2 Preinstallation Tasks

This chapter describes the tasks that you must complete before you start Oracle Universal Installer. It includes information about the following tasks:

2.1 Logging In to the System as root

Before you install the Oracle software, you must complete several tasks as the root user. To log in as the root user, complete one of the following procedures:

Note:

Unless you intend to complete a silent-mode installation, you must install the software from an X Window System workstation, an X terminal, or a PC or other system with X server software installed.

For more information about silent-mode installations, refer to Appendix A.

  • If you are installing the software from an X Window System workstation or X terminal, then:

    1. Start a local terminal session, for example, an X terminal (xterm).

    2. If you are not installing the software on the local system, then enter the following command to enable the remote host to display X applications on the local X server:

      $ xhost fully_qualified_remote_host_name
      

      For example:

      $ xhost somehost.us.example.com
      
    3. If you are not installing the software on the local system, then use the ssh, rlogin, or telnet command to connect to the system where you want to install the software:

      $ telnet fully_qualified_remote_host_name
      
    4. If you are not logged in as the root user, then enter the following command to switch user to root:

      $ su -
      password:
      #
      
  • If you are installing the software from a PC or other system with X server software installed, then:

    Note:

    If necessary, refer to your X server documentation for more information about completing this procedure. Depending on the X server software that you are using, you must complete the tasks in a different order.
    1. Start the X server software.

    2. Configure the security settings of the X server software to permit remote hosts to display X applications on the local system.

    3. Connect to the remote system where you want to install the software and start a terminal session on that system, for example, an X terminal (xterm).

    4. If you are not logged in as the root user on the remote system, then enter the following command to switch user to root:

      $ su -
      password:
      #
      

2.2 Checking the Hardware Requirements

The system must meet the following minimum hardware requirements:

2.2.1 Memory Requirements

The following are the memory requirements for installing Oracle Database 11g Release 1:

  • At least 1 GB of RAM

    To determine the RAM size, enter the following command:

    • On HP-UX PA-RISC

      # grep "Physical:" /var/adm/syslog/syslog.log
      
    • On HP-UX Itanium

      # /usr/contrib/bin/machinfo  | grep -i Memory
      

    If the size of the RAM is less than the required size, then you must install more memory before continuing.

  • The following table describes the relationship between installed RAM and the configured swap space requirement.

    RAM Swap Space
    Between 1024 MB and 2048 MB 1.5 times the size of RAM
    Between 2049 MB and 8192 MB Equal to the size of RAM
    More than 8192 MB 0.75 times the size of RAM

    To determine the size of the configured swap space, enter the following command:

    # /usr/sbin/swapinfo -a
    

    If necessary, refer to the operating system documentation for information about how to configure additional swap space.

2.2.2 System Architecture

To determine whether the system architecture can run the software, enter the following command:

# /bin/getconf KERNEL_BITS

The expected output of this command is 64. If you do not see the expected output, then you cannot install the software on this system.

2.2.3 Disk Space Requirements

The following are the disk space requirements for installing Oracle Database 11g Release 1:

  • Between 150 and 400 MB of disk space in the /tmp directory

    To determine the amount of free disk space in the /tmp directory enter the following command:

    #  bdf /tmp
    

    If there is less than 400 MB of free disk space available in the /tmp directory, then complete one of the following steps:

    • Delete unnecessary files from the /tmp directory to meet the disk space requirement.

    • Set the TMP and TMPDIR environment variables when setting the oracle user's environment (described later).

    • Extend the file system that contains the /tmp directory. If necessary, contact the system administrator for information about extending file systems.

  • To determine the amount of free disk space on the system, enter the following command:

    # bdf
    
  • The following table describes the disk space requirements for software files for each installation type:

    Installation Type Requirement for Software Files (GB)
    Enterprise Edition 6.89
    Standard Edition 6.09
    Custom (maximum) 6.89

    Between 1.5 GB and 3.5 GB of disk space for the Oracle software, depending on the installation type

  • The following table describes the disk space requirements for each installation type:

    Installation Type Disk Space for Data Files (GB)
    Enterprise Edition 1.69
    Standard Edition 1.48
    Custom (maximum) 1.81

    Additional disk space, either on a file system or on an Automatic Storage Management disk group is required for the flash recovery area if you choose to configure automated backups.

2.3 Checking the Software Requirements

Depending on the products that you intend to install, verify that the following software is installed on the system.

Note:

Oracle Universal Installer performs checks to verify that the system meets the listed requirements. To ensure that these checks pass, verify the requirements before you start Oracle Universal Installer.

2.3.1 Operating System Requirements

The following are the operating system requirements for Oracle Database 11g Release 1:

  • HP-UX 11i v2 (11.23)

  • HP-UX 11i v3 (11.31)

To determine the distribution and version of HP-UX installed, enter the following command:

# uname -a

HP-UX hostname B.11.23 ia64 109444686 unlimited-user license

In this example, the version of HP-UX 11i is 11.23.

To determine whether a bundle, product, or fileset is installed, enter a command similar to the following, where level is bundle, product, or fileset:

# /usr/sbin/swlist -l level | more

If a required bundle, product, or fileset is not installed, then you must install it. Refer to your operating system or software documentation for information about installing products.

