyMethod (InvocationContext ctx) {

...
ctx.proceed();
...

}
}

Associating an Interceptor Class With an MDB
You can associate an interceptor class with an EJB 3.0 message-driven bean using the
@Interceptors annotation. Example 10–14 shows how to associate the interceptor
class from Example 10–13 with an EJB 3.0 message-driven bean class.

Note that the life cycle method for @PostConstruct is a method of the EJB 3.0
message-driven bean class itself (for more information, see "Configuring a Life Cycle
Callback Interceptor Method on an EJB 3.0 MDB" on page 10-11) while the life cycle
method for @PreDestroy is a life cycle callback interceptor method on the interceptor
class associated with this message-driven bean (see "Configuring a Life Cycle Callback
Interceptor Method on an Interceptor Class of an EJB 3.0 MDB" on page 10-11).

Example 10–14 Associating an Interceptor Class With an EJB 3.0 MDB

@MessageDriven
@Interceptors(MyInterceptor.class)
public class MessageLogger implements MessageListener {

@Resource javax.ejb.MessageDrivenContext mc;

public void onMessage(Message message) {
....
}

@PostConstruct
public void initialize() {

items = new ArrayList();
}
...

}

Specifying Singleton Interceptors in an MDB
As Example 10–15 shows, you can configure OC4J to use singleton interceptor classes
by setting the @MessageDrivenDeployment attribute interceptorType to

Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 MDB

Using an EJB 3.0 Message-Driven Bean 10-17

singleton. All instances of this message-driven bean will share the same instance of
MyInterceptor. The MyInterceptor class must be stateless.

For more information about this attribute, see Table A–3. For more information on
singleton interceptors, see "Singleton Interceptors" on page 2-12.

Example 10–15 Specifying a Singleton Interceptor Class With an EJB 3.0 MDB

@MessageDriven
@MessageDrivenDeployment(interceptorType="singleton")
@Interceptors(MyInterceptor.class)
public class MessageLogger implements MessageListener {

@Resource javax.ejb.MessageDrivenContext mc;

public void onMessage(Message message) {
....
}

@PostConstruct
public void initialize() {

items = new ArrayList();
}
...

}

Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 MDB
You can configure OC4J-proprietary deployment options for an EJB 3.0
message-driven bean using OC4J-proprietary annotations (see "Using Annotations" on
page 10-17) or using the orion-ejb-jar.xml file (see "Using Deployment XML" on
page 10-18).

Configuration in the orion-ejb-jar.xml file overrides the corresponding
configuration made with OC4J-proprietary annotations.

For more information, see "Message Service Configuration Options: Annotations or
XML? Attributes or Activation Configuration Properties?" on page 2-26.

Using Annotations
You can specify OC4J-proprietary deployment options for an EJB 3.0 message-driven
bean using the @MessageDrivenDeployment OC4J-proprietary annotation.

Example 10–16 shows how to configure OC4J-proprietary deployment options for an
EJB 3.0 message-driven bean using the @MessageDrivenDeployment annotation.
For more information on @MessageDrivenDeployment attributes, see Table A–3.

You can override @MessageDriven annotation activationConfig attribute
settings (see "Configuring an EJB 3.0 MDB to Access a Message Service Provider Using
J2CA" on page 10-1) by configuring activation configuration properties using
@MessageDrivenDeployment attributes. You can also override annotation
configuration using deployment XML (see "Using Deployment XML" on page 10-18).

Example 10–16 @MessageDrivenDeployment

import javax.ejb.MessageDriven;
import oracle.j2ee.ejb.MessageDrivenDeployment;
import javax.ejb.ActivationConfigProperty;
import javax.annotation.Resource;

@MessageDriven(

Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 MDB

10-18 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

activationConfig = {
 @ActivationConfigProperty(

propertyName="messageListenerInterface",
propertyValue="javax.jms.MessageListener"),

 @ActivationConfigProperty(
propertyName="connectionFactoryJndiName",
propertyValue="jms/TopicConnectionFactory"),

 @ActivationConfigProperty(
propertyName="destinationName",
propertyValue="jms/demoTopic"),

 @ActivationConfigProperty(
propertyName="destinationType",
propertyValue="javax.jms.Topic"),

 @ActivationConfigProperty(
propertyName="messageSelector",
propertyValue="RECIPIENT = 'MDB'")

}
)
@MessageDrivenDeployment(

maxInstances=10,
poolCacheTimeout=30

)
public class MessageLogger implements MessageListener, TimedObject {

@Resource javax.ejb.MessageDrivenContext mc;

public void onMessage(Message message) {
...
}

public void ejbTimeout(Timer timer) {
...
}

}

Using Deployment XML
You can specify OC4J-proprietary deployment options for a message-driven bean
using the orion-ejb-jar.xml file element <message-driven-deployment> as
Example 10–17 shows. For more information on the
<message-driven-deployment> element, see "<message-driven-deployment>" on
page A-17.

Example 10–17 orion-ejb-jar.xml File <message-driven-deployment> Element

<?xml version="1.0" encoding="utf-8"?>
<orion-ejb-jar

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/oracleas/schema/orion-ejb-jar-10_

0.xsd"
deployment-version="10.1.3.1.0"
deployment-time="10b1fb5cdd0"
schema-major-version="10"
schema-minor-version="0"

>
<enterprise-beans>

<message-driven-deployment
name="MessageLogger"
max-instances="10"
cache-timeout="30"
...

>
</message-driven-deployment>

...
</enterprise-beans>

Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 MDB

Using an EJB 3.0 Message-Driven Bean 10-19

...
</orion-ejb-jar>

Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 MDB

10-20 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Part V
EJB 2.1 Session Beans

This part provides procedural information on implementing and configuring EJB 2.1
session beans. For conceptual information, see Part I, "EJB Overview".

This part contains the following chapters:

■ Chapter 11, "Implementing an EJB 2.1 Session Bean"

■ Chapter 12, "Using an EJB 2.1 Session Bean"

Implementing an EJB 2.1 Session Bean 11-1

11
Implementing an EJB 2.1 Session Bean

This chapter explains how to implement an EJB 2.1 session bean, including the
following:

■ "Implementing an EJB 2.1 Stateless Session Bean" on page 11-1

■ "Implementing an EJB 2.1 Stateful Session Bean" on page 11-3

For more information, see the following:

■ "What is a Session Bean?" on page 1-27

■ "Using an EJB 2.1 Session Bean" on page 12-1

Implementing an EJB 2.1 Stateless Session Bean
Table 11–1 summarizes the important parts of an EJB 2.1 stateless session bean and the
following procedure describes how to implement these parts. For a typical
implementation, see "Using Java" on page 11-2. For more information, see "What is a
Stateless Session Bean?" on page 1-28.

1. Create the home interfaces for the bean (see "Implementing the Home Interfaces"
on page 11-6).

Note: You can download EJB code examples from:
http://www.oracle.com/technology/tech/java/oc4j/de
mos.

Table 11–1 Parts of an EJB 2.1 Stateless Session Bean

Part Description

Home Interface (remote or local) Extends javax.ejb.EJBHome and javax.ejb.EJBLocalHome and requires a
single create() factory method, with no arguments, and a single remove() method.

Component Interface (remote or local) Extends javax.ejb.EJBObject for the remote interface and
javax.ejb.EJBLocalObject for the local interface. It defines the business logic
methods, which are implemented in the bean implementation.

TimedObject Interface Optionally implements the javax.ejb.TimedObject interface. For more
information, see "Understanding EJB Timer Services" on page 2-31).

Bean implementation Implements SessionBean. This class must be declared as public, contain a public,
empty, default constructor, no finalize() method, and implements the methods
defined in the component interface. Must contain a single ejbCreate method, with no
arguments, to match the create() method in the home interface. Contains empty
implementations for the container service methods, such as ejbRemove, and so on.

Implementing an EJB 2.1 Stateless Session Bean

11-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

The remote home interface defines the create method that a client can invoke
remotely to instantiate your bean. The local home interface defines the create
method that a collocated bean can invoke locally to instantiate your bean.

a. To create the remote home interface, extend javax.ejb.EJBHome (see
"Implementing the Remote Home Interface" on page 11-6).

b. To create the local home interface, extend javax.ejb.EJBLocalHome (see
"Implementing the Local Home Interface" on page 11-7).

2. Create the component interfaces for the bean (see "Implementing the Component
Interfaces" on page 11-8).

The remote component interface declares the business methods that a client can
invoke remotely. The local interface declares the business methods that a
collocated bean can invoke locally.

a. To create the remote component interface, extend javax.ejb.EJBObject
(see "Implementing the Remote Component Interface" on page 11-8).

b. To create the local component interface, extend
javax.ejb.EJBLocalObject (see "Implementing the Local Component
Interface" on page 11-9).

3. Implement the stateless session bean as follows:

a. Implement a single ejbCreate method with no parameter that matches the
home interface create method.

b. Implement the business methods that you declared in the home and
component interfaces.

c. Implement the javax.ejb.SessionBean interface to implement the
container callback methods it defines (see "Configuring a Life Cycle Callback
Method for an EJB 2.1 Session Bean" on page 12-3).

d. Implement a setSessionContext method that takes an instance of
SessionContext (see "Implementing the setSessionContext Method" on
page 11-9).

For a stateless session bean, this method usually does nothing (does not
actually add the SessionContext to the session bean’s state).

4. Configure your ejb-jar.xml file to match your bean implementation (see
"Using Deployment XML" on page 11-3).

Using Java
Example 11–1 shows a typical implementation of a stateless session bean.

Example 11–1 EJB 2.1 Stateless Session Bean Implementation

package hello;
import javax.ejb.*;

public class HelloBean implements SessionBean {

/* --
* Begin business methods. The following methods
* are called by the client code.
* -------------------------------------- */

public String sayHello(String myName) throws EJBException {
return ("Hello " + myName);

Implementing an EJB 2.1 Stateful Session Bean

Implementing an EJB 2.1 Session Bean 11-3

}

/* --
* Begin private methods. The following methods
* are used internally
* -------------------------------------- */

...

/* --
* Begin EJB-required methods. The following methods are called
* by the container, and never called by client code
* --- */

public void ejbCreate() throws CreateException {
// when bean is created

}

public void setSessionContext(SessionContext ctx) {
}

// Life Cycle Methods

public void ejbActivate() {
}

public void ejbPassivate() {
}

public void ejbCreate() {
}

public void ejbRemove() {
}

}

Using Deployment XML
Example 11–2 shows the ejb-jar.xml session element corresponding to the stateless
session bean shown in Example 11–1.

Example 11–2 ejb-jar.xml For a Stateless Session Bean

...
<enterprise-beans>

<session>
<ejb-name>Hello</ejb-name>
<home>hello.HelloHome</home>
<remote>hello.Hello</remote>
<ejb-class>hello.HelloBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

</session>
</enterprise-beans>

...

For more information on deployment files, see "Configuring Deployment Descriptor
Files" on page 26-1.

Implementing an EJB 2.1 Stateful Session Bean
Table 11–2summarizes the important parts of an EJB 2.1 stateful session bean and the
following procedure describes how to implement these parts. For a typical

Implementing an EJB 2.1 Stateful Session Bean

11-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

implementation, see "Using Java" on page 11-5. For more information, see "What is a
Stateful Session Bean?" on page 1-30.

1. Create the home interfaces for the bean (see "Implementing the Home Interfaces"
on page 11-6).

The remote home interface defines the create method that a client can invoke
remotely to instantiate your bean. The local home interface defines the create
method that a collocated bean can invoke locally to instantiate your bean.

a. To create the remote home interface, extend javax.ejb.EJBHome (see
"Implementing the Remote Home Interface" on page 11-6).

b. To create the local home interface, extend javax.ejb.EJBLocalHome (see
"Implementing the Local Home Interface" on page 11-7).

2. Create the component interfaces for the bean (see "Implementing the Component
Interfaces" on page 11-8).

The remote component interface declares the business methods that a client can
invoke remotely. The local interface declares the business methods that a
collocated bean can invoke locally.

a. To create the remote component interface, extend javax.ejb.EJBObject
(see "Implementing the Remote Component Interface" on page 11-8).

b. To create the local component interface, extend
javax.ejb.EJBLocalObject (see "Implementing the Local Component
Interface" on page 11-9).

3. Implement the stateless session bean as follows:

a. Implement the ejb<METHOD> methods that match the home interface create
methods.

For a stateful session bean, provide ejbCreate methods with corresponding
argument lists for each create method in the home interface.

b. Implement the business methods that you declared in the home and
component interfaces.

c. Implement the javax.ejb.SessionBean interface to implement the
container callback methods it defines (see "Configuring a Life Cycle Callback
Method for an EJB 2.1 Session Bean" on page 12-3).

d. Implement a setSessionContext method that takes an instance of
SessionContext (see "Implementing the setSessionContext Method" on
page 11-9).

Table 11–2 Parts of an EJB 2.1 Stateful Session Bean

Part Description

Home Interface
(remote or local)

Extends javax.ejb.EJBHome and javax.ejb.EJBLocalHome and requires one or more
create() factory methods, and a single remove() method.

Component Interface
(remote or local)

Extends javax.ejb.EJBObject for the remote interface and javax.ejb.EJBLocalObject for the
local interface. It defines the business logic methods, which are implemented in the bean
implementation.

Bean implementation Implements SessionBean. This class must be declared as public, contain a public, empty, default
constructor, no finalize method, and implement the methods defined in the remote interface. Must
contain ejbCreate methods equivalent to the create methods defined in the home interface. That is,
each ejbCreate method is matched–by its parameter signature–to a create method defined in the
home interface. Implements the container service methods, such as ejbRemove, and so on. Also,
optionally implements the SessionSynchronization interface for container-managed transactions,
which includes afterBegin, beforeCompletion, and afterCompletion.

Implementing an EJB 2.1 Stateful Session Bean

Implementing an EJB 2.1 Session Bean 11-5

For a stateful session bean, this method usually adds the SessionContext to
the session bean’s state.

4. Configure your ejb-jar.xml file to match your bean implementation (see
"Using Deployment XML" on page 11-6).

Using Java
Example 11–3 shows a typical implementation of a stateful session bean.

Example 11–3 EJB 2.1 Stateful Session Bean Implementation

package hello;
import javax.ejb.*;

public class HelloBean implements SessionBean {
/* --
* State
* -------------------------------------- */

private SessionContext ctx;
private Collection messages;
private String defaultMessage = "Hello, World!";

/* --
* Begin business methods. The following methods
* are called by the client code.
* -------------------------------------- */

public String sayHello(String myName) throws EJBException {
return ("Hello " + myName);

}

public String sayHello() throws EJBException {
return defaultMessage;

}

/* --
* Begin private methods. The following methods
* are used internally.
* -------------------------------------- */

...

/* --
* Begin EJB-required methods. The following methods are called
* by the container, and never called by client code.
* --- */

public void ejbCreate() throws CreateException {
// when bean is created

}

public void ejbCreate(String message) throws CreateException {
this.defaultMessage = message;

}

public void ejbCreate(Collection messages) throws CreateException {
this.messages = messages;

}

public void setSessionContext(SessionContext ctx) {
this.ctx = ctx;

}

Implementing the Home Interfaces

11-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

// Life Cycle Methods

public void ejbActivate() {
}

public void ejbPassivate() {
}

public void ejbCreate() {
}

public void ejbRemove() {
}

}

Using Deployment XML
Example 11–4 shows the ejb-jar.xml session element corresponding to the stateful
session bean shown in Example 11–3.

Example 11–4 ejb-jar.xml For a Stateful Session Bean

...
<enterprise-beans>

<session>
<ejb-name>Hello</ejb-name>
<home>hello.HelloHome</home>
<remote>hello.Hello</remote>
<ejb-class>hello.HelloBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>

</session>
</enterprise-beans>

...

For more information on deployment files, see "Configuring Deployment Descriptor
Files" on page 26-1.

Implementing the Home Interfaces
The home interfaces (remote and local) are used to create the session bean instance;
thus, they define the create method for your bean. As Table 11–3 shows, the type of
create methods you define depends on the type of session bean you are creating:

For each create method, you define a corresponding ejbCreate method in the bean
implementation.

Implementing the Remote Home Interface
A remote client invokes the EJB through its remote interface. The client invokes the
create method that is declared within the remote home interface. The container
passes the client call to the ejbCreate method–with the appropriate parameter
signature–within the bean implementation. The requirements for developing the
remote home interface include:

Table 11–3 Home Interface Create Methods

Session Bean Type Create Methods

Stateless Session Bean Single create method only, with no parameters.

Stateful Session Bean One or more create methods with whatever parameters define the bean’s state.

Implementing the Home Interfaces

Implementing an EJB 2.1 Session Bean 11-7

■ The remote home interface must extend the javax.ejb.EJBHome interface.

■ All create methods may throw the following exceptions:

– javax.ejb.CreateException

– javax.ejb.RemoteException

– optional application exceptions

■ All create methods should not throw the following exceptions:

– javax.ejb.EJBException

– java.lang.RunTimeException

Example 11–5 shows a remote home interface called HelloHome for a stateless session
bean.

Example 11–5 Remote Home Interface for a Stateless Session Bean

package hello;

import javax.ejb.*;
import java.rmi.*;

public interface HelloHome extends EJBHome {
 public Hello create() throws CreateException, RemoteException;
}

Example 11–6 shows a remote home interface called HelloHome for a stateful session
bean. You use the arguments passed into the various create methods to initialize the
session bean’s state.

Example 11–6 Remote Home Interface for a Stateful Session Bean

package hello;

import javax.ejb.*;
import java.rmi.*;

public interface HelloHome extends EJBHome {
 public Hello create() throws CreateException, RemoteException;
 public Hello create(String message) throws CreateException, RemoteException;
 public Hello create(Collection messages) throws CreateException, RemoteException;
}

Implementing the Local Home Interface
An EJB can be called locally from a client that exists in the same container. Thus, a
collocated bean, JSP, or servlet invokes the create method that is declared within the
local home interface. The container passes the client call to the ejbCreate
method–with the appropriate parameter signature–within the bean implementation.
The requirements for developing the local home interface include the following:

■ The local home interface must extend the javax.ejb.EJBLocalHome interface.

■ All create methods may throw the following exceptions:

– javax.ejb.CreateException

– javax.ejb.RemoteException

– optional application exceptions

Implementing the Component Interfaces

11-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ All create methods should not throw the following exceptions:

– javax.ejb.EJBException

– java.lang.RunTimeException

Example 11–7 shows a local home interface called HelloLocalHome for a stateless
session bean.

Example 11–7 Local Home Interface for a Stateless Session Bean

package hello;

import javax.ejb.*;

public interface HelloLocalHome extends EJBLocalHome {
 public HelloLocal create() throws CreateException;
}

Example 11–8 shows a local home interface called HelloLocalHome for a stateful
session bean. You use the arguments passed into the various create methods to
initialize the session bean’s state.

Example 11–8 Local Home Interface for a Stateful Session Bean

package hello;

import javax.ejb.*;

public interface HelloLocalHome extends EJBLocalHome {
 public HelloLocal create() throws CreateException;
 public HelloLocal create(String message) throws CreateException;
 public HelloLocal create(Collection messages) throws CreateException;
}

Implementing the Component Interfaces
The component interfaces define the business methods of the bean that a client can
invoke.

Implementing the Remote Component Interface
The remote interface defines the business methods that a remote client can invoke. The
requirements for developing the remote component interface include: the following

■ The remote component interface of the bean must extend the
javax.ejb.EJBObject interface, and its methods must throw the
java.rmi.RemoteException exception.

■ You must declare the remote interface and its methods as public for remote
clients.

■ The remote component interface, all its method parameters, and return types must
be serializable. In general, any object that is passed between the client and the EJB
must be serializable, because RMI marshals and unmarshalls the object on both
ends.

■ Any exception can be thrown to the client, as long as it is serializable. Run-time
exceptions, including EJBException and RemoteException, are transferred
back to the client as remote run-time exceptions.

Example 11–9 shows a remote component interface called Hello with its defined
methods, each of which will be implemented in the corresponding session bean.

Implementing the setSessionContext Method

Implementing an EJB 2.1 Session Bean 11-9

Example 11–9 Remote Component Interface for EJB 2.1 Session Bean

package hello;

import javax.ejb.*;
import java.rmi.*;

public interface Hello extends EJBObject {
public String sayHello(String myName) throws RemoteException;
public String sayHello() throws RemoteException;

}

Implementing the Local Component Interface
The local component interface defines the business methods of the bean that a local
(collocated) client can invoke. The requirements for developing the local component
interface include the following:

■ The local component interface of the bean must extend the
javax.ejb.EJBLocalObject interface.

■ You declare the local component interface and its methods as public.

Example 11–10 shows a local component interface called HelloLocal with its defined
methods, each of which will be implemented in the corresponding session bean.

Example 11–10 Local Component Interface for EJB 2.1 Session Bean

package hello;

import javax.ejb.*;

public interface HelloLocal extends EJBLocalObject {
public String sayHello(String myName);
public String sayHello();

}

Implementing the setSessionContext Method
You use this method to obtain a reference to the context of the bean. A session bean has
a session context that the container maintains and makes available to the bean. The
bean may use the methods in the session context to make callback requests to the
container.

The container invokes setSessionContext method, after it first instantiates the
bean, to enable the bean to retrieve the session context. The container will never call
this method from within a transaction context. If the bean does not save the session
context at this point, the bean will never gain access to the session context.

When the container calls this method, it passes the reference of the SessionContext
object to the bean. The bean can then store the reference for later use.

Example 11–11 shows a session bean saving the session context in the sessctx
variable.

Example 11–11 Implementing the setSessionContext Method

import javax.ejb.*;

public class myBean implements SessionBean {
SessionContext sessctx;

Implementing the setSessionContext Method

11-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

public void setSessionContext(SessionContext ctx) {
sessctx = ctx; // session context is stored in instance variable

}
// other methods in the bean

}

Using an EJB 2.1 Session Bean 12-1

12
Using an EJB 2.1 Session Bean

This chapter describes the various options that you must configure in order to use an
EJB 2.1 session bean.

Table 12–1 lists these options and indicates which are basic (applicable to most
applications) and which are advanced (applicable to more specialized applications).

For more information, see the following:

■ "What is a Session Bean?" on page 1-27

■ "Implementing an EJB 2.1 Session Bean" on page 11-1

Configuring Passivation
You can enable and disable passivation for stateful session beans (see "Using
Deployment XML" on page 12-2).

You may choose to disable passivation for any of the following reasons:

■ Incompatible object types: if you cannot represent the nontransient attributes of
your stateful session bean with object types supported by passivation (see "What
Object Types can be Passivated?" on page 1-33), you can exchange increased
memory consumption for the use of other object types by disabling passivation.

■ Performance: if you determine that passivation is a performance problem in your
application, you can exchange increased memory consumption for improved
performance by disabling passivation.

■ Secondary storage limitations: if you cannot provide sufficient secondary storage
(see "Configuring Passivation Location" on page 12-3), you can exchange increased
memory consumption for reduced secondary storage requirements by disabling
passivation.

For more information, see the following:

Table 12–1 Configurable Options for an EJB 2.1 Session Bean

Options Type

"Configuring Passivation" on page 12-1 Advanced

"Configuring Passivation Criteria" on page 12-2 Advanced

"Configuring Passivation Location" on page 12-3 Advanced

"Configuring Bean Instance Pool Size" on page 31-4 Basic

"Configuring Bean Instance Pool Timeouts for Session Beans" on page 31-6 Advanced

"Configuring a Transaction Timeout for a Session Bean" on page 21-6 Advanced

"Configuring a Life Cycle Callback Method for an EJB 2.1 Session Bean" on page 12-3 Basic

Configuring Passivation Criteria

12-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ "When Does Stateful Session Bean Passivation Occur?" on page 1-32

■ "Configuring Passivation Criteria" on page 12-2

■ "Configuring Passivation Location" on page 12-3

Using Deployment XML
Table 12–2 lists the attributes, values, and defaults for configuring passivation in the
server.xml file element sfsb-config.

Configuring Passivation Criteria
You can specify under what conditions OC4J passivates a stateful session bean (see
"Using Deployment XML" on page 12-2).

For more information, see: the following

■ "When Does Stateful Session Bean Passivation Occur?" on page 1-32

■ "Configuring Passivation" on page 12-1

■ "Configuring Passivation Location" on page 12-3

Using Deployment XML
Table 12–3 lists the attributes, values, and defaults for configuring passivation criteria
in the orion-ejb-jar.xml file element session-deployment.

Table 12–2 server.xml Element sfsb-config Passivation Configuration

Attribute Values Default

enable-passivation true, false true

Table 12–3 orion-ejb-jar.xml Element session-deployment Passivation Criteria

Attribute Values Default

idletime Positive, integer number of seconds before passivation occurs.

To disable this criteria, specify a value of never.

300

memory-threshold Percentage of JVM memory that can be consumed before passivation occurs.

To disable this criteria, specify a value of never.

80

max-instances Maximum positive integer number of bean instances allowed in memory: either
instantiated or pooled.

When this value is reached, OC4J attempts to passivate beans using the least
recently used (LRU) algorithm. To allow an infinite number of bean instances, the
max-instances attribute can be set to zero. Default is 0, which means infinite.
This applies to both stateless and stateful session beans.

To disable instance pooling, set max-instances to any negative number. This
will create a new instance at the start of the EJB call and release it at the end of the
call.

See "Configuring Bean Instance Pool Size" on page 31-4 for more information.

0 (unlimited)

Configuring a Life Cycle Callback Method for an EJB 2.1 Session Bean

Using an EJB 2.1 Session Bean 12-3

Configuring Passivation Location
You can specify the directory and file name to which OC4J serializes a stateful session
bean when passivated (see "Using Deployment XML" on page 12-3).

For more information, see the following:

■ "Where is a Passivated Stateful Session Bean Stored?" on page 1-34

■ "Configuring Passivation" on page 12-1

■ "Configuring Passivation Criteria" on page 12-2

Using Deployment XML
Table 12–4 lists the attributes, values, and defaults for configuring passivation location
in the orion-ejb-jar.xml file element session-deployment.

Configuring a Life Cycle Callback Method for an EJB 2.1 Session Bean
The following are the EJB 2.1 life cycle methods, as specified in the
javax.ejb.SessionBean interface, that a session bean must implement (see "Using
Java" on page 12-4):

■ ejbCreate

■ ejbActivate (stateful session beans only)

■ ejbPassivate (stateful session beans only)

■ ejbRemove

■ setSessionContext

max-instances-threshold Percentage of max-instances number of beans that can be in memory before
passivation occurs.

Specify an integer that is translated as a percentage. If you define that the
max-instances is 100 and the max-instances-threshold is 90%, then
when the active bean instances is greater than or equal to 90, passivation of beans
occurs. Default: 90%.

To disable, specify never

90

passivate-count Positive, integer number of beans to be passivated if any of the resource
thresholds (memory-threshold or max-instances-threshold) have been
reached.

Passivation of beans is performed using the least recently used algorithm.

To disable this option, specify a value of 0.

One-third of
max-instances

resource-check-interval The frequency, as a positive, integer number of seconds, at which OC4J checks
resource thresholds (memory-threshold or max-instances-threshold).

To disable this option, specify a value of never.

180

Table 12–4 orion-ejb-jar.xml Element session-deployment Passivation Location Configuration

Attribute Values Default

persistence-filename Fully qualified path and file name of the
file into which OC4J serializes bean
instances during passivation.

<OC4J_
HOME>\j2ee\home\application-deployments\pers
istence.

Table 12–3 (Cont.) orion-ejb-jar.xml Element session-deployment Passivation Criteria

Attribute Values Default

Configuring a Life Cycle Callback Method for an EJB 2.1 Session Bean

12-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see the following:

■ "What is the Stateless Session Bean Life Cycle?" on page 1-28

■ "What is the Life Cycle of a Stateful Session Bean?" on page 1-30

Using Java
Example 12–1 shows how to implement an EBJ 2.1 session bean callback method.

Example 12–1 EJB 2.1 Session Bean Callback Method Implementation

public void ejbActivate() {
// when bean is activated

}

Note: Using EJB 2.1, you must implement all session bean callback
methods. If you do not need to take any action, or if the callback
method does not apply to your session bean, implement an empty
method.

Part VI
EJB 2.1 Entity Beans

This part provides procedural information on implementing and configuring EJB 2.1
entity beans and entity bean queries. For conceptual information, see Part I, "EJB
Overview".

This part contains the following chapters:

■ Chapter 13, "Implementing an EJB 2.1 Entity Bean"

■ Chapter 14, "Using an EJB 2.1 Entity Bean With Container-Managed Persistence"

■ Chapter 15, "Using an EJB 2.1 Entity Bean With Bean-Managed Persistence"

■ Chapter 16, "Implementing EJB 2.1 Queries"

Implementing an EJB 2.1 Entity Bean 13-1

13
Implementing an EJB 2.1 Entity Bean

This chapter explains how to implement an EJB 2.1 entity bean, including the
following:

■ "Implementing an EJB 2.1 Entity Bean With Container-Managed Persistence" on
page 13-1

■ "Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence" on
page 13-6

For more information, see the following:

■ "What is an EJB 2.1 Entity Bean?" on page 1-41

■ "Using an EJB 2.1 Entity Bean With Container-Managed Persistence" on page 14-1

■ "Using an EJB 2.1 Entity Bean With Bean-Managed Persistence" on page 15-1

Implementing an EJB 2.1 Entity Bean With Container-Managed
Persistence

Table 13–1 summarizes the important parts of an EJB 2.1 entity bean with
container-managed persistence and the following procedure describes how to
implement these parts. For a typical implementation, see "Using Java" on page 13-3.
For more information, see "What is an EJB 2.1 Entity Bean With Container-Managed
Persistence?" on page 1-42.

Note: You can download EJB code examples from:
http://www.oracle.com/technology/tech/java/oc4j/de
mos.

Table 13–1 Parts of an EJB 2.1 Entity Bean With Container-Managed Persistence

Part Description

Home Interface
(remote or local)

Extends javax.ejb.EJBHome for the remote home interface, javax.ejb.EJBLocalHome for the
local home interface, and requires a single create factory method, with no arguments, and a single
remove method.

Component Interface
(remote or local)

Extends javax.ejb.EJBObject for the remote interface and javax.ejb.EJBLocalObject for
the local interface. It defines the business logic methods, which are implemented in the bean
implementation.

Bean implementation Implements EntityBean. This class must be declared as public, contain a public, empty, default
constructor, no finalize method, and implements the methods defined in the component interface.
Must contain one or more ejbCreate methods to match the create methods in the home interface.
Contains empty implementations for the container service methods, such as ejbRemove, and so on.

Implementing an EJB 2.1 Entity Bean With Container-Managed Persistence

13-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

1. Create the home interfaces for the bean (see "Implementing the EJB 2.1 Home
Interfaces" on page 13-18).

The remote home interface defines the create and finder methods that a client
can invoke remotely to instantiate your bean. The local home interface defines the
create and finder methods that a collocated bean can invoke locally to
instantiate your bean.

For more information about finders, see "Understanding Finder Methods" on
page 1-53

a. To create the remote home interface, extend javax.ejb.EJBHome (see
"Implementing the Remote Home Interface" on page 13-18).

b. To create the local home interface, extend javax.ejb.EJBLocalHome (see
"Implementing the Local Home Interface" on page 13-19).

2. Create the component interfaces for the bean (see "Implementing the EJB 2.1
Component Interfaces" on page 13-19).

The remote component interface declares the business methods that a client can
invoke remotely. The local interface declares the business methods that a
collocated bean can invoke locally.

a. To create the remote component interface, extend javax.ejb.EJBObject
(see "Implementing the Remote Component Interface" on page 13-19).

b. To create the local component interface, extend
javax.ejb.EJBLocalObject (see "Implementing the Local Component
Interface" on page 13-20).

3. Define the primary key for the bean (see "Configuring a Primary Key for an EJB
2.1 Entity Bean With Container-Managed Persistence" on page 14-2).

The primary key identifies each entity bean instance and is a serializable class. You
can use a simple data type class, such as java.lang.String, or define a
complex class, such as one with two or more objects as components of the primary
key.

4. Implement the entity bean with container-managed persistence as follows:

a. Implement the abstract getter and setter methods that correspond to the getter
and setter method(s) declared in the home interfaces.

For an entity bean with container-managed persistence, the getter and setter
methods are public abstract, because the container is responsible for
their implementation.

b. Implement the business methods that you declared in the home and
component interfaces (if any). The signature for each of these methods must
match the signature in the remote or local interface, except that the bean does
not throw the RemoteException. Since both the local and the remote
interfaces use the bean implementation, the bean implementation cannot
throw the RemoteException.

For an entity bean, these methods are often delegated to a session bean (see
"What is a Session Bean?" on page 1-27).

c. Implement any methods that are private to the bean or package used for
facilitating the business logic. This includes private methods that your public
methods use for completing the tasks requested of them.

d. Implement the ejbCreate methods that correspond to the create
method(s) declared in the home interfaces. The container invokes the

Implementing an EJB 2.1 Entity Bean With Container-Managed Persistence

Implementing an EJB 2.1 Entity Bean 13-3

appropriate ejbCreate method when the client invokes the corresponding
create method.

The return type of all ebjCreate methods is the type of the bean’s primary
key.

For an entity bean with container-managed persistence, provide create
methods that allow the client to pass in values that the container will persist to
your database.

e. Provide an empty implementation for each of the javax.ejb.EntityBean
interface container callback methods.

For more information, see "Configuring a Life Cycle Callback Method for an
EJB 2.1 Entity Bean With Container-Managed Persistence" on page 14-15.

f. Implement a setEntityContext method (that takes an instance of
EntityContext) and unsetEntityContext method (see "Implementing
the setEntityContext and unsetEntityContext Methods" on page 13-20).

g. Optionally, define zero or more public, abstract select methods (see
"Understanding Select Methods" on page 1-55) for use within the business
methods of your entity bean.

5. Create the appropriate database schema (tables and columns) for the entity bean.

For an entity bean with container-managed persistence, you can specify how
persistence attributes should be stored in the database or you can configure the
container to manage table creation for you.

For more information, see the following:

■ "Configuring Table and Column Information" on page 14-4

■ "Configuring Automatic Database Table Creation" on page 14-5

6. Configure your ejb-jar.xml file to match your bean implementation and to
reference a data source defined in your data-sources.xml file (see "Using
Deployment XML" on page 13-5).

7. Complete the configuration of your entity bean (see "Using an EJB 2.1 Entity Bean
With Container-Managed Persistence" on page 14-1).

Using Java
Example 13–1 shows a typical implementation of an EJB 2.1 entity bean with
container-managed persistence. Example 13–2 shows the corresponding remote home
interface and Example 13–3 shows the corresponding remote component interface.

Example 13–1 Implementation of an EJB 2.1 Entity Bean With Container-Managed
Persistence

package cmpapp;

import javax.ejb.*;
import java.rmi.*;

public abstract class EmployeeBean implements EntityBean {

private EntityContext ctx;

// container-managed persistent fields accessors
public abstract Integer getEmpNo();
public abstract void setEmpNo(Integer empNo);

Implementing an EJB 2.1 Entity Bean With Container-Managed Persistence

13-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

public abstract String getEmpName();
public abstract void setEmpName(String empName);

public abstract Float getSalary();
public abstract void setSalary(Float salary);

public void EmployeeBean() {

// Empty constructor, don't initialize here but in the create().
// passivate() may destroy these attributes in the case of pooling

}

public EmployeePK ejbCreate(Integer empNo, String empName, Float salary)
throws CreateException {
setEmpNo(empNo);
setEmpName(empName);
setSalary(salary);
return new EmployeePK(empNo);

}

public void ejbPostCreate(Integer empNo, String empName, Float salary)
throws CreateException {
// when just after bean created

}

public void ejbStore() {
// when bean persisted

}

public void ejbLoad() {
// when bean loaded

}

public void ejbRemove() {
// when bean removed

}

public void ejbActivate() {
// when bean activated

}

public void ejbPassivate() {
// when bean deactivated

}

public void setEntityContext(EntityContext ctx) {
this.ctx = ctx;

}

public void unsetEntityContext() {
this.ctx = null;

}

}

Example 13–2 EJB 2.1 CMP Remote Home Interface

package cmpapp;

import java.rmi.*;
import java.util.*;
import javax.ejb.*;

public interface EmployeeHome extends EJBHome {
 public Employee create(Integer empNo, String empName, Float salary)

Implementing an EJB 2.1 Entity Bean With Container-Managed Persistence

Implementing an EJB 2.1 Entity Bean 13-5

 throws CreateException, RemoteException;

 public Employee findByPrimaryKey(EmployeePK pk)
 throws FinderException, RemoteException;

 public Collection findByName(String empName)
 throws FinderException, RemoteException;

 public Collection findAll()
 throws FinderException, RemoteException;

}

Example 13–3 EJB 2.1 CMP Remote Component Interface

package cmpapp;

import javax.ejb.*;
import java.rmi.*;

public interface Employee extends EJBObject {
// container-managed persistent fields accessors
public Integer getEmpNo() throws RemoteException;
public void setEmpNo(Integer empNo) throws RemoteException;

public String getEmpName() throws RemoteException;
public void setEmpName(String empName) throws RemoteException;

public Float getSalary() throws RemoteException;
public void setSalary(Float salary) throws RemoteException;

}

Using Deployment XML
Example 13–4 shows the ejb-jar.xml file entity element corresponding to the
entity bean with container-managed persistence, shown in Example 13–1.

Example 13–4 ejb-jar.xml For an EJB 2.1 Entity Bean With Container-Managed
Persistence

...
<enterprise-beans>

<entity>
<description>no description</description>
<display-name>EmployeeBean</display-name>
<ejb-name>EmployeeBean</ejb-name>
<home>cmpapp.EmployeeHome</home>
<remote>cmpapp.Employee</remote>
<ejb-class>cmpapp.EmployeeBean</ejb-class>
<persistence-type>Container</persistence-type>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>EmployeeBean</abstract-schema-name>
<prim-key-class>cmpapp.EmployeePK</prim-key-class>
<reentrant>False</reentrant>
<cmp-field><field-name>empNo</field-name></cmp-field>
<cmp-field><field-name>empName</field-name></cmp-field>
<cmp-field><field-name>salary</field-name></cmp-field>
<query>

<description></description>
<query-method>
<method-name>findAll</method-name>
<method-params/>
</query-method>
<ejb-ql>Select OBJECT(e) From EmployeeBean e</ejb-ql>

Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence

13-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

</query>
<query>

<description></description>
<query-method>
<method-name>findByName</method-name>
<method-params>
<method-param>java.lang.String</method-param>
</method-params>
</query-method>
<ejb-ql>Select OBJECT(e) From EmployeeBean e where e.empName = ?1</ejb-ql>

</query>
</entity>

</enterprise-beans>
...

Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence
Table 13–2 summarizes the important parts of an EJB 2.1 entity bean with
bean-managed persistence. The following procedure describes how to implement
these parts. For a typical implementation, see "Using Java" on page 13-8. For more
information, see "What is an EJB 2.1 Entity Bean With Bean-Managed Persistence?" on
page 1-46.

1. Create the home interfaces for the bean (see "Implementing the EJB 2.1 Home
Interfaces" on page 13-18).

The remote home interface defines the create method that a client can invoke
remotely to instantiate your bean. The local home interface defines the create
method that a collocated bean can invoke locally to instantiate your bean.

a. To create the remote home interface, extend javax.ejb.EJBHome (see
"Implementing the Remote Home Interface" on page 13-18).

b. To create the local home interface, extend javax.ejb.EJBLocalHome (see
"Implementing the Local Home Interface" on page 13-19).

2. Create the component interfaces for the bean (see "Implementing the EJB 2.1
Component Interfaces" on page 13-19).

The remote component interface declares the business methods that a client can
invoke remotely. The local interface declares the business methods that a
collocated bean can invoke locally.

a. To create the remote component interface, extend javax.ejb.EJBObject
(see "Implementing the Remote Component Interface" on page 13-19).

Table 13–2 Parts of an EJB 2.1 Entity Bean With Bean-Managed Persistence

Part Description

Home Interface (remote
or local)

Extends javax.ejb.EJBHome for the remote home interface, javax.ejb.EJBLocalHome for the
local home interface, and requires a single create factory method, with no arguments, and a single
remove method.

Component Interface
(remote or local)

Extends javax.ejb.EJBObject for the remote interface and javax.ejb.EJBLocalObject for
the local interface. It defines the business logic methods, which are implemented in the bean
implementation.

Bean implementation Implements EntityBean. This class must be declared as public, contain a public, empty, default
constructor, no finalize method, and implements the methods defined in the component interface.
Must contain one or more ejbCreate methods to match the create methods in the home interface.
Contains complete implementations for the container service methods, such as ejbStore, ejbLoad,
ejbRemove, and so on.

Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence

Implementing an EJB 2.1 Entity Bean 13-7

b. To create the local component interface, extend
javax.ejb.EJBLocalObject (see "Implementing the Local Component
Interface" on page 13-20).

3. Define the primary key for the bean (see "Configuring a Primary Key for an EJB
2.1 Entity Bean With Bean-Managed Persistence" on page 15-1).

The primary key identifies each entity bean instance and is a serializable class. You
can use a simple data type class, such as java.lang.String, or define a
complex class, such as one with two or more objects as components of the primary
key.

4. Implement the entity bean with bean-managed persistence:

a. Provide a complete implementation of the get and set methods that
correspond to the get and set method(s) declared in the home interfaces.

For an entity bean with bean-managed persistence, the getter and setter
methods are public, because you are responsible for their implementation.

b. Implement the business methods that you declared in the home and
component interfaces (if any). The signature for each of these methods must
match the signature in the remote or local interface, except that the bean does
not throw the RemoteException. Since both the local and the remote
interfaces use the bean implementation, the bean implementation cannot
throw the RemoteException.

For an entity bean, these methods are often delegated to a session bean (see
"What is a Session Bean?" on page 1-27).

c. Implement any methods that are private to the bean or package used for
facilitating the business logic. This includes private methods that your public
methods use for completing the tasks requested of them.

d. Implement the ejbCreate methods that correspond to the create
method(s) declared in the home interfaces. The container invokes the
appropriate ejbCreate method when the client invokes the corresponding
create method.

The return type of all ebjCreate methods is the type of the bean’s primary
key.

For an entity bean with bean-managed persistence, provide create methods
that allow the client to pass in values that the container will persist to your
database. You are responsible for providing an implementation that interacts
with your database (usually through straight JDBC calls) to create an instance
in the database.

For more information, see "Implementing an ejbCreate Method for an EJB 2.1
Entity Bean With Bean-Managed Persistence" on page 13-15.

e. Provide a complete implementation for each of the javax.ejb.EntityBean
interface container callback methods (see "Configuring a Life Cycle Callback
Method for an EJB 2.1 Entity Bean With Bean-Managed Persistence" on
page 15-7).

For an entity bean with bean-managed persistence, you are responsible for
providing an implementation for each these methods that interacts with your
database (usually through straight JDBC calls) to manage persistence in the
database.

Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence

13-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

f. Implement a setEntityContext method that takes an instance of
EntityContext and unsetEntityContext method (see "Implementing
the setEntityContext and unsetEntityContext Methods" on page 13-20).

g. Implement the mandatory findByPrimaryKey finder method and,
optionally, other finders (see "Configuring a Query for an EJB 2.1 Entity Bean
With Bean-Managed Persistence" on page 15-5).

5. Create the appropriate database schema (tables and columns) for the entity bean.

For an entity bean with bean-managed persistence, you are responsible for
creating this schema in the database (defined in the data-sources.xml file)
before your application attempts to create an instance of your entity bean with
bean-managed persistence.

6. Configure your ejb-jar.xml file to match your bean implementation and to
reference a data source defined in your data-sources.xml file (see "Using
Deployment XML" on page 13-14).

7. Complete the configuration of your entity bean (see "Using an EJB 2.1 Entity Bean
With Bean-Managed Persistence" on page 15-1).

Using Java
Example 13–5 shows a typical implementation of an EJB 2.1 entity bean with
bean-managed persistence. Example 13–7 shows the corresponding home interface
and Example 13–6 shows the corresponding remote interface.

Example 13–5 Implementation of an EJB 2.1 Entity Bean With Bean-Managed
Persistence

package bmpapp;

import java.util.*;
import java.rmi.*;
import java.sql.*;
import javax.sql.*;
import javax.naming.*;
import javax.ejb.*;

public class EmployeeBean implements EntityBean {

public Integer empNo;

public EntityContext ctx;
private Connection conn = null;
private PreparedStatement ps = null;
private EmployeePK pk;
private static final String dsName = "jdbc/OracleDS";

private static final String insertStatement =

"INSERT INTO EMP (EMPNO, ENAME, SAL) VALUES (?, ?, ?)";
private static final String updateStatement =

"UPDATE EMP SET ENAME=?, SAL=? WHERE EMPNO=?";
private static final String deleteStatement =

"DELETE FROM EMP WHERE EMPNO=?";
private static final String findAllStatement =

"SELECT EMPNO, ENAME, SAL FROM EMP";
private static final String findByPKStatement =

"SELECT EMPNO, ENAME, SAL FROM EMP WHERE EMPNO = ?";
private static final String findByNameStatement =

"SELECT EMPNO, ENAME, SAL FROM EMP WHERE ENAME = ?";
// or you can define a variable specific to orion to implement finder-method:
// or use <finder-method/> in orion-ejb-jar.xml

Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence

Implementing an EJB 2.1 Entity Bean 13-9

public static final String findByNameQuery="full: " +
"SELECT EMPNO, ENAME, SAL FROM EMP WHERE ENAME = $1";

public EmployeeBean() {

// Empty constructor, don't initialize here but in the create().
// passivate() may destroy these attributes in the case of pooling

}

public EmployeePK ejbCreate(Integer empNo, String empName, Float salary)
throws CreateException {
try {

pk = new EmployeePK(empNo, empName, salary);
conn = getConnection(dsName);
ps = conn.prepareStatement(insertStatement);
ps.setInt(1, empNo.intValue());
ps.setString(2, empName);
ps.setFloat(3, salary.floatValue());
ps.executeUpdate();
return pk;

}
catch (SQLException e) {

System.out.println("Caught an exception 1 " + e.getMessage());
throw new CreateException(e.getMessage());

}
catch (NamingException e) {

System.out.println("Caught an exception 1 " + e.getMessage());
throw new EJBException(e.getMessage());

}
finally {

try {
ps.close();
conn.close();

} catch (SQLException e) {
throw new EJBException(e.getMessage());

}
}

}

public void ejbPostCreate(Integer empNo, String empName, Float salary)
throws CreateException {

}

public EmployeePK ejbFindByPrimaryKey(EmployeePK pk)
throws FinderException {
if (pk == null || pk.empNo == null) {

throw new FinderException("Primary key cannot be null");
}
try {

conn = getConnection(dsName);
ps = conn.prepareStatement(findByPKStatement);
ps.setInt(1, pk.empNo.intValue());
ps.executeQuery();
ResultSet rs = ps.getResultSet();
if (rs.next()) {

pk.empNo = new Integer(rs.getInt(1));
pk.empName = new String(rs.getString(2));
pk.salary = new Float(rs.getFloat(3));

}
else {

throw new FinderException("Failed to select this PK");
}

}
catch (SQLException e) {

throw new FinderException(e.getMessage());
}
catch (NamingException e) {

Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence

13-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

System.out.println("Caught an exception 1 " + e.getMessage());
throw new EJBException(e.getMessage());

}
finally {

try {
ps.close();
conn.close();

}
catch (SQLException e) {

throw new EJBException(e.getMessage());
}

}
return pk;

}

public Collection ejbFindAll() throws FinderException {
//System.out.println("EmployeeBean.ejbFindAll(): begin");
Vector recs = new Vector();
try {

conn = getConnection(dsName);
ps = conn.prepareStatement(findAllStatement);
ps.executeQuery();
ResultSet rs = ps.getResultSet();
int i = 0;
while (rs.next()) {

pk = new EmployeePK();
pk.empNo = new Integer(rs.getInt(1));
pk.empName = new String(rs.getString(2));
pk.salary = new Float(rs.getFloat(3));
recs.add(pk);

}
}
catch (SQLException e) {

throw new FinderException(e.getMessage());
}
catch (NamingException e) {

System.out.println("Caught an exception 1 " + e.getMessage());
throw new EJBException(e.getMessage());

}
finally {

try {
ps.close();
conn.close();

}
catch (SQLException e) {

throw new EJBException(e.getMessage());
}

}
return recs;

}

public Collection ejbFindByName(String empName)
throws FinderException {
//System.out.println("EmployeeBean.ejbFindByName(): begin");
if (empName == null) {

throw new FinderException("Name cannot be null");
}
Vector recs = new Vector();
try {

conn = getConnection(dsName);
ps = conn.prepareStatement(findByNameStatement);
ps.setString(1, empName);
ps.executeQuery();
ResultSet rs = ps.getResultSet();
int i = 0;
while (rs.next()) {

Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence

Implementing an EJB 2.1 Entity Bean 13-11

pk = new EmployeePK();
pk.empNo = new Integer(rs.getInt(1));
pk.empName = new String(rs.getString(2));
pk.salary = new Float(rs.getFloat(3));
recs.add(pk);

}
}
catch (SQLException e) {

throw new FinderException(e.getMessage());
}
catch (NamingException e) {

System.out.println("Caught an exception 1 " + e.getMessage());
throw new EJBException(e.getMessage());

}
finally {

try {
ps.close();
conn.close();

}
catch (SQLException e) {

throw new EJBException(e.getMessage());
}

}
return recs;

}

public void ejbLoad() throws EJBException {
//Container invokes this method to instruct the instance to
//synchronize its state by loading it from the underlying database
//System.out.println("EmployeeBean.ejbLoad(): begin");
try {

pk = (EmployeePK) ctx.getPrimaryKey();
ejbFindByPrimaryKey(pk);

}
catch (FinderException e) {

throw new EJBException (e.getMessage());
}

}

public void ejbStore() throws EJBException {
//Container invokes this method to instruct the instance to
//synchronize its state by storing it to the underlying database
//System.out.println("EmployeeBean.ejbStore(): begin");
try {

pk = (EmployeePK) ctx.getPrimaryKey();
conn = getConnection(dsName);
ps = conn.prepareStatement(updateStatement);
ps.setString(1, pk.empName);
ps.setFloat(2, pk.salary.floatValue());
ps.setInt(3, pk.empNo.intValue());
if (ps.executeUpdate() != 1) {

throw new EJBException("Failed to update record");
}

}
catch (SQLException e) {

throw new EJBException(e.getMessage());
}
catch (NamingException e) {

System.out.println("Caught an exception 1 " + e.getMessage());
throw new EJBException(e.getMessage());

}
finally {

try {
ps.close();
conn.close();

}

Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence

13-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

catch (SQLException e) {
throw new EJBException(e.getMessage());

}
}

}

public void ejbRemove() throws RemoveException {
//Container invokes this method befor it removes the EJB object
//that is currently associated with the instance
//System.out.println("EmployeeBean.ejbRemove(): begin");
try {

pk = (EmployeePK) ctx.getPrimaryKey();
conn = getConnection(dsName);
ps = conn.prepareStatement(deleteStatement);
ps.setInt(1, pk.empNo.intValue());
if (ps.executeUpdate() != 1) {

throw new RemoveException("Failed to delete record");
}

}
catch (SQLException e) {

throw new RemoveException(e.getMessage());
}
catch (NamingException e) {

System.out.println("Caught an exception 1 " + e.getMessage());
throw new EJBException(e.getMessage());

}
finally {

try {
ps.close();
conn.close();

}
catch (SQLException e) {

throw new EJBException(e.getMessage());
}

}
}

public void ejbActivate() {

// Container invokes this method when the instance is taken out
// of the pool of available instances to become associated with
// a specific EJB object
//System.out.println("EmployeeBean.ejbActivate(): begin");

}

public void ejbPassivate() {
// Container invokes this method on an instance before the instance
// becomes disassociated with a specific EJB object
//System.out.println("EmployeeBean.ejbPassivate(): begin");

}

public void setEntityContext(EntityContext ctx) {
//Set the associated entity context
//System.out.println("EmployeeBean.setEntityContext(): begin");
this.ctx = ctx;

}

public void unsetEntityContext() {
//Unset the associated entity context
//System.out.println("EmployeeBean.unsetEntityContext(): begin");
this.ctx = null;

}

/**
 * methods inherited from EJBObject
 */
public Integer getEmpNo() {

Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence

Implementing an EJB 2.1 Entity Bean 13-13

pk = (EmployeePK) ctx.getPrimaryKey();
return pk.empNo;

}

public String getEmpName() {
pk = (EmployeePK) ctx.getPrimaryKey();
return pk.empName;

}

public Float getSalary() {
pk = (EmployeePK) ctx.getPrimaryKey();
return pk.salary;

}

public void setEmpNo(Integer empNo) {
pk = (EmployeePK) ctx.getPrimaryKey();
pk.empNo = empNo;

}

public void setEmpName(String empName) {
pk = (EmployeePK) ctx.getPrimaryKey();
pk.empName = empName;

}

public void setSalary(Float salary) {
pk = (EmployeePK) ctx.getPrimaryKey();
pk.salary = salary;

}

public EJBHome getEJBHome() {
return ctx.getEJBHome();

}

public Handle getHandle() throws RemoteException {
return ctx.getEJBObject().getHandle();

}

public Object getPrimaryKey() throws RemoteException {
return ctx.getEJBObject().getPrimaryKey();

}

public boolean isIdentical(EJBObject remote) throws RemoteException {
return ctx.getEJBObject().isIdentical(remote);

}

public void remove() throws RemoveException, RemoteException{
ctx.getEJBObject().remove();

}

/**
 * Private methods
 */
private Connection getConnection(String dsName)

 throws SQLException, NamingException {
DataSource ds = getDataSource(dsName);
return ds.getConnection();

}

private DataSource getDataSource(String dsName) throws NamingException {
DataSource ds = null;
Context ic = new InitialContext();
ds = (DataSource) ic.lookup(dsName);
return ds;

}
}

Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence

13-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 13–6 EJB 2.1 BMP Remote Home Interface

package bmpapp;

import java.rmi.*;
import java.util.*;
import javax.ejb.*;

public interface EmployeeHome extends EJBHome {

public Employee create(Integer empNo, String empName, Float salary)
throws CreateException, RemoteException;

public Employee findByPrimaryKey(EmployeePK pk)

throws FinderException, RemoteException;

public Collection findByName(String empName)
throws FinderException, RemoteException;

public Collection findAll()

throws FinderException, RemoteException;
}

Example 13–7 EJB 2.1 BMP Remote Component Interface

package bmpapp;

import java.rmi.*;
import javax.ejb.*;

public interface Employee extends EJBObject {

// getter remote methods
public Integer getEmpNo() throws RemoteException;
public String getEmpName() throws RemoteException;
public Float getSalary() throws RemoteException;

// setter remote methods
public void setEmpNo(Integer empNo) throws RemoteException;
public void setEmpName(String empName) throws RemoteException;
public void setSalary(Float salary) throws RemoteException;

}

Using Deployment XML
Example 13–8 shows the ejb-jar.xml entity element corresponding to the entity
bean with bean-managed persistence, shown in Example 13–5.

Example 13–8 ejb-jar.xml For an EJB 2.1 Entity Bean With Bean-Managed Persistence

...
<enterprise-beans>

<entity>
<description>no description</description>
<display-name>EmployeeBean</display-name>
<ejb-name>EmployeeBean</ejb-name>
<home>bmpapp.EmployeeHome</home>
<remote>bmpapp.Employee</remote>
<ejb-class>bmpapp.EmployeeBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>bmpapp.EmployeePK</prim-key-class>
<reentrant>False</reentrant>
<resource-ref>

<res-ref-name>jdbc/OracleDS</res-ref-name>

Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence

Implementing an EJB 2.1 Entity Bean 13-15

<res-type>javax.sql.DataSource</res-type>
<res-auth>Application</res-auth>

</resource-ref>
</entity>

</enterprise-beans>
...

Example 13–9 shows the data-sources.xml file data-source element
ejb-location attribute that specifies the res-ref-name (jdbc/OracleDS) used
in the ejb-jar.xml file shown in Example 13–8.

Example 13–9 data-sources.xml For an EJB 2.1 Entity Bean With Bean-Managed
Persistence Data Source

<connection-pool name="Example Connection Pool">
<!-- This is an example of a connection factory that emulates XA behavior. -->
<connection-factory factory-class="oracle.jdbc.pool.OracleDataSource"

user="scott"
password="tiger"
url="jdbc:oracle:thin:@//localhost:1521/oracle.regress.rdbms.dev.us.oracle.com">

</connection-factory>
</connection-pool>

<managed-data-source name="OracleDS"

connection-pool-name="Example Connection Pool"
jndi-name="jdbc/OracleDS"/>

Implementing an ejbCreate Method for an EJB 2.1 Entity Bean With Bean-Managed
Persistence

The ejbCreate method is responsible primarily for the creation of the primary key.
This includes the following:

1. Creating the primary key.

2. Creating the persistent data representation for the key.

3. Initializing the key to a unique value and ensuring no duplication.

4. Returning this key to the container.

The container maps the key to the entity bean reference.

The following example shows the ejbCreate method for the employee example,
which initializes the primary key, empNo. It should automatically generate a primary
key that is the next available number in the employee number sequence. However, for
this example to be simple, the ejbCreate method requires that the user provide the
unique employee number.

In addition, because the full data for the employee is provided within this method, the
data is saved within the context variables of this instance. After initialization, it returns
this key to the container.

// The create methods takes care of generating a new empNo and returns
// its primary key to the container
public Integer ejbCreate (Integer empNo, String empName, Float salary)

throws CreateException {

Note: For simplicity, the try blocks within the samples have been
removed in this example.

Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence

13-16 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

// in this implementation, the client gives the employee number,
// so only need to assign it, not create it
this.empNo = empNo;
this.empName = empName;
this.salary = salary;

// insert employee into database
conn = getConnection(dsName);
ps = conn.prepareStatement("INSERT INTO EMPLOYEEBEAN (EmpNo, EmpName, SAL)

VALUES ("+this.empNo.intValue()+", "+this.empName+","
+ this.salary.floatValue()+")");

ps.executeUpdate();
ps.close();

// return the new primary key
return (empNo);

}

The deployment descriptor defines only the primary key class in the
<prim-key-class> element. Because the bean is saving the data, there is no
definition of persistence data in the deployment descriptor. Note that the deployment
descriptor does define the database the bean uses in the <resource-ref> element.
For more information on database configuration, see "Using Deployment XML" on
page 13-14.

<enterprise-beans>
 <entity>

<display-name>EmployeeBean</display-name>
<ejb-name>EmployeeBean</ejb-name>
<local-home>employee.EmployeeLocalHome</local-home>
<local>employee.EmployeeLocal</local>
<ejb-class>employee.EmployeeBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>
<resource-ref>

<res-ref-name>jdbc/OracleDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Application</res-auth>

</resource-ref>
 </entity>

</enterprise-beans>

Alternatively, you can create a complex primary key based on several data types. You
define a complex primary key within its own class as follows:

package employee;

import java.io.*;
java.io.Serializable;

...

public class EmployeePK implements java.io.Serializable {
public Integer empNo;
public String empName;
public Float salary;

public EmployeePK(Integer empNo) {
this.empNo = empNo;

Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence

Implementing an EJB 2.1 Entity Bean 13-17

this.empName = null;
this.salary = null;

}

public EmployeePK(Integer empNo, String empName, Float salary) {
this.empNo = empNo;
this.empName = empName;
this.salary = salary;

}

}

For a primary key class, you define the class in the <prim-key-class> element,
which is the same for the simple primary key definition.

<enterprise-beans>
 <entity>

<display-name>EmployeeBean</display-name>
<ejb-name>EmployeeBean</ejb-name>
<local-home>employee.EmployeeLocalHome</local-home>
<local>employee.EmployeeLocal</local>
<ejb-class>employee.EmployeeBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>employee.EmployeePK</prim-key-class>
<reentrant>False</reentrant>
<resource-ref>

<res-ref-name>jdbc/OracleDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Application</res-auth>

</resource-ref>
 </entity>

</enterprise-beans>

The employee example requires that the employee number is given to the bean by the
user. Another method would generate the employee number by computing the next
available employee number, and use this in combination with the employee’s name
and office location.

After defining the complex primary key class, you would create your primary key
within the ejbCreate method as follows:

public EmployeePK ejbCreate(Integer empNo, String empName, Float salary)
throws CreateException {

pk = new EmployeePK(empNo, empName, salary);
...

}

The other task that the ejbCreate (or ejbPostCreate) should handle is allocating
any resources necessary for the life of the bean. For this example, because there is
already the information for the employee, the ejbCreate performs the following:

1. Retrieves a connection to the database. This connection remains open for the life of
the bean. It is used to update employee information within the database. It should
be released in ejbPassivate and ejbRemove, and reallocated in ejbActivate.

2. Updates the database with the employee information.

This is executed as follows:

public EmployeePK ejbCreate(Integer empNo, String empName, Float salary)
throws CreateException {

pk = new EmployeePK(empNo, empName, salary);

Implementing the EJB 2.1 Home Interfaces

13-18 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

conn = getConnection(dsName);
ps = conn.prepareStatement("INSERT INTO EMPLOYEEBEAN (EmpNo, EmpName, SAL)

VALUES ("+this.empNo.intValue()+", "+this.empName+","
+ this.salary.floatValue()+")");

ps.executeUpdate();
ps.close();
return pk;

}

Implementing the EJB 2.1 Home Interfaces
The home interfaces are used to specify what methods a client uses to create or retrieve
an entity bean instance.

The home interface must contain a create method, which the client invokes to create
the bean instance. The entity bean can have zero or more create methods, each with
its own defined parameters. For each create method, you define a corresponding
ejbCreate method in the bean implementation.

All entity beans must define one or more finder methods in the home interface, where
at least one is a findByPrimaryKey method. Optionally, you can define other finder
methods, which are named find<name>, including predefined and default finders.
For more information, see "Understanding Finder Methods" on page 1-53.

In addition to creation and retrieval methods, you can provide home interface business
methods within the home interface. The functionality within these methods cannot
access data of a particular entity object. Instead, the purpose of these methods is to
provide a way to retrieve information that is not related to a single entity bean
instance. When the client invokes any home interface business method, an entity bean
is removed from the pool to service the request. Thus, this method can be used to
perform operations on general information related to the bean.

For example, in an employee application, you might provide the local home interface
with a create, findByPrimaryKey, findAll, and calcSalary methods. The
calcSalary method is a home interface business method that calculates the sum of
all employee salaries. It does not access the information of a particular employee, but
performs a SQL query against the database for all employees.

There are the following two types of home interface:

■ The remote home interface extends javax.ejb.EJBHome (see "Implementing the
Remote Home Interface" on page 13-18)

■ The local home interface extends javax.ejb.EJBLocalHome (see
"Implementing the Local Home Interface" on page 13-19)

Implementing the Remote Home Interface
A remote client invokes the EJB through its remote interface. The client invokes the
create method that is declared within the remote home interface. The container
passes the client call to the ejbCreate method–with the appropriate parameter
signature–within the bean implementation. The requirements for developing the
remote home interface include the following:

■ The remote home interface must extend the javax.ejb.EJBHome interface.

■ All create methods may throw the following exceptions:

– javax.ejb.CreateException

– javax.ejb.EJBException or another RuntimeException

Implementing the EJB 2.1 Component Interfaces

Implementing an EJB 2.1 Entity Bean 13-19

Example 13–2 shows the remote home interface corresponding to the EJB 2.1 entity
bean with container-managed persistence in Example 13–1 and Example 13–6 shows
the remote home interface corresponding to the EJB 2.1 entity bean with
bean-managed persistence in Example 13–5.

Implementing the Local Home Interface
An EJB can be called locally from a client that exists in the same container. Thus, a
collocated bean, JSP, or servlet invokes the create method that is declared within the
local home interface. The container passes the client call to the ejbCreate
method–with the appropriate parameter signature–within the bean implementation.
The requirements for developing the local home interface include the following:

■ The local home interface must extend the javax.ejb.EJBLocalHome interface.

■ All create methods may throw the following exceptions:

– javax.ejb.CreateException

– javax.ejb.EJBException or another RuntimeException

Implementing the EJB 2.1 Component Interfaces
The component interfaces define the business methods of the bean that a client can
invoke.

The entity bean component interface is the interface that the client can invoke its
methods with. The component interface defines the business logic methods for the
entity bean instance.

There are the following two types of component interface:

■ The remote component interface extends javax.ejb.EJBObject (see
"Implementing the Remote Component Interface" on page 13-19)

■ The local component interface extends javax.ejb.EJBLocalObject (see
"Implementing the Local Component Interface" on page 13-20)

Implementing the Remote Component Interface
The remote interface defines the business methods that a remote client can invoke. The
requirements for developing the remote component interface include:

■ The remote component interface of the bean must extend the
javax.ejb.EJBObject interface, and its methods must throw the
java.rmi.RemoteException exception.

■ You must declare the remote interface and its methods as public for remote
clients.

■ The remote component interface, all its method parameters, and return types must
be serializable. In general, any object that is passed between the client and the
enterprise bean must be serializable, because RMI marshals and unmarshalls the
object on both ends.

■ Any exception can be thrown to the client. Run-time exceptions, including
EJBException and RemoteException, are transferred back to the client as
remote run-time exceptions.

■ A remote component interface can throw a specified application exceptions.

Implementing the setEntityContext and unsetEntityContext Methods

13-20 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 13–3 shows the remote component interface corresponding to the EJB 2.1
entity bean with container-managed persistence in Example 13–1 and Example 13–7
shows the remote component interface corresponding to the EJB 2.1 entity bean with
bean-managed persistence in Example 13–5.

Implementing the Local Component Interface
The local component interface defines the business methods of the bean that a local
(collocated) client can invoke. The requirements for developing the local component
interface include the following:

■ The local component interface of the bean must extend the
javax.ejb.EJBLocalObject interface.

■ You declare the local component interface and its methods as public.

Implementing the setEntityContext and unsetEntityContext Methods
An entity bean instance uses this method to retain a reference to its context. Entity
beans have contexts that the container maintains and makes available to the beans.
The bean may use the methods in the entity context to retrieve information about the
bean, such as security and transactional role. Refer to the EJB specification from Sun
Microsystems for the full range of information that you can retrieve about the bean
from the context.

The container invokes the setEntityContext method after it first instantiates the
bean to enable the bean to retrieve the context. The container will never call this
method from within a transaction context. If the bean does not save the context at this
point, the bean will never gain access to the context.

When the container calls this method, it passes the reference of the EntityContext
object to the bean. The bean can then store the reference for later use. The following
example shows the bean saving the context in the this.ctx variable.

You use this method to obtain a reference to the context of the bean. Entity beans have
entity contexts that the container maintains and makes available to the beans. The
bean may use the methods in the entity context to make callback requests to the
container.

Example 13–10 shows an entity bean saving the session context in the entityctx
variable.

Example 13–10 Implementing the setEntityContext and unsetEntityContext Methods

import javax.ejb.*;

public class MyBean implements EnityBean {
EntityContext entityctx;

public void setEntityContext(EntityContext ctx) {
entityctx = ctx; // entity context is stored in instance variable

}

Note: You can also use the setEntityContext and
unsetEntityContext methods to allocate and destroy any
resources that will exist for the life time of the instance.

Implementing the setEntityContext and unsetEntityContext Methods

Implementing an EJB 2.1 Entity Bean 13-21

public void unsetEntityContext() {
entityctx = null;

}

// other methods in the bean
}

Implementing the setEntityContext and unsetEntityContext Methods

13-22 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Using an EJB 2.1 Entity Bean With Container-Managed Persistence 14-1

14
Using an EJB 2.1 Entity Bean With

Container-Managed Persistence

This chapter describes the various options that you must configure in order to use an
EJB 2.1 entity bean with container-managed persistence.

Table 14–1 lists these options and indicates which are basic (applicable to most
applications) and which are advanced (applicable to more specialized applications).

For more information, see the following:

■ "What is an EJB 2.1 Entity Bean With Container-Managed Persistence?" on
page 1-42

■ "Implementing an EJB 2.1 Entity Bean With Container-Managed Persistence" on
page 13-1

Table 14–1 Configurable Options for an EJB 2.1 CMP Entity Bean

Options Type

"Configuring a Primary Key for an EJB 2.1 Entity Bean With Container-Managed Persistence" on page 14-2 Basic

"Configuring Table and Column Information" on page 14-4 Advanced

"Configuring Automatic Database Table Creation" on page 14-5 Advanced

"Configuring Default Relationship Generation" on page 14-6 Advanced

"Configuring a Container-Managed Persistent Field for an EJB 2.1 Entity Bean With Container-Managed
Persistence" on page 14-7

Basic

"Configuring a Container-Managed Relationship Field for an EJB 2.1 Entity Bean With Container-Managed
Persistence" on page 14-9

Basic

"Configuring a One-to-One Relationship" on page 14-11 Basic

"Configuring a Many-to-One Relationship" on page 14-12 Basic

"Configuring a One-to-Many Relationship" on page 14-11 Basic

"Configuring a Many-to-Many Relationship" on page 14-13 Basic

"Configuring Lazy Loading on Finder Methods" on page 14-14 Advanced

"Configuring Bean Instance Pool Size" on page 31-4 Basic

"Configuring Bean Instance Pool Timeouts for Entity Beans" on page 31-7 Advanced

"Configuring a Life Cycle Callback Method for an EJB 2.1 Entity Bean With Container-Managed Persistence" on
page 14-15

Basic

Configuring a Primary Key for an EJB 2.1 Entity Bean With Container-Managed Persistence

14-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring a Primary Key for an EJB 2.1 Entity Bean With
Container-Managed Persistence

Every EJB 2.1 entity bean with container-managed persistence must have a primary
key field.

You can configure the primary key as a well-known Java type (see "Configuring a
Primary Key Field for an EJB 2.1 Entity Bean With Container-Managed Persistence" on
page 14-2) or as a special type that you create (see "Configuring a Composite Primary
Key Class for an EJB 2.1 Entity Bean With Container-Managed Persistence" on
page 14-3).

For more information, see "What is a Primary Key of an Entity Bean With
Container-Managed Persistence?" on page 1-45

Typically, you rely on OC4J to assign primary key values automatically. To configure
how OC4J assigns primary key values, you use TopLink persistence API. For more
information, see the following:

■ "Customizing the TopLink EJB 2.1 Persistence Manager" on page 3-13

■ "Understanding Sequencing in Relational Projects" in the Oracle TopLink Developer’s
Guide

Configuring a Primary Key Field for an EJB 2.1 Entity Bean With Container-Managed
Persistence

For a simple EJB 2.1 entity bean with container-managed persistence, you can define
your primary key to be a well-known Java type as follows:

■ Code your bean’s ejbCreate method to return the primary key class type (see
"Implementing an EJB 2.1 Entity Bean With Container-Managed Persistence" on
page 13-1)

■ Configure your deployment XML to use it (see "Using Deployment XML" on
page 14-2)

Once defined, the container may create a column or columns in the entity bean table
for the primary key and maps the primary key defined in the deployment descriptor
to this column. The container manages the instantiation of primary keys of this type
and initializes your entity bean primary key field accordingly.

Using Deployment XML
Example 14–1 shows the ejb-jar.xml file entity element attributes
prim-key-class and primkey-field configured to specify a primary key as
well-known Java type Integer.

Example 14–1 ejb-jar.xml for Primary Key Field With Type Integer for EJB 2.1 Entity
Bean With Container-Managed Persistence

<enterprise-beans>
<entity>
<display-name>Employee</display-name>
<ejb-name>EmployeeBean</ejb-name>
<local-home>employee.EmployeeLocalHome</local-home>
<local>employee.EmployeeLocal</local>
<ejb-class>employee.EmployeeBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>

Configuring a Primary Key for an EJB 2.1 Entity Bean With Container-Managed Persistence

Using an EJB 2.1 Entity Bean With Container-Managed Persistence 14-3

<cmp-version>2.x</cmp-version>
<abstract-schema-name>Employee</abstract-schema-name>
<cmp-field><field-name>empNo</field-name></cmp-field>
<cmp-field><field-name>empName</field-name></cmp-field>
<cmp-field><field-name>salary</field-name></cmp-field>
<primkey-field>empNo</primkey-field>
</entity>

...
</enterprise-beans>

Configuring a Composite Primary Key Class for an EJB 2.1 Entity Bean With
Container-Managed Persistence

If your primary key is more complex than a well-known Java data type, then you can
define your own primary key class.

Your primary key class must have the following characteristics:

■ be named <name>PK

■ be public and serializable

■ provide a constructor for creating a primary key instance

Your class may contain any number of instance variables used to form the primary
key. Instance variables must have the following characteristics:

■ be public

■ use data types that are either primitive or serializable, or types that can be mapped
to SQL types

Once the primary key class is defined (see "Using Java" on page 14-3), to use it in an
entity bean, you must do the following:

■ Code your bean’s ejbCreate method to return the primary key class type (see
"Implementing an EJB 2.1 Entity Bean With Container-Managed Persistence" on
page 13-1)

■ Configure your deployment XML to use it (see "Using Deployment XML" on
page 14-4)

Once defined, the container may create a column or columns in the entity bean table
for the primary key and maps the primary key defined in the deployment descriptor
to this column. The container manages the instantiation of primary keys of this type
and initializes your entity bean primary key field accordingly.

Using Java
Example 14–2 shows an example primary key class.

Example 14–2 Primary Key Class Implementation for an EJB 2.1 Entity Bean With
Container-Managed Persistence

package employee;

import java.io.*;
import java.io.Serializable;
...

public class EmployeePK implements java.io.Serializable {
public Integer empNo;

Configuring Table and Column Information

14-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

public EmployeePK() {
this.empNo = null;

}

public EmployeePK(Integer empNo) {
this.empNo = empNo;

}
}

Using Deployment XML
As Example 14–3 shows, you define the primary key class within the ejb-jar.xml
file <prim-key-class> element. You define each primary key class instance variable
in a <cmp-field><field-name> element using the same variable name as that used
in the primary key class.