Note:

There may be more recent versions of the patches listed installed on the system. If a listed patch is not installed, then determine whether a more recent version is installed before installing the version listed.

2.3.2 Compiler Requirements

The following are the compiler requirements for HP-UX on Itanium Pro*C/C++, Oracle Call Interface, Oracle C++ Call Interface, and Oracle XML Developer's Kit (XDK) with Oracle Database 11g Release 1:

On HP-PA RISC:

  • HP C/ANSI C Compiler (B11.11.16)

    HP ANSI C compiler (B.11.11.16) - June (AR0606) release

  • HP aC++ Compiler (A.03.73)

    C++ (aCC) compiler (A.03.70) - June 2006 (AR0606) release

On HP-UX Itanium:

  • HP C/ANSI C Compiler (A.06.14)

    HP ANSI C compiler (C.06.10) - June 2006 (AR0606) release

  • HP aC++ Compiler (A.06.14)

    C++ (aCC) compiler (C.06.10) - June 2006 (AR0606) release

2.3.3 Patch Requirement

In addition, you must verify that the following patches are installed on the system.

Note:

There may be more recent versions of the patches listed installed on the system. If a listed patch is not installed, then determine whether a more recent version is installed before installing the version listed.
Installation Type or Product Requirement
All installations For HP-UX 11i V2 (11.23):
  • Mar '07 Patch bundle for HP-UX 11iV2 (B.11.23.0703)

  • PHKL_35478: s700_800 11.23 shmget(2) cumulative patch

  • PHCO_36673: s700_800 11.23 libc cumulative patch

  • PHKL_36853: s700_800 11.23 pstat patch

  • PHSS_37958: 11.23 Libcl patch

All installations For HP-UX 11i V3 (11.31):
  • PHKL_35900: 11.31 evacd performance, kvaddr leak panic

  • PHKL_36248: 11.31 esctl cumulative patch

  • PHKL_36249: 11.31 esdisk cumulative patch

  • PHKL_35936: 11.31 call to read(2) or write(2) may incorrectly return -1

  • PHKL_38038: ABORT CORRUPTION HANG OTHER PANIC

  • PHSS_37959: 11.31 Libcl patch

Pro*C/C++, Oracle Call Interface, Oracle C++ Call Interface, Oracle XML Developer's Kit (XDK) Patches for HP-UX 11i V2 (11.23) on HP-UX PA-RISC:
  • PHSS_35176: For HP C/ANSI C Compiler

  • PHSS_35101: For HP C/ANSI C Compiler

  • PHSS_35103: For HP C/ANSI C and HP aC++ compilers

  • PHSS_35102: For HP aC++ Compiler. It changes the compiler version to A.03.73

Patches for HP-UX 11i V2 (11.23) on HP-UX Itanium:

  • PHSS_35974: For HP C/ANSI C Compiler. It changes the compiler version to A.06.14

  • PHSS_35975: For HP aC++ Compiler. It changes the compiler version to A.06.14

  • PHSS_35977: For HP C/ANSI C and HP aC++ compilers

Pro*C/C++, Oracle Call Interface, Oracle C++ Call Interface, Oracle XML Developer's Kit (XDK) The following patch is required for HP C/ANSI C Compiler for HP-UX 11i V3 (11.31) on HP-UX PA-RISC:

HP C/aC++ B.11.31.01 (Swlist Bundle - C.11.31.01) February 2007

The following patch is required for HP aC++ Compiler for HP-UX 11i V3 (11.31) on HP-UX PA-RISC:

HP C/aC++ A.03.74 (Swlist Bundle - C.11.31.01) February 2007

The following patch is required for HP C/ANSI C and HP aC++ compilers for HP-UX 11i V3 (11.31) on HP-UX Itanium:

HP C/aC++ A.06.12 (Swlist Bundle - C.11.31.01) February 2007


To ensure that the system meets these requirements:

  1. To determine whether a patch is installed, enter a command similar to the following:

    # /usr/sbin/swlist -l patch | grep PHSS_35979
    

    Alternatively, to list all installed patches, enter the following command:

    # /usr/sbin/swlist -l patch | more
    
  2. If a required patch is not installed, then download it from the following Web site and install it:

    http://itresourcecenter.hp.com

    If the Web site displays a recent version of the patch, then download and install that version.

2.3.4 Additional Software Requirements

Depending on the components you want to use, you must ensure that the following software are installed:

2.3.4.1 Oracle ODBC Drivers

If you intend to use ODBC, then you should build and install the most recent ODBC Driver Manager. You can download and install the Driver Manager from the following link:

http://www.unixodbc.org

You do not require ODBC Driver Manager to install Oracle Database.

To use ODBC, you must also install gcc 3.4.5 or later

2.3.4.2 Oracle JDBC/OCI Drivers

You can use Java SDK 5.0 as an optional software with the Oracle JDBC/OCI drivers. However, this is not required for the installation.

2.3.4.3 Oracle Messaging Gateway

Oracle Messaging Gateway supports the integration of Oracle Streams Advanced Queuing (AQ) with the following software:

  • IBM WebSphere MQ V6.0, client and server:

    MQSERIES.MQM-CL-HPUX
    MQSERIES.MQM-SERVER
    
  • TIBCO Rendezvous 7.2

If you require a CSD for WebSphere MQ, then refer to the following Web site for download and installation information:

http://www-306.ibm.com/software/integration/wmq/support

2.3.4.4 Browser Requirements

Web browsers must support Java Script and the HTML 4.0 and CSS 1.0 standards. The following browsers meet these requirements:

  • For Oracle Application Express:

    • Microsoft Internet Explorer 6.0 or later version

    • Firefox 1.0 or a later version

  • For Oracle Enterprise Manager Database Control:

    • Netscape Navigator 7.2

    • Netscape Navigator 8.1

    • Mozilla version 1.7

    • Microsoft Internet Explorer 6.0 SP2

    • Microsoft Internet Explorer 7.0

    • Firefox 1.0.4

    • Firefox 1.5

    • Firefox 2.0

2.3.4.5 Oracle XML DB for Oracle Application Express

Oracle XML DB must be installed in the Oracle database that you want to use. If you are using a preconfigured database created either during an installation or by Oracle Database Configuration Assistant (DBCA), then Oracle XML DB is already installed and configured.

See Also:

Oracle XML DB Developer's Guide for more information about manually adding Oracle XML DB to an existing database

2.3.4.6 PL/SQL Web Toolkit

Oracle Application Express requires the PL/SQL Web Toolkit version 10.1.2.0.6 or later. For instructions on determining the current version of the PL/SQL Web Toolkit, and for instructions on installing version 10.1.2.0.6, review the README.txt file contained in the directory apex/owa.

2.3.4.7 Oracle Text

Oracle Text must be installed to use the searchable online Help in Oracle Application Express. By default, Oracle Text is installed as component of Oracle Database.

See Also:

Oracle Text Application Developer's Guide for more information on Oracle Text

2.4 Preinstallation Requirements for Oracle Configuration Manager

During the installation, you are prompted to provide information required to enable Oracle Configuration Manager. When you create a service request with Oracle Support, the configuration information can help to provide a rapid resolution to the service issue.

You can enable Oracle Configuration Manager during or after installation. To enable it during the installation, you must have the following information available:

  • Customer Support Identification Number (CSI) that identifies your organization

  • My Oracle Support (formerly OracleMetalink) user account name

  • Country code associated with the service agreement

Refer to My Oracle Support (formerly OracleMetalink) (https://support.oracle.com) if there is a registration failures and you are uncertain that the correct country code has been specified. You can find the country associated with the My Oracle Support (formerly OracleMetaLink) account in the Profile section under the Licenses link.

2.5 Checking the Network Setup

Typically, the computer on which you want to install Oracle Database is connected to the network. The computer has local storage, to store the Oracle Database installation. It also contains a display monitor, and DVD drive. This section describes how to install Oracle Database on computers that do not meet the typical scenario. It covers the following cases:

2.5.1 Configuring Name Resolution

When you run Oracle Universal Installer, an error may occur if name resolution is not set up. To avoid this error, before you begin installation, you must ensure that host names are resolved only through the /etc/hosts file.

To ensure that host names are resolved only through the /etc/hosts file:

  1. Verify that the /etc/hosts file is used for name resolution. You can do this by checking the hosts file entry in the nsswitch.conf file as follows:

    # cat /etc/nsswitch.conf | grep hosts
    

    The output of this command should contain an entry for files.

  2. Verify that the host name has been set by using the hostname command as follows:

    # hostname
    

    The output of this command should be similar to the following:

    myhost.mycomputer.com
    
  3. Verify that the domain name has not been set dynamically by using the domainname command as follows:

    # domainname
    

    This command should not return any results.

  4. Verify that the hosts file contains the fully qualified host name by using the following command:

    # cat /etc/hosts | grep `eval hostname`
    

    The output of this command should contain an entry for the fully qualified host name and for localhost.

    For example:

    192.168.100.16    myhost.us.example.com   myhost
    127.0.0.1         localhost                 localhost.localdomain
    

    If the hosts file does not contain the fully qualified host name, then open the file and make the required changes in it.

2.5.2 Installing on DHCP Computers

Dynamic Host Configuration Protocol (DHCP) assigns dynamic IP addresses on a network. Dynamic addressing enables a computer to have a different IP address each time it connects to the network. In some cases, the IP address can change while the computer is still connected. You can have a mixture of static and dynamic IP addressing in a DHCP system.

In a DHCP setup, the software tracks IP addresses, which simplifies network administration. This lets you add a new computer to the network without having to manually assign that computer a unique IP address.

2.5.3 Installing on Multihomed Computers

You can install Oracle Database on a multihomed computer. A multihomed computer is associated with multiple IP addresses. This is typically achieved by having multiple network cards on the computer. Each IP address is associated with a host name. In addition, you can set up aliases for the host name. By default, Oracle Universal Installer uses the ORACLE_HOSTNAME environment variable setting to find the host name. If ORACLE_HOSTNAME is not set and you are installing on a computer that has multiple network cards, then Oracle Universal Installer determines the host name by using the first entry in the /etc/hosts file.

Clients must be able to access the computer either by using this host name or by using aliases for this host name. To verify this, ping the host name from the client computers using the short name (host name only) and the full name (host name and domain name). Both tests must be successful.