Example 14–3 ejb-jar.xml for Primary Key Class and Its Instance Variables for an EJB 2.1
Entity Bean With Container-Managed Persistence

<enterprise-beans>
<entity>
<description>no description</description>
<display-name>EmployeeBean</display-name>

 <ejb-name>EmployeeBean</ejb-name>
 <local-home>employee.LocalEmployeeHome</home>
 <local>employee.LocalEmployee</remote>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <persistence-type>Container</persistence-type>
<prim-key-class>employee.EmployeePK</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>Employee</abstract-schema-name>
<cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>empName</field-name></cmp-field>
 <cmp-field><field-name>salary</field-name></cmp-field>

</entity>
</enterprise-beans>

Once defined, the container may create a column or columns in the entity bean table
for the primary key and maps the primary key class defined in the deployment
descriptor to this column.

Configuring Table and Column Information
The EJB 2.1 specification does not prescribe how the abstract persistence schema of an
entity bean should be mapped to a relational (or other) schema of a persistent store, or
define how such a mapping is described.

However, using OC4J and the TopLink persistence API, you can do the following:

■ Specify the table and column names of the database table associated with an entity
bean with container-managed persistence.

■ Specify how container-managed persistent fields and container-managed
relationship fields should be mapped to your relational schema.

■ Automatically create (and, optionally, delete) database tables for your persistent
objects.

Configuring Automatic Database Table Creation

Using an EJB 2.1 Entity Bean With Container-Managed Persistence 14-5

For more information, see the following:

■ "Customizing the TopLink EJB 2.1 Persistence Manager" on page 3-13

■ "Understanding Relational Mappings" in the Oracle TopLink Developer’s Guide

■ "Configuring Associated Tables" in the Oracle TopLink Developer’s Guide

■ "Configuring Automatic Database Table Creation" on page 14-5

Configuring Automatic Database Table Creation
You can configure OC4J to automatically create (and, optionally, delete) database
tables for your persistent objects (see "Using Deployment XML" on page 14-5).

You can use this feature in conjunction with default mappings (see "Configuring
Default Relationship Generation" on page 14-6).

Using Deployment XML
You can configure automatic database table creation at one of three levels as Table 14–2
shows. You can override the system level configuration at the application level and
you can override system and application configuration at the EJB module level.

If you configure automatic table generation at the EJB module level, the value you
assign to the db-table-gen attribute corresponds to the autocreate-tables and
autodelete-tables settings, as Table 14–3 shows.

Note: In this release, orion-ejb-jar.xml file
<entity-deployment> subelement <cmp-field-mapping> is not
used. For more information, see "<entity-deployment>" on page A-10.

Table 14–2 Configuring Automatic Table Generation

Level Configuration File Setting Values

System
(global)

<OC4J_HOME>/config/application.xml autocreate-tables

autodelete-tables

True1 or False

True or False1

1 Default.

Application
(EAR)

orion-application.xml autocreate-tables

autodelete-tables

True1 or False

True or False1

EJB Module
(JAR)

orion-ejb-jar.xml pm-properties sub-element
default-mapping attribute db-table-gen2

2 For more information, see "Customizing the TopLink EJB 2.1 Persistence Manager" on page 3-13.

Create,
DropAndCreate,
or UseExisting3

3 See Table 14–3.

Table 14–3 Equivalent Settings for db-table-gen

db-table-gen Setting autocreate-tables Setting autodelete-tables Setting

Create True False

DropAndCreate True True

UseExisting False NA

Configuring Default Relationship Generation

14-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Default Relationship Generation
You can configure OC4J to automatically generate all required relationships at
deployment time (see "Using Deployment XML" on page 14-6). To use this feature, you
must do the following:

■ Omit all container-managed relationship configuration (see "Configuring a
Container-Managed Relationship Field for an EJB 2.1 Entity Bean With
Container-Managed Persistence" on page 14-9).

■ Ensure that no toplink-ejb-jar.xml is present in the EJB module (see "What
is the toplink-ejb-jar.xml File?" on page 2-6).

You can use this feature in conjunction with automatic database table creation (see
"Configuring Automatic Database Table Creation" on page 14-5).

Using Deployment XML
To configure default relationship generation, configure the orion-ejb-jar.xml file
element pm-properties subelement default-mapping, as Table 14–4 shows.

Configuring a Container-Managed Persistent Field for an EJB 2.1 Entity Bean With Container-Managed Persistence

Using an EJB 2.1 Entity Bean With Container-Managed Persistence 14-7

Configuring a Container-Managed Persistent Field for an EJB 2.1 Entity
Bean With Container-Managed Persistence

You do not define container-managed persistent fields in the entity bean class:
container-managed persistent fields are virtual only. OC4J supplies the
implementation of the container-managed persistent fields.

You must define public, abstract getter and setter methods for the
container-managed persistent fields, using the EJB conventions (see "Using Java" on
page 14-8). OC4J supplies the implementation of these methods. You must not expose
these getter and setter methods in the remote interface of the entity bean.

Table 14–4 orion-ejb-jar.xml File pm-properties Subentries for default-mapping

Entry Description

db-table-gen Optional element that determines what TopLink will do to prepare the database tables that are
being mapped to. The following are valid values:

■ Create (default): This value tells TopLink to create the mapped tables during the
deployment. If the tables already exist, TopLink will log an appropriate warning messages
(such as "Table already existed...") and keeps processing the deployment.

■ DropAndCreate: This value tells TopLink to drop tables before creating them during
deployment. If a table does not initially exist, the drop operation will cause an
SQLException to be thrown through the driver. However, TopLink handles the exception
(logs and ignores it) and moves on to process the table creation operation. The deployment
fails only if both drop and create operations fail.

■ UseExisting: This value tells TopLink to perform no table manipulation. If the tables do
not exist, deployment still goes through without error.

If no orion-ejb-jar.xml file is defined in your EAR file, the OC4J container generates one
during deployment. In this case, to specify a value for db-table-gen, use the TopLink system
property toplink.defaultmapping.dbTableGenSetting. For example:
-Dtoplink.defaultmapping.dbTableGenSetting="DropAndCreate".

The orion-ejb-jar.xml property overrides the system property. If both the
orion-ejb-jar.xml property and the system property are present, TopLink retrieves the
setting from the orion-ejb-jar.xml file.

This setting overrides autocreate-tables and autodelete-tables configuration at the
application (EAR) or system level. For more information, see "Configuring Automatic Database
Table Creation" on page 14-5.

extended-table-names An element used if the generated table names are not long enough to be unique. Values are
restricted to true or false (default). When set to true, the TopLink runtime will ensure that
generated tables names are unique.

In default mapping, each entity is mapped to one table. The only exception is in many-to-many
mappings, where there is one extra relation table involved in the source and target entities.

When extended-table-names is set to false (the default), a simple table naming algorithm
is used as follows: table names are defined as TL_<bean_name>. For example, if the bean name
is Employee, the associated table name would be TL_EMPLOYEE.

However, if the same entity is defined in multiple JAR files in an application, or across multiple
applications, table-naming collision is inevitable.

To address this problem, set extended-table-names to true. When set to true, TopLink
uses an alternative table-naming algorithm as follows: table names are defined as <bean_
name>_<jar_name>_<app_name>. This algorithm uses the combination of bean, JAR, and
EAR names to form a table name unique across the application. For example, given a bean
named Employee, which is in Test.jar, which is in Demo.ear (and the application name is
"Demo"), then the corresponding table name will be EMPLOYEE_TEST_DEMO.

If there is no orion-ejb-jar.xml file defined in the EAR file, the OC4J container generates
one during deployment. In this case, to specify a value for extended-table-names, use the
TopLink system property toplink.defaultmapping.useExtendedTableNames. For
example: -Dtoplink.defaultmapping.useExtendedTableNames="true".

The orion-ejb-jar.xml property overrides the system property. If both the
orion-ejb-jar.xml property and the system property are present, TopLink retrieves the
setting from the orion-ejb-jar.xml file.

Configuring a Container-Managed Persistent Field for an EJB 2.1 Entity Bean With Container-Managed Persistence

14-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

You may assign only the following Java types to container-managed persistent fields:
Java primitive types and Java serializable types. You may not assign an entity bean
local interface type (or a collection of such) to a container-managed persistent field.

The container-managed persistent fields must be specified in the ejb-jar.xml
deployment descriptor using the cmp-field element (see "Using Deployment XML"
on page 14-8). The names of these fields must be valid Java identifiers and must begin
with a lowercase letter, as determined by java.lang.Character.isLowerCase.

The accessor methods must bear the name of the cmp-field that is specified in the
deployment descriptor, and in which the first letter of the name of the cmp-field has
been upper cased and prefixed by get or set.

For more information, see "What are Container-Managed Persistent Fields?" on
page 1-42.

Using Java
Example 14–4 shows the abstract getter and setter methods for the container-managed
persistent fields specified in the ejb-jar.xml file (see "Using Deployment XML" on
page 14-8).

Example 14–4 EJB 2.1 Container-Managed Persistent Fields

package cmpapp;

import javax.ejb.*;
import java.rmi.*;

public abstract class EmployeeBean implements EntityBean {

private EntityContext ctx;

// container-managed persistent fields accessors
public abstract Integer getEmpNo();
public abstract void setEmpNo(Integer empNo);

public abstract String getEmpName();
public abstract void setEmpName(String empName);

public abstract Float getSalary();
public abstract void setSalary(Float salary);

...
}

Using Deployment XML
Example 14–5 shows the cmp-field elements for the getter and setter methods
specified in the bean class (see "Using Java" on page 14-8).

Example 14–5 ejb-jar.xml for an EJB 2.1 Container-Managed Persistent Field

<enterprise-beans>
<entity>

<ejb-name>Topic</ejb-name>

Note: In this release, orion-ejb-jar.xml file
<entity-deployment> subelement <cmp-field-mapping> is not
used. For more information, see "<entity-deployment>" on page A-10.

Configuring a Container-Managed Relationship Field for an EJB 2.1 Entity Bean With Container-Managed Persistence

Using an EJB 2.1 Entity Bean With Container-Managed Persistence 14-9

<local-home>faqapp.TopicLocalHome</local-home>
<local>faqapp.TopicLocal</local>
<ejb-class>faqapp.TopicBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<primkey-field>topicID</primkey-field>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>TopicBean</abstract-schema-name>
<cmp-field>

<field-name>topicID</field-name>
</cmp-field>
<cmp-field>

<field-name>topicDesc</field-name>
</cmp-field>
...

</entity>
</enterprise-beans>

Configuring a Container-Managed Relationship Field for an EJB 2.1 Entity
Bean With Container-Managed Persistence

You do not define container-managed relationship fields in the entity bean class:
container-managed relationship fields are virtual only. OC4J supplies the
implementation of the container-managed relationship fields.

You must define public, abstract getter and setter methods for the
container-managed relationship fields in the local interface of the related entity bean,
using the EJB conventions (see "Using Java" on page 14-10). OC4J supplies the
implementation of these methods. You must not expose these getter and setter
methods in the remote interface of the entity bean.

You may assign only the following Java types to container-managed relationship
fields: Java primitive types and Java serializable types. You may assign an entity bean
local interface type (or a collection of such) to a container-managed relationship field.

You must specify container-managed relationship fields in the ejb-jar.xml
deployment descriptor using the cmr-field element (see "Using Deployment XML"
on page 14-10). The names of these fields must be valid Java identifiers and must begin
with a lowercase letter, as determined by java.lang.Character.isLowerCase.

The accessor methods must bear the name of the container-managed relationship field
(cmr-field) that is specified in the deployment descriptor, and in which the first
letter of the name of the cmr-field has been upper cased and prefixed by get or
set.

The accessor methods for container-managed relationship fields for one-to-many or
many-to-many relationships must utilize one of the following collection interfaces:
java.util.Collection or java.util.Set. The collection interfaces used in
relationships are specified in the deployment descriptor. The implementation of the
collection classes used for the container-managed relationship fields is supplied by the
container. The collection classes that are used for container-managed relationships
must not be exposed through the remote interface of the entity bean.

For more information, see the following:

■ "What are Container-Managed Relationship Fields?" on page 1-42

■ "Configuring Default Relationship Generation" on page 14-6

■ "Configuring a One-to-One Relationship" on page 14-11

Configuring a Container-Managed Relationship Field for an EJB 2.1 Entity Bean With Container-Managed Persistence

14-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ "Configuring a One-to-Many Relationship" on page 14-11

■ "Configuring a Many-to-One Relationship" on page 14-12

■ "Configuring a Many-to-Many Relationship" on page 14-13

Using OC4J and the TopLink persistence API, you can configure how
container-managed relationship fields are mapped to your relational schema. For more
information, see the following:

■ "Customizing the TopLink EJB 2.1 Persistence Manager" on page 3-13

■ "Understanding Relational Mappings" in the Oracle TopLink Developer’s Guide

Using Java
Example 14–6 shows the abstract getter and setter methods for the container-managed
relationship fields specified in the ejb-jar.xml file (see "Using Deployment XML"
on page 14-10).

Example 14–6 EJB 2.1 Container-Managed Relationship Fields

package cmpapp;

import javax.ejb.*;
import java.rmi.*;

public abstract class EmployeeBean implements EntityBean {

private EntityContext ctx;

// container-managed persistent fields accessors
public abstract Integer getEmpNo();
public abstract void setEmpNo(Integer empNo);

public abstract String getEmpName();
public abstract void setEmpName(String empName);

public abstract Float getSalary();
public abstract void setSalary(Float salary);

public abstract void setProjects(Collection projects);
public abstract Collection getProjects();

...
}

Using Deployment XML
Example 14–7 shows the cmr-field elements for the getter and setter methods
specified in the bean class (see "Using Java" on page 14-10).

Example 14–7 ejb-jar.xml for an EJB 2.1 Container-Managed Relationship Field

...
<relationships>

<ejb-relation>
<ejb-relation-name>Topic-Faqs</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>Topic-has-Faqs</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>

<ejb-name>TopicBean</ejb-name>
</relationship-role-source>

Configuring a One-to-Many Relationship

Using an EJB 2.1 Entity Bean With Container-Managed Persistence 14-11

<cmr-field>
<cmr-field-name>faqs</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

<ejb-relation>
...

<relationships>

Configuring a One-to-One Relationship
In a one-to-one relationship, an entity bean instance is related to a single instance of
another entity bean.

You specify a container-managed one-to-one relationship in the ejb-jar.xml
deployment descriptor (see "Using Deployment XML" on page 14-11).

For more information, see "Configuring a Container-Managed Relationship Field for
an EJB 2.1 Entity Bean With Container-Managed Persistence" on page 14-9.

Using Deployment XML
Example 14–8 shows the pair of <ejb-relationship-role> elements that define a
one-to-one unidirectional relationship between Order and ShippingAddress. For a
bidirectional relationship, you would add the appropriate cmr-field to the
<ejb-relationship-role> for ShippingAddress.

Example 14–8 ejb-jar.xml for an EJB 2.1 Unidirectional One-to-One Relationship

...
<relationships>

<ejb-relation>
<ejb-relation-name>Order-ShippingAddress</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>order-has-address</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>OrderEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>shippingAddress</cmr-field-name>
</cmr-field>

</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>address-for-order</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>AddressEJB</ejb-name>
</relationship-role-source>

</ejb-relationship-role>
</ejb-relation>

...
<relationships>

Configuring a One-to-Many Relationship
In a one-to-many relationship, an entity bean instance is related to multiple instances
of another entity bean.

Configuring a Many-to-One Relationship

14-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

You specify a container-managed one-to-many relationship in the ejb-jar.xml
deployment descriptor (see "Using Deployment XML" on page 14-12).

For more information, see "Configuring a Container-Managed Relationship Field for
an EJB 2.1 Entity Bean With Container-Managed Persistence" on page 14-9.

Using Deployment XML
Example 14–9 shows the pair of <ejb-relationship-role> elements that define a
one-to-many bidirectional relationship between Order and LineItem. For a
unidirectional relationship, you would omit the cmr-field from the appropriate
<ejb-relationship-role> element.

Example 14–9 ejb-jar.xml for an EJB 2.1 Bidirectional One-to-Many Relationship

...
<relationships>

<ejb-relation>
<ejb-relation-name>Order-LineItem</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>order-has-lineitems</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>OrderEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>lineItems</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>lineitem-belongsto-order</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<cascade-delete/>
<relationship-role-source>

<ejb-name>LineItemEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>order</cmr-field-name>
</cmr-field>

</ejb-relationship-role>
</ejb-relation>

...
<relationships>

Configuring a Many-to-One Relationship
In a many-to-one relationship, multiple instances of an entity bean may be related to a
single instance of another entity bean. This multiplicity is the opposite of one-to-many.

You specify a container-managed many-to-one relationship in the ejb-jar.xml
deployment descriptor (see "Using Deployment XML" on page 14-12).

For more information, see "Configuring a Container-Managed Relationship Field for
an EJB 2.1 Entity Bean With Container-Managed Persistence" on page 14-9.

Using Deployment XML
Example 14–10 shows the pair of <ejb-relationship-role> elements that define
a many-to-one bidirectional relationship between Employees and Department. For a

Configuring a Many-to-Many Relationship

Using an EJB 2.1 Entity Bean With Container-Managed Persistence 14-13

unidirectional relationship, you would omit the cmr-field from the appropriate
<ejb-relationship-role> element.

Example 14–10 ejb-jar.xml for an EJB 2.1 Bidirectional Many-to-One Relationship

...
<relationships>

<ejb-relation>
<ejb-relation-name>Employee-Department</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>employees-belongto-dept</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>

<ejb-name>DepartmentEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>dept</cmr-field-name>
</cmr-field>

</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>dept-has-employees</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<cascade-delete/>
<relationship-role-source>

<ejb-name>LineItemEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>employees</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

</ejb-relation>
...
<relationships>

Configuring a Many-to-Many Relationship
In a many-to-many relationship, entity bean instances may be related to multiple
instances of each other.

You specify a container-managed many-to-many relationship in the ejb-jar.xml
deployment descriptor (see "Using Deployment XML" on page 14-12).

For more information, see "Configuring a Container-Managed Relationship Field for
an EJB 2.1 Entity Bean With Container-Managed Persistence" on page 14-9.

Using Deployment XML
Example 14–11 shows the pair of <ejb-relationship-role> elements that define
a many-to-many relationship between Teams and Players.

Example 14–11 ejb-jar.xml for an EJB 2.1 Many-to-Many Relationship

...
<relationships>

<ejb-relation>
<ejb-relationship-role>

<ejb-relationship-role-name>team-has-players</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>

<ejb-name>TeamEJB</ejb-name>
</relationship-role-source>

Configuring Lazy Loading on Finder Methods

14-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

<cmr-field>
<cmr-field-name>players</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>player-has-teams</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>

<ejb-name>PlayerEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>teams</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

</ejb-relation>
...
<relationships>

Configuring Lazy Loading on Finder Methods
Each finder method retrieves one or more objects. In the default scenario (which is set
to NO lazy loading), the finder method causes a single SQL select statement to be
executed against the database. For an entity bean with container-managed persistence,
one or more objects are retrieved with all of their container-managed persistent fields.
So, for example, with the findAllEmployees method, this finder retrieves all
employee objects with all of the container-managed persistent fields in each employee
object.

If you turn on lazy loading, then only the primary keys of the objects retrieved within
the finder are returned. Then, only when you access the object within your
implementation, OC4J uploads the actual object based on the primary key. With the
findAllEmployees finder method example, all of the employee primary keys are
returned in a Collection. The first time you access one of the employees in the
Collection, OC4J uses the primary key to retrieve the single employee object from
the database. You may want to turn on the lazy loading feature if the number of
objects that you are retrieving is so large that loading them all into your local cache
would be a performance degradation.

You have a performance consideration with lazy loading. If you retrieve multiple
objects, but you only use a few of them, then you should turn on lazy loading. In
addition, if you only use objects through the getPrimaryKey method, then you
should also turn on lazy loading.

Using Deployment XML
To turn on lazy loading in the findByPrimaryKey method, set the
findByPrimaryKey-lazy-loading attribute to true, as follows:

<entity-deployment ... findByPrimaryKey-lazy-loading="true" ... >

To turn on lazy loading in any custom finder method, set the lazy-loading attribute
to true in the <finder-method> element for that custom finder, as follows:

<finder-method ... lazy-loading="true" ...>
...

</finder-method>

Configuring a Life Cycle Callback Method for an EJB 2.1 Entity Bean With Container-Managed Persistence

Using an EJB 2.1 Entity Bean With Container-Managed Persistence 14-15

Configuring a Life Cycle Callback Method for an EJB 2.1 Entity Bean With
Container-Managed Persistence

The following are the EJB 2.1 life cycle methods, as specified in the
javax.ejb.EntityBean interface, that an entity bean with container-managed
persistence must implement (see "Using Java" on page 14-15):

■ ejbCreate

■ ejbPostCreate

■ ejbRemove

■ ejbStore

■ ejbLoad

■ ejbActivate

■ ejbPassivate

For more information, see "What is the Life Cycle of an EJB 2.1 Entity Bean With
Container-Managed Persistence?" on page 1-43.

Using Java
Example 14–12 shows how to implement an EBJ 2.1 entity bean life cycle callback
method.

Example 14–12 EJB 2.1 Entity Bean Life Cycle Callback Method Implementation

public void ejbActivate() {
// when bean is activated

}

Note: Using EJB 2.1, you must implement all entity bean callback
methods. If you do not need to take any action, implement an empty
method.

Configuring a Life Cycle Callback Method for an EJB 2.1 Entity Bean With Container-Managed Persistence

14-16 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Using an EJB 2.1 Entity Bean With Bean-Managed Persistence 15-1

15
Using an EJB 2.1 Entity Bean With

Bean-Managed Persistence

This chapter describes the various options that you must configure in order to use an
EJB 2.1 entity bean with bean-managed persistence.

Table 15–1 lists these options and indicates which are basic (applicable to most
applications) and which are advanced (applicable to more specialized applications).

For more information, see the following:

■ "What is an EJB 2.1 Entity Bean With Bean-Managed Persistence?" on page 1-46

■ "Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence" on
page 13-6

Configuring a Primary Key for an EJB 2.1 Entity Bean With Bean-Managed
Persistence

Every EJB 2.1 entity bean with bean-managed persistence must have a primary key
field.

You can configure the primary key as a well-known Java type (see "Configuring a
Primary Key Field for an EJB 2.1 Entity Bean With Bean-Managed Persistence" on
page 15-2) or as a special type that you create (see "Configuring a Primary Key Class
for an EJB 2.1 Entity Bean With Bean-Managed Persistence" on page 15-2).

For more information, see "What is a Primary Key of an Entity Bean With
Bean-Managed Persistence?"

For EJB 2.1 entity beans with bean-managed persistence, you are responsible for
assigning primary key values, typically in the ejbCreate method (see "Configuring a
Life Cycle Callback Method for an EJB 2.1 Entity Bean With Bean-Managed
Persistence" on page 15-7).

Table 15–1 Configurable Options for an EJB 2.1 Entity Bean With Bean-Managed Persistence

Options Type

"Configuring a Primary Key for an EJB 2.1 Entity Bean With Bean-Managed Persistence" on page 15-1 Basic

"Configuring a Read-Only Entity Bean With Bean-Managed Persistence" on page 15-4 Advanced

"Configuring Commit Options for an Entity Bean With Bean-Managed Persistence" on page 15-5 Advanced

"Configuring a Query for an EJB 2.1 Entity Bean With Bean-Managed Persistence" on page 15-5 Basic

"Configuring a Life Cycle Callback Method for an EJB 2.1 Entity Bean With Bean-Managed Persistence" on
page 15-7

Basic

Configuring a Primary Key for an EJB 2.1 Entity Bean With Bean-Managed Persistence

15-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring a Primary Key Field for an EJB 2.1 Entity Bean With Bean-Managed
Persistence

For a simple EJB 2.1 entity bean with bean-managed persistence, you can define your
primary key to be a well-known Java type as follows:

■ Code your bean’s ejbCreate method to return the primary key class type (see
"Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence" on
page 13-6)

■ Configure your deployment XML to use it (see "Using Deployment XML" on
page 15-2)

Using Deployment XML
Example 15–1 shows the ejb-jar.xml file <entity> element <prim-key-class>
and <primkey-field> subelements configured to specify a primary key as
well-known Java type Integer.

Example 15–1 ejb-jar.xml for Primary Key Field With Type Integer of EJB 2.1 Entity Bean
With Bean-Managed Persistence

<enterprise-beans>
<entity>
<display-name>Employee</display-name>
<ejb-name>EmployeeBean</ejb-name>
<local-home>employee.EmployeeLocalHome</local-home>
<local>employee.EmployeeLocal</local>
<ejb-class>employee.EmployeeBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>Employee</abstract-schema-name>
<cmp-field><field-name>empNo</field-name></cmp-field>
<cmp-field><field-name>empName</field-name></cmp-field>
<cmp-field><field-name>salary</field-name></cmp-field>
<primkey-field>empNo</primkey-field>
</entity>

...
</enterprise-beans>

Configuring a Primary Key Class for an EJB 2.1 Entity Bean With Bean-Managed
Persistence

If your primary key is more complex than a well-known Java data type, then you can
define your own primary key class.

Your primary key class must have the following characteristics:

■ be named <name>PK

■ be public and serializable

■ provide a constructor for creating a primary key instance

Your class may contain any number of instance variables used to form the primary
key. Instance variables must have the following characteristics:

■ primitive object types

Configuring a Primary Key for an EJB 2.1 Entity Bean With Bean-Managed Persistence

Using an EJB 2.1 Entity Bean With Bean-Managed Persistence 15-3

■ serializable types

■ types that can be mapped to SQL types

■ types that are a legal Value Type in RMI-IIOP

■ types that provide a suitable implementation of the hashCode() and
equals(Object) methods

Once the primary key class is defined (see "Using Java" on page 15-3), to use it in an
EJB, you must do the following:

■ Code your bean’s ejbCreate method to return the primary key class type (see
"Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence" on
page 13-6)

■ Configure your deployment XML to use it (see "Using Deployment XML" on
page 15-3)

Using Java
Example 15–2 shows an example primary key class.

Example 15–2 Primary Key Class Implementation for a EJB 2.1 Entity Bean With
Bean-Managed Persistence

package employee;

import java.io.*;
import java.io.Serializable;
...

public class EmployeePK implements java.io.Serializable {
public Integer empNo;

public EmployeePK() {
this.empNo = null;

}

public EmployeePK(Integer empNo) {
this.empNo = empNo;

}
}

Using Deployment XML
As Example 15–3 shows, you define the primary key class within the ejb-jar.xml
file <prim-key-class> element. You define each primary key class instance variable
in a <cmp-field><field-name> element using the same variable name as that used
in the primary key class.

Example 15–3 ejb-jar.xml for Primary Key Class and Its Instance Variables of EJB 2.1
Entity Bean With Bean-Managed Persistence

<enterprise-beans>
<entity>
<description>no description</description>
<display-name>EmployeeBean</display-name>

 <ejb-name>EmployeeBean</ejb-name>
 <local-home>employee.LocalEmployeeHome</home>
 <local>employee.LocalEmployee</remote>

Configuring a Read-Only Entity Bean With Bean-Managed Persistence

15-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

 <ejb-class>employee.EmployeeBean</ejb-class>
 <persistence-type>Bean</persistence-type>
<prim-key-class>employee.EmployeePK</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>Employee</abstract-schema-name>
<cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>empName</field-name></cmp-field>
 <cmp-field><field-name>salary</field-name></cmp-field>

</entity>
</enterprise-beans>

Configuring a Read-Only Entity Bean With Bean-Managed Persistence
You can configure an entity bean with container-managed persistence as read-only. By
doing so, you enter into a contract with OC4J, by which you guarantee not to change
the state of the entity bean with container-managed persistence after it is activated.
Unlike read-only entity beans with container-managed persistence, no exception will
be thrown if you do update a read-only bean with bean-managed persistence.

When you configure an entity bean with bean-managed persistence as read-only, OC4J
uses a special case of commit option A (see "Configuring Commit Options for an
Entity Bean With Bean-Managed Persistence" on page 15-5) to improve performance
by the following:

■ Caching the instance

■ Not calling ejbLoad after activation

■ Not updating the instance or calling ejbStore when the transaction commits

As Figure 15–1 shows, multiple clients accessing the same read-only entity bean with
bean-managed persistence by primary key are allocated a single instance. Both Client 1
and Client 2 are satisfied by the same cached instance of a read-only entity bean with
bean-managed persistence. Because the entity bean with bean-managed persistence is
read-only, both transactions can proceed in parallel.

Without this optimization, each client is allocated a separate instance, and each
instance requires the execution of all life cycle methods.

Figure 15–1 Read-Only Entity Beans With Bean-Managed Persistence and Commit
Option A

Using Deployment XML
Example 15–4 shows the orion-ejb-jar.xml file entity-deployment element
locking-mode attribute mode configured to specify an entity bean with
bean-managed persistence as read-only.

Configuring a Query for an EJB 2.1 Entity Bean With Bean-Managed Persistence

Using an EJB 2.1 Entity Bean With Bean-Managed Persistence 15-5

Example 15–4 orion-ejb-jar.xml For Read-Only

<entity-deployment
name=EmployeeBean"
location="bmpapp/EmployeeBean"
locking-mode="read-only"

>
...
</entity-deployment>

Configuring Commit Options for an Entity Bean With Bean-Managed
Persistence

For an entity bean with bean-managed persistence, you can choose between commit
options A and C.

Commit option A offers a performance improvement by postponing a call to
ejbLoad.

If you configure a read-only entity bean with bean-managed persistence to use commit
option A (see "Configuring a Read-Only Entity Bean With Bean-Managed Persistence"
on page 15-4), you can further improve performance by taking advantage of the
caching of the read-only entity bean with bean-managed persistence (see "Commit
Options and BMP Applications" on page 1-50.

Commit option C is the default.

For more information, see "What are Entity Bean Commit Options?" on page 1-48.

Using Deployment XML
Example 15–5 shows the orion-ejb-jar.xml file entity-deployment element
commit-option sub-element attribute mode. Valid settings are A and C. The
number-of-buckets attribute is the maximum number of cached instances allowed
and is applicable only for commit option A.

Example 15–5 orion-ejb-jar.xml For Commit Options

<entity-deployment name=EmployeeBean" location="bmpapp/EmployeeBean" >
<resource-ref-mapping name="jdbc/OracleDS" />
<commit-option mode="A" number-of-buckets="10" />

</entity-deployment>

Configuring a Query for an EJB 2.1 Entity Bean With Bean-Managed
Persistence

You must implement an ejbFindByPrimaryKey method for an entity bean with
bean-managed persistence (see "Implementing an ejbFindByPrimaryKey Method for
an EJB 2.1 Entity Bean With Bean-Managed Persistence" on page 15-6). Optionally, you
may configure other finders (see "Implementing Other Finder Methods for a EJB 2.1
Entity Bean With Bean-Managed Persistence" on page 15-6).

For more information, see "Implementing EJB 2.1 Queries" on page 16-1.

Configuring a Query for an EJB 2.1 Entity Bean With Bean-Managed Persistence

15-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Implementing an ejbFindByPrimaryKey Method for an EJB 2.1 Entity Bean With
Bean-Managed Persistence

The ejbFindByPrimaryKey implementation is a requirement for all entity beans
with bean-managed persistence. Its primary responsibility is to ensure that the
primary key corresponds to a valid bean. Once it is validated, it returns the primary
key to the container, which uses the key to return the bean reference to the user.

This sample verifies that the employee number is valid and returns the primary key,
which is the employee number, to the container. A more complex verification would
be necessary if the primary key was a class.

public EmployeePK ejbFindByPrimaryKey(EmployeePK pk)
throws FinderException {
if (pk == null || pk.empNo == null) {

throw new FinderException("Primary key cannot be null");
}
try {

conn = getConnection(dsName);
ps = conn.prepareStatement(findByPKStatement);
ps.setInt(1, pk.empNo.intValue());
ps.executeQuery();
ResultSet rs = ps.getResultSet();
if (rs.next()) {

pk.empNo = new Integer(rs.getInt(1));
pk.empName = new String(rs.getString(2));
pk.salary = new Float(rs.getFloat(3));

}
else {

throw new FinderException("Failed to select this PK");
}

}
catch (SQLException e) {

throw new FinderException(e.getMessage());
}
catch (NamingException e) {

System.out.println("Caught an exception 1 " + e.getMessage());
throw new EJBException(e.getMessage());

}
finally {

try {
ps.close();
conn.close();

}
catch (SQLException e) {

throw new EJBException(e.getMessage());
}

}
return pk;

}

Implementing Other Finder Methods for a EJB 2.1 Entity Bean With Bean-Managed
Persistence

Optionally, you can create other finder methods in addition to the single
ejbFindByPrimaryKey method.

To create other finder methods, do the following:

1. Add the finder method to the home interface.

2. Implement the finder method in the bean implementation of an entity bean with
bean-managed persistence.

Configuring a Life Cycle Callback Method for an EJB 2.1 Entity Bean With Bean-Managed Persistence

Using an EJB 2.1 Entity Bean With Bean-Managed Persistence 15-7

Finders can retrieve one or more beans according to the WHERE clause. If more than a
single bean is returned, then a Collection of primary keys must be returned by the
bean’s finder method. These finder methods need only to gather the primary keys for
all of the entity beans that should be returned to the user. The container maps the
primary keys to references to each entity bean within either a Collection (if
multiple references are returned) or to the single class type.

The following example shows the implementation of a finder method that returns all
employee records.

public Collection ejbFindAll() throws FinderException {
ArrayList recs = new ArrayList();

ps = conn.prepareStatement("SELECT EMPNO FROM EMPLOYEEBEAN");
ps.executeQuery();
ResultSet rs = ps.getResultSet();

int i = 0;

while (rs.next()) {
 retEmpNo = new Integer(rs.getInt(1));
 recs.add(retEmpNo);
}

ps.close();
return recs;

}

Configuring a Life Cycle Callback Method for an EJB 2.1 Entity Bean With
Bean-Managed Persistence

The following are the EJB 2.1 life cycle methods, as specified in the
javax.ejb.EntityBean interface, that an entity bean with bean-managed
persistence must implement (see "Using Java" on page 15-7):

■ ejbCreate

■ ejbPostCreate

■ ejbRemove

■ ejbStore

■ ejbLoad

■ ejbActivate

■ ejbPassivate

For an entity bean with bean-managed persistence, you are responsible for providing a
complete implementation of all life cycle methods.

For more information, see "What is the Life Cycle of an EJB 2.1 Entity Bean With
Bean-Managed Persistence?" on page 1-46.

Using Java
Example 15–6 shows how to implement an EBJ 2.1 entity bean life cycle callback
method.

Configuring a Life Cycle Callback Method for an EJB 2.1 Entity Bean With Bean-Managed Persistence

15-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 15–6 EJB 2.1 Entity Bean Life Cycle Callback Method Implementation

public void ejbActivate() {
// when bean is activated

}

Implementing EJB 2.1 Queries 16-1

16
Implementing EJB 2.1 Queries

This chapter describes the following:

■ Implementing an EJB 2.1 EJB QL Finder Method

■ Implementing an EJB 2.1 EJB QL Select Method

■ OC4J EJB 2.1 EJB QL Extensions

For more information, see the following:

■ "How do you Query for an EJB 2.1 Entity Bean?" on page 1-50

■ "Implementing an EJB 2.1 Entity Bean" on page 13-1

Implementing an EJB 2.1 EJB QL Finder Method
The following procedure describes how to implement an EJB 2.1 EJB QL finder
method.

Before implementing a finder method, consider the predefined and default finders that
OC4J provides (see "Predefined TopLink Finders" on page 1-53 and "Default TopLink
Finders" on page 1-54).

For more information, see "Understanding Finder Methods" on page 1-53.

1. Define the finder method in the home interface (see "Using Java" on page 16-2).

If you are exposing only predefined or default finders (see "Predefined TopLink
Finders" on page 1-53 and "Default TopLink Finders" on page 1-54), you are done.

If you are exposing a custom finder, proceed to step 2.

2. Configure the ejb-jar.xml file (see "Using Deployment XML" on page 16-3).

a. For each entity bean that you plan to reference in your EJB QL query,
configure the <entity> element <abstract-schema-name> subelement.

Note: For an example OC4J EJB QL application, see:
http://www.oracle.com/technology/sample_
code/tech/java/ejb_corba/ejbql/Readme.html.

Note: You can do this manually as described here or you can use the
TopLink Workbench (see "Using TopLink Workbench" on page 16-4) to
automate this step and to take advantage of advanced TopLink finder
configuration.

Implementing an EJB 2.1 EJB QL Finder Method

16-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

The <abstract-schema-name> subelement defines the name that identifies
the entity bean in the EJB QL statement. For example, given an entity bean
class named EmpBean, if you define its <abstract-schema-name> as
Employee, then in your EJB QL statement, when you use the name
Employee, the container will map that name to the EmpBean entity bean (see
Example 16–2).

b. Define a <query> element for each finder method that you exposed in the EJB
home interface.

The <query> element has the following subelements:

– <description>: optional explanatory text.

– <query-method>: describes the finder method and includes the
following subelements:

<method-name>: identifies the finder method. Configure this element
with the same method name as defined in the home interface.

<method-params>: if the finder takes arguments, define this element
and for each argument, define a <method-param> subelement that gives
the argument type. The type and order of arguments must match that
specified by this finder’s signature.

– <ejb-ql>: contains the EJB QL statement for this method.

You can define a full query or just the conditional statement (the WHERE
clause).

If the finder method returns a Collection, to ensure that no duplicates
are returned, specify the DISTINCT keyword in the EJB QL statement.

To use parameters (as specified by <method-params>) in your EJB QL,
use the <integer>? notation where <integer> begins with 1. For
example,?1 corresponds to the first <method-param> element,?2 corre-
sponds to the second <method-param> element, and so on (see the fin-
dAllByEmpName finder in Example 16–2).

To define an EJB QL statement that relates this EJB with another, you must
first define the appropriate container-managed relationship. The findBy-
DeptNo finder in Example 16–2 requires the relationship with
<ejb-relation-name> Employee-Departments. For more informa-
tion, see "Configuring a Container-Managed Relationship Field for an EJB
2.1 Entity Bean With Container-Managed Persistence" on page 14-9.

Using Java
Example 16–1 shows a remote home interface called EmpBeanHome.

Example 16–1 Finder Methods in an EJB 2.1 Entity Bean With Container-Managed
Persistence Remote Home Interface

package cmpapp;

import javax.ejb.*;
import java.rmi.*;

Note: Do not define a <query> element for predefined or default
finders, including findByPrimaryKey.

Implementing an EJB 2.1 EJB QL Finder Method

Implementing EJB 2.1 Queries 16-3

public interface EmpBeanHome extends EJBHome {
public EmpBean create(Integer empNo, String empName) throws CreateException;

/**
 * Finder methods. These are implemented by the container. You can
 * customize the functionality of these methods in the deployment
 * descriptor through EJB-QL.
 **/

// Predefined Finders: <query> element in ejb-jar.xml not required

public Topic findByPrimaryKey(Integer key) throws FinderException;
public Collection findManyBySQL(String sql, Vector args) throws FinderException

// Default Finder: <query> element in ejb-jar.xml not required

public Topic findByEmpNo(Integer empNo) throws FinderException;

// Custom Finders: <query> element is required in ejb-jar.xml

public Collection findAllRegionalEmployees(Integer empNo) throws FinderException;
public Collection findAllByEmpName(String empName) throws FinderException;
public Topic findByDeptNo(Integer deptNo) thorws FinderException
public Collection findAllBetweenSalaries(Integer lowSalary, Integer highSalary);

}

Using Deployment XML
Example 16–2 shows the ejb-jar.xml for the finders declared in the home interface
that Example 16–1 shows.

Example 16–2 ejb-jar.xml For EJB 2.1 EJB QL Finders

<enterprise-beans>
<entity>

<display-name>EmpBean</display-name>
<ejb-name>EmpBean</ejb-name>
...
<abstract-schema-name>Employee</abstract-schema-name>
<cmp-field><field-name>empNo</field-name></cmp-field>
<cmp-field><field-name>empName</field-name></cmp-field>
<cmp-field><field-name>salary</field-name></cmp-field>
<primkey-field>empNo</primkey-field>
<prim-key-class>java.lang.Integer</prim-key-class>
...
<query>

<description>Regional employees have empNo greater than 10000</description>
<query-method>

<method-name>findAllRegionalEmployees</method-name>
<method-params></method-params>

</query-method>
<ejb-ql>SELECT OBJECT(e) FROM Employee e WHERE e.empNo > 10000</ejb-ql>

</query>
<query>

<description>Find all employees with the given name</description>
<query-method>

<method-name>findAllByEmpName</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</query-method>
<ejb-ql>SELECT OBJECT(e) FROM Employee e WHERE e.empName = ?1</ejb-ql>

Implementing an EJB 2.1 EJB QL Select Method

16-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

</query>
<query>

<description>Relationship finder</description>
<query-method>

<method-name>findByDeptNo</method-name>
<method-params>

<method-param>java.lang.Integer</method-param>
</method-params>

</query-method>
<ejb-ql>
SELECT DISTINCT OBJECT(e) From Employee e, IN (e.dept) AS d WHERE d.deptNo = ?1

</ejb-ql>
</query>
<query>

<description>Find all employees with salaries in the given range</description>
<query-method>

<method-name>findAllBetweenSalaries</method-name>
<method-params>

<method-param>java.lang.Integer</method-param>
<method-param>java.lang.Integer</method-param>

</method-params>
</query-method>
<ejb-ql>

SELECT OBJECT (e) FROM Employee e WHERE e.salary BETWEEN ?1 and ?2
</ejb-ql>

</query>
...
</entity>

...
</enterprise-beans>
<relationships>

<ejb-relation>
<ejb-relation-name>Employee-Departments</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>Employee-has-Departments</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>Department</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>dept</cmr-field-name>
<cmr-field-type>java.lang.Integer</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

<ejb-relation>
...
<relationships>

Using TopLink Workbench
Using the TopLink Workbench, you can configure your toplink-ejb-jar.xml file
with a custom TopLink finder and update your ejb-jar.xml file.

For more information, see the following:

■ "Creating a Finder" in the Oracle TopLink Developer’s Guide

■ "Configuring Named Queries at the Descriptor Level" in the Oracle TopLink
Developer’s Guide

Implementing an EJB 2.1 EJB QL Select Method
The following procedure describes how to implement an EJB 2.1 EJB QL select method.

Implementing an EJB 2.1 EJB QL Select Method

Implementing EJB 2.1 Queries 16-5

For more information, see "Understanding Select Methods" on page 1-55.

1. Define the select method as a public, abstract method of your abstract entity
bean class (see "Using Java" on page 16-5).

2. In the ejb-jar.xml file (see "Using Deployment XML" on page 16-7), do the
following:

a. For each entity bean that you plan to reference in your EJB QL query,
configure the <entity> element <abstract-schema-name> subelement.

The <abstract-schema-name> subelement defines the name that identifies
the entity bean in the EJB QL statement. For example, given an entity bean
class named EmpBean: if you define your <abstract-schema-name> as
Employee, then in your EJB QL statement, when you use the name
Employee, the container will map that name to the EmpBean entity bean.

b. Define a <query> element for each select method that you exposed in the EJB
home interface.

You can define a full query or just the conditional statement (the WHERE
clause).

If the select method returns a Collection, to ensure that no duplicates are
returned, specify the DISTINCT keyword in the EJB QL statement.

The <query> element has the following two main elements:

– The <method-name> element identifies the select method: configure this
element with the same name as defined in the bean class.

– The <ejb-ql> element contains the EJB QL statement for this method.

c. If the query returns a Collection of CMR values, decide on the interface
type you want returned:

The ejb-jar.xml file <result-type-mapping> element determines the
return type for select methods. Set the flag to Remote to return EJBObjects;
set it to Local to return EJBLocalObjects.

Using Java
Example 16–3 shows an abstract entity bean class called UserAccountBean for an
EJB 2.1 entity bean with container-managed persistence with select methods.

Example 16–3 Implementation of an EJB 2.1 Entity Bean With Container-Managed
Persistence With Select Methods

package oracle.otnsamples.ejbql;

import javax.ejb.*;
import java.util.*;

public abstract class UserAccountBean implements EntityBean {

// Non-Persistent State

protected EntityContext ctx;

/**
 * Begin abstract get/set methods. Container-managed
 * persistent fields are specified in the ejb-jar.xml
 * deployment descriptor.
 */

Implementing an EJB 2.1 EJB QL Select Method

16-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

public abstract Long getAccountnumber();
public abstract void setAccountnumber(Long newAccountnumber);

public abstract Long getCreditlimit();
public abstract void setCreditlimit(Long newCreditlimit);

/**
 * Select methods. These are implemented by the container. You can
 * customize the functionality of these methods in the deployment
 * descriptor through EJB-QL.
 *
 * These methods are NOT exposed in the bean’s home interface.
 */

public abstract Long ejbSelectCreditLimit(Long accountnumber) throws FinderException;
public abstract Collection ejbSelectByTopAccounts() throws FinderException;

/**
 * Begin buisness logic methods that use select methods.
 *
 * These methods are exposed in the bean’s home interfaces.
 */

/**
 * Method to perform post-processing operations on all the
 * UserAccounts retrieved by calling ejbSelectByTopAccounts. This
 * method further process the retrieved UserAccounts and checks
 * for the Accounts with TopCredits (credit limits) and returns the
 * collection of input number of UserAccounts.
 * Post-processing information within the EJB container itself
 * has the following two advantages:
 * 1) It improves performance as the application can now leverage
 * the advantage of the vast resources available to the server.
 * 2) The data-processing code should go into the business logic
 * and not the Web-tier. This helps in maintaining the code.
 * Consider these advantages when deciding between ejbFind and
 * ejbSelect methods.
 *
 * @return Collection of <input number of> Top (credited) UserAccounts
 */
public Collection ejbHomeTopAccounts(String accountNumbers) throws FinderException {

// Invoke the ejbSelect method and get all the Account Information.
Collection collection = this.ejbSelectByTopAccounts();
...
return topAccounts;

}

/**
 * Method to call ejbSelectCreditLimit and return the credit limit value
 * for the input accountnumber without post-processing.
 * Please note that this method returns a Long instead of a collection
 * that is returned normally by the EJB container. This is a major
 * advantage of ejbSelect methods. Using these methods, You can return
 * an object from 'within' the CMP instead of 'the' CMP. This way, the
 * application uses the server and the EJB container resources more
 * effeciently.
 *
 * @return Credit Limit of the input UserAccount
 */
public Long ejbHomeCreditLimit(Long accountnumber) throws FinderException {

// Return the Credit Limit of the specified Account
return this.ejbSelectCreditLimit(accountnumber);

}
...

}

OC4J EJB 2.1 EJB QL Extensions

Implementing EJB 2.1 Queries 16-7

Using Deployment XML
Example 16–4 shows the ejb-jar.xml file for the select methods defined in the
abstract entity bean class that Example 16–3 shows.

Example 16–4 ejb-jar.xml For EJB 2.1 EJB QL Select Methods

<enterprise-beans>
<entity>
<description>Entity Bean (CMP)</description>
<display-name>UserAccount</display-name>
<ejb-name>UserAccount</ejb-name>
<local-home>oracle.otnsamples.ejbql.UserAccountLocalHome</local-home>
<local>oracle.otnsamples.ejbql.UserAccount</local>
<ejb-class>oracle.otnsamples.ejbql.UserAccountBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Long</prim-key-class>
<abstract-schema-name>UserAccount</abstract-schema-name>
<cmp-field>
<field-name>accountnumber</field-name>

</cmp-field>
<cmp-field>
<field-name>creditlimit</field-name>

</cmp-field>
<primkey-field>accountnumber</primkey-field>
<query>
<description>Selects all accounts and post-process to find top accounts</description>
<query-method>
<method-name>ejbSelectByTopAccounts</method-name>

</query-method>
<ejb-ql>select distinct object(ua) from UserAccount ua</ejb-ql>

</query>
<query>
<description>Retrieves the Credit Limit for an Account</description>
<query-method>
<method-name>ejbSelectCreditLimit</method-name>
<method-params>
<method-param>java.lang.Long</method-param>

</method-params>
</query-method>
<ejb-ql>

select ua.creditlimit from UserAccount ua where ua.accountnumber = ?1
</ejb-ql>

</query>
</entity>

</enterprise-beans>

Using TopLink Workbench
Using the TopLink Workbench, you can configure your toplink-ejb-jar.xml file
with a custom TopLink ejbSelect method and update your ejb-jar.xml file.

For more information, see "Creating a Finder" in the Oracle TopLink Developer’s Guide

OC4J EJB 2.1 EJB QL Extensions
Although EJB 2.1 does not support square root, date, time, and timestamp types, OC4J
provides proprietary EJB QL extensions to support these types in EJB 2.1, as follows:

■ SQRT(v): Both the double primitive type and the java.lang.Double types are
supported for arguments (see Example 16–5).

■ You can use the following date, time, and timestamp types in an EJB QL binary
expression, such as the following equality expressions:

OC4J EJB 2.1 EJB QL Extensions

16-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

– java.util.Date (see Example 16–6

– java.sql.Date (see Example 16–7)

– java.sql.Time (see Example 16–8)

– java.sql.Timestamp (see Example 16–9)

Example 16–5 Using the EJB 2.1 EJB QL Extension for SQRT

<query>
 <query-method>
 <method-name>ejbSelectDoubleTypeSqrt</method-name>
 <method-params>
 <method-param>double</method-param>
 </method-params>
 </query-method>
 <result-type-mapping>Remote</result-type-mapping>
 <ejb-ql>
 SELECT OBJECT(a) FROM Dept a WHERE a.deptDoubleType = SQRT(?1)
 </ejb-ql>
</query>

Example 16–6 Using the EJB 2.1 EJB QL Extension for java.util.Date

<query>
 <query-method>
 <method-name>ejbSelectDate</method-name>
 <method-params>
 <method-param>java.util.Date</method-param>
 </method-params>
 </query-method>
 <result-type-mapping>Remote</result-type-mapping>
 <ejb-ql>
 SELECT OBJECT(a) FROM Dept a WHERE a.deptDate = ?1
 </ejb-ql>
</query>

Example 16–7 Using the EJB 2.1 EJB QL Extension for java.sql.Date

<query>
 <query-method>
 <method-name>ejbSelectSqlDate</method-name>
 <method-params>
 <method-param>java.sql.Date</method-param>
 </method-params>
 </query-method>
 <result-type-mapping>Remote</result-type-mapping>
 <ejb-ql>
 SELECT OBJECT(a) FROM Dept a WHERE a.deptSqlDate = ?1
 </ejb-ql>
</query>

Example 16–8 Using the EJB 2.1 EJB QL Extension for java.sql.Time

<query>
 <query-method>
 <method-name>findByTimestamp</method-name>
 <method-params>

Note: These types are fully supported in EJB 3.0 EJB QL.

OC4J EJB 2.1 EJB QL Extensions

Implementing EJB 2.1 Queries 16-9

 <method-param>java.sql.Time</method-param>
 </method-params>
 </query-method>
 <result-type-mapping>Remote</result-type-mapping>
 <ejb-ql>
 SELECT OBJECT(a) FROM Dept a WHERE a.deptTime = ?1
 </ejb-ql>
</query>

Example 16–9 Using the EJB 2.1 EJB QL Extension for java.sql.Timestamp

<query>
 <query-method>
 <method-name>findByTimestamp</method-name>
 <method-params>
 <method-param>java.sql.Timestamp</method-param>
 </method-params>
 </query-method>
 <result-type-mapping>Remote</result-type-mapping>
 <ejb-ql>
 SELECT OBJECT(a) FROM Dept a WHERE a.deptTimestamp = ?1
 </ejb-ql>
</query>

OC4J EJB 2.1 EJB QL Extensions

16-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Part VII
EJB 2.1 Message-Driven Beans

This part provides procedural information on implementing and configuring EJB 2.1
message-driven beans. For conceptual information, see Part I, "EJB Overview".

This part contains the following chapters:

■ Chapter 17, "Implementing an EJB 2.1 Message-Driven Bean"

■ Chapter 18, "Using an EJB 2.1 Message-Driven Bean"

Implementing an EJB 2.1 Message-Driven Bean 17-1

17
Implementing an EJB 2.1 Message-Driven

Bean

This chapter explains how to implement an EJB 2.1 message-driven bean (MDB).

For more information, see the following:

■ "What is a Message-Driven Bean?" on page 1-56

■ "Using an EJB 2.1 Message-Driven Bean" on page 18-1

Implementing an EJB 2.1 MDB
Table 17–1 summarizes the important parts of an EJB 2.1 message-driven bean and the
following procedure describes how to implement these parts. For a typical
implementation, see "Using Java" on page 17-3.

For more information, see "What is a Message-Driven Bean?" on page 1-56.

To implement an EJB 2.1 message-driven bean, do the following:

1. Implement the MDB entity bean:

a. Implement a public, zero-argument constructor.

b. Implement any methods that are private to the bean or package used for
facilitating the business logic. This includes private methods that your public
methods use for completing the tasks requested of them.

Table 17–1 Parts of an EJB 2.1 MDB Entity Bean

Part Description

Bean implementation This class must be declared as public, contain a public, empty, default constructor,
one public, void ejbCreate method with no arguments, and no finalize()
method.

Implements javax.ejb.MessageDrivenBean to provide an empty implementation
for life cycle method ejbRemove and an implementation of the
setMessageDrivenContext method.

Implements javax.jms.MessageListener to provide an implementation of the
onMessage method.

Note: You can download EJB code examples from:
http://www.oracle.com/technology/tech/java/oc4j/de
mos.

Implementing an EJB 2.1 MDB

17-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

c. Implement the ejbCreate method. The container invokes this method when
it instantiates the MDB.

The return type of the ebjCreate methods is void.

d. Provide an empty implementation for each of the
javax.ejb.MessageDrivenBean interface container callback methods.

For more information, see "Configuring a Life Cycle Callback Method for an
EJB 2.1 MDB" on page 18-10.

e. Implement a setMessageDrivenContext method that takes an instance of
MessageDrivenContext (see "Implementing the setMessageDrivenContext
Method" on page 17-6).

f. Implement the appropriate message listener interface:

For a JMS message-driven bean, implement the
javax.jms.MessageListener interface to provide the onMessages
method with signature:

public void onMessage(javax.jms.Message message)

For a non-JMS message service provider, implement the message listener
interface (or interfaces) it specifies.

This method processes the incoming message. Most MDBs receive messages
from a queue or a topic, then invoke an entity bean to process the request
contained within the message.

2. Configure message service provider information (see "Using Deployment XML"
on page 17-4:

a. Define the message connection factory and Destination used in the EJB
deployment descriptor (ejb-jar.xml). Define if any durable subscriptions
or message selectors are used.

For more information, see the following:

– "Configuring an EJB 2.1 MDB to Access a Message Service Provider
Directly" on page 18-3

– "Configuring an EJB 2.1 MDB to Access a Message Service Provider Using
J2CA" on page 18-1

b. If using resource references, define these in the ejb-jar.xml file and map
them to their actual JNDI names in the OC4J-specific deployment descriptor
(orion-ejb-jar.xml).

c. If the MDB uses container-managed transaction demarcation, specify the
onMessage method in the <container-transaction> element in the
ejb-jar.xml file.

All of the steps for an MDB should be in the onMessage method. Since the
MDB is stateless, the onMessage method should perform all duties.

In general, do not create the message service connection and session in the
ejbCreate method.

Note: If you are using OEMS JMS (see "OEMS JMS: In-Memory or
File-Based Provider" on page 2-23), then you can optimize your MDB
by creating the JMS connection and session in the ejbCreate method
and destroying them in the ejbRemove method.

Implementing an EJB 2.1 MDB

Implementing an EJB 2.1 Message-Driven Bean 17-3

Using Java
Example 17–1 shows a typical implementation of an EJB 2.1 MDB.

Example 17–1 EJB 2.1 MDB Implementation

import java.util.*;
import javax.ejb.*;
import javax.jms.*;
import javax.naming.*;

public class rpTestMdb implements MessageDrivenBean, MessageListener {

private QueueConnection m_qc = null;
private QueueSession m_qs = null;
private QueueSender m_snd = null;
private MessageDrivenContext m_ctx = null;

// Constructor, which is public and takes no arguments
public rpTestMdb() {
}

/**
 * Begin private methods. The following methods
 * are used internally.
 */

...

/**
 * Begin EJB-required methods. The following methods are called
 * by the container, and never called by client code.
 */

/**
 * ejbCreate method, declared as public (but not final or
 * static), with a return type of void, and with no arguments.
 */
public void ejbCreate() {
}

public void setMessageDrivenContext(MessageDrivenContext ctx) {
// As with all enterprise beans, you must set the context in order to be
// able to use it at another time within the MDB methods

 m_ctx = ctx;
}

// life cycle Methods

public void ejbRemove() {
}

/**
 * JMS MessageListener-required methods. The following
 * methods are called by the container, and never called by
 * client code.
 */

// Receives the incoming Message and displays the text.
public void onMessage(Message msg) {

// MDB does not carry state for an individual client
try {

Context ctx = new InitialContext();
// 1. Retrieve the QueueConnectionFactory using a
// resource reference defined in the ejb-jar.xml file.

Implementing an EJB 2.1 MDB

17-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

QueueConnectionFactory qcf = (QueueConnectionFactory)
ctx.lookup("java:comp/env/jms/myQueueConnectionFactory");

ctx.close();

// 2. Create the queue connection
m_qc = qcf.createQueueConnection();
// 3. Create the session over the queue connection.
m_qs = m_qc.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
// 4. Create the sender to send messages over the session.
m_snd = m_qs.createSender(null);

// When the onMessage method is called, a message has been sent.
// You can retrieve attributes of the message using the Message object.
String txt = ("mdb rcv: " + msg.getJMSMessageID());
System.out.println(txt + " redel="

+ msg.getJMSRedelivered() + " cnt="
+ msg.getIntProperty("JMSXDeliveryCount"));

// Create a new message using the createMessage method.
// To send it back to the originator of the other message,
// set the String property of "RECIPIENT" to "CLIENT."
// The client only looks for messages with string property CLIENT.
// Copy the original message ID into new msg's Correlation ID for
// tracking purposes using the setJMSCorrelationID method. Finally,
// set the destination for the message using the getJMSReplyTo method
// on the previously received message. Send the message using the
// send method on the queue sender.

// 5. Create a message using the createMessage method
Message rmsg = m_qs.createMessage();
// 6. Set properties of the message.
rmsg.setStringProperty("RECIPIENT", "CLIENT");
rmsg.setIntProperty("count", msg.getIntProperty("JMSXDeliveryCount"));
rmsg.setJMSCorrelationID(msg.getJMSMessageID());
// 7. Retrieve the reply destination.
Destination d = msg.getJMSReplyTo();
// 8. Send the message using the send method of the sender.
m_snd.send((Queue) d, rmsg);
System.out.println(txt + " snd: " + rmsg.getJMSMessageID());
// close the connection
m_qc.close();

}
catch (Throwable ex) {

ex.printStackTrace();
}

}
}

Using Deployment XML
Using the ejb-jar.xml file, define the MDB name, class, JNDI reference, and JMS
Destination type (queue or topic) in the message-driven element. If a topic is
specified, you define whether it is durable. If you have used resource references,
define the resource reference for both the connection factory and the Destination
object.

Example 17–2 shows the ejb-jar.xml file message-driven element
corresponding to the MDB shown in Example 17–1.

Note the following:

■ MDB name specified in the <ejb-name> element.

■ MDB class defined in the <ejb-class> element, which ties the
<message-driven> element to the specific MDB implementation.

Implementing an EJB 2.1 MDB

Implementing an EJB 2.1 Message-Driven Bean 17-5

■ JMS Destination type is a Queue that is specified in the
<message-driven-destination><destination-type> element.

■ Message selector specifies that this MDB only receives messages where the
RECIPIENT is MDB.

■ The type of transaction to use is defined in the <transaction-type> element.
The value can be Container or Bean. If Container is specified, define the
onMessage method within the <container-transaction> element with the
type of CMT support.

■ The resource reference for the connection factory is defined in the
<resource-ref> element; the resource reference for the Destination object is
defined in the <resource-env-ref> element.

Example 17–2 ejb-jar.xml For an EJB 2.1 MDB

...
<enterprise-beans>

<message-driven>
<display-name>testMdb</display-name>
<ejb-name>testMdb</ejb-name>
<ejb-class>rpTestMdb</ejb-class>
<transaction-type>Container</transaction-type>
<message-selector>RECIPIENT='MDB'</message-selector>
<message-driven-destination>

<destination-type>javax.jms.Queue</destination-type>
</message-driven-destination>
<resource-ref>

<description>description</description>
<res-ref-name>jms/myQueueConnectionFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Application</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>
<resource-env-ref>
 <resource-env-ref-name>jms/persistentQueue
 </resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
</resource-env-ref>

</message-driven>
</enterprise-beans>

<assembly-descriptor>
<container-transaction>

<method>
<ejb-name>testMdb</ejb-name>
<method-name>onMessage</method-name>
<method-params>

<method-param>javax.jms.Message</method-param>
</method-params>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

Note: You could also specify a topic in this type definition. If you
did specify a Topic in the type, then you could also define the
durability of the topic, which is specified in the
<message-driven-destination>
<subscription-durability> element as "Durable" or
"nonDurable."

Implementing an EJB 2.1 MDB

17-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

...

If you were going to configure a durable Topic instead, then the
<message-driven-destination> element would be configured Example 17–3.

Example 17–3 ejb-jar.xml For an EJB 2.1 MDB for a Durable Topic

<message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 <subscription-durability>Durable</subscription-durability>
</message-driven-destination>

For more information, see "Configuring an EJB 2.1 MDB to Access a Message Service
Provider Directly" on page 18-3.

Implementing the setMessageDrivenContext Method
An MDB instance uses this method to retain a reference to its context. Message-driven
beans have contexts that the container maintains and makes available to the beans.
The bean may use the methods in the message-driven context to retrieve information
about the bean, such as security, and transactional role. Refer to the EJB specification
from Sun Microsystems for the full range of information that you can retrieve about
the bean from the context.

The container invokes the setMessageDrivenContext method, after it first
instantiates the bean, to enable the bean to retrieve the context. The container will
never call this method from within a transaction context. If the bean does not save the
context at this point, the bean will never gain access to the context.

Example 17–4 shows an MDB saving the message-driven context in the ctx variable.

Example 17–4 Implementing the setMessageDrivenContext Methods

import javax.ejb.*;

public class myBean implements MessageDrivenBean, MessageListener {

MessageDrivenContext m_ctx;

// setMessageDrivenContext method
public void setMessageDrivenContext(MessageDrivenContext ctx) {
 // As with all enterprise beans, you must set the context in order to be
// able to use it at another time within the MDB methods

 m_ctx = ctx;
}

// other methods in the bean
}

Using an EJB 2.1 Message-Driven Bean 18-1

18
Using an EJB 2.1 Message-Driven Bean

This chapter describes the various options that you must configure in order to use an
EJB 2.1 message-driven bean.

Table 18–1 lists these options and indicates which are basic (applicable to most
applications) and which are advanced (applicable to more specialized applications).

For more information, see the following:

■ "What is a Message-Driven Bean?" on page 1-56

■ "Implementing an EJB 2.1 Message-Driven Bean" on page 17-1

Configuring an EJB 2.1 MDB to Access a Message Service Provider Using
J2CA

You can configure an EJB 2.1 MDB to access a message service provider using a J2CA
resource adapter such as the Oracle JMS Connector.

You can do this using deployment XML (see "Using Deployment XML" on page 18-2).

OC4J supports both XA factories for two-phase commit (2PC) transactions and
non-XA factories for transactions that do not require 2PC.

Table 18–1 Configurable Options for an EJB 2.1 Message-Driven Bean

Options Type

"Configuring an EJB 2.1 MDB to Access a Message Service Provider Using J2CA" on page 18-1 Basic

"Configuring an EJB 2.1 MDB to Access a Message Service Provider Directly" on page 18-3 Basic

"Configuring an MDB for Fast Undeploy on Windows Operating System" on page 18-5 Advanced

"Configuring an MDB for Oracle RAC Failover" on page 18-6 Advanced

"Configuring Bean Instance Pool Size" on page 31-4 Basic

"Configuring a Transaction Timeout for a Message-Driven Bean" on page 21-7 Advanced

"Configuring Parallel Message Processing" on page 18-7 Advanced

"Configuring Connection Failure Recovery for an EJB 2.1 MDB" on page 18-9 Advanced

"Configuring a Life Cycle Callback Method for an EJB 2.1 MDB" on page 18-10 Basic

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see "Restrictions When Accessing a
Message Service Provider Without a J2CA Resource Adapter" on
page 2-25.

Configuring an EJB 2.1 MDB to Access a Message Service Provider Using J2CA

18-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For more information, see:

■ "Oracle JMS Connector: J2EE Connector Architecture (J2CA)-Based Provider" on
page 2-21

■ "Message Service Configuration Options: Annotations or XML? Attributes or
Activation Configuration Properties?" on page 2-26

■ "How do You Participate in a Global or Two-Phase Commit (2PC) Transaction?" on
page 2-20

Using Deployment XML
To configure an EJB 2.1 MDB to access a JMS message service provider using a J2CA
resource adapter by using deployment XML, you must use both ejb-jar.xml and
orion-ejb.jar.xml files. You use the orion-ejb-jar.xml file configuration to
override settings in ejb-jar.xml and to add the OC4J-specific setting for resource
adapter. For example, the connection factory and destination name that you define in
ejb-jar.xml may be logical names that may not exist in your local JNDI
environment. The deployer can override these settings in the orion-ejb-jar.xml
file and map them to the actual names. For more information on mapping logical
names, see "Configuring an Environment Reference to a JMS Destination or
Connection Resource Manager Connection Factory (JMS 1.0)" on page 19-14.

To configure an EJB 2.1 MDB to use a J2CA message service provider:

1. Specify the name of the resource adapter.

You do this using the orion-ejb-jar.xml file
<message-driven-deployment> element resource-adapter attribute as
Example 18–1 shows.

2. Specify the required activation configuration properties.

You may specify activation configuration properties using any combination of
<config-property> elements in the orion-ejb-jar.xml file
<message-driven-deployment> element (as Example 18–1 shows) and
<activation-config-property> elements in the ejb-jar.xml file
<message-driven> element (as Example 18–2 shows). The
orion-ejb-jar.xml file configuration overrides that in the ejb-jar.xml file.

For more information, see:

■ "J2CA Activation Configuration Properties" on page B-1

■ "Message Service Configuration Options: Annotations or XML? Attributes or
Activation Configuration Properties?" on page 2-26

Example 18–1 shows how to configure the orion-ejb-jar.xml file to configure this
message-driven bean to use the Oracle JMS resource adapter named OracleASjms.
You must set the resource-adapter attribute. Optionally, you can override or
configure additional activation configuration properties using one or more
config-property elements.

Example 18–1 orion-ejb-jar.xml for a J2CA Message Service Provider

<message-driven-deployment
name="JCA_QueueMDB"
resource-adapter="OracleASjms">
...
<config-property>

<config-property-name>DestinationName</config-property-name>
<config-property-value>OracleASJMSRASubcontext/MyQ</config-property-value>

Configuring an EJB 2.1 MDB to Access a Message Service Provider Directly

Using an EJB 2.1 Message-Driven Bean 18-3

</config-property>
...

</message-driven-deployment>

Example 18–2 shows how to configure ejb-jar.xml to configure a message-driven
bean to use the Oracle JMS resource adapter named OracleASjms. It assumes that
you defined connection factory OracleASjms/MyQCF in the oc4j-ra.xml file and
destination name OracleASjms/MyQueue in the oc4j-connectors.xml when you
configured your message service provider. You can define either XA-enabled factories
for two-phase commit (2PC) support, or non-XA factories if 2PC support is not
required. For more information, see "Configuring Message Services" on page 23-1.

Example 18–2 ejb-jar.xml for a J2CA Message Service Provider

<message-driven>
 <ejb-name>JCA_QueueMDB</ejb-name>
 <ejb-class>test.JCA_MDB</ejb-class>
 <messaging-type>javax.jms.MessageListener</messaging-type>
 <transaction-type>Container</transaction-type>

 <activation-config>
 <activation-config-property>
 <activation-config-property-name>
 DestinationType
 </activation-config-property-name>
 <activation-config-property-value>
 javax.jms.Queue
 </activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>
 DestinationName
 </activation-config-property-name>
 <activation-config-property-value>
 OracleASjms/MyQueue
 </activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>
 ConnectionFactoryJndiName
 </activation-config-property-name>
 <activation-config-property-value>
 OracleASjms/MyQCF
 </activation-config-property-value>
 </activation-config-property>
 </activation-config>
</message-driven>

You may also set the optional attributes that Table A–3 lists.

The actual names you use depend on your message service provider installation. For
more information, see "J2CA Message Service Provider Connection Factory Names" on
page 23-2.

Configuring an EJB 2.1 MDB to Access a Message Service Provider
Directly

You can configure an EJB 2.1 MDB to access a message service provider directly
(without a J2CA resource adapter).

Configuring an EJB 2.1 MDB to Access a Message Service Provider Directly

18-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

You can do this by using deployment XML (see "Using Deployment XML" on
page 18-4).

OC4J supports both XA factories for two-phase commit (2PC) transactions and
non-XA factories for transactions that do not require 2PC. For more information on
2PC support, see "How do You Participate in a Global or Two-Phase Commit (2PC)
Transaction?" on page 2-20.

Using Deployment XML
To configure an EJB 2.1 MDB to access a JMS message service provider directly
(without a J2CA resource adapter) by using deployment XML, you can use either the
ejb-jar.xml or orion-ejb.jar.xml file. You use the orion-ejb-jar.xml file
configuration to override settings in ejb-jar.xml or to add OC4J-specific settings.
For example, the connection factory and destination name that you define in
ejb-jar.xml may be logical names that may not exist in your local JNDI
environment. The deployer can override these settings in the orion-ejb-jar.xml
file and map them to the actual names. For more information on mapping logical
names, see "Configuring an Environment Reference to a JMS Destination or
Connection Resource Manager Connection Factory (JMS 1.0)" on page 19-14.

To configure

1. Specify the required activation configuration properties.

You may specify activation configuration properties using any combination of
<config-property> elements in the orion-ejb-jar.xml file
<message-driven-deployment> element and
<activation-config-property> elements in the ejb-jar.xml file
<message-driven> element (as Example 18–3 shows). The
orion-ejb-jar.xml file configuration overrides that in the ejb-jar.xml file.

For more information, see:

■ "J2CA Activation Configuration Properties" on page B-1

■ "Message Service Configuration Options: Annotations or XML? Attributes or
Activation Configuration Properties?" on page 2-26

Example 18–3 shows how to configure ejb-jar.xml to configure a message-driven
bean to use a non-J2CA JMS message service provider. It assumes that you defined
connection factory jms/MyQCF and queue jms/MyQueue when you configured your
message service provider. You can define either XA-enabled factories for two-phase
commit (2PC) support or non-XA factories if 2PC support is not required. For more
information, see "Configuring Message Services" on page 23-1.

Example 18–3 ejb-jar.xml for a Non-J2CA Message Service Provider

<message-driven>

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see:

■ "Restrictions When Accessing a Message Service Provider Without
a J2CA Resource Adapter" on page 2-25.

■ "Configuring an EJB 2.1 MDB to Access a Message Service
Provider Using J2CA" on page 18-1

Configuring an MDB for Fast Undeploy on Windows Operating System

Using an EJB 2.1 Message-Driven Bean 18-5

<ejb-name>QueueMDB</ejb-name>
<ejb-class>test.QueueMDB</ejb-class>
<message-destination-type>javax.jms.Queue</message-destination-type>
<transaction-type>Container</transaction-type>

<activation-config>
<activation-config-property>

<activation-config-property-name>
ConnectionFactoryJndiName

</activation-config-property-name>
<activation-config-property-value>

jms/MyQCF
</activation-config-property-value>

</activation-config-property>
<activation-config-property>

<activation-config-property-name>
DestinationName

</activation-config-property-name>
<activation-config-property-value>

jms/MyQueue
</activation-config-property-value>

</activation-config-property>
</activation-config>

</message-driven>

The actual names you use depend on your message service provider installation. For
more information, see the following:

■ "OEMS JMS Destination and Connection Factory Names" on page 23-3

■ "OEMS JMS Database Destination and Connection Factory Names" on page 23-6

Configuring an MDB for Fast Undeploy on Windows Operating System
When you use an MDB, it is blocked in a receive state waiting for incoming messages.
In a non-Windows environment, if you shut down OC4J while the MDB is in a wait
state, OC4J shuts down in a timely fashion.

If you are using message-driven beans with the OEMS JMS Database provider (see
"OEMS JMS Database: Advanced Queueing (AQ)-Based Provider" on page 2-24) and
OC4J is running in a Windows environment, or when the back-end database is
running in a Windows environment and you shutdown OC4J while an MDB is in a
wait state, then the OC4J instance cannot be stopped and the MDB cannot be
undeployed in a timely manner: in this case, the OC4J process will hang for at least 2.5
hours

Using the oracle.mdb.fastUndeploy system property (see "Using System
Properties" on page 18-5), you can modify the behavior of the MDB in the Windows
environment to ensure that your message-driven beans can be undeployed, and OC4J
can be shut down, in a timely manner, when necessary.

Using System Properties
The oracle.mdb.fastUndeploy system property is set to the frequency, as an
integer number of seconds, at which OC4J polls the database (requiring a database
round-trip) to determine whether or not the session is shut down when an MDB is not
processing incoming messages and in a wait state.

For optimal performance, a reasonable value should be 120 seconds or more.

If you set this property to 120 (seconds), then every 120 seconds, OC4J will poll the
database.

Configuring an MDB for Oracle RAC Failover

18-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring an MDB for Oracle RAC Failover
If your MDB application uses OEMS JMS Database with an Oracle RAC database, you
must configure your application to handle a database failover scenario, as follows:

■ Configure message-driven beans to retry if message dequeing fails (see "Using
Deployment XML" on page 18-6)

■ Configure the MDB client to retry if connection acquisition fails (see "Using Java"
on page 18-6)

Using Deployment XML
To support Oracle RAC failover, you must configure orion-ejb-jar.xml file
element message-driven-deployment attributes dequeue-retry-count and
dequeue-retry-interval, as Example 18–4 shows.