Setting the ORACLE_HOSTNAME Environment Variable

Use the following procedure to set the ORACLE_HOSTNAME environment variable. For example, if the fully qualified host name is somehost.us.example.com, then enter one of the following commands:

In Bourne, Bash, or Korn shell:

$ ORACLE_HOSTNAME=somehost.us.example.com
$ export ORACLE_HOSTNAME

In C shell:

% setenv ORACLE_HOSTNAME somehost.us.example.com

2.5.4 Installing on Computers with Multiple Aliases

A computer with multiple aliases is registered with the naming service under a single IP but with multiple aliases. The naming service resolves any of those aliases to the same computer. Before installing Oracle Database on such a computer, set the ORACLE_HOSTNAME environment variable to the computer whose host name you want to use.

2.5.5 Installing on Non-Networked Computers

You can install Oracle Database on a non-networked computer. If the computer, such as a laptop, is configured for DHCP and you plan to connect the computer to the network after the Oracle Database installation, then use the ping command on the computer on which you want to install the database to check if the computer can connect to itself. Perform this step by first using only the host name and then using the fully qualified name, which should be in the /etc/hosts file.

Note:

When you run the ping command on the computer itself, the ping command should return the IP address of the computer.

If the ping command fails, then contact your network administrator.

Connecting the Computer to the Network after Installation

If you connect the computer to a network after installation, then the Oracle Database instance on your computer can work with other instances on the network. The computer can use a static IP or DHCP, depending on the network to which you are connected.

2.6 Creating Required Operating System Groups and Users

Depending on whether this is the first time Oracle software is being installed on this system and on the products that you are installing, you must create several operating system groups and users.

The following operating system groups and user are required if you are installing Oracle Database:

  • The OSDBA group (dba)

    You must create this group the first time you install Oracle Database software on the system. It identifies operating system user accounts that have database administrative privileges (the SYSDBA privilege). The default name for this group is dba.

    Oracle Universal Installer prompts you to specify this group name. If software owner is a member of the group dba, then Oracle Universal Installer defaults the OSDBA setting to dba. However, you can also choose a different operating system group if required.

  • The OSOPER group (oper)

    This is an optional group. Create this group if you want a separate group of operating system users to have a limited set of database administrative privileges (the SYSOPER privilege). By default, members of the OSDBA group also have the SYSOPER privilege.

    In this case, Oracle Universal Installer prompts you to specify the name of this group. The usual name chosen for this group is oper.

  • The OSASM group (asmadmin)

    This feature introduces a new SYSASM privilege that is specifically intended for performing Automatic Storage Management administration tasks. Using the SYSASM privilege instead of the SYSDBA privilege provides a clearer division of responsibility between Automatic Storage Management administration and database administration. OSASM is a new operating system group that is used exclusively for Automatic Storage Management. Members of the OSASM group can connect as SYSASM using operating system authentication and have full access to Automatic Storage Management. The usual name chosen for this group is asmadmin.

    See Also:

    "Authentication for Accessing Automatic Storage Management Instances" section in Oracle Database Storage Administrator's Guide for more information on SYSASM privilege for Automatic Storage Management

The following operating system group and user are required for all installations:

  • The Oracle Inventory group (oinstall)

    You must have a group whose members are given access to write to the Oracle Central Inventory (oraInventory). The Central Inventory contains the following:

    • A registry of the Oracle home directories (Oracle Clusterware, Oracle Database, and Automatic Storage Management) on the system.

    • Installation logs and trace files from installations of Oracle software. These files are also copied to the respective Oracle homes for future reference.

    Other metadata inventory information regarding Oracle installations are stored in the individual Oracle home inventory directories, and are separate from the Central Inventory.

    For new installations, Oracle recommends that you allow OUI to create the Central Inventory directory. By default, if you create an Oracle path in compliance with OFA (Optimal Flexible Architecture) structure, such as /u01/app, then the Central Inventory is created in the path u01/app/oraInventory, using correct permissions to allow all Oracle installation owners to write to this directory.

  • The Oracle software owner user (typically, oracle)

    You must create this user the first time you install Oracle software on the system. This user owns all of the software installed during the installation. This user must have the Oracle Inventory group as its primary group. It must also have the OSDBA and OSOPER groups as secondary groups.

    Note:

    In Oracle documentation, this user is referred to as the oracle user.

A single Oracle Inventory group is required for all installations of Oracle software on the system. After the first installation of Oracle software, you must use the same Oracle Inventory group for all subsequent Oracle software installations on that system. However, you can choose to create different Oracle software owner users, OSDBA groups, and OSOPER groups (other than oracle, dba, and oper) for separate installations. By using different groups for different installations, members of these different groups have DBA privileges only on the associated databases rather than on all databases on the system.

See Also:

Oracle Database Administrator's Reference for Linux and UNIX and Oracle Database Administrator's Guide for more information about the OSDBA and OSOPER groups and the SYSDBA and SYSOPER privileges

Note:

The following sections describe how to create local users and groups. As an alternative to creating local users and groups, you can create the appropriate users and groups in a directory service, for example, Network Information Services (NIS). For information about using directory services, contact your system administrator or refer to your operating system documentation.

The following sections describe how to create the required operating system users and groups:

2.6.1 Creating the Oracle Inventory Group

You must create the Oracle Inventory group if it does not already exist. The following subsections describe how to determine the Oracle Inventory group name, if it exists, and how to create it if necessary.

Determining Whether the Oracle Inventory Group Exists

When you install Oracle software on the system for the first time, Oracle Universal Installer creates the oraInst.loc file. This file identifies the name of the Oracle Inventory group and the path of the Oracle Inventory directory.

To determine whether the Oracle Inventory group exists, enter the following command:

# more /var/opt/oracle/oraInst.loc

If the oraInst.loc file exists, then the output from this command is similar to the following:

inventory_loc=/u01/app/oracle/oraInventory
inst_group=oinstall

The inst_group parameter shows the name of the Oracle Inventory group, for example oinstall.

Creating the Oracle Inventory Group

If the oraInst.loc file does not exist, then create the Oracle Inventory group by entering the following command:

# /usr/sbin/groupadd oinstall

2.6.2 Creating the OSDBA Group

You must create an OSDBA group in the following circumstances:

  • An OSDBA group does not exist, for example, if this is the first installation of Oracle Database software on the system

  • An OSDBA group exists, but you want to give a different group of operating system users database administrative privileges in a new Oracle installation

If the OSDBA group does not exist or if you require a new OSDBA group, then create it as follows. In the following command, use the group name dba unless a group with that name already exists.

# /usr/sbin/groupadd dba

2.6.3 Creating an OSOPER Group (Optional)

Create an OSOPER group only if you want to identify a group of operating system users with a limited set of database administrative privileges (SYSOPER operator privileges). For most installations, it is sufficient to create only the OSDBA group. If you want to use an OSOPER group, then you must create it in the following circumstances:

  • If an OSOPER group does not exist, for example, if this is the first installation of Oracle Database software on the system

  • If an OSOPER group exists, but you want to give a different group of operating system users database operator privileges in a new Oracle installation

If you require a new OSOPER group, then create it as follows. In the following command, use the group name oper unless a group with that name already exists.

# /usr/sbin/groupadd oper

2.6.4 Creating an OSASM Group

Create an OSASM group only if you want SYSASM as a system privilege that enables the separation of the SYSDBA database administration privilege from the Automatic Storage Management storage administration privilege. If you want to use an OSASM group, then you must create it in the following circumstances:

  • If an OSASM group does not exist, for example, if this is the first installation of Oracle Database software on the system

  • If an OSASM group exists, but you want to give a different group of operating system users database operator privileges in a new Oracle installation

If you require a new OSOPER group, then create it as follows. In the following procedure, use the group name oper unless a group with that name already exists.

# /usr/sbin/groupadd asmadmin

2.6.5 Creating the Oracle Software Owner User

You must create an Oracle software owner user in the following circumstances:

  • If an Oracle software owner user does not exist, for example, if this is the first installation of Oracle software on the system

  • If an Oracle software owner user exists, but you want to use a different operating system user, with different group membership, to give database administrative privileges to those groups in a new Oracle Database installation

2.6.5.1 Determining Whether an Oracle Software Owner User Exists

To determine whether an Oracle software owner user named oracle exists, enter the following command:

# id oracle

If the oracle user exists, then the output from this command is similar to the following:

uid=440(oracle) gid=200(oinstall) groups=201(dba),202(oper)

If the user exists, then determine whether you want to use the existing user or create another oracle user. If you want to use the existing user, then ensure that the user's primary group is the Oracle Inventory group and that it is a member of the appropriate OSDBA and OSOPER groups. Refer to one of the following sections for more information:

Note:

If necessary, contact your system administrator before using or modifying an existing user.

2.6.5.2 Creating an Oracle Software Owner User

If the Oracle software owner user does not exist or if you require a new Oracle software owner user, then create it as follows. In the following procedure, use the user name oracle unless a user with that name already exists.

  1. To create the oracle user, enter a command similar to the following:

    # /usr/sbin/useradd -g oinstall -G dba[,oper] oracle
    

    In this command:

    • The -g option specifies the primary group, which must be the Oracle Inventory group, for example oinstall

    • The -G option specifies the secondary groups, which must include the OSDBA group and if required, the OSOPER group. For example, dba or oper

  2. Set the password of the oracle user:

    # passwd oracle
    

2.6.5.3 Modifying an Oracle Software Owner User

If the oracle user exists, but its primary group is not oinstall or it is not a member of the appropriate OSDBA or OSOPER groups, then enter a command similar to the following to modify it. Specify the primary group using the -g option and any required secondary group using the -G option:

# /usr/sbin/usermod -g oinstall -G dba[,oper] oracle

2.6.6 Creating an Unprivileged User

You must create a new unprivileged local user to own the extjob executable. You can use any user name for this user, but this document uses the name extjob. To create the extjob user, enter the following command:

# /usr/sbin/useradd extjob

2.7 Configure Kernel Parameters

Note:

The kernel parameter and shell limit values shown in the following section are minimum values only. For production database systems, Oracle recommends that you tune these values to optimize the performance of the system. See your operating system documentation for more information about tuning kernel parameters.

Verify that the kernel parameters shown in the following table are set either to the formula shown, or to values greater than or equal to the minimum value shown. The procedure following the table describes how to verify and set the values.