The dequeue-retry-count attribute tells the container how many times to retry the
database connection in case a failure happens; the default is 0 seconds.

The dequeue-retry-interval attribute tells the container how long to wait
between retry attempts to accommodate for the time it takes for Oracle RAC database
failover to complete; the default value is 60 seconds.

Example 18–4 orion-ejb-jar.xml For Oracle RAC Failover with an MDB

<message-driven-deployment name="MessageBeanTpc"
 connection-factory-location="java:comp/resource/cartojms1/TopicConnectionFactories/aqTcf"
 destination-location="java:comp/resource/cartojms1/Topics/topic1"
 subscription-name="MDBSUB"
 dequeue-retry-count=3
 dequeue-retry-interval=90/>
...

Using Java
To support Oracle RAC failover, you must configure a standalone OEMS JMS Database
client running against an Oracle RAC database to retry if connection acquisition fails.

Oracle recommends that you use com.evermind.sql.DbUtil method
oracleFatalError to determine if the connection object is invalid (see
Example 18–5). If so, then reestablish the database connection, if necessary.

Example 18–5 Client Retrying After Connection Acquisition Failure

import com.evermind.sql.DbUtil;
...
getMessage(QueueSesssion session) {

try {
QueueReceiver rcvr = session.createReceiver(rcvrQueue);
Message msgRec = rcvr.receive();

}
catch(Exception e) {

if (exc instanceof JMSException) {
JMSException jmsexc = (JMSException) exc;
sql_ex = (SQLException)(jmsexc.getLinkedException());

Note: The Oracle RAC-enabled attribute of a data source is
discussed in Data Sources chapter in the Oracle Containers for J2EE
Services Guide.

Configuring Parallel Message Processing

Using an EJB 2.1 Message-Driven Bean 18-7

db_conn = oracle.jms.AQjmsSession)session.getDBConnection();
if ((DbUtil.oracleFatalError(sql_ex, db_conn)) {
 // failover logic
}

}
}

}

Configuring Parallel Message Processing
By default, OC4J uses one receiver thread to poll for messages from the message
location.

Having more than one receiver thread allows messages to be received in parallel
which can improve performance.

If your message location is a Topic, the number of receiver threads is fixed to one.

If your message location is a Queue, you can configure the number of receiver threads
(see "Using Deployment XML" on page 18-7).

Note that the minimum number of bean instances in the MDB pool should be at least
the same as the number of receiver threads to avoid blocking receiver threads from
acquiring a bean instance from the pool to process messages.

For more information, see:

■ "Message Service Configuration Options: Annotations or XML? Attributes or
Activation Configuration Properties?" on page 2-26

■ "Configuring Bean Instance Pool Size" on page 31-4

Using Deployment XML
You configure parallel message processing in the orion-ejb-jar.xml file. How you
configure this option depends on the type of message-service provider you are using:

■ J2CA Adapter Message Service Provider

■ Non-J2CA Adapter Message Service Provider

In either case, you must restart OC4J to apply your changes.

J2CA Adapter Message Service Provider
If you are using a J2CA adapter message service provider, use the
<config-property> element to set the ReceiverThreads configuration property.

For example, if you are using a J2CA adapter message service provider, and you want
three message-driven bean instances receiving from the message location in parallel,
set the ReceiverThreads configuration property to 3, as follows:

<message-driven-deployment ... >
...

<config-property>
<config-property-name>RecieverThreads</config-property-name>
<config-property-value>3</config-property-value>

</config-property>
...
</message-driven-deployment>

For more information on ReceiverThreads, see Table B–2.

Configuring Maximum Delivery Count

18-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Non-J2CA Adapter Message Service Provider
If you are using a non-J2CA adapter message service provider like OEMS JMS or
OEMS JMS Database, use the <message-driven-deployment> element
listener-threads attribute.

For example, if you are using OEMS JMS or OEMS JMS Database, and you want three
message-driven bean instances receiving from the message location in parallel, set the
listener-threads attribute to 3, as follows:

<message-driven-deployment ... listener-threads="3"
...

</message-driven-deployment>

For more information on listener-threads, see Table A–3.

Configuring Maximum Delivery Count
You can configure the maximum number of times OC4J will attempt the immediate re
delivery of a message to a message-driven bean's onMessage method if that method
returns failure: fails to invoke an acknowledgment operation, throws an exception, or
both (see "Using Deployment XML" on page 18-8).

After this number of redeliveries, the message is deemed undeliverable and is handled
according to the policies of your message service provider. For example, OEMS JMS
will put the message on its exception queue (jms/Oc4jJmsExceptionQueue).

Using Deployment XML
You set the maximum delivery count in the orion-ejb-jar.xml file. How you
configure this value depends on the type of message-service provider you are using:

■ J2CA Adapter Message Service Provider

■ Non-J2CA Adapter Message Service Provider

J2CA Adapter Message Service Provider
If you are using a J2CA adapter message service provider, use the
<config-property> element to set the MaxDeliveryCnt configuration property.

For example, if you are using a J2CA adapter message service provider, and you
wanted to set the maximum delivery count to 3, you would do as follows:

<message-driven-deployment ... >
...

<config-property>
<config-property-name>MaxDeliveryCnt</config-property-name>
<config-property-value>3</config-property-value>

</config-property>
...
</message-driven-deployment>

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see:

■ "Restrictions When Accessing a Message Service Provider Without
a J2CA Resource Adapter" on page 2-25.

■ "Configuring an EJB 2.1 MDB to Access a Message Service
Provider Using J2CA" on page 18-1

Configuring Connection Failure Recovery for an EJB 2.1 MDB

Using an EJB 2.1 Message-Driven Bean 18-9

For more information on MaxDeliveryCnt, see Table B–2.

Non-J2CA Adapter Message Service Provider
If you are using a non-J2CA adapter message service provider like OEMS JMS or
OEMS JMS Database, use the max-delivery-count attribute of the
<message-driven-deployment> element.

For example, if you are using OEMS JMS or OEMS JMS Database, and you wanted to
set the maximum delivery count to 3, you would do as follows:

<message-driven-deployment ... max-delivery-count="3"
...

</message-driven-deployment>

For more information on max-delivery-count, see Table A–3.

Configuring Connection Failure Recovery for an EJB 2.1 MDB
You can configure how a message-driven bean’s listener thread responds to connection
failures due to such events as network and JMS server outages.

These options are applicable to only container-managed transactions in a
message-driven bean.

You can configure connection failure recovery options using the
orion-ejb-jar.xml file (see "Using Deployment XML" on page 18-9).

For more information about failover, see "Understanding OC4J EJB Application
Clustering Services" on page 2-29.

Using Deployment XML
You set the dequeue retry count and interval in the orion-ejb-jar.xml file. How
you configure this value depends on the type of message-service provider you are
using:

■ J2CA Adapter Message Service Provider

■ Non-J2CA Adapter Message Service Provider

In either case, you must restart OC4J to apply your changes.

J2CA Adapter Message Service Provider
If you access your message-service provider using a J2CA resource adapter, the Oracle
JMS Connector does an infinite retry of polling for the JMS resource and this retry
interval can be configured in the activation configuration property,
EndpointFailureRetryInterval as shown in Example 18–6.

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see:

■ "Restrictions When Accessing a Message Service Provider Without
a J2CA Resource Adapter" on page 2-25.

■ "Configuring an EJB 2.1 MDB to Access a Message Service
Provider Using J2CA" on page 18-1

Configuring a Life Cycle Callback Method for an EJB 2.1 MDB

18-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Note that the recovery of message after retry does not guarantee message ordering,
and messages can be lost or duplicated when MDB subscription to the JMS topic is
non-durable.

For more information, see EndpointFailureRetryInterval in Table B–2.

Example 18–6 Configuring EndpointFailureRetryInterval in orion-ejb-jar.xml

<message-driven-deployment ... >
...

<config-property>
<config-property-name>EndpointFailureRetryInterval</config-property-name>
<config-property-value>20000</config-property-value>

</config-property>
...
</message-driven-deployment>

Non-J2CA Adapter Message Service Provider
If you are using a non-J2CA adapter message service provider like OEMS JMS or
OEMS JMS Database, use the dequeue-retry-count and
dequeue-retry-interval attribute of the <message-driven-deployment>
element. The default dequeue retry count is zero and the default dequeue retry
interval is 60 seconds.

For example, if you are using OEMS JMS or OEMS JMS Database, and you wanted to
set the dequeue retry count to 3 and the dequeue retry interval to 90 seconds, you
would do as follows:

<message-driven-deployment ... dequeue-retry-count="3" dequeue-retry-interval="90"
...

</message-driven-deployment>

For more information on dequeue-retry-count and dequeue-retry-interval,
see Table A–3.

Configuring a Life Cycle Callback Method for an EJB 2.1 MDB
The following are the EJB 2.1 life cycle methods, as specified in the
javax.ejb.MessageDrivenBean interface, that a message-driven bean must
implement (see "Using Java" on page 18-11):

■ ejbCreate

■ ejbRemove

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see:

■ "Restrictions When Accessing a Message Service Provider Without
a J2CA Resource Adapter" on page 2-25.

■ "Configuring an EJB 2.1 MDB to Access a Message Service
Provider Using J2CA" on page 18-1

Configuring a Life Cycle Callback Method for an EJB 2.1 MDB

Using an EJB 2.1 Message-Driven Bean 18-11

For more information, see "What is the Life Cycle of a Message-Driven Bean?" on
page 1-57.

Using Java
Example 18–7 shows how to implement an EBJ 2.1 message-driven bean life cycle
callback method.

Example 18–7 EJB 2.1 MDB Life Cycle Callback Method Implementation

public void ejbRemove() {
// when bean is removed

}

Note: Using EJB 2.1, you must implement all message-driven bean
callback methods. If you do not need to take any action, implement an
empty method.

Configuring a Life Cycle Callback Method for an EJB 2.1 MDB

18-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Part VIII
Configuring OC4J EJB Services

This part provides procedural information on configuring OC4J EJB services for EJB
3.0 and EJB 2.1 enterprise JavaBeans. For conceptual information, see Part I, "EJB
Overview".

This part contains the following chapters:

■ Chapter 19, "Configuring JNDI Services"

■ Chapter 20, "Configuring Data Sources"

■ Chapter 21, "Configuring Transaction Services"

■ Chapter 22, "Configuring Security Services"

■ Chapter 23, "Configuring Message Services"

■ Chapter 24, "Configuring OC4J EJB Application Clustering Services"

■ Chapter 25, "Configuring Timer Services"

Configuring JNDI Services 19-1

19
Configuring JNDI Services

This chapter describes the following:

■ Configuring Environment References

■ Configuring the Initial Context Factory

■ Setting JNDI Properties in an Enterprise Bean

■ Looking Up an EJB 3.0 Resource Manager Connection Factory

■ Looking Up an EJB 3.0 Environment Variable

■ Looking Up an EJB 2.1 Resource Manager Connection Factory

■ Looking Up an EJB 2.1 Enviornment Variable

For more information, see the following:

■ "Understanding EJB JNDI Services" on page 2-14

■ "Accessing an Enterprise Bean From a Client" on page 29-1

■ "Oracle JNDI" in the Oracle Containers for J2EE Services Guide

Configuring Environment References
Before you can access essential resources from your EJB at run time using JNDI, you
must define environment references to them. Environment references are static and
cannot be changed by the bean.

This section describes configuring the following:

■ EJB Environment References

■ Resource Manager Connection Factory Environment References

■ Environment Variable Environment References

■ Web Service Environment References

■ Persistence Context References

In EJB 3.0, instead of defining environment references, you can use annotations,
resource injection, and default JNDI names (based on class and interface names).
Alternatively, you can define environment references using either OC4J-specific
deployment descriptors or OC4J-proprietary annotations.

In EJB 2.1, you must define <ejb-ref> or <ejb-local-ref> elements in the
appropriate deployment descriptor.

Configuring Environment References

19-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

In either case, when you define an environment reference, you can use the actual JNDI
name or use a logical name associated with it to increase deployment flexibility.

For more information, see the following:

■ "Where do you Configure an EJB Environment Reference?" on page 19-3

■ "Should you use Logical Names?" on page 19-3

EJB Environment References
Before one enterprise bean, acting in the role of a client (call it the source enterprise
bean), can access another enterprise bean (call it the target enterprise bean), you must
define an EJB reference to the target enterprise bean in the deployment descriptor of
the source enterprise bean.

For more information, see the following:

■ Configuring an Environment Reference to a Remote EJB: Clustered or Combined
Web Tier and EJB Tier

■ Configuring an Environment Reference to a Remote EJB: Unclustered Separate
Web Tier and EJB Tier

■ Configuring an Environment Reference to a Local EJB

Resource Manager Connection Factory Environment References
You can define an environment reference to resource manager connection factories that
provide connections to such services as a JDBC data source, JMS topic or queue, Java
mail, or an HTTP URL. These references are logical names that OC4J binds at
deployment time to the actual resource manager connection factories that it provides.

For each client in which you want to access a resource manager connection factory,
you must either inject it in the client source code or define an environment reference to
it in the client's deployment descriptor.

For more information, see the following:

■ "Configuring an Environment Reference to a JDBC Data Source Resource Manager
Connection Factory" on page 19-11

■ "Configuring an Environment Reference to a JMS Destination Resource Manager
Connection Factory (JMS 1.1)"

■ "Configuring an Environment Reference to a JMS Destination or Connection
Resource Manager Connection Factory (JMS 1.0)" on page 19-14

Note: In EJB 3.0, an environment reference to a target enterprise bean
is not needed. You can access a target enterprise bean directly using
resource injection (see "Accessing an EJB 3.0 Enterprise Bean" on
page 29-5).

Note: In EJB 3.0, an environment reference to a resource manager
connection factory is not needed. You can access a resource manager
connection factory directly using resource injection (see "Looking Up
an EJB 3.0 Resource Manager Connection Factory" on page 19-23).

Configuring Environment References

Configuring JNDI Services 19-3

Environment Variable Environment References
You can define an enviornment variable with an enviornment reference to make the
environment variable value accessible using JNDI.

For more information, see "Configuring an Environment Reference to an Environment
Variable" on page 19-16

Web Service Environment References
You can define a Web service with an enviornment reference to make the Web service
accessible using JNDI

For more information, see "Configuring an Environment Reference to a Web Service"
on page 19-17.

Persistence Context References
The preferred way to access an entity manager is using annotations and dependency
injection (see "Acquiring the OC4J Default Entity Manager" on page 29-9 and
"Acquiring an Entity Manager Using JNDI" on page 29-9).

To acquire an entity manager in a class that does not support annotations and
injection, namely helper classes and Web clients, you must first define a persistence
context reference and then lookup the entity manager using JNDI.

For more information, see the following:

■ "Configuring an Environment Reference to a Persistence Context" on page 19-18

■ "Acquiring an Entity Manager in a Helper Class" on page 29-11

Where do you Configure an EJB Environment Reference?
If you choose to use environment references, where you configure the EJB reference
depends on the type of client, as Table 19–1 shows.

In EJB 3.0, if you wish to define an EJB environment reference, you can use
OC4J-proprietary annotations as an alternative to OC4J-specific deployment
descriptors.

Should you use Logical Names?
When you define an environment reference, you can identify the resource by a logical
name or by its JNDI name. To maximize application assembly and deployment
flexibility, you typically develop an EJB application by referring to resources by a

Table 19–1 Deployment Descriptor by Client Type

Client Type Description Deployment Descriptor
OC4J-Specific Deployment
Descriptor

EJB Another enterprise bean invoking
an enterprise bean from within the
container.

ejb-jar.xml orion-ejb-jar.xml

Standalone client A pure-Java client invoking an
enterprise bean from outside of the
container.

application-client.xml orion-application-client.xml

Servlet or JSP A servlet or JSP invoking an
enterprise bean from outside of the
container.

web.xml orion-web.xml

Configuring an Environment Reference to a Remote EJB: Clustered or Combined Web Tier and EJB Tier

19-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

logical name that you define in your application environment. This indirection enables
the bean developer to refer to enterprise beans, other resources (such as a JDBC
DataSource), and environment variables without specifying the actual name, which
may change depending on how an application is assembled and deployed. The
procedures in this chapter explain how to configure either logical or JNDI names.

Configuring an Environment Reference to a Remote EJB: Clustered or
Combined Web Tier and EJB Tier

In a clustered OC4J architecture or a single-instance OC4J architecture with both Web
tier and EJB tier on the same OC4J instance, you can define an EJB reference to the
remote interface of a target enterprise bean using one of the following approaches (in
increasing order of assembly and deployment flexibility):

■ Configure an <ejb-ref> element in the appropriate client EJB deployment
descriptor that specifies the actual name of the target bean (see "Configuring
ejb-ref in the Client: No Indirection" on page 19-4).

■ Configure an <ejb-ref> element in the appropriate client EJB deployment
descriptor that specifies a logical name and an <ejb-link> element that
associates this logical name with the actual bean (see "Configuring ejb-ref in the
Client: Using ejb-link to Resolve Indirection" on page 19-5).

■ Configure an <ejb-ref> element in the appropriate client EJB deployment
descriptor that specifies a logical name and an <ejb-ref-mapping> in the
appropriate OC4J-specific deployment descriptor that associates this logical name
with the actual bean (see "Configuring ejb-ref in the Client: Using orion-ejb-jar.xml
ejb-ref-mapping to Resolve Indirection" on page 19-5).

For an unclustered architecture, in which the Web tier and EJB tier are deployed to
separate OC4J instances on different hosts, see "Configuring an Environment
Reference to a Remote EJB: Unclustered Separate Web Tier and EJB Tier" on page 19-6.

For information on looking up a target enterprise bean, see "Accessing an Enterprise
Bean From a Client" on page 29-1.

Configuring ejb-ref in the Client: No Indirection
Choose this option if the bean interfaces are unique (for example, only one session
bean uses the interface Cart.class), or you do not want to use indirection that offers
some assembly and deployment flexibility:

1. Define an <ejb-ref> element in the appropriate client deployment descriptor
(see "Where do you Configure an EJB Environment Reference?" on page 19-3) and
configure the following subelements, as Example 19–1 shows:

■ <ejb-ref-name>: the actual name of the target enterprise bean.

■ <ejb-ref-type>: the type of the target enterprise bean, one of Session or
Entity.

Note: In EJB 3.0, an environment reference to a target enterprise bean
is not needed. You can access a target enterprise bean directly using
resource injection (see "Accessing an EJB 3.0 Enterprise Bean" on
page 29-5).

Configuring an Environment Reference to a Remote EJB: Clustered or Combined Web Tier and EJB Tier

Configuring JNDI Services 19-5

■ <home>: the package and class name of the target enterprise bean’s remote
home interface.

■ <remote>: package and class name of the target enterprise bean’s remote
component interface.

Example 19–1 Configuring ejb-ref-name

<ejb-ref>
 <ejb-ref-name>myBeans/BeanA</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>myBeans.BeanAHome</home>
 <remote>myBeans.BeanA</remote>
</ejb-ref>

Configuring ejb-ref in the Client: Using ejb-link to Resolve Indirection
Choose this option if the bean interfaces are not unique or, if you want to use
indirection that offers some assembly and deployment flexibility:

1. Define an <ejb-ref> element in the appropriate client deployment descriptor
(see "Where do you Configure an EJB Environment Reference?" on page 19-3) and
configure the following subelements, as Example 19–2 shows:

■ <ejb-ref-name>: the logical name of the target enterprise bean.

■ <ejb-ref-type>: the type of the target enterprise bean, one of Session or
Entity.

■ <home>: the package and class name of the target enterprise bean’s remote
home interface.

■ <remote>: package and class name of the target enterprise bean’s remote
component interface.

■ <ejb-link>: the actual name of the target bean.

Example 19–2 Configuring ejb-ref-name with a Logical Name Resolved by ejb-link

<ejb-ref>
 <ejb-ref-name>ejb/nextVal</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>myBeans.BeanAHome</home>
 <remote>myBeans.BeanA</remote>
 <ejb-link>myBeans/BeanA</ejb-link>
</ejb-ref>

Configuring ejb-ref in the Client: Using orion-ejb-jar.xml ejb-ref-mapping to Resolve
Indirection

Choose this option, if the following is true:

■ The bean interfaces are not unique.

■ You want to use indirection that offers the most assembly and deployment
flexibility.

1. Define an <ejb-ref> element in the appropriate client deployment descriptor
(see "Where do you Configure an EJB Environment Reference?" on page 19-3) and
configure the following subelements, as Example 19–3 shows:

Configuring an Environment Reference to a Remote EJB: Unclustered Separate Web Tier and EJB Tier

19-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ <ejb-ref-name>: the logical name of the target enterprise bean.

■ <ejb-ref-type>: the type of the target enterprise bean, one of Session or
Entity.

■ <home>: the package and class name of the target enterprise bean’s remote
home interface.

■ <remote>: package and class name of the target enterprise bean’s remote
component interface.

Example 19–3 Configuring ejb-ref-name With a Logical Name Resolved by
ejb-ref-mapping

<ejb-ref>
 <ejb-ref-name>ejb/nextVal</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>myBeans.BeanAHome</home>
 <remote>myBeans.BeanA</remote>
</ejb-ref>

2. Within the orion-ejb-jar.xml deployment descriptor, define an
<ejb-ref-mapping> element that maps the logical name to the actual name of
the target bean, as Example 19–4 shows.

Example 19–4 Mapping Logical Name to Actual Name With ejb-ref-mapping

<ejb-ref-mapping name="ejb/nextVal" location="myBeans/BeanA"/>

As Figure 19–1 shows, in the <ejb-ref-mapping> element, configure the name
attribute to match the <ejb-ref-name> and configure the location attribute
with the actual name of the target bean. In Example 19–4, the logical name
ejb/nextVal is mapped to the actual name of the target bean myBeans/BeanA.

Figure 19–1 Associating ejb-ref-name and ejb-ref-mapping

OC4J maps the logical name to the actual JNDI name on the client side. The server
side receives the JNDI name and resolves it within its JNDI tree.

Configuring an Environment Reference to a Remote EJB: Unclustered
Separate Web Tier and EJB Tier

A common Java EE application architecture is one in which you deploy the Web tier to
one OC4J instance, and the EJB tier–to another OC4J instance on a separate host in a
nonclustered environment.

In this architecture, to access a remote enterprise bean, you must populate the required
JNDI properties in your Web-tier code when you create the context (for example, see
"Setting JNDI Properties in the Initial Context" on page 19-23). These hard-coded
properties can cause portability problems, when, for example, migrating from a test
environment to a production environment.

Configuring an Environment Reference to a Remote EJB: Unclustered Separate Web Tier and EJB Tier

Configuring JNDI Services 19-7

Using OC4J-proprietary deployment XML (see "Using Deployment XML" on
page 19-7), you can associate a reference to a remote enterprise bean with a JNDI
properties file that contains the required JNDI context variables. This simplifies
assembly and deployment.

Figure 19–2 shows this architecture for a JSP/Servlet client, and Figure 19–3 shows this
architecture for an EJB client.

Figure 19–2 Web-tier and EJB-tier Remote EJB Access: JSP/Servlet Client

Figure 19–3 Web-tier and EJB-tier Remote EJB Access: EJB Client

For more information about the JNDI properties file, see "Setting JNDI Properties With
the JNDI Properties File" on page 19-22).

Using Deployment XML
To associate a reference to a remote enterprise bean with a JNDI properties file that
contains the required JNDI context variables using OC4J-proprietary element
<ejb-ref-mapping>, perform the following configuration on the Web-tier OC4J
instance:

1. Define an <ejb-ref> element in the appropriate client deployment descriptor
(see "Where do you Configure an EJB Environment Reference?" on page 19-3) and
configure the following subelements, as Example 19–5 shows:

■ <ejb-ref-name>: the logical name of the target enterprise bean.

Configuring an Environment Reference to a Remote EJB: Unclustered Separate Web Tier and EJB Tier

19-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ <ejb-ref-type>: the type of the target enterprise bean, one of Session or
Entity.

■ <home>: the package and class name of the target enterprise bean’s remote
home interface.

■ <remote>: package and class name of the target enterprise bean’s remote
component interface.

Example 19–5 Configuring ejb-ref-name With a Logical Name Resolved by
ejb-ref-mapping

<ejb-ref>
 <ejb-ref-name>ejb/emp</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>myBeans.EmployeeBeanHome</home>
 <remote>myBeans.EmployeeBean</remote>
</ejb-ref>

In this architecture, the client deployment descriptor is on the Web-tier OC4J
instance. The client of the remote enterprise bean is one of the following:

■ a JSP or servlet deployed on the Web tier: use the web.xml file.

■ an enterprise bean deployed on the Web tier: use the ejb-jar.xml file.

2. Within the orion-web.xml or orion-ejb-jar.xml deployment descriptor
(depending on your type of client), define an <ejb-ref-mapping> element that
does the following, as Example 19–6 shows:

■ maps the logical name (ejb/emp) to the actual name
(myBeans/EmployeeBean) of the target bean;

■ specifies that target EJB instances are located on a remote host
(remote-server-ref="true");

■ associates the reference with a JNDI properties file
(jndi-properties-file="empjndi.properties") that contains the
JNDI context variables that a client needs to access the remote host, on which
target EJB instances are deployed.

Example 19–6 Mapping Logical Name to Actual Name With ejb-ref-mapping for a Remote
Target EJB

<ejb-ref-mapping
name="ejb/emp"
location="myBeans/EmployeeBean"
remote-server-ref="true"
jndi-properties-file="empjndi.properties"

/>

As Figure 19–1 shows, in the <ejb-ref-mapping> element, you configure the
name attribute to match the <ejb-ref-name> and configure the location
attribute with the actual name of the target bean. In Example 19–4, the logical
name ejb/emp is mapped to the actual name of the target bean
myBeans/EmployeeBean.

Configuring an Environment Reference to a Local EJB

Configuring JNDI Services 19-9

Figure 19–4 Associating ejb-ref-name and ejb-ref-mapping for a Remote Target EJB

When the Web-tier client (JSP/Servlet or enterprise bean deployed to the Web tier)
accesses the remote target enterprise bean (using injection or JNDI lookup), the
Web-tier OC4J instance maps the logical name (specified in the Web-tier OC4J
instance’s web.xml or ejb-jar.xml file) to the actual name (specified in the
Web-tier OC4J instance’s orion-web.xml or orion-ejb-jar.xml file). The
Web-tier OC4J instance uses the JNDI properties file specified in the
<ejb-ref-mapping> element to access the EJB-tier OC4J instance and resolve
the actual name to the target enterprise bean on the EJB-tier OC4J instance.

Configuring an Environment Reference to a Local EJB
You can define an EJB reference to the local interface of a target enterprise bean using
one of the following approaches (in increasing order of assembly and deployment
flexibility):

■ Configure an <ejb-local-ref> element in the appropriate client EJB
deployment descriptor that specifies the actual name of the target bean (see
"Configuring ejb-local-ref in the Client: No Indirection" on page 19-9).

■ Configure an <ejb-local-ref> element in the appropriate client EJB
deployment descriptor that specifies a logical name and an <ejb-link> element
that associates this logical name with the actual bean (see "Configuring
ejb-local-ref in the Client: Using ejb-link to Resolve Indirection" on page 19-10).

■ Configure an <ejb-local-ref> element in the appropriate client EJB
deployment descriptor that specifies a logical name and an <ejb-ref-mapping>
in the appropriate OC4J-specific deployment descriptor that associates this logical
name with the actual bean (see "Configuring ejb-local-ref in the Client: Using
orion-ejb-jar.xml ejb-ref-mapping to Resolve Indirection" on page 19-10).

For information on looking up a target enterprise bean, see "Accessing an Enterprise
Bean From a Client" on page 29-1.

Configuring ejb-local-ref in the Client: No Indirection
Choose this option if the bean interfaces are unique (for example, only one session
bean uses the interface Cart.class) or you do not want to use indirection that offers
some assembly and deployment flexibility:

Note: In EJB 3.0, an environment reference to a target enterprise bean
is not needed. You can access a target enterprise bean directly using
resource injection (see "Accessing an EJB 3.0 Enterprise Bean" on
page 29-5).

Configuring an Environment Reference to a Local EJB

19-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

1. Define an <ejb-local-ref> element in the appropriate client deployment
descriptor (see "Where do you Configure an EJB Environment Reference?" on
page 19-3) and configure the following subelements, as Example 19–1 shows:

■ <ejb-ref-name>: the actual name of the target enterprise bean.

■ <ejb-ref-type>: the target bean's type: Session or Entity.

■ <local-home>: the package and class name of the target bean’s local home
interface.

■ <local>: the package and class name of the target bean’s local component
interface.

Example 19–7 Configuring ejb-local-ref-name

<ejb-local-ref>
 <ejb-ref-name>myBeans/BeanA</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>myBeans.BeanAHome</home>
 <local>myBeans.BeanA</remote>
</ejb-ref>

Configuring ejb-local-ref in the Client: Using ejb-link to Resolve Indirection
Choose this option if the bean interfaces are not unique, or if you want to use
indirection that offers some assembly and deployment flexibility:

1. Define an <ejb-local-ref> element in the appropriate client deployment
descriptor (see "Where do you Configure an EJB Environment Reference?" on
page 19-3) and configure the following subelements, as Example 19–8 shows:

■ <ejb-ref-name>: the logical name of the target enterprise bean.

■ <ejb-ref-type>: the target bean's type: Session or Entity.

■ <local-home>: the package and class name of the target bean’s local home
interface.

■ <local>: the package and class name of the target bean’s local component
interface.

■ <ejb-link>: actual name of the target bean

Example 19–8 Configuring ejb-ref-name with a Logical Name Resolved by ejb-link

<ejb-local-ref>
 <ejb-ref-name>ejb/nextVal</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>myBeans.BeanAHome</home>
 <local>myBeans.BeanA</remote>
 <ejb-link>myBeans/BeanA</ejb-link>
</ejb-ref>

Configuring ejb-local-ref in the Client: Using orion-ejb-jar.xml ejb-ref-mapping to
Resolve Indirection

Choose this option if the following is true:

■ The bean interfaces are not unique.

Configuring an Environment Reference to a JDBC Data Source Resource Manager Connection Factory

Configuring JNDI Services 19-11

■ You want to use indirection that offers the most assembly and deployment
flexibility.

1. Define an <ejb-ref> element in the appropriate client deployment descriptor
(see "Where do you Configure an EJB Environment Reference?" on page 19-3) and
configure the following subelements, as Example 19–9 shows:

■ <ejb-ref-name>: the logical name of the target enterprise bean.

■ <ejb-ref-type>: the target bean's type: Session or Entity.

■ <local-home>: the package and class name of the target bean’s local home
interface.

■ <local>: the package and class name of the target bean’s local component
interface.

Example 19–9 Configuring ejb-ref-name With a Logical Name Resolved by
ejb-ref-mapping

<ejb-local-ref>
 <ejb-ref-name>ejb/nextVal</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>myBeans.BeanAHome</home>
 <local>myBeans.BeanA</remote>
</ejb-ref>

2. Within the orion-ejb-jar.xml deployment descriptor, define an
<ejb-ref-mapping> element that maps the logical name to the actual name of
the target bean, as Example 19–10 shows.

Example 19–10 Mapping Logical Name to Actual Name With ejb-ref-mapping

<ejb-ref-mapping name="ejb/nextVal" location="myBeans/BeanA"/>

As Figure 19–5 shows, in the <ejb-ref-mapping> element, configure the name
attribute to match the <ejb-ref-name> and configure the location attribute
with the actual name of the target bean. In Example 19–10, the logical name
ejb/nextVal is mapped to the actual name of the target bean myBeans/BeanA.

Figure 19–5 Associating ejb-ref-name and ejb-ref-mapping

OC4J maps the logical name to the actual JNDI name on the client side. The server
side receives the JNDI name and resolves it within its JNDI tree.

Configuring an Environment Reference to a JDBC Data Source Resource
Manager Connection Factory

You can access a database through JDBC by creating an environment element for a
JDBC DataSource using deployment XML (see "Using Deployment XML" on
page 19-12).

Configuring an Environment Reference to a JDBC Data Source Resource Manager Connection Factory

19-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For information on looking up a resource manager connection factory, see the
following:

■ "Looking Up an EJB 3.0 Resource Manager Connection Factory" on page 19-23

■ "Looking Up an EJB 2.1 Resource Manager Connection Factory" on page 19-25

Using Deployment XML
To define a reference to a JDBC DataSource using deployment XML, do the
following:

1. In the data-sources.xml file, define the desired DataSource and specify its
actual JNDI name (see "Configuring Data Sources" on page 20-1).

In this example, assume a DataSource is specified in the data-sources.xml
file with the JNDI name of /test/OrderDataSource.

2. Define a <resource-ref> element in the appropriate client deployment
descriptor (see "Where do you Configure an EJB Environment Reference?" on
page 19-3) and configure the following subelements, as Example 19–11 shows:

■ <res-ref-name>: the logical name for the JDBC data source.

It is a best practice to prefix the reference name with jdbc, but it is not
required. If you use the initial context to look up this reference in your bean
source code (see Example 19–30 on page 19-25), always prefix the logical name
with java:comp/env/ (for example, java:comp/env/jdbc/OrderDB).

■ <res-type>: the Java type of the resource. For the JDBC DataSource object,
this is javax.sq.DataSource.

■ <res-auth>: the source of authentication information, either Application
or Container.

Example 19–11 Configuring <resource-ref> in ejb-jar.xml

<enterprise-beans>
...

<resource-ref>
<res-ref-name>jdbc/OrderDB</res-ref-name>
<res-type>javax.sq.DataSource</res-type>
<res-auth>Application</res-auth>

</resource-ref>

</enterprise-beans>

3. In the orion-ejb-jar.xml deployment descriptor, define a
<resource-ref-mapping> and configure the following attributes, as
Example 19–12 shows:

■ name: the logical name of the data source (defined in ejb-jar.xml).

■ location: the actual name of the data source (defined in
data-sources.xml).

Note: In EJB 3.0, an environment reference to a resource manager
connection factory is not needed. You can access a resource manager
connection factory directly using resource injection (see "Looking Up
an EJB 3.0 Resource Manager Connection Factory" on page 19-23).

Configuring an Environment Reference to a JMS Destination Resource Manager Connection Factory (JMS 1.1)

Configuring JNDI Services 19-13

Example 19–12 Mapping Logical to Actual JDBC Data Source Resource Manager
Connection Factory Using <resource-ref-mapping>

<resource-ref-mapping
name="jdbc/OrderDB"
location="test/OrderDataSource"

/>

Figure 19–6 shows a <resource-ref-mapping> element with the name
attribute set to jdbc/OrderDB (the logical name defined in ejb-jar.xml) and
the location attribute set to test/OrderDataSource (the JNDI name defined
in data-sources.xml).

Figure 19–6 Mapping Logical to Actual JDBC Data Source Resource Manager
Connection Factory

Within the bean's implementation, you can look up the JDBC data source resource
manager connection factory for this data source using the logical name
java:comp/env/jdbc/OrderDB (see Example 19–30 on page 19-25).

Configuring an Environment Reference to a JMS Destination Resource
Manager Connection Factory (JMS 1.1)

Using JMS 1.1, you define an environment reference to a JMS connection resource
manager connection factory the same as you do in JMS 1.0 (see "Configuring an
Environment Reference to a JMS Destination or Connection Resource Manager
Connection Factory (JMS 1.0)" on page 19-14). However, you can define an
environment reference to a JMS destination using a <message-destination-ref>
element in the client deployment descriptor and a
<message-destination-ref-mapping> element in the corresponding
OC4J-specific deployment descriptor (see "Where do you Configure an EJB
Environment Reference?" on page 19-3).

You use the <message-destination-ref-mapping> to map the client
<message-destination-ref-name> to another location that is available in the
OC4J environment. This provides the means of linking message consumers and
producers to one or more common logical destinations.

You can use <message-destination-ref> in all EJB types, therefore
<message-destination-ref-mapping> is not restricted to message-driven
deployment.

For more information, see "Oracle Enterprise Messaging Service (OEMS)" in the Oracle
Containers for J2EE Services Guide.

Note: In EJB 3.0, an environment reference to a resource manager
connection factory is not needed. You can access a resource manager
connection factory directly using resource injection (see "Looking Up
an EJB 3.0 Resource Manager Connection Factory" on page 19-23).

Configuring an Environment Reference to a JMS Destination or Connection Resource Manager Connection Factory (JMS 1.0)

19-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For information on looking up a resource manager connection factory, see the
following:

■ "Looking Up an EJB 3.0 Resource Manager Connection Factory" on page 19-23

■ "Looking Up an EJB 2.1 Resource Manager Connection Factory" on page 19-25

Configuring an Environment Reference to a JMS Destination or
Connection Resource Manager Connection Factory (JMS 1.0)

You can access a JMS destination (queue or topic) and JMS connection resource
manager connection factory by creating an environment reference to them using
deployment XML (see "Using Deployment XML" on page 19-14).

For information on looking up a resource manager connection factory, see the
following:

■ "Looking Up an EJB 3.0 Resource Manager Connection Factory" on page 19-23

■ "Looking Up an EJB 2.1 Resource Manager Connection Factory" on page 19-25

Using Deployment XML
To define a reference to a JMS destination and JMS connection resource manager
connection factory, do the following:

1. Configure your JMS service provider.

For more information, see the following:

■ "Configuring a J2CA Resource Adapter for use With Your Message Service
Provider" on page 23-1

■ "Configuring an OEMS JMS Message Service Provider" on page 23-3

■ "Configuring an OEMS JMS Database Message Service Provider" on page 23-5

2. Define the JNDI name for the JMS destination and connection factory.

For more information, see the following:

■ "J2CA Message Service Provider Connection Factory Names" on page 23-2

■ "OEMS JMS Destination and Connection Factory Names" on page 23-3

■ "OEMS JMS Database Destination and Connection Factory Names" on
page 23-6

3. Define a logical name for the JMS destination and JMS connection factory:

How you define the logical names is the same regardless of what type of JMS
provider you use.

a. Define a <resource-env-ref> element in the appropriate client
deployment descriptor (see "Where do you Configure an EJB Environment
Reference?" on page 19-3) and configure the following subelements:

Note: In EJB 3.0, an environment reference to a resource manager
connection factory is not needed. You can access a resource manager
connection factory directly using annotations and resource injection
(see "Looking Up an EJB 3.0 Resource Manager Connection Factory"
on page 19-23).

Configuring an Environment Reference to a JMS Destination or Connection Resource Manager Connection Factory (JMS 1.0)

Configuring JNDI Services 19-15

– <resource-env-ref-name>: a logical name for the JMS destination
resource manager connection factory.

– <resource-env-ref-type>: The destination class type; either
javax.jms.Queue or javax.jms.Topic.

Example 19–13 shows a <resource-env-ref> element for a JMS topic
resource manager connection factory.

Example 19–13 <resource-env-ref> for a JMS Topic Destination

<resource-env-ref>
<resource-env-ref-name>rpTestTopic</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>

</resource-env-ref>

b. Define a <resource-ref> element in the same client deployment descriptor
and configure the following subelements:

– <res-ref-name>: a logical name for the JMS connection resource
manager connection factory.

– <res-type>: the connection factory class type; either
javax.jms.QueueConnectionFactory or
javax.jms.TopicConnectionFactory.

– <res-auth>: the authentication responsibility; either Container or
Bean.

– <res-sharing-scope>: the sharing scope; either Shareable or
Unshareable.

Example 19–14 shows a <resource-ref> element for a JMS topic connection
resource manager connection factory.

Example 19–14 <resource-ref> for a JMS Topic Connection Factory

<resource-ref>
<res-ref-name>myTCF</res-ref-name>
<res-type>javax.jms.TopicConnectionFactory</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

4. Map the logical names to the actual JNDI names.

a. Define a <resource-env-ref-mapping> element in the corresponding
OC4J-specific deployment descriptor (see "Where do you Configure an EJB
Environment Reference?" on page 19-3) and configure its name attribute to the
JMS destination logical name (defined in the <resource-env-ref>), and its
location attribute–to the JNDI name defined when you configured your
JMS provider (see step 2).

Example 19–15 shows a <resource-env-ref-mapping> element for OEMS
JMS.

Example 19–15 OEMS JMS <resource-env-ref-mapping>

<resource-env-ref-mapping
name="rpTestTopic"
location="jms/Topic/rpTestTopic">

</resource-env-ref-mapping>

Configuring an Environment Reference to an Environment Variable

19-16 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

b. Define a <resource-ref-mapping> element in the same OC4J-specific
deployment descriptor (see "Where do you Configure an EJB Environment
Reference?" on page 19-3) and configure its name attribute to the JMS
connection factory logical name (defined in the <resource-ref>), and its
location attribute–to the JNDI name defined when you configured your
JMS provider (see step 2).

Example 19–16 shows a <resource-ref-mapping> element for OEMS JMS.

Example 19–16 OEMS JMS <resource-ref-mapping>

<resource-ref-mapping
name="myTCF"
location="jms/Topic/myTCF">

</resource-ref-mapping>

Configuring an Environment Reference to an Environment Variable
You can create environment variables that your bean accesses through a JNDI lookup
on the InitialContext. These variables are defined within an ejb-jar.xml file
<env-entry> element and can be of the following types: String, Integer,
Boolean, Double, Byte, Short, Long, and Float. The environment variable name
is defined in the <env-entry-name> subelement, the type is defined in the
<env-entry-type> subelement, and the value is defined in the
<env-entry-value> subelement. The <env-entry-name> is relative to the
"java:comp/env" context.

Example 19–17 shows how to define environment variables for
java:comp/env/minBalance and java:comp/env/maxCreditBalance in the
ejb-jar.xml file.

Example 19–17 ejb-jar.xml For Environment Variables

<env-entry>
<env-entry-name>minBalance</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>500</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>maxCreditBalance</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>10000</env-entry-value>

</env-entry>

You can override an environment variable value defined in the ejb-jar.xml file by
defining an env-entry-mapping element in your orion-ejb-jar.xml file, whose
name attribute matches the env-entry-name defined in the ejb-jar.xml file. The
type specified in the ejb-jar.xml file stays the same.

Figure 19–7 shows how the minBalance environment variable value is overridden by
the orion-ejb-jar.xml file and set to 500.

Configuring an Environment Reference to a Web Service

Configuring JNDI Services 19-17

Figure 19–7 Overriding Environment Variables in ejb-jar.xml with orion-ejb-jar.xml

For more information on looking up environment variables, see the following:

"Looking Up an EJB 3.0 Environment Variable" on page 19-23

"Looking Up an EJB 2.1 Enviornment Variable" on page 19-25

Configuring an Environment Reference to a Web Service
You can access a Web service from a stateless session bean by creating a resource
manager connection factory reference to the Web service.

For each client, in which you want to access a resource manager connection factory,
you must either inject it in the client source code, or define an environment reference
to it in the client's deployment descriptor.

To create an environment reference to a Web service, do the following:

1. Define a logical name for the Web service.

Define a <service-ref> element in the appropriate client deployment
descriptor (see "Where do you Configure an EJB Environment Reference?" on
page 19-3) and configure the following subelements:

– <service-ref-name>: a logical name for the Web service.

– <service-interface>: the Web service interface.

Example 19–18 shows a <service-ref> element for a Web service.

It is a best practice to start the reference name with service, but it is not
required. In the bean code, the lookup of this reference (see Example 30–5 on
page 30-3) is always prefaced by java:comp/env (for example,
java:comp/env/service/myService).

Example 19–18 ejb-jar.xml For a Web Service Logical Name

<service-ref>
<service-ref-name>service/StockQuoteService</service-ref-name>
<service-interface>com.example.StockQuoteService</service-interface>

</service-ref>

2. Map the logical name to the actual JNDI name.

Define a <service-ref-mapping> element in the corresponding OC4J-specific
deployment descriptor (see "Where do you Configure an EJB Environment
Reference?" on page 19-3) and configure its name attribute to the Web service
logical name (defined in the <service-ref>) and the <service-qname>
subelement.

Note: In EJB 3.0, an environment reference to a Web service is not
needed. You can access a Web service directly using annotations and
resource injection.

Configuring an Environment Reference to a Persistence Context

19-18 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 19–15 shows a <service-ref-mapping> element for a Web service.

Example 19–19 orion-ejb-jar.xml For a Web Service Logical to JNDI Mapping

<service-ref-mapping name="service/WebServiceBroker">
<service-qname namespaceURI="urn:WebServiceBroker" localpart="WebServiceBroker"/>

</service-ref-mapping>

For information on looking up and using a Web service, see "Using EJB and Web
Services" on page 30-1.

Configuring an Environment Reference to a Persistence Context
The simplest way to acquire an entity manager is by using the
@PersistenceContext annotation (see "Acquiring an EntityManager" on
page 29-8).

However, to acquire an entity manager in a class that does not support annotations
and injection, namely helper classes, you must first define a
persistence-context-ref in the appropriate deployment descriptor file.

To create an environment reference to a persistence context, do the following:

1. Define a logical name for the persistence context.

Define a <persistence-context-ref> element in the appropriate client
deployment descriptor (see "Where do you Configure an EJB Environment
Reference?" on page 19-3) and configure the following subelements:

– <persistence-context-ref-name>: a logical name for the persistence
context.

– <persistence-unit-name>: the name of the persistence unit associated
with this persistence context.

You must define a persistence unit of this name in a persistence.xml file.

For more information, see the following:

– "What is the persistence.xml File?" on page 2-8

– "Configuring the persistence.xml File" on page 26-3

Example 19–18 shows a <persistence-context-ref> element for a
persistence context in a web.xml file.

It is a best practice to start the reference name with persistence, but it is not
required. In the bean code, the lookup of this reference (see "Acquiring an Entity
Manager in a Helper Class" on page 29-11) is always prefaced by java:comp/env
(for example, java:comp/env/persistence/InventoryAppMgr).

Example 19–20 web.xml For a Persistence Context

...
<servlet>

<servlet-name>webTierEntryPoint</servlet-name>
<servlet-class>com.sun.j2ee.blueprints.waf.controller.web.MainServlet</servlet-class>
<init-param>

<param-name>default_locale</param-name>
<param-value>en_US</param-value>

</init-param>
<persistence-context-ref>

<description>
Persistence context for the inventory management application.

Configuring the Initial Context Factory

Configuring JNDI Services 19-19

</description>
<persistence-context-ref-name>

persistence/InventoryAppMgr
</persistence-context-ref-name>
<persistence-unit-name>

InventoryManagement <!-- Defined in persistenc.xml -->
</persistence-unit-name>

</persistence-context-ref>
</servlet>

...

For information on looking up and using an entity manager, see "Acquiring an Entity
Manager in a Helper Class" on page 29-11.

Configuring the Initial Context Factory
You use an initial context factory to obtain an initial context–a reference to a JNDI
namespace. Using the initial context, you can use the JNDI API to look up an
enterprise bean, resource manager connection factory, environment variable, or other
JNDI-accessible object.

The type of initial context factory you use depends on the type of client in which you
are using it, as Table 19–2 shows.

For more information, see the following:

■ Oracle Containers for J2EE Security Guide

■ Oracle Containers for J2EE Services Guide.

Configuring the Default Initial Context Factory
A client that is collocated with the target bean (see Table 19–2) automatically accesses
the JNDI properties for the node. Thus, accessing the enterprise bean is simple: no
JNDI properties are required.

Table 19–2 Client Initial Context Requirements

Client Type Relationship to Target EJB Initial Context Factory

Any Client Client and target enterprise bean are collocated Default (see "Configuring the Default Initial
Context Factory" on page 19-19)

Any Client Client and target enterprise bean are deployed in
the same application

Default (see "Configuring the Default Initial
Context Factory" on page 19-19)

Any Client Target enterprise bean deployed in an
application that is designated as the client's
parent1

1 See the Oracle Containers for J2EE Developer’s Guide for more information on how to set the parent of an application.

Default (see "Configuring the Default Initial
Context Factory" on page 19-19)

EJB Client

Servlet or JSP Client

Client and target enterprise bean are not
collocated, not deployed in the same application,
and target EJB application is not client's parent1.

oracle.j2ee.rmi.
RMIInitialContextFactory (see "Configuring
an Oracle Initial Context Factory" on page 19-20)

Standalone Java Client Client and target enterprise bean are not
collocated, not deployed in the same application,
and target EJB application is not client's parent1.

oracle.j2ee.naming.
ApplicationClientInitialContextFactory
see "Configuring an Oracle Initial Context Factory"
on page 19-20)

Note: In this release, note the new package names for the RMI and
application client initial context factories.

Configuring the Initial Context Factory

19-20 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 19–21 Configuring the Default Initial Context

//Get the Initial Context for the JNDI lookup for a local EJB
InitialContext ic = new InitialContext();
//Retrieve the Home interface using JNDI lookup
Object helloObject = ic.lookup("java:comp/env/ejb/HelloBean");

Configuring an Oracle Initial Context Factory
If your client requires an Oracle initial context factory (see Table 19–2), you must set
the following JNDI properties:

For more information about setting JNDI properties, see "Setting JNDI Properties in an
Enterprise Bean" on page 19-22.

1. Define the java.naming.factory.initial property with the Oracle initial
context factory appropriate for your client (see Table 19–2).

2. Define the java.naming.provider.url property with the naming provider
URL appropriate for your OC4J installation:

■ "Configuring the Naming Provider URL for OC4J and Oracle Application
Server" on page 19-20

■ "Configuring the Naming Provider URL for OC4J Standalone" on page 19-21

3. Create a HashTable and populate it with the required properties using
javax.naming.Context fields as keys and String objects as values, as
Example 19–22 shows.

Example 19–22 Specifying Initial Context Factory Properties

Hashtable env = new Hashtable();
env.put("java.naming.factory.initial",

"oracle.j2ee.server.ApplicationClientInitialContextFactory");
env.put("java.naming.provider.url",

"opmn:ormi://opmnhost:6004:oc4j_inst1/ejbsamples");

4. When you instantiate the initial context, pass the HashTable into the initial
context constructor, as Example 19–23 shows.

Example 19–23 Instantiate the Initial Context Looking Up a JNDI-Accessible Resource

Context ic = new InitialContext (env);

5. Use the initial context to look up a JNDI-accessible resource:

■ Looking Up an EJB 3.0 Resource Manager Connection Factory on page 19-23

■ Looking Up an EJB 3.0 Environment Variable on page 19-23

■ Looking Up an EJB 2.1 Resource Manager Connection Factory on page 19-25

■ Looking Up an EJB 2.1 Enviornment Variable on page 19-25

■ "Accessing an Enterprise Bean From a Client" on page 29-1

Configuring the Naming Provider URL for OC4J and Oracle Application Server
In an Oracle Application Server install, OPMN manages one or more OC4J instances.
In this case the value for java.naming.provider.url should be of the format:

opmn:ormi://<hostname>:<opmn-request-port>:<oc4j-instance-name>/<application-name>

Configuring the Initial Context Factory

Configuring JNDI Services 19-21

The fields in this provider URL are defined as follows:

■ <hostname>: The name of the host, on which the Oracle Application Server is
running.

■ <opmn-request-port>: In this configuration, you have to use the OPMN
request port instead of using the ORMI port. You can find the OPMN request port
in the opmn.xml file, as follows:

<notification-server>
<port local="6100" remote="6200" request="6003"/>
...

</notification-server>

The default OPMN request port is 6003.

■ <oc4j-instance-name>: In this configuration, you may have more than one
OC4J process that OPMN uses for load balancing/failover. You use the name of
the instance to which you deployed your application.

The default instance name is home.

For example, if the host name is dpanda-us, request port is 6003, and instances name
is home1, then the provider URL would be:

opmn:ormi://dpanda-us:6003:home1/ejbsamples

For more information, see the following:

■ "Setting JNDI Properties for RMI" in the Oracle Containers for J2EE Services Guide

■ "Configuring Static Retrieval Load Balancing" on page 24-3

■ "Configuring DNS Load Balancing" on page 24-3

Configuring the Naming Provider URL for OC4J Standalone
In a standalone OC4J install, the value for java.naming.provider.url should be
of the format:

ormi://<hostname>:<ormi-port>/<application-name>

The fields in this provider URL are defined as follows:

■ <hostname>: The name of the host on which OC4J is running

■ <ormi-port>: The ORMI port as configured in the rmi.xml file, as follows:

<rmi-server
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/oracleas/schema/rmi-

server-10_0.xsd"
port="23791"
schema-major-version="10"
schema-minor-version="0"

>
...
</rmi-server>

The default port is 23791.

■ <application-name>: The application name as configured in the server.xml
file.

For example, if the host name is dpanda-us, ORMI port is 23793, and the application
name is ejb30slsb, then the provider URL would be:

Setting JNDI Properties in an Enterprise Bean

19-22 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

ormi://dpanda-us:23793/ejb30slsb

For more information, see the following:

■ "Setting JNDI Properties for RMI" in the Oracle Containers for J2EE Services Guide

■ "Configuring Static Retrieval Load Balancing" on page 24-3

■ "Configuring DNS Load Balancing" on page 24-3

Setting JNDI Properties in an Enterprise Bean
If the client is collocated with the target, the client exists within the same application as
the target, or the target exists within its parent, then you do not need to initialize JNDI
properties. Otherwise, you must initialize JNDI properties in one of the following
ways:

This section describes the following:

■ Setting JNDI Properties With the JNDI Properties File

■ Setting JNDI Properties With System Properties

■ Setting JNDI Properties in the Initial Context

For more information, see the following:

■ "Specifying Credentials in EJB Clients" on page 22-10

■ Oracle Containers for J2EE Services Guide

Setting JNDI Properties With the JNDI Properties File
You can set JNDI properties in a file named jndi.properties that conforms to the
requirements specified in the java.util.Properties method load.

Set JNDI properties as follows:

<PropertyName>=<PropertyValue>

For example:

java.naming.factory.initial= oracle.j2ee.server.ApplicationClientInitialContextFactory

For property names, see the field definitions in javax.naming.Context.

For an example, see "Specifying Credentials in JNDI Properties" on page 22-11.

If setting the JNDI properties within the jndi.properties file, make sure that this
file is accessible from the client CLASSPATH, or specified in ejb-ref-mapping
attribute jndi-properties-file in the appropriate the OC4J-proprietary
deployment XML file (see "Configuring an Environment Reference to a Remote EJB:
Unclustered Separate Web Tier and EJB Tier" on page 19-6).

Setting JNDI Properties With System Properties
You can set JNDI properties as system properties specified either on the command line
as a -D argument or as an environment reference (see "Configuring an Environment
Reference to an Environment Variable" on page 19-16).

Looking Up an EJB 3.0 Environment Variable

Configuring JNDI Services 19-23

Setting JNDI Properties in the Initial Context
You can set JNDI properties by creating a HashTable and populating it with the
required properties using javax.naming.Context fields as keys and String
objects as values. When you instantiate the initial context, pass the HashTable into
the the initial context constructor.

For an example, see "Specifying Credentials in the Initial Context" on page 22-11.

Looking Up an EJB 3.0 Resource Manager Connection Factory
Using EJB 3.0, you can look up a resource manage connection using resource injection
(see "Using Annotations" on page 19-23) or the InitialContext (see "Using Initial
Context" on page 19-23).

Using Annotations
Example 19–24 shows how to use annotations and dependency injection to access an
EJB 3.0 resource manager connection factory.

Example 19–24 Injecting an EJB 3.0 Resource Manager Connection Factory

@Stateless public class EmployeeServiceBean implements EmployeeService {
...
public void sendEmail(String emailAddress) {

@Resource Session testMailSession;
...

}
}

Using Initial Context
Example 19–25 shows how to use the initial context to look up an EJB 3.0 resource
manager connection factory.

Example 19–25 Looking Up an EJB 3.0 Resource Manager Connection Factory

@Stateless public class EmployeeServiceBean implements EmployeeService {
...
public void sendEmail(String emailAddress) {

InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("java:comp/env/mail/testMailSession");
...

}
}

For more information, see "Configuring the Initial Context Factory" on page 19-19.

Looking Up an EJB 3.0 Environment Variable
Using EJB 3.0, you can look up an environment variable using resource injection (see
"Using Resource Injection" on page 19-23) or the InitialContext (see "Using Initial
Context" on page 19-25).

Using Resource Injection
Using resource injection, you can rely on the container to initialize a field or a setter
method (property) using either of the following:

Looking Up an EJB 3.0 Environment Variable

19-24 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ default JNDI name (of the form java:comp/env/<FieldOrPropertyName>)

■ explicit JNDI name that you specify (do not prefix the name with
"java:comp/env")

You cannot inject both field and setter using the same JNDI name.

The following examples show how to initialize the maxExemptions field with the
value specified for the environment variable with the default JNDI name
java:comp/env/maxExemptions.

You can use resource injection at the field level (see Example 19–26) or the setter
method (property) level, as Example 19–27 shows.

Example 19–26 Resource Injection at Field Level with Default Environment Variable
Name

@Stateless public class EmployeeServiceBean implements EmployeeService {
...
// The maximum number of tax exemptions, configured by Deployer
// Assumes JNDI name java:comp/env/maxExemptions.
@Resource int maxExemptions;
...
public void setMaxExemptions(int maxEx) {

maxExemptions = maxEx;
}
...

}

Example 19–27 Resource Injection at the Property Level with a Default Environment
Variable Name

@Stateless public class EmployeeServiceBean implements EmployeeService {
...
int maxExemptions;
...
// Assumes JNDI name java:comp/env/maxExemptions.
@Resource
public void setMaxExemptions(int maxEx) {

maxExemptions = maxEx;
}
...

}

You can specify an explicit JNDI name, as Example 19–28 shows.

Example 19–28 Resource Injection with a Specific Environment Variable Name

@Stateless public class EmployeeServiceBean implements EmployeeService {
...
int maxExemptions;
...
@Resource(name="ApplicationDefaults/maxExemptions")
public void setMaxExemptions(int maxEx) {

maxExemptions = maxEx;
}
...

}

Looking Up an EJB 2.1 Enviornment Variable

Configuring JNDI Services 19-25

Using Initial Context
Example 19–29 shows how you look up these environment variables within the bean's
code using the InitialContext.

Example 19–29 Looking Up Environment Variables

InitialContext ic = new InitialContext();
Integer min = (Integer) ic.lookup("java:comp/env/minBalance");
Integer max = (Integer) ic.lookup("java:comp/env/maxCreditBalance"));

Notice that to retrieve the values of the environment variables, you prefix each
environment element with "java:comp/env/", which is the location that the
container stored the environment variable.

For more information, see "Configuring the Initial Context Factory" on page 19-19.

Looking Up an EJB 2.1 Resource Manager Connection Factory
Using EJB 2.1, you can look up a resource manager connection factory using the
InitialContext (see "Using Initial Context" on page 19-25).

For more information on configuring resources, see "Resource Manager Connection
Factory Environment References" on page 19-2.

Using Initial Context
Example 19–30 shows how to look up a JDBC data source resource manager
connection factory within the bean's code using the InitialContext with the logical
name defined in the EJB deployment descriptor (see "Configuring an Environment
Reference to a JDBC Data Source Resource Manager Connection Factory" on
page 19-11) prefixed with java:comp/env/jdbc.

Example 19–30 Looking Up a JDBC Data Source Resource Manager Connection Factory

javax.sql.DataSource db;
java.sql.Connection conn;
...
InitialContext ic = new InitialContext();
db = (javax.sql.DataSource) initCtx.lookup("java:comp/env/jdbc/OrderDB");
conn = db.getConnection();

For more information, see "Configuring the Initial Context Factory" on page 19-19.

Looking Up an EJB 2.1 Enviornment Variable
Using EJB 2.1, you can look up an environment variable using the InitialContext
(see "Using Initial Context" on page 19-25).

For more information on configuring enviornment variables, see "Configuring an
Environment Reference to an Environment Variable" on page 19-16.

Using Initial Context
Example 19–29 shows how you look up these environment variables within the bean's
code using the InitialContext.

Looking Up an EJB 2.1 Enviornment Variable

19-26 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 19–31 Looking Up Environment Variables

InitialContext ic = new InitialContext();
Integer min = (Integer) ic.lookup("java:comp/env/minBalance");
Integer max = (Integer) ic.lookup("java:comp/env/maxCreditBalance"));

Notice that to retrieve the values of the environment variables, you prefix each
environment element with java:comp/env/, which is the location that the container
stored the environment variable.

For more information, see "Configuring the Initial Context Factory" on page 19-19.

Configuring Data Sources 20-1

20
Configuring Data Sources

This chapter describes the following:

■ Configuring a Data Source for an Oracle Database

■ Configuring a Data Source for a Third-Party Database

■ Configuring a Default Data Source for an EJB 3.0 Application

■ Configuring a Default Data Source for an EJB 2.1 Application

■ Associating TopLink With an Oracle JDBC Driver

For more information, see the following:

■ "Understanding EJB Data Source Services" on page 2-14

■ "Specifying a Data Source in a Persistence Unit" on page 26-5

■ "Data Sources" in the Oracle Containers for J2EE Services Guide

Configuring a Data Source for an Oracle Database
To create a data source for an Oracle database, you create a managed datasource. You
can create a managed data source using the Application Server Control Console (see
"Using Application Server Control Console" on page 20-1) or deployment XML (see
"Using Deployment XML" on page 20-2).

For more information, see the following:

■ "What Types of Data Source Does OC4J Support?" on page 2-14

■ "Data Sources" in the Oracle Containers for J2EE Services Guide

Using Application Server Control Console
You can use Application Server Control Console to create a managed data source
dynamically without restarting OC4J.

For more information, see
http://www.oracle.com/technology/tech/java/oc4j/1013/how_
to/index.html.

Note: You can download a data source code example from
http://www.oracle.com/technology/tech/java/oc4j/1013
/how_to/index.html.

Configuring a Data Source for a Third-Party Database

20-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Using Deployment XML
You can configure a managed data source for an Oracle database by configuring a
connection-pool element and managed-data-source element in the
data-sources.xml file, as Example 20–1 shows.

Example 20–1 data-sources.xml For an Oracle JDBC Data Source

<connection-pool name="ScottConnectionPool">
<connection-factory

factory-class="oracle.jdbc.pool.OracleDataSource"
user="scott"
password="tiger"
url="jdbc:oracle:thin:@//localhost:1521/ORCL" >

</connection-factory>
</connection-pool>

<managed-data-source

name="OracleManagedDS"
jndi-name="jdbc/OracleDS"
connection-pool-name="ScottConnectionPool"
tx-level="global"

/>

Be sure to specify a service-based connection URL in the connection-factory
element (see "How do you Define a Connection URL in OC4J?" on page 2-15).

By default, a managed data source supports global (two-phase commit) transactions.
To configure a managed data source to support only local transactions, set the
managed-data-source attribute tx-level to local. For more information, see
"What Transaction Types do Data Sources Support?" on page 2-16).

For more information, see the following:

■ http://www.oracle.com/technology/tech/java/oc4j/1013/how_
to/index.html

■ http://www.oracle.com/technology/tech/java/newsletter/articles/
oc4j_datasource_config.html

If you configure a managed data source using this method, you must restart OC4J to
apply your changes. Alternatively, you can use Application Server Control Console to
create a data source dynamically without restarting OC4J (see Using Application
Server Control Console on page 20-1)

Configuring a Data Source for a Third-Party Database
To create a data source for a third-party (non-Oracle) database, you create a native
datasource. You can create a native data source using the Application Server Control
Console (see "Using Application Server Control Console" on page 20-1) or deployment
XML (see "Using Deployment XML" on page 20-2).

For more information, see the following:

■ "What Types of Data Source Does OC4J Support?" on page 2-14

■ "Data Sources" in the Oracle Containers for J2EE Services Guide

Using Application Server Control Console
You can use Application Server Control Console to create a native data source
dynamically without restarting OC4J.

Configuring a Default Data Source for an EJB 3.0 Application

Configuring Data Sources 20-3

For more information, see
http://www.oracle.com/technology/tech/java/oc4j/1013/how_
to/index.html.

Using Deployment XML
Example 20–2 shows how to define a native data source element for a third-party
database (in this example, SQLServer).

Example 20–2 data-sources.xml for a Third-Party Database

<native-data-source
name="nativeDataSource"
jndi-name="jdbc/nativeDS"
description="Native DataSource"
data-source-class="com.ddtek.jdbcx.sqlserver.SQLServerDataSource"
user="frank"
password="frankpw"
url="jdbc:datadirect:sqlserver://server_name:1433;User=usr;Password=pwd">

</native-data-source>

By default, a native data source supports only local transactions. For global (two-phase
commit) transactions, configure a managed data source. For more information, see
"What Transaction Types do Data Sources Support?" on page 2-16).

For more information, see the following:

■ http://www.oracle.com/technology/tech/java/oc4j/1013/how_
to/index.html

■ http://www.oracle.com/technology/tech/java/newsletter/articles/
oc4j_datasource_config.html

If you configure a native data source using this method, you must restart OC4J to
apply your changes. Alternatively, you can use Application Server Control Console to
create a native data source dynamically without restarting OC4J (see "Using
Application Server Control Console" on page 20-2)

Configuring a Default Data Source for an EJB 3.0 Application
You can configure a default data source for an EJB 3.0 application using deployment
XML (see "Using Deployment XML" on page 20-3).

For more information, see the following:

■ "What is a Default Data Source?" on page 2-16

■ "Data Sources" in the Oracle Containers for J2EE Services Guide

Using Deployment XML
To configure a default data source for an EJB 3.0 application, do the following:

1. Set the name of the default data source in the default-data-source attribute
of your orion-application.xml file.

2. Customize your EJB 3.0 application to define a data source of this name in your
ejb3-toplink-session.xml file.

For more information, see the following:

■ "What is the ejb3-toplink-sessions.xml File?" on page 2-7

Configuring a Default Data Source for an EJB 2.1 Application

20-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ "Customizing the JPA Persistence Provider" on page 3-3

Configuring a Default Data Source for an EJB 2.1 Application
You can configure a default data source for an EJB 2.1 application using deployment
XML (see "Using Deployment XML" on page 20-4).

For more information, see the following:

■ "What is a Default Data Source?" on page 2-16

■ "Data Sources" in the Oracle Containers for J2EE Services Guide

Using Deployment XML
To configure a default data source for an EJB 2.1 application, do the following:

1. Set the name of the default data source in the default-data-source attribute
of the orion-application element in your orion-application.xml file.

2. Set the name of the default data source in the data-source attribute of the
entity-deployment element in your orion-ejb-jar.xml file.

3. Define the default data source in the <OC4J_
HOME>/j2ee/home/config/data-sources.xml file.

Associating TopLink With an Oracle JDBC Driver
In this release, by default, TopLink is associated with Oracle JDBC driver version 10.2
(ojdbc14_102.jar).

If this Oracle JDBC driver version is not appropriate for the Oracle Database version
you need to use, you can associate TopLink with another Oracle JDBC driver version.

How you associate TopLink with another version of Oracle JDBC driver depends on
the type of application you are building:

■ EJB 3.0 and EJB 2.1 non-CMP Applications

■ EJB 2.1 CMP Applications

■ EIS AQ Connector Applications

For more information, see "Utilizing the OC4J Class Loading Framework" in the
Oracle Containers for J2EE Developer’s Guide.

EJB 3.0 and EJB 2.1 non-CMP Applications
For EJB 3.0 and EJB 2.1 non-CMP applications, note the following restrictions:

■ You may use multiple versions of Oracle JDBC driver simultaneously on the
server, but each application may use only a single version.

■ For each oracle.jdbc shared library version, you must define a corresponding
version of oracle.toplink shared library in server.xml.

■ You may use only Oc4jPlatform; you cannot use Oc4jPlatform_10_1_3.

■ If the version of imported shared library is not provided, then the one with the
highest version is imported. For example, if oracle.jdbc version 10.2 defined in
server.xml and system-application.xml imports oracle.jdbc without
version, then oracle.toplink will use oracle.jdbc version 10.2.

Associating TopLink With an Oracle JDBC Driver

Configuring Data Sources 20-5

To associate an EJB 3.0 or EJB 2.1 non-CMP application with a specific version of
Oracle JDBC driver other than the default, do the following:

1. Create a folder in <ORACLE_HOME>/j2ee/home/shared-lib/oracle.jdbc
for the new Oracle JDBC driver shared library.

In this example, you would create folder <ORACLE_
HOME>/j2ee/home/shared-lib/oracle.jdbc/10.3.

When you reference the actual Oracle JDBC driver JAR file, you do so relative to
this directory. You can either put the Oracle JDBC driver JAR file in this directory
and simply reference the JAR file by name, or put it in some other directory and
reference the JAR file with a partial path relative to this directory.

2. Define the new Oracle JDBC driver shared library in server.xml, as
Example 20–3 shows.

Example 20–3 Defining a Shared Library for Oracle JDBC Driver Version 10.3 in
server.xml

...
<shared-library name="oracle.jdbc" version="10.3">

<code-source path="ojdbc14_103.jar"/>
</shared-library>
...

Use the oracle.jdbc shared library name with a different version number that
corresponds to the version of Oracle JDBC driver you want to use: in this example,
10.3.

In this example, the code-source attribute path is just ojdbc14_103.jar: this
assumes that you put the JAR file in <ORACLE_
HOME>/j2ee/home/shared-lib/oracle.jdbc/10.3. Alternatively, you
could set path to a partial path relative to the <ORACLE_
HOME>/j2ee/home/shared-lib/oracle.jdbc/10.3 directory.

3. Define a corresponding TopLink shared library in server.xml, as Example 20–4
shows.

Example 20–4 Defining a Corresponding oracle.toplink Shared Library for Oracle JDBC
Driver Version 10.3 in server.xml

...
<shared-library name="oracle.jdbc" version="10.3">

<code-source path="ojdbc14_103.jar"/>
</shared-library>
<shared-library name="oracle.toplink" version="10.3" library-compatible="true">

<code-source path="../../../../../toplink/jlib/toplink.jar"/>
<code-source path="../../../../../toplink/jlib/antlr.jar"/>
<code-source path="../../../../../toplink/jlib/cciblackbox-tx.jar"/>
<import-shared-library name="oc4j.internal"/>
<import-shared-library name="oracle.xml"/>
<import-shared-library name="oracle.jdbc" max-version="10.3"/>
<import-shared-library name="oracle.dms"/>

</shared-library>
...

Use the oracle.toplink shared library name with a different version number
that corresponds to the version of Oracle JDBC driver you want to use: in this
example, 10.3. In this oracle.toplink shared library, be sure to import the
desired version of oracle.jdbc shared library: in this example,
max-version="10.3".

Associating TopLink With an Oracle JDBC Driver

20-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

4. Import your new shared libraries for your application by doing the following:

a. To make the new oracle.jdbc and oracle.toplink shared libraries the
default for all applications in your OC4J instance, update the
system-applications.xml, as Example 20–5 shows.

Example 20–5 Importing the Shared Libraries for all Applications in
system-applications.xml

...
<imported-shared-libraries>

...
<import-shared-library name="oracle.jdbc" min-version="10.3" max-version="10.3"/>
<import-shared-library name="oracle.toplink" min-version="10.3" max-version="10.3"/>

...
</imported-shared-libraries>

...

b. To make the new oracle.jdbc and oracle.toplink shared libraries
applicable to only a certain application, update that application’s
orion-applications.xml, as Example 20–6 shows.

In this case, you should define datasources in a data-sources.xml file
located in the same folder as the orion-applications.xml file and
referenced in the orion-applications.xml file as Example 20–6 shows.

Example 20–6 Importing the Shared Libraries for a Specific Application in
orion-applications.xml

...
<orion-application>

<ejb-module remote="true" path="simpleobject_ejb.jar" />
<client-module path="simpleobject_ejb.jar" auto-start="false" />
<persistence path="persistence" />
<imported-shared-libraries>

<import-shared-library name="oracle.jdbc" max-version="10.3"/>
<import-shared-library name="oracle.toplink" max-version="10.3"/>

</imported-shared-libraries>
<log>

<file path="application.log" />
</log>
<data-sources path="data-sources.xml" />
<namespace-access>

..........
</namespace-access>

</orion-application>

EJB 2.1 CMP Applications
For EJB 2.1 CMP applications, note the following restrictions:

■ You cannot use more than one Oracle JDBC driver version with TopLink.

Note: If your new oracle.toplink library uses the same JAR files
as the original and you created it simply to specify another version of
oracle.jdbc, then to avoid having to create a corresponding folder
under <ORACLE_HOME>/j2ee/home/shared-lib for this library,
set its shared-library attribute library-compatible to true,
as Example 20–4 shows.

Associating TopLink With an Oracle JDBC Driver

Configuring Data Sources 20-7

■ If the version of imported shared library is not provided, then the original version
is used. For example, if oracle.jdbc version 10.2 is defined in server.xml and
system-application.xml imports oracle.jdbc without version, then
oracle.toplink uses original oracle.jdbc version 10.1.

To associate an EJB 2.1 CMP application with a specific version of Oracle JDBC driver
other than the default, do the following:

1. Define a new Oracle JDBC shared library in the boot.xml file, as Example 20–7
shows.

Example 20–7 Defining a Shared Library for Oracle JDBC Driver Version 10.3 in boot.xml

...
<shared-library name="oracle.jdbc3" parent="api" version="10.3">

<code-source
path="${oracle.home}/jdbc/lib/ojdbc14_103.jar"
alias="classes12.jar ,classes12.zip, classes12dms.jar, ojdbc14.jar"

/>
</shared-library>

...

In this example, the shared library name is oracle.jdbc3: note that it specifies a
different version number that corresponds to the version of Oracle JDBC driver
you want to use: in this example, 10.3.

2. Make the existing oracle.toplink shared library import the new
oracle.jdbc3 shared library, as Example 20–8 shows.

Example 20–8 Importing the New Shared Library in oracle.toplink in boot.xml

...
<shared-library name="oracle.jdbc3" parent="api" version="10.3">

<code-source
path="${oracle.home}/jdbc/lib/ojdbc14_103.jar"
alias="classes12.jar ,classes12.zip, classes12dms.jar, ojdbc14.jar"

/>
</shared-library>

...
<shared-library name="oracle.toplink" parent="api" version="10.1.3">

<import-shared-library name="oracle.jdbc3"/>
</shared-library>

...

3. Add the new oracle.jdbc3 shared library under the main classloader, as
Example 20–9 shows.

Example 20–9 Importing the New Shared Library in the main-class-loader in boot.xml

...
<shared-library name="oracle.jdbc3" parent="api" version="10.3">

<code-source
path="${oracle.home}/jdbc/lib/ojdbc14_103.jar"
alias="classes12.jar ,classes12.zip, classes12dms.jar, ojdbc14.jar"

/>
</shared-library>

...
<shared-library name="oracle.toplink" parent="api" version="10.1.3">

<import-shared-library name="oracle.jdbc3"/>
</shared-library>

...
<main-class-loader

name="oc4j" parent="api" version="10.1.3"
main-class="com.evermind.server.OC4JServer"

Associating TopLink With an Oracle JDBC Driver

20-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

code-source-equality="filename"
extension-property="oc4j.ext.dirs"
default-extension-directory="lib/ext"

>
 <import-shared-library name="oracle.dms"/>
 <import-shared-library name="oracle.jdbc"/>
 <import-shared-library name="oracle.jdbc3"/>

...
</main-class-loader>

...

4. Import the oracle.jdbc3 and oracle.toplink shared libraries for your
application:

a. To make the new oracle.jdbc3 shared library the default for all
applications in your OC4J instance, update the
system-applications.xml, as Example 20–5 shows.

Example 20–10 Importing the Shared Libraries for all Applications in
system-applications.xml

...
<imported-shared-libraries>

...
<import-shared-library name="oracle.jdbc3" min-version="10.3" max-version="10.3"/>
<import-shared-library name="oracle.toplink" min-version="10.3" max-version="10.1.3"/>

...
</imported-shared-libraries>

...

b. To make the new oracle.jdbc3 shared library applicable to only a certain
application, update that application’s orion-applications.xml, as
Example 20–6 shows.

In this case, you should define datasources in a data-sources.xml file
located in the same folder as the orion-applications.xml file and
referenced in the orion-applications.xml file, as Example 20–6 shows.

Example 20–11 Importing the Shared Libraries for a Specific Application in
orion-applications.xml

...
<orion-application>

<ejb-module remote="true" path="simpleobject_ejb.jar" />
<client-module path="simpleobject_ejb.jar" auto-start="false" />
<persistence path="persistence" />
<imported-shared-libraries>

<import-shared-library name="oracle.jdbc3" max-version="10.3"/>
<import-shared-library name="oracle.toplink" max-version="10.1.3"/>

</imported-shared-libraries>
<log>

<file path="application.log" />
</log>
<data-sources path="data-sources.xml" />
<namespace-access>

..........
</namespace-access>

</orion-application>

Associating TopLink With an Oracle JDBC Driver

Configuring Data Sources 20-9

EIS AQ Connector Applications
To associate an application that uses the EIS AQ connector with a specific version of
Oracle JDBC driver other than the default, follow the procedure for "EJB 3.0 and EJB
2.1 non-CMP Applications" on page 20-4.

In this case, in your new oracle.jdbc shared library, you must also reload the
aqapi.jar file, as Example 20–12 shows.

Example 20–12 Defining a Shared Library for Oracle JDBC Driver Version 10.3 in
server.xml

...
<shared-library name="oracle.jdbc" version="10.3">

<code-source path="ojdbc14_103.jar"/>
<code-source path="../../../../../rdbms/jlib/aqapi.jar"/>

</shared-library>
...

Associating TopLink With an Oracle JDBC Driver

20-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Transaction Services 21-1

21
Configuring Transaction Services

This chapter describes the following:

■ Configuring EJB 3.0 Transaction Management

■ Configuring an EJB 3.0 Transaction Attribute

■ Configuring EJB 2.1 Transaction Management

■ Configuring an EJB 2.1 Transaction Attribute

■ Configuring Transaction Timeouts

■ Transaction Best Practices

For more information, see the following:

■ "Understanding EJB Transaction Services" on page 2-17

■ "Java Transaction API (JTA)" in the Oracle Containers for J2EE Services Guide

Configuring EJB 3.0 Transaction Management
To configure EJB 3.0 EJB transaction management, you can use annotations (see "Using
Annotations" on page 21-1) or deployment XML (see "Using Deployment XML" on
page 21-2).

For more information, see the following:

■ "Who Manages a Transaction?" on page 2-17

■ "What are Container-Managed Transactions?" on page 2-18

■ "What are Bean-Managed Transactions?" on page 2-18

Using Annotations
You can configure transaction management using the @TransactionManagement
annotation attribute value, as Example 21–1 shows. You can specify one of the
following values:

■ TransactionManagementType.CONTAINER: container-managed transactions
(default).

Note: EJB 3.0 entities cannot be configured with a transaction
management type. EJB 3.0 entities execute within the transactional
context of the caller.

Configuring an EJB 3.0 Transaction Attribute

21-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ TransactionManagementType.BEAN: bean-managed transactions.

You apply the @TransactionManagement annotation at the class level.

Example 21–1 Configuring Transaction Management for an EJB 3.0 Session Bean

import javax.ejb.Stateful
import javax.annotation.PostConstruct;
import javax.ejb.Remove;
import javax.ejb.TransactionManagement;
import javax.ejb.TransactionManagementType;

@Stateful
@TransactionManagement(value=TransactionManagementType.CONTAINER)
public class CartBean implements Cart {

private ArrayList items;

@PostConstruct
public void initialize() {

items = new ArrayList();
}

@Remove
public void finishedShipping() {

// Release any resources.
}

public void addItem(String item) {
items.add(item);

}

public void removeItem(String item) {
items.remove(item);

}
}

Using Deployment XML
For an EJB 3.0 EJB, you configure transaction management in the ejb-jar.xml file as
you would for an EJB 2.1 enterprise bean (see "Using Deployment XML" on page 21-4).

Configuring an EJB 3.0 Transaction Attribute
To configure how the container manages transactions when a client invokes a method
of an EJB 3.0 enterprise bean configured for container-managed transactions, you can
use annotations (see Using Annotations on page 21-2) or deployment XML (see "Using
Deployment XML" on page 21-4).

For more information, see the following:

■ "Who Manages a Transaction?" on page 2-17

■ "What are Container-Managed Transactions?" on page 2-18

■ "How are Transactions Handled When a Client Invokes a Business Method?" on
page 2-19.

Using Annotations
You can configure transaction management using the @TransactionAttribute
annotation attribute value, as Example 21–2 shows. Table 21–1 lists the
TransactionAttributeType values you can specify and shows how the container

Configuring an EJB 3.0 Transaction Attribute

Configuring Transaction Services 21-3

will respond depending on whether or not a client-controlled transaction exists at the
time the method is invoked.

You can apply the @TransactionAttribute annotation at the class-level to specify
the default transaction attribute for all business methods of the enterprise bean. You
can apply this annotation at the method-level to specify the transaction attribute for
that method. Applying the annotation at the method-level overrides the class-level
annotation (if any) for that method.

Example 21–2 Configuring Transaction Attribute for an EJB 3.0 Session Bean

import javax.ejb.Stateful;
import javax.annotation.PostConstruct;
import javax.ejb.Remove;
import javax.ejb.TransactionManagement;
import javax.ejb.TransactionManagementType;
import javax.ejb.TransactionAttribute;
import static javax.ejb.TransactionAttributeType.REQUIRED;
import static javax.ejb.TransactionAttributeType.REQUIRES_NEW;
import com.acme.Cart;

@Stateful
@TransactionManagement(value=TransactionManagementType.CONTAINER)
@TransactionAttribute(value=REQUIRED)
public class CartBean implements Cart {

private ArrayList items;

@PostConstruct
public void initialize() {

items = new ArrayList();
}

@Remove
@TransactionAttribute(value=REQUIRES_NEW)
public void finishedShipping() {

// Release any resources.
}

public void addItem(String item) {
items.add(item);

}

public void removeItem(String item) {
items.remove(item);

}
}

Table 21–1 TransactionAttributeType Values for @TransactionAttribute

Transaction Attribute Client-Controlled Transaction Exists Client-Controlled Transaction Does Not Exist

NOT_SUPPORTED Container suspends client transaction Use no transaction

SUPPORTS Use client-controlled transaction Use no transaction

REQUIRED1

1 Default.

Use client-controlled transaction Container starts a new transaction

REQUIRES_NEW Use client-controlled transaction Container starts a new transaction

MANDATORY Use client-controlled transaction Exception raised

NEVER Exception raised Use no transaction

Configuring EJB 2.1 Transaction Management

21-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Using Deployment XML
For an EJB 3.0 enterprise bean, you configure transaction attributes in the
orion-ejb-jar.xml file as you would for an EJB 2.1 enterprise bean (see "Using
Deployment XML" on page 21-5).

Configuring EJB 2.1 Transaction Management
You can configure who is responsible for managing transactions that involve a given
EJB 2.1 enterprise bean (see "Using Deployment XML" on page 21-4).

For more information, see the following:

■ "Who Manages a Transaction?" on page 2-17

■ "What are Container-Managed Transactions?" on page 2-18

■ "What are Bean-Managed Transactions?" on page 2-18

Using Deployment XML
To configure transaction management, use the ejb-jar.xml file
<transaction-type> subelement, as Example 21–3 shows.

Valid values are Container or Bean. The default is Container.

Example 21–3 Configuring Transaction Management for an EJB 2.1 Session Bean

<enterprise-beans>
<session>

<display-name>A Credit-Service Bean</display-name>
<ejb-name>CreditService</ejb-name>
<home>creditService.ejb.CreditServiceHome</home>
<remote>creditService.ejb.CreditServiceRemote</remote>
<ejb-class>creditService.ejb.CreditServiceBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
...

</session>
...
</enterprise-beans>

You can configure <transaction-type> for all of session, entity, and
message-driven beans. However, for an EJB 2.1 entity bean, you can only configure
<transaction-type> as Container.

Configuring an EJB 2.1 Transaction Attribute
For an enterprise bean that uses container-managed transactions, you can configure
how the container manages transactions when a client invokes a bean method (see
"Using Deployment XML" on page 21-5).

For more information, see the following:

■ "Who Manages a Transaction?" on page 2-17

Note: EJB 2.1 entity beans must always use container-managed
transaction demarcation. An EJB 2.1 entity bean must not be
designated with bean-managed transaction demarcation.

Configuring Transaction Timeouts

Configuring Transaction Services 21-5

■ "What are Container-Managed Transactions?" on page 2-18

■ "How are Transactions Handled When a Client Invokes a Business Method?" on
page 2-19.

Using Deployment XML
To configure how the container manages transactions when a client invokes a bean
method, use the ejb-jar.xml file <assembly-descriptor> subelement
<container-transaction>, as Example 21–4 shows.

Example 21–4 Configuring Transaction Attribute for an EJB 2.1 Session Bean

<assembly-descriptor>
<container-transaction>

<method>
<ejb-name>CreditService</ejb-name>
<method-name>setLimit</method-name>
<method-params>

<method-param>int</method-param>
</method-params>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
...
</assembly-descriptor>

The <container-transaction> element contains one or more <method> elements
and one <trans-attribute> element. The <trans-attribute> element applies
to all the <method> elements. You can specify methods by name, by name and
parameters (signature), or you can specify all methods of the specified enterprise bean
using a wildcard <method-name>*</method-name>.

Table 21–2 lists the values for the <trans-attribute> element that you can specify
and shows how the container will respond depending on whether or not a
client-controlled transaction exists at the time the method is invoked

Configuring Transaction Timeouts
To improve application performance, you can configure a transaction timeout that
determines how long OC4J will wait for a transaction to commit or rollback.

This section describes the following:

■ Configuring a Global Transaction Timeout

Table 21–2 Valid Values for the <trans-attribute> Element

Transaction Attribute Client-Controlled Transaction Exists Client-Controlled Transaction Does Not Exist

NotSupported1

1 Default for EJB 2.1 message-driven beans.

Container suspends client transaction Use no transaction

Supports2

2 Default for EJB 2.1 session beans and BMP entity beans.

Use client-controlled transaction Use no transaction

Required3

3 Default for EJB 2.1 CMP entity beans.

Use client-controlled transaction Container starts a new transaction

RequiresNew Container suspends client transaction and
creates a new transaction

Container starts a new transaction

Mandatory Use client-controlled transaction Exception raised

Never Exception raised Use no transaction

Configuring Transaction Timeouts

21-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Configuring a Transaction Timeout for a Session Bean

■ Configuring a Transaction Timeout for a Message-Driven Bean

Configuring a Global Transaction Timeout
You can set a transaction timeout that applies globally to all transactions that OC4J
manages for session and entity beans.

You can configure the global transaction timeout as follows:

■ Using Application Server Control Console

■ Using Deployment XML

Using Application Server Control Console
Using the Application Server Control Console (see "Using Oracle Enterprise Manager
10g Application Server Control" on page 31-1), you can set the JTAResource MBean
attribute transactionTimeout.

For more information, see "How to configure the OC4J Transaction Manager" in the
Oracle Containers for J2EE Services Guide.

Using Deployment XML
In the <OC4J_HOME>\j2ee\home\config\transaction-manager.xml file you
set the global transaction timeout with the transaction-timeout attribute of the
<transaction-manager> element.

For example, if you wanted to set the global transaction timeout to 180 seconds, you
would do as follows:

<transaction-manager ... transaction-timeout="180"
...

</transaction-manager>

If you change this property using this method, you must restart OC4J to apply your
changes. Alternatively, you can use Application Server Control Console to modify this
parameter dynamically without restarting OC4J (see "Using Application Server
Control Console" on page 21-6).

Configuring a Transaction Timeout for a Session Bean
You can specify a transaction timeout for each session bean using OC4J-proprietary
annotations (see "Using Annotations" on page 21-6), or using the
orion-ejb-jar.xml file (see "Using Deployment XML" on page 21-7).

The session bean transaction timeout overrides the global transaction timeout (see
"Configuring a Global Transaction Timeout" on page 21-6).

Configuration in the deployment XML overrides the corresponding configuration
made using annotations.

Using Annotations
You can specify a transaction timeout for an EJB 3.0 session bean using the following
OC4J-proprietary annotations and their attributes:

■ @StatelessDeployment attribute transactionTimeout

■ @StatefulDeployment attribute transactionTimeout

Configuring Transaction Timeouts

Configuring Transaction Services 21-7

For more information on these attributes, see Table A–1.

Example 21–5 shows how to configure these attributes for an EJB 3.0 stateless session
bean using the @StatelessDeployment annotation.

Example 21–5 @StatelessDeployment transactionTimeout Attribute

import javax.ejb.Stateless;
import oracle.j2ee.ejb.StatelessDeployment;

@Stateless
@StatelessDeployment(transactionTimeout=10)
public class HelloWorldBean implements HelloWorld {

public void sayHello(String name) {
System.out.println("Hello " + name + " from first EJB3.0");

}
}

Using Deployment XML
In the orion-ejb-jar.xml file you set a session bean transaction timeout with the
transaction-timeout attribute of the <session-deployment> element.

For example, if you wanted to set the global transaction timeout to 180 seconds, you
would do as follows:

<session-deployment ... transaction-timeout="180"
...

</session-deployment>

If you change this property using this method, you must restart OC4J to apply your
changes.

Configuring a Transaction Timeout for a Message-Driven Bean
You can configure a transaction timeout for a message-driven bean using
OC4J-proprietary annotations (see "Using Annotations" on page 21-8) or using the
orion-ejb-jar.xml file (see "Using Deployment XML" on page 21-8).

Because the global transaction timeout (see "Configuring a Global Transaction
Timeout" on page 21-6) does not apply to message-driven beans, you must configure
transaction timeout for each message-driven bean if you want to change the default
transaction timeout for a message-driven bean.

The type of message service provider you use (see "What Message Service Providers
Can you use With Your MDB?" on page 2-21) affects your transaction timeout options
in the following way:

■ J2EE Connector Architecture (J2CA) adapter message provider: you can change
the transaction timeout (see "J2CA Adapter Message Service Provider" on
page 21-9).

■ OEMS JMS: you cannot change the transaction timeout from the default of 86,400
seconds (1 day).

■ OEMS JMS Database: you can change the transaction timeout (see "Non-J2CA
Adapter Message Service Provider" on page 21-8).

Configuration in the deployment XML overrides the corresponding configuration
made using annotations.

Configuring Transaction Timeouts

21-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Using Annotations
You can specify a transaction timeout for an EJB 3.0 session bean using the
OC4J-proprietary annotation @MessageDrivenDeployment attribute
transactionTimeout.

For more information on this attribute, see Table A–3.

Example 21–5 shows how to configure this attribute for an EJB 3.0 message-driven
bean using the @MessageDrivenDeployment annotation.

Example 21–6 @MessageDrivenDeployment

import javax.ejb.MessageDriven;
import oracle.j2ee.ejb.MessageDrivenDeployment;
import javax.ejb.ActivationConfigProperty;
import javax.annotation.Resource;

@MessageDriven(
activationConfig = {

 @ActivationConfigProperty(
propertyName="messageListenerInterface",
propertyValue="javax.jms.MessageListener"),

 @ActivationConfigProperty(
propertyName="connectionFactoryJndiName",
propertyValue="jms/TopicConnectionFactory"),

 @ActivationConfigProperty(
propertyName="destinationName",
propertyValue="jms/demoTopic"),

 @ActivationConfigProperty(
propertyName="destinationType",
propertyValue="javax.jms.Topic"),

 @ActivationConfigProperty(
propertyName="messageSelector",
propertyValue="RECIPIENT = 'MDB'")

}
)
@MessageDrivenDeployment(transactionTimeout=10)
public class MessageLogger implements MessageListener, TimedObject {

@Resource javax.ejb.MessageDrivenContext mc;

public void onMessage(Message message) {
...
}

public void ejbTimeout(Timer timer) {
...
}

}

Using Deployment XML
You set the transaction timeout in the orion-ejb-jar.xml file. How you configure
this value depends on the type of message-service provider you are using:

■ Non-J2CA Adapter Message Service Provider

■ J2CA Adapter Message Service Provider

Non-J2CA Adapter Message Service Provider
If you are using a non-J2CA adapter message service provider like OEMS JMS or
OEMS JMS Database, use the transaction-timeout attribute of the
<message-driven-deployment> element.

Transaction Best Practices

Configuring Transaction Services 21-9

For example, if you are using OEMS JMS or OEMS JMS Database, and you wanted to
set the transaction timeout to 180 seconds, you would do as follows:

<message-driven-deployment ... transaction-timeout="180"
...

</message-driven-deployment>

J2CA Adapter Message Service Provider
If you are using a J2CA adapter message service provider, use the
<config-property> element to set the transactionTimeout configuration
property.

For example, if you are using a J2CA adapter message service provider, and you
wanted to set the transaction timeout to 180 seconds, you would do as follows:

<message-driven-deployment ... >
...

<config-property>
<config-property-name>transactionTimeout</config-property-name>
<config-property-value>180</config-property-value>

</config-property>
...
</message-driven-deployment>

In either case, if you change this property using this method, you must restart OC4J to
apply your changes.

Transaction Best Practices
This section describes the preferred approach to using transactions in an EJB
application, including the following:

■ Using Container Managed Transactions With Datasource Connections

■ Using a Rollback Strategy

Using Container Managed Transactions With Datasource Connections
If you are using container-managed transactions and you use a data source connection,
bear in mind that the connection is not released until the transaction commits. This is
particularly important if you are using the data source connection in a loop: in this
case, you should acquire and release the connection outside of the loop to avoid
inadvertently exhausting your connection pool.

Consider a session bean that you configure for container-managed transactions. This
session bean has method runQueryConnectionEveryTime, as Example 21–7
shows. When this method is called, a container-managed transaction is opened. In
each iteration of the for loop, a connection is acquired and closed. However, the
closed connection is not released until the method returns and the container-managed
transaction commits. Depending on the number of iterations, this design can exhaust
your connection pool.

To avoid this problem, you should acquire and close the connection outside of the
loop, as Example 21–8 shows. By doing so, you guarantee that only one connection
will be held until the container-managed transaction commits.

Example 21–7 Incorrect: count Number of Connections Held Until Commit

public static long runQueryConnectionEveryTime (int count) {
InitialContext ic = new InitialContext();

Transaction Best Practices

21-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

DataSource ds = (DataSource) ic.lookup("jdbc/OracleDS");

for (int i = 0; i < count; i++) {
Connection con = ds.getConnection(); //connection created inside loop

PreparedStatement ps = con.prepareStatement(
"select AAA_ID, AAA_A FROM AAA_TABLE where AAA_ID = ? ");

OracleStatement os = (OracleStatement)ps;
os.defineColumnType(1, Types.BIGINT);
ps.setLong(1, i);
ResultSet rs = ps.executeQuery();
rs.close();
ps.close();

con.close(); //connection closed inside loop
}

}

Example 21–8 Correct: Only One Connection Held Until Commit

public static long runQueryConnectionEveryTime (int count) {
InitialContext ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleDS");

Connection con = ds.getConnection(); //connection created outside loop

for (int i = 0; i < count; i++) {
PreparedStatement ps = con.prepareStatement(

"select AAA_ID, AAA_A FROM AAA_TABLE where AAA_ID = ? ");

OracleStatement os = (OracleStatement)ps;
os.defineColumnType(1, Types.BIGINT);
ps.setLong(1, i);
ResultSet rs = ps.executeQuery();
rs.close();
ps.close();

}

con.close(); //connection closed outside loop
}

Using a Rollback Strategy
An enterprise bean with container-managed transaction demarcation can use the
setRollbackOnly method of its javax.ejb.EJBContext object to mark the
transaction such that the transaction can never commit.

Typically, you would do this to protect data integrity before throwing an application
exception when the application exception does not automatically cause the container
to rollback the transaction.

For example, an AccountTransfer bean which debits one account and credits
another account could mark a transaction for rollback, if it successfully performs the
debit, but fails during the credit operation.

For more information, see the following:

■ "What is EJB Context?" on page 1-6

■ "Accessing an EJB 3.0 EJBContext" on page 29-20

■ "Accessing an EJB 2.1 EJBContext" on page 29-27

Configuring Security Services 22-1

22
Configuring Security Services

This chapter explains security service configuration as it applies specifically to Java EE
applications, including the following:

■ Granting Permissions in Browser

■ Defining Users, Groups, and Roles in an EJB Application

■ Specifying Credentials in EJB Clients

■ Using EJB 3.0 Security Annotations

■ Retrieving Credentials From an Enterprise Bean Using the JAAS API

■ Defining a Custom JAAS Login Module for an EJB Application

For more information, see the following:

■ "Understanding EJB Security Services" on page 2-20

■ Oracle Containers for J2EE Security Guide

Granting Permissions in Browser
If you download the EJB application as a client where the security manager is active,
you must grant the following permissions before you can execute:

permission java.net.SocketPermission "*:*", "connect,resolve";
permission java.lang.RuntimePermission "createClassLoader";
permission java.lang.RuntimePermission "getClassLoader";
permission java.util.PropertyPermission "*", "read";
permission java.util.PropertyPermission "LoadBalanceOnLookup", "read,write";

Defining Users, Groups, and Roles in an EJB Application
For EJB authentication and authorization, you define the principals, under which each
method executes, by configuring the EJB deployment descriptor. The container
enforces that the user, who is trying to execute the method, is the same as defined
within the deployment descriptor.

The EJB deployment descriptor enables you to define security roles under which each
method is allowed to execute. These methods are mapped to users or groups in the
OC4J-specific deployment descriptor. The users and groups are defined within your
designated security user managers, which uses either the Oracle Application Server
Java Authentication and Authorization Service (JAAS) Provider (OracleAS JAAS
Provider) or XML user manager. For a full description of security user managers, see
the Oracle Containers for J2EE Services Guide.

Defining Users, Groups, and Roles in an EJB Application

22-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For authentication and authorization, this section focuses on XML configuration
within the EJB deployment descriptors. EJB authorization is specified within the EJB
and OC4J-specific deployment descriptors. You can manage the authorization piece of
your security within the deployment descriptors as follows:

■ The EJB deployment descriptor describes access rules using logical roles.

■ The OC4J-specific deployment descriptor maps the logical roles to concrete users
and groups, which are defined either the OracleAS JAAS Provider or XML user
managers.

Users and groups are identities known by the container. Roles are the logical identities
each application uses to indicate access rights to its different objects. The
username/passwords can be digital certificates and, in the case of SSL, private key
pairs.

Thus, the definition and mapping of roles is demonstrated in Figure 22–1.

Figure 22–1 Role Mapping

Defining users, groups, and roles are discussed in the following sections:

■ Specifying Users and Groups

■ Specifying Logical Roles in the EJB Deployment Descriptor

■ Specifying a Role for an EJB Method

■ Specifying Unchecked Security for EJB Methods

■ Specifying the runAs Security Identity

■ Mapping Logical Roles to Users and Groups

■ Specifying a Default Role Mapping for Undefined Methods

■ Specifying Users and Groups by the Client

Specifying Users and Groups
OC4J supports the definition of users and groups: either shared by all deployed
applications, or specific to given applications. You define shared or application-specific
users and groups within either the OracleAS JAAS Provider or XML user managers.
See the Oracle Containers for J2EE Services Guide.for directions.

<security_role>

<security_role_mapping>

<group>

<user> <user><user>

ejb-jar.xml

orion-ejb-jar.xml

principals.xml

<security-role-ref><role-link>

O
_1

05
2

Defining Users, Groups, and Roles in an EJB Application

Configuring Security Services 22-3

Specifying Logical Roles in the EJB Deployment Descriptor
As Figure 22–2 shows, you can use a logical name for a role within your bean
implementation, and map this logical name to the correct database role or user. The
mapping of the logical name to a database role is specified in the OC4J-specific
deployment descriptor. See "Mapping Logical Roles to Users and Groups" on
page 22-8 for more information.

Figure 22–2 Security Mapping

If you use a logical name for a database role within your bean implementation for
methods such as isCallerInRole, you can map the logical name to an actual
database role by doing the following:

1. Declare the logical name within the <enterprise-beans> section
<security-role-ref> element. For example, to define a role used within the
purchase order example, you may have checked, within the bean's
implementation, to see if the caller had authorization to sign a purchase order.
Thus, the caller would have to be signed in under a correct role. In order for the
bean to not need to be aware of database roles, you can check isCallerInRole
on a logical name, such as POMgr, since only purchase order managers can sign off
on the order. Thus, you would define the logical security role, POMgr within the
<security-role-ref><role-name> element within the
<enterprise-beans> section, as follows:

<enterprise-beans>
...
 <security-role-ref>
 <role-name>POMgr</role-name>
 <role-link>myMgr</role-link>
 </security-role-ref>
</enterprise-beans>

The <role-link> element within the <security-role-ref> element can be
the actual database role, which is defined further within the
<assembly-descriptor> section. Alternatively, it can be another logical name,
which is still defined more in the <assembly-descriptor> section and is
mapped to an actual database role within the Oracle-specific deployment
descriptor.

O
_1

05
3

EJB Deployment Descriptor

<enterprise-beans>
...
 <security-role-ref>
 <role-name>POMgr</role-name>
 <role-link>myMgr</role-link>
 <security-role-ref
...
</enterprise-beans>
<assembly-descriptor>
...
 <security-role>
 <role-name>myMgr</role-name>
 </security-role>
 <method-permission>
 <role-name>myMgr</role-name>
 <method>. . .</method>
 </method-permission>
...
</assembly-descriptor>

Defining Users, Groups, and Roles in an EJB Application

22-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

2. Define the role and the methods to which it applies. In the purchase order
example, any method executed within the PurchaseOrder bean must have
authorized itself as myMgr. Note that PurchaseOrder is the name declared in the
<entity | session><ejb-name> element.

Thus, the following defines the role as myMgr, the enterprise bean as
PurchaseOrder, and all methods by denoting the '*' symbol.

<assembly-descriptor>
 <security-role>
 <description>Role needed purchase order authorization</description>
 <role-name>myMgr</role-name>
 </security-role>
 <method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>PurchaseOrder</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
...
</assembly-descriptor>

After performing both steps, you can refer to POMgr within the bean's implementation
and the container translates POMgr to myMgr.

Specifying a Role for an EJB Method
You can specify which security roles are allowed to invoke an enterprise bean method.

In an EJB 3.0 application, you can use annotations (see "Using Annotations" on
page 22-4).

In an EJB 3.0 or EJB 2.1 application, you can use the ejb-jar.xml deployment
descriptor (see "Using Deployment XML" on page 22-5).

Using Annotations
In an EJB 3.0 application, you can use the @RolesAllowed annotation to specify the
security roles permitted to access methods in an application, as Example 22–1 shows.

Note: The <security-role-ref> element is not required. You
only specify it when using security context methods within your
bean.

Note: The myMgr role in the <security-role> element is the
same as the <role-link> element within the
<enterprise-beans> section. This ties the logical name of
POMgr to the myMgr definition.

Note: If you define different roles within the
<method-permission> element for methods in the same bean,
the resulting permission is a union of all the method permissions
defined for the methods of this bean.

Defining Users, Groups, and Roles in an EJB Application

Configuring Security Services 22-5

Example 22–1 @RolesAllowed

@RolesAllowed("Users")
public class Calculator {

@RolesAllowed("Administrator")
public void setNewRate(int rate) {
...
}

}

You can apply this annotation to a class, method, or both.

When applied to a method, the specification overrides class specification, if present.

For more information on security annotations, see "Using EJB 3.0 Security
Annotations" on page 22-12.

Using Deployment XML
The <method-permission><method> element is used to specify the security role
for one or more methods within an interface or implementation. According to the EJB
specification, this definition can be of one of the following forms:

■ Defining all methods within a bean by specifying the bean name and using the '*'
character to denote all methods within the bean, as follows:

<method-permission>
<role-name>myMgr</role-name>
<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

■ Defining a specific method that is uniquely identified within the bean. Use the
appropriate interface name and method name, as follows:

<method-permission>
<role-name>myMgr</role-name>
<method>
<ejb-name>myBean</ejb-name>
<method-name>myMethodInMyBean</method-name>

</method>
</method-permission>

■ Defining a method with a specific signature among many overloaded versions, as
follows:

<method-permission>
<role-name>myMgr</role-name>
<method>
<ejb-name>myBean</ejb-name>
<method-name>myMethod</method-name>
<method-params>
<method-param>javax.lang.String</method-param>
<method-param>javax.lang.String</method-param>

</method-params>

Note: If there are multiple methods with the same overloaded name,
the element of this style refers to all the methods with the overloaded
name.

Defining Users, Groups, and Roles in an EJB Application

22-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

</method>
</method-permission>

The parameters are the fully-qualified Java types of the method's input
parameters. If the method has no input arguments, the <method-params>
element contains no elements. Arrays are specified by the array element's type,
followed by one or more pair of square brackets, such as int[] [].

Specifying Unchecked Security for EJB Methods
If you want certain methods to not be checked for security roles, you define these
methods as unchecked.

In an EJB 3.0 application, you can use annotations (see "Using Annotations" on
page 22-6).

In an EJB 3.0 or EJB 2.1 application, you can use the ejb-jar.xml deployment
descriptor (see "Using Deployment XML" on page 22-6).

Using Annotations
In an EJB 3.0 application, you can use the @PermitAll annotation to specify that all
security roles are permitted to access methods in an application, as Example 22–2
shows.

Example 22–2 @PermitAll

@RolesAllowed("Users")
public class Calculator {

@RolesAllowed("Administrator")
public void setNewRate(int rate) {
...
}
@PermitAll
public long convertCurrency(long amount) {
...
}

}

You can apply this annotation to a class or method.

When applied to a class, the specification applies to all methods.

When applied to a method, the specification applies only to that method.

When using this annotation, observe the restrictions described in "Using EJB 3.0
Security Annotations" on page 22-12.

Using Deployment XML
The <method-permission><unchecked> element is used to specify that all
security roles are permitted to access a method, as follows:

<method-permission>
<unchecked/>
<method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>

</method>
</method-permission>

Defining Users, Groups, and Roles in an EJB Application

Configuring Security Services 22-7

Instead of a <role-name> element defined, you define an <unchecked/> element.
When executing any methods in the EJBNAME bean, the container does not check for
security. Unchecked methods always override any other role definitions.

Specifying the runAs Security Identity
You can specify that all methods of an enterprise bean execute under a specific
identity. That is, the container does not check different roles for permission to run
specific methods; instead, the container executes all of the enterprise bean methods
under the specified security identity. You can specify a particular role or the caller's
identity as the security identity.

In an EJB 3.0 application, you can use annotations (see "Using Annotations" on
page 22-7).

In an EJB 3.0 or EJB 2.1 application, you can use the ejb-jar.xml deployment
descriptor (see "Using Deployment XML" on page 22-7).

Using Annotations
In an EJB 3.0 application, you can use the @RunAs annotation to specify the role of the
application during execution in a Java EE container, as Example 22–1 shows.

Example 22–3 @RunAs

@RunAs("Admin")
public class Calculator {

...
}

You can apply this annotation to a class.

For more information on security annotations, see "Using EJB 3.0 Security
Annotations" on page 22-12.

Using Deployment XML
Specify the runAs security identity in the <security-identity> element, which is
contained in the <enterprise-beans> section. The following XML demonstrates
that the POMgr is the role under which all the entity bean methods execute:

<enterprise-beans>
<entity>
...
<security-identity>
<run-as>
<role-name>POMgr</role-name>

</run-as>
</security-identity>

...
</entity>

</enterprise-beans>

Alternatively, the following XML example demonstrates how to specify that all
methods of the bean execute under the identity of the caller:

<enterprise-beans>
<entity>
...
<security-identity>
<use-caller-identity/>

Defining Users, Groups, and Roles in an EJB Application

22-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

</security-identity>
...
</entity>

</enterprise-beans>

Mapping Logical Roles to Users and Groups
You can use logical roles or actual users and groups in the EJB deployment descriptor.
However, if you use logical roles, you must map them to the actual users and groups
defined either in the OracleAS JAAS Provider or XML User Managers.

Map the logical roles defined in the application deployment descriptors to OracleAS
JAAS Provider or XML User Manager users or groups through the
<security-role-mapping> element in the OC4J-specific deployment descriptor as
follows:

■ The name attribute of this element defines the logical role that is to be mapped.

■ The group or user element maps the logical role to a group or user name. This
group or user must be defined in the OracleAS JAAS Provider or XML User
Manager configuration. See the Oracle Containers for J2EE Services Guide for a
description of the OracleAS JAAS Provider and XML User Managers.

Example 22–4 Mapping Logical Role to Actual Role

This example maps the logical role POMGR to the managers group in the
orion-ejb-jar.xml file. Any user that can log in as part of this group is considered
to have the POMGR role; thus, it can execute the methods of PurchaseOrderBean.

<security-role-mapping name="POMGR">
<group name="managers" />
</security-role-mapping>

To map this role to a specific user, do the following:

<security-role-mapping name="POMGR">
<user name="guest" />
</security-role-mapping>

Lastly, you can map a role to a specific user within a specific group, as follows:

<security-role-mapping name="POMGR">
 <group name="managers" />
<user name="guest" />
</security-role-mapping>

As shown in Figure 22–3, the logical role name for POMGR defined in the EJB
deployment descriptor is mapped to managers within the OC4J-specific deployment
descriptor in the <security-role-mapping> element.

Note: You can map a logical role to a single group or to several
groups.

Defining Users, Groups, and Roles in an EJB Application

Configuring Security Services 22-9

Figure 22–3 Security Mapping

Notice that the <role-name> in the EJB deployment descriptor is the same as the
name attribute in the <security-role-mapping> element in the OC4J-specific
deployment descriptor. This is what identifies the mapping.

Specifying a Default Role Mapping for Undefined Methods
If any methods have not been associated with a role mapping, they are mapped to the
default security role through the <default-method-access> element in the
orion-ejb-jar.xml file. The following is the automatic mapping for any insecure
methods:

<default-method-access>
<security-role-mapping

name="<default-ejb-caller-role>"
impliesAll="true"

>
</security-role-mapping>

</default-method-access>

The default role is <default-ejb-caller-role> and is defined in the name
attribute. You can replace this string with any name for the default role.

The impliesAll attribute indicates whether any security role checking occurs for
these methods. In the orion-ejb-jar.xml file, the impliesAll attribute has the
following defaults:

■ If <security-role-mapping> is specified in the orion-ejb-jar.xml file
and impliesAll is not set, then this attribute defaults to false: the container
checks for this default role on these methods.

■ If <security-role-mapping> is not specified in the orion-ejb-jar.xml
file, the OC4J EJB layer defaults this attribute to true: no security role checking
occurs for these methods.

If the impliesAll attribute is false, you must map the default role defined in the
name attribute to a OracleAS JAAS Provider or XML user or group through the
<user> and <group> elements. The following example shows how all methods not
associated with a method permission are mapped to the "others" group:

<default-method-access>
<security-role-mapping name="default-role" impliesAll="false" >

<group name="others" />
</security-role-mapping>

</default-method-access>

O
_1

05
4

EJB Deployment Descriptor
OC4J-specific
Deployment Descriptor

...
 <security-role>
 <role-name>POMGR</role-name>
 </security-role>
 <method-permission>
 <role-name>POMGR</role-name>
 <method>. . .</method>
 </method-permission>
...
</assembly-descriptor>

 <assembly-descriptor>
 <security-role-mapping name="POMGR">
 <group name="managers">

 </assembly-descriptor>

 </security-role-mapping>

Specifying Credentials in EJB Clients

22-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Specifying Users and Groups by the Client
In order for the client to access methods that are protected by users and groups, the
client must provide the correct user or group name with a password that the OracleAS
JAAS Provider or XML User Manager recognizes. And the user or group must be the
same one as designated in the security role for the intended method. See "Specifying
Credentials in EJB Clients" on page 22-10 for more information.

Specifying Credentials in EJB Clients
Depending on the type of client, you may need to specify security credentials before
your client can access an enterprise bean or other JNDI-accessible resource.

Table 22–1 classifies EJB clients by where they are deployed relative to the target
enterprise bean they invoke. Where you deploy the client relative to its target
enterprise bean determines whether or not you must specify security credentials.

When you access enterprise beans in a remote container (that is, if the client and target
enterprise bean are not collocated, not deployed in the same application, and the target
enterprise bean application is not the client's parent), you must pass valid credentials
to the remote container. How your client passes its credentials depends on the type of
client:

■ EJB Client: pass credentials within the InitialContext, which is created to look
up the remote enterprise beans (see "Specifying Credentials in the Initial Context"
on page 22-11).

■ Standalone Java Client: define credentials in the jndi.properties file deployed
with the EAR file (see "Specifying Credentials in JNDI Properties" on page 22-11).

■ Servlet or JSP Client: pass credentials within the InitialContext, which is
created to look up the remote enterprise beans (see "Specifying Credentials in the
Initial Context" on page 22-11).

In addition, all clients can specify security properties in the ejb_sec.properties
file (see "Specifying EJB Client Security Properties in the ejb_sec.properties File" on
page 22-12).

For more information, see the following:

■ "What Type of Client do you Have?" on page 29-1

■ Oracle Containers for J2EE Security Guide

Note: For basic OC4J security configuration information,
including CSiV2, see the Oracle Containers for J2EE Security Guide.

Table 22–1 Client Security Credential Requirements

Client Type Relationship to Target EJB Set Credentials?

Any client Client and target enterprise bean are collocated No

Any client Client and target enterprise bean are deployed in the same application No

Any client Target enterprise bean deployed in an application that is designated as the client's parent1

1 See the Oracle Containers for J2EE Developer’s Guide for more information on how to set the parent of an application.

No

Any client Client and target enterprise bean are not collocated, not deployed in the same application,
and target EJB application is not client's parent1.

Yes

Specifying Credentials in EJB Clients

Configuring Security Services 22-11

Specifying Credentials in JNDI Properties
To specify credentials in a jndi.properties file, do the following:

1. Create or modify an existing jndi.properties file.

2. Configure the appropriate credentials in the jndi.properties file, as
Example 22–6 shows.

For property names, see the field definitions in javax.naming.Context.

Example 22–5 Specifying Credentials in JNDI Properties

java.naming.security.principal=POMGR
java.naming.security.credentials=welcome
java.naming.factory.initial=

oracle.j2ee.server.ApplicationClientInitialContextFactory
java.naming.provider.url=opmn:ormi://opmnhost:6004:oc4j_inst1/ejbsamples

3. Ensure that the jndi.properties file is on the client's classpath.

4. Use the JNDI API in your client to look up the JNDI-accessible resource as
Example 22–6 shows.

Example 22–6 Looking Up a JNDI-Accessible Resource

Context ic = new InitialContext();
CustomerHome = (CustomerHome)ic.lookup("java:comp/env/purchaseOrderBean");

At run time, JNDI uses ClassLoader method getResources to locate all
application resource files named jndi.properties in the classpath. In doing so, it
will use the JNDI properties you set in Example 22–6 to access the
purchaseOrderBean.

For more information, see "Setting JNDI Properties With the JNDI Properties File" on
page 19-22.

Specifying Credentials in the Initial Context
To specify credentials in the initial context you use to look up JNDI-accessible
resources, do the following:

1. Create a HashTable and populate it with the required properties using
javax.naming.Context fields as keys and String objects as values, as
Example 22–7 shows.

Example 22–7 Specifying Credentials in the Initial Context

Hashtable env = new Hashtable();
env.put(Context.SECURITY_PRINCIPAL, "POMGR");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
env.put("java.naming.factory.initial",

"oracle.j2ee.server.ApplicationClientInitialContextFactory");
env.put("java.naming.provider.url",

"opmn:ormi://opmnhost:6004:oc4j_inst1/ejbsamples");

2. When you instantiate the initial context, pass the HashTable into the initial
context constructor, as Example 22–8 shows.

Example 22–8 Looking Up a JNDI-Accessible Resource

Context ic = new InitialContext (env);

Using EJB 3.0 Security Annotations

22-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

CustomerHome = (CustomerHome) ic.lookup ("java:comp/env/purchaseOrderBean");

For more information, see the following:

■ "Configuring the Initial Context Factory" on page 19-19

■ "Setting JNDI Properties in the Initial Context" on page 19-23

Specifying EJB Client Security Properties in the ejb_sec.properties File
Any client, whether running inside a server or not, has EJB security properties
controlled by an ejb_sec.properties file. You use this file to specify general
security options as well as options specific to the Common Secure Interoperability
Version 2 protocol (CSIv2).

For more information, see "Common Secure Interoperability Protocol" in the Oracle
Containers for J2EE Security Guide.

Using EJB 3.0 Security Annotations
In an EJB 3.0 application, you can use the javax.annotation.security
annotations defined in JSR250 to configure security options on EJB 3.0 session beans.

Table 22–2 summarizes the security annotations that OC4J supports. For an example of
how to use these annotations, see "Using Annotations" on page 22-13.

When using @PermitAll, @DenyAll and @RolesAllowed annotations, observe the
following restrictions:

■ @PermitAll, @DenyAll, and @RolesAllowed annotations must not be applied
on the same method or class.

■ In the following cases, the method level annotations take precedence over the class
level annotation:

– @PermitAll is specified at the class level and @RolesAllowed or @DenyAll
are specified on methods of the same class;

Table 22–2 Security Annotations

Annotation Description Applicable To

@RunAs Defines the role of the application during execution in a Java EE
container. The role must map to the user/group information in the
container's security realm. For more information, see "Specifying the
runAs Security Identity" on page 22-7.

Class

@RolesAllowed Specifies the security roles permitted to access methods in an
application. For more information, see "Specifying a Role for an EJB
Method" on page 22-4.

Class, method, or both.

Method specification overrides
class specification if present.

@PermitAll Specifies that all security roles are allowed to invoke the specified
methods. For more information, see "Specifying Unchecked Security for
EJB Methods" on page 22-6.

Class or method.

Class specification applies to all
methods.

Method specification applies only
to that method.

@DenyAll Specifies that no security roles are allowed to invoke the specified
methods.

Class or method.

Class specification applies to all
methods.

Method specification applies only
to that method.

@DeclareRoles Specifies the security roles used by the application. Class

Defining a Custom JAAS Login Module for an EJB Application

Configuring Security Services 22-13

– @DenyAll is specified at the class level and @PermitAll or @RolesAllowed
are specified on methods of the same class;

– @RolesAllowed is specified at the class level and @PermitAll or @DenyAll
are specified on methods of the same class.

Using Annotations
Example 22–9 shows how to use the @RolesAllowed annotation. For more
information and examples, see the JSR250 specification.

Example 22–9 @RolesAllowed

@RolesAllowed("Users")
public class Calculator {

@RolesAllowed("Administrator")
public void setNewRate(int rate) {
...
}

}

Retrieving Credentials From an Enterprise Bean Using the JAAS API
OC4J supports the use of standard JAAS API to retrieve the Subject, Principal,
and credentials from within business methods and life cycle methods of session beans
(stateless and stateful) and entity beans.

Example 22–10 shows how you can use the JAAS API to retrieve credentials in a
business method of an enterprise bean deployed to OC4J.

Example 22–10 Using JAAS API to Retrieve Credentials

public class Calculator {
// Buisness method
public void setNewRate(int rate) {
...

AccessControlContext actx = AccessController.getContext();
Subject subject = Subject.getSubject(actx);
Set principals = subject.getPrincipals();

...
}

}

Defining a Custom JAAS Login Module for an EJB Application
Within the JAAS pluggable authentication framework, an application server and any
underlying authentication services remain independent from each other.
Authentication services can be plugged in through JAAS login modules without
requiring modifications to the application server or application code. A login module
is primarily responsible for authenticating a user based on supplied credentials (such
as a password), and adding the proper principals (such as roles) to the subject. Possible

Note: You can download an EJB 3.0 security annotation code
example from:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30security/doc/how-to-ejb30-sec
urity-ejb.html.

Defining a Custom JAAS Login Module for an EJB Application

22-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

types of JAAS login modules include a principal-mapping JAAS module, a
credential-mapping JAAS module, a Kerberos JAAS module, or a custom login
module.

To use a custom JAAS login module with your enterprise beans, the following
elements must be configured:

■ <jazn-loginconfig> in system-jazn-data.xml

■ <jazn> in orion-application.xml

■ <namespace-access> in orion-application.xml

For more information, see "Login Modules" in the Oracle Containers for J2EE Security
Guide.

Configuring Message Services 23-1

23
Configuring Message Services

This chapter describes how to configure Java Message Service (JMS) and non-JMS
message service providers, including the following:

■ Configuring a J2CA Resource Adapter for use With Your Message Service
Provider

■ Configuring an OEMS JMS Message Service Provider

■ Configuring an OEMS JMS Database Message Service Provider

For more information, see the following:

■ "What Message Service Providers Can you use With Your MDB?" on page 2-21

■ "Implementing an EJB 3.0 Message-Driven Bean" on page 9-1

■ "Implementing an EJB 2.1 Message-Driven Bean" on page 17-1

■ "Java Message Service" in the Oracle Containers for J2EE Services Guide

Configuring a J2CA Resource Adapter for use With Your Message Service
Provider

To configure a J2CA resource adapter such as the Oracle JMS Connector (see "Oracle
JMS Connector: J2EE Connector Architecture (J2CA)-Based Provider" on page 2-21) for
use with your message service provider, you must do the following:

1. Install and configure the J2CA adapter (see "Installing and Configuring a J2CA
Adapter" on page 23-2).

2. Choose appropriate JNDI names for your connection factory (see "J2CA Message
Service Provider Connection Factory Names" on page 23-2).

3. Configure the appropriate deployment XML files (see "Configuring OC4J J2CA
Resource Adapter Deployment XML Files" on page 23-2).

Using these deployment XML files, you can specify factories that are either not
XA-compliant, when two-phase commit (2PC) transactions are not needed, or
XA-compliant, when 2PC transactions are needed. For more information on 2PC,
see "How do You Participate in a Global or Two-Phase Commit (2PC)
Transaction?" on page 2-20.

4. Configure your message-driven beans to access your message service provider
using your J2CA resource adapter.

For more information, see the following:

Configuring a J2CA Resource Adapter for use With Your Message Service Provider

23-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ "Configuring an EJB 3.0 MDB to Access a Message Service Provider Using
J2CA" on page 10-1

■ "Configuring an EJB 2.1 MDB to Access a Message Service Provider Using
J2CA" on page 18-1

J2CA Message Service Provider Connection Factory Names
The actual JNDI names for the destination and connection factory depend on your
J2CA installation as defined in your oc4j-connectors.xml file (see "Configuring
OC4J J2CA Resource Adapter Deployment XML Files" on page 23-2).

Typically, it will be composed of java:<Prefix>/<FactoryName> where
<Prefix> is an optional JNDI location like comp/env/eis, and <FactoryName> is
the name of the javax.cci.ConnectionFactory for your adapter.

Installing and Configuring a J2CA Adapter
OC4J includes the Oracle JMS Connector: a generic JMS J2CA resource adapter that
integrates OC4J with OEMS JMS and OEMS JMS Database message service providers,
as well as non-Oracle JMS providers such as WebSphereMQ, Tibco, and SonicMQ.

For more information, see the following:

■ "Overview: Administering Resource Adapters" in the Oracle Containers for J2EE
Resource Adapter Administrator’s Guide.

■ "Oracle JMS Connector: J2EE Connector Architecture (J2CA)-Based Provider" on
page 2-21.

Configuring OC4J J2CA Resource Adapter Deployment XML Files
To configure a J2CA message service provider, you must configure the following
deployment XML files:

■ ra.xml

■ oc4j-ra.xml

■ oc4j-connectors.xml

Using these deployment XML files, you can specify factories that are either not
XA-compliant, when two-phase commit (2PC) transactions are not needed, or
XA-compliant, when 2PC transactions are needed. For more information on 2PC, see

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see "Restrictions When Accessing a
Message Service Provider Without a J2CA Resource Adapter" on
page 2-25.

Note: For a complete code example of configuring a J2CA message
service provider resource adapter and MDB application, see
http://www.oracle.com/technology/tech/java/oc4j/1013
/how_
to/how-to-gjra-with-oracleasjms/doc/how-to-gjra-with
-oracleasjms.html.

Configuring an OEMS JMS Message Service Provider

Configuring Message Services 23-3

"How do You Participate in a Global or Two-Phase Commit (2PC) Transaction?" on
page 2-20.

For more information, see the following:

■ "Binding and Configuring a Connection Factory: Basic Settings" in the Oracle
Containers for J2EE Resource Adapter Administrator’s Guide

■ "OC4J Resource Adapter Configuration Files" in the Oracle Containers for J2EE
Resource Adapter Administrator’s Guide

Configuring an OEMS JMS Message Service Provider
To configure the OEMS JMS message service provider (see "OEMS JMS: In-Memory or
File-Based Provider" on page 2-23), you must do the following:

1. Choose appropriate JNDI names for your destination and connection factory (see
"OEMS JMS Destination and Connection Factory Names").

2. Configure the <OC4J_HOME>/j2ee/home/config/jms.xml file (see
"Configuring jms.xml") to specify the type of destination and connection factory.

You can specify factories that are either not XA-compliant, when two-phase
commit (2PC) transactions are not needed, or XA-compliant, when 2PC
transactions are needed. For more information on 2PC, see "How do You
Participate in a Global or Two-Phase Commit (2PC) Transaction?" on page 2-20.

3. Optionally, map the actual JNDI names to logical names (see "Configuring an
Environment Reference to a JMS Destination or Connection Resource Manager
Connection Factory (JMS 1.0)" on page 19-14).

4. Configure your message-driven beans to access your OEMS JMS message service
provider.

For more information, see the following:

■ "Configuring an EJB 3.0 MDB to Access a Message Service Provider Using
J2CA" on page 10-1

■ "Configuring an EJB 3.0 MDB to Access a Message Service Provider Directly"
on page 10-3

■ "Configuring an EJB 2.1 MDB to Access a Message Service Provider Using
J2CA" on page 18-1

■ "Configuring an EJB 2.1 MDB to Access a Message Service Provider Directly"
on page 18-3

OEMS JMS Destination and Connection Factory Names
The actual JNDI names for the JMS destination and connection factory are the ones
you specify in the jms.xml file (see "Configuring jms.xml" on page 23-4).

Table 23–1 lists the form of these names.

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see "Restrictions When Accessing a
Message Service Provider Without a J2CA Resource Adapter" on
page 2-25.

Configuring an OEMS JMS Message Service Provider

23-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring jms.xml
You configure OEMS JMS options in the <OC4J_
HOME>/j2ee/home/config/jms.xml file. In this release, the jms.xml is defined
by the XML schema document (XSD) located at
http://www.oracle.com/technology/oracleas/schema/jms-server-10_
1.xsd.

Some of the options you can configure in the jms.xml file include the following:

■ JMS Destination objects used by the MDB.

■ Topic or queue in the jms.xml file to which the client sends all messages that are
destined for the MDB.

■ The name, location, and connection factory for either Destination type must be
specified.

You can specify factories that are either not XA-compliant, when two-phase
commit (2PC) transactions are not needed, or XA-compliant, when 2PC
transactions are needed. For more information on 2PC, see "How do You
Participate in a Global or Two-Phase Commit (2PC) Transaction?" on page 2-20.

■ If your MDB accesses a database for inquiries and so on, then you can configure
the data source used. For information on data source configuration, see the Data
Source chapter in the Oracle Containers for J2EE Services Guide.

■ Path to a file in which OEMS JMS events and errors are written.

Example 23–1 shows the jms.xml file configuration for an EJB 2.1 MDB that specifies
a queue (named jms/Queue/rpTestQueue) that is used by the message-driven bean
rpTestMdb (see Example 17–1). The queue connection factory is defined as
jms/Queue/myQCF. In addition, a topic is defined named
jms/Topic/rpTestTopic, with a connection factory of jms/Topic/myTCF.

Example 23–1 jms.xml For an EJB 2.1 MDB using OEMS JMS Factories

<jms>
<jms-server port="9128">

<queue location="jms/Queue/rpTestQueue"></queue>
<queue-connection-factory location="jms/Queue/myQCF"></queue-connection-factory>
<topic location="jms/Topic/rpTestTopic"></topic>
<topic-connection-factory location="jms/Topic/myTCF"></topic-connection-factory>
<log>

<!-- path to the log-file where JMS-events and errors are written -->
<file path="../log/jms.log" />

</log>
</jms-server>

</jms>

Example 23–2 shows the jms.xml file configuration for the same MDB using XA
factories for two-phase commit (2PC) support.

Table 23–1 OEMS JMS Destination and Connection Factory Names

Type Form

Queue jms/Queue/<QName>

Queue Connection Factory jms/Queue/<QCFName>

Topic jms/Topic/<TName>

Topic Connection Factory jms/Topic/<TCFName>

Configuring an OEMS JMS Database Message Service Provider

Configuring Message Services 23-5

Example 23–2 jms.xml For an EJB 2.1 MDB using OEMS JMS XA Factories

<jms>
<jms-server port="9128">

<queue location="jms/Queue/rpTestQueue"></queue>
<xa-queue-connection-factory location="jms/Queue/myXAQCF"></queue-connection-factory>
<topic location="jms/Topic/rpTestTopic"></topic>
<xa-topic-connection-factory location="jms/Topic/myXATCF"></topic-connection-factory>
<log>

<!-- path to the log-file where JMS-events and errors are written -->
<file path="../log/jms.log" />

</log>
</jms-server>

</jms>

Configuring an OEMS JMS Database Message Service Provider
To configure the OEMS JMS Database message service provider (see "OEMS JMS
Database: Advanced Queueing (AQ)-Based Provider" on page 2-24), you must do the
following:

1. Install and configure the OEMS JMS Database provider (see "Installing and
Configuring the OEMS JMS Database Provider" on page 23-6).

You can grant privileges that either disable XA-compliant resources, when
two-phase commit (2PC) transactions are not needed, or enable XA-compliant
resources, when 2PC transactions are needed. For more information on 2PC, see
"How do You Participate in a Global or Two-Phase Commit (2PC) Transaction?" on
page 2-20.

2. Choose appropriate JNDI names for your destination and connection factory (see
"OEMS JMS Database Destination and Connection Factory Names" on page 23-6).

3. Configure the data-sources.xml file to identify your database (see
"Configuring data-sources.xml" on page 23-8).

4. Optionally, map the actual JNDI names to logical names (see "Configuring an
Environment Reference to a JMS Destination or Connection Resource Manager
Connection Factory (JMS 1.0)" on page 19-14).

5. Configure the application.xml (or orion-application.xml) file to identify
the JNDI name of the data source that is to be used as the OEMS JMS Database
provider within the <resource-provider> element (see "Configuring
application.xml or orion-application.xml" on page 23-8).

6. Configure your message-driven beans to access your OEMS JMS Database
message service provider.

For more information, see the following:

■ "Configuring an EJB 3.0 MDB to Access a Message Service Provider Using
J2CA" on page 10-1

■ "Configuring an EJB 3.0 MDB to Access a Message Service Provider Directly"
on page 10-3

■ "Configuring an EJB 2.1 MDB to Access a Message Service Provider Using
J2CA" on page 18-1

■ "Configuring an EJB 2.1 MDB to Access a Message Service Provider Directly"
on page 18-3

Configuring an OEMS JMS Database Message Service Provider

23-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

OEMS JMS Database Destination and Connection Factory Names
The actual JNDI names for the JMS destination and connection factory depend on your
OEMS JMS Database installation as shown in Table 23–2.

The values for the variables in Table 23–2 are defined as follows:

■ <ProviderName>: the JNDI name of the data source that is providing OEMS
JMS Database service (see "Configuring application.xml or orion-application.xml"
on page 23-8)

■ <QName>: the name of the queue you created in the database (see step 3 b in
"Installing and Configuring the OEMS JMS Database Provider" on page 23-6).

■ <QCFName>: the name of the queue connection factory. You may specify any
arbitrary name.

■ <TName>: the name of the topic you created in the database (see step 3 b in
"Installing and Configuring the OEMS JMS Database Provider" on page 23-6).

■ <TCFName>: the name of the topic connection factory. You may specify any
arbitrary name.

Installing and Configuring the OEMS JMS Database Provider

1. You or your DBA must install Oracle AQ according to the Oracle Streams Advanced
Queuing User's Guide and Reference. and generic database manuals.

2. You or your DBA should create an RDBMS user through which the MDB connects
to the database and grant this user appropriate access privileges to perform OEMS
JMS Database operations.

The privileges that you need depend on what functionality you are requesting.
Refer to the Oracle Streams Advanced Queuing User's Guide and Reference. for more
information on privileges necessary for each type of function.

Note: Oracle recommends that you access a message service
provider using a J2CA resource adapter such as the Oracle JMS
Connector. For more information, see "Restrictions When Accessing a
Message Service Provider Without a J2CA Resource Adapter" on
page 2-25.

Table 23–2 OEMS JMS Database Destination and Connection Factory Names

Type Form

Queue java:comp/resource/<ProviderName>/Queues/<QName>

Queue Connection Factory java:comp/resource/<ProviderName>/QueueConnectionFactories/<QCFName>

Topic java:comp/resource/<ProviderName>/Topics/<TName>

Topic Connection Factory java:comp/resource/<ProivderName>/TopicConnectionFactories/<TCFName>

Note: The following sections use SQL for creating queues, topics,
their tables, and assigning privileges that is provided within the MDB
demo on the OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/demo
s.

Configuring an OEMS JMS Database Message Service Provider

Configuring Message Services 23-7

The following example creates jmsuser, which must be created within its own
schema, with privileges required for Oracle AQ operations. You must be a SYS
DBA to execute these statements.

DROP USER jmsuser CASCADE ;

GRANT connect, resource,AQ_ADMINISTRATOR_ROLE TO jmsuser IDENTIFIED BY jmsuser
;
GRANT execute ON sys.dbms_aqadm TO jmsuser;
GRANT execute ON sys.dbms_aq TO jmsuser;
GRANT execute ON sys.dbms_aqin TO jmsuser;
GRANT execute ON sys.dbms_aqjms TO jmsuser;

connect jmsuser/jmsuser;

You may need to grant other privileges, such as XA-compliant, two-phase commit
(2PC) privileges or system administration privileges, based on what the user
needs.

For more information on 2PC, see the following:

■ "How do You Participate in a Global or Two-Phase Commit (2PC)
Transaction?" on page 2-20

■ Oracle Containers for J2EE Services Guide JTA chapter

3. You or your DBA should create the tables and queues to support the JMS
Destination objects.

Refer to the Oracle Streams Advanced Queuing User's Guide and Reference. for more
information on the DBMS_AQADM packages and Oracle AQ messages types.

a. Create the tables that handle the JMS Destination (queue or topic).

In OEMS JMS Database, both topics and queues use a queue table. The
rpTestMdb JMS example creates a single table: rpTestQTab for a queue.

To create the queue table, execute the following SQL:

DBMS_AQADM.CREATE_QUEUE_TABLE(
 Queue_table => 'rpTestQTab',
 Queue_payload_type => 'SYS.AQ$_JMS_MESSAGE',
 sort_list => 'PRIORITY,ENQ_TIME',
 multiple_consumers => false,
 compatible => '8.1.5');

The multiple_consumers parameter denotes whether there are multiple
consumers or not; thus, is always false for a queue and true for a topic.

b. Create the JMS Destination. If you are creating a topic, you must add each
subscriber for the topic. The rpTestMdb JMS example requires a single
queue–rpTestQueue.

The following creates a queue called rpTestQueue within the queue table
rpTestQTab. After creation, the queue is started:

DBMS_AQADM.CREATE_QUEUE(
 Queue_name => 'rpTestQueue',
 Queue_table => 'rpTestQTab');

DBMS_AQADM.START_QUEUE(
 queue_name => 'rpTestQueue');

Configuring an OEMS JMS Database Message Service Provider

23-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

If you wanted to add a topic, then the following example shows how you can
create a topic called rpTestTopic within the topic table rpTestTTab. After
creation, two durable subscribers are added to the topic. Finally, the topic is
started and a user is granted a privilege to it.

DBMS_AQADM.CREATE_QUEUE_TABLE(
 Queue_table => 'rpTestTTab',
 Queue_payload_type => 'SYS.AQ$_JMS_MESSAGE',
 multiple_consumers => true,
 compatible => '8.1.5');
DBMS_AQADM.CREATE_QUEUE('rpTestTopic', 'rpTestTTab');
DBMS_AQADM.ADD_SUBSCRIBER('rpTestTopic',
 sys.aq$_agent('MDSUB', null, null));
DBMS_AQADM.ADD_SUBSCRIBER('rpTestTopic',
 sys.aq$_agent('MDSUB2', null, null));
DBMS_AQADM.START_QUEUE('rpTestTopic');

Configuring data-sources.xml
Configure a data source for the database where the OEMS JMS Database provider is
installed. The JMS topics and queues use database tables and queues to facilitate
messaging. The type of data source you use depends on the functionality you want.

Example 23–3 shows a typical managed data source, which by default, supports global
(two-phase commit) transactions.

Example 23–3 Emulated Data Source With Thin JDBC Driver

<connection-pool name="ScottConnectionPool">
<connection-factory

factory-class="oracle.jdbc.pool.OracleDataSource"
user="scott"
password="tiger"
url="jdbc:oracle:thin:@//localhost:1521/ORCL" >

</connection-factory>
</connection-pool>

<managed-data-source

name="OracleDS"
jndi-name="jdbc/OracleDS"
connection-pool-name="ScottConnectionPool"

/>

For more information, see "Understanding EJB Data Source Services" on page 2-14.

Configuring application.xml or orion-application.xml
Identify the JNDI name of the data source that is to be used as the OEMS JMS
Database provider within the <resource-provider> element.

■ If this is to be the JMS provider for all applications (global), configure the global
application.xml file.

Note: Oracle AQ uses the DBMS_AQADM.CREATE_QUEUE method to
create both queues and topics.

Note: The names defined here must be the same names used to
define the queue or topic in the orion-ejb-jar.xml file.

Configuring an OEMS JMS Database Message Service Provider

Configuring Message Services 23-9

■ If this is to be the JMS provider for a single application (local), configure the
orion-application.xml file of the application.

The following code sample shows how to configure the JMS provider using XML
syntax for OEMS JMS Database:

■ class attribute–The OEMS JMS Database provider is implemented by the
oracle.jms.OjmsContext class, which is configured in the class attribute.

■ property attribute–Identify the data source that is to be used as this JMS
provider in the property element. The topic or queue connects to this data
source to access the tables and queues that facilitate the messaging.

The following example demonstrates that the data source identified by
"jdbc/OracleDS" is to be used as the OEMS JMS Database provider. This JNDI name
is specified in the managed-data-source element jndi-name attribute in
Example 23–3. If this example used a non-emulated data source, then the name would
be the same as in the location element.

<resource-provider
class="oracle.jms.OjmsContext"
name="myProvider">
<description>OJMS/AQ</description>
<property name="datasource" value="jdbc/OracleDS"></property>

</resource-provider>

Configuring an OEMS JMS Database Message Service Provider

23-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring OC4J EJB Application Clustering Services 24-1

24
Configuring OC4J EJB Application

Clustering Services

This chapter describes the OC4J application clustering options you can configure for
your EJB application, including the following:

■ Configuring EJB 3.0 and EJB 2.1 Stateful Session Bean Replication Policy

■ Configuring Static Retrieval Load Balancing

■ Configuring DNS Load Balancing

■ Configuring Load Balancing Behavior

For more information, see "Understanding OC4J EJB Application Clustering Services"
on page 2-29.

Configuring EJB 3.0 and EJB 2.1 Stateful Session Bean Replication Policy
The general procedure for configuring EJB application clustering for an EJB 3.0 or EJB
2.1 stateful session bean is as follows:

1. Configure your OC4J application cluster (see "Application Clustering in OC4J" in
the Oracle Containers for J2EE Configuration and Administration Guide).

2. Configure a replication policy for stateful session beans on each node (see "Using
Deployment XML" on page 24-1).

3. Configure load-balancing behavior (see "Configuring Load Balancing Behavior" on
page 24-4).

4. Deploy your enterprise bean to any one of the nodes in the cluster.

For more information, see the following:

■ "State Replication" on page 2-30

■ "Stateful Session EJB State Replication with Oracle Application Server Cluster
(OC4J)" in the Oracle Application Server High Availability Guide

Using Deployment XML
To configure a replication policy, add a <replication-policy> element to one or
more of the appropriate deployment descriptor files that Table 24–1 lists. You can
specify a single replication policy that OC4J applies globally, or specify finer-grained
replication policy at the application level for both Web and EJB components, or EJB
components only.

Configure the trigger attribute to one of the following:

Configuring EJB 3.0 and EJB 2.1 Stateful Session Bean Replication Policy

24-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ inherited – The stateful session bean uses the state replication trigger setting
you configure at the application level. This is the default value.

■ onRequestEnd – The state of the stateful session bean is replicated to all hosts in
the cluster (with the same multicast address, port) at the end of each EJB method
call. If the node loses power, then the state has already been replicated. This
method offers less performance than the JVM termination replication mode,
because the state is sent out more often. However, the guarantee for reliance is
higher.

■ onShutdown –The state of the stateful session bean is replicated to only one other
host in the cluster (with the same multicast address, port) when the JVM is
terminating. This option provides the highest performance, because the state is
replicated only once. However, it is not very reliable for the following reasons:

– Your state is not replicated if the host is terminated unexpectedly.

– The state of the bean exists only on a single host at any time; you carry a
higher risk that the state does not replicate and is lost.

■ none–Disable clustering for this stateful session bean.

The scope attribute is always set to allAttributes for a stateful session bean.

For more information, see "State Replication" on page 2-30.

Overriding Application-Level Replication Policy in the orion-ejb-jar.xml File for EJB
Components
When you configure the orion-ejb-jar.xml file with a state replication policy for a
stateful session bean (see Example 24–1), each bean can use a different type of
replication independent of the Web component replication type.

Example 24–1 The orion-ejb-jar.xml For an Application-Level Replication Policy for EJB

<orion-ejb-jar>
...

<session-deployment
name="AirlinePOEndpointBean"
max-tx-retries="0"
location="AirlinePOEndpointBean"
persistence-filename="AirlinePOEndpointBean">

Note: Using Application Server Control, you cannot configure the
trigger attribute to inherited or none. To set these values, edit
the deployment XML manually. For more information, see "Using
Oracle Enterprise Manager 10g Application Server Control" on
page 31-1

Table 24–1 Deployment XML Files for Replication Policy Configuration

Scope Components Deployment XML File See also ...

Global Web and EJB application.xml "Stateful Session EJB State Replication with Oracle
Application Server Cluster (OC4J)" in the Oracle Application
Server High Availability Guide

Application-level Web and EJB orion-application.xml "Stateful Session EJB State Replication with Oracle
Application Server Cluster (OC4J)" in the Oracle Application
Server High Availability Guide

Application-level EJB orion-ejb-jar.xml "Overriding Application-Level Replication Policy in the
orion-ejb-jar.xml File for EJB Components" on page 24-2

Configuring DNS Load Balancing

Configuring OC4J EJB Application Clustering Services 24-3

...
<replication-policy

trigger="onRequestEnd"
scope="allAttributes"

/>
...

</session-deployment>
...
</orion-ejb-jar>

Configuring Static Retrieval Load Balancing
To use static retrieval of OC4J instances for load balancing, do the following:

1. Within each client, configure JNDI properties as follows (see "Using JNDI
Properties" on page 24-3:

■ For java.naming.factory.initial, use any initial context factory.

■ For the java.naming.provider.url, provide a comma-delimited list of
OC4J nodes in the form
<prefix>://<hostname>:<port>/<application-name> where
<prefix> is opmn:ormi for OC4J in Oracle Application Server, or ormi
for OC4J standalone.

2. Configure load balancing behavior (see "Configuring Load Balancing Behavior" on
page 24-4).

For more information, see the following:

■ "Load Balancing" on page 2-31

■ "Configuring the Naming Provider URL for OC4J and Oracle Application Server"
on page 19-20

■ "Configuring the Naming Provider URL for OC4J Standalone" on page 19-21

Using JNDI Properties
Example 24–2 shows a URL definition that provides the client container with three
OC4J nodes (with hostnames s1, s2, and s3 and ports 23791, 23792, and 23793,
respectively) to use for load balancing.

Example 24–2 JNDI Properties for Static Retrieval Load Balancing

java.naming.factory.initial= oracle.j2ee.rmi.RMIInitialContextFactory
java.naming.provider.url=ormi://s1:23791/ejbs, ormi://s2:23792/ejbs, ormi://s3:23793/ejbs;
java.naming.security.principal=admin
java.naming.security.credentials=welcome

Configuring DNS Load Balancing
To use DNS load balancing, do the following:

1. Within DNS, map a single host name to several IP addresses. Each of the port
numbers must be the same for each IP address. Set up the DNS server to return the
addresses either in a round-robin or random fashion.

The IP address identifies the OC4J running; the port number is an RMI port
number.

Configuring Load Balancing Behavior

24-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

2. Turn off DNS caching on the client. For UNIX machines, you must turn off DNS
caching as follows:

a. Kill the NSCD daemon process on the client.

b. Start the OC4J client with the -Dsun.net.inetaddr.ttl=0 option.

3. Within each client, configure JNDI properties as follows (see "Using JNDI
Properties" on page 24-4):

■ For java.naming.factory.initial, use any initial context factory.

■ For the java.naming.provider.url, provide single host name to which
the OC4J IP addresses are mapped and the common RMI port in the form
<prefix>://<hostname>:<port>/<application-name> where
<prefix> is opmn:ormi for OC4J in Oracle Application Server or ormi for
OC4J standalone.

4. Configure load balancing behavior (see "Configuring Load Balancing Behavior" on
page 24-4).

Each time the lookup occurs on the DNS server, the DNS server hands back one of the
many IP addresses that are mapped to it.

For more information, see the following:

■ "Load Balancing" on page 2-31

■ "Configuring the Naming Provider URL for OC4J and Oracle Application Server"
on page 19-20

■ "Configuring the Naming Provider URL for OC4J Standalone" on page 19-21

Using JNDI Properties
In Example 24–3, the initial context factory is RMIInitialContextFactory
(however, you can use any initial context factory for DNS load balancing), myserver
is the host name set up in the DNS server for the list of servers, and the RMI port is the
default port.

Example 24–3 JNDI Properties for DNS Load Balancing

java.naming.factory.initial= oracle.j2ee.rmi.RMIInitialContextFactory
java.naming.provider.url=ormi://myserver/applname
java.naming.security.principal=admin
java.naming.security.credentials=welcome

Configuring Load Balancing Behavior
For both EJB 3.0 and EJB 2.1 and for all load-balancing strategies (replication-based,
static retrieval, or DNS), you can configure how a client’s requests are load-balanced
across the OC4J instances in your cluster (see "Using System Properties" on page 24-4).

For more information, see "Load Balancing" on page 2-31.

Using System Properties
In this release, configure the oracle.j2ee.rmi.loadBalance system property to
specify load balancing in an application cluster.

This system property takes one of the following values:

Configuring Load Balancing Behavior

Configuring OC4J EJB Application Clustering Services 24-5

■ client–The client interacts with the OC4J process that was initially chosen at the
first lookup for the entire conversation (default).

■ context–The client goes to a new server when a separate context is used (similar
to deprecated dedicated.rmicontext).

■ lookup–The client goes to a new (randomly selected) server for every request.

Configure this system property either on the OC4J command line as a -D argument or
as an environment reference (see "Configuring an Environment Reference to an
Environment Variable" on page 19-16). This system property applies to all clients.

Configuring Load Balancing Behavior

24-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Timer Services 25-1

25
Configuring Timer Services

This chapter describes the following:

■ Configuring an Enterprise Bean With a Java EE Timer

■ Configuring an Enterprise Bean With an OC4J Cron Timer

■ Troubleshooting Timers

For more information, see "Understanding EJB Timer Services" on page 2-31.

Configuring an Enterprise Bean With a Java EE Timer
You can configure the following types of enterprise beans to use a Java EE timer:

■ EJB 3.0 stateless session beans and message-driven beans.