Parameter Minimum Value
ksi_alloc_max (nproc*8)
executable_stack 0
max_thread_proc 1024
maxdsiz 1073741824 (1 GB)
maxdsiz_64bit 2147483648 (2 GB)
maxssiz 134217728 (128 MB)
maxssiz_64bit 1073741824 (1 GB)
maxuprc ((nproc*9)/10)
msgmni (nproc)
msgtql (nproc)
ncsize ((8*nproc+3072))
nfile (15*nproc+2048)
nflocks (nproc)
ninode (8*nproc+2048)
nkthread (((nproc*7)/4)+16)
nproc 4096
semmni (nproc)
semmns (semmni*2)
semmnu (nproc-4)
semvmx 32767
shmmax The size of memory or 1073741824 (0X40000000), whichever is greater.

Note: To avoid performance degradation, the value should be greater than or equal to the size of the available memory.

shmmni 4096
shmseg 512
vps_ceiling 64

Note:

If the current value for any parameter is higher than the value listed in this table, then do not change the value of that parameter. The following kernel parameters are obsolete hp-ux 11.31. You need not specify values for these parameters:
  • msgmax

  • msgssz

  • msgmap

  • msgseg

To display the current value or formula specified for these kernel parameters, and to change them if necessary:

  1. Enter the following command to start the kcweb application:

    # /usr/sbin/kcweb -F
    
  2. Check the value or formula specified for each of these parameters and, if necessary, modify that value or formula.

    If necessary, refer to the kcweb online Help for more information about completing this step.

    Note:

    If you modify the value of a parameter that is not dynamic, then you must restart the system.

2.8 Identifying Required Software Directories

You must identify or create the following directories for the Oracle software:

2.8.1 Oracle Base Directory

The Oracle base directory is a top-level directory for Oracle software installations. On HP-UX systems, the Optimal Flexible Architecture (OFA) guidelines recommend that you use a path similar to the following for the Oracle base directory:

/mount_point/app/oracle_sw_owner

In this example:

  • mount_point is the mount point directory for the file system that will contain the Oracle software.

    The examples in this guide use /u01 for the mount point directory. However, you can choose another mount point directory, such as /oracle or /opt/oracle.

  • oracle_sw_owner is the operating system user name of the Oracle software owner, for example oracle.

You must specify the ORACLE_BASE folder that contains all Oracle products.

Note:

If you have an existing ORACLE_BASE, then you can select it from the Use existing list. By default, the list contains the existing value for ORACLE_BASE preselected. Refer to "Installing the Oracle Database Software" for further information.

If you do not have an ORACLE_BASE, then you can create one by editing the text in the list box.

You can use the same Oracle base directory for more than one installation or you can create separate Oracle base directories for different installations. If different operating system users install Oracle software on the same system, then each user must create a separate Oracle base directory. The following are the examples of Oracle base directories that can exist on the same system:

/u01/app/oracle
/u01/app/orauser
/opt/oracle/app/oracle

2.8.2 Oracle Inventory Directory

The Oracle Inventory directory (oraInventory) stores an inventory of all software installed on the system. It is required and shared by all Oracle software installations on a single system. If you have an existing Oracle Inventory path, then Oracle Universal Installer continues to use that Oracle Inventory.

The first time you install Oracle software on a system, Oracle Universal Installer checks if you have created an OFA-compliant directory structure with the format u[01-09]/app, such as /u01/app, and that the user running the installation has permissions to write to that path. If this is true, then Oracle Universal Installer creates the Oracle Inventory directory similar to /u[01-09]/app/oraInventory. For example:

/u01/app/oraInventory

If you have set the environment variable ORACLE_BASE for the oracle user, then Oracle Universal Installer creates the Oracle Inventory directory similar to $ORACLE_BASE/../oraInventory. For example, if ORACLE_BASE is set to /opt/oracle/11, then the Oracle Inventory directory is created similar to /opt/oracle/oraInventory.

If you have neither created an OFA-compliant path nor set ORACLE_BASE, then the Oracle Inventory directory is placed in the home directory of the user that is performing the installation. For example:

/home/oracle/oraInventory

Oracle Universal Installer creates the directory that you specify and sets the correct owner, group, and permissions for it. You do not need to create it.

Note:

  • All Oracle software installations rely on this directory. Ensure that you back it up regularly.

  • Do not delete this directory unless you have completely removed all Oracle software from the system.

2.8.3 Oracle Home Directory

The Oracle home directory is the directory where you choose to install the software for a particular Oracle product. You must install different Oracle products or different releases of the same Oracle product in separate Oracle home directories. When you run Oracle Universal Installer, it prompts you to specify the path to this directory and a name that identifies it. The directory that you specify must be a subdirectory of the Oracle base directory. Oracle recommends that you specify a path similar to the following for the Oracle home directory:

oracle_base/product/11.1.0/db_1

Oracle Universal Installer creates the directory path that you specify under the Oracle base directory. It also sets the correct owner, group, and permissions on it. You do not need to create this directory.

Note:

During installation, you must not specify an existing directory that has predefined permissions applied to it as the Oracle home directory. If you do, then you may experience installation failure due to file and group ownership permission errors.