■ EJB 2.1 stateless session beans, entity beans with container-managed persistence,
entity beans with bean-managed persistence, and message-driven beans.

To configure an enterprise bean with a Java EE timer, do the following:

1. Acquire the javax.ejb.TimerService in one of the following ways:

■ For an EJB 3.0 enterprise bean, use the @Resource annotation, as
Example 25–1 shows.

■ For an EJB 3.0 or EJB 2.1 enterprise bean, use EJBContext or
InitalContext method getTimerService, as Example 25–2 shows.

2. Use TimerService method createTimer to create the appropriate type of
timer (see the javax.ejb.TimerService API), as Example 25–1 and
Example 25–2 show.

When you create a Timer on an EJB 2.1 entity bean, the container invokes the
timeout callback method of that particular entity bean instance identified by its
primary key. Timers created for a particular entity bean are removed when the
entity bean is removed.

Note: You can download EJB timer code examples from:
http://www.oracle.com/technology/tech/java/oc4j/de
mos and
http://www.oracle.com/technology/tech/java/oc4j/10
03/how_to/how-to-ejb-timer.html.

Configuring an Enterprise Bean With a Java EE Timer

25-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

When you create a Timer on any other type of enterprise beans, the container
invokes the timeout callback method on any instance of that type in the pooled
state.

3. Implement a timeout callback method.

This method must not be static or final and must have the following
signature:

void <METHOD>(Timer timer)

You can implement a timeout callback method in one of the following ways:

■ For an EJB 3.0 enterprise bean, annotate any bean method using the
@Timeout annotation, as Example 25–1 shows.

■ For an EJB 3.0 or EJB 2.1 enterprise bean, implement the
javax.ejb.TimedObject interface, as Example 25–2 shows.

Example 25–1 Configuring a Java EE Timer on an EJB 3.0 Stateless Session Bean

import javax.ejb.Stateless;
import javax.annotation.PostConstruct;
import javax.ejb.TimerService;
import javax.ejb.Timer;
import javax.ejb.Timeout;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;

@Stateless
public class MySession {

@PostConstruct
@TransactionAttribute(value=REQUIRES_NEW)
public void initialize() {

@Resource TimerService timerService;
Timer timer = ts.createTimer(timeout, "Optional-Serializable-Info");

}

...

@Timeout
@TransactionAttribute(value=REQUIRES_NEW)
public void timeoutCallback(Timer timer) {
...
}

}

Example 25–2 Configuring a Java EE Timer on an EJB 2.1 Stateless Session Bean

import javax.ejb.SessionBean;
import javax.ejb.TimerService;
import javax.ejb.TimedObject;

public class MySession implements SessionBean, TimedObject {
public void initialize() {

InitialContext ctx = new InitialContext();
TimerService ts = ctx.getTimerService();
Timer timer = ts.createTimer(timeout, "Optional-Serializable-Info");

}
...
public void ejbTimeout(Timer timer) {
...
}

}

Configuring an Enterprise Bean With an OC4J Cron Timer

Configuring Timer Services 25-3

Configuring an Enterprise Bean With an OC4J Cron Timer
You can use an OC4J cron timer with the following:

■ EJB 3.0 stateless session beans and message-driven beans;

■ EJB 2.1 enterprise beans of any type.

You can schedule a timer to execute regularly at specified intervals. In the UNIX
world, these are known as cron timers.

Example 25–3 shows examples of the different methods you can use in scheduling a
cron timer. Where there is an asterisk, all values are valid.

Example 25–3 How to Configure Different Cron Timers

20 * * * * --> 20 minutes after every hour, such as 00:20, 01:20, and so on
 5 22 * * * --> Every day at 10:05 P.M.
 0 8 1 * * --> First day of every month at 8:00 A.M.
 0 8 4 7 * --> The fourth of July at 8:00 A.M.
15 12 * * 5 --> Every Friday at 12:15 P.M.

The format of a cron time variable includes five time fields, as follows:

■ Minute: 0-59

■ Hour: 0-23

■ Day of the Month: 1-31

■ Month: 1-12 or specify with the following strings: Jan, Feb, Mar, Apr, May, Jun, Jul,
Aug, Sep, Oct, Nov, Dec

■ Day of the Week: 0-7 or with the following strings: Sun, Mon, Tue, Wed, Thu, Fri,
Sat. Both 0 and 7 signify Sunday.

You can define complex timers by specifying multiple values in a field, separated by
commas or a dash, as Example 25–4 shows.

Example 25–4 Complex Cron Timers

0 8 * * 1,3,5 --> Every Monday, Wednesday, and Friday at 8:00 A.M.
0 8 1,15 * * --> The first and 15th of every month at 8:00 A.M.
0 8-17 * * 1-5 --> Every hour from 8 A.M. through 5 P.M., Monday through Friday

To configure an enterprise bean with an OC4J cron timer, do the following:

1. Acquire the oracle.ias.container.timer.EJBTimerService in one of the
following ways:

■ For an EJB 3.0 enterprise bean, use the @Resource annotation, as
Example 25–5 shows.

■ For an EJB 3.0 or EJB 2.1 enterprise bean, use EJBContext or
InitalContext method getTimerService, as Example 25–6 shows.

2. Use EJBTimerService method createTimer to create the appropriate type of
timer, as Example 25–5 and Example 25–6 show.

You can use any of the following EJBTimerService methods, all of which return
an object of type javax.ejb.Timer and throw IllegalArgumentException
and IllegalStateException:

■ createTimer(String cronline, Serializable info)

Configuring an Enterprise Bean With an OC4J Cron Timer

25-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Use this method to create an OC4J cron timer that invokes a timeout callback
method on the bean by passing in a String cron line, as the following
example shows. Use the info argument to pass application information to
OC4J: this can be null:

...
import oracle.ias.container.timer.EJBTimerService;
import javax.ejb.timer.Timer;
...
@Resource EJBTimerService ets;

String cron = "1 * * * *";
String info = "";
Timer et = ets.createTimer(cron, info);
...

■ createTimer(int minute, int hour, int dayOfMonth, int
month, int dayOfWeek, Serializable info) or

createTimer(int minute, int hour, int dayOfMonth, int
month, int dayOfWeek, int year, Serializable info)

Use this method to create an OC4J cron timer that invokes a timeout callback
method on the bean by passing each cron field as a separate argument, as the
following example shows. Use the info argument to pass application
information to OC4J: this can be null:

...
import oracle.ias.container.timer.EJBTimerService;
import javax.ejb.timer.Timer;
...
@Resource EJBTimerService ets;

int min=15; // minutes
int hr=13; // hour (1 PM)
int dom=28; // day of month
int mo=1; // month (January)
int dow=3; // day of week (Wednesday)
String info = "";
Timer et = ets.createTimer(min, hr, dom, mo, dow, info);
...

■ createTimer(String cronline, String className,
Serializable info)

Use this method to create an OC4J cron timer that invokes the specified Java
class’s main method by passing in a String cron line, as the following
example shows. The info argument can be either null or a String[] of
parameters to pass to the main method of the class:

...
import mypackage.MyClass;
import oracle.ias.container.timer.EJBTimerService;
import javax.ejb.timer.Timer;
...
@Resource EJBTimerService ets;

String cron = "1 * * * *";
String info = "";
Timer et = ets.createTimer(cron, MyClass.class.getName(), info);
...

Configuring an Enterprise Bean With an OC4J Cron Timer

Configuring Timer Services 25-5

■ createTimer(int minute, int hour, int dayOfMonth, int
month, int dayOfWeek, String className, Serializable info)
or

createTimer(int minute, int hour, int dayOfMonth, int
month, int dayOfWeek, int year, String className,
Serializable info)

Use this method to create an OC4J cron timer that invokes the specified Java
class’s main method by passing each cron field as a separate argument, as the
following example shows. The info argument can be either null or a
String[] of parameters to pass to the main method of the class:

...
import mypackage.MyClass;
import oracle.ias.container.timer.EJBTimerService;
import javax.ejb.timer.Timer;
...
@Resource EJBTimerService ets;

int min=15; // minutes
int hr=13; // hour (1 PM)
int dom=28; // day of month
int mo=1; // month (January)
int dow=3; // day of week (Wednesday)
String info = "";
Timer et = ets.createTimer(min, hr, dom, mo, dow,

MyClass.class.getName(), info);
...

When you create a Timer on an EJB 2.1 entity bean, the container invokes the
timeout callback method of that particular entity bean instance identified by its
primary key. Timers created for a particular entity bean are removed when the
entity bean is removed.

When you create a Timer on any other type of EJB, the container invokes the
timeout callback method on any instance of that type in the pooled state.

3. Complete the configuration depending on what action OC4J takes when the timer
fires, as follows:

a. If you created a timer using a createTimer method that does not take a
Class, OC4J invokes a timeout callback method when the timer fires.

The timeout callback method must not be static or final, and must have
the following signature:

void <METHOD>(Timer timer)

You can implement a timeout callback method in one of the following ways:

– For an EJB 3.0 enterprise bean, annotate any bean method using the
@Timeout annotation, as Example 25–5 shows.

– For an EJB 3.0 or EJB 2.1 enterprise bean, implement the
javax.ejb.TimedObject interface, as Example 25–6 shows.

b. If you created a timer using a createTimer method that takes a Class, OC4J
invokes the main method of the Class that you specify when the timer fires.

The main method must have the following signature:

Troubleshooting Timers

25-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

public static void main(String args[])

Example 25–5 Configuring an OC4J Cron Timer on an EJB 3.0 Stateless Session Bean

import javax.ejb.Stateless;
import javax.annotation.PostConstruct;
import oracle.ias.container.timer.EJBTimerService;
import javax.ejb.Timer;
import javax.ejb.Timeout;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;

@Stateless
public class MySession {

@PostConstruct
@TransactionAttribute(value=REQUIRES_NEW)
public void initialize() {

@Resource EJBTimerService ets;

String cron = "1 * * * *";
String info = "";
Timer et = ets.createTimer(cron, info);

}

...

@Timeout
@TransactionAttribute(value=REQUIRES_NEW)
public void timeoutCallback(Timer timer) {
...
}

}

Example 25–6 Configuring an OC4J Cron Timer on an EJB 2.1 Stateless Session Bean

import javax.ejb.SessionBean;
import oracle.ias.container.timer.EJBTimerService;
import javax.ejb.TimedObject;

public class MySession implements SessionBean, TimedObject {
public void initialize() {

String cron = "1 * * * *";
String info = "";
InitialContext ctx = new InitialContext();
EJBTimerService ets = (EJBTimerService) ctx.getTimerService();
Timer et = ets.createTimer(cron, info);

}
...
public void ejbTimeout(Timer timer) {
...
}

}

Troubleshooting Timers
This section describes the following:

■ Retrieving Information About a Timer

■ Retrieving a Persisted Timer

■ Executing a Timer Within the Scope of a Transaction

Troubleshooting Timers

Configuring Timer Services 25-7

■ What Does a NoSuchObjectLocalException Mean With Timers?

Retrieving Information About a Timer
You can retrieve information and cancel the timer through the Timer object. The
methods available are cancel, getTimeRemaining, getNextTimeout,
getHandle, and getInfo. To compare for object equality, use the
Timer.equals(Object obj) method.

Retrieving a Persisted Timer
Timers must be able to be persisted so that they can survive the life cycle of the bean
(ejbLoad, ejbStore, and so on). You can retrieve a persisted Timer object through
its handle. Retrieve the TimerHandle through the Timer.getHandle method. Then,
you can retrieve the persisted Timer object through the TimerHandle.getTimer
method.

Executing a Timer Within the Scope of a Transaction
You usually create and cancel a timer within the scope of a transaction. Thus, you
usually configure the bean as being within a transaction by using RequiresNew. If the
transaction is rolled back, then the container retries the timeout.

For more information on transactions, see the Oracle Containers for J2EE Services Guide.

What Does a NoSuchObjectLocalException Mean With Timers?
When you try to invoke a method on a timer object that has been either successfully
invoked or cancelled, you will receive a NoSuchObjectLocalException.

Note: Timers and their handles are local objects; therefore, try not to
pass them through the bean remote interface.

Troubleshooting Timers

25-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Part IX
Packaging and Deploying an EJB

Application

This part provides procedural information on packaging and deploying a J2EE
application using EJB 3.0 or EJB 2.1 enterprise JavaBeans. For conceptual information,
see Part I, "EJB Overview".

This part contains the following chapters:

■ Chapter 26, "Configuring Deployment Descriptor Files"

■ Chapter 27, "Packaging an EJB Application"

■ Chapter 28, "Deploying an EJB Application to OC4J"

Configuring Deployment Descriptor Files 26-1

26
Configuring Deployment Descriptor Files

This chapter describes how to configure the various deployment descriptor files that
an OC4J application may use, including the following:

■ Configuring the ejb-jar.xml File

■ Configuring the toplink-ejb-jar.xml File

■ Configuring the orion-ejb-jar.xml File

■ Configuring the ejb3-toplink-sessions.xml File

■ Configuring the persistence.xml File

For more information, see "Understanding EJB Deployment Descriptor Files" on
page 2-4.

Configuring the ejb-jar.xml File
This section describes the following:

■ Creating ejb-jar.xml During Migration

■ Creating the ejb-jar.xml File at Deployment Time

■ Creating ejb-jar.xml With JDeveloper

For more information, see "What is the ejb-jar.xml File?" on page 2-5.

Creating ejb-jar.xml During Migration
For EJB 2.1 only, you can automatically generate the ejb-jar.xml file during
migration (see "Migrating to the TopLink EJB 2.1 Persistence Manager" on page 3-13).
After generation, you can use the TopLink Workbench to customize and reexport this
file (see "Using TopLink Workbench" on page 2-2).

Creating the ejb-jar.xml File at Deployment Time
When you deploy an EJB 3.0 application with one or more annotations, OC4J will
write its in-memory ejb-jar.xml file to the same location as the
orion-ejb-jar.xml file in the deployment directory: <ORACLE_
HOME>/j2ee/home/application-deployments/my_application/META-INF.

This ejb-jar.xml file represents configuration obtained from both annotations and a
deployed ejb-jar.xml file (if present).

Configuring the toplink-ejb-jar.xml File

26-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Creating ejb-jar.xml With JDeveloper
You can use JDeveloper to generate and update the ejb-jar.xml file.

For more information, see "Using JDeveloper" on page 2-1.

Configuring the toplink-ejb-jar.xml File
The toplink-ejb-jar.xml file is applicable only if you are using the TopLink JPA
preview persistence provider.

This section describes the following:

■ Creating toplink-ejb-jar.xml During Migration

■ Creating toplink-ejb-jar.xml With TopLink Workbench

For more information, see the following:

■ "What is the toplink-ejb-jar.xml File?" on page 2-6

■ "OC4J and the toplink-ejb-jar.xml File" in the Oracle TopLink Developer’s Guide

Creating toplink-ejb-jar.xml During Migration
For EJB 2.1 projects only, when you migrate an Orion CMP application to TopLink
persistence (see "Migrating to the TopLink EJB 2.1 Persistence Manager" on page 3-13),
the TopLink migration tool automatically creates a toplink-ejb-jar.xml file for
you.

After generation, you can use the TopLink Mapping Workbench to customize and
reexport (see "Understanding the TopLink Workbench" in the Oracle TopLink
Developer’s Guide).

Creating toplink-ejb-jar.xml With TopLink Workbench
For EJB 3.0 projects, if the only JDK 1.5 language extension that your entity classes use
are annotations, you can use the TopLink Workbench to create and configure a
toplink-ejb-jar.xml file. Oracle recommends using the TopLink Workbench to
create and configure this file.

For EJB 2.1 projects, you use the TopLink Workbench to configure persistence
properties in the toplink-ejb-jar.xml file. When you migrate an Orion CMP
application to TopLink persistence (see "Migrating to the TopLink EJB 2.1 Persistence
Manager" on page 3-13), the TopLink migration tool automatically creates a TopLink
Workbench project for you. You can use the TopLink Workbench project to create a
toplink-ejb-jar.xml file.

For more information, see the following:

■ "Understanding the TopLink Workbench" in the Oracle TopLink Developer’s Guide

■ "Creating project.xml with TopLink Workbench" in the Oracle TopLink Developer’s
Guide.

Note: By default, OC4J uses the TopLink Essentials JPA persistence
provider. In this case, you can configure TopLink descriptor-level
options (including mappings) using TopLink JPA extensions
("Accessing TopLink API at Run Time With TopLink Essentials JPA
Persistence" on page 3-4).

Configuring the persistence.xml File

Configuring Deployment Descriptor Files 26-3

Configuring the orion-ejb-jar.xml File
To specify OC4J-proprietary options, you can create an orion-ejb-jar.xml file and
configure the appropriate elements:

■ "<session-deployment>" on page A-4

■ "<entity-deployment>" on page A-10

■ "<message-driven-deployment>" on page A-17

For more information, see "What is the orion-ejb-jar.xml File?" on page 2-6.

Configuring the ejb3-toplink-sessions.xml File
The ejb3-toplink-sessions.xml file is applicable only if you are using the
TopLink JPA preview persistence provider.

This section describes the following:

■ "Creating ejb3-toplink-sessions.xml With TopLink Workbench"

For more information, see "What is the ejb3-toplink-sessions.xml File?" on page 2-7.

Creating ejb3-toplink-sessions.xml With TopLink Workbench
For EJB 3.0 applications, if the only JDK 1.5 language extension that your entity classes
use are annotations, you can use the TopLink Workbench to create and configure a
ejb3-toplink-sessions.xml file. Oracle recommends using the TopLink
Workbench to create and configure this file.

For more information, see the following:

■ "Understanding the TopLink Workbench" in the Oracle TopLink Developer’s Guide

■ "Creating project.xml with TopLink Workbench" in the Oracle TopLink Developer’s
Guide.

Configuring the persistence.xml File
This section describes the following:

Note: Alternatively, in an EJB 3.0 application, you can use
OC4J-proprietary annotations for session bean and message-driven
beans. Vendor extensions set in the orion-ejb-jar.xml file
override extensions set using OC4J-proprietary annotations.

For more information, see the following:

■ "Configuring OC4J-Proprietary Deployment Options on an EJB 3.0
Session Bean" on page 5-10

■ "Configuring OC4J-Proprietary Deployment Options on an EJB 3.0
MDB" on page 10-17

Note: By default, OC4J uses the TopLink Essentials JPA persistence
provider. In this case, you can configure TopLink session-level options
using TopLink JPA extensions ("Accessing TopLink API at Run Time
With TopLink Essentials JPA Persistence" on page 3-4).

Configuring the persistence.xml File

26-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Configuring the persistence.xml With a Named Persistence Unit File

■ Configuring the persistence.xml File for the OC4J Default Persistence Unit

■ Specifying a Data Source in a Persistence Unit

■ Configuring Vendor Extensions in a Persistence Unit

For more information, see "What is the persistence.xml File?" on page 2-8.

Configuring the persistence.xml With a Named Persistence Unit File
Example 26–1 shows an example persistence.xml file that contains one persistence
unit.

Example 26–1 Named Persistence Unit

<persistence-unit name="OrderManagement5">
<provider>com.acme.persistence</provider>
<transaction-type>RESOURCE_LOCAL</transaction-type>
<mapping-file>order1.xml</mapping-file>
<jar-file>order.jar</jar-file>
<class>com.acme.Order</class>
<properties>

<property name="com.acme.persistence.sql-logging" value="on"/>
</properties>

</persistence-unit>

This persistence unit is named OrderManagement5 and uses EntityManager
provider com.acme.persistence. Its <transaction-type> specifies that this
persistence unit requires only a non-JTA data source. It defines its set of persistent
managed classes using all of <mapping-file>, <jar-file>, and <class>
elements (see "What Persistent Managed Classes Does This Persistence Unit Include?"
on page 26-4). It sets property com.acme.persistence.sql.logging to a value of
on using a <property> element.

For detailed descriptions of <persistence-unit> element attributes and
subelements, see the EJB 3.0 specification.

What Persistent Managed Classes Does This Persistence Unit Include?
You can specify the persistent managed classes associated with a persistence unit by
using one or more of the following:

■ <mapping-file> element: specifies one or more object-relational mapping XML
files (orm.xml files).

■ <jar-file> element: specifies one or more JAR files that will be searched for
classes.

■ <class> element: specifies an explicit list of classes.

■ The annotated managed persistence classes contained in the root of the persistence
unit.

The root of the persistence unit is the JAR file or directory, whose META-INF
directory contains the persistence.xml file. To exclude managed persistence
classes, add an <exclude-unlisted-classes> element to the persistence unit.

Configuring the persistence.xml File

Configuring Deployment Descriptor Files 26-5

Configuring the persistence.xml File for the OC4J Default Persistence Unit
Using the OC4J default persistence unit, you can acquire an entity manager without
having to specify a persistence unit by name (see "Understanding OC4J Persistence
Unit Defaults" on page 2-8).

By default, to use the OC4J default persistence unit, you do not need to deploy a
persistence.xml file at all.

If you set orion-ejb-jar.xml file attribute
disable-default-persistent-unit to true, OC4J will expect a
persistence.xml file. In this case, you can still use the OC4J default persistence
unit if you specify an empty persistence unit: configure your persistence.xml file
with an empty persistence unit using any of the following:

■ Empty <persistence> element:

<persistence>
</persistence>

■ Self-closing <persistence/> element

■ Completely empty (zero length) persistence.xml file

You may specify one persistence unit for each scope or module: for example, one for
each EJB JAR.

Specifying a Data Source in a Persistence Unit
In a Java EE application, you specify your data source in a <jta-data-source>
element as Example 26–2 shows. For more information, see "Configuring Data
Sources" on page 20-1.

In a Java SE application, you specify your data source using JDBC vendor extensions,
as Example 26–3 shows. For more information, see "TopLink JPA Extensions for JDBC
(Java SE)" on page 26-7).

Alternatively, using OC4J, you can use the default data source (see "What is a Default
Data Source?" on page 2-16).

Configuring Vendor Extensions in a Persistence Unit
This section describes the TopLink JPA vendor extensions that you can define in a
persistence unit, including the following:

■ TopLink JPA Extensions for JDBC (Java SE)

■ TopLink JPA Extensions for Caching

■ TopLink JPA Extensions for Logging

■ TopLink JPA Extensions for Database, Session, and Application Server

■ TopLink JPA Extensions for Customization

■ TopLink JPA Extensions for Schema Generation

You can specify these vendor extensions by using a <properties> element in your
persistence.xml file. Example 26–2 shows how to set a TopLink JPA persistence
unit extension in a persistence.xml file for a Java EE application, and
Example 26–3 shows how to do the same for a Java SE application.

Configuring the persistence.xml File

26-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 26–2 Configuring a Vendor Extension in the Persistence.xml File (Java EE)

<persistence-unit name="default" transaction-type="JTA">
<provider>

oracle.toplink.essentials.PersistenceProvider
</provider>
<jta-data-source>

jdbc/MyDataSource
</jta-data-source>
<properties>

<property name="toplink.logging.level" value="INFO"/>
</properties>

</persistence-unit>

Example 26–3 Configuring a Vendor Extension in the Persistence.xml File (Java SE)

<persistence-unit name="default" transaction-type="RESOURCE_LOCAL">
<provider>

oracle.toplink.essentials.PersistenceProvider
</provider>
<exclude-unlisted-classes>false</exclude-unlisted-classes>
<properties>

<property name="toplink.logging.level" value="INFO"/>
<property name="toplink.jdbc.driver" value="oracle.jdbc.OracleDriver"/>
<property name="toplink.jdbc.url" value="jdbc:oracle:thin:@myhost:l521:MYSID"/>
<property name="toplink.jdbc.password" value="tiger"/>
<property name="toplink.jdbc.user" value="scott"/>

</properties>
</persistence-unit>

Alternatively, you can set a TopLink JPA persistence unit extension in the Map of
properties you pass into a call to javax.persistence.Persistence method
createEntityManagerFactory as Example 26–4 shows. You can override
extensions set in the persistence.xml file in this way. When you set an extension in
a Map of properties, you can set the value using the public static final field in
the appropriate configuration class in oracle.toplink.essentials.config,
including the following:

■ CacheType

■ TargetDatabase

■ TargetServer

■ TopLinkProperties

 Example 26–4 shows how to set the value of extension
toplink.cache.type.default using the CacheType configuration class.

Example 26–4 Configuring a Vendor Extension When Creating an EntityManagerFactory

import oracle.toplink.essentials.config.CacheType;

Map properties = new HashMap();
properties.put(TopLinkProperties.CACHE_TYPE_DEFAULT, CacheType.Full);
EntityManagerFactory emf = Persistence.createEntityManagerFactory("default", properties);

Note: To access these classes, ensure that the appropriate OC4J
persistence JAR is in your classpath. For more information, see
"TopLink Essentials JPA Persistence Provider" on page 3-2.

Configuring the persistence.xml File

Configuring Deployment Descriptor Files 26-7

TopLink JPA Extensions for JDBC (Java SE)
Table 26–1 lists the TopLink JPA extensions that you can define in a
persistence.xml file to configure JDBC driver parameters. These extensions apply
only when used outside of a EJB container.

Table 26–1 TopLink JPA Extensions for JDBC (Java SE)

Property Usage Default

toplink.jdbc.bind-parameters Control whether or not the query uses parameter binding.

For more information, see "Using Conforming Queries and
Descriptors" in the Oracle TopLink Developer’s Guide.

Valid values:

■ true–bind all parameters.

■ false–do not bind parameters.

Example: persistence.xml file

<property name="toplink.jdbc.bind-parameters"
value="true"/>

Example: property Map

import
oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(ToplinkProperties.JDBC_BIND_PARAMETERS,
"true");

true

toplink.jdbc.driver The class name of the JDBC driver you want to use, fully qualified
by its package name. This class must be on your application
classpath.

Example: persistence.xml file

<property name="toplink.jdbc.driver"
value="oracle.jdbc.driver.OracleDriver"/>

Example: property Map

import
oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(ToplinkProperties.JDBC_DRIVER,
"oracle.jdbc.driver.OracleDriver");

toplink.jdbc.password The password for your JDBC user.

Example: persistence.xml file

<property name="toplink.jdbc.password" value="tiger"/>

Example: property Map

import
oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(ToplinkProperties.JDBC_PASSWORD,
"tiger");

toplink.jdbc.read-connections.max The maximum number of connections allowed in the JDBC read
connection pool.

Valid values: 0 to Integer.MAX_VALUE (depending on your
JDBC driver) as a String.

Example: persistence.xml file

<property name="toplink.jdbc.read-connections.max"
value="3"/>

Example: property Map

import
oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(ToplinkProperties.JDBC_READ_
CONNECTIONS_MAX, "3");

2

Configuring the persistence.xml File

26-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

toplink.jdbc.read-connections.min The minimum number of connections allowed in the JDBC read
connection pool.

Valid values: 0 to Integer.MAX_VALUE (depending on your
JDBC driver) as a String.

Example: persistence.xml file

<property name="toplink.jdbc.read-connections.min"
value="1"/>

Example: property Map

import
oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(ToplinkProperties.JDBC_READ_
CONNECTIONS_MIN, "1");

2

toplink.jdbc.read-connections.shared Specify whether or not to allow concurrent use of shared read
connections.

Valid values:

■ true–allow concurrent use of shared read connections.

■ false–do not allow the concurrent use of shared read
connections; concurrent readers are each allocated their own
read connection.

Example: persistence.xml file

<property name="toplink.jdbc.read-connections.shared"
value="true"/>

Example: property Map

import
oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(ToplinkProperties.JDBC_READ_
CONNECTIONS_SHARED, "true");

false

toplink.jdbc.url The JDBC connection URL required by your JDBC driver.

Example: persistence.xml file

<property name="toplink.jdbc.url"
value="jdbc:oracle:thin:@MYHOST:1521:MYSID"/>

Example: property Map

import
oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(ToplinkProperties.JDBC_URL,
"jdbc:oracle:thin:@MYHOST:1521:MYSID");

Table 26–1 (Cont.) TopLink JPA Extensions for JDBC (Java SE)

Property Usage Default

Configuring the persistence.xml File

Configuring Deployment Descriptor Files 26-9

TopLink JPA Extensions for Caching
Table 26–2 lists the TopLink JPA extensions that you can define in a
persistence.xml file to configure the TopLink cache.

For more information, see "Understanding the Cache" in the Oracle TopLink Developer’s
Guide.

toplink.jdbc.user The user name for your JDBC user.

Example: persistence.xml file

<property name="toplink.jdbc.user" value="scott"/>

Example: property Map

import
oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(ToplinkProperties.JDBC_USER, "scott");

toplink.jdbc.write-connections.max The maximum number of connections allowed in the JDBC write
connection pool.

Valid values: 0 to Integer.MAX_VALUE (depending on your
JDBC driver) as a String.

Example: persistence.xml file

<property name="toplink.jdbc.write-connections.max"
value="5"/>

Example: property Map

import
oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(ToplinkProperties.JDBC_WRITE_
CONNECTIONS_MAX, "5");

10

toplink.jdbc.write-connections.min The minimum number of connections allowed in the JDBC write
connection pool.

Valid values: 0 to Integer.MAX_VALUE (depending on your
JDBC driver) as a String.

Example: persistence.xml file

<property name="toplink.jdbc.write-connections.min"
value="2"/>

Example: property Map

import
oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(ToplinkProperties.JDBC_WRITE_
CONNECTIONS_MIN, "2");

5

Table 26–1 (Cont.) TopLink JPA Extensions for JDBC (Java SE)

Property Usage Default

Configuring the persistence.xml File

26-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring the persistence.xml File

Configuring Deployment Descriptor Files 26-11

Table 26–2 TopLink JPA Extensions for Caching

Property Usage Default

toplink.cache.type.default The default type of session cache.

A session cache is a shared cache that services clients attached to a given
session. When you read objects from or write objects to the data source
using a client session, TopLink saves a copy of the objects in the parent
server session's cache and makes them accessible to child client sessions.

Valid values: oracle.toplink.essentials.config.CacheType

■ Full–This option provides full caching and guaranteed identity:
objects are never flushed from memory unless they are deleted.

For more information, see "Full Identity Map" in the Oracle TopLink
Developer’s Guide.

■ HardWeak–This option is similar to Weak, except that it maintains a
most frequently used subcache that uses hard references.

For more information, see "Soft and Hard Cache Weak Identity
Maps" in the Oracle TopLink Developer’s Guide.

■ NONE–This option does not preserve object identity and does not
cache objects. Oracle does not recommend using this option.

For more information, see "No Identity Map" in the Oracle TopLink
Developer’s Guide.

■ SoftWeak–This option is similar to Weak, except that it maintains a
most frequently used subcache that uses soft references. Oracle
recommends using this identity map in most circumstances as a
means to control memory used by the cache.

For more information, see "Soft and Hard Cache Weak Identity
Maps" in the Oracle TopLink Developer’s Guide.

■ Weak–This option is similar to Full, except that objects are
referenced using weak references. This option uses less memory
than Full, but does not provide a durable caching strategy across
client/server transactions. Oracle recommends using this identity
map for transactions that, once started, stay on the server side.

For more information, see "Weak Identity Map" in the Oracle
TopLink Developer’s Guide.

Example: persistence.xml file

<property name="toplink.cache.type.default" value="Full"/>

Example: property Map

import oracle.toplink.essentials.config.CacheType;
import oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(ToplinkProperties.CACHE_TYPE_DEFAULT,
CacheType.Full);

SoftWeak

toplink.cache.size.default The default maximum number of objects allowed in a TopLink cache.

Valid values: 0 to Integer.MAX_VALUE as a String.

Example:

<property name="toplink.cache.size.default" value="5000"/>

Example: property Map

import oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(ToplinkProperties.CACHE_SIZE_DEFAULT, 1000);

1000

Configuring the persistence.xml File

26-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

toplink.cache.shared.default The default for whether or not the TopLink session cache is shared by
multiple client sessions.

Valid values:

■ true–The session cache services all clients attached to the session.
When you read objects from or write objects to the data source
using a client session, TopLink saves a copy of the objects in the
parent server session's cache and makes them accessible to all other
processes in the session.

■ false–The session cache services a single, isolated client
exclusively. The isolated client can reference objects in a shared
session cache but no client can reference objects in the isolated
client’s exclusive cache.

Example:

<property name="toplink.cache.shared.default" value="true"/>

Example: property Map

import oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(ToplinkProperties.CACHE_SHARED_DEFAULT,
"true");

true

Table 26–2 (Cont.) TopLink JPA Extensions for Caching

Property Usage Default

Configuring the persistence.xml File

Configuring Deployment Descriptor Files 26-13

TopLink JPA Extensions for Logging
Table 26–3 lists the TopLink JPA extensions that you can define in a
persistence.xml file to configure TopLink logging.

For more information, see "Configuring Logging" in the Oracle TopLink Developer’s
Guide.

toplink.cache.type.<ENTITY> The type of session cache for the JPA entity named <ENTITY>.

For more information on entity names, see @Entity.

Valid values: oracle.toplink.essentials.config.CacheType

■ Full–see toplink.cache.type.default.

■ HardWeak–see toplink.cache.type.default.

■ NONE–see toplink.cache.type.default.

■ SoftWeak–see toplink.cache.type.default.

■ Weak–see toplink.cache.type.default.

Example: persistence.xml file

<property name="toplink.cache.type.Order" value="Full"/>

Example: property Map

import oracle.toplink.essentials.config.CacheType
import oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(TopLinkProperties.CACHE_TYPE+".Order",
CacheType.Full);

SoftWeak

toplink.cache.size.<ENTITY> The maximum number of JPA entities of the type denoted by JPA entity
name <ENTITY> allowed in a TopLink cache.

For more information on entity names, see @Entity.

Valid values: 0 to Integer.MAX_VALUE as a String.

Example:

<property name="toplink.cache.size.Order" value="5000"/>

Example: property Map

import oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(ToplinkProperties.CACHE_SIZE+".Order", 1000);

1000

toplink.cache.shared.<ENTITY> Whether or not the TopLink session cache is shared by multiple client
sessions for JPA entities of the type denoted by JPA entity name
<ENTITY>.

For more information on entity names, see @Entity.

Valid values:

■ true–The session cache services all clients attached to the session.
When you read objects from or write objects to the data source
using a client session, TopLink saves a copy of the objects in the
parent server session's cache and makes them accessible to all other
processes in the session.

■ false–The session cache services a single, isolated client
exclusively. The isolated client can reference objects in a shared
session cache but no client can reference objects in the isolated
client’s exclusive cache.

Example:

<property name="toplink.cache.shared.Order" value="true"/>

Example: property Map

import oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(ToplinkProperties.CACHE_SHARED+".Order",
"true");

true

Table 26–2 (Cont.) TopLink JPA Extensions for Caching

Property Usage Default

Configuring the persistence.xml File

26-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Table 26–3 TopLink JPA Extensions for Logging

Property Usage Default

toplink.logging.level Control the amount and detail of log output by configuring the log level (in
ascending order of information):

Valid values: java.util.logging.Level

■ OFF–disable logging

■ Level.SEVERE–Logs exceptions indicating TopLink cannot continue, as
well as any exceptions generated during login. This includes a stack trace.

■ WARNING–Logs exceptions that do not force TopLink to stop, including all
exceptions not logged with severe level. This does not include a stack trace.

■ INFO–Logs the login/logout for each server session, including the user
name. After acquiring the session, detailed information is logged.

■ CONFIG–Logs only login, JDBC connection, and database information.

■ FINE–Logs SQL.

■ FINER–Similar to warning. Includes stack trace.

■ FINEST–Includes additional low level information.

Example: persistence.xml file

<property name="toplink.logging.level" value="WARNING"/>

Example: property Map

import java.util.logging.Level;
import oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(TopLinkProperties.LOGGING_LEVEL, Level.INFO);

CONFIG

toplink.logging.timestamp Control whether the timestamp is logged in each log entry.

Valid values:

■ true–log a timestamp.

■ false–do not log a timestamp.

Example: persistence.xml file

<property name="toplink.logging.timestamp" value="true"/>

Example: property Map

import oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(TopLinkProperties.LOGGING_TIMESTAMP, "true");

true

Configuring the persistence.xml File

Configuring Deployment Descriptor Files 26-15

TopLink JPA Extensions for Database, Session, and Application Server
Table 26–4 lists the TopLink JPA extensions that you can define in a
persistence.xml file to configure TopLink extensions for database, session, and
application server.

toplink.logging.thread Control whether a thread identifier is logged in each log entry.

Valid values:

■ true–log a thread identifier.

■ false–do not log a thread identifier.

Example: persistence.xml file

<property name="toplink.logging.thread" value="true"/>

Example: property Map

import oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(TopLinkProperties.LOGGING_THREAD, "true");

true

toplink.logging.session Control whether a TopLink session identifier is logged in each log entry.

Valid values:

■ true–log a TopLink session identifier.

■ false–do not log a TopLink session identifier.

Example: persistence.xml file

<property name="toplink.logging.session" value="true"/>

Example: property Map

import oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(TopLinkProperties.LOGGING_SESSION, "true");

true

toplink.logging.exceptions Control whether the exceptions thrown from within the TopLink code are
logged prior to returning the exception to the calling application. Ensures that
all exceptions are logged and not masked by the application code.

Valid values:

■ true–log all exceptions.

■ false–do not log exceptions.

Example: persistence.xml file

<property name="toplink.logging.exceptions" value="true"/>

Example: property Map

import oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(TopLinkProperties.LOGGING_EXCEPTIONS, "true");

false

Table 26–3 (Cont.) TopLink JPA Extensions for Logging

Property Usage Default

Configuring the persistence.xml File

26-16 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring the persistence.xml File

Configuring Deployment Descriptor Files 26-17

Table 26–4 TopLink JPA Extensions for Database, Session, and Application Server

Property Usage Default

toplink.target-database Specify the type of database that your JPA application uses. The
TargetDatabase enum contains an entry for many of the more common
database types supported.

Valid values:
oracle.toplink.essentials.config.TargetDatabase

■ Attunity–configure the persistence provider to use an Attunity
database.

■ Auto–TopLink accesses the database and uses the metadata that JDBC
provides to determine the target database. Applicable to JDBC drives
that support this metadata.

■ Cloudscape–configure the persistence provider to use a Cloudscape
database.

■ Database–configure the persistence provider to use a generic choice if
your target database is not listed here and your JDBC driver does not
support the use of metadata that the Auto option requires.

■ DB2–configure the persistence provider to use a DB2 database.

■ DB2Mainframe–configure the persistence provider to use a
DB2Mainframe database.

■ DBase–configure the persistence provider to use a DBase database.

■ Derby–configure the persistence provider to use a Derby database.

■ HSQL–configure the persistence provider to use an HSQL database.

■ Informix–configure the persistence provider to use an Informix
database.

■ JavaDB–configure the persistence provider to use a JavaDB database.

■ MySQL4–configure the persistence provider to use a MySQL4 database.

■ Oracle–configure the persistence provider to use an Oracle database.

■ PointBase–configure the persistence provider to use a PointBase
database.

■ PostgreSQL–configure the persistence provider to use a PostgreSQL
database.

■ SQLAnyWhere–configure the persistence provider to use an
SQLAnyWhere database.

■ SQLServer–configure the persistence provider to use an SQLServer
database.

■ Sybase–configure the persistence provider to use a Sybase database.

■ TimesTen–configure the persistence provider to use a TimesTen
database.

Example: persistence.xml file

<property name="toplink.target-database" value="Oracle"/>

Example: property Map

import oracle.toplink.essentials.config.TargetDatabase;
import oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(TopLinkProperties.TARGET_DATABASE,
TargetDatabase.Oracle);

Auto

toplink.session-name Specify the name by which the TopLink session is stored in the static session
manager. Use this option if you need to access the TopLink shared session
outside of the context of the Java Persistence API.

Valid values: a valid TopLink session name that is unique in a server
deployment.

Example: persistence.xml file

<property name="toplink.session-name" value="MySession"/>

Example: property Map

import oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(TopLinkProperties.SESSION_NAME, "MySession");

TopLink
generated
unique name.

Configuring the persistence.xml File

26-18 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

TopLink JPA Extensions for Customization
Table 26–5 lists the TopLink JPA extensions that you can define in a
persistence.xml file to configure TopLink customization and validation.

toplink.target-server Specify the type of application server that your JPA application uses:

Valid values: oracle.toplink.essentials.config.TargetServer

■ None–configure the persistence provider to use no application server.

■ OC4J_10_1_3–configure the persistence provider to use OC4J 10.1.3.0.

■ SunAS9–configure the persistence provider to use Sun Application
Server version 9.

Example: persistence.xml file

<property name="toplink.target-server" value="OC4J_10_1_3"/>

Example: property Map

import oracle.toplink.essentials.config.TargetServer;
import oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(TopLinkProperties.TARGET_SERVER,
TargetServer.OC4J_10_1_3);

None

Table 26–4 (Cont.) TopLink JPA Extensions for Database, Session, and Application Server

Property Usage Default

Configuring the persistence.xml File

Configuring Deployment Descriptor Files 26-19

Configuring the persistence.xml File

26-20 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Table 26–5 TopLink JPA Extensions for Customization and Validation

Property Usage Default

toplink.weaving Control whether or not the weaving of the entity classes is
performed. Weaving is required in order to use lazy fetching
of @OneToOne and @ManyToOne relationships.

Valid values:

■ true–weave entity classes.

■ false–do not weave entity classes.

■ static–weave entity classes statically.

Use this option if you plan to execute your application
outside of a Java EE 5 container in an environment that
does not permit the use of
-javagent:toplink-essentials-agent.jar on
the JVM command line.

Example: persistence.xml file

<property name="toplink.weaving" value="true"/>

Example: property Map

import
oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(TopLinkProperties.WEAVING, "true");

true

toplink.session.customizer Specify a TopLink session customizer class: a Java class
that implements the
oracle.toplink.essentials.tools.sessionconfig
uration.SessionCustomizer interface and provides a
default (zero-argument) constructor. Use this class’s
customize method, which takes an
oracle.toplink.essentials.sessions.Session, to
programmatically access advanced TopLink session API.

For more information, see "Session Customization".

Valid values: class name of a SessionCustomizer class
fully qualified by its package name.

Example: persistence.xml file

<property name="toplink.session.customizer"
value="acme.sessions.MySessionCustomizer"/>

Example: property Map

import
oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(TopLinkProperties.SESSION_
CUSTOMIZER, "acme.sessions.MySessionCustomizer");

Configuring the persistence.xml File

Configuring Deployment Descriptor Files 26-21

TopLink JPA Extensions for Schema Generation
Table 26–4 lists the TopLink JPA extensions that you can define in a
persistence.xml file to configure schema generation.

toplink.descriptor.customizer.<ENTITY> Specify a TopLink descriptor customizer class: a Java class
that implements the
oracle.toplink.essentials.tools.sessionconfig
uration.DescriptorCustomizer interface and provides
a default (zero-argument) constructor. Use this class’s
customize method, which takes an
oracle.toplink.essentials.descriptors.ClassDe
scriptor, to programmatically access advanced
TopLink descriptor and mapping API for the descriptor
associated with the JPA entity named <ENTITY>.

For more information on entity names, see @Entity.

For more information on TopLink descriptors, see:

■ "Understanding Descriptors"

■ "Descriptor Customization"

Valid values: class name of a DescriptorCustomizer
class fully qualified by its package name.

Example: persistence.xml file

<property name="toplink.descriptor.customizer.Order"
value="acme.sessions.MyDescriptorCustomizer"/>

Example: property Map

import
oracle.toplink.essentials.config.TopLinkProperties;
propertiesMap.put(TopLinkProperties.DESCRIPTOR_
CUSTOMIZER+".Order",
"acme.sessions.MyDescriptorCustomizer");

Table 26–5 (Cont.) TopLink JPA Extensions for Customization and Validation

Property Usage Default

Configuring the persistence.xml File

26-22 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring the persistence.xml File

Configuring Deployment Descriptor Files 26-23

Table 26–6 TopLink JPA Extensions for Schema Generation

Property Usage Default

toplink.ddl-generation Specify what data definition language (DDL)
generation action you want for your JPA entities. To
specify the DDL generation target, see
toplink.ddl-generation.output-mode.

Valid values:
oracle.toplink.essentials.ejb.cmp3.Enti
tyManagerFactoryProvider

■ none–do not generate DDL; no schema is
generated.

■ create-tables–create DDL for non-existent
tables; leave existing tables unchanged (see also
toplink.create-ddl-jdbc-file-name).

■ drop-and-create-tables–create DDL for
all tables; drop all existing tables (see also
toplink.create-ddl-jdbc-file-name
and toplink.drop-ddl-jdbc-file-name).

Example: persistence.xml file

<property name="toplink.ddl-generation"
value="create-tables"/>

Example: property Map

import
oracle.toplink.essentials.ejb.cmp3.EntityMana
gerFactoryProvider;
propertiesMap.put(EntityManagerFactoryProvide
r.DDL_GENERATION,
EntityManagerFactoryProvider.CREATE_ONLY);

none

toplink.application-location Specify where TopLink should write generated DDL
files (see
toplink.create-ddl-jdbc-file-name and
toplink.drop-ddl-jdbc-file-name). Files are
written if toplink.ddl-generation is set to
anything other than none.

Valid values: a file specification to a directory in
which you have write access. The file specification
may be relative to your current working directory or
absolute. If it does not end in a file separator,
TopLink will append one valid for your operating
system.

Example: persistence.xml file

<property name="toplink.application-location"
value="C:\ddl\"/>

Example: property Map

import
oracle.toplink.essentials.ejb.cmp3.EntityMana
gerFactoryProvider;
propertiesMap.put(EntityManagerFactoryProvide
r.APP_LOCATION, "C:\ddl\");

"."+File.separator

Configuring the persistence.xml File

26-24 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

toplink.create-ddl-jdbc-file-name Specify the file name of the SQL file that TopLink
generates containing SQL statements to create tables
for JPA entities. This file is written to the location
specified by toplink.application-location
when toplink.ddl-generation is set to
create-tables or drop-and-create-tables.

Valid values: a file name valid for your operating
system. Optionally, you may prefix the file name
with a file path as long as the concatenation of
toplink.application-location +
toplink.create-ddl-jdbc-file-name is a
valid file specification for your operating system.

Example: persistence.xml file

<property
name="toplink.create-ddl-jdbc-file-name"
value="create.sql"/>

Example: property Map

import
oracle.toplink.essentials.ejb.cmp3.EntityMana
gerFactoryProvider;
propertiesMap.put(EntityManagerFactoryProvide
r.CREATE_JDBC_DDL_FILE, "create.sql");

toplink.drop-ddl-jdbc-file-name Specify the file name of the SQL file that TopLink
generates containing the SQL statements to drop
tables for JPA entities. This file is written to the
location specified by
toplink.application-location when
toplink.ddl-generation is set to
drop-and-create-tables

Valid values: a file name valid for your operating
system. Optionally, you may prefix the file name
with a file path as long as the concatenation of
toplink.application-location +
toplink.drop-ddl-jdbc-file-name is a valid
file specification for your operating system.

Example: persistence.xml file

<property
name="toplink.drop-ddl-jdbc-file-name"
value="drop.sql"/>

Example: property Map

import
oracle.toplink.essentials.ejb.cmp3.EntityMana
gerFactoryProvider;
propertiesMap.put(EntityManagerFactoryProvide
r.DROP_JDBC_DDL_FILE, "drop.sql");

Table 26–6 (Cont.) TopLink JPA Extensions for Schema Generation

Property Usage Default

Configuring the persistence.xml File

Configuring Deployment Descriptor Files 26-25

toplink.ddl-generation.output-mode Use this property to specify the DDL generation
target.

Valid values:
oracle.toplink.essentials.ejb.cmp3.Enti
tyManagerFactoryProvider

■ both - generate SQL files and execute them on
the database.

If toplink.ddl-generation is set to
create-tables, then
toplink.create-ddl-jdbc-file-name is
written to
toplink.application-location and
executed on the database.

If toplink.ddl-generation is set to
drop-and-create-tables, then both
toplink.create-ddl-jdbc-file-name
and toplink.drop-ddl-jdbc-file-name
are written to
toplink.application-location and both
SQL files are executed on the database.

■ database - execute SQL on the database only
(do not generate SQL files).

If toplink.ddl-generation is set to
create-tables, then
toplink.create-ddl-jdbc-file-name is
executed on the database. It is not written to
toplink.application-location.

If toplink.ddl-generation is set to
drop-and-create-tables, then both
toplink.create-ddl-jdbc-file-name
and toplink.drop-ddl-jdbc-file-name
are executed on the database. Neither is written
to toplink.application-location.

■ sql-script - generate SQL files only (do not
execute them on the database).

If toplink.ddl-generation is set to
create-tables, then
toplink.create-ddl-jdbc-file-name is
written to
toplink.application-location. It is not
executed on the database.

If toplink.ddl-generation is set to
drop-and-create-tables, then both
toplink.create-ddl-jdbc-file-name
and toplink.drop-ddl-jdbc-file-name
are written to
toplink.application-location. Neither
is executed on the database.

Example: persistence.xml file

<property
name="toplink.ddl-generation.output-mode"
value="database"/>

Example: property Map

import
oracle.toplink.essentials.ejb.cmp3.EntityMana
gerFactoryProvider;
propertiesMap.put(EntityManagerFactoryProvide
r.DDL_GENERATION_MODE,
EntityManagerFactoryProvider.DDL_DATABASE_
GENERATION);

Java EE mode
(createContainerEn
tityManagerFactory
called): both

Java SE mode
(createEntityManag
erFactory called):
sql-script

Table 26–6 (Cont.) TopLink JPA Extensions for Schema Generation

Property Usage Default

Configuring the persistence.xml File

26-26 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Packaging an EJB Application 27-1

27
Packaging an EJB Application

This section describes the following:

■ Packaging a JPA Entity Application

■ Packaging an Application With Both EJB 3.0 and EJB 2.1 Enterprise Beans

■ Sharing Classes Between EJB Applications

For more information, see the following:

■ Oracle Application Server Enterprise Deployment Guide

■ "Understanding Packaging" on page 2-3

Packaging a JPA Entity Application
When you package an application that uses EJB 3.0 entities, consider the following:

■ Packaging a Persistence Unit

■ Packaging Mapping Metadata

Packaging a Persistence Unit
Recall that an EJB 3.0 JPA persistence unit is composed of a persistence.xml file,
one or more optional orm.xml files, and the managed entity classes that belong to the
persistence unit.

You can package a persistence unit in its own persistence archive and include that
archive in whatever Java EE modules require access to it (see "Creating a Persistence
Archive" on page 27-2). Alternatively, you can package persistence unit files directly in
various Java EE modules (see "Packaging Persistence Unit Files Directly in Java EE
Modules" on page 27-2).

The JAR file or directory, whose META-INF directory contains the persistence.xml
file, is called the root of the persistence unit. An EJB 3.0 application that uses entities
must define at least one persistence unit root.

The scope of a persistence unit is determined by where you define its persistence unit
root.

For more information, see the following:

■ "What is the persistence.xml File?" on page 2-8

■ "Configuring the persistence.xml File" on page 26-3

Packaging a JPA Entity Application

27-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Creating a Persistence Archive
A persistence archive is simply a JAR file that contains a persistence.xml file, one
or more optional orm.xml files, and the managed entity classes that belong to the
persistence unit, as Persistence ArchiveExample 27–1 shows.

Example 27–1 Persistence Archive

employee-persistence.jar
META-INF/persistence.xml
META-INF/orm.xml
com/acme/model/Employee.class
com/acme/model/Address.class
...

You package a persistence archive in any of the following:

■ WAR: WEB-INF/lib directory. The persistence unit is accessible only to the
classes within this WAR.

■ EAR: the root or application library directory. The persistence unit is accessible to
all application components.

Using a persistence archive, you can easily share a persistence unit with multiple Java
EE modules.

Packaging Persistence Unit Files Directly in Java EE Modules
You can package persistence unit files in any of the following Java EE modules:

■ EJB-JAR file

■ WAR file

– WEB-INF/classes directory

– WEB-INF/lib (in this case, persistence.xml file must be in a JAR)

■ EAR

– persistence.xml file in a JAR in root of EAR

– persistence.xml file in a JAR in the EAR library directory

■ Application client JAR

To decouple persistence unit files from Java EE modules and make it easier to share
persistence units with multiple Java EE modules, consider packaging your persistence
unit in a persistence archive (see "Creating a Persistence Archive" on page 27-2).

Packaging Mapping Metadata
Recall that you can specify EJB 3.0 JPA mapping metadata using annotations, one or
more optional orm.xml files, or both. You can package an orm.xml file in any of the
following:

■ META-INF directory of the persistence unit root (the JAR file or directory, whose
META-INF directory contains the persistence.xml file);

■ META-INF directory of any JAR file referenced by the persistence.xml file;

■ persistence.xml file <persistence-unit> element <mapping-file>
subelement;

■ persistence archive;

Sharing Classes Between EJB Applications

Packaging an EJB Application 27-3

For more information, see the following:

■ "What is the orm.xml File?" on page 2-9

■ "Packaging a Persistence Unit" on page 27-1

■ "Creating a Persistence Archive" on page 27-2

Packaging an Application With Both EJB 3.0 and EJB 2.1 Enterprise
Beans

You can combine both EJB 3.0 and EJB 2.1 beans in your application. For example, you
could have an application that contains three annotated EJB 3.0 entities without
ejb-jar.xml file, two EJB 2.1 entity beans with ejb-jar.xml file, and three EJB 3.0
session beans with ebj-jar.xml file, annotations, or both (in which case, the
ejb-jar.xml overrides the annotations).

Sharing Classes Between EJB Applications
If you want to share classes between enterprise beans, you can do one of the following:

■ If two enterprise beans use the same classes, include all classes and the enterprise
beans in the same JAR file. After deployment, both enterprise beans can use the
common classes.

■ Place the shared classes in its own JAR file in the application. Reference the shared
JAR file in the class-path of the EJB JAR manifest.mf file, as follows:

Class-Path:shared_classes.jar

The location of the shared_classes.jar is relative to where the JAR that
references is located in the EAR file. In this example, the shared_classes.jar
file is at the same level as the EJB JAR.

■ If all applications reference these classes, archive the shared classes in a JAR file
and place this JAR file in the shared library directory of the default application.
The home/lib is a default shared library. However, you can set shared library
directories using Enterprise Manager in the General Properties page of the
"default" application.

■ If you want only certain applications to reference these classes, archive the shared
classes in its own application, deploy the EAR for the application, and have the
applications that reference the shared classes declare the shared classes application
as its parent. The default parent in OracleAS is the "default" application.

The children see the namespace of its parent application. This is used in order to
share services such as enterprise beans among multiple applications. See the Oracle
Containers for J2EE Developer’s Guide for directions on how to specify a parent
application.

If you want to share classes between EJB and Web applications, you should place the
referenced classes in a shared JAR.

When sharing classes between EJB applications, be aware of the following issues:

■ Handling Out of Memory Exceptions at Run Time

■ Handling Class Cast Exceptions at Run Time

Sharing Classes Between EJB Applications

27-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Handling Out of Memory Exceptions at Run Time
If you see that the OC4J memory is growing consistently while executing, then you
may have invalid symbolic links in your application.xml file. OC4J loads all
resources using the links in the application.xml file. If these links are invalid, then
the C heap continues to grow causing OC4J to run out of memory. Ensure that all
symbolic links are valid and restart OC4J.

In addition, keep the number of JAR files to a minimum in the directories where the
symbolic links point. Eliminate all unused JARs from these directories. OC4J searches
all JARs for classes and resources; thus, taking time and memory consumption by the
file cache, as well as being mapped into the address space.

Handling Class Cast Exceptions at Run Time
If you receive a ClassCastException at run time, then you probably have the
following situation:

■ You copied EJB interfaces into the WAR where the servlet resides for ease in
development and forgot to delete them before creating the WAR file AND

■ You turned on the search_local_classes_first attribute of the
<web-app-class-loader> element in the orion-web.xml file.

To solve this problem, either eliminate the copied classes out of the WAR file, or turn
off the search_local_classes_first attribute. This attribute tells the class loader
to load in the classes in the WAR file before loading in any other classes, including the
classes within the EJB JAR file. For more information on this attribute, see the
"Loading WAR File Classes Before System Classes in OC4J" section in the "Servlet
Development" chapter of the Oracle Containers for J2EE Servlet Developer’s Guide.

When you have an EJB or Web application that references other shared EJB classes,
you should place the referenced classes in a shared JAR. In certain situations, if you
copy the shared EJB classes into WAR file or another application that references them,
you may receive a ClassCastException because of a class loader issue. To be
completely safe, never copy referenced EJB classes into the WAR file of its application
or into another application.

Deploying an EJB Application to OC4J 28-1

28
Deploying an EJB Application to OC4J

This section describes the following:

■ Deploying a Large EJB Application

■ Deploying Incrementally

■ Expanded Deployment

■ Troubleshooting Application Deployment

For more information, see the following:

■ Oracle Application Server Enterprise Deployment Guide

■ "Understanding Deployment" on page 2-3

Deploying a Large EJB Application
This section describes the following:

■ Tuning the VM to Avoid Out Of Memory Errors During Deployment

■ Configuring the Temp Directory to Avoid Out Of Memory Errors During
Deployment

■ Disabling Batch Compilation to Avoid Out Of Memory Errors During Deployment

For more information, see "Deploying Large Applications" in the Oracle Containers for
J2EE Deployment Guide.

Tuning the VM to Avoid Out Of Memory Errors During Deployment
If a very large application (EAR) is deployed to OC4J, an OutOfMemory exception
may be thrown at deployment time.

Your VM heap and permanent space configuration can cause such an exception. By
default, heap and permanent space is set to 64 MB.

If there is a heap space problem, the heap space should be specified as: java
-Xmx750m -Xms512m.

Note: If you are using Application Server Control, EJB 3.0 entities
deployed with session beans are not visible in the Application Server
Control view of the EJB JAR module. For more information, see
"Using Oracle Enterprise Manager 10g Application Server Control" on
page 31-1.

Deploying Incrementally

28-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

If there is a permanent space problem, the permanent space should specified as: java
-Xmx750m -Xms512m -XX:PermSize=128m -XX:MaxPermSize=256m.

Configuring the Temp Directory to Avoid Out Of Memory Errors During Deployment
If the deployment process is interrupted for any reason, you may need to clean up the
temp directory, which by default is /var/tmp on your system. The deployment
wizard uses 20 MB in swap space of the temp directory for storing information during
the deployment process. At completion, the deployment wizard cleans up the temp
directory of its additional files. However, if the wizard is interrupted, it may not have
the time or opportunity to clean up the temp directory. Thus, you must clean up any
additional deployment files from this directory yourself. If you do not, this directory
may fill up, which will disable any further deployment. If you receive an
OutOfMemory exception, check for space available in the temp directory.

To change the temp directory, set the command-line option for the OC4J process to
java.io.tmpdir=<new_tmp_dir>. You can set this command-line option in the
Server Properties page. Drill down to the OC4J Home Page. Scroll down to the
Administration Section. Select Server Properties. On this page, Scroll down to the
Command Line Options section and add the java.io.tmpdir variable definition to
the OC4J Options line. All new OC4J processes will start with this property.

Disabling Batch Compilation to Avoid Out Of Memory Errors During Deployment
If your application (EAR) contains multiple JAR files, you can try disabling batch
deployment to fix OutOfMemory exceptions. However, if your EAR file only has one
JAR file, this approach will not fix such exceptions: in this case, you must tune the VM
(see "Tuning the VM to Avoid Out Of Memory Errors During Deployment" on
page 28-1).

If OC4J throws an OutOfMemory exception at deploy time, and you have already tried
tuning the VM (see "Tuning the VM to Avoid Out Of Memory Errors During
Deployment" on page 28-1) and temp directory (see "Configuring the Temp Directory
to Avoid Out Of Memory Errors During Deployment" on page 28-2), you may also
attempt to compile in nonbatch mode. Although nonbatch mode requires less memory,
this mode will result in a longer deployment time.

To enable or disable batch compilation, use the <application> or
<orion-application> element attribute batch-compile.

The default value of batch-compile is true.

To disable batch compile, set this attribute to false.

Example 28–1 shows how to configure this attribute in the orion-applicatin.xml
deployment descriptor.

Example 28–1 Disabling Batch Compilation in the orion-application.xml File

<orion-application batch-compile ="false">
...
</orion-application>

If out of memory errors persist, try disabling batch compile.

Deploying Incrementally
OC4J supports incremental or partial redeployment of EJB modules that are part of a
deployed application. This feature makes it possible to redeploy only those beans

Deploying Incrementally

Deploying an EJB Application to OC4J 28-3

within an EJB JAR that have changed to be deployed, without requiring the entire
module to be redeployed. Previously deployed beans that have not been changed will
continue to be used.

This functionality represents a significant enhancement over previous releases of
OC4J, which treated an EJB module as a single unit, requiring that the module first be
undeployed, then redeployed with any updates.

A restart of OC4J is required only if changes are made to the EJB configuration data
during the redeployment process. If no changes are made, a hot deployment can be
performed without restarting OC4J.

The incremental redeployment operation will automatically stop the application
containing the enterprise bean(s) to be updated, then automatically restart the
application when finished.

For CMP or BMP entity beans, OC4J uses code generation to generate the server
implementation of the EJB interfaces (wrappers). In this case, incrementally
redeploying only changed beans is most likely to be more efficient than redeploying
the entire application.

For session beans, message-driven beans, and EJB 3.0 JPA entities, OC4J uses byte code
generation to generate wrappers. Because this approach reduces deployment time so
much, it may be just as efficient to redeploy the entire application as to redeploy only
changed beans. In this case, incremental redeployment is optional.

The general procedure for using incremental deployment is as follows:

1. Deploy an application with a large number of enterprise beans.

2. Change a bean-related class file in an EJB module and rebuild the EJB JAR file (for
example, myBeans-ejb.jar).

3. Submit the updated EJB JAR to OC4J using any of the following:

■ JDeveloper

■ EnterpriseManager

■ <OC4J_HOME>\j2ee\home\admin.jar or admin_client.jar using the
updateEBJModule command

Example 28–2 shows how to use the admin.jar:

Example 28–2 Incremental Deployment Using the admin.jar

java -jar admin.jar ormi://localhost:23791 admin welcome -application -updateEJBModule -jar
myBeans-ejb.jar

4. Repeat steps 2 and 3.

For more information see, "Incremental Redeployment of Updated EJB Modules" in
the Oracle Containers for J2EE Deployment Guide.

Note: During redeployment, all idle client connections to the
enterprise bean being updated will be lost. All existing requests will
be allowed to complete, but no new requests will be allowed until the
application is restarted. It is strongly recommended that you stop the
application before redeploying the enterprise bean.

Expanded Deployment

28-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Expanded Deployment
Typically, you package your application into an EAR file before deploying it to OC4J.
However, you can deploy an application while still in its expanded directory structure.
Because you can skip the packaging step, this is convenient during development and
testing. For example, using JDeveloper, you work on an application in its expanded
directory structure. Using expanded deployment, you can deploy the expanded
directory structure as often as you want without having to re-archive before each
deployment.

To configure OC4J for expanded deployment, edit the <OC4J_
HOME>\j2ee\home\config\server.xml file and modify the application
element for your application to specify a path to the root of the expanded directory
for your application. Example 28–3 shows an application element for application
myapp with its path attribute set to the root of its expanded directory.

Example 28–3 server.xml for Expanded Deployment

<application-server ...>
...
<!-- Regular EAR deployment -->
<application name="app" path="../../home/applications/app.ear" start="true" />

<!-- Expanded deployment -->
<application name="myapp" path="C:/projects/myapp" start="true" />
...

</application-server>

Troubleshooting Application Deployment
When you deploy an EJB 3.0 application with one or more annotations, OC4J will
automatically write its in-memory ejb-jar.xml file to the same location as the
orion-ejb-jar.xml file in the deployment directory: <ORACLE_
HOME>/j2ee/home/application-deployments/my_application/META-INF.

This ejb-jar.xml file represents configuration obtained from both annotations and a
deployed ejb-jar.xml file (if present).

When you deploy an EJB 2.1 application, to preserve generated wrapper code, you
musts set system property KeepWrapperCode (see "Debugging Generated Wrapper
Code" on page 31-9).

For more information, see "Troubleshooting an EJB Application" on page 31-8.

Part X
Using an EJB in Your Application

This part provides procedural information on using EJB 3.0 or EJB 2.1 enterprise
JavaBeans in a J2EE application. For conceptual information, see Part I, "EJB
Overview".

This part contains the following chapters:

■ Chapter 29, "Accessing an Enterprise Bean From a Client"

■ Chapter 30, "Using EJB and Web Services"

■ Chapter 31, "Administrating an EJB Application"

Accessing an Enterprise Bean From a Client 29-1

29
Accessing an Enterprise Bean From a Client

This chapter explains how to access an EJB from a client, including the following:

■ What Type of Client do you Have?

■ Configuring the Client

■ Accessing an EJB 3.0 Enterprise Bean

■ Accessing an EJB 3.0 Enterprise Bean in Another Application

■ Accessing a JPA Entity Using an EntityManager

■ Sending a Message to a JMS Destination Using EJB 3.0

■ Accessing an EJB 3.0 EJBContext

■ Accessing an EJB 2.1 Enterprise Bean

■ Accessing an EJB 2.1 Enterprise Bean in Another Application

■ Sending a Message to a JMS Destination Using EJB 2.1

■ Accessing an EJB 2.1 EJBContext

■ Handling Parameters

■ Handling Exceptions

For more information, see the following:

■ "How do you use an Enterprise Bean in Your Application?" on page 2-10

■ "Looking Up an EJB 3.0 Resource Manager Connection Factory" on page 19-23

■ "Looking Up an EJB 3.0 Environment Variable" on page 19-23

■ "Looking Up an EJB 2.1 Resource Manager Connection Factory" on page 19-25

■ "Looking Up an EJB 2.1 Enviornment Variable" on page 19-25

What Type of Client do you Have?
You can access an enterprise bean from a variety of clients, including the following:

■ EJB Client

■ Standalone Java Client

Note: You can download EJB code examples from:
http://www.oracle.com/technology/tech/java/oc4j/de
mos.

Configuring the Client

29-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Servlet or JSP Client

How you access an enterprise bean, resource, or environment variable is different
depending on the type of client and how the application is assembled and deployed.

For more information, see "Configuring the Client" on page 29-2.

EJB Client
When one enterprise bean (call it the source enterprise bean) accesses another
enterprise bean (call it the target enterprise bean), the source enterprise bean is the
client of the target enterprise bean.

If you are using EJB 3.0, with annotations and dependency injection, OC4J initializes
the instance variable that corresponds to the target reference.

If you are using EJB 2.1, you must use JNDI lookup in this scenario.

Standalone Java Client
A standalone Java client is a client that executes outside of OC4J, but accesses EJB
resources deployed to OC4J.

Typically, a standalone Java client accesses EJB resources by making use of Java RMI
calls. You must code a standalone Java client so that it honors the security and
authentication requirements that OC4J enforces.

By default, OC4J is configured to assign RMI ports dynamically within a set range. In
this release, you can look up an OC4J-deployed enterprise bean from a standalone Java
client without specifying an exact RMI port. You do not need to configure OC4J to use
exact port numbers.

If you are using EJB 3.0, note that annotations and dependency injection are not
supported for a standalone Java client.

If you are using EJB 2.1, you must configure your initial context to accommodate this
scenario (see "Accessing an EJB 2.1 Enterprise Bean Using RMI From a Standalone Java
Client" on page 29-22).

Servlet or JSP Client
A servlet or JSP can access an enterprise bean.

In this release, OC4J supports annotations and resource injection in the Web tier (see
"Annotations in the Web Tier" on page 1-9).

You can use dependency injection from a servlet or JSP client for EJB 3.0 applications.

You can use JNDI lookup from a servlet or JSP client for both EJB 3.0 and EJB 2.1
applications.

Configuring the Client
Before you can access an enterprise bean from a client, you must consider the
following:

■ Configuring the Client Classpath for OC4J

■ Selecting an Initial Context Factory Class

■ Specifying Security Credentials

Configuring the Client

Accessing an Enterprise Bean From a Client 29-3

■ Selecting an EJB Reference

Configuring the Client Classpath for OC4J
Table 29–1 lists the OC4J-specific JAR files that you must install on the client
depending on what your client looks up. The Source column indicates from where you
get a copy of the required JAR from <OC4J_HOME>.

Only the oc4jclient.jar should be on the client classpath. All other JAR files
required by the client are referenced in the oc4jclient.jar manifest classpath.

If you download any of these JAR files into a browser, you must grant certain
permissions (see "Granting Permissions in Browser" on page 22-1).

Selecting an Initial Context Factory Class
You use an initial context factory to obtain an initial context–a reference to the JNDI
namespace. Using the initial context, you can use the JNDI API to look up an
enterprise bean, resource manager connection factory, environment variable, or other
JNDI-accessible object. The type of initial context factory you use depends on your

Table 29–1 OC4J Client Classpath Requirements

OC4J JAR Source (Relative to <OC4J_HOME>)
EJB
Lookup

JMS
Connector
Lookup

OEMS
JMS
Lookup

OEMS
JMS
Database
Lookup

adminclient.jar /j2ee/<instance>/lib

bcel.jar /j2ee/<instance>/lib

connector.jar /j2ee/<instance>/lib

dms.jar /j2ee/<instance>/lib

ejb.jar /j2ee/<instance>/lib

javax77.jar /j2ee/<instance>/lib

jazncore.jar /j2ee/<instance>

jdbc.jar /j2ee/<instance>/../../lib

jms.jar /j2ee/<instance>/lib

jmxri.jar /j2ee/<instance>/lib

jndi.jar /j2ee/<instance>/lib

jta.jar /j2ee/<instance>/lib

oc4j.jar /j2ee/<instance>

oc4jclient.jar /j2ee/<instance>

oc4j-internal.jar /j2ee/<instance>/lib

ojdbc14dms.jar /j2ee/<instance>/../../oracle/jdbc/lib

optic.jar1

1 Required only if you plan to use the opmn:ormi prefix in JNDI look up with Context.PROVIDER_URL (see "Configuring an
Oracle Initial Context Factory" on page 19-20).

/opmn/lib

Configuring the Client

29-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

client type and how you are using OC4J: standalone, or as part of Oracle Application
Server (see "Configuring the Initial Context Factory" on page 19-19).

Specifying Security Credentials
If the client and target enterprise bean are not collocated, not deployed in the same
application, and the target EJB application is not the client’s parent, then your client
must specify its credentials before accessing the target enterprise bean (see "Specifying
Credentials in EJB Clients" on page 22-10).

Selecting an EJB Reference
In EJB 3.0, to access an EJB 3.0 enterprise bean or resource in an EJB client, you can use
annotations, resource injection, and default JNDI names (based on class and interface
names) instead of doing a JNDI lookup with a predefined environment references.

In EJB 2.1 or in EJB 3.0 (for standalone Java clients), to access an enterprise bean or
resource, you must do a JNDI lookup on a predefined environment references (see
"Configuring Environment References" on page 19-1). To access an EJB 2.1 enterprise
bean or resource, choose the appropriate predefined environment reference (actual or
logical; local or remote) and look it up using a JNDI initial context (see "Selecting an
Initial Context Factory Class" on page 29-3).

If you access an enterprise bean by reference from within your client implementation,
perform a JNDI lookup using the <ejb-ref-name> defined in the EJB deployment
descriptor. For more information on defining an EJB reference to a target enterprise
bean, see "EJB Environment References" on page 19-2.

Table 29–2 shows when to prefix the reference with java:comp/env/ejb/, which is
where the container places the EJB references defined in the deployment descriptor.

Example 29–1 shows how to look up an enterprise bean with logical name
ejb/HelloWorld using the java:comp/env/ejb/ prefix, and Example 29–2 shows
how to look up this enterprise bean without the prefix.

Example 29–1 Looking Up an Enterprise Bean With the Prefix

InitialContext ic = new InitialContext();
HelloHome hh = (HelloHome)ic.lookup("java:comp/env/ejb/HelloWorld");

Example 29–2 Looking Up an Enterprise Bean Without the Prefix

InitialContext ic = new InitialContext();
HelloHome hh = (HelloHome)ic.lookup("ejb/HelloWorld");

Table 29–2 When to Use the java:comp/env/ejb/ Prefix

Client Initial Context Factory Use Prefix?

EJB Client Default

RMIInitialContext

Optional

Not Used

Standalone Java Client Default

ApplicationClientInitialContext

Optional

Mandatory

Servlet or JSP Client Default

RMIInitialContext

Optional

Not Used

Accessing an EJB 3.0 Enterprise Bean

Accessing an Enterprise Bean From a Client 29-5

Accessing an EJB 3.0 Enterprise Bean
You can directly look up a bean instance from JNDI (or use resource injection in an EJB
3.0 EJB client) and retrieve a bean instance without the home interface. If the <home>
or <local-home> element is removed from an EJB reference, a bean instance is
returned from JNDI instead of the home.

The bean instance is created by executing the no-argument create method on the
home interface. Stateful session beans and entity beans can also use this shortcut, but
they must have a no-argument create method, or otherwise an exception will be
thrown at lookup time.

In both cases, the syntax used in obtaining the reference to the EJB business interface is
independent of whether the business interface is local or remote. In the case of remote
access, the actual location of a referenced enterprise bean and EJB container are, in
general, transparent to the client using the remote business interface of the bean.

Using EJB 3.0, you can look up an enterprise bean using resource injection (see "Using
Annotations" on page 29-5) or the InitialContext (see "Using Initial Context" on
page 29-5).

Alternatively, you can define an environment reference to an EJB 3.0 bean using
OC4J-proprietary annotations or deployment XML (see "EJB Environment References"
on page 19-2).

Using Annotations
Example 29–3 shows how to use annotations and dependency injection to access an
EJB 3.0 enterprise bean from an EJB client.

Example 29–3 Injecting an EJB 3.0 Enterprise Bean in an EJB 3.0 EJB Client

@EJB AdminService bean;

public void privilegedTask() {
bean.adminTask();

}

Using Initial Context
This section describes the following:

■ Looking Up the Remote Interface of an EJB 3.0 Enterprise Bean Using ejb-ref

■ Looking Up the Remote Interface of an EJB 3.0 Enterprise Bean Using location

■ Looking up the Local Interface of an EJB 3.0 Enterprise Bean Using local-ref

■ Looking up the Local Interface of an EJB 3.0 Enterprise Bean Using local-location

For more information, see "Configuring the Initial Context Factory" on page 19-19.

Looking Up the Remote Interface of an EJB 3.0 Enterprise Bean Using ejb-ref
To look up the remote interface of an enterprise bean using an ejb-ref, do the
following:

1. Define an ejb-ref element for the enterprise bean in the ejb-jar.xml file.

Example 29–4 ejb-jar.xml For an ejb-ref Element

<ejb-ref>

Accessing an EJB 3.0 Enterprise Bean

29-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

<ejb-ref-name>ejb/Test</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>Test</local>

</ejb-ref>

For more information, see "Configuring an Environment Reference to a Remote
EJB: Clustered or Combined Web Tier and EJB Tier" on page 19-4).

2. Determine whether or not a prefix is required (see "Selecting an EJB Reference" on
page 29-4).

3. Look up the enterprise bean using the ejb-ref-name element and the
appropriate prefix (if required).

Example 29–5 Looking Up Using ejb-ref in an EJB 3.0 EJB Client Using Initial Context

InitialContext ic = new InitialContext();
Cart cart = (Cart)ic.lookup("java:comp/env/ejb/Test");

For more information, see "Configuring the Initial Context Factory" on page 19-19.

Looking Up the Remote Interface of an EJB 3.0 Enterprise Bean Using location
To look up the remote interface of an EJB using its location, do the following:

1. Define the location attribute for a entity-deployment element in the
orion-ejb-jar.xml file.

Example 29–6 orion-ejb-jar.xml for location Attribute

<entity-deployment
name="Test"
location="app/Test"
...

>
...
</entity-deployment>

The default value for location attribute is the value of entity-deployment
attribute name.

2. Determine whether or not a prefix is required (see "Selecting an EJB Reference" on
page 29-4).

3. Look up the enterprise bean using the location.

Example 29–7 Looking Up Using location in an EJB 3.0 EJB Client Using Initial Context

InitialContext ic = new InitialContext();
Cart cart = (Cart)ic.lookup("java:comp/env/app/Test");

For more information, see "Configuring the Initial Context Factory" on page 19-19.

Looking up the Local Interface of an EJB 3.0 Enterprise Bean Using local-ref
To look up the remote interface of an EJB using an ejb-local-ref, do the following:

1. Define an ejb-local-ref element for the enterprise bean in the ejb-jar.xml
file.

Example 29–8 ejb-jar.xml For an ejb-local-ref Element

<ejb-local-ref>
<ejb-ref-name>ejb/Test</ejb-ref-name>

Accessing an EJB 3.0 Enterprise Bean in Another Application

Accessing an Enterprise Bean From a Client 29-7

<ejb-ref-type>Session</ejb-ref-type>
<local>Test</local>

</ejb-local-ref>

For more information, see "Configuring an Environment Reference to a Local EJB"
on page 19-9).

2. Determine whether or not a prefix is required (see "Selecting an EJB Reference" on
page 29-4).

3. Look up the enterprise bean using the ejb-ref-name and the appropriate prefix
(if required).

Example 29–9 Looking Up Using local-ref in an EJB 3.0 EJB Client Using Initial Context

InitialContext ic = new InitialContext();
Cart cart = (Cart)ctx.lookup("java:comp/env/ejb/Test");

For more information, see "Configuring the Initial Context Factory" on page 19-19.

Looking up the Local Interface of an EJB 3.0 Enterprise Bean Using local-location
To look up the local interface of an EJB using its local-location, do the following:

1. Define the local-location attribute of the entity-deployment element in
the orion-ejb-jar.xml file.

Example 29–10 orion-ejb-jar.xml for local-location Attribute

<entity-deployment
name="Test"
local-location="app/Test"
...

>
...
</entity-deployment>

The default value for local-location is the value of entity-deployment
attribute name.

2. Determine whether or not a prefix is required (see "Selecting an EJB Reference" on
page 29-4).

3. Look up the enterprise bean using the local-location.

Example 29–11 Looking Up Using local-location in an EJB 3.0 EJB Client Using Initial
Context

InitialContext ic = new InitialContext();
Cart cart = (Cart)ctx.lookup("java:comp/env/app/Test");

For more information, see "Configuring the Initial Context Factory" on page 19-19.

Accessing an EJB 3.0 Enterprise Bean in Another Application
Normally, you cannot have enterprise beans communicating across EAR files, that is,
across applications that are deployed in separate EAR files. The only way for an
enterprise bean to access an enterprise bean that was deployed in a separate EAR file
is to declare it to be the parent of the client. Only children can invoke methods in a
parent.

Accessing a JPA Entity Using an EntityManager

29-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

For example, there are two enterprise beans, each deployed within their EAR file,
called Sales and Inventory, where the Sales enterprise bean needs to invoke the
Inventory enterprise bean to check to see if enough widgets are available. Unless the
Sales enterprise bean defines the Inventory enterprise bean to be its parent, the
Sales enterprise bean cannot invoke any methods in the Inventory enterprise bean,
because they are both deployed in separate EAR files. So, define the Inventory
enterprise bean to be the parent of the Sales enterprise bean, and the Sales
enterprise bean can now invoke any method in its parent.

You can only define the parent during deployment with the deployment wizard. See
the "Deploying/Undeploying Applications" section in the "Using the oc4jadmin.jar
Command Line Utility" chapter in the Oracle Containers for J2EE Configuration and
Administration Guide on how to define the parent application of a bean.

Accessing a JPA Entity Using an EntityManager
In an EJB 3.0 application, the javax.persistence.EntityManager is the run-time
access point for persisting entities to and loading entities from the database.

This section describes the following:

■ Acquiring an EntityManager

■ Creating a New Entity Instance

■ Querying for a JPA Entity Using the EntityManager

■ Modifying an Entity Instance

■ Detaching and Merging an Entity Bean Instance

For more information, see "How do you Query for a JPA Entity?" on page 1-39.

Acquiring an EntityManager
Before you can use an EntityManager, you must acquire an EntityManager
instance. How you acquire an entity manager depends on your client type ("What
Type of Client do you Have?" on page 29-1).

When you acquire an entity manager, you specify a persistence unit. The persistence
unit defines the entity manager’s configuration, including details such as which
factories to use, which persistent managed classes the entity manager can manage, and
what object-relational mapping metadata to use. You can only acquire an entity
manager for a particular persistence unit, if your client is in the persistence unit’s
scope. For more information, see "What is the persistence.xml File?" on page 2-8.

You can acquire an entity manager by doing the following:

■ Acquiring the OC4J Default Entity Manager

■ Acquiring a Named Entity Manager

■ Acquiring an Entity Manager Using JNDI

■ Acquiring an Entity Manager in a Web Client

■ Acquiring an Entity Manager in a Helper Class

Note: You can download a JPA entity manager code example from:
http://www.oracle.com/technology/tech/java/oc4j/ejb3
/howtos-ejb3/howtoejb30entitymanager/doc/how-to-ejb3
0-entitymanager.html.

Accessing a JPA Entity Using an EntityManager

Accessing an Enterprise Bean From a Client 29-9

Acquiring the OC4J Default Entity Manager
You can use the @PersistenceContext annotation to inject an EntityManager in
an EJB 3.0 client (such as a stateful or stateless session bean, message-driven bean, or
servlet). You can use @PersistenceContext without specifying a unitName
attribute to use the OC4J default persistence unit, as Example 29–12 shows.

Example 29–12 Using @PersistenceContext With the OC4J Default Persistence Unit

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession {

@PersistenceContext protected EntityManager entityManager;

public void createEmployee(String fName, String lName) {
Employee employee = new Employee();
employee.setFirstName(fName);
employee.setLastName(lName);
entityManager.persist(employee);

}
...
}

For more information, see "Understanding OC4J Persistence Unit Defaults" on
page 2-8.

Acquiring a Named Entity Manager
You can use the @PersistenceContext annotation to inject an EntityManager in
an EJB 3.0 client (such as a stateful or stateless session bean, message-driven bean, or
servlet). You can use @PersistenceContext attribute unitName to specify a
persistence unit by name, as Example 29–13 shows. In this case, you must configure
the persistence unit in a persistence.xml file.

Example 29–13 Using @PersistenceContext With a Named Persistence Unit

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession {

@PersistenceContext(unitName="myPersistenceUnit") protected EntityManager entityManager;

public void createEmployee(String fName, String lName) {
Employee employee = new Employee();
employee.setFirstName(fName);
employee.setLastName(lName);
entityManager.persist(employee);

}
...
}

For more information, see the following:

■ "What is the persistence.xml File?" on page 2-8

■ "Configuring the persistence.xml File" on page 26-3

Acquiring an Entity Manager Using JNDI
Alternatively, you can use annotations to inject a persistence context and then use
JNDI to look up the entity manager, as Example 29–14 shows. In this case, you must
define the persistence unit in a persistence.xml file.

Accessing a JPA Entity Using an EntityManager

29-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 29–14 Using InitialContext to Lookup an EntityManager in a Stateless Session
Bean

@PersistenceContext(
name=”persistence/InventoryAppMgr”,
unitName=InventoryManagement // defined in a persistence.xml file

)
@Stateless
public class InventoryManagerBean implements InventoryManager {

EJBContext ejbContext;
public void updateInventory(...) {

...
// obtain the initial JNDI context
Context initCtx = new InitialContext();
// perform JNDI lookup to obtain container-managed entity manager
javax.persistence.EntityManager entityManager = (javax.persistence.EntityManager)

initCtx.lookup("java:comp/env/persistence/InventoryAppMgr");
...

}
}

For more information, see the following:

■ "Configuring the Initial Context Factory" on page 19-19

■ "What is the persistence.xml File?" on page 2-8

■ "Configuring the persistence.xml File" on page 26-3

Acquiring an Entity Manager in a Web Client
In this release, you can also use the @PersistenceContext annotation to inject an
EntityManager in a Web client such as a servlet, as Example 29–15 shows. This
example injects the default EntityManager; you can also inject a named entity
manager as Example 29–13 shows. For more information, see "Annotations in the Web
Tier" on page 1-9.

Example 29–15 Using @PersistenceContext to Inject an EntityManager in a Servlet

@Resource
UserTransaction ut;
@PersistenceContext
EntityManager entityManager;
...
try {

ut.begin();

Employee employee = new Employee();
employee.setEmpNo(empId);
employee.setEname(name);
employee.setSal(sal);

entityManager.persist(employee);
ut.commit();

this.getServletContext().getRequestDispatcher(
"/jsp/success.jsp").forward(request, response);

}
catch(Exception e) {
...
}

Accessing a JPA Entity Using an EntityManager

Accessing an Enterprise Bean From a Client 29-11

Acquiring an Entity Manager in a Helper Class
To acquire an entity manager in a class that does not support annotations and
injection, namely a helper class, you must do the following:

1. Define a persistence unit in a persistence.xml file.

For more information, see the following:

■ "What is the persistence.xml File?" on page 2-8

■ "Configuring the persistence.xml File" on page 26-3

2. Declare a reference to this persistence unit at the class level in each Java EE
component that makes use of the helper class. The persistence unit will appear in
the Java EE component’s environment (java:comp/env).

You can do this in one of the following ways:

a. Using the @PersistenceContext annotation in the Java EE component that
makes use of the helper class as follows:

@PersistenceContext(name="helperPC", unitName="HelperPU")
@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession {

import com.acme.Helper;
...
void doSomething() {

Helper.createNewEmployee();
}

}

In the @PersistenceContext annotation, you specify:

– name: the name by which you will look up the persistence context

– unitName: the name of the persistence unit you created in step 1, that
defines the characteristics of the returned entity manager.

b. Using a persistence-context-ref in the appropriate deployment
descriptor file for the Java EE component that makes use of the helper class
(see "Configuring an Environment Reference to a Persistence Context" on
page 19-18).

In the persistence-context-ref, you specify the following:

– persistence-context-ref: the name by which you will look up the
persistence context.

– persistence-unit-name: the name of the persistence unit you created
in step 1, that defines the characteristics of the returned entity manager.

3. In the helper class, use JNDI to look up the entity manager using the persistence
unit name you defined:

public class Helper {
...
int createNewEmployee()
{

UserTransaction ut = null;
...
try {

Context initCtx = new InitialContext();

ut = (UserTransaction)initCtx.lookup("java:comp/UserTransaction");
ut.begin();

Accessing a JPA Entity Using an EntityManager

29-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Employee employee = new Employee();
employee.setEmpNo(empId);

// obtain the initial JNDI context
Context initCtx = new InitialContext();
javax.persistence.EntityManager entityManager =

(javax.persistence.EntityManager)initCtx.lookup(
"java:comp/env/helperPC"

);

entityManager.persist(employee);

ut.commit();
}
catch(Exception e) {

...
}

}
}

For more information, see "Configuring the Initial Context Factory" on page 19-19.

Creating a New Entity Instance
To create a new entity instance, after acquiring an EntityManager ("Acquiring an
EntityManager" on page 29-8), use EntityManager method persist passing in the
entity Object, as Example 29–16 shows. When you call this method, it marks the new
instance for insert into the database. This method returns the same instance that you
passed in.

You must call this method within a transaction context.

Example 29–16 Creating an Entity With the EntityManager

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession {

@PersistenceContext protected EntityManager entityManager;
...

public void createEmployee(String fName, String lName) {
Employee employee = new Employee();
employee.setFirstName(fName);
employee.setLastName(lName);
entityManager.persist(employee);

}
...
}

Note: In the helper class, when you use the EntityManager, you
must manually demarcate a transaction using the UserTransaction
API, because you must use the EntityManager within a transaction.

Note: Only use EntityManager method persist on a new entity.
If you make changes to an existing entity, they are written to the
database when the current transaction commits (see also "Using
Flush" on page 29-17).

Accessing a JPA Entity Using an EntityManager

Accessing an Enterprise Bean From a Client 29-13

Querying for a JPA Entity Using the EntityManager
This section describes how to use the EntityManager to query for EJB 3.0 entities,
including:

■ Finding an Entity by Primary Key With the Entity Manager

■ Creating a Named Query With the EntityManager

■ Creating a Dynamic Java Persistence Query Language Query With the Entity
Manager

■ Creating a Dynamic TopLink Expression Query With the EntityManager

■ Creating a Dynamic Native SQL Query With the EntityManager

■ Executing a Query

For more information, see the following:

■ "How do you Query for a JPA Entity?" on page 1-39

■ "Implementing JPA Queries" on page 8-1

■ "Configuring TopLink Query Hints in a JPA Query" on page 8-3

Finding an Entity by Primary Key With the Entity Manager
As Example 29–17 shows, f you know the primary key, you can use EntityManager
method find to retrieve the corresponding entity from the database without having to
create a query.

Example 29–17 Finding an Entity by Primary Key Using the EntityManager

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession {
...
 public void removeEmployee(Integer employeeId) {

Employee employee = (Employee)entityManager.find("Employee", employeeId);
...
entityManager.remove(employee);

}
...
}

Creating a Named Query With the EntityManager
After you implement a named query (see "Implementing a JPA Named Query" on
page 8-1), you can acquire it at run time using EntityManager method
createNamedQuery, as Example 29–18 Creating a Named Query with the
EntityManager shows. If the named query takes parameters, you set them using
Query method setParameter.

Example 29–18 Creating a Named Query with the EntityManager

Query queryEmployeesByFirstName = entityManager.createNamedQuery(
"findAllEmployeesByFirstName"

);
queryEmployeeByFirstName.setParameter("firstName", "John");
Collection employees = queryEmployessByFirstName.getResultList();

Accessing a JPA Entity Using an EntityManager

29-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Optionally, you can configure your query with query hints to use JPA persistence
provider vendor extensions (see "Configuring TopLink Query Hints in a JPA Query"
on page 8-3).

Creating a Dynamic Java Persistence Query Language Query With the Entity
Manager
Example 29–19 shows how to create an ad hoc EJB QL query at run time using
EntityManager method createQuery.

Example 29–19 Creating a Dynamic Query Using the EntityManager

Query queryEmployees = entityManager.createQuery(
"SELECT OBJECT(employee) FROM Employee employee"

);

Example 29–20 shows how to create an ad hoc query that takes a parameter named
firstname using EntityManager method createQuery. You set the parameter
using Query method setParameter.

Example 29–20 Creating a Dynamic Java Persistence Query Language Query with
Parameters Using the EntityManager

Query queryEmployees = entityManager.createQuery(
"SELECT OBJECT(emp) FROM Employee emp WHERE emp.firstName = :firstname"

);
queryEmployeeByFirstName.setParameter("firstName", "John");

Optionally, you can configure your query with query hints to use JPA persistence
provider vendor extensions (see "Configuring TopLink Query Hints in a JPA Query"
on page 8-3).

Creating a Dynamic TopLink Expression Query With the EntityManager
As Example 29–21 shows, using the oracle.toplink.ejb.cmp3.EntityManager
method createQuery(Expression expression, Class resultType), you
can create a query based on a TopLink Expression.

Optionally, you can configure your query with query hints to use JPA persistence
provider vendor extensions (see "Configuring TopLink Query Hints in a JPA Query"
on page 8-3).

For more information, see "Understanding TopLink Expressions" in the Oracle TopLink
Developer’s Guide.

Example 29–21 Creating a Dynamic TopLink Expression Query Using the Entity Manager

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession {
...

public Collection findManyProjectsByQuery(Vector params) {
ExpressionBuilder builder = new ExpressionBuilder();
Query query = ((oracle.toplink.ejb.cmp3.EntityManager)em).createQuery(

builder.get("name").equals(builder.getParameter("projectName")),
Project.class);

query.setParameter("projectName", params.firstElement());
Collection projects = query.getResultList();
return projects;

}
...
}

Accessing a JPA Entity Using an EntityManager

Accessing an Enterprise Bean From a Client 29-15

Creating a Dynamic Native SQL Query With the EntityManager
Using EntityManager methods createNativeQuery(String sqlString) or
createNativeQuery(String sqlString, Class resultType), you can
create a query based on a native SQL string that you supply, as Example 29–22 shows.

Example 29–22 Creating a Dynamic Native SQL Query with the EntityManager

Query queryEmployees = entityManager.createNativeQuery(
"Select * from EMP_TABLE where Salary < 50000", Employee.class

);

Example 29–23 shows how to create an ad hoc native SQL query that takes a
parameter named salary using EntityManager method
createNativeQuer(String sqlString, Class resultClass). You set the
parameter using Query method setParameter.

Example 29–23 Creating a Dynamic Native SQL Query with Parameters Using the
EntityManager

Query queryEmployees = entityManager.createNativeQuery(
"Select * from EMP_TABLE where Salary < #salary", Employee.class

);
queryEmployeeByFirstName.setParameter("salary", 50000);

Optionally, you can configure your query with query hints to use JPA persistence
provider vendor extensions (see "Configuring TopLink Query Hints in a JPA Query"
on page 8-3).

Executing a Query
As Example 29–24 shows, to execute a query that returns multiple results, use Query
method getResultList. This method returns a java.util.List.

Example 29–24 Executing a Query that Returns Multiple Results

Collection employees = queryEmployees.getResultList();

As Example 29–25 shows, to execute a query that returns a single result, use Query
method getSingleResult. This method returns a java.lang.Object.

Example 29–25 Executing a Query that Returns a Single Result

Object obj = query.getSingleResult();

As Example 29–26 shows, to execute a query that updates (modifies or deletes)
entities, use Query method executeUpdate. This method returns the number of
rows affected (updated or deleted) as an int.

Example 29–26 Executing an Updating Query

Query queryRenameCity = entityManager.createQuery(
"UPDATE Address add SET add.city = 'Ottawa' WHERE add.city = 'Nepean'");

int rowCount = queryRenameCity.executeUpdate();

Modifying an Entity Instance
You can modify an entity instance in one the following ways:

■ Using an Updating Query

Accessing a JPA Entity Using an EntityManager

29-16 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Using the Entity’s Public API

■ Refreshing From the Database

■ Removing an Entity

You must perform these operations within a transaction context. When the current
transaction commits, your updates will be committed to the database.

You can also send updates to the database within a transaction before commit (see
"Using Flush" on page 29-17).

Using an Updating Query
Create an updating query (see "Creating a Named Query With the EntityManager" on
page 29-13 or "Creating a Dynamic Java Persistence Query Language Query With the
Entity Manager" on page 29-14) and execute the query using the EntityManager (see
"Executing a Query" on page 29-15).

Using the Entity’s Public API
Use the EntityManager to find or otherwise query for the entity (see "Querying for a
JPA Entity Using the EntityManager" on page 29-13).

Use the entity’s public API to change its persistent state.

Refreshing From the Database
As Example 29–27 shows, you can overwrite the current state of an entity instance
with the currently committed state from the database using the EntityManager
method refresh.

Example 29–27 Refreshing an Entity from the Database

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession {
...

public void undoUpdateEmployee(Integer employeeId) {
Employee employee = (Employee)entityManager.find("Employee", employeeId);
em.refresh(employee);

}
...
}

Removing an Entity
As Example 29–28 shows, you can use EntityManager method remove to delete an
entity from the database.

Example 29–28 Removing an Entity

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession {
...

public void removeEmployee(Integer employeeId) {
Employee employee = (Employee)entityManager.find("Employee", employeeId);
...
entityManager.remove(employee);

}
...
}

Sending a Message to a JMS Destination Using EJB 3.0

Accessing an Enterprise Bean From a Client 29-17

Using Flush
As Example 29–29 shows, you can use EntityManager method flush to send
updates to the database within a transaction before the transaction is committed.
Subsequent queries within the same transaction will return the updated data. This is
useful if a particular transaction spans multiple operations.

Example 29–29 Sending Updates to the Database Within a Transaction

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession {
...

public void terminateEmployee(Integer employeeId, Date endDate) {
Employee employee = (Employee) entityManager.find("Employee", employeeId);
employee.getPeriod().setEndDate(endDate);
entityManager.flush();

}
...
}

Detaching and Merging an Entity Bean Instance
An EntityManager is said to have a persistence context. When you create (see
"Creating a New Entity Instance" on page 29-12) or find (see "Querying for a JPA
Entity Using the EntityManager" on page 29-13) an entity using an EntityManager
instance, the entity is said to be part of the persistence context of that
EntityManager.

While an entity is part of the persistence context of an EntityManager, it is said to be
a persistent entity.

When an entity is no longer part of this persistence context, it is said to be a detached
entity.

An entity is detached from the persistence context when the persistence context ends
or when an entity is serialized (for example, to a separate application tier).

As Example 29–30 shows, you can use EntityManager method merge to merge the
state of detached entity into the current persistence context of the EntityManager.

Example 29–30 Merging an Entity into the Persistence Context of an EntityManager

@Stateless
public class EmployeeDemoSessionEJB implements EmployeeDemoSession {
...

public void updateAddress(Address addressExample) {
entityManager.merge(addressExample);

}
...
}

For more information about persistence context, see the following:

■ "What is the persistence.xml File?" on page 2-8

■ "Configuring the persistence.xml File" on page 26-3

Sending a Message to a JMS Destination Using EJB 3.0
A client never accesses an MDB directly: rather, the client accesses an MDB by sending
a message through the JMS destination (queue or topic) associated with the MDB.

To send a message to a JMS destination using EJB 3.0, do the following:

Sending a Message to a JMS Destination Using EJB 3.0

29-18 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

1. Inject both the JMS destination (queue or topic) and its connection factory.

You can inject these resources using a predefined logical name or the explicit JNDI
name you defined when you configured your JMS provider. Oracle recommends
that you use logical names as shown in this procedure and its examples.

For more information, see the following:

■ "Configuring an Environment Reference to a JMS Destination Resource
Manager Connection Factory (JMS 1.1)" on page 19-13

■ "Configuring an Environment Reference to a JMS Destination or Connection
Resource Manager Connection Factory (JMS 1.0)" on page 19-14

2. Use the connection factory to create a connection.

If you are receiving messages for a queue, then start the connection.

3. Create a session over the connection.

4. Use the retrieved JMS destination to create a sender for a queue or a publisher for
a topic.

5. Create the message.

6. Send the message using either the queue sender or the topic publisher.

7. Close the queue session.

8. Close the connection.

Example 29–31 shows how a servlet client sends a message to a queue.

Example 29–31 Servlet Client Sends Message to a Queue

public final class testResourceProvider extends HttpServlet {

private String resProvider = "myResProvider";
private HashMap msgMap = new HashMap();

// 1a. Rely on Servlet container to inject queue connection factory
@Resource(name=resProvider+"QueueConnectionFactories/myQCF")
private QueueConnectionFactory qcf;

// 1b. Rely on Servlet container to inject queue
@Resource(name=resProvider+"/Queues/rpTestQueue")
private Queue queue;

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
doPost(req, res);

 }

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

 // Retrieve the name of the JMS provider from the request,
 // which is to be used in creating the JNDI string for retrieval
String rp = req.getParameter ("provider");
if (rp != null) resProvider = rp;

try {
// 2a. Create queue connection using the connection factory
QueueConnection qconn = qcf.createQueueConnection();
// 2b. You are receiving messages, so start the connection
qconn.start();

// 3. Create a session over the queue connection
QueueSession sess = qconn.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

Sending a Message to a JMS Destination Using EJB 3.0

Accessing an Enterprise Bean From a Client 29-19

 // 4. Since this is for a queue, create a sender on top of the session
 // This is used to send out the message over the queue
QueueSender snd = sess.createSender (q);

drainQueue (sess, q);
TextMessage msg = null;

// Send messages to queue
for (int i = 0; i < 3; i++) {
// 5. Create message
msg = sess.createTextMessage();
msg.setText ("TestMessage:" + i);

// Set property of the recipient to be the MDB
// and set the reply destination.
msg.setStringProperty ("RECIPIENT", "MDB");
msg.setJMSReplyTo(q);

// 6. Send the message using the sender
snd.send (msg);

// You can store the messages IDs and sent-time in a map (msgMap),
// so that when messages are received, you can verify if you
// *only* received those messages that you were
// expecting. See receiveFromMDB() method where msgMap gets used
msgMap.put(msg.getJMSMessageID(), new Long (msg.getJMSTimestamp()));

}

// receive a reply from the MDB
receiveFromMDB (sess, q);

 // 7. Close sender, session, and connection for queue
 snd.close();
 sess.close();
 qconn.close();
}
catch (Exception e) {
System.err.println ("** TEST FAILED **"+ e.toString());
e.printStackTrace();

}
finally {
}

 }

// Receive any messages sent to you through the MDB
private void receiveFromMDB (QueueSession sess, Queue q)
throws Exception {
// The MDB sends out a message (as a reply) to this client. The MDB sets
// the receipient as CLIENT. Thus, You will only receive messages that have
// RECIPIENT set to 'CLIENT'
QueueReceiver rcv = sess.createReceiver (q, "RECIPIENT = 'CLIENT'");

int nrcvd = 0;
long trtimes = 0L;
long tctimes = 0L;
// First message needs to come from MDB.
// May take a little while receiving messages
for (Message msg = rcv.receive (30000); msg != null; msg = rcv.receive (30000)) {
nrcvd++;
String rcp = msg.getStringProperty ("RECIPIENT");

// Verify if message is in message Map
// Check the msgMap to see if this is the message that you are expecting
String corrid = msg.getJMSCorrelationID();
if (msgMap.containsKey(corrid)) {

Accessing an EJB 3.0 EJBContext

29-20 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

msgMap.remove(corrid);
}
else {
System.err.println ("** received unexpected message [" + corrid + "] **");

}
}
rcv.close();

}

// Drain messages from queue
private int drainQueue (QueueSession sess, Queue q)
throws Exception {
QueueReceiver rcv = sess.createReceiver (q);
int nrcvd = 0;

// First drain any old messages from queue
for (Message msg = rcv.receive(1000); msg != null; msg = rcv.receive(1000))
nrcvd++;

rcv.close();

return nrcvd;
}

}

Accessing an EJB 3.0 EJBContext
For EJB 3.0 session and message-driven beans, you can access the EJBContext that
OC4J provides (see "Using Resource Injection" on page 29-20).

For more information, see the following:

■ "What is EJB Context?" on page 1-6

■ "What is Session Context?" on page 1-34

■ "What is Message Driven Context?" on page 1-58

Using Resource Injection
In an EJB 3.0 EJB client, you can use @Resource injection to access the EJBContext,
as Example 29–32 shows.

Example 29–32 Accessing EJBContext Using @Resource

@Resource SessionContext ctx;

Accessing an EJB 2.1 Enterprise Bean
This section describes the following:

■ Accessing an EJB 2.1 Enterprise Bean Remotely

■ Accessing an EJB 2.1 Enterprise Bean Locally

■ Accessing an EJB 2.1 Enterprise Bean Using RMI From a Standalone Java Client

■ Accessing an EJB 2.1 Enterprise Bean From an EJB 3.0 Client

Accessing an EJB 2.1 Enterprise Bean

Accessing an Enterprise Bean From a Client 29-21

Accessing an EJB 2.1 Enterprise Bean Remotely
A remote multitier situation exists when you have the servlets executing in one server,
which are to connect and communicate with enterprise beans in another server. Both
the servlets and enterprise beans are contained in the same application. When you
deploy the application to two different servers, the servlets normally look for the local
enterprise bean first.

In Figure 29–1, the HelloBean application is deployed to both server 1 and 2. In order
to ensure that the servlets only call out from server 1 to the enterprise beans in server
2, you must set the remote attribute appropriately in the application before deploying
on both servers.

Figure 29–1 Multitier Example

The remote attribute in the <ejb-module> element in orion-application.xml
for the EJB module denotes whether the enterprise beans for this application are
deployed or not.

1. In server 1, you must set remote=true in the <ejb-module> element of the
orion-application.xml file ,and then deploy the application. The EJB module
within the application will not be deployed. Thus, the servlets will not look for the
enterprise beans locally, but will go out to the remote server for the EJB requests.

2. In server 2, you must set remote=false in the <ejb-module> element of the
orion-application.xml file and then deploy the application. The application,
including the EJB module, is deployed as normal. The default for the remote
attribute is false; thus, simply ensure that the remote attribute is not true and
redeploy the application.

3. Configure RMI options:

■ In a standalone OC4J, specify RMI server data in the RMI configuration file,
rmi.xml. Specify the location of this file in server.xml, the OC4J
configuration file. By default, both these files are installed in <ORACLE_
HOME>/j2ee/home/config.

For more information, see "Configuring RMI in a Standalone OC4J
Installation" in the Oracle Containers for J2EE Services Guide.

■ In an Oracle Application Server environment, you must edit the opmn.xml
file to specify the port range, on which this local RMI server listens for RMI
requests. Note that manual changes to configuration files in an Oracle
Application Server environment must be manually updated on each OC4J
instance.

For more information, see "Configuring RMI in an Oracle Application Server
Environment" in the Oracle Containers for J2EE Services Guide.

Accessing an EJB 2.1 Enterprise Bean

29-22 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

4. Set JNDI properties java.naming.provider.url and
java.naming.factory.initial.

For more information see the following:

■ "Configuring the Initial Context Factory" on page 19-19

■ "Setting JNDI Properties for RMI" in the Oracle Containers for J2EE Services
Guide.

5. Look up the remote enterprise bean.

If multiple remote servers are configured, OC4J searches all remote servers for the
intended EJB application.

For more information, see "Using Remote Method Invocation in OC4J" in the Oracle
Containers for J2EE Services Guide.

Accessing an EJB 2.1 Enterprise Bean Locally
A local multitier situation exists when both the servlets and enterprise beans are
contained in the same application and deployed to the same server.

The remote attribute in the <ejb-module> element in orion-application.xml
for the EJB module denotes whether the enterprise beans for this application are
deployed or not.

1. In the server, to which you deploy your application, you must set remote=false
in the <ejb-module> element of the orion-application.xml file, and then
deploy the application. The application, including the EJB module, is deployed as
normal. The default for the remote attribute is false.

2. Set JNDI properties java.naming.provider.url and
java.naming.factory.initial.

For more information see the following:

■ "Configuring the Initial Context Factory" on page 19-19

■ "Setting JNDI Properties for RMI" in the Oracle Containers for J2EE Services
Guide.

3. Look up the local EJB.

Accessing an EJB 2.1 Enterprise Bean Using RMI From a Standalone Java Client
Example 29–33 shows the type of lookup that you can use from a standalone Java
client (see "Standalone Java Client" on page 29-2) in this release to look up an
OC4J-deployed enterprise bean without having to specify an RMI port. Example 29–33
shows how to look up the enterprise bean named MyCart in the Java EE application
ejbsamples deployed to the OC4J instance named oc4j_inst1 running on host
myServer.

Example 29–33 Accessing an EJB 2.1 Enterprise Bean Using RMI from a Standalone
Java Client

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,"oracle.j2ee.rmi.RMIInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "oc4jadmin");
env.put(Context.SECURITY_CREDENTIALS, "password");
env.put(Context.PROVIDER_URL,"opmn:ormi://myServer:oc4j_inst1/ejbsamples");

Context context = new InitialContext(env);

Accessing an EJB 2.1 Enterprise Bean

Accessing an Enterprise Bean From a Client 29-23

Object homeObject = context.lookup("MyCart");
CartHome home = (CartHome)PortableRemoteObject.narrow(homeObject,CartHome.class);

For more information, see the following:

■ "Configuring an Oracle Initial Context Factory" on page 19-20

■ "Configuring the Naming Provider URL for OC4J and Oracle Application Server"
on page 19-20

■ "Configuring the Naming Provider URL for OC4J Standalone" on page 19-21

Accessing an EJB 2.1 Enterprise Bean From an EJB 3.0 Client
To access an EJB 2.1 enterprise bean from an EJB 3.0 client:

1. Create an environement reference to the EJB 2.1 enterprise bean’s home and
remote interface as Example 29–34 shows.

In this example, you configure an environment reference to the home and remote
interface of the EJB 2.1 Scheduler bean. For more information on Job Scheduler,
see the Oracle Containers for J2EE Job Scheduler Developer’s Guide.

Example 29–34 Creating an Environment Reference to an EJB 2.1 Enterprise Bean’s
Home and Remote Interface

<ejb-ref>
<ejb-ref-name>ejb/scheduler</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>oracle.ias.scheduler.SchedulerHome</home>
<remote>oracle.ias.scheduler.SchedulerRemote</remote>

</ejb-ref>

For more information, see Chapter 19, "Configuring JNDI Services"

2. Access the EJB 2.1 enterprise bean from the EJB 3.0 client:

An EJB 3.0 client can access an EJB 2.1 enterprise bean in a variety of ways,
including, but not limited to, the following:

a. Inject the EJB 2.1home interface using the @EJB annotation as Example 29–35
shows.

In this example, you set the @EJB annotation name attribute to the
<ejb-ref-name> of the EJB 2.1 enterprise bean.

Example 29–35 Injecting an EJB 2.1 Home Interface Using @EJB

...
public class MyEJB30Client {

@EJB(name="ejb/scheduler")
SchedulerHome home;

public void bar() {
home.create();
...

}
}

b. Inject the EJB 2.1 home interface using the <injection-target> element in
deployment XML.

Accessing an EJB 2.1 Enterprise Bean in Another Application

29-24 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Example 29–36 shows how to add an <injection-target> element to the
deployment XML to associate the EJB 2.1 home interface with an instance
variable named home. As Example 29–37 shows, at deployment time, OC4J
will ensure that instance variable home in the EJB 3.0 client is initialized
appropriately.

Example 29–36 Adding an <injection-target> to the Deployment XML

<ejb-ref>
<ejb-ref-name>ejb/scheduler</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>oracle.ias.scheduler.SchedulerHome</home>
<remote>oracle.ias.scheduler.SchedulerRemote</remote>
<injection-target>

<injection-target-name>home</injection-target-name>
</injection-target>

</ejb-ref>

Example 29–37 Injecting an EJB 2.1 Home Interface Into an Instance Variable Using

...
public class MyEJB30Client {

SchedulerHome home;

public void bar() {
home.create();
...

}
}

c. Look up the EJB 2.1 home interface using JNDI as Example 29–38 shows.

In this example, you look up the EJB 2.1 enterprise bean’s <ejb-ref-name>
prefixed with java:comp/env/.

Example 29–38 Performing a JNDI Lookup of the Home Interface

...
public class MyEJB30Client {

SchedulerHome home;

public void bar() {
InitalContext ic = new InitialContext();
home = ic.lookup("java:comp/env/ejb/scheduler");
home.create();
...

}
}

Accessing an EJB 2.1 Enterprise Bean in Another Application
Normally, you cannot have enterprise beans communicating across EAR files, that is,
across applications that are deployed in separate EAR files. The only way for an
enterprise bean to access an enterprise bean that was deployed in a separate EAR file
is to declare it to be the parent of the client. Only children can invoke methods in a
parent.

Sending a Message to a JMS Destination Using EJB 2.1

Accessing an Enterprise Bean From a Client 29-25

For example, there are two enterprise beans, each deployed within their EAR file,
called Sales and Inventory, where the Sales enterprise bean needs to invoke the
Inventory enterprise bean to check to see if enough widgets are available. Unless the
Sales enterprise bean defines the Inventory enterprise bean to be its parent, the
Sales enterprise bean cannot invoke any methods in the Inventory enterprise bean,
because they are both deployed in separate EAR files. So, define the Inventory
enterprise bean to be the parent of the Sales enterprise bean and the Sales
enterprise bean can now invoke any method in its parent.

You can only define the parent during deployment with the deployment wizard. See
the "Deploying/Undeploying Applications" section in the "Using the oc4jadmin.jar
Command Line Utility" chapter in the Oracle Containers for J2EE Configuration and
Administration Guide on how to define the parent application of a bean.

Sending a Message to a JMS Destination Using EJB 2.1
A client never accesses an MDB directly: rather, the client accesses an MDB by sending
a message through the JMS destination (queue or topic) associated with the MDB.

To send a message to a JMS destination using EJB 2.1, do the following:

1. Look up both the JMS destination (queue or topic) and its connection factory.

You can look up these resources using a predefined logical name or the explicit
JNDI name you defined when you configured your JMS provider. Oracle
recommends that you use logical names as shown in this procedure and its
examples.

For more information, see the following:

■ "Configuring an Environment Reference to a JMS Destination Resource
Manager Connection Factory (JMS 1.1)" on page 19-13

■ "Configuring an Environment Reference to a JMS Destination or Connection
Resource Manager Connection Factory (JMS 1.0)" on page 19-14

2. Use the connection factory to create a connection.

If you are receiving messages for a queue, then start the connection.

3. Create a session over the connection.

4. Use the retrieved JMS destination to create a sender for a queue, or a publisher for
a topic.

5. Create the message.

6. Send the message using either the queue sender or the topic publisher.

7. Close the queue session.

8. Close the connection.

Example 29–39 shows how a servlet client sends a message to a queue.

Example 29–39 Servlet Client Sends Message to a Queue

public final class testResourceProvider extends HttpServlet {

private String resProvider = "myResProvider";
private HashMap msgMap = new HashMap();
Context ctx = new InitialContext();

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

Sending a Message to a JMS Destination Using EJB 2.1

29-26 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

doPost(req, res);
}

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

 // Retrieve the name of the JMS provider from the request,
 // which is to be used in creating the JNDI string for retrieval
String rp = req.getParameter ("provider");
if (rp != null) resProvider = rp;

try {
// 1a. Look up the Queue Connection Factory
QueueConnectionFactory qcf = (QueueConnectionFactory)

ctx.lookup("java:comp/resource/" + resProvider +
 "/QueueConnectionFactories/myQCF");

// 1b. Lookup the Queue
Queue queue = (Queue)ctx.lookup("java:comp/resource/" +

resProvider + "/Queues/rpTestQueue");

// 2a. Create queue connection using the connection factory
QueueConnection qconn = qcf.createQueueConnection();
// 2a. You are receiving messages, so start the connection
qconn.start();

// 3. Create a session over the queue connection
QueueSession sess = qconn.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

 // 4. Since this is for a queue, create a sender on top of the session
 //This is used to send out the message over the queue
QueueSender snd = sess.createSender (q);

drainQueue (sess, q);
TextMessage msg = null;

// Send msgs to queue
for (int i = 0; i < 3; i++) {
// 5. Create message
msg = sess.createTextMessage();
msg.setText ("TestMessage:" + i);

// Set property of the recipient to be the MDB
// and set the reply destination
msg.setStringProperty ("RECIPIENT", "MDB");
msg.setJMSReplyTo(q);

//6. Send the message using the sender
snd.send (msg);

// You can store the messages IDs and sent-time in a map (msgMap),
// so that when messages are received, you can verify if you
// *only* received those messages that you were
// expecting. See receiveFromMDB() method where msgMap gets used
msgMap.put(msg.getJMSMessageID(), new Long (msg.getJMSTimestamp()));

}

// receive a reply from the MDB
receiveFromMDB (sess, q);

 // 7. Close sender, session, and connection for queue
 snd.close();
 sess.close();
 qconn.close();
}
catch (Exception e) {
System.err.println ("** TEST FAILED **"+ e.toString());
e.printStackTrace();

Accessing an EJB 2.1 EJBContext

Accessing an Enterprise Bean From a Client 29-27

}
finally {
}

 }

// Receive any messages sent through the MDB
private void receiveFromMDB (QueueSession sess, Queue q)
throws Exception {
// The MDB sends out a message (as a reply) to this client. The MDB sets
// the receipient as CLIENT. Thus, you will only receive messages that have
// RECIPIENT set to 'CLIENT'
QueueReceiver rcv = sess.createReceiver (q, "RECIPIENT = 'CLIENT'");

int nrcvd = 0;
long trtimes = 0L;
long tctimes = 0L;
// First message needs to come from MDB. May take
// a while receiving messages
for (Message msg = rcv.receive (30000); msg != null; msg = rcv.receive (30000)) {
nrcvd++;
String rcp = msg.getStringProperty ("RECIPIENT");

// Verify if messages in message Map
// Check the msgMap to see if this is the message that you are expecting
String corrid = msg.getJMSCorrelationID();
if (msgMap.containsKey(corrid)) {
msgMap.remove(corrid);

}
else {
System.err.println ("** received unexpected message [" + corrid + "] **");

}
}
rcv.close();

}

// Drain messages from queue
private int drainQueue (QueueSession sess, Queue q)
throws Exception {
QueueReceiver rcv = sess.createReceiver (q);
int nrcvd = 0;

// First drain any old messages from queue
for (Message msg = rcv.receive(1000); msg != null; msg = rcv.receive(1000))
nrcvd++;

rcv.close();

return nrcvd;
}

}

Accessing an EJB 2.1 EJBContext
For EJB 2.1 session, entity, and message-driven beans, you can access the EJBContext
that OC4J provides by providing an appropriate getter and setter method when you
implement your bean.

For more information, see the following:

■ "What is EJB Context?" on page 1-6

■ "Implementing the setSessionContext Method" on page 11-9

■ "Implementing the setEntityContext and unsetEntityContext Methods" on
page 13-20

Handling Parameters

29-28 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ "Implementing the setMessageDrivenContext Method" on page 17-6

Handling Parameters
This section describes the following:

■ Passing Parameters Into an Enterprise Bean

■ Handling Parameters Returned by an Enterprise Bean

Passing Parameters Into an Enterprise Bean
When you implement an enterprise bean or write the client code that calls EJB
methods, you must be aware of the parameter-passing conventions used with
enterprise beans.

A parameter that you pass to a bean method (or a return value from a bean method)
can be any Java type that is serializable. Java primitive types, such as int, double, are
serializable. Any nonremote object that implements the java.io.Serializable
interface can be passed. A nonremote object that is passed as a parameter to a bean, or
returned from a bean, is passed by value, not by reference. So, for example, if you call a
bean method as follows:

public class theNumber {
int x;

}
...
bean.method1(theNumber);

then method1() in the bean receives a copy of theNumber. If the bean changes the
value of theNumber object on the server, this change is not reflected back to the client,
because of pass-by-value semantics.

If the nonremote object is complex (such as a class containing several fields) only the
nonstatic and nontransient fields are copied.

When passing a remote object as a parameter, the stub for the remote object is passed.
A remote object passed as a parameter must extend remote interfaces.

The next section demonstrates parameter passing to a bean, and remote objects as
return values.

Handling Parameters Returned by an Enterprise Bean
The EmployeeBean method getEmployee returns an EmpRecord object, so this
object must be defined somewhere in the application. In this example, an EmpRecord
class is included in the same package as the EJB interfaces.

The class is declared as public and must implement the java.io.Serializable
interface so that it can be passed back to the client by value as a serialized remote
object. The declaration is as follows:

package employee;

public class EmpRecord implements java.io.Serializable {
 public String ename;
 public int empno;
 public double sal;
}

Handling Exceptions

Accessing an Enterprise Bean From a Client 29-29

Handling Exceptions
This section describes the following:

■ Recovering From a NamingException While Accessing a Remote Enterprise Bean

■ Recovering From a NullPointerException While Accessing a Remote Enterprise
Bean

■ Recovering From Deadlock Conditions

Recovering From a NamingException While Accessing a Remote Enterprise Bean
If you are trying to remotely access an enterprise bean and you receive an
javax.naming.NamingException error, your JNDI properties are probably not
initialized properly. See "Load Balancing" on page 2-31 for a discussion on setting up
JNDI properties when accessing an enterprise bean from a remote object or remote
servlet.

Recovering From a NullPointerException While Accessing a Remote Enterprise Bean
When accessing a remote enterprise bean from a Web application, you receive the
following error: "java.lang.NullPointerException: domain was null ". In
this case, you must set an environment property in your client while accessing the
enterprise bean set dedicated.rmicontext to true.

The following demonstrates how to use this additional environment property:

Hashtable env = new Hashtable();
env.put (Context.INITIAL_CONTEXT_FACTORY,
"oracle.j2ee.rmi.RMIInitialContextFactory");

env.put (Context.SECURITY_PRINCIPAL, "oc4jadmin");
env.put (Context.SECURITY_CREDENTIALS, "oc4jadmin");
env.put (Context.PROVIDER_URL, "ormi://myhost-us/ejbsamples");
env.put ("dedicated.rmicontext", "true"); // for 9.0.2.1 and later
Context context = new InitialContext (env);

See "Load Balancing" on page 2-31 for more information on
dedicated.rmicontext.

Recovering From Deadlock Conditions
If the call sequence of several beans causes a deadlock scenario, OC4J notices the
deadlock condition and throws a Remote exception that details the deadlock
condition in one of the offending beans.

Note: The java.io.Serializable interface specifies no
methods; it just indicates that the class is serializable. Therefore,
there is no need to implement extra methods in the EmpRecord
class.

Handling Exceptions

29-30 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Using EJB and Web Services 30-1

30
Using EJB and Web Services

This section describes the following:

■ Exposing a Stateless Session Bean as a Web Service

■ Accessing a Web Service From an Enterprise Bean

For more information, see the Oracle Application Server Web Services Developer’s Guide.

Exposing a Stateless Session Bean as a Web Service
The client of a stateless session bean may be a Web service client. Only a stateless
session bean may provide a Web service client view. A Web service client makes use of
the enterprise bean’s Web service client view, as described by a WSDL document. The
bean’s client view Web service endpoint interface is a JAX-RPC interface.

Using EJB 3.0, you can use annotations to easily expose a stateless session bean as a
Web service (see "Using Annotations" on page 30-2).

Using EJB 2.1, you can also expose a stateless session bean as a Web service (see
"Assembling a Web Service with EJBs" in the Oracle Application Server Web Services
Developer’s Guide).

Using Annotations
Using the @WebService and @WebMethod annotations, you can define a Web service
endpoint interface, as Example 30–1 shows, and implement the Web service as a
stateless session bean, as Example 30–2 shows.

Example 30–1 Annotated Web Service Endpoint Interface

package oracle.ejb30.ws;

import javax.ejb.Remote;
import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService
/**
* This is an Enterprise Java Bean Service Endpoint Interface
*/
public interface HelloServiceInf extends java.rmi.Remote {

/**
* @param phrase java.lang.String
* @return java.lang.String
* @throws String The exception description.
*/

Accessing a Web Service From an Enterprise Bean

30-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

@WebMethod
java.lang.String sayHello(java.lang.String name) throws java.rmi.RemoteException;

}

Example 30–2 Implementing the Web Service as a Stateless Session Bean

package oracle.ejb30.ws;

import java.rmi.RemoteException;
import java.util.Properties;
import javax.ejb.Stateless;

/**
* This is a session bean class
*/
@Stateless(name="HelloServiceEJB")
public class HelloServiceBean implements HelloServiceInf {

public String sayHello(String name) {
return("Hello "+name +" from first EJB3.0 Web Service");

}
}

OC4J supports J2SE 5.0 Web Service annotations (also known as the Web Services
Metadata for the Java Platform JSR-181) specification. The specification defines an
annotated Java syntax for programming Web services.

For more information on using Web service annotations including Oracle extensions,
see "Assembling Web Services with Annotations" in the Oracle Application Server Web
Services Developer’s Guide.

For other EJB Web service examples see the stateless session EJB Web service how-to or
Adventure Builder how-to at
http://www.oracle.com/technology/tech/java/ejb30.html.

Accessing a Web Service From an Enterprise Bean
From within an enterprise bean, you can obtain a Web service and invoke its methods.

Using EJB 3.0, you can use annotations and resource injection (see "Using Annotations"
on page 30-2) without having to create an environment reference for the Web service.

Using EJB 2.1, you must use the initial context (see "Using Initial Context" on
page 30-3) and you must create an environment reference for the Web service (see
"Configuring an Environment Reference to a Web Service" on page 19-17) before you
can look it up.

For more information, see "Assembling a J2EE Web Service Client " in the Oracle
Application Server Web Services Developer’s Guide.

Using Annotations
Given the Web service that Example 30–3 shows, you can access the Web service from
an EJB 3.0 stateless session bean using resource injection, as Example 30–4 shows.

Example 30–3 Annotating a Web Service

import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService
public class StockQuoteProvider {

Accessing a Web Service From an Enterprise Bean

Using EJB and Web Services 30-3

@WebMethod
public Float getLastTradePrice() {

...
}

}

Example 30–4 Calling Out to a Web Service Obtained by Resource Injection

@Stateless
public class InvestmentBean implements Investment {

public void checkPortfolio(...) {
...
@Resource StockQuoteProvider sqp;

// Get a quote
Float quotePrice = sqp.getLastTradePrice(...);
...

}
}

Using Initial Context
After you define an environment reference to a Web service (see "Configuring an
Environment Reference to a Web Service" on page 19-17), you can use the initial
context to look up the Web service and invoke its methods from within your stateless
session bean, as Example 30–5 shows.

Example 30–5 Calling Out to a Web Service Obtained from the Initial Context

@Stateless
public class InvestmentBean implements Investment {

public void checkPortfolio(...) {
...
// Obtain the default initial JNDI context
Context initCtx = new InitialContext();
// Look up the stock quote service in the environment
com.example.StockQuoteService sqs = (com.example.StockQuoteService)initCtx.lookup(

"java:comp/env/service/StockQuoteService");
// Get the stub for the service endpoint
com.example.StockQuoteProvider sqp = sqs.getStockQuoteProviderPort();
// Get a quote
float quotePrice = sqp.getLastTradePrice(...);
...

}
}

Accessing a Web Service From an Enterprise Bean

30-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Administrating an EJB Application 31-1

31
Administrating an EJB Application

This chapter describes the following:

■ OC4J EJB JMX Support

■ Using Oracle Enterprise Manager 10g Application Server Control

■ Configuring EJB Logging

■ Managing the Bean Instance Pool

■ Starting and Stopping an EJB Application

■ Troubleshooting an EJB Application

For more information, see "Understanding EJB Administration" on page 2-12.

OC4J EJB JMX Support
OC4J deploys MBeans to collect JSR77 statistics and Oracle Dynamic Monitoring
System (DMS) sensor data for all types of EJB.

You can access these statistics and sensors using any JMX-compliant management tool,
such as the Application Server Control (see "Using Oracle Enterprise Manager 10g
Application Server Control" on page 31-1).

Using Oracle Enterprise Manager 10g Application Server Control
The Application Server Control is a JMX-compliant, Web-based user interface for
deploying, configuring and monitoring applications within OC4J, as well as managing
the OC4J server instance and the Web services used by your applications.

Using the Application Server Control JMX administrative task, you can modify
properties of all EJB types deployed to OC4J without having to restart Oracle
Application Server or redploy your application, as follows:

1. Launch Application Server Control.

2. Click the Administration link.

3. Click System MBean Browser.

4. Specific MBean instances are accessed through the navigation pane to the left of
the console. Expand a node in the navigation pane and drill down to the MBean
you wish to access.

For example, for a standalone OC4J, select: J2EEServer > standalone >
J2EEApplication > application-name > EJBModule > module-name

Configuring EJB Logging

31-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

5. Select the type of an enterprise bean, such as StatelessSessionBean,
MessageDrivenBean, or WebServicePort.

6. Select an MBean instance.

7. Click the appropriate tab in the right-hand pane:

■ Click the Attributes tab to access the MBean's attributes. If you modify any
attribute values, click Apply Changes to apply your changes to the OC4J
runtime.

■ Click the Operations tab to access the MBean's operations. After selecting a
specific operation, click the Invoke to call it.

■ Click the Notifications tab to subscribe to the MBean’s notifications. After
selecting a specific notification, click Apply to subscribe to it.

■ Click the Statistics tab to view the MBean’s statistics.

You can use Application Server Control for most administration tasks.

For more information, see the following:

■ "Oracle Enterprise Manager 10g Application Server Control Console" in the Oracle
Containers for J2EE Configuration and Administration Guide

■ the online Help provided with Application Server Control

Configuring EJB Logging
OC4J uses the standard JDK java.util.logging package and, by default, writes
log messages to the <OC4J_HOME>/j2ee/home/log/<group>/oc4j/log.xml file.

This section describes the following:

■ Logging Namespaces

■ Logging Levels

■ Configuring Logging With Application Server Control Logging MBean

■ Configuring Logging Using the j2ee-logging.xml File

■ Configuring Logging Using System Properties

■ Configuring TopLink Logging

■ Configuring Oracle JMS Connector Logging

Logging Namespaces
You can configure loggers for the following java.util.logging namespaces:

■ oracle.j2ee.ejb.annotation

■ oracle.j2ee.ejb.compilation

■ oracle.j2ee.ejb.database

■ oracle.j2ee.ejb.deployment

■ oracle.j2ee.ejb.lifecycle

■ oracle.j2ee.ejb.pooling

■ oracle.j2ee.ejb.runtime

■ oracle.j2ee.ejb.transaction

Configuring EJB Logging

Administrating an EJB Application 31-3

Logging Levels
You can configure the following log levels: FINER, FINE, CONFIG, INFO, WARNING,
and SEVERE.

Configuring Logging With Application Server Control Logging MBean
The simplest way to configure OC4J logging is to use Application Server Control (see
"Using Oracle Enterprise Manager 10g Application Server Control" on page 31-1).

Application Server Control shows all EJB-related logger names, and you can specify
attributes such as log level using the Application Server Control interface.

Configuring Logging Using the j2ee-logging.xml File
You can configure OC4J logging using the <OC4J_
HOME>/j2ee/home/config/j2ee-logging.xml file, as Example 31–1 shows.

Example 31–1 j2ee-logging.xml File

<logger
name='oracle.j2ee.ejb'
level='NOTIFICATION:1'
useParentHandlers='false'>
<handler name='oc4j-handler'/>
<handler name='console-handler'/>

</logger>

For more information, see the following:

■ "Logging Namespaces" on page 31-2

■ "Logging Levels" on page 31-3

Configuring Logging Using System Properties
You can configure OC4J logging using the oracle.j2ee.logging system property.
This system property has the following format:

oracle.j2ee.logging.<log-level>=<log-namespace>

where:

■ <log-level> is one of fine, finer, or finest.

■ <log-namspace> is an oracle.j2ee.ejb namespace (see "Logging
Namespaces" on page 31-2).

Example 31–2 shows how to configure the logger for the
oracle.j2ee.ejb.deployment namespace to finest.

Example 31–2 Configuring a Logger with a System Property

oracle.j2ee.logging.finest=oracle.j2ee.ejb.deployment

Configuring TopLink Logging
For EJB 3.0 JPA applications, you can use vendor extensions to customize how the
TopLink JPA persistence provider logs.

For more information, see "TopLink JPA Extensions for Logging" on page 26-13.

Managing the Bean Instance Pool

31-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Configuring Oracle JMS Connector Logging
For applications that use the Oracle JMS Connector to access a JMS message service,
you can customize how the Oracle JMS Connector logs using activation configuration
property LogLevel.

For more information, see "Configuring an EJB 3.0 MDB to Access a Message Service
Provider Using J2CA" on page 10-1.

Managing the Bean Instance Pool
OC4J provides EJB pooling attributes that you can configure to improve performance
by reducing the frequency of bean instance creation.

This section describes the following:

■ Configuring Bean Instance Pool Size

■ Configuring Bean Instance Pool Timeouts for Session Beans

■ Configuring Bean Instance Pool Timeouts for Entity Beans

Configuring Bean Instance Pool Size
You can set the minimum and maximum number of the bean instance pool for session
beans, entities, and message-driven beans.

You can configure the bean pool size as follows:

■ Using Oracle Enterprise Manager 10g Application Server Control

■ Using Annotations

■ Using Deployment XML

Configuration in the deployment XML overrides the corresponding configuration
made using annotations.

Using Annotations
You can specify bean instance pool size for EJB 3.0 session and message-driven beans
using the following OC4J-proprietary annotations and their attributes:

■ @StatelessDeployment attributes:

– maxInstances

– minInstances

For more information about these attributes, see Table A–1.

■ @StatefulDeployment attributes:

– maxInstances

– maxInstancesThreshold

For more information about these attributes, see Table A–1.

■ @MessageDrivenDeployment attributes:

– maxInstances

– minInstances

For more information about these attributes, see Table A–3.

Managing the Bean Instance Pool

Administrating an EJB Application 31-5

Example 31–3 shows how to configure these attributes for an EJB 3.0 stateless session
bean using the @StatelessDeployment annotation.

Example 31–3 @StatelessDeployment poolCacheTimeout Attribute

import javax.ejb.Stateless;
import oracle.j2ee.ejb.StatelessDeployment;

@Stateless
@StatelessDeployment(

maxInstances=10,
minInstances=3

)
public class HelloWorldBean implements HelloWorld {

public void sayHello(String name) {
System.out.println("Hello "+name +" from first EJB3.0");

}
}

Using Deployment XML
You can specify bean instance pool size for EJB 3.0 session and message-driven beans
using the following orion-ejb-jar.xml file elements and their attributes:

■ <session-deployment> attributes for stateless session beans:

– max-instances

– min-instances

For more information about these attributes, see Table A–1.

■ <session-deployment> attributes for stateful session beans:

– max-instances

– max-instances-threshold

For more information about these attributes, see Table A–1.

■ <message-driven-deployment> attributes for message-driven beans:

– max-instances

– min-instances

For more information about these attributes, see Table A–3.

Example 31–4 shows how to configure these attributes for an EJB 3.0 stateless session
bean using the orion-ejb-jar.xml file.

Example 31–4 orion-ejb-jar.xml for Bean Instance Pool Size for a Stateless Session Bean

<?xml version="1.0" encoding="utf-8"?>
<orion-ejb-jar

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/oracleas/schema/orion-ejb-jar-10_

0.xsd"
deployment-version="10.1.3.1.0"
deployment-time="10b1fb5cdd0"
schema-major-version="10"
schema-minor-version="0"

>
<enterprise-beans>

<session-deployment
max-instances="10"
min-instances="3"

Managing the Bean Instance Pool

31-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

...
>
</session-deployment>

...
</enterprise-beans>
...

</orion-ejb-jar>

If you change this property using this method, you must restart OC4J to apply your
changes. Alternatively, you can use Application Server Control Console to modify this
parameter dynamically without restarting OC4J (see "Using Oracle Enterprise
Manager 10g Application Server Control" on page 31-1).

Configuring Bean Instance Pool Timeouts for Session Beans
You can set the maximum amount of time that session beans are cached in the bean
instance pool.

You can configure pool timeouts for session beans as follows:

■ Using Oracle Enterprise Manager 10g Application Server Control

■ Using Annotations

■ Using Deployment XML

Configuration in the deployment XML overrides the corresponding configuration
made using annotations.

Using Annotations
Example 31–5 shows how to configure the bean instance pool timeout for an EJB 3.0
stateless session bean using the @StatelessDeployment annotation
poolCacheTimeout attribute.

For more information on this @StatelessDeployment attribute, see Table A–1. For
more information on the @StatelessDeployment annotation, see "Configuring
OC4J-Proprietary Deployment Options on an EJB 3.0 Session Bean" on page 5-10.

Example 31–5 @StatelessDeployment poolCacheTimeout Attribute

import javax.ejb.Stateless;
import oracle.j2ee.ejb.StatelessDeployment;

@Stateless
@StatelessDeployment(

poolCacheTimeout=90
)
public class HelloWorldBean implements HelloWorld {

public void sayHello(String name) {
System.out.println("Hello "+name +" from first EJB3.0");

}
}

Example 31–6 shows how to configure the bean instance pool timeout for an EJB 3.0
stateful session bean using the @StatefulDeployment annotation timeout
attribute.

For more information on this @StatelessDeployment attribute, see Table A–1. For
more information on the @StatelessDeployment annotation, see "Configuring
OC4J-Proprietary Deployment Options on an EJB 3.0 Session Bean" on page 5-10.

Managing the Bean Instance Pool

Administrating an EJB Application 31-7

Example 31–6 @StatefulDeployment timeout Attribute

import javax.ejb.Stateful
import oracle.j2ee.ejb.StatefulDeployment;

@Stateful
@StatefulDeployment(

timeout=100
)
public class CartBean implements Cart {

private ArrayList items;
...

}

Using Deployment XML
In the orion-ejb-jar.xml file you set the bean pool timeout with the following
attributes of the <session-deployment> element for session beans:

■ The pool-cache-timeout attribute is applicable to stateless session beans and
sets how long to keep stateless sessions cached in the pool. The default is 0
seconds, which means never timeout.

For example, if you wanted to set the pool-cache-timeout to 90 seconds, you
would do as follows:

<session-deployment ... pool-cache-timeout="90"
...

</session-deployment>

■ The timeout attribute is applicable to stateful session beans and sets how long a
stateful session bean can remain inactive before it is removed from the bean
instance pool. The default is 1800 seconds.

For example, if you wanted to set the stateful session bean inactivity timeout to
900 seconds, you would do as follows:

<session-deployment ... timeout="900"
...

</session-deployment>

If you change this property using this method, you must restart OC4J to apply your
changes. Alternatively, you can use Application Server Control Console to modify this
parameter dynamically without restarting OC4J (see "Using Oracle Enterprise
Manager 10g Application Server Control" on page 31-1).

Configuring Bean Instance Pool Timeouts for Entity Beans
You can set the maximum amount of time that entities are cached in the bean instance
pool.

You can configure pool timeouts for entities as follows:

■ Using Oracle Enterprise Manager 10g Application Server Control

■ Using Deployment XML

Using Deployment XML
In the orion-ejb-jar.xml file you set the bean pool timeout with the following
attributes of the <entity-deployment> element for entities:

Starting and Stopping an EJB Application

31-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ The pool-cache-timeout attribute sets how long entity bean implementation
instances are to be kept in the "pooled" (unassigned) state. The default is 60
seconds. Setting this attribute to never means never timeout.

For example, if you wanted to set the pool-cache-timeout for entities to 90
seconds, you would do as follows:

<entity-deployment ... pool-cache-timeout="90"
...

</entity-deployment>

If you change this property using this method, you must restart OC4J to apply your
changes. Alternatively, you can use Application Server Control Console to modify this
parameter dynamically without restarting OC4J (see "Using Oracle Enterprise
Manager 10g Application Server Control" on page 31-1).

Starting and Stopping an EJB Application
You can use Application Server Control to stop and start an EJB application.

While an application is stopped, clients cannot access it.

For more information, see "Using Oracle Enterprise Manager 10g Application Server
Control" on page 31-1.

Troubleshooting an EJB Application
This section describes the following:

■ Validating XML Files

■ Debugging the ejb-jar.xml File

■ Debugging Generated Wrapper Code

Validating XML Files
To configure OC4J to validate XML files, add the -validateXML option to the
command line used in the OC4J start up script (<OC4J_HOME>/BIN/oc4j.cmd or
oc4j).

Example 31–7 shows how to set this option in the oc4j.cmd file.

Example 31–7 Setting -validateXML in oc4j.cmd

...
"%JAVA_HOME%\bin\java" %JVMARGS% -jar %OC4J_JAR% %CMDARGS% -validateXML
...

With this option set, OC4J strictly validates XML files against their specified schema
when OC4J reads them. OC4J logs any errors (see "Configuring EJB Logging" on
page 31-2).

Debugging the ejb-jar.xml File
When you deploy an EJB 3.0 application with one or more annotations, OC4J will
automatically write its in-memory ejb-jar.xml file to the same location as the
orion-ejb-jar.xml file in the deployment directory: <ORACLE_
HOME>/j2ee/home/application-deployments/my_application/META-INF.

Troubleshooting an EJB Application

Administrating an EJB Application 31-9

This ejb-jar.xml file represents configuration obtained from both annotations and a
deployed ejb-jar.xml file (if present).

When you deploy an EJB 2.1 application, to preserve generated wrapper code, you
musts set system property KeepWrapperCode (see "Debugging Generated Wrapper
Code" on page 31-9).

See also "Validating XML Files" on page 31-8.

Debugging Generated Wrapper Code
By default, when OC4J deploys an EJB 2.1 CMP application, it generates wrapper code
in <OC4J_
HOME>/j2ee/home/application-deployments/<ear-name>/<ejb-name>/ge
nerated, compiles it, creates a JAR file that contains the compiled classes, and then
deletes the wrapper code it generates.

You can configure OC4J to preserve the wrapper code that it generates. Examining the
wrapper code can aid in debugging some application problems.

This section describes the following:

■ Preserving Generated Wrapper Code in the Default Directory

■ Preserving Generated Wrapper Code in a Directory You Specify

■ Modifying Generated Wrapper Code

■ Disabling Generated Wrapper Code Preservation

Preserving Generated Wrapper Code in the Default Directory
To configure OC4J to preserve generated code, set system property
KeepWrapperCode to true on the OC4J startup command line, as Example 31–8
shows for the <OC4J_HOME>/bin/oc4j.cmd file.

Example 31–8 Setting KeepWrapperCode in oc4j.cmd

...
"%JAVA_HOME%\bin\java" %JVMARGS% -DKeepWrapperCode=true -jar "%OC4J_JAR%" %CMDARGS%
...

When KeepWrapperCode is true, OC4J preserves the wrapper code it generates in
the default directory <OC4J_
HOME>/j2ee/home/application-deployments/<ear-name>/<ejb-name>/ge
nerated. Alternatively, you can specify the directory OC4J uses to preserve wrapper
code (see "Preserving Generated Wrapper Code in a Directory You Specify" on
page 31-10).

If you undeploy your application, OC4J deletes the wrapper code in this directory.

Note: Debugging generated wrapper code is deprecated in this
release.

These options apply only to EJB 2.1 entity beans with
container-managed persistence: they do not apply to session beans,
message-driven beans, or EJB 3.0 entities. OC4J generates only one file
for each EJB 2.1 entity bean with container-managed persistence. OC4J
does not generate any artifacts if you use only EJB 3.0 entities.

Troubleshooting an EJB Application

31-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Preserving Generated Wrapper Code in a Directory You Specify
If you set both system property KeepWrapperCode to true and system property
WrapperCodeDir to a directory (call it <specified-wrapper-dir>), OC4J
generates wrapper code to this directory and preserves the wrapper code even if you
undeploy the application, as Example 31–9 shows for the <OC4J_
HOME>/bin/oc4j.cmd file.

Example 31–9 Setting KeepWrapperCode and WrapperCodeDir in oc4j.cmd

...
"%JAVA_HOME%\bin\java" %JVMARGS% -DKeepWrapperCode=true -DWrapperCodeDir=C:\wrappers -jar
"%OC4J_JAR%" %CMDARGS%
...

The <specified-wrapper-dir> may be absolute (such as C:\wrappers) or
relative (such as ./wrappers): relative paths are relative to <OC4J_
HOME>/j2ee/home.

If OC4J cannot generate to the directory you specify (for example, due to a permission
problem or lack of space), OC4J generates wrapper code to the default directory
<OC4J_
HOME>/j2ee/home/application-deployments/<ear-name>/<ejb-name>/ge
nerated and preserves this wrapper code even if you undeploy the application.

Modifying Generated Wrapper Code
If you set both system property KeepWrapperCode to true and system property
DoNotReGenerateWrapperCode to true, OC4J generates wrapper code and
preserves the wrapper code even if you undeploy the application, as Example 31–10
shows for the <OC4J_HOME>/bin/oc4j.cmd file. In this case, when you redeploy,
OC4J will not regenerate wrapper code, but instead will use the version of wrapper
code in the default directory ("Preserving Generated Wrapper Code in the Default
Directory" on page 31-9) or in the directory you specified (see "Preserving Generated
Wrapper Code in a Directory You Specify" on page 31-10).

Example 31–10 Setting KeepWrapperCode and DoNotReGenerateWrapperCode in
oc4j.cmd

...
"%JAVA_HOME%\bin\java" %JVMARGS% -DKeepWrapperCode=true -DDoNotReGenerateWrapperCode=true
-jar "%OC4J_JAR%" %CMDARGS%
...

Using these system properties, you can modify wrapper code, for example, to add
debugging statements, and when you redeploy, OC4J recompiles and uses the
preserved version of wrapper code that you modified.

Disabling Generated Wrapper Code Preservation
To disable generated wrapper code perservation, set system property
KeepWrapperCode to false and system property
DoNotReGenerateWrapperCode to false, or leave these system properties unset.

Optimizing EJB Performance 32-1

32
Optimizing EJB Performance

This chapter briefly summarizes some of the important options that you can use to
improve EJB performance, including the following:

■ Session Bean Performance

■ JPA Entity Performance

■ Performance of an EJB 2.1 Entity Bean With Container-Managed Persistence

■ Performance of an EJB 2.1 Entity Bean With Bean-Managed Persistence

■ Message-Driven Bean Performance

For complete performance information, see the Oracle Application Server Performance
Guide.

Session Bean Performance
To improve session bean performance, consider the following:

■ Bean Instance Pooling

■ Singleton Interceptors

Bean Instance Pooling
For session beans, using bean instance pooling can increase performance by reducing
bean creation overhead. For more information, see "Managing the Bean Instance Pool"
on page 31-4.

Singleton Interceptors
For EJB 3.0 session beans, if you are using interceptors and your interceptors are
stateless, you can specify singleton interceptors. This OC4J EJB 3.0 extension creates a
singleton for each interceptor class. This singleton is shared by all session bean
instances that use that interceptor class. This reduces memory requirements and life
cycle management. For more information, see "Singleton Interceptors" on page 2-12.

JPA Entity Performance
To improve JPA entity performance, consider the following:

■ Bean Instance Pooling

■ Fetch Type

Performance of an EJB 2.1 Entity Bean With Container-Managed Persistence

32-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Bean Instance Pooling
For EJB 3.0 entities, using bean instance pooling can increase performance by reducing
bean creation overhead. For more information, see "Managing the Bean Instance Pool"
on page 31-4.

Fetch Type
For all EJB 3.0 mapping types, you can define the strategy for fetching data from the
database as either lazy or eager. This can help improve performance when you know
that certain portions of an entity are infrequently accessed. This is especially valuable
for relationship mappings where it can reduce the amount of SQL that is executed,
reduce query execution time, and reduce object loading time. For more information,
see "Configuring Lazy Loading" on page 7-16.

Performance of an EJB 2.1 Entity Bean With Container-Managed
Persistence

To improve performance of an EJB 2.1 entity bean with container-managed persistence,
consider the following:

■ Bean Instance Pooling

■ Read-Only Entity Beans With Container-Managed Persistence

For more information, see "Improving EJB CMP 2.1 Performance" in the Oracle
Application Server Performance Guide.

Bean Instance Pooling
For EJB 2.1 entity beans with container-managed persistence, using bean instance
pooling can increase performance by reducing bean creation overhead. For more
information, see "Managing the Bean Instance Pool" on page 31-4.

Read-Only Entity Beans With Container-Managed Persistence
For EJB 2.1 entity beans with container-managed persistence that do not change after
activation, you can specify a locking mode of read-only. For more information, see
"Concurrency (Locking) Mode" on page 1-60.

Performance of an EJB 2.1 Entity Bean With Bean-Managed Persistence
To improve performance of an EJB 2.1 entity bean with bean-managed persistence,
consider the following:

■ Read-Only Entity Beans With Bean-Managed Persistence

■ Commit Option A

Read-Only Entity Beans With Bean-Managed Persistence
For EJB 2.1 entity beans with bean-managed persistence that do not change after
activation, you can specify the entity bean as read-only. When you configure an entity
bean with bean-managed persistence as read-only, OC4J uses a special case of commit
option A to improve performance by performing the following:

■ caching the instance;

Message-Driven Bean Performance

Optimizing EJB Performance 32-3

■ not calling ejbLoad after activation;

■ not updating the instance or calling ejbStore when the transaction commits.

For more information, see "Configuring a Read-Only Entity Bean With Bean-Managed
Persistence" on page 15-4.

Commit Option A
For EJB 2.1 BMP applications, you can configure the BMP commit option as A or C.
Commit option A offers a performance improvement by postponing a call to ejbLoad
method. For more information, see "Commit Options and BMP Applications" on
page 1-50.

If you configure a read-only entity bean with bean-managed persistence to use commit
option A, you can further improve performance by taking advantage of caching of the
read-only entity bean with bean-managed persistence. For more information, see
"Read-Only Entity Beans With Bean-Managed Persistence" on page 32-2.

Message-Driven Bean Performance
To improve message-driven bean performance, consider the following:

■ Bean Instance Pooling

■ Singleton Interceptors

For more information, see "Improving MDB Performance" in the Oracle Application
Server Performance Guide.