2.9 Identifying or Creating an Oracle Base Directory

Before starting the installation, you must either identify an existing Oracle base directory or if required, create one. This section contains information about the following:

Note:

You can choose to create an Oracle base directory, even if other Oracle base directories exist on the system.

2.9.1 Identifying an Existing Oracle Base Directory

Existing Oracle base directories may not have paths that comply with OFA guidelines. However, if you identify an existing Oracle Inventory directory or existing Oracle home directories, then you can usually identify the Oracle base directories, as follows:

  • Identifying an existing Oracle Inventory directory. Refer to Creating the Oracle Inventory Group for more information.

  • Identifying existing Oracle home directories

    Enter the following command to display the contents of the oratab file:

    # more /etc/oratab
    

    If the oratab file exists, then it contains lines similar to the following:

    *:/u03/app/oracle/product/11.1.0/db_1:N
    *:/opt/orauser/infra_904:N
    *:/oracle/9.2.0:N
    

    The directory paths specified on each line identify Oracle home directories. Directory paths that end with the user name of the Oracle software owner that you want to use are valid choices for an Oracle base directory. If you intend to use the oracle user to install the software, then you can choose one of the following directories listed in the previous example:

    /u03/app/oracle
    /oracle
    

    Note:

    If possible, choose a directory path similar to the first one (/u03/app/oracle). This path complies with the OFA guidelines.

Before deciding to use an existing Oracle base directory for this installation, ensure that it satisfies the following conditions:

  • It should not be on the same file system as the operating system.

  • To determine the free disk space on the file system where the Oracle base directory is located, enter the following command:

    # bdf oracle_base_path
    

To continue:

  • If an Oracle base directory exists and you want to use it, then refer to the "Choosing a Storage Option for Oracle Database and Recovery Files" section.

    When you configure the oracle user's environment later in this chapter, set the ORACLE_BASE environment variable to specify the directory you chose.

  • If an Oracle base directory does not exist on the system or if you want to create an Oracle base directory, then refer to the following section.

2.9.2 Creating an Oracle Base Directory

Before you create an Oracle base directory, you must identify an appropriate file system with disk space.

To identify an appropriate file system:

  1. Use the bdfcommand to determine the free disk space on each mounted file system.

  2. From the display, identify a file system that has appropriate free space.

    The file system that you identify can be a local file system, a cluster file system, or an NFS file system on a certified NAS device.

  3. Note the name of the mount point directory for the file system that you identified.

To create the Oracle base directory and specify the correct owner, group, and permissions for it:

  1. Enter commands similar to the following to create the recommended subdirectories in the mount point directory that you identified and set the appropriate owner, group, and permissions on them:

    # mkdir -p /mount_point/app/oracle_sw_owner
    # chown -R oracle:oinstall /mount_point/app/oracle_sw_owner
    # chmod -R 775 /mount_point/app/oracle_sw_owner
    

    For example, if the mount point you identify is /u01 and oracle is the user name of the Oracle software owner, then the recommended Oracle base directory path is as follows:

    /u01/app/oracle
    
  2. When you configure the oracle user's environment later in this chapter, set the ORACLE_BASE environment variable to specify the Oracle base directory that you have created.

2.10 Choosing a Storage Option for Oracle Database and Recovery Files

The following table shows the storage options supported for storing Oracle Database files and Oracle Database recovery files. Oracle Database files include data files, control files, redo log files, the server parameter file, and the password file.

For all installations, you must choose the storage option that you want to use for Oracle Database files. If you want to enable automated backups during the installation, then you must also choose the storage option that you want to use for recovery files (the flash recovery area). You do not must use the same storage option for each file type.

Note:

Database files and Recovery files are supported on file systems and Automatic Storage Management.

Use the following guidelines when choosing the storage options that you want to use for each file type:

  • You can choose any combination of the supported storage options for each file type.

  • Oracle recommends that you choose Automatic Storage Management as the storage option for database and recovery files.

  • For more information about these storage options, refer to the "Database Storage Options" section.

For information about how to configure disk storage before you start the installation, refer to the following section:

To use a file system for database or recovery file storage, refer to the "Creating Directories for Oracle Database or Recovery Files" section.

2.11 Creating Directories for Oracle Database or Recovery Files

This section contains the following topics:

2.11.1 Guidelines for Placing Oracle Database Files on a File System

If you choose to place the Oracle Database files on a file system, then use the following guidelines when deciding where to place them:

  • The default path suggested by Oracle Universal Installer for the database file directory is a subdirectory of the Oracle base directory.

  • You can choose either a single file system or more than one file system to store the database files:

    • If you want to use a single file system, then choose a file system on a physical device that is dedicated to the database.

      For best performance and reliability, choose a RAID device or a logical volume on more than one physical device and implement the stripe-and-mirror-everything (SAME) methodology.

    • If you want to use more than one file system, then choose file systems on separate physical devices that are dedicated to the database.

      This method enables you to distribute physical input-output operations and create separate control files on different devices for increased reliability. It also enables you to fully implement the OFA guidelines described in Appendix D, "Optimal Flexible Architecture". You must choose either the Advanced database creation option or the Custom installation type during the installation to implement this method.