Bean Instance Pooling
For message-driven beans, using bean instance pooling can increase performance by
reducing bean creation overhead. For more information, see "Managing the Bean
Instance Pool" on page 31-4.

Singleton Interceptors
For EJB 3.0 message-driven beans, if you are using interceptors and your interceptors
are stateless, you can specify singleton interceptors. This OC4J EJB 3.0 extension
creates a singleton for each interceptor class. This singleton is shared by all
message-driven bean instances that use that interceptor class. This reduces memory
requirements and life cycle management. For more information, see "Singleton
Interceptors" on page 2-12.

Message-Driven Bean Performance

32-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

XML Reference for orion-ejb-jar.xml Elements A-1

A
XML Reference for orion-ejb-jar.xml

Elements

This appendix describes the elements contained within the OC4J-specific EJB
deployment descriptor orion-ejb-jar.xml, including the following:

■ OC4J and the orion-ejb-jar.xml File

■ TopLink Persistence Support

■ <orion-ejb-jar>

– <enterprise-beans>

* <persistence-manager>

* <session-deployment>

* <entity-deployment>

* <message-driven-deployment>

– <assembly-descriptor>

For more information, see the following:

■ "Understanding EJB Deployment Descriptor Files" on page 2-4

■ http://www.oracle.com/technology/oracleas/schema/index.html

OC4J and the orion-ejb-jar.xml File
Whenever you deploy an application, OC4J automatically generates the OC4J-specific
XML file with the default elements. If you want to change these defaults, you must
copy the orion-ejb-jar.xml file to where your original ejb-jar.xml file is
located and change it in this location. If you change the XML file within the deployed
location, OC4J overwrites these changes when the application is deployed again. The
changes only stay constant when changed in the development directories.

Oracle recommends that you add your OC4J-specific XML files within the
recommended development structure, as Figure A–1 shows.

OC4J and the orion-ejb-jar.xml File

A-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Figure A–1 Development Application Directory Structure

TopLink Persistence Support
Table A–2 describes all the attributes of the orion-ejb-jar.xml file
<entity-deployment> element and indicates which options you configure in the
orion-ejb-jar.xml file and which you configure using TopLink persistence API.

For example:

■ To configure <entity-deployment> attribute call-timeout, you must use
the corresponding TopLink persistence API. If you set the call-timeout
attribute in the orion-ejb-jar.xml file, OC4J will ignore it.

■ To configure <entity-deployment> attribute clustering-schema, you must
use the orion-ejb-jar.xml file; there is no corresponding TopLink persistence
API.

For EJB 3.0 applications, you access TopLink persistence API by augmenting
orion-ejb-jar.xml configuration with TopLink-specific deployment descriptor
files ejb3-toplink-sessions.xml and toplink-ejb-jar.xml. For more
information, see "Customizing the JPA Persistence Provider" on page 3-3.

For EJB 2.1 applications, you access TopLink persistence API using
orion-ejb-jar.xml element pm-properties. For more information, see
"Customizing the TopLink EJB 2.1 Persistence Manager" on page 3-13.

Note: To modify TopLink deployment descriptor files, use the
TopLink Workbench.

For more information, see the following:

■ "Migrating OC4J Orion Persistence to OC4J TopLink Persistence"
in the Oracle TopLink Developer’s Guide

■ "Understanding TopLink Workbench" in the Oracle TopLink
Developer’s Guide

■ TopLink-specific deployment descriptor XML schema documents
located at <OC4J_HOME>\toplink\config\xsds.

<persistence-manager>

XML Reference for orion-ejb-jar.xml Elements A-3

<orion-ejb-jar>
The OC4J-specific deployment descriptor contains extended deployment information
for session beans, entity beans, message driven beans, and security for these enterprise
beans. The major element structure within this deployment descriptor has the
following structure:

<orion-ejb-jar deployment-time=... deployment-version=...>
<enterprise-beans>
<persistence-manager ...></persistence-manager>
<session-deployment ...></session-deployment>
<entity-deployment ...></entity-deployment>
<message-driven-deployment ...></message-driven-deployment>

</enterprise-beans>
<assembly-descriptor>
 <security-role-mapping ...></security-role-mapping>
 <default-method-access></default-method-access>
 </assembly-descriptor>
</orion-ejb-jar>

Each section under the <orion-ejb-jar> main tag has its own purpose. These are
described in the following sections:

■ <enterprise-beans>

■ <assembly-descriptor>

<enterprise-beans>
The <enterprise-beans> section defines additional deployment information for all
enterprise beans: session beans, entity beans, and message driven beans. There is a
section for each type of EJB.

The following sections describe the elements within <enterprise-beans> element:

■ <persistence-manager>

■ <session-deployment>

■ <entity-deployment>

■ <message-driven-deployment>

■ <cmp-field-mapping>

<persistence-manager>
The <persistence-manager> section provides additional deployment information
for the TopLink persistence manager for EJB 2.1 applications only. For EJB 3.0
applications, OC4J always uses the TopLink entity manager.

The <persistence-manager> section contains the following structure:

<persistence-manager name=... class=... descriptor=... >
 <pm-properties>
 <session-name>...</session-name>
 <project-class>...</project-class>
 <db-platform-class>...</db-platform-class>
 <default-mapping db-table-gen=... >...</default-mapping>
 <remote-relationships>...</remote-relationships>
 <cache-synchronization mode=... >...</cache-synchronization>
 <customization-class>...</customization-class>
 </pm-properties>

<session-deployment>

A-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

</persistence-manager>

Multiple definitions of the <persistence-manager> element are not valid. If OC4J
detects multiple definitions of the <persistence-manager> element at parse time,
OC4J logs a warning message. In this case, OC4J uses only the first entry and ignores
any subsequent entries.

If you want to explicitly specify the persistence manager, use the
<persistence-manager> element name attribute. The following are valid values:

■ toplink: selects the TopLink persistence manager (default).

■ orion: selects the deprecated Orion persistence manager.

If you are using the TopLink persistence manager and you name your TopLink
deployment descriptor something other than toplink-ejb-jar.xml (see "What is
the toplink-ejb-jar.xml File?" on page 2-6), specify the name using the
<persistence-manager> element descriptor attribute.

The <pm-properites> element applies only to the TopLink persistence manager.

For more information, see the following:

■ "Understanding EJB Persistence Services" on page 2-12

■ "Customizing the JPA Persistence Provider" on page 3-3

■ "Customizing the TopLink EJB 2.1 Persistence Manager" on page 3-13

■ "Configuring pm-properties" in the Oracle TopLink Developer’s Guide

<session-deployment>
The <session-deployment> section provides additional deployment information
for a session bean deployed within this JAR file.

The <session-deployment> section contains the following structure:

<session-deployment pool-cache-timeout=... call-timeout=... copy-by-value=...
 location=... max-instances=... min-instances=... max-tx-retries=...
 tx-retry-wait=... name=... persistence-filename=... replication=...
 timeout=... idletime=... memory-threshold=... max-instances-threshold=...
 resource-check-interval=... passivate-count=... wrapper=...
 local-wrapper=... interceptor-type= ...
 <ior-security-config>
 <transport-config>
 <integrity></integrity>
 <confidentiality></confidentiality>
 <establish-trust-in-target></establish-trust-in-target>
 <establish-trust-in-client></establish-trust-in-client>
 </transport-config>
 <as-context>
 <auth-method></auth-method>
 <realm></realm>
 <required></required>
 </as-context>
 <sas-context>
 <caller-propagation></caller-propagation>
 </sas-context>
 </ior-security-config>
 <env-entry-mapping name=...> </env-entry-mapping
 <ejb-ref-mapping location=... name=... remote=... jndi-properties=... />
 <resource-ref-mapping location=... name=... >

<session-deployment>

XML Reference for orion-ejb-jar.xml Elements A-5

 <lookup-context location=...>
 <context-attribute name=... value=... />
 </lookup-context>
 </resource-ref-mapping>
 <resource-env-ref-mapping location=... name=... />
 <message-destination-ref-mapping location=... name=... />
</session-deployment>

For information on each of these elements and sub-elements, see the following:

■ <session-deployment> Attributes

■ <ior-security-config>

■ <env-entry-mapping>

■ <ejb-ref-mapping>

■ <resource-ref-mapping>

■ <resource-env-ref-mapping>

■ <message-destination-ref-mapping>

Examples
For session bean examples, which include <session-deployment>,
@StatefulDeployment, or @StatelessDeployment configuration (where
relevant), see the following:

■ "Implementing an EJB 3.0 Session Bean" on page 4-1

■ "Implementing an EJB 2.1 Session Bean" on page 11-1

■ "Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 Session Bean"
on page 5-10

<session-deployment> Attributes
Table A–1 lists the attributes for the <session-deployment> element, their
@StatelessDeployment and @StatefulDeployment annotation attribute
equivalents (where appropriate), and indicates which are applicable to stateless
session beans only, stateful session beans only, or both.

Note: Alternatively, in an EJB 3.0 application, you can use the
OC4J-proprietary annotations @StatelessDeployment and
@StatefulDeployment. You can use the orion-ejb-jar.xml file
<session-deployment> configuration to override
@StatelessDeployment and @StatefulDeployment
configuration. For more information, see "Configuring
OC4J-Proprietary Deployment Options on an EJB 3.0 Session Bean" on
page 5-10.

<session-deployment>

A-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Table A–1 Attributes for the <session-deployment> Element

Attribute
@StatelessDeploy
ment Equivalent

@StatefulDeploy
ment Equivalent Stateless Stateful Description

call-timeout callTimeout callTimeout This parameter specifies the maximum
time to wait for any resource to make a
business/life cycle method invocation. This
is not a timeout for how long a business
method invocation can take.

If the timeout is reached, a
TimedOutException is thrown. This
excludes database connections.

The default value is 90000 milliseconds. Set
to 0 if you want the timeout to be forever.
See the EJB section in the Oracle Application
Server Performance Guide for more
information.

copy-by-valu
e

copyByValue copyByValue Whether or not to copy (clone) all the
incoming and outgoing parameters in EJB
calls. Set to false if you are certain that
your application does not assume
copy-by-value semantics for a speed-up.
The default value is true.

idletime idletime You can set an idle timeout for each bean.
When this timeout expires, passivation
occurs. Set this attribute to the appropriate
number of seconds. Default: 300 seconds. (5
minutes). To disable, specify any negative
number.

interceptor-
type

interceptorTyp
e

interceptorTy
pe

How OC4J should handle interceptor class
life cycle. One of bean (default) or
singleton.

When set to the default, OC4J creates a
separate interceptor class instance for each
session bean instance that you associate
with that interceptor class. This is in
accordance with the EJB 3.0 specification.

When set to singleton, OC4J creates a
single interceptor class instance that all
session bean instances share. In this case,
the interceptor class must be stateless.

For more information, see "Singleton
Interceptors" on page 2-12.

local-locati
on

localLocation localLocation The local JNDI name, to which this
enterprise bean will be bound.

local-wrappe
r

Name of the OC4J local home wrapper
class for this bean. This is an internal server
value and should not be edited.

location location location The JNDI-name to which this bean will be
bound.

<session-deployment>

XML Reference for orion-ejb-jar.xml Elements A-7

max-instance
s

maxInstances maxInstances The number of bean instances allowed in
memory: either instantiated or pooled.
When this value is reached, OC4J attempts
to passivate beans using the least recently
used (LRU) algorithm. To allow an infinite
number of bean instances, the
max-instances attribute can be set to
zero. Default is 0, which means infinite.
This applies to both stateless and stateful
session beans.

To disable instance pooling, set
max-instances to any negative number.
This will create a new instance at the start
of the EJB call and release it at the end of
the call.

For more information, see the following:

■ "Configuring Passivation Criteria" on
page 12-2

■ "Configuring Bean Instance Pool Size"
on page 31-4

max-instance
s-threshold

maxInstancesT
hreshold

Percentage of max-instances number of
beans that can be in memory before
passivation occurs.

Specify an integer that is translated as a
percentage. If you define that the
max-instances is 100 and the
max-instances-threshold is 90%, then
when the active bean instances is greater
than or equal to 90, passivation of beans
occurs. Default: 90%.

To disable, specify any negative number.

max-tx-retri
es

maxTransaction
Retries

maxTransactio
nRetries

This parameter specifies the number of
times to retry a transaction that was rolled
back due to system-level failures. The
default is 0.

For a stateful session bean, if a
RuntimeException, Error, or
RemoteException is thrown, the OC4J
does not do a retry.

Generally, Oracle recommend that you add
retries only where errors are seen that
could be resolved through retries. For
example, if you are using serializable
isolation and you want to retry the
transaction automatically if there is a
conflict, you might want to use retries.
However, if the bean wants to be notified
when there is a conflict, then in this case,
you should leave max-tx-retries=0.

See the EJB section in the Oracle Application
Server Performance Guide for more
information.

memory-thres
hold

memoryThresho
ld

This attribute defines a threshold for how
much used JVM memory is allowed before
passivation should occur.

Specify an integer that is translated as a
percentage.

 When reached, beans are passivated, even
if their idle timeout has not expired.
Default: 80%.

To disable, specify any negative number.

Table A–1 (Cont.) Attributes for the <session-deployment> Element

Attribute
@StatelessDeploy
ment Equivalent

@StatefulDeploy
ment Equivalent Stateless Stateful Description

<session-deployment>

A-8 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

min-instance
s

minInstances The number of minimum bean
implementation instances to be kept
instantiated or pooled. The default is 0.
This setting is valid for stateless session
beans only.

name The name of the bean, which matches the
name of a bean in the assembly section of
the EJB deployment descriptor
(ejb-jar.xml).

passivate-co
unt

passivateCoun
t

This attribute is an integer that defines the
number of beans to be passivated if any of
the resource thresholds have been reached.
Passivation of beans is performed using the
least recently used algorithm. Default:
one-third of the max-instances attribute.
You can disable this attribute by setting the
count to zero or a negative number.

persistence-
filename

persistenceFi
leName

Path to the file where sessions are stored
across restarts.

pool-cache-t
imeout

poolCacheTimeo
ut

The pool-cache-timeout applies to
stateless session enterprise beans. This
parameter specifies how long to keep
stateless sessions cached in the pool.

For stateless session beans, if you specify a
pool-cache-timeout, then at every
pool-cache-timeout interval all beans
of the corresponding bean type in the pool
are removed. If the value specified is zero
or negative, then the
pool-cache-timeout is disabled and
beans are not removed from the pool.

The default value is 60 (seconds)

replication replicationTy
pe

Configuration of the state replication for
stateful session beans. Values can be
inherited (default) onShutdown,
onRequestEnd, or none. See "State
Replication" on page 2-30 for more
information.

resource-che
ck-interval

resourceCheck
Interval

The container checks all resources at this
time interval. At this time, if any of the
thresholds have been reached, passivation
occurs. Default: 180 sec. (3 min.).

To disable, specify any negative number.

Table A–1 (Cont.) Attributes for the <session-deployment> Element

Attribute
@StatelessDeploy
ment Equivalent

@StatefulDeploy
ment Equivalent Stateless Stateful Description

<session-deployment>

XML Reference for orion-ejb-jar.xml Elements A-9

<ior-security-config>
The <ior-security-config> element is an interoperability element, which is
discussed fully in the Interoperability chapter in the Oracle Containers for J2EE Services
Guide.

<env-entry-mapping>
The <env-entry-mapping> element maps environment variables to JNDI names
and is discussed in "Configuring an Environment Reference to an Environment
Variable" on page 19-16.

<ejb-ref-mapping>
The <ejb-ref-mapping> element maps any EJB references to JNDI names and is
discussed in "EJB Environment References" on page 19-2.

<resource-ref-mapping>
The <resource-ref-mapping> element maps any EJB references to JNDI names
and is discussed in "Resource Manager Connection Factory Environment References"
on page 19-2.

timeout timeout The maximum number of seconds that a
stateful session bean may be inactive before
being subject to pool clean-up. If the value
is zero or negative, then all timeouts are
disabled.

Every 30 seconds the pool clean up logic is
invoked. Within the pool clean up logic,
only the sessions that timed out, by passing
the timeout value, are deleted.

Adjust the timeout based on your
applications use of stateful session beans.
For example, if stateful session beans are
not removed explicitly by your application,
and the application creates many stateful
session beans, then you may want to lower
the timeout value.

If your application requires that a stateful
session bean be available for longer than
1800 seconds (equal to 30 minutes), then
adjust the timeout value accordingly.

The default value is 1800 seconds.

transaction-
timeout

transactionTim
eout

transactionTi
meout

The maximum number of seconds that
OC4J will wait for a transaction started by
this stateless or stateful session bean to
commit or rollback. If the value is zero or
negative, the timeout is disabled.

tx-retry-wai
t

transactionRet
ryWait

transactionRe
tryWait

This parameter specifies the time to wait in
seconds between retrying the transaction.
The default value is 60 seconds.

wrapper Name of the OC4J wrapper class for this
bean. This is an internal server value and
should not be edited.

Table A–1 (Cont.) Attributes for the <session-deployment> Element

Attribute
@StatelessDeploy
ment Equivalent

@StatefulDeploy
ment Equivalent Stateless Stateful Description

<entity-deployment>

A-10 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

<resource-env-ref-mapping>
The <resource-env-ref-mapping> element is used to map an administered object
for a resource. For example, to use JMS, the bean must obtain both a JMS factory object
and a destination object. These objects are retrieved at the same time from JNDI. The
<resource-ref> element declares the JMS factory and the <resource-env-ref>
element is used to declare the destination. Thus, the
<resource-env-ref-mapping> element maps the destination object. See "Resource
Manager Connection Factory Environment References" on page 19-2 for more
information.

<message-destination-ref-mapping>
The <message-destination-ref-mapping> element is only used if you are using
JMS 1.1. Use this element to map the message-destination-ref-name in the
client deployment descriptor to another location that is available in the OC4J
environment. It provides means of linking message consumers and producers to one
or more common logical destinations. For more information, see "Configuring an
Environment Reference to a JMS Destination Resource Manager Connection Factory
(JMS 1.1)" on page 19-13.

<entity-deployment>
The <entity-deployment> section provides additional deployment information for
an EJB 2.x or EJB 1.1 entity bean deployed within this JAR file.

The <entity-deployment> section contains the following structure:

<entity-deployment call-timeout=... clustering-schema=...
 copy-by-value=... data-source=... exclusive-write-access=...
 disable-default-persistent-unit=...
 do-select-before-insert=... isolation=...
 location=... local-location=... locking-mode=...
 max-instances=... min-instances=...
 max-tx-retries=... tx-retry-wait=... update-changed-fields-only=...
 name=... pool-cache-timeout=...
 table=... validity-timeout=... force-update=...
 wrapper=... local-wrapper=... delay-updates-until-commit=...
 findByPrimaryKey-lazy-loading=... >
 <ior-security-config>
 <transport-config>
 <integrity></integrity>
 <confidentiality></confidentiality>
 <establish-trust-in-target></establish-trust-in-target>
 <establish-trust-in-client></establish-trust-in-client>
 </transport-config>
 <as-context>
 <auth-method></auth-method>
 <realm></realm>
 <required></required>
 </as-context>
 <sas-context>
 <caller-propagation></caller-propagation>

Note: All <entity-deployment> attributes and sub-elements
apply only to EJB 2.x or EJB 1.1 entity beans. They are not applicable
to JPA entities.

<entity-deployment>

XML Reference for orion-ejb-jar.xml Elements A-11

 </sas-context>
 </ior-security-config>
 <primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...> </cmp-field-mapping>
 <finder-method partial=... query=... lazy-loading=... prefetch-size=... >
 <method></method>
 </finder-method>
 <env-entry-mapping name=...></env-entry-mapping>
 <ejb-ref-mapping location=... name=... remote=... jndi-properties=... />
 <resource-ref-mapping location=... name=... >
 <lookup-context location=...>
 <context-attribute name=... value=... />
 </lookup-context>
 </resource-ref-mapping>
 <resource-env-ref-mapping location=... name=... />
</entity-deployment>

For information on each of these elements and sub-elements, see the following:

■ <entity-deployment> Attributes

■ <ior-security-config>

■ <primkey-mapping>

■ <cmp-field-mapping>

■ <finder-method>

■ <env-entry-mapping>

■ <ejb-ref-mapping>

■ <service-ref-mapping>

■ <resource-ref-mapping>

■ <resource-env-ref-mapping>

■ <message-destination-ref-mapping>

■ <commit-option>

Examples
For entity bean examples, which include <entity-deployment> configuration
(where relevant), see "Implementing an EJB 2.1 Entity Bean" on page 13-1.

<entity-deployment> Attributes
Table A–2 lists the attributes for the <entity-deployment> element.

For more information about OC4J support for TopLink persistence, see "TopLink
Persistence Support" on page A-2.

<entity-deployment>

A-12 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Table A–2 Attributes for the <entity-deployment> Element

Attribute
Configurable in
orion-ejb-jar.xml

Configurable
Using TopLink
Persistence API Description

call-timeout Using TopLink persistence API, you can specify the maximum
time OC4J will wait for a query to return a result. A query
timeout ensures that your application does not block forever
over a hung or lengthy query that does not return in a timely
fashion.

You can specify a query timeout at the descriptor and query
level.

A descriptor-level query timeout applies to all queries on the
descriptor's reference class. Specify a descriptor-level query
timeout to apply the same timeout to all queries on a particular
object type.

A query-level query timeout applies to that query only.

For more information, see the following:

■ "Configuring Query Timeout at the Descriptor Level" in
the Oracle TopLink Developer’s Guide

"Configuring Named Query Advanced Options" in the
Oracle TopLink Developer’s Guide

■ "Configuring Query Timeout at the Query Level" in the
Oracle TopLink Developer’s Guide

clustering-schem
a

Do not use. Not needed in this release.

copy-by-value Whether or not to copy (clone) all the incoming and outgoing
parameters in EJB calls. Set to false if you are certain that your
application does not assume copy-by-value semantics for a
speed-up.

The default value is true.

data-source The name of the data source used if using container-managed
persistence.

delay-updates-un
til-commit

Using TopLink persistence API, you can configure OC4J for
either deferred or non-deferred changes. By default, TopLink
defers all changes until commit time: this is the most efficient
approach that produces the least number of data source
interactions. Alternatively, you can configure an entity bean's
descriptor for nondeferred changes. This means that as you
change the persistent fields of the entity bean, OC4J modifies
the relational schema immediately.

For more information, see "Non-Deferred Changes" in the
Oracle TopLink Developer’s Guide.

disable-default-
persistent-unit

By default, OC4J enables the deployment of EJB 3.0 entities
without a persistence.xml file if your application only uses
the OC4J default persistence unit. To disable this feature, set
to true.

The default is false.

For more information, see "Understanding OC4J Persistence
Unit Defaults" on page 2-8.

do-select-before
-insert

TopLink does not perform a select before writing out changes.
Oracle recommends using optimistic locking to handle the
possibility of concurrent overwrites.

For more information, see "Concurrency (Locking) Mode" on
page 1-60.

<entity-deployment>

XML Reference for orion-ejb-jar.xml Elements A-13

exclusive-write-
access

Using TopLink persistence API, OC4J assumes exclusive write
access to the entity instances, because TopLink uses its unit of
work transaction space to calculate change sets and write out
the changes. The unit of work transaction space is separate from
the shared session cache.

For more information, see "Unit of Work Architecture" in the
Oracle TopLink Developer’s Guide.

findByPrimaryKey
-lazy-loading

Using TopLink persistence API, you can configure fetch groups,
which let you retrieve a subset of a bean’s attributes. This is
equivalent of lazy loading.

For more information, see "Using Queries with Fetch Groups"
in the Oracle TopLink Developer’s Guide.

force-update Using TopLink persistence API, you can configure whether or
not OC4J executes persistence-related life cycle methods, even if
OC4J does not believe that any of the persistence data has
changed.

When set to true, this option means that OC4J will still
execute the EJB life cycle by invoking the ejbStore method.
This manages data in transient fields and sets appropriate
persistent fields during the ejbStore method. For example, an
image might be kept in one format in memory, but stored in a
different format in the database.

The default value is false.

For more information, see "Configuring a Descriptor With EJB
Information" in the Oracle TopLink Developer’s Guide

isolation Using TopLink persistence API, database transaction isolation
levels are not that relevant to TopLink, because it provides an
object cache and unit of work transaction space. Consider
configuring TopLink unit of work and cache isolation levels
instead.

Handling locking through database isolation levels is rarely
done. Typically, locking is done through optimistic or
pessimistic locking.

You can configure transaction isolation level on a TopLink
database login: this setting applies to all beans and transactions
that use the database login.

By default, TopLink uses whatever isolation level is set on the
database.

For more information, see the following:

■ "How do you Avoid Database Resource Contention?" on
page 1-59

■ "Concurrency (Locking) Mode" on page 1-60

■ "Database Transaction Isolation Levels" in the Oracle
TopLink Developer’s Guide

■ Oracle Application Server Performance Guide.

local-location Defines the local JNDI name to which this bean will be bound

local-wrapper Name of the OC4J local home wrapper class for this bean. This
is an internal server value and should not be edited.

location The JNDI-name to which this bean will be bound.

Table A–2 (Cont.) Attributes for the <entity-deployment> Element

Attribute
Configurable in
orion-ejb-jar.xml

Configurable
Using TopLink
Persistence API Description

<entity-deployment>

A-14 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

locking-mode Using TopLink persistence API, you can configure the following
locking modes:

■ Optimistic Locking: Multiple users have read access to the
data. When a user attempts to make a change, the
application checks to ensure the data has not changed
since the user read the data. TopLink supports version
(recommended), timestamp, and field-level locking.

■ Pessimistic Locking: The first user who accesses the data
with the purpose of updating it locks the data until
completing the update. This manages resource contention
and does not allow parallel execution. Only one user at a
time is allowed to execute the entity bean at a single time.

■ Read-only: Multiple users can execute the entity bean in
parallel. The container does not allow any updates to the
bean's state.

For more information, see "Concurrency (Locking) Mode" on
page 1-60.

max-instances The maximum number of bean implementation instances to be
kept instantiated or pooled. The default is 0, which means
infinite.

To disable instance pooling, set max-instances to any
negative number. This will create a new instance at the start of
the EJB call and release it at the end of the call.

See "Configuring Bean Instance Pool Size" on page 31-4 for
more information.

max-tx-retries This parameter specifies the number of times to retry a
transaction that was rolled back due to system-level failures.

 The default value is 0.

Generally, Oracle recommends that you add retries only where
errors are seen that could be resolved through retries. For
example, if you are using serializable isolation and you want to
retry the transaction automatically if there is a conflict, you
might want to use retries. However, if the bean wants to be
notified when there is a conflict, then, in this case, you should
leave max-tx-retries=0.

See the EJB section in the Oracle Application Server Performance
Guide for more information.

min-instances The minimum number of bean implementation instances to be
kept instantiated or pooled.

The default value is 0.

See "Configuring Bean Instance Pool Size" on page 31-4 for
more information.

name The name of the bean, which matches the name of a bean in the
assembly section of the EJB deployment descriptor
(ejb-jar.xml).

pool-cache-timeo
ut

The amount of time in seconds that the bean implementation
instances are to be kept in the "pooled" (unassigned) state.
Specifying any negative number retains the instances until they
are garbage collected. The default is 60. See "Configuring Bean
Instance Pool Timeouts for Entity Beans" on page 31-7 for more
information

table Using TopLink persistence API, you can specify the name of the
database table associated with this bean.

For more information, see "Configuring Associated Tables" in
the Oracle TopLink Developer’s Guide

tx-retry-wait This parameter specifies the time to wait in seconds between
retrying the transaction. The default is 60 seconds.1

Table A–2 (Cont.) Attributes for the <entity-deployment> Element

Attribute
Configurable in
orion-ejb-jar.xml

Configurable
Using TopLink
Persistence API Description

<entity-deployment>

XML Reference for orion-ejb-jar.xml Elements A-15

<ior-security-config>
The <ior-security-config> element configures CSIv2 security policies for
interoperability, which is discussed fully in the Interoperability chapter in the Oracle
Containers for J2EE Services Guide.

<primkey-mapping>
The <primkey-mapping> element maps the primary key to the container-managed
persistent field it represents. In this release, this feature is not configured in
orion-ejb-jar.xml file. OC4J automatically makes this configuration. To manually
configure this feature, you use TopLink persistence API.

For more information, see the following:

■ "Customizing the JPA Persistence Provider" on page 3-3

■ "Customizing the TopLink EJB 2.1 Persistence Manager" on page 3-13

■ "Understanding Sequencing in Relational Projects" in the Oracle TopLink Developer’s
Guide

<cmp-field-mapping>
If you still use EJB 1.1 entity beans with container-managed persistence, use the
<cmp-field-mapping> element to map the container-managed persistent fields to
the database.

The following are the XML elements used for container-managed persistent data field
mapping within the orion-ejb-jar.xml file for EJB 1.1 entity beans with
container-managed persistence:

<cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...>
 <fields>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </fields>
 <properties>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </properties>
 <entity-ref home=...>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>

update-changed-f
ields-only

Using TopLink persistence API, the TopLink unit of work
always calculates a change set and generates an update
statement for changed fields only.

validity-timeout Using TopLink persistence API, you can configure an
invalidation policy to

For more information, see "Cache Invalidation" in the Oracle
TopLink Developer’s Guide.

wrapper Name of the OC4J remote home wrapper class for this bean.
This is an internal server value and should not be edited.

1 you specify this attribute, you cannot enable XML validation (see "Validating XML Files" on page 31-8).

Table A–2 (Cont.) Attributes for the <entity-deployment> Element

Attribute
Configurable in
orion-ejb-jar.xml

Configurable
Using TopLink
Persistence API Description

<entity-deployment>

A-16 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

 </entity-ref>
 <collection-mapping table=...>
 <primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </primkey-mapping>
 <value-mapping immutable="true|false" type=...>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </value-mapping>
 </collection-mapping>
 <set-mapping table=...>
 <primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </primkey-mapping>
 <value-mapping immutable="true|false" type=...>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </value-mapping>
 </set-mapping>
</cmp-field-mapping>

For EJB 3.0 entities and EJB 2.1 entity beans, this feature is not configured in
orion-ejb-jar.xml file. OC4J automatically makes this configuration. To manually
configure this feature, you use TopLink persistence API.

For more information, see the following:

■ "What are Container-Managed Persistent Fields?" on page 1-42

■ "Customizing the JPA Persistence Provider" on page 3-3

■ "Customizing the TopLink EJB 2.1 Persistence Manager" on page 3-13

■ "Understanding Relational Mappings" in the Oracle TopLink Developer’s Guide

<finder-method>
The <finder-method> element is used to create finder methods for EJB 1.1 entity
beans.

For more information, see the following:

■ "How do you Query for a JPA Entity?" on page 1-39

■ "How do you Query for an EJB 2.1 Entity Bean?" on page 1-50

<env-entry-mapping>
The <env-entry-mapping> element maps environment variables to JNDI names
and is discussed in "Configuring an Environment Reference to an Environment
Variable" on page 19-16.

<ejb-ref-mapping>
The <ejb-ref-mapping> element maps any EJB references to JNDI names and is
discussed in "EJB Environment References" on page 19-2.

<message-driven-deployment>

XML Reference for orion-ejb-jar.xml Elements A-17

<service-ref-mapping>
The <service-ref-mapping> element maps any EJB references to a Web service
and is discussed in "Configuring an Environment Reference to a Web Service" on
page 19-17

<resource-ref-mapping>
The <resource-ref-mapping> element maps any EJB references to JNDI names
and is discussed in "Resource Manager Connection Factory Environment References"
on page 19-2.

<resource-env-ref-mapping>
The <resource-env-ref-mapping> element is used to map an administered object
for a resource. For example, to use JMS, the bean must obtain both a JMS factory object
and a destination object. These objects are retrieved at the same time from JNDI. The
<resource-ref> element declares the JMS factory and the <resource-env-ref>
element is used to declare the destination. Thus, the
<resource-env-ref-mapping> element maps the destination object. See "Resource
Manager Connection Factory Environment References" on page 19-2 for more
information.

<message-destination-ref-mapping>
The <message-destination-ref-mapping> element is only used if you are using
JMS 1.1. Use this element to map the message-destination-ref-name in the
client deployment descriptor to another location that is available in the OC4J
environment. It provides means of linking message consumers and producers to one
or more common logical destinations. For more information, see "Configuring an
Environment Reference to a JMS Destination Resource Manager Connection Factory
(JMS 1.1)" on page 19-13.

<commit-option>
The <commit-option> element determines an entity bean instance’s state at
transaction commit time and offers the flexibility to allow OC4J to optimize certain
application conditions. This is discussed in "What are Entity Bean Commit Options?"
on page 1-48.

<message-driven-deployment>
The <message-driven-deployment> section provides additional deployment
information for a message driven bean deployed within this JAR file.

The <message-driven-deployment> section contains the following structure:

<message-driven-deployment cache-timeout=... connection-factory-location=...
 destination-location=... name=... subscription-name=...
 listener-threads=... transaction-timeout=...
 dequeue-retry-count=... dequeue-retry-interval=... interceptor-type=... >
 <env-entry-mapping name=...></env-entry-mapping>
 <ejb-ref-mapping location=... name=... remote=... jndi-properties=... />
 <resource-ref-mapping location=... name=... >
 <lookup-context location=...>
 <context-attribute name=... value=... />
 </lookup-context>
 </resource-ref-mapping>

<message-driven-deployment>

A-18 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

 <resource-env-ref-mapping location=... name=... />
 <message-destination-ref-mapping location=... name=... />
 <config-property>
 <config-property-name> ... </config-property-name>
 <config-property-value> ... </config-property-value>
 </config-property>
</message-driven-deployment>

For information on each of these elements and sub-elements, see: the following

■ <message-driven-deployment> Attributes

■ <env-entry-mapping>

■ <ejb-ref-mapping>

■ <resource-ref-mapping>

■ <resource-env-ref-mapping>

■ <message-destination-ref-mapping>

■ <config-property>

Examples
A message-driven bean example, which includes the
<message-driven-deployment> element, is described in the following:

■ "Implementing an EJB 3.0 Message-Driven Bean" on page 9-1

■ "Implementing an EJB 2.1 Message-Driven Bean" on page 17-1

■ "Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 Session Bean"
on page 5-10

<message-driven-deployment> Attributes
Table A–3 lists the attributes of the <message-driven-deployment> element that
you can use to configure message service options. This table also lists the following
corresponding configuration alternatives:

■ attributes of the @MessageDrivenDeployment annotation;

■ activation configuration property names that you can use in the following
annotations and elements:

– <config-property> element owned by a
<message-driven-deployment> element;

– @ActivationConfigProperty annotation owned by a
@MessageDrivenDeployment or @MessageDriven annotation.

Note: Alternatively, in an EJB 3.0 application, you can use the
OC4J-proprietary annotation @MessageDrivenDeployment. You
can use the orion-ejb-jar.xml file
<message-driven-deployment> configuration to override
@MessageDrivenDeployment configuration. For more information,
see "Configuring OC4J-Proprietary Deployment Options on an EJB 3.0
MDB" on page 10-17.

<message-driven-deployment>

XML Reference for orion-ejb-jar.xml Elements A-19

For more information, see the following:

■ "Message Service Configuration Options: Annotations or XML? Attributes or
Activation Configuration Properties?" on page 2-26

■ "What Message Service Providers Can you use With Your MDB?" on page 2-21

Note: If you configure using attributes, your application can only
access a message service provider without a J2CA resource adapter. If
later you decide to access your message service provider using a J2CA
resource adapter, your application will fail to deploy. If you configure
using activation configuration properties, your application can access
a message service provider with or without a J2CA resource adapter.
Oracle recommends that you use <config-property> or
@ActivationConfigProperty options.

Table A–3 Attributes for the <message-driven-deployment> Element

<message-driven-
deployment>
Attribute

@MessageDriven
Deployment
Attribute Description

Activation
Configuration Property
Name1

cache-timeout poolCacheTimeout This parameter specifies how long to keep
message-driven beans cached in the pool.

If you specify a pool cache-timeout, then at every
cache timeout interval, all beans of the corresponding
bean type in the pool are removed. If the value
specified is zero or negative, then the cache timeout is
disabled and beans are not removed from the pool.

The default value is 60 (seconds).

N/A

connection-fac
tory-location

N/A The JNDI location of the connection factory to use. The
JMS Destination Connection Factory is specified
in this attribute. The syntax is java:comp/resource
+ resource provider name +
TopicConnectionFactories OR
QueueConnectionFactories + user defined name.
The nnnConnectionFactories details what type of
factory is being defined.

See
ConnectionFactoryJn
diName in Table B–1.

dequeue-retry-
count

dequeueRetryCoun
t

Specifies how often the listener thread tries to
re-acquire the JMS session once database failover has
ocurred. This is applicable to only container-managed
transactions in an MDB.

The default value is 0.

For more information, see the following:

■ "Configuring Connection Failure Recovery for an
EJB 2.1 MDB" on page 18-9

■ "Understanding OC4J EJB Application Clustering
Services" on page 2-29

N/A

See
EndpointFailureRetr
yInterval in Table B–2.

dequeue-retry-
interval

dequeueRetryInter
val

Specifies the interval between retries.

The default value is 60 seconds.

For more information, see the following:

■ "Configuring Connection Failure Recovery for an
EJB 2.1 MDB" on page 18-9

■ "Understanding OC4J EJB Application Clustering
Services" on page 2-29

N/A

See
EndpointFailureRetr
yInterval in Table B–2.

<message-driven-deployment>

A-20 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

destination-lo
cation

destinationLocation The JNDI location of the destination (queue/topic) to
use. The JMS Destination is specified in the
destination-location attribute. The syntax is
java:comp/resource + resource provider name +
Topics OR Queues + Destination name. The
Topic or Queue details what type of Destination is
being defined. The Destination name is the actual
queue or topic name defined in the database.

See DestinationName
in Table B–1.

interceptor-ty
pe

interceptorType How OC4J should handle interceptor class life cycle.
One of bean (default) or singleton.

When set to the default, OC4J creates a separate
interceptor class instance for each message-driven bean
instance that you associate with that interceptor class.
This is in accordance with the EJB 3.0 specification.

When set to singleton, OC4J creates a single
interceptor class instance that all message-driven bean
instances share. In this case, the interceptor class must
be stateless.

For more information, see "Singleton Interceptors" on
page 2-12.

N/A

listener-threa
ds

listenerThreads The listener threads are used to concurrently consume
JMS messages. The default is one thread. Topics can
only have one thread. Queues can have more than one.

For more information, see "Configuring Parallel
Message Processing" on page 18-7.

See ReceiverThreads
in Table B–2.

max-delivery-c
ount

maxDeliveryCount The maximum number of times OC4J will attempt the
immediate redelivery of a message to a message-driven
bean's onMessage method if that method returns
failure (fails to invoke an acknowledgment operation,
throws an exception, or both). After this number of
redeliveries, the message is deemed undeliverable and
is handled according to the policies of your message
service provider. For example, OEMS JMS will put the
message on its exception queue
(jms/Oc4jJmsExceptionQueue).

For more information, see "Configuring Maximum
Delivery Count" on page 18-8.

See MaxDeliveryCnt in
Table B–2.

max-instances maxInstances The maximum number of bean implementation
instances to be kept instantiated or pooled. The default
is 0, which means infinite.

To disable instance pooling, set max-instances to
any negative number. This will create a new instance at
the start of the EJB call and release it at the end of the
call.

For message-driven beans, the default pooling setting
is typically appropriate. Change this value only if MDB
life cycle methods are very expensive and you need
fine-grained control over how often instances are
created and managed in the pool.

See "Configuring Bean Instance Pool Size" on page 31-4
for more information.

N/A

min-instances minInstances The minimum number of bean implementation
instances to be kept instantiated or pooled.

The default value is 0.

See "Configuring Bean Instance Pool Size" on page 31-4
for more information.

N/A

name name The name of the bean, which matches the name of a
bean in the assembly section of the EJB deployment
descriptor (ejb-jar.xml).

N/A

Table A–3 (Cont.) Attributes for the <message-driven-deployment> Element

<message-driven-
deployment>
Attribute

@MessageDriven
Deployment
Attribute Description

Activation
Configuration Property
Name1

<message-driven-deployment>

XML Reference for orion-ejb-jar.xml Elements A-21

<env-entry-mapping>
The <env-entry-mapping> element maps environment variables to JNDI names
and is discussed in "Configuring an Environment Reference to an Environment
Variable" on page 19-16.

<ejb-ref-mapping>
The <ejb-ref-mapping> element maps any EJB references to JNDI names and is
discussed in "EJB Environment References" on page 19-2.

<resource-ref-mapping>
The <resource-ref-mapping> element maps any resource manager references to
JNDI names and is discussed in "Resource Manager Connection Factory Environment
References" on page 19-2.

<resource-env-ref-mapping>
The <resource-env-ref-mapping> element is used to map an administered object
for a resource. For example, to use JMS, the bean must obtain both a JMS factory object
and a destination object. These objects are retrieved at the same time from JNDI. The
<resource-ref> element declares the JMS factory and the <resource-env-ref>
element is used to declare the destination. Thus, the
<resource-env-ref-mapping> element maps the destination object. See
"Configuring an Environment Reference to a JMS Destination or Connection Resource
Manager Connection Factory (JMS 1.0)" on page 19-14 for more information.

<message-destination-ref-mapping>
The <message-destination-ref-mapping> element is only used if you are using
JMS 1.1. Use this element to map the message-destination-ref-name in the

resource-adapt
er

resourceAdapter The name of the resource adapter instance that this
MDB uses. Applicable only if this MDB is using a J2CA
message service provider. In order for the MDB to be
activated by messages received by the resource
adapter, the MDB and resource adapter must be
connected.

For more information, see "Configuring a J2CA
Resource Adapter for use With Your Message Service
Provider" on page 23-1.

N/A

subscription-n
ame

subscriptionName The name of the topic to which this message-drive bean
subscribes.

See SubscriptionName
in Table B–2.

transaction-ti
meout

transactionTimeout This attribute controls the transaction timeout interval
(in seconds) for any container-managed transactional
MDB. The default is one day or 86,400 seconds. If the
transaction has not completed in this time frame, the
transaction is rolled back. This applies to both normal
JMS and J2CA resource adapter-based message
providers.

For more information, see "Configuring a Transaction
Timeout for a Message-Driven Bean" on page 21-7

See
TransactionTimeout
in Table B–2.

1 For use in a <message-driven-deployment> element <config-property> subelement, or in an
@ActivationConfigProperty annotation owned by a @MessageDrivenDeployment or @MessageDriven annotation.

Table A–3 (Cont.) Attributes for the <message-driven-deployment> Element

<message-driven-
deployment>
Attribute

@MessageDriven
Deployment
Attribute Description

Activation
Configuration Property
Name1

<assembly-descriptor>

A-22 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

client deployment descriptor to another location that is available in the OC4J
environment. It provides means of linking message consumers and producers to one
or more common logical destinations. For more information, see "Configuring an
Environment Reference to a JMS Destination Resource Manager Connection Factory
(JMS 1.1)" on page 19-13.

<config-property>
The <config-property> element is only used if you are using a J2CA message
service provider. Use this element to set J2CA resource adapter configuration
properties. When OC4J deploys an MDB configured to use a J2CA message service
provider, OC4J provides the MDB’s activation specification to the resource adapter.
This specification includes the properties you set in the <config-property>
element.

Alternatively, for an EJB 3.0 message-driven bean, you can set J2CA resource adapter
configuration properties using @MessageDriven attribute configProperty and
@ActivationConfig annotation.

You can use the orion-ejb-jar.xml file <config-property> configuration to
override @MessageDriven configuration.

For more information, see the following:

■ "Configuring an EJB 3.0 MDB to Access a Message Service Provider Using J2CA"
on page 10-1

■ "Configuring an EJB 2.1 MDB to Access a Message Service Provider Using J2CA"
on page 18-1

<assembly-descriptor>
In addition to specifying deployment information for individual beans, you can also
specify addition deployment mapping information for security in the
<assembly-descriptor> section. The <assembly-descriptor> section contains
the following structure:

<assembly-descriptor>
 <security-role-mapping impliesAll=... name=...>
 <group name=... />
 <user name=... />
 </security-role-mapping>
 <message-destination-mapping location=... name=...>
 </message-destination-mapping>
 <default-method-access>
 <security-role-mapping impliesAll=... name=...>
 <group name=... />
 <user name=... />
 </security-role-mapping>
 </default-method-access>
</assembly-descriptor>

For information on each of these elements and subelements, see: the following

■ <security-role-mapping>

■ <message-destination-mapping>

■ <default-method-access>

■ <method>

<assembly-descriptor>

XML Reference for orion-ejb-jar.xml Elements A-23

Examples
For examples of <assembly-descriptor> element configuration, see the following:

■ "Specifying Logical Roles in the EJB Deployment Descriptor" on page 22-3

■ "Implementing an EJB 2.1 MDB" on page 17-1

<security-role-mapping>
The <security-role-mapping> element is described in "Mapping Logical Roles to
Users and Groups" on page 22-8.

<message-destination-mapping>

<default-method-access>
The <default-method-access> element is described in "Specifying a Default Role
Mapping for Undefined Methods" on page 22-9.

<method>
The <method> element is used to specify the methods (and possibly their parameters)
of an enterprise bean:

<method>
<description></description>
<ejb-name></ejb-name>
<method-intf></method-intf>
<method-name></method-name>
<method-params>

<method-param></method-param>
</method-params>

</method>

You can configure a <method> element using any of the following styles:

■ When referring to all the methods of the specified enterprise bean's home and
remote interfaces, specify the methods as follows:

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

■ When referring to multiple methods with the same overloaded name, specify the
methods as follows:

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>

</method>

■ When referring to a single method within a set of methods with an overloaded
name, you can specify each parameter within the method as follows:

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>
<method-params>

<assembly-descriptor>

A-24 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

<method-param>PARAM-1</method-param>
<method-param>PARAM-2</method-param>
...
<method-param>PARAM-n</method-param>

</method-params>
</method>

J2CA Activation Configuration Properties B-1

B
J2CA Activation Configuration Properties

This appendix describes the J2EE Connector Architecture (J2CA) activation
configuration properties that you can use to specify message service options when you
access a JMS message service provider using a J2CA connector such as the Oracle JMS
Connector.

Table B–1 lists the mandatory J2CA activation configuration properties you must set.

Table B–2 lists the optional J2CA activation configuration properties you may set.

For a complete list of all activation configuration properties, download and unzip one
of the how-to-gjra-with-<RESOURCE-PROVIDER-NAME>.zip files from
http://www.oracle.com/technology/tech/java/oc4j/1013/how_
to/index.html, where <RESOURCE-PROVIDER-NAME> is the name of the relevant
resource provider. The orion-ejb-jar.xml demo file contains comments
describing all activation configuration properties.

For more information, see the following:

■ "Message Service Configuration Options: Annotations or XML? Attributes or
Activation Configuration Properties?" on page 2-26

■ "Configuring an EJB 3.0 MDB to Access a Message Service Provider Using J2CA"
on page 10-1

■ "Configuring an EJB 2.1 MDB to Access a Message Service Provider Using J2CA"
on page 18-1

■ "JMS Resource Adapter" in the Oracle Containers for J2EE Services Guide

Table B–1 Mandatory J2CA @ActivationConfigProperty Attributes

Property Name Value

ConnectionFactoryJndiName The JNDI name of the message service provider connection factory. You define this name
when you configure your message service provider.

DestinationName The JNDI name of the message service provider destination name. You define this name
when you configure your message service provider

DestinationType The fully qualified String class name of the destination type for your message service
provider. For a JMS MDB, either javax.jms.Queue or javax.jms.Topic.

B-2 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

Table B–2 Optional J2CA @ActivationConfigProperty Attributes

Property Name Value

AcknowledgeMode How listener threads, which consume messages and call a message-driven bean's message
listener method (for example, the onMessage method for a JMS message listener),
acknowledge the delivery of a message.

The following are valid values:

■ Auto-acknowledge (default): the listener thread sends an acknowledgment as soon
as a message is received by the MDB.

■ Dups-ok-acknowledge: the listener thread sends an acknowledgment lazily; this can
improve performance. It is possible for the MDB to receive duplicates of the message
until the acknowledgment is actually sent. If you select this option, your MDB must be
able to handle duplicate messages.

ClientId The String name that a listener thread will set on connections it acquires on behalf of its
message-driven bean.

The default is no name.

EndpointFailureRetryInter
val

The number of milliseconds that OC4J will wait before attempting to start a new listener
thread and reconnect with the JMS provider after any failure that causes the number of
listener threads to drop to zero.

Listener threads are automatically terminated on JMS provider failure: for example, if a
listener thread calling MessageConsumer method receive results in an exception. If all
listener threads terminate while the endpoint is still running (for example, due to a
sustained network failure or if the JMS server is not up), the MDB cannot receive messages.
In this situation, the Oracle JMS Connector attempts to start a new listener thread and
reconnect with the JMS provider every EndpointFailureRetryInterval milliseconds
until it is either successful or the endpoint is shut down. Once a listener thread is
successfully created, normal listener thread management resumes (see ReceiverThreads,
ListenerThreadMaxIdleDuration, and ListenerThreadMinBusyDuration).

Consider the following consequences of connection failure recovery:

■ message ordering: since recovery from a connection failure requires the creation of a
new JMS session, and JMS message ordering guarantees only apply to messages
received within a single session, messages received after the reconnect may not be
ordered with respect to messages received before the reconnect;

■ lost messages: if the endpoint is a nondurable subscriber, messages may be lost or
duplicated. This problem will not happen when using queues or when using topics
with durable subscribers.

Whether or not you experience these problems may be subject to the specific behavior of
your JMS provider

The default is 60000 milliseconds.

ExceptionQueueName The JNDI name of the of the javax.jms.Queue object to use as the exception queue.

This property is required when UseExceptionQueue is true, and ignored when false.

IncludeBodiesInExceptionQ
ueue

Determines whether or not messages sent to the exception queue will include a message
body.

The following are valid values:

■ true (default): OC4J includes the message body in messages sent to the exception
queue;

■ false: OC4J does not include the message body in messages sent to the exception
queue. If many messages are sent to the exception queue during normal operation and
the message body is of no use in the exception queue, then this property may be set
false to improve performance.

This property does not apply:

■ If UseExceptionQueue is false.

■ If the original message did not have a message body, then the message sent to the
exception queue will not have one either.

■ If a copy of the original message cannot be created for any reason, then the original
may be sent to the exception queue instead. This may result in a message body being
sent to the exception queue.

ListenerThreadMaxIdleDura
tion

The number of milliseconds that OC4J will keep a listener thread that is not receiving any
messages. At least one listener thread will remain as long as the endpoint is active.

The default is 300000 milliseconds.

J2CA Activation Configuration Properties B-3

ListenerThreadMaxPollInte
rval

The upper limit (in milliseconds) on the polling interval of the Oracle JMS Connector
adaptive polling interval algorithm.

The Oracle JMS Connector uses an adaptive algorithm to determine the actual polling
interval: during periods of activity, it uses shorter polling intervals (higher polling rates) and
during periods of inactivity, it uses longer polling intervals (lower polling rates) that will not
exceed this property.

Listener threads poll to see if there is a message waiting to be processed. The more
frequently this polling is performed, the faster (on average) a given listener thread can
respond to a new message. The price for frequent polling is overhead–the resource provider
must process a receive request each time it is polled.

The default is 5000 milliseconds.

ListenerThreadMinBusyDura
tion

If a listener thread has just received a message, has not been idle (had to wait for a new
message to arrive) at any point during the past ListenerThreadMinBusyDuration
milliseconds, and the current number of listener threads for this endpoint is less than
ReceiverThreads, then OC4J will create an additional listener thread if possible.

The default is 10000 milliseconds.

LogLevel Determines the level of detail of Oracle JMS Connector log messages. Although primarily
intended for debugging the Oracle JMS Connector itself, these messages may also be useful
when debugging issues related to its use. Oracle recommends that you set this property
temporarily for debugging purposes; this property should not be set in production code.
Note that specific log messages and log levels may be added, removed, or modified in
future versions of the Oracle JMS Connector.)

The following are valid values:

■ ConnectionPool: log connection pool related messages only.

■ ConnectionOps: log connection related messages only.

■ TransactionalOps: log transaction related messages only.

■ ListenerThreads: log listener thread related messages only.

■ INFO: logs the login/logout for each server session, including the user name. After
acquiring the session, detailed information is logged.

■ CONFIG: logs only login, JDBC connection, and database information.

■ FINE: logs SQL.

■ FINER: similar to warning. Includes stack trace.

■ FINEST: includes additional low level information.

■ SEVERE: logs exceptions indicating TopLink cannot continue, as well as any exceptions
generated during login. This includes a stack trace.

■ WARNING: logs exceptions that do not force TopLink to stop, including all exceptions
not logged with severe level. This does not include a stack trace.

■ OFF: disables logging.

MaxDeliveryCnt The maximum number of times a listener thread will attempt to deliver a message to a
message-driven bean. A value of 0 means never discard a message.

If a message has the JMSXDeliveryCount property, whose value is greater than
MaxDeliveryCnt, then the message will be discarded: that is, the listener thread will not
call the message-driven bean's message listener method (for example, the onMessage
method for a JMS message listener).

If the exception queue is enabled (see UseExceptionQueue), a copy of the message will be
sent to the exception queue.

Use a value of 0 with caution. If MaxDeliveryCnt is set to 0 to prevent a message from
ever being discarded, and a message-driven bean always responds to a given message by
throwing an exception, then the message-driven bean may endlessly fail to process the same
message as it is redelivered over and over again.

The default value is 5.

MessageSelector The String selector expression of message properties that match the type of message your
MDB should receive. Messages that do not match the expression are filtered (not delivered
to the MDB).

This is used as the messageSelector for the JMS sessions created for the listener threads.

The default is no filtering.

Table B–2 (Cont.) Optional J2CA @ActivationConfigProperty Attributes

Property Name Value

B-4 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

ReceiverThreads The maximum number of listener threads to create for this endpoint.

For queues, using more than one thread may help increase the rate at which messages can
be consumed.

For topics this value must always be 1.

Each listener thread gets its own session and topic subscriber. For durable subscribers, it
would be an error to have more than one subscriber with the same subscription name. For
nondurable, subscribers having more than one thread will not help because more threads
translates into more subscribers which translates into more copies of each message.

See also ListenerThreadMinBusyDuration.

The default is 1.

ResPassword The String password that OC4J passes to the resource provider. The ResPassword property
supports standard password indirection options (for example, you can use ->joeuser to
represent the password of joeuser).

When set, OC4J passes this value to the create*Connection method as the password
argument.

When only one of ResUser or ResPassword is set, OC4J passes null for the unset property.

When neither ResUser nor ResPassword are set, connections used for this MDB's
inbound message handling and exception queue handling (see UseExceptionQueue) are
created using the no-argument version of the create*Connection method.

 The default is null.

ResUser The String user name that OC4J passes to the resource provider.

When set, OC4J passes this value to the create*Connection method as the user
argument.

When only one of ResUser or ResPassword is set, OC4J passes null for the unset property.

When neither ResUser nor ResPassword are set, connections used for this MDB's
inbound message handling and exception queue handling (see UseExceptionQueue) are
created using the no-argument version of the create*Connection method.

The default is null.

SubscriptionDurability Determines the durability of the topic consumer used by a listener thread. This is applicable
only for topics (do not set this property for queues).

The following are valid values:

■ Durable: messages are not missed even if the OC4J is not running. Reliable
applications will typically make use of durable topic subscriptions rather than
non-durable topic subscriptions. When this property is set to Durable (and
DestinationType is javax.jms.Topic or javax.jms.Destination), the
SubscriptionName property is required.

■ NonDurable (default): OC4J ensures that a message-drive bean is available to service
a message as long as OC4J is running. Messages may be missed if OC4J is not running
for any period of time.

Table B–2 (Cont.) Optional J2CA @ActivationConfigProperty Attributes

Property Name Value

J2CA Activation Configuration Properties B-5

SubscriptionName The String name that a listener thread uses when it creates a durable subscriber. In a given
JMS server, you should assign a given subscription name to at most one MDB (which must
have at most one listener thread).

This property is required when SubscriptionDurability is Durable (and
DestinationType is javax.jms.Topic or javax.jms.Destination). In all other
cases, this property is ignored.

TransactionTimeout The upper limit (in milliseconds) that the Oracle JMS Connector will wait for a message to
arrive before exiting the current transaction.

The OC4J transaction manager limits the amount of time a transaction can last (see
transaction-timeout in transaction-manager.xml). Set this property so that the
transaction manager will not timeout the transaction during a call to a message-driven
bean's message listener method (for example, the onMessage method for a JMS message
listener) unless something is wrong. For example, If the transaction manager timeout is set
to 30 seconds, and the onMessage routine will never take more than 10 seconds unless
something is wrong, then you could set TransactionTimeout to 20 seconds (20000
milliseconds).

The default is 300000 milliseconds.

Table B–2 (Cont.) Optional J2CA @ActivationConfigProperty Attributes

Property Name Value

B-6 Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

UseExceptionQueue Determines how OC4J handles messages that it cannot deliver because the message-driven
bean's message listener method (for example, the onMessage method for a JMS message
listener) throws an exception or the listener thread exceeds the MaxDeliveryCnt
threshold.

The following are valid values:

■ true: OC4J sends undeliverable messages to the exception queue as described later.

In this case, the ExceptionQueueName property is required.

■ false (default): OC4J discards undeliverable messages.

The default is false.

When UseExceptionQueue is set to true, OC4J sends undeliverable messages to the
exception queue as follows:

1. Create a new message of the same type.

2. Copy the properties and body from the original message to the new message.

3. Translate headers in the original to properties in the copy, assigning each header
obtained through getJMS{Header} to property GJRA_CopyOfJMS{Header}. Since
javax.jms.Destination is not a valid property type, translate destination headers
into descriptive messages.

This service is not provided for JMSX* properties, most notably the
JMSXDeliveryCount property.

OC4J translates headers this way because if the headers were copied, sending the
message to the exception queue would cause most of them to be lost (over-written by
the resource-provider).

4. Add a string property called GJRA_DeliveryFailureReason which indicates why
the message was not delivered.

5. If the message-driven bean's message listener method generated an exception
immediately prior to the delivery failure, add a string property called GJRA_
onMessageExceptions which contains exception information.

6. Validate the new message:

If the copy and augmentation process is successful, add a boolean property called
GJRA_CopySuccessful with the value true.

If some part of the copy or augmentation process fails, OC4J does not stop. It attempts
to complete the rest of the procedure. For Bytes, Map, and Stream message types, this
can mean that part of the body is copied and the rest is not. In this case, add a
boolean property called GJRA_CopySuccessful with the value false.

7. Use the connection factory specified by the ConnectionFactoryJndiName property
to send the resulting message to the exception queue.

Only one attempt is made to send the message to the exception queue. Should this
attempt fail, the message will be discarded without being placed in the exception
queue.

Because OC4J uses the connection factory specified by the
ConnectionFactoryJndiName property to send the message to the exception queue
(in addition to being used for the primary destination), if the primary destination
(specified by the DestinationName property) is a topic, then the connection factory
must support both queues and topics (that is, the connection factory must be either
javax.jms.ConnectionFactory or javax.jms.XAConnectionFactory).

For potential variations of the previous procedure, see
IncludeBodiesInExceptionQueue.

Table B–2 (Cont.) Optional J2CA @ActivationConfigProperty Attributes

Property Name Value

Glossary-1

Glossary

This glossary defines terms frequently used in this guide. For additional Java EE
terminology, see
http://java.sun.com/javaee/reference/glossary/index.jsp.

Annotation

A simple, expressive means of decorating Java source code with metadata that is
compiled into the corresponding Java class files for interpretation at run time by a JPA
persistence provider to manage JPA behavior. Annotations allow you to declaratively
define how to map Java objects to relational database tables in a standard, portable
way that works both inside a Java EE 5 application server and outside an EJB container
in a Java Standard Edition (Java SE) 5 application. JPA annotations are specified in the
javax.persistence package.

Entity

A Java object whose nontransient fields should be persisted to a relational database
using the services of a JPA entity manager obtained from a JPA persistence provider
(either within a Java EE EJB container or outside of an EJB container in a Java SE
application). Using JPA, you can designate any POJO as an entity using the @Entity
annotation.

Entity Manager

The interface that you use to access a persistence context. You use an entity manager
to create, read, update, and delete entity instances.

J2CA

J2EE Connector Architecture: the standard way to integrate JMS providers with J2EE
application servers by wrapping a JMS provider client library in a resource adapter.

JMS

Java Message Service.

JPA

The EJB 3.0 Java Persistence API.

OEMS

Oracle Enterprise Messaging Service: a suite of JMS providers that OC4J supports,
including: OEMS JMS Connector (a J2CA-based provider), OEMS JMS (an in-memory
or file-based provider), and OEMS JMS Database (Oracle AQ-based provider).

Glossary-2

Oracle AQ

AQ is a unique database-integrated message queuing feature, built on the Oracle
Streams information integration infrastructure. It allows diverse applications to
communicate asynchronously through messages. Integration with the database
provides unique message management functionality, such as auditing, tracking, and
message persistence for security, scheduling, and message metadata analysis.

You can access AQ through PL/SQL, Java (using the oracle.AQ package), Java
Message Service (JMS), or over the Internet using transport protocols such as HTTP,
HTTPS, and SMTP. For Internet access, the client - a user or Internet application - and
the Oracle server exchange structured XML messages.

AQ also provides transformations that are useful for enterprise application integration
and a messaging gateway to automatically propagate messages to and from OracleAQ
queues.

For more information, see http://otn.oracle.com/products/aq/index.html.

Persistence Context

The set of entity instances in which for any persistent entity identity there is a unique
entity instance. A persistence context is associated with an entity manager instance. It
is within this persistence context that the entity manager manages the entity instances
and their life cycle.

Persistence Provider

An EJB 3.0 Java Persistence API implementation of

Persistence Unit

The set of entities that an entity manager instance manages. A persistence unit defines
the set of all classes that are related by your application and which must be mapped to
a single database.

POJI

Plain Old Java Interface: an interface that you define; one that need not extend an
interface that Java EE specifies. In EJB 3.0, a business interface may be a POJI.

POJO

Plain Old Java Object: a Java class that you define; one that need not extend a class or
implement an interface that Java EE specifies. In EJB 3.0, an entity may be a POJO.

RA

Resource Adapter: specifically, one that complies with J2CA.

Index-1

Index

Symbols
@ActivationConfigurationProperty, 9-2
@AroundInvoke, 5-7, 10-13
@AttributeOverride, 7-15
@Basic, 7-10, 7-16
@Column, 7-8
@DeclareRoles, 22-12
@DenyAll, 22-12
@EJB, 1-7

mappedName, 1-27
@Embeddable, 7-14
@Embedded, 7-14
@EmbeddedId, 7-3
@Enumerated, 1-36
@GeneratedValue, 7-6
@Id, 7-2, 7-4
@IdClass, 7-4
@Inheritance, 7-20
@InheritanceJoinColumn, 7-20
@Init, 4-5
@JoinColumn, 7-9
@JoinTable, 7-13
@Lob, 1-36, 7-11
@Local, 4-4, 4-6
@LocalHome, 4-4, 4-5
@ManyToMany, 1-36, 7-13
@ManyToOne, 1-36, 7-12
@MessageDriven, 9-1, 10-2, 10-4

mappedName, 9-1
@MessageDrivenDeployment, 2-6, 10-2, 10-4, 10-6,

10-8, 10-10, 10-17, 31-4
dequeueRetryCount attribute, 10-10
dequeueRetryInterval attribute, 10-10
listenerThreads attribute, 10-6
maxDeliveryCount attribute, 10-8

@NamedQuery, 8-1
@OneToMany, 1-36, 7-13
@OneToOne, 7-12
@OneToone, 1-36
@PermitAll, 22-6, 22-12
@PersistenceContext, 1-7, 29-9
@PostActivate, 5-4, 5-6
@PostConstruct, 5-4, 5-6, 10-11, 10-12
@PostLoad, 7-17, 7-18
@PostPersist, 7-17, 7-18

@PostRemove, 7-17, 7-18
@PostUpdate, 7-17, 7-18
@PreDestroy, 5-4, 5-6, 10-11, 10-12
@PrePassivate, 5-4, 5-6
@PrePersist, 7-17, 7-18
@PreRemove, 7-17, 7-18
@PreUpdate, 7-17, 7-18
@Remote, 4-4, 4-6
@RemoteHome, 4-4, 4-5
@Remove, 4-3
@Resource, 1-7, 3-10

entity manager injection, and, 3-10
mappedName, 1-27

@RolesAllowed, 22-4, 22-12
@RunAs, 22-7, 22-12
@SecondaryTable, 7-7
@SequenceGenerator, 7-6
@Serialized, 7-11
@Stateful

mappedName, 4-3
@StatefulDeployment, 5-2, 5-3, 5-10, 5-11, 21-6, 31-4
@Stateless

mappedName, 4-2
@StatelessDeployment, 2-6, 5-10, 5-11, 21-6, 31-4,

A-5, A-18
@StatelfulDeployment, 2-6, A-5
@Table, 7-7
@TableGenerator, 7-5
@Temporal, 1-36
@TransactionAttribute, 21-2
@TransactionManagement, 21-1
@Transient, 1-35, 1-36
@Version, 1-61, 7-15
@WebMethod, 30-1
@WebService, 30-1

A
<abstract-schema-name> element, 16-1, 16-5
accessing EJBs

accessing EJB 2.1 bean from EJB 3.0 client, 29-23
EJBContext, EJB 2.1, 29-27
EJBContext, EJB 3.0, 29-20
EntityManager, 29-8
in another application, EJB 2.1, 29-24
in another application, EJB 3.0, 29-7

Index-2

local, EJB 2.1, 29-22
local, EJB 3.0, 29-5
remote, EJB 2.1, 29-21
remote, EJB 3.0, 29-5
sending a message to a JMS destination, EJB

2.1, 29-25
sending a message to a JMS destination, EJB

3.0, 29-17
using RMI in standalone Java client, EJB

2.1, 29-22
without home interface, EJB 3.0, 29-5

AcknowledgeMode property, B-2
activation config properties

AcknowledgeMode, B-2
ClientId, B-2
ConnectionFactoryJndiName, B-1
DestinationName, B-1
DestinationType, B-1
EndpointFailureRetryInterval, B-2
ExceptionQueueName, B-2
IncludeBodiesInExceptionQueue, B-2
ListenerThreadMaxIdleDuration, B-2, B-3
ListenerThreadMaxPollInterval, B-3
LogLevel, B-3
MaxDeliveryCnt, B-3
MessageSelector, B-3
ReceiverThreads, B-4
ResPassword, B-4
ResUser, B-4
SubscriptionDurability, B-4
SubscriptionName, B-5
TransactionTimeout, B-5
UseExceptionQueue, B-6

aggregate object relational mappings
understanding, 7-14

annotations
@ActivationConfigurationProperty, 9-2
@AroundInvoke, 5-7, 10-13
@AttributeOverride, 7-15
@Basic, 7-10, 7-16
@Column, 7-8
@DeclareRoles, 22-12
@DenyAll, 22-12
@EJB, 1-7
@Embeddable, 7-14
@Embedded, 7-14
@EmbeddedId, 7-3
@Enumerated, 1-36
@GeneratedValue, 7-6
@Id, 7-2, 7-4
@IdClass, 7-4
@Inheritance, 7-20
@InheritanceJoinColumn, 7-20
@Init, 4-5
@JoinColumn, 7-9
@JoinTable, 7-13
@Lob, 1-36, 7-11
@Local, 4-4, 4-6
@LocalHome, 4-4, 4-5
@ManyToMany, 1-36, 7-13

@ManyToOne, 1-36, 7-12
@MessageDriven, 9-1, 10-2, 10-4
@MessageDrivenDeployment, 2-6, 10-2, 10-4,

10-6, 10-8, 10-10, 10-17, 31-4
@NamedQuery, 8-1
@OneToMany, 1-36, 7-13
@OneToOne, 1-36, 7-12
@PermitAll, 22-6, 22-12
@PersistenceContext, 1-7, 29-9
@PostActivate, 5-4, 5-6
@PostConstruct, 5-4, 5-6, 10-11, 10-12
@PostLoad, 7-17, 7-18
@PostPersist, 7-17, 7-18
@PostRemove, 7-17, 7-18
@PostUpdate, 7-17, 7-18
@PreDestroy, 5-4, 5-6, 10-11, 10-12
@PrePassivate, 5-4, 5-6
@PrePersist, 7-17, 7-18
@PreRemove, 7-17, 7-18
@PreUpdate, 7-17, 7-18
@Remote, 4-4, 4-6
@RemoteHome, 4-4, 4-5
@Remove, 4-3
@Resource, 1-7, 3-10
@RolesAllowed, 22-4, 22-12
@RunAs, 22-7, 22-12
@SecondaryTable, 7-7
@SequenceGenerator, 7-6
@Serialized, 7-11
@Stateful, 4-3
@StatefulDeployment, 2-6, 5-2, 5-3, 5-10, 5-11,

21-6, 31-4, A-5
@Stateless, 4-2
@StatelessDeployment, 2-6, 5-10, 5-11, 21-6, 31-4,

A-5, A-18
@Table, 7-7
@TableGenerator, 7-5
@Temporal, 1-36
@TransactionAttribute, 21-2
@TransactionManagement, 21-1
@Transient, 1-35, 1-36
@Version, 1-61, 7-15
@WebMethod, 30-1
@WebService, 30-1
about, 1-7
JSP, 29-2
mappedName, 1-27
proprietary, See proprietary annotations
servlet, 29-2
Web tier, 1-9

Application Server Control
about, 31-1
EJB 3.0 entities not visible, 28-1
setting trigger to inherited or none, 24-2

<assembly-descriptor> element, A-22
auto-enlisting JMS connections, 2-29

B
batch-compile, 28-2

Index-3

bean
accessing remotely, 1-3, 1-4
activation, 1-29, 1-32
environment, 1-7
implementing, BMP, EJB 2.1, 13-7
implementing, CMP, EJB 2.1, 13-2
implementing, entity, JPA, 6-1
implementing, MDB, EJB 2.1, 17-1
implementing, MDB, EJB 3.0, 9-1
implementing, stateful session bean, EJB 3.0, 4-3
implementing, stateless session bean, EJB

2.1, 11-2
implementing, stateless session bean, EJB 3.0, 4-2
implementing, statelful session bean, EJB

2.1, 11-4
passivation, 1-32
steps for invocation, 1-3, 1-5

bean implementation
EJB 2.1, overview, 1-4
EJB 3.0, overview, 1-3

bean-managed transactions
about, 2-18
See also transactions

BMP
commit options, 1-50
database schema, 13-3, 13-8
ejbCreate implementation, 13-15
read-only and commit option A, 1-50, 15-4, 32-2

BMP entity bean
read-only, 15-4

C
cache-timeout attribute, A-19
call-timeout attribute, A-6, A-12
child EJB, 29-7, 29-24
ClassCastException, 27-4
ClientId property, B-2
clients

about, 29-1
accessing EJBs from, 29-1
EJB, 29-2
JSP, 29-2
servlet, 29-2
standalone Java, 29-2

clustering services
about, 2-29
DNS load balancing, about, 2-31
DNS load balancing, configuring, 24-3
failover, 2-30
HTTP and stateful session bean, 2-30
HTTP sessions, 2-29
load balancing, about, 2-31
replication-based load balancing, about, 2-31
replication-based load balancing,

configuring, 24-4
state replication, 2-30
state replication, inherited, 24-2
state replication, on end of request, 24-2
state replication, on shutdown, 24-2

stateful session beans, 2-30
static retrieval load balancing, about, 2-31
static retrieval load balancing, configuring, 24-3

clustering-schema attribute, A-12
CMP

commit options, 1-49
overview, 1-42, 1-46

<cmp-field-mapping> element, 14-5, 14-8, A-15
commit options

A and read-only BMP, 1-50, 15-4, 32-2
about, 1-48
BMP, 1-50
CMP, 1-49

<commit-option> element, A-17
component interface

EJB 2.1, overview, 1-4
EJB 3.0, overview, 1-3

composite primary key, 1-45
concurrency mode

about, 1-59, 1-60
optimistic, 1-60, A-14
pessimistic, 1-61, A-14
read-only, 1-61, A-14

<config-property> element, A-22
config-property

ConnectionFactoryTimeout, A-19
DestinationLocation, A-20
EndpointFailureRetryInterval, 10-9, 18-9
MaxDeliveryCnt, 10-7, 18-8, A-20
ReceiverThreads, 10-5, 18-7, A-20
SubscriptionName, A-21
TransactionTimeout, A-21

connection pool
managed data source, 2-15
native data source, 2-15

connection URL
non-Oracle database, 2-16
Oracle database, 2-16
service-based connection URL, 2-16

ConnectionFactoryJndiName property, B-1
connection-factory-location attribute, A-19
ConnectionFactoryTimeout config-property, A-19
container-managed persistence. see CMP
container-managed transactions

about, 2-18
rollback, 21-10
See also transactions

<container-transaction> element, 17-2, 17-5
context

entity bean, 13-20
entity, EJB 2.1, 1-48
getInvokedBusinessInterface, 1-34
message-driven bean, 1-58
session, 1-7, 1-34
session bean, 11-9
transaction, 1-7

copy-by-value attribute, A-6, A-12
create method

EJBHome interface, 1-5, 11-6
home interface, 13-18

Index-4

CreateException, 11-7, 13-18, 13-19
creating a JPA entity, 29-12
CSIv2, 22-12
customization

EJB 2.1 application, 3-13
EJB 3.0 application, 3-3

D
data sources

about, 2-14
connection pool, managed data source, 2-15
connection pool, native data source, 2-15
connection URL, non-Oracle database, 2-16
connection URL, Oracle database, 2-16
managed, 2-15
native, 2-15
service-based connection URL, 2-16

database resource contention
concurrency mode, 1-60
transaction isolation, 1-60

data-source attribute, A-12
data-sources.xml file, 13-8, 13-15
Date, 16-7
DBMS_AQADM package, 23-7
deadlock recovery, 29-29
debugging