  • If you intend to create a preconfigured database during the installation, then the file system (or file systems) that you choose must have at least 1.2 GB of free disk space.

    For production databases, you must estimate the disk space requirement depending on the use that you want to make of the database.

  • For optimum performance, the file systems that you choose should be on physical devices that are used only by the database.

  • The oracle user must have write permissions to create the files in the path that you specify.

2.11.2 Creating Required Directories

Note:

You must perform this procedure only if you want to place the Oracle Database or recovery files on a separate file system to the Oracle base directory.

To create directories for the Oracle database, or recovery files on separate file systems to the Oracle base directory:

  1. Use the bdf command to determine the free disk space on each mounted file system.

  2. From the display, identify the file systems that you want to use:

    File Type File System Requirements
    Database files Choose either:
    • A single file system with at least 1.2 GB of free disk space

    • Two or more file systems with at least 1.2 GB of free disk space in total

    Recovery files Choose a file system with at least 2.4 GB of free disk space.

    If you are using the same file system for more than one type of file, then add the disk space requirements for each type to determine the total disk space requirement.

  3. Note the names of the mount point directories for the file systems that you identified.

  4. Enter commands similar to the following to create the recommended subdirectories in each of the mount point directories and set the appropriate owner, group, and permissions on them:

    • Database file directory:

      # mkdir /mount_point/oradata
      # chown oracle:oinstall /mount_point/oradata
      # chmod 775 /mount_point/oradata
      

      The default location for Database file directory is $ORACLE_BASE/oradata.

    • Recovery file directory (flash recovery area):

      # mkdir /mount_point/flash_recovery_area
      # chown oracle:oinstall /mount_point/flash_recovery_area
      # chmod 775 /mount_point/flash_recovery_area
      

    The default flash recovery area is $ORACLE_BASE/flash_recovery_area. However, Oracle recommends that you keep the flash recovery area on a separate physical disk than that of the database file directory. This will enable you use the flash recovery area to retrieve data if the disk containing oradata is unusable due to any reasons.

  5. If you also want to use Automatic Storage Management for storage, then refer to one of the following sections:

    "Stopping Existing Oracle Processes" section.

2.12 Preparing Disk Groups for an Automatic Storage Management Installation

This section describes how to configure disks for use with Automatic Storage Management. Before you configure the disks, you must determine the number of disks and the amount of free disk space that you require. The following sections describe how to identify the requirements and configure the disks on each platform:

2.12.1 General Steps for Configuring Automatic Storage Management

The following are the general steps to configure Automatic Storage Management:

  1. Identify the storage requirements of the site.

  2. Optionally, use an existing Automatic Storage Management disk group.

  3. If you are creating an Automatic Storage Management disk group, create partitions for DAS or SAN disks.

  4. Use one of the following methods to complete the Automatic Storage Management configuration:

    • If you plan to install Oracle Database using interactive mode, Oracle Universal Installer prompts you for the Automatic Storage Management disk configuration information during the installation.

    • If you plan to install Oracle Database using noninteractive mode, you should manually configure the disks before performing the installation.

2.12.2 Step 1: Identifying Storage Requirements for Automatic Storage Management

To identify the storage requirements for using Automatic Storage Management, you must determine the number of devices and the amount of free disk space that you require. To complete this task:

  1. Determine whether you want to use Automatic Storage Management for Oracle Database files, recovery files, or both.

    Note:

    You do not must use the same storage mechanism for data files and recovery files. You can use the file system for one file type and Automatic Storage Management for the other. If you plan to use Automatic Storage Management for both data files and recovery files, then you should create separate Automatic Storage Management disk groups for the data files and the recovery files.

    If you plan to enable automated backups during the installation, then you can choose Automatic Storage Management as the storage mechanism for recovery files by specifying an Automatic Storage Management disk group for the flash recovery area. Depending on how you choose to create a database during the installation, you have the following options:

    • If you select an installation method that runs Oracle Database Configuration Assistant in an interactive mode, by choosing the Advanced database configuration option for example, then you can decide whether you want to use the same Automatic Storage Management disk group for database files and recovery files, or you can choose to use different disk groups for each file type. Ideally, you should create separate Automatic Storage Management disk groups for data files and for recovery files.

      The same choice is available to you if you use Oracle Database Configuration Assistant after the installation to create a database.

    • If you select an installation type that runs Oracle Database Configuration Assistant in noninteractive mode, then you must use the same Automatic Storage Management disk group for data files and recovery files.

  2. Choose the Automatic Storage Management redundancy level that you want to use for each Automatic Storage Management disk group that you create.

    The redundancy level that you choose for the Automatic Storage Management disk group determines how Automatic Storage Management mirrors files in the disk group and determines the number of disks and amount of disk space that you require, as follows:

    • External redundancy

      An external redundancy disk group requires a minimum of one disk device. The effective disk space in an external redundancy disk group is the sum of the disk space in all of its devices.

      If you select this option, Automatic Storage Management does not mirror the contents of the disk group. Choose this redundancy level under any one of the following conditions:

      • When the disk group contains devices, such as RAID devices, that provide their own data protection

      • The use of the database does not require uninterrupted access to data, for example, in a development environment where you have a suitable backup strategy

    • Normal redundancy

      In a normal redundancy disk group, by default