DoNotReGenerateWrapperCode, 31-10
generated code, 31-9
KeepWrapperCode, 31-9, 31-10
validating XML, 31-8
wrapper code, 31-9
WrapperCodeDir, 31-10

dedicated.rmicontext property, 24-5, 29-29
default finders, 1-54
default mapping

configuring, 14-6
default table generator, 14-5

default persistence unit, 2-8, 2-9
persistence.xml, 26-5

default table generator
configuring, 14-5
default mapping, 14-5

<default-method-access> element, 22-9, A-23
default.persistence.provider, 3-2
delay-updates-until-commit attribute, A-12
deployment

batch compile out of memory, 28-2
ejb-jar.xml creation, 26-1
expanded, 28-4
incremental, about, 28-2
incremental, when to use, 28-3
large applications, 28-1
temp out of memory, 28-2
troubleshooting, batch compile out of

memory, 28-2
troubleshooting, ejb-jar.xml, 28-4, 31-8
troubleshooting, generated wrapper code, 28-4,

31-9
troubleshooting, temp out of memory, 28-2

troubleshooting, VM out of memory, 28-1
VM out of memory, 28-1

deployment descriptor
EJB 2.1, overview, 1-4
EJB 3.0, overview, 1-3
ejb3-toplink-sessions.xml, configuration, 26-3
ejb-jar.xml, configuration, 26-1
ejb-jar.xml, creating at deployment time, 26-1
ejb-jar.xml, creating at migration time, 26-1
ejb-jar.xml, creating with JDeveloper, 26-2
entity bean, A-10, A-11
message-driven bean, A-17, A-18
orion-ejb-jar.xml, configuration, 26-3
persistence.xml, configuration, 26-3
security, 22-2, 22-3, 22-8
session bean, A-5
toplink-ejb-jar.xml, configuration, 26-2
toplink-ejb-jar.xml, creating at migration

time, 26-2
toplink-ejb-jar.xml, creating with TopLink

Workbench, 26-2
dequeueRetryCount attribute, 10-10
dequeue-retry-count attribute, 18-10, A-19
dequeueRetryInterval attribute, 10-10
dequeue-retry-interval attribute, 18-10, A-19
destination-location attribute, A-20
DestinationLocation config-property, A-20
DestinationName property, B-1
<destination-type> element, 17-5
DestinationType property, B-1
detaching, 29-17
disable-default-persistent-unit attribute, 2-9, 26-5,

A-12
do-select-before-insert attribute, A-12
dynamic query

executing, 29-15
implementing, 8-2, 8-3
native SQL, 29-15
TopLink Expression, 29-14

E
EJB

client
setting JMS port, 29-2
setting RMI port, 29-2

home interface, 11-6
implementing, BMP, EJB 2.1, 13-7
implementing, CMP, EJB 2.1, 13-2
implementing, entity, JPA, 6-1
implementing, MDB, EJB 2.1, 17-1
implementing, MDB, EJB 3.0, 9-1
implementing, stateful session bean, EJB 2.1, 11-4
implementing, stateful session bean, EJB 3.0, 4-3
implementing, stateless session bean, EJB

2.1, 11-2
implementing, stateless session bean, EJB 3.0, 4-2
local interface, 11-9, 13-20
looking up, EJB 3.0, about, 29-5
looking up, EJB 3.0, using annotations, 19-23,

Index-5

29-5
looking up, local interface using

ejb-local-ref, 29-6
looking up, local interface using

local-location, 29-7
looking up, remote interface using ejb-ref, 29-5
looking up, remote interface using location, 29-6
passivation, 1-32
pool size, entity beans, 31-4
pool size, session beans, 31-4
pool timeouts, entity beans, 31-7
pool timeouts, session beans, 31-6
queries, about, 1-39, 1-50
queries, EJB QL, 1-50
queries, EntityManager, 1-39
queries, finder methods, 1-53
queries, Java Persistence Query Language, 1-40
queries, select methods, 1-55
queries, SQL, 1-40, 1-52
queries, syntax, 1-39, 1-50
queries, TopLink, 1-51
referencing other EJBs, 27-3, 27-4
remote interface, 11-8, 13-19
replication, 24-2
security, 22-1
standalone client, 29-2

EJB 2.1
BMP composite primary key, configuring, 15-2
BMP primary key class, configuring, 15-2
BMP primary key field, configuring, 15-2
BMP primary key, configuring, 15-1
CMP composite primary key, configuring, 14-3
CMP entity bean, configuration, 14-1, 15-1
CMP primary key class, configuring, 14-3
CMP primary key field, configuring, 14-2
CMP primary key, configuring, 14-2
JDK required, 3-11
message-driven bean, configuration, 18-1
persistence, 3-12
persistence manager, 3-12
persistence manager customization, 3-13
persistence manager migration, 3-13
session bean, configuration, 12-1
stateless session bean, implementing, 11-1, 11-3,

13-1, 13-6, 17-1
support, 3-11
TopLink JAR files, 3-12
TopLink persistence manager JAR files, 3-12

EJB 3.0
defining an EJB 3.0 application, 3-2
entity, configuration, 7-1
EntityManager, about, 1-39
JDK required, 3-2
JPA persistence provider, 3-2
JPA persistence provider customization, 3-3
JPA persistence provider migration, 3-5
JPA persistence.jar, 3-2
JPA preview-persistence.jar, 3-3
message-driven bean, configuration, 10-1
persistence, 3-2

primary key, automatic generation, 7-5
primary key, sequencing, 7-5
sequencing, configuration, 7-5
session bean, configuration, 5-1
stateful session bean, implementing, 4-2
stateless session bean, implementing, 4-1
support, 3-1
TopLink JPA JAR files, 3-2

EJB QL
about, 1-50

EJB services
about, 2-2
clustering, about, 2-29
clustering, DNS load balancing, 2-31, 24-3
clustering, failover, 2-30
clustering, HTTP sessions, 2-29
clustering, load balancing, 2-31
clustering, replication-based load balancing, 2-31,

24-4
clustering, state replication, 2-30
clustering, stateful session beans, 2-30
clustering, static retrieval load balancing, 2-31,

24-3
data sources, about, 2-14
JNDI, about, 2-14
JPA persistence provider, 3-2
message, about, 2-20
persistence manager, 3-12
persistence, about, 2-12
persistence, customizing in EJB 2.1, 3-13
persistence, customizing in EJB 3.0, 3-3
persistence, EJB 2.1, 2-13, 3-12
persistence, EJB 3.0, 2-13, 3-2
persistence, JPA persistence JAR, 3-2
persistence, JPA preview persistence JAR, 3-3
persistence, persistence manager JAR, 3-12
security, about, 2-20
timer, about, 2-31
timer, EJB types supported, 2-31
transactions, about, 2-17

EJB support
EJB 2.1, 3-11
EJB 3.0, 3-1

ejb_sec.properties file, 22-12
ejb3-toplink-sessions.xml

about, 2-7
configuration, 26-3
XSD, 2-8

ejbActivate method, 1-29, 1-32, 1-45, 1-47
EJBContext

accessing, EJB 2.1, 29-27
accessing, EJB 3.0, 29-20
setRollbackOnly, 21-10

EJBContext interface, 1-7
ejbCreate method, 1-44, 1-47, 11-6, 13-15

initializing primary key, 13-15
SessionBean interface, 1-29, 1-32, 1-58

EJBException, 11-7, 11-8, 13-18, 13-19
ejbFindByPrimaryKey method, 13-15, 15-6
EJBHome interface, 11-2, 11-4, 11-7, 13-2, 13-6, 13-18

Index-6

create method, 13-18
ejb-jar.xml

about, 2-5
at deployment, 28-4, 31-8
configuration, 26-1
creating at deployment time, 26-1
creating at migration time, 26-1
creating with JDeveloper, 26-2
XSD, EJB 2.1, 2-6
XSD, EJB 3.0, 2-5

<ejb-link> element, 19-6, 19-8, 19-11
ejbLoad method, 1-45, 1-47
EJBLocalHome interface, 11-2, 11-4, 11-7, 13-2, 13-6,

13-18, 13-19
EJBLocalObject interface, 11-2, 11-4, 11-9, 13-2, 13-7,

13-19, 13-20
<ejb-location> element, 13-15
<ejb-mapping> element, 19-6, 19-8, 19-11
<ejb-module> element, 29-21, 29-22
<ejb-name> element, 19-6, 19-8, 19-11
EJBObject interface, 11-2, 11-4, 11-8, 13-2, 13-6, 13-19
ejbPassivate method, 1-29, 1-32, 1-45, 1-47
ejbPostCreate method, 1-44, 1-47
<ejb-ql> element, 16-2, 16-5
<ejb-ref> element, 19-6, 19-8, 19-11
<ejb-ref-mapping> element, A-9, A-16, A-21
<ejb-ref-name> element, 19-6, 19-8, 19-11, 29-4
ejbRemove method, 1-29, 1-32, 1-44, 1-47, 1-58
ejbStore method, 1-44, 1-47
enable-passivation attribute, 12-2, 12-3
EndpointFailureRetryInterval config-property, 10-9,

18-9
EndpointFailureRetryInterval property, B-2
<enterprise-beans> element, A-3
entities

lifecycle callback listeners, configuring, 7-17
entity

lifecycle methods, JPA, 1-37
lifecycle methods, JPA, configuring, 7-16, 7-17
overview, 1-34
PostLoad annotation, 1-38
PostPersist annotation, 1-37
PostRemove annotation, 1-37
PostUpdate annotation, 1-38
PrePersist annotation, 1-29, 1-31, 1-37, 1-58
PreRemove annotation, 1-37
PreUpdate annotation, 1-38

entity bean
commit options, A, 1-50, 15-4, 32-2
commit options, about, 1-48
commit options, and CMP, 1-49
commit options, BMP, 1-50
context, 1-48, 13-20
context information, 13-20, 17-6
creating, 13-18
deployment descriptor, A-10, A-11
EJB 2.1 CMP, configuration, 14-1, 15-1
EJB 3.0 see entity, 1-34
finder methods, 13-18

about, 13-15

home interface, 13-18
lifecycle methods, EJB 2.1 BMP, 1-46
lifecycle methods, EJB 2.1 BMP, configuring, 15-7
lifecycle methods, EJB 2.1 CMP, 1-44
lifecycle methods, EJB 2.1 CMP,

configuring, 14-15
lifecycle methods, JPA, 1-37
overview, 1-41
primary key, 1-45, 1-47
remote interface, 13-19

entity context, 1-48
entity listener

configuring lifecycle callbacks, 7-17
EntityBean interface

ejbActivate method, 1-45, 1-47
ejbCreate method, 1-44, 1-47
ejbLoad method, 1-45, 1-47
ejbPassivate method, 1-45, 1-47
ejbPostCreate method, 1-44, 1-47
ejbRemove method, 1-44, 1-47
ejbStore method, 1-44, 1-47
setEntityContext method, 13-20, 17-6

<entity-deployment> element, A-10
entity-deployment

call-timeout attribute, A-12
clustering-schema attribute, A-12
copy-by-value attribute, A-12
data-source attribute, A-12
delay-updates-until-commit attribute, A-12
disable-default-persistent-unit attribute, 2-9, 26-5,

A-12
do-select-before-insert attribute, A-12
exclusive-write-access attribute, A-13
findByPrimaryKey-lazy-loading attribute, A-13
force-update attribute, A-13
isolation attribute, A-13
local-location attribute, A-13
local-wrapper attribute, A-13
location attribute, A-13
locking-mode attribute, A-14
max-instances attribute, A-14
max-tx-retries attribute, A-14
min-instances attribute, A-14
name attribute, A-14
pool-cache-timeout attribute, A-14
table attribute, A-14
tx-retry-wait attribute, A-14
update-changed-fields-only attribute, A-15
validity-timeout attribute, A-15
wrapper attribute, A-15

EntityManager, Glossary-1
about, 1-35, 1-39
accessing a JPA entity, 29-8
acquiring default, 29-9
acquiring in a helper class, 29-11
acquiring in a Web client, 29-10
acquiring named, 29-9
acquiring using JNDI, 29-9
creating a JPA entity, 29-12
detaching a JPA entity, 29-17

Index-7

merging a JPA entity, 29-17
queries, about, 1-39

<env-entry> element, 19-16
<env-entry-mapping> element, A-9, A-16, A-21
<env-entry-name> element, 19-16
<env-entry-type> element, 19-16
<env-entry-value> element, 19-16
environment reference

environment variables, 19-16
persistence context, 19-18
resource manager, 19-2
Web service, 19-17

environment variables
configuring, 19-16
ejb-jar.xml, 19-16
looking up, EJB 2.1, 19-25
looking up, EJB 3.0, 19-23
orion-ejb-jar.xml, 19-16
overriding, 19-16
resource injection, 19-23

environment, retrieval, 1-7
error recovery, 27-4

ClassCastException, 27-4
exception queue, 10-7, 18-8, A-20
exception recovery, 27-4

deadlock, 29-29
NamingException thrown, 29-29
NullPointerException thrown, 29-29

ExceptionQueueName property, B-2
exclusive-write-access attribute, A-13
expanded deployment, 28-4

F
fast undeploy, 18-5
fetch attribute, 7-16
FetchType, 7-16
findByPrimaryKey-lazy-loading attribute, 14-14,

A-13
<finder-method> element, A-16
finder methods, 13-15

about, 1-53
BMP, 15-6
default finders, about, 1-54
entity bean, 13-18
lazy loading, 14-14

flat transactions, 2-17
force-update attribute, A-13

G
generated code

debugging, 31-9
getEJBHome method, 1-7
getEnvironment method, 1-7
getInvokedBusinessInterface method, 1-34
getRollbackOnly method, 1-7
getUserTransaction method, 1-7

H
hints

EJB 3.0 query, 8-3
home interface

creating, 11-2, 11-4, 13-2, 13-6
EJB 2.1, overview, 1-4
EJB 3.0, overview, 1-2

HTTP sessions
state replication, 2-29

I
idletime attribute, A-6
impliesAll attribute, 22-9
IncludeBodiesInExceptionQueue property, B-2
incremental deployment

about, 28-2
when to use, 28-3

incremental migration
EJB 2.1 to EJB 3.0, stateful session beans, 4-5
EJB 2.1 to EJB 3.0, stateless session beans, 4-4

initialization methods
about, 4-5
disambiguating, 4-6
lifecycle, 4-6
matching with home interface methods, 4-6
method name, 4-6
post-construct, 4-6

injection, 1-7, 1-9
interceptors

about, 2-12
AroundInvoke interceptor, message-driven

bean, 10-13, 10-14
AroundInvoke interceptor, session bean, 5-6, 5-7
configuring AroundInvoke, message-driven

bean, 10-13, 10-14
configuring AroundInvoke, session bean, 5-6, 5-7
configuring interceptor class, message-driven

bean, 10-15
configuring interceptor class, session bean, 5-8
configuring lifecycle callback, message-driven

bean, 10-11
configuring lifecycle callback, session bean, 5-4,

5-5
interceptor class, message-driven bean, 10-11,

10-15
interceptor class, session bean, 5-5, 5-8
interceptor method, message-driven bean, 10-11
interceptor method, session bean, 5-4
restrictions, 2-11
signature, 2-11, 5-6, 5-7, 5-8, 10-13, 10-14, 10-15
singleton, 2-12
transactions, 2-11
understanding, 2-10

<ior-security-config> element, A-9, A-15
isCallerInRole method, 22-3
isolation

attribute, A-13
modes, 1-59
transaction levels, 1-60

Index-8

J
J2CA

about, 2-20
configuring a resource adapter, 23-1
configuring an EJB 2.1 MDB to use, 18-1
configuring an EJB 3.0 MDB to use, 10-1
logging, 31-4, B-3
Oracle JMS Connector, about, 2-21

J2EE Connector Architecture, See J2CA
j2ee-logging.xml, 31-3
JAAS, 22-13
JAR files

TopLink EJB 2.1, 3-12
TopLink EJB 3.0 JPA, 3-2

Java Persistence API, See JPA
Java Persistence Query Language

about, 1-40
java.io.tmpdir, 28-2
JDeveloper

ejb-jar.xml creation, 26-2
JDK

EJB 2.1, 3-11
EJB 3.0, 3-2

JMS
Destination, 23-7
durable subscriptions, 17-2
exception queue, 10-7, 18-8, A-20
J2CA, 2-21
message service providers, 2-21
message service providers, OEMS JMS, 2-23
message service providers, OEMS JMS

Database, 2-24
message service providers, Oracle JMS

Connector, 2-21
message services, about, 2-20
OEMS JMS, 2-23
OEMS JMS Database, 2-24
Oracle JMS Connector, 2-21
port, 29-2

JMX
JSR77 statistics, 31-1
logging MBean, 31-3
Oracle Dynamic Monitoring System sensor

data, 31-1
support, 31-1

JNDI
about, 2-14

<jndi-name> element, 19-6, 19-8, 19-11
JPA

about, 1-34
entity, 1-34
EntityManager, 1-35, Glossary-1
persistence provider, 1-35, Glossary-1

JPA entity
composite primary key class, configuring, 7-2
primary key, configuring, 7-2

JPA persistence provider
about, 3-2
customization, 3-3
migration, 3-5

persistence.jar, 3-2
preview-persistence.jar, 3-3
TopLink customization, 3-3
TopLink JAR files, 3-2

JSP
annotations, 29-2
injection, 29-2

JSR250, 22-12
JSR77, 31-1

L
lazy loading, 7-16, 14-14
lazy-loading attribute, 14-14
lifecycle

callback methods, bean class, 1-6
callback methods, entity listener class, 1-6
callback methods, interceptor class, 1-6

lifecycle methods
entity bean, EJB 2.1 BMP, about, 1-46
entity bean, EJB 2.1 BMP, configuring, 15-7
entity bean, EJB 2.1 CMP, about, 1-44
entity bean, EJB 2.1 CMP, configuring, 14-15
entity, JPA, about, 1-37
entity, JPA, configuring, 7-16, 7-17
message-driven bean, EJB 2.1, about, 1-58
message-driven bean, EJB 2.1, configuring, 18-10
message-driven bean, EJB 3.0, about, 1-58
message-driven bean, EJB 3.0, configuring, 10-11
session bean, EJB 2.1, configuring, 12-3
session bean, EJB 3.0, configuring, 5-4
stateful session bean, EJB 2.1, about, 1-31
stateful session bean, EJB 3.0, about, 1-31
stateless session bean, EJB 2.1, about, 1-29
stateless session bean, EJB 3.0, about, 1-29

listener threads, 10-5, 18-7
ListenerThreadMaxIdleDuration property, B-2, B-3
ListenerThreadMaxPollInterval property, B-3
listenerThreads attribute, 10-6
listener-threads attribute, 18-8, 18-9, A-20
load balancing

clustering, and, 2-31
DNS, 2-31, 24-3
replication-based, 2-31, 24-4
static retrieval, 2-31, 24-3

local access, 29-22
local home interface

example, 11-8
local interface

creating, 11-9, 13-20
EJB 2.1, overview, 1-4
EJB 3.0, overview, 1-3
example, 11-9

local-location attribute, A-6, A-13, A-20
local-wrapper attribute, A-6, A-13
location attribute, A-6, A-13
locking

optimistic, 1-60, A-14
pessimistic, 1-61, A-14

locking-mode attribute, A-14

Index-9

logging
about, 31-2
j2ee-logging.xml, 31-3
levels, 31-3
MBean, 31-3
namespaces, 31-2
Oracle JMS Connector, 31-4, B-3
system properties, 31-3
TopLink, 31-3

LogLevel property, B-3
look up

EJB 3.0, about, 29-5
EJB 3.0, using annotations, 19-23, 29-5
remote interface using ejb-local-ref, 29-6
remote interface using ejb-ref, 29-5
remote interface using local-location, 29-7
remote interface using location, 29-6

M
managed data sources, 2-15
many-to-many relational mappings

understanding, 7-13
mappedName

@EJB, 1-27
@MessageDriven, 9-1
@Resource, 1-27
@Stateful, 4-3
@Stateless, 4-2

mappedName annotation attribute, 1-27
<mapping> element, 19-6, 19-8, 19-11
mapping, 1-43
MaxDeliveryCnt config-property, 10-7, 18-8, A-20
MaxDeliveryCnt property, B-3
maxDeliveryCount attribute, 10-8
max-delivery-count attribute, A-20
max-instances attribute, A-7, A-14, A-20
max-instances-threshold attribute, A-7
max-tx-retries attribute, A-7, A-14
MDB See message-driven bean
memory-threshold attribute, A-7
merging, 29-17
message service providers

about, 2-20
OEMS JMS, 2-23
OEMS JMS Database, 2-24
Oracle JMS Connector, 2-21

<message-destination-ref> element, 19-13
<message-destination-ref-mapping> element, 19-13,

A-10, A-17, A-21
<message-driven> element, 17-4
message-driven bean

AroundInvoke interceptor, configuring on bean
class, 10-13

AroundInvoke interceptor, configuring on
interceptor class, 10-14

context, 1-58
deployment descriptor, A-17, A-18
EJB 2.1, configuration, 18-1
EJB 3.0, configuration, 10-1

fast undeploy on Windows, 18-5
interceptor class, configuring, 10-15
interface, EJB 2.1, 18-10
lifecycle callback interceptors, configuring on bean

class, 10-11
lifecycle callback interceptors, configuring on

interceptor class, 10-11
lifecycle methods, EJB 2.1, 1-58
lifecycle methods, EJB 2.1, configuring, 18-10
lifecycle methods, EJB 3.0, 1-58
lifecycle methods, EJB 3.0, configuring, 10-11
listener threads, 10-5, 18-7
onMessage method, 2-24
overview, 1-56
transaction timeouts, 21-7

message-driven context, 1-58
<message-driven-deployment> element, A-17, A-18
message-driven-deployment

cache-timeout attribute, A-19
connection-factory-location attribute, A-19
ConnectionFactoryTimeout

config-property, A-19
dequeue-retry-count attribute, A-19
dequeue-retry-interval attribute, A-19
destination-location attribute, A-20
DestinationLocation config-property, A-20
EndpointFailureRetryInterval

config-property, 10-9, 18-9
listener-threads attribute, 18-8, A-20
MaxDeliveryCnt config-property, 10-7, 18-8, A-20
max-delivery-count, A-20
max-instances attribute, A-20
min-instances attribute, A-20
name attribute, A-20
ReceiverThreads config-property, 10-5, 18-7, A-20
resource-adapter attribute, A-21
subscription-name attribute, A-21
SubscriptionName config-property, A-21
transaction-timeout attribute, A-21
TransactionTimeout config-property, A-21

<message-driven-destination> element, 17-5
MessageSelector property, B-3
<method> element, A-23

defined, 22-5
<method-name> element, 16-2, 16-5
<method-permission> element, 22-2, 22-3, 22-4, 22-5,

22-6
middle-tier coordinator, 2-20
migrating

10.1.3.0 JPA preview to 10.1.3.1, 3-1
migration

10.1.3.0 JPA preview to 10.1.3.1 full JPA, 3-5
EJB 2.1 to EJB 3.0 stateful session beans,

incremental, 4-5
EJB 2.1 to EJB 3.0 stateless session beans,

incremental, 4-4
ejb-jar.xml creation, 26-1
Orion to TopLink persistence manager, 3-13
toplink-ejb-jar.xml creation, 26-2

migration, TopLink persistence manager, 3-13

Index-10

min-instances attribute, A-8, A-14, A-20
multitier environment

local accessing, 29-22
remote accessing, 29-21

N
name attribute, A-8, A-14, A-20
named query

creating, 29-13
executing, 29-15
implementing, 8-1

NamingException recovery, 29-29
native data sources, 2-15
nested transactions, 2-17
NoSuchObjectLocalException, 25-7
NullPointerException recovery, 29-29

O
oc4j.jms.pseudoTransaction, 2-29
OEMS

about, 2-21
OEMS JMS, 2-23
OEMS JMS Database, 2-24
Oracle JMS Connector, 2-21

OEMS JMS
about, 2-23
exception queue, 10-7, 18-8, A-20
restrictions when accessing without J2CA, 2-25

OEMS JMS Database
about, 2-24
restrictions when accessing without J2CA

J2CA
limitations when not used, 2-25

ojdbc14_102.jar, 3-3, 3-13, 20-4
one-to-many relational mappings

understanding, 7-12
onMessage method, 2-24
optimistic locking, 1-60, A-14
optimization

about, 32-1
bean instance pooling, 32-1, 32-2, 32-3
BMP entity beans, commit option A, 32-3
BMP entity beans, read-only, 32-2
CMP entity beans, bean instance pooling, 32-2
CMP entity beans, read-only, 32-2
commit option A, 32-3
entities, bean instance pooling, 32-2
entities, fetch type, 32-2
fetch type, 32-2
MDB, bean instance pooling, 32-3
MDB, singleton interceptors, 32-3
read-only, 32-2
session beans, bean instance pooling, 32-1
session beans, singleton interceptors, 32-1
singleton interceptors, 32-1, 32-3

Oracle Dynamic Monitoring System, 31-1
Oracle Enterprise Messaging Service See OEMS
Oracle JDBC driver

associating with TopLink, 3-3, 3-13, 20-4
Oracle JMS Connector

about, 2-21
configuring an EJB 2.1 MDB to use, 18-1
configuring an EJB 3.0 MDB to use, 10-1
logging, 31-4, B-3

oracle.j2ee.rmi.loadBalance, 24-4
oracle.jdbc shared library, 3-3, 3-13, 20-4
oracle.mdb.fastUndeploy property, 18-5
oracle.toplink.jdbc shared library, 3-3, 3-13, 20-4
orion-application.xml

JAAS login module configuration, 22-13
<orion-ejb-jar> element, A-3
orion-ejb-jar.xml

about, 2-6
configuration, 26-3
XSD, 2-6

orion-ejb-jar.xml file, 17-2
orm.xml

about, 2-9
packaging, 27-2

out of memory
at deployment, 28-1, 28-2
at run time, 27-4

out of memory at deployment, 28-2

P
packaging

mapping metadata, 27-2
persistence archive, 27-2
persistence unit, 27-1
persistence unit files in Java EE modules, 27-2
persistence.xml, 27-1
referenced EJB classes, 27-3, 27-4

parameters
object types, 29-28
passing to EJBs, 29-28
returned by EJBs, 29-28

parent application, 27-3
parent EJB, 29-7, 29-24
pass by reference, 29-28
pass by value, 29-28
passing parameters to EJBs, 29-28
passivate-count attribute, A-8
passivation

about, 1-30
ejbPassivate method, 1-29

passivation criteria, 1-32 to 1-34
permissions, 22-1
persistence

container-managed, 1-42, 1-46
database schema, BMP, 13-3, 13-8

persistence context, environment reference, 19-18
persistence manager

about, 3-12
customization, 3-13
Orion, 3-12
TopLink customization, 3-13
TopLink JPA, 3-2

Index-11

TopLink, migration, 3-13
persistence provider, 1-35, Glossary-1

TopLink JPA, 3-2
persistence services

about, 2-12
customizing in EJB 2.1, 3-13
customizing in EJB 3.0, 3-3
EJB 2.1, 2-13, 3-12
EJB 3.0, 2-13, 3-2
JPA persistence JAR, 3-2
JPA persistence provider, 3-2
JPA preview persistence JAR, 3-3
persistence manager, 3-12
persistence manager JAR, 3-12

persistence unit
about, 2-8
acquiring an entity manager by default persistence

unit name, 2-9
default, persistence.xml, 26-5
default, understanding, 2-8
packaging, about, 27-1
packaging, Java EE modules, 27-2
packaging, mapping metadata, 27-2
packaging, persistence archive, 27-2
root, 27-1
scope, 27-1
smart defaulting, 2-9
vendor extensions, 26-5

<persistence-context-ref> element, 19-18
<persistence-context-ref-name> element, 19-18
persistence-filename attribute, A-8
persistence.jar, 3-2
<persistence-manager> element, A-3
<persistence-unit-name> element, 19-18
persistence.xml

about, 2-8
acquiring an entity manager by default persistence

unit name, 2-9
configuration, 26-3
default persistence unit, 26-5
default, understanding, 2-8
packaging, 27-1
smart defaulting, 2-9
XSD, EJB 3.0, 2-9, 2-10

pessimistic locking, 1-61, A-14
pool

size, entity beans, 31-4
size, session beans, 31-4
timeouts, entity beans, 31-7
timeouts, session beans, 31-6

pool-cache-timeout attribute, 31-7, 31-8, A-8, A-14
post-construct

initialization methods, 4-6
PostLoad annotation, 1-38
PostPersist annotation, 1-37
PostRemove annotation, 1-37
PostUpdate annotation, 1-38
PrePersist annotation, 1-29, 1-31, 1-37, 1-58
PreRemove annotation, 1-37
PreUpdate annotation, 1-38

preview-persistence.jar, 3-3
primary key

about, 1-38
automatic generation, 7-5
class EJB 2.1 BMP, configuring, 15-2
class EJB 2.1 CMP, configuring, 14-3
complex class, 13-17
complex definition, 13-16
composite EJB 2.1 BMP, configuring, 15-2
composite EJB 2.1 CMP, configuring, 14-3
composite, about, 1-45
creating, 13-15
EJB 2.1 BMP entity bean, about, 1-47
EJB 2.1 BMP, configuring, 15-1
EJB 2.1 CMP entity bean, about, 1-45
EJB 2.1 CMP, configuring, 14-2
field EJB 2.1 BMP, configuring, 15-2
field EJB 2.1 CMP, configuring, 14-2
generation, identity, 7-6
generation, sequence, 7-6
generation, table, 7-5
JPA entity composite class, configuring, 7-2
JPA entity, configuring, 7-2
overview, 1-45, 1-47
query by, EJB 3.0, 29-13
sequencing, 7-5
simple definition, 13-16

<prim-key-class> element, 13-16
<primkey-mapping> element, A-15
PropertyPermission, 22-1
proprietary annotations

@MessageDrivenDeployment, 2-6, 10-2, 10-4,
10-17

@StatefulDeployment, 2-6, 5-10, A-5
@StatelessDeployment, 2-6, 5-10, A-5, A-18
about, 3-1
Java API reference, 3-1

Q
queries

about, 1-39, 1-50
EJB 3.0 dynamic query, implementing, 8-2, 8-3
EJB 3.0 dynamic query, native SQL, 29-15
EJB 3.0 dynamic query, TopLink

Expression, 29-14
EJB 3.0 find by primary key, 29-13
EJB 3.0 named query, creating, 29-13
EJB 3.0 named query, implementing, 8-1
EJB 3.0, executing, 29-15
EJB 3.0, modifying entities, 29-16
EntityManager, 1-39
finder methods, 1-53
hints, 8-3
JPA, detaching, 29-17
JPA, merging, 29-17
primary key, 29-13
select methods, 1-55
syntax, about, 1-39, 1-50
syntax, EJB QL, 1-50

Index-12

syntax, Java Persistence Query Language, 1-40
syntax, SQL, 1-40, 1-52
syntax, TopLink, 1-51
vendor extensions, 8-3

<query> element, 16-2, 16-5

R
read-only, 1-61, A-14

BMP entity bean, 15-4
ReceiverThreads config-property, 10-5, 18-7, A-20
ReceiverThreads property, B-4
receiving parameters from EJBs, 29-28
relational mappings

aggregate object, understanding, 7-14
many-to-many, understanding, 7-13
one-to-many, understanding, 7-12

remote access, 29-21
remote attribute, 29-21
remote home interface

example, 11-7, 13-19, 16-2, 16-5
remote interface

creating, 11-2, 11-4, 11-8, 13-2, 13-6, 13-19
EJB 2.1, overview, 1-4
EJB 3.0, overview, 1-2, 1-3
example, 11-8, 13-20

RemoteException, 11-7, 11-8, 13-19
remove method

@Remove annotation, 1-4
EJBHome interface, 1-5

replication
inherited, 24-2
on end of request, 24-2
on shutdown, 24-2

replication attribute, A-8
resource injection

about, 1-7
environment variables, 19-23
JSP, 29-2
mappedName, 1-27
servlet, 29-2
Web tier, 1-9

resource manager
environment reference, 19-2

resource-adapter attribute, A-21
resource-check-interval attribute, A-8
<resource-env-ref> element, 19-14
<resource-env-ref-mapping> element, A-10, A-17,

A-21
<resource-ref> element, 19-15
<resource-ref-mapping> element, A-21
resources

looking up, EJB 2.1, 19-25
looking up, EJB 3.0, 19-23

<resource-provider> element, 23-5, 23-8
<resource-ref-mapping> element, A-9, A-17
ResPassword property, B-4
<result-type-mapping> element, 16-5
ResUser property, B-4
RMI

port, 29-2
<role-link> element, 22-2, 22-3
<role-name> element, 22-2, 22-3
root, persistence unit, 27-1
<run-as> element, 22-7
runAs security identity, 22-7
RunTimeException, 11-7, 11-8
RuntimePermission, 22-1

S
schema manager

table creation, automatic, 14-5
scope

persistence unit, 27-1
security, 22-1

about, 2-20
annotations, 22-12
client credentials, ejb_sec.properties, 22-12
client credentials, initial context, 22-11
client credentials, JNDI properties, 22-11
JAAS, 22-13
JAAS login module, 22-13
JSR250, 22-12
orion-application.xml configuration, 22-13
permissions, 22-1
retrieving credentials using JAAS, 22-13

<security-identity> element, 22-7
<security-role> element, 22-2, 22-3
<security-role-ref> element, 22-3
<security-role-mapping> element, 22-8, A-23
<security-role-ref> element, 22-2, 22-3
select methods

about, 1-55
sequence generated primary key, 7-6
sequencing

configuration, EJB 3.0, 7-5
Serializable interface, 29-28
<service-ref> element, 19-17
<service-ref-mapping> element, A-17
servlet

annotations, 29-2
injection, 29-2

session bean
AroundInvoke interceptor, configuring on bean

class, 5-6
AroundInvoke interceptor, configuring on

interceptor class, 5-7
configuration, EJB 2.1, 12-1
configuration, EJB 3.0, 5-1
context, 1-34, 11-9
context, getInvokedBusinessInterface, 1-34
deployment descriptor, A-3, A-4, A-5
interceptor class, configuring, 5-8
lifecycle callback interceptors, configuring on bean

class, 5-4
lifecycle callback interceptors, configuring on

interceptor class, 5-5
lifecycle methods, EJB 2.1, configuring, 12-3
lifecycle methods, EJB 3.0, configuring, 5-4

Index-13

local home interface, 11-8
remote home interface, 11-7
removing, 1-29, 1-32, 1-58
stateful, 1-30
stateless, 1-28
stateless, web services, 1-28

session beans
transaction timeouts, 21-6

session context, 1-34
SessionBean interface

EJB, 11-2, 11-4, 12-3, 13-3, 13-7, 17-2
ejbActivate method, 1-29, 1-32
ejbCreate method, 1-29, 1-32, 1-58
ejbPassivate method, 1-29, 1-32
ejbRemove method, 1-29, 1-32, 1-58

<session-deployment> element, A-4, A-5, A-11
session-deployment

call-timeout attribute, A-6
copy-by-value attribute, A-6
idletime attribute, A-6
local-location attribute, A-6, A-20
local-wrapper attribute, A-6
location attribute, A-6
max-instances attribute, A-7
max-instances-threshold attribute, A-7
max-tx-retries attribute, A-7
memory-threshold attribute, A-7
min-instances attribute, A-8
name attribute, A-8
passivate-count attribute, A-8
persistence-filename attribute, A-8
pool-cache-timeout attribute, A-8
replication attribute, A-8
resource-check-interval attribute, A-8
timeout attribute, A-9
transaction-timeout attribute, A-9
tx-retry-wait attribute, A-9
wrapper attribute, A-9

setEntityContext method, 13-20, 17-6
setRollbackOnly, 21-10
setRollbackOnly method, 1-7
setSessionContext method, 1-34, 11-9, 13-20, 17-6
<sfsb-config> element, 12-2, 12-3
shared libraries

oracle.jdbc, 3-3, 3-13, 20-4
oracle.toplink.jdbc, 3-3, 3-13, 20-4

singleton interceptors, 2-12
SocketPermission, 22-1
SQL

queries, about, 1-40, 1-52
SQRT, 16-7
stateful session bean

implementing, EJB 3.0, 4-2
lifecycle methods, EJB 2.1, 1-31
lifecycle methods, EJB 3.0, 1-31
overview, 1-30

stateful session beans
EJB 2.1 to EJB 3.0 migration, 4-5
state replication, 2-30

stateless session bean

implementing, EJB 2.1, 11-1, 11-3, 13-1, 13-6, 17-1
implementing, EJB 3.0, 4-1
lifecycle methods, EJB 2.1, 1-29
lifecycle methods, EJB 3.0, 1-29
overview, 1-28
web services, 1-28

stateless session beans
EJB 2.1 to EJB 3.0 migration, 4-4

<subscription-durability> element, 17-5
SubscriptionDurability property, B-4
subscription-name attribute, A-21
SubscriptionName config-property, A-21
SubscriptionName property, B-5
system properties

default.persistence.provider, 3-2
DoNotReGenerateWrapperCode, 31-10
KeepWrapperCode, 31-9, 31-10
logging, 31-3
oc4j.jms.pseudoTransaction, 2-29
oracle.j2ee.rmi.loadBalance, 24-4
WrapperCodeDir, 31-10

T
table attribute, A-14
table generated primary key, 7-5
Time, 16-7
TimedOutException, A-6
timeout attribute, 31-7, A-9
timeouts

bean instance pool, entity beans, 31-7
bean instance pool, session beans, 31-6
transactions, 21-5

timer services
about, 2-31
EJB types supported, 2-31

timers
cancel, 25-7
executing within a transaction, 25-7
NoSuchObjectLocalException, 25-7
persistence, 25-7
retrieving information, 25-7

Timestamp, 16-7
TopLink

ejb3-toplink-sessions.xml, about, 2-7
ejb3-toplink-sessions.xml, XSD, 2-8
Oracle JDBC driver association, 3-3, 3-13, 20-4
queries, about, 1-51
toplink-ejb-jar.xml File, A-2
toplink-ejb-jar.xml, about, 2-6
toplink-ejb-jar.xml, XSD, 2-7

TopLink Essentials JPA persistence provider, 3-2
TopLink JAR files, 3-2, 3-12
TopLink JPA JAR files, 3-2
TopLink JPA preview persistence, 3-3
TopLink migration tool, 3-13
TopLink Workbench

toplink-ejb-jar.xml creation, 26-2
toplink-ejb-jar.xml

about, 2-6

Index-14

configuration, 26-2
creating at migration time, 26-2
creating with TopLink Workbench, 26-2
XSD, 2-7

toplink-ejb-jar.xml File, A-2
transaction

commit, 1-7
context propagation, 1-7
retrieve status, 1-7
rollback, 1-7

transaction attribute
EJB 2.1, 21-2, 21-4

transaction isolation, 1-60
transaction management

EJB 2.1, 21-4
EJB 3.0, 21-1

transactions
about, 2-17
bean-managed, about, 2-18
client invocation, 2-19
container-managed, about, 2-18
flat, 2-17
global, about, 2-20
global, J2CA, 23-1, 23-2
global, JMS, 2-29
global, OEMS JMS, 23-3, 23-4
global, OEMS JMS Database, 23-5, 23-7
global, Oracle JMS Connector, 23-1, 23-2
interceptors, 2-11
isolation levels, 1-60
middle-tier coordinator, 2-20
nested, 2-17
propagation, 2-19
retry JMS message dequeue, A-19
rollback, 21-10
timeouts, configuring, 21-5
timeouts, global, 21-6
timeouts, message-driven bean, 21-7
timeouts, session beans, 21-6
transaction attribute, about, 2-19
transaction attribute, EJB 2.1, 21-2, 21-4
transaction management, about, 2-17
transaction management, EJB 2.1, 21-4
transaction management, EJB 3.0, 21-1
two-phase commit, about, 2-20
two-phase commit, auto-enlisting JMS

connections, 2-29
two-phase commit, J2CA, 23-1, 23-2
two-phase commit, JMS, 2-29
two-phase commit, OEMS JMS, 23-3, 23-4
two-phase commit, OEMS JMS Database, 23-5,

23-7
two-phase commit, Oracle JMS Connector, 23-1,

23-2
XA, about, 2-20
XA, auto-enlisting JMS connections, 2-29
XA-enabled, OEMS JMS, 23-3, 23-4
XA-enabled, OEMS JMS Database, 23-5, 23-7
XA-enabled, Oracle JMS Connector, 23-1, 23-2

transaction-timeout attribute, 21-6, 21-8, A-9, A-21

TransactionTimeout config-property, A-21
TransactionTimeout property, B-5
<transaction-type> element, 17-5
troubleshooting, 27-4
tx-retry-wait attribute, A-9, A-14

U
<unchecked> element, 22-7

defined, 22-6
unsetEntityContext method, 13-20
update-changed-fields-only attribute, A-15
<use-caller-identity> element, 22-7
UseExceptionQueue property, B-6

V
validating XML, 31-8
validity-timeout attribute, A-15
vendor extensions

EJB 3.0 application, 3-3
persistence unit, 26-5
query, 8-3

W
Web service, environment reference, 19-17
web services

annotations, 30-1
calling out to, 30-2
stateless session bean, and, 1-28
stateless session bean, exposing as, 30-1

Web tier
annotations, 1-9
injection, 1-9

Windows shutdown, 18-5
wrapper attribute, A-9, A-15
wrapper code

at deployment, 28-4, 31-9
debugging, 31-9
how generated, 28-3

X
XA

about, 2-20
J2CA, 23-1, 23-2
OEMS JMS, 23-3, 23-4
OEMS JMS Database, 23-5, 23-7
Oracle JMS Connector, 23-1, 23-2

XML validation, 31-8
XSD

ejb3-toplink-sessions.xml, 2-8
ejb-jar.xml, EJB 2.1, 2-6
ejb-jar.xml, EJB 3.0, 2-5
orion-ejb-jar.xml, 2-6
persistence.xml, EJB 3.0, 2-9, 2-10
toplink-ejb-jar.xml, 2-7, A-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I EJB Overview
	1 Understanding Enterprise JavaBeans
	What are Enterprise JavaBeans?
	What is the Anatomy of an EJB 3.0 enterprise bean?
	What is the Anatomy of an EJB 2.1 Enterprise Bean?
	What is the Life Cycle of an Enterprise Bean?
	Life Cycle Callback Methods on a Bean Class
	Life Cycle Callback Interceptor Methods on an EJB 3.0 Interceptor Class
	Life Cycle Callback Listener Methods on a JPA Entity Listener Class

	What is EJB Context?
	How do Annotations and Resource Injection Work?
	Annotations in the Web Tier
	Annotations and Inheritance
	Overriding Annotations With Deployment Descriptor Entries
	OC4J Support for Annotation Attribute mappedName

	What is a Session Bean?
	What is a Stateless Session Bean?
	What is the Stateless Session Bean Life Cycle?

	What is a Stateful Session Bean?
	What is the Life Cycle of a Stateful Session Bean?
	When Does Stateful Session Bean Passivation Occur?
	What Object Types can be Passivated?
	Where is a Passivated Stateful Session Bean Stored?

	What is Session Context?

	What is a JPA Entity?
	What are JPA Entity Container-Managed Persistent Fields?
	What are JPA Entity Container-Managed Relationship Fields?
	What is the JPA Entity Life Cycle?
	What is a JPA Entity Primary Key?
	How do you Query for a JPA Entity?
	Understanding the JPA EntityManager Query API
	What is a JPA Named (Predefined) Query?
	What is a JPA Dynamic (Ad-Hoc) Query?

	Understanding JPA Entity Query Syntax
	Understanding Java Persistence Query Language Query Syntax
	Understanding Native SQL Query Syntax in EJB 3.0

	What is an EJB 2.1 Entity Bean?
	What is an EJB 2.1 Entity Bean With Container-Managed Persistence?
	What are Container-Managed Persistent Fields?
	What are Container-Managed Relationship Fields?
	What is the Life Cycle of an EJB 2.1 Entity Bean With Container-Managed Persistence?
	What is a Primary Key of an Entity Bean With Container-Managed Persistence?

	What is an EJB 2.1 Entity Bean With Bean-Managed Persistence?
	What are Bean-Managed Persistent Fields?
	What are Bean-Managed Relationship Fields?
	What is the Life Cycle of an EJB 2.1 Entity Bean With Bean-Managed Persistence?
	What is a Primary Key of an Entity Bean With Bean-Managed Persistence?

	What is Entity Context?
	When Does Entity Bean Passivation Occur?
	What are Entity Bean Commit Options?
	Commit Options and CMP Applications
	Commit Options and BMP Applications

	How do you Query for an EJB 2.1 Entity Bean?
	Understanding EJB 2.1 Query Syntax
	Understanding EJB QL Query Syntax
	Understanding TopLink Query Syntax
	Understanding Native SQL Query Syntax in EJB 2.1

	Understanding Finder Methods
	TopLink Finders

	Understanding Select Methods
	What Type Can Your Select Method Return?
	Custom TopLink Select Methods

	What is a Message-Driven Bean?
	What is the Life Cycle of a Message-Driven Bean?
	What is Message Driven Context?

	Which Type of Enterprise Bean Should You Use?
	Which Type of Session Bean Should You Use?
	When do you use Bean-Managed Versus Container-Managed Persistence?

	How do you Avoid Database Resource Contention?
	Transaction Isolation
	Concurrency (Locking) Mode

	2 Understanding EJB Application Development
	Using EJB Development Tools
	Using JDeveloper
	Using Eclipse
	Using TopLink Workbench

	What OC4J Services Can You Use With an EJB?
	How do you Package and Deploy an EJB Application?
	Understanding Packaging
	Understanding Deployment
	In What Order Does OC4J Deploy EJB Modules?

	Understanding EJB Deployment Descriptor Files
	What is the ejb-jar.xml File?
	EJB 3.0
	EJB 2.1
	XML Reference

	What is the orion-ejb-jar.xml File?
	EJB 3.0
	EJB 2.1
	XML Reference

	What is the toplink-ejb-jar.xml File?
	EJB 3.0
	EJB 2.1
	XML Reference

	What is the ejb3-toplink-sessions.xml File?
	EJB 3.0
	EJB 2.1
	XML Reference

	What is the persistence.xml File?
	Understanding OC4J Persistence Unit Defaults
	EJB 3.0
	EJB 2.1
	XML Reference

	What is the orm.xml File?
	EJB 3.0
	EJB 2.1
	XML Reference

	How do you use an Enterprise Bean in Your Application?
	Understanding Client Access
	Understanding EJB 3.0 Interceptors
	Interceptor Restrictions
	Singleton Interceptors

	Understanding EJB and Web Services
	Understanding EJB Administration

	Understanding EJB Persistence Services
	Understanding EJB JNDI Services
	Understanding EJB Data Source Services
	What Types of Data Source Does OC4J Support?
	Managed Data Source
	Native Data Source

	How do you Define a Connection URL in OC4J?
	What Transaction Types do Data Sources Support?
	Where do you Configure Data Source Information in OC4J?
	What is a Default Data Source?
	How Does OC4J Handle Multiple Data Sources?

	Understanding EJB Transaction Services
	Who Manages a Transaction?
	What are Container-Managed Transactions?
	What are Bean-Managed Transactions?

	How are Transactions Handled When a Client Invokes a Business Method?
	How do You Participate in a Global or Two-Phase Commit (2PC) Transaction?

	Understanding EJB Security Services
	Understanding Message Services
	What Message Service Providers Can you use With Your MDB?
	Oracle JMS Connector: J2EE Connector Architecture (J2CA)-Based Provider
	OEMS JMS: In-Memory or File-Based Provider
	OEMS JMS Database: Advanced Queueing (AQ)-Based Provider
	Restrictions When Accessing a Message Service Provider Without a J2CA Resource Adapter

	Message Service Configuration Options: Annotations or XML? Attributes or Activation Configuration Properties?
	Message Service Configuration Using Annotations
	Message Service Configuration Using XML

	Configuring Message Services for Two-Phase Commit (2PC) Transactions
	MDB Auto-Enlisting in Two-Phase Commit (2PC) XA Transactions

	Understanding OC4J EJB Application Clustering Services
	State Replication
	Load Balancing

	Understanding EJB Timer Services
	Understanding Java EE Timer Services
	Understanding OC4J Cron Timer Services

	3 Understanding EJB Support in OC4J
	EJB 3.0 Support
	What JDK is Required?
	How do You Define an EJB 3.0 Application?
	How Does OC4J Manage Persistence in an EJB 3.0 Application?
	TopLink Essentials JPA Persistence Provider
	JPA Persistence JAR Files
	Customizing the JPA Persistence Provider
	Accessing TopLink API at Run Time With TopLink Essentials JPA Persistence
	Accessing TopLink API at Run Time With TopLink JPA Preview Persistence

	Migrating a 10.1.3.0 TopLink JPA Preview Application to 10.1.3.1 TopLink Essentials JPA
	Changes in OC4J Configuration Files
	Changes in javax.persistence
	Changes in oracle.toplink.essentials.platform.database
	Changes in Interceptor Support
	Acquiring an Entity Manager
	New JAR Files

	EJB 2.1 Support
	What JDK is Required?
	How do you Define an EJB 2.1 Module?
	How Does OC4J Manage Persistence in an EJB 2.1 Application?
	TopLink EJB 2.1 Persistence Manager
	EJB 2.1 Persistence JAR Files
	Customizing the TopLink EJB 2.1 Persistence Manager
	Migrating to the TopLink EJB 2.1 Persistence Manager

	Part II EJB 3.0 Session Beans
	4 Implementing an EJB 3.0 Session Bean
	Implementing an EJB 3.0 Stateless Session Bean
	Implementing an EJB 3.0 Stateful Session Bean
	Adapting an EJB 3.0 Stateless Session Bean for an EJB 2.1 Client
	Using Annotations

	Adapting an EJB 3.0 Stateful Session Bean for an EJB 2.1 Client
	Using Annotations

	5 Using an EJB 3.0 Session Bean
	Configuring Passivation
	Using Deployment XML

	Configuring Passivation Criteria
	Using Annotations
	Using Deployment XML

	Configuring Passivation Location
	Using Annotations
	Using Deployment XML

	Configuring a Life Cycle Callback Interceptor Method on an EJB 3.0 Session Bean
	Using Annotations

	Configuring a Life Cycle Callback Interceptor Method on an Interceptor Class of an EJB 3.0 Session Bean
	Using Annotations

	Configuring an Around Invoke Interceptor Method on an EJB 3.0 Session Bean
	Using Annotations

	Configuring an Around Invoke Interceptor Method on an Interceptor Class of an EJB 3.0 Session Bean
	Using Annotations

	Configuring an Interceptor Class for an EJB 3.0 Session Bean
	Using Annotations
	Creating an Interceptor Class
	Associating an Interceptor Class With a Session Bean
	Specifying Singleton Interceptors in a Session Bean

	Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 Session Bean
	Using Annotations
	Using Deployment XML

	Part III JPA Entities
	6 Implementing a JPA Entity
	Implementing a JPA Entity

	7 Using Java Persistence API
	Configuring a JPA Entity Primary Key
	Configuring a JPA Entity Simple Primary Key Field
	Using Annotations

	Configuring a JPA Entity Composite Primary Key Class
	Using Annotations

	Configuring JPA Entity Automatic Primary Key Generation
	Using Annotations

	Configuring Table and Column Information
	Configuring the Primary Table
	Using Annotations

	Configuring a Secondary Table
	Using Annotations

	Configuring a Column
	Using Annotations

	Configuring a Join Column
	Using Annotations

	Configuring a Container-Managed Relationship Field for a JPA Entity
	Configuring a Basic Mapping
	Using Annotations

	Configuring a Large Object Mapping
	Using Annotations

	Configuring a Serialized Object Mapping
	Using Annotations

	Configuring an One-to-One Mapping
	Using Annotations

	Configuring a Many-to-One Mapping
	Using Annotations

	Configuring an One-to-Many Mapping
	Using Annotations

	Configuring a Many-to-Many Mapping
	Using Annotations

	Configuring an Aggregate Mapping
	Using Annotations

	Configuring Optimistic Lock Version Field
	Using Annotations

	Configuring Lazy Loading
	Using Annotations

	Configuring a Life Cycle Callback Method on a JPA Entity
	Using Annotations

	Configuring a Life Cycle Callback Listener Method on an Entity Listener Class of a JPA Entity
	Using Annotations

	Configuring Inheritance for a JPA Entity
	Joined Subclass
	Single Table for Each Class Hierarchy
	Using Annotations
	Configuring Joined Subclass Inheritance With Annotations
	Configuring Single Table Inheritance With Annotations

	8 Implementing JPA Queries
	Implementing a JPA Named Query
	Using Annotations

	Implementing a JPA Dynamic Query
	Using Java

	Configuring TopLink Query Hints in a JPA Query

	Part IV EJB 3.0 Message-Driven Beans
	9 Implementing an EJB 3.0 Message-Driven Bean
	Implementing an EJB 3.0 MDB

	10 Using an EJB 3.0 Message-Driven Bean
	Configuring an EJB 3.0 MDB to Access a Message Service Provider Using J2CA
	Using Annotations
	Using Deployment XML

	Configuring an EJB 3.0 MDB to Access a Message Service Provider Directly
	Using Annotations
	Using Deployment XML

	Configuring Parallel Message Processing
	Using Annotations
	Using Deployment XML

	Configuring Maximum Delivery Count
	Using Annotations
	Using Deployment XML

	Configuring Connection Failure Recovery for an EJB 3.0 MDB
	Using Annotations
	Using Deployment XML

	Configuring a Life Cycle Callback Interceptor Method on an EJB 3.0 MDB
	Using Annotations

	Configuring a Life Cycle Callback Interceptor Method on an Interceptor Class of an EJB 3.0 MDB
	Using Annotations

	Configuring an Around Invoke Interceptor Method on an EJB 3.0 MDB
	Using Annotations

	Configuring an Around Invoke Interceptor Method on an Interceptor Class of an EJB 3.0 MDB
	Using Annotations

	Configuring an Interceptor Class for an EJB 3.0 MDB
	Using Annotations
	Creating an Interceptor Class
	Associating an Interceptor Class With an MDB
	Specifying Singleton Interceptors in an MDB

	Configuring OC4J-Proprietary Deployment Options on an EJB 3.0 MDB
	Using Annotations
	Using Deployment XML

	Part V EJB 2.1 Session Beans
	11 Implementing an EJB 2.1 Session Bean
	Implementing an EJB 2.1 Stateless Session Bean
	Using Java
	Using Deployment XML

	Implementing an EJB 2.1 Stateful Session Bean
	Using Java
	Using Deployment XML

	Implementing the Home Interfaces
	Implementing the Remote Home Interface
	Implementing the Local Home Interface

	Implementing the Component Interfaces
	Implementing the Remote Component Interface
	Implementing the Local Component Interface

	Implementing the setSessionContext Method

	12 Using an EJB 2.1 Session Bean
	Configuring Passivation
	Using Deployment XML

	Configuring Passivation Criteria
	Using Deployment XML

	Configuring Passivation Location
	Using Deployment XML

	Configuring a Life Cycle Callback Method for an EJB 2.1 Session Bean
	Using Java

	Part VI EJB 2.1 Entity Beans
	13 Implementing an EJB 2.1 Entity Bean
	Implementing an EJB 2.1 Entity Bean With Container-Managed Persistence
	Using Java
	Using Deployment XML

	Implementing an EJB 2.1 Entity Bean With Bean-Managed Persistence
	Using Java
	Using Deployment XML
	Implementing an ejbCreate Method for an EJB 2.1 Entity Bean With Bean-Managed Persistence

	Implementing the EJB 2.1 Home Interfaces
	Implementing the Remote Home Interface
	Implementing the Local Home Interface

	Implementing the EJB 2.1 Component Interfaces
	Implementing the Remote Component Interface
	Implementing the Local Component Interface

	Implementing the setEntityContext and unsetEntityContext Methods

	14 Using an EJB 2.1 Entity Bean With Container-Managed Persistence
	Configuring a Primary Key for an EJB 2.1 Entity Bean With Container-Managed Persistence
	Configuring a Primary Key Field for an EJB 2.1 Entity Bean With Container-Managed Persistence
	Using Deployment XML

	Configuring a Composite Primary Key Class for an EJB 2.1 Entity Bean With Container-Managed Persistence
	Using Java
	Using Deployment XML

	Configuring Table and Column Information
	Configuring Automatic Database Table Creation
	Using Deployment XML

	Configuring Default Relationship Generation
	Using Deployment XML

	Configuring a Container-Managed Persistent Field for an EJB 2.1 Entity Bean With Container-Managed Persistence
	Using Java
	Using Deployment XML

	Configuring a Container-Managed Relationship Field for an EJB 2.1 Entity Bean With Container-Managed Persistence
	Using Java
	Using Deployment XML

	Configuring a One-to-One Relationship
	Using Deployment XML

	Configuring a One-to-Many Relationship
	Using Deployment XML

	Configuring a Many-to-One Relationship
	Using Deployment XML

	Configuring a Many-to-Many Relationship
	Using Deployment XML

	Configuring Lazy Loading on Finder Methods
	Using Deployment XML

	Configuring a Life Cycle Callback Method for an EJB 2.1 Entity Bean With Container-Managed Persistence
	Using Java

	15 Using an EJB 2.1 Entity Bean With Bean-Managed Persistence
	Configuring a Primary Key for an EJB 2.1 Entity Bean With Bean-Managed Persistence
	Configuring a Primary Key Field for an EJB 2.1 Entity Bean With Bean-Managed Persistence
	Using Deployment XML

	Configuring a Primary Key Class for an EJB 2.1 Entity Bean With Bean-Managed Persistence
	Using Java
	Using Deployment XML

	Configuring a Read-Only Entity Bean With Bean-Managed Persistence
	Using Deployment XML

	Configuring Commit Options for an Entity Bean With Bean-Managed Persistence
	Using Deployment XML

	Configuring a Query for an EJB 2.1 Entity Bean With Bean-Managed Persistence
	Implementing an ejbFindByPrimaryKey Method for an EJB 2.1 Entity Bean With Bean-Managed Persistence
	Implementing Other Finder Methods for a EJB 2.1 Entity Bean With Bean-Managed Persistence

	Configuring a Life Cycle Callback Method for an EJB 2.1 Entity Bean With Bean-Managed Persistence
	Using Java

	16 Implementing EJB 2.1 Queries
	Implementing an EJB 2.1 EJB QL Finder Method
	Using Java
	Using Deployment XML
	Using TopLink Workbench

	Implementing an EJB 2.1 EJB QL Select Method
	Using Java
	Using Deployment XML
	Using TopLink Workbench

	OC4J EJB 2.1 EJB QL Extensions

	Part VII EJB 2.1 Message-Driven Beans
	17 Implementing an EJB 2.1 Message-Driven Bean
	Implementing an EJB 2.1 MDB
	Using Java
	Using Deployment XML
	Implementing the setMessageDrivenContext Method

	18 Using an EJB 2.1 Message-Driven Bean
	Configuring an EJB 2.1 MDB to Access a Message Service Provider Using J2CA
	Using Deployment XML

	Configuring an EJB 2.1 MDB to Access a Message Service Provider Directly
	Using Deployment XML

	Configuring an MDB for Fast Undeploy on Windows Operating System
	Using System Properties

	Configuring an MDB for Oracle RAC Failover
	Using Deployment XML
	Using Java

	Configuring Parallel Message Processing
	Using Deployment XML

	Configuring Maximum Delivery Count
	Using Deployment XML

	Configuring Connection Failure Recovery for an EJB 2.1 MDB
	Using Deployment XML

	Configuring a Life Cycle Callback Method for an EJB 2.1 MDB
	Using Java

	Part VIII Configuring OC4J EJB Services
	19 Configuring JNDI Services
	Configuring Environment References
	EJB Environment References
	Resource Manager Connection Factory Environment References
	Environment Variable Environment References
	Web Service Environment References
	Persistence Context References
	Where do you Configure an EJB Environment Reference?
	Should you use Logical Names?

	Configuring an Environment Reference to a Remote EJB: Clustered or Combined Web Tier and EJB Tier
	Configuring ejb-ref in the Client: No Indirection
	Configuring ejb-ref in the Client: Using ejb-link to Resolve Indirection
	Configuring ejb-ref in the Client: Using orion-ejb-jar.xml ejb-ref-mapping to Resolve Indirection

	Configuring an Environment Reference to a Remote EJB: Unclustered Separate Web Tier and EJB Tier
	Using Deployment XML

	Configuring an Environment Reference to a Local EJB
	Configuring ejb-local-ref in the Client: No Indirection
	Configuring ejb-local-ref in the Client: Using ejb-link to Resolve Indirection
	Configuring ejb-local-ref in the Client: Using orion-ejb-jar.xml ejb-ref-mapping to Resolve Indirection

	Configuring an Environment Reference to a JDBC Data Source Resource Manager Connection Factory
	Using Deployment XML

	Configuring an Environment Reference to a JMS Destination Resource Manager Connection Factory (JMS 1.1)
	Configuring an Environment Reference to a JMS Destination or Connection Resource Manager Connection Factory (JMS 1.0)
	Using Deployment XML

	Configuring an Environment Reference to an Environment Variable
	Configuring an Environment Reference to a Web Service
	Configuring an Environment Reference to a Persistence Context
	Configuring the Initial Context Factory
	Configuring the Default Initial Context Factory
	Configuring an Oracle Initial Context Factory
	Configuring the Naming Provider URL for OC4J and Oracle Application Server
	Configuring the Naming Provider URL for OC4J Standalone

	Setting JNDI Properties in an Enterprise Bean
	Setting JNDI Properties With the JNDI Properties File
	Setting JNDI Properties With System Properties
	Setting JNDI Properties in the Initial Context

	Looking Up an EJB 3.0 Resource Manager Connection Factory
	Using Annotations
	Using Initial Context

	Looking Up an EJB 3.0 Environment Variable
	Using Resource Injection
	Using Initial Context

	Looking Up an EJB 2.1 Resource Manager Connection Factory
	Using Initial Context

	Looking Up an EJB 2.1 Enviornment Variable
	Using Initial Context

	20 Configuring Data Sources
	Configuring a Data Source for an Oracle Database
	Using Application Server Control Console
	Using Deployment XML

	Configuring a Data Source for a Third-Party Database
	Using Application Server Control Console
	Using Deployment XML

	Configuring a Default Data Source for an EJB 3.0 Application
	Using Deployment XML

	Configuring a Default Data Source for an EJB 2.1 Application
	Using Deployment XML

	Associating TopLink With an Oracle JDBC Driver
	EJB 3.0 and EJB 2.1 non-CMP Applications
	EJB 2.1 CMP Applications
	EIS AQ Connector Applications

	21 Configuring Transaction Services
	Configuring EJB 3.0 Transaction Management
	Using Annotations
	Using Deployment XML

	Configuring an EJB 3.0 Transaction Attribute
	Using Annotations
	Using Deployment XML

	Configuring EJB 2.1 Transaction Management
	Using Deployment XML

	Configuring an EJB 2.1 Transaction Attribute
	Using Deployment XML

	Configuring Transaction Timeouts
	Configuring a Global Transaction Timeout
	Using Application Server Control Console
	Using Deployment XML

	Configuring a Transaction Timeout for a Session Bean
	Using Annotations
	Using Deployment XML

	Configuring a Transaction Timeout for a Message-Driven Bean
	Using Annotations
	Using Deployment XML

	Transaction Best Practices
	Using Container Managed Transactions With Datasource Connections
	Using a Rollback Strategy

	22 Configuring Security Services
	Granting Permissions in Browser
	Defining Users, Groups, and Roles in an EJB Application
	Specifying Users and Groups
	Specifying Logical Roles in the EJB Deployment Descriptor
	Specifying a Role for an EJB Method
	Using Annotations
	Using Deployment XML

	Specifying Unchecked Security for EJB Methods
	Using Annotations
	Using Deployment XML

	Specifying the runAs Security Identity
	Using Annotations
	Using Deployment XML

	Mapping Logical Roles to Users and Groups
	Specifying a Default Role Mapping for Undefined Methods
	Specifying Users and Groups by the Client

	Specifying Credentials in EJB Clients
	Specifying Credentials in JNDI Properties
	Specifying Credentials in the Initial Context
	Specifying EJB Client Security Properties in the ejb_sec.properties File

	Using EJB 3.0 Security Annotations
	Using Annotations

	Retrieving Credentials From an Enterprise Bean Using the JAAS API
	Defining a Custom JAAS Login Module for an EJB Application

	23 Configuring Message Services
	Configuring a J2CA Resource Adapter for use With Your Message Service Provider
	J2CA Message Service Provider Connection Factory Names
	Installing and Configuring a J2CA Adapter
	Configuring OC4J J2CA Resource Adapter Deployment XML Files

	Configuring an OEMS JMS Message Service Provider
	OEMS JMS Destination and Connection Factory Names
	Configuring jms.xml

	Configuring an OEMS JMS Database Message Service Provider
	OEMS JMS Database Destination and Connection Factory Names
	Installing and Configuring the OEMS JMS Database Provider
	Configuring data-sources.xml
	Configuring application.xml or orion-application.xml

	24 Configuring OC4J EJB Application Clustering Services
	Configuring EJB 3.0 and EJB 2.1 Stateful Session Bean Replication Policy
	Using Deployment XML
	Overriding Application-Level Replication Policy in the orion-ejb-jar.xml File for EJB Components

	Configuring Static Retrieval Load Balancing
	Using JNDI Properties

	Configuring DNS Load Balancing
	Using JNDI Properties

	Configuring Load Balancing Behavior
	Using System Properties

	25 Configuring Timer Services
	Configuring an Enterprise Bean With a Java EE Timer
	Configuring an Enterprise Bean With an OC4J Cron Timer
	Troubleshooting Timers
	Retrieving Information About a Timer
	Retrieving a Persisted Timer
	Executing a Timer Within the Scope of a Transaction
	What Does a NoSuchObjectLocalException Mean With Timers?

	Part IX Packaging and Deploying an EJB Application
	26 Configuring Deployment Descriptor Files
	Configuring the ejb-jar.xml File
	Creating ejb-jar.xml During Migration
	Creating the ejb-jar.xml File at Deployment Time
	Creating ejb-jar.xml With JDeveloper

	Configuring the toplink-ejb-jar.xml File
	Creating toplink-ejb-jar.xml During Migration
	Creating toplink-ejb-jar.xml With TopLink Workbench

	Configuring the orion-ejb-jar.xml File
	Configuring the ejb3-toplink-sessions.xml File
	Creating ejb3-toplink-sessions.xml With TopLink Workbench

	Configuring the persistence.xml File
	Configuring the persistence.xml With a Named Persistence Unit File
	What Persistent Managed Classes Does This Persistence Unit Include?

	Configuring the persistence.xml File for the OC4J Default Persistence Unit
	Specifying a Data Source in a Persistence Unit
	Configuring Vendor Extensions in a Persistence Unit
	TopLink JPA Extensions for JDBC (Java SE)
	TopLink JPA Extensions for Caching
	TopLink JPA Extensions for Logging
	TopLink JPA Extensions for Database, Session, and Application Server
	TopLink JPA Extensions for Customization
	TopLink JPA Extensions for Schema Generation

	27 Packaging an EJB Application
	Packaging a JPA Entity Application
	Packaging a Persistence Unit
	Creating a Persistence Archive
	Packaging Persistence Unit Files Directly in Java EE Modules

	Packaging Mapping Metadata

	Packaging an Application With Both EJB 3.0 and EJB 2.1 Enterprise Beans
	Sharing Classes Between EJB Applications
	Handling Out of Memory Exceptions at Run Time
	Handling Class Cast Exceptions at Run Time

	28 Deploying an EJB Application to OC4J
	Deploying a Large EJB Application
	Tuning the VM to Avoid Out Of Memory Errors During Deployment
	Configuring the Temp Directory to Avoid Out Of Memory Errors During Deployment
	Disabling Batch Compilation to Avoid Out Of Memory Errors During Deployment

	Deploying Incrementally
	Expanded Deployment
	Troubleshooting Application Deployment

	Part X Using an EJB in Your Application
	29 Accessing an Enterprise Bean From a Client
	What Type of Client do you Have?
	EJB Client
	Standalone Java Client
	Servlet or JSP Client

	Configuring the Client
	Configuring the Client Classpath for OC4J
	Selecting an Initial Context Factory Class
	Specifying Security Credentials
	Selecting an EJB Reference

	Accessing an EJB 3.0 Enterprise Bean
	Using Annotations
	Using Initial Context
	Looking Up the Remote Interface of an EJB 3.0 Enterprise Bean Using ejb-ref
	Looking Up the Remote Interface of an EJB 3.0 Enterprise Bean Using location
	Looking up the Local Interface of an EJB 3.0 Enterprise Bean Using local-ref
	Looking up the Local Interface of an EJB 3.0 Enterprise Bean Using local-location

	Accessing an EJB 3.0 Enterprise Bean in Another Application
	Accessing a JPA Entity Using an EntityManager
	Acquiring an EntityManager
	Acquiring the OC4J Default Entity Manager
	Acquiring a Named Entity Manager
	Acquiring an Entity Manager Using JNDI
	Acquiring an Entity Manager in a Web Client
	Acquiring an Entity Manager in a Helper Class

	Creating a New Entity Instance
	Querying for a JPA Entity Using the EntityManager
	Finding an Entity by Primary Key With the Entity Manager
	Creating a Named Query With the EntityManager
	Creating a Dynamic Java Persistence Query Language Query With the Entity Manager
	Creating a Dynamic TopLink Expression Query With the EntityManager
	Creating a Dynamic Native SQL Query With the EntityManager
	Executing a Query

	Modifying an Entity Instance
	Using an Updating Query
	Using the Entity’s Public API
	Refreshing From the Database
	Removing an Entity
	Using Flush

	Detaching and Merging an Entity Bean Instance

	Sending a Message to a JMS Destination Using EJB 3.0
	Accessing an EJB 3.0 EJBContext
	Using Resource Injection

	Accessing an EJB 2.1 Enterprise Bean
	Accessing an EJB 2.1 Enterprise Bean Remotely
	Accessing an EJB 2.1 Enterprise Bean Locally
	Accessing an EJB 2.1 Enterprise Bean Using RMI From a Standalone Java Client
	Accessing an EJB 2.1 Enterprise Bean From an EJB 3.0 Client

	Accessing an EJB 2.1 Enterprise Bean in Another Application
	Sending a Message to a JMS Destination Using EJB 2.1
	Accessing an EJB 2.1 EJBContext
	Handling Parameters
	Passing Parameters Into an Enterprise Bean
	Handling Parameters Returned by an Enterprise Bean

	Handling Exceptions
	Recovering From a NamingException While Accessing a Remote Enterprise Bean
	Recovering From a NullPointerException While Accessing a Remote Enterprise Bean
	Recovering From Deadlock Conditions

	30 Using EJB and Web Services
	Exposing a Stateless Session Bean as a Web Service
	Using Annotations

	Accessing a Web Service From an Enterprise Bean
	Using Annotations
	Using Initial Context

	31 Administrating an EJB Application
	OC4J EJB JMX Support
	Using Oracle Enterprise Manager 10g Application Server Control
	Configuring EJB Logging
	Logging Namespaces
	Logging Levels
	Configuring Logging With Application Server Control Logging MBean
	Configuring Logging Using the j2ee-logging.xml File
	Configuring Logging Using System Properties
	Configuring TopLink Logging
	Configuring Oracle JMS Connector Logging

	Managing the Bean Instance Pool
	Configuring Bean Instance Pool Size
	Using Annotations
	Using Deployment XML

	Configuring Bean Instance Pool Timeouts for Session Beans
	Using Annotations
	Using Deployment XML

	Configuring Bean Instance Pool Timeouts for Entity Beans
	Using Deployment XML

	Starting and Stopping an EJB Application
	Troubleshooting an EJB Application
	Validating XML Files
	Debugging the ejb-jar.xml File
	Debugging Generated Wrapper Code
	Preserving Generated Wrapper Code in the Default Directory
	Preserving Generated Wrapper Code in a Directory You Specify
	Modifying Generated Wrapper Code
	Disabling Generated Wrapper Code Preservation

	32 Optimizing EJB Performance
	Session Bean Performance
	Bean Instance Pooling
	Singleton Interceptors

	JPA Entity Performance
	Bean Instance Pooling
	Fetch Type

	Performance of an EJB 2.1 Entity Bean With Container-Managed Persistence
	Bean Instance Pooling
	Read-Only Entity Beans With Container-Managed Persistence

	Performance of an EJB 2.1 Entity Bean With Bean-Managed Persistence
	Read-Only Entity Beans With Bean-Managed Persistence
	Commit Option A

	Message-Driven Bean Performance
	Bean Instance Pooling
	Singleton Interceptors

	A XML Reference for orion-ejb-jar.xml Elements
	OC4J and the orion-ejb-jar.xml File
	TopLink Persistence Support
	<orion-ejb-jar>
	<enterprise-beans>

	<persistence-manager>
	<session-deployment>
	Examples
	<session-deployment> Attributes
	<ior-security-config>
	<env-entry-mapping>
	<ejb-ref-mapping>
	<resource-ref-mapping>
	<resource-env-ref-mapping>
	<message-destination-ref-mapping>

	<entity-deployment>
	Examples
	<entity-deployment> Attributes
	<ior-security-config>
	<primkey-mapping>
	<cmp-field-mapping>
	<finder-method>
	<env-entry-mapping>
	<ejb-ref-mapping>
	<service-ref-mapping>
	<resource-ref-mapping>
	<resource-env-ref-mapping>
	<message-destination-ref-mapping>
	<commit-option>

	<message-driven-deployment>
	Examples
	<message-driven-deployment> Attributes
	<env-entry-mapping>
	<ejb-ref-mapping>
	<resource-ref-mapping>
	<resource-env-ref-mapping>
	<message-destination-ref-mapping>
	<config-property>

	<assembly-descriptor>
	Examples
	<security-role-mapping>
	<message-destination-mapping>
	<default-method-access>
	<method>

	B J2CA Activation Configuration Properties

	Glossary
	Index

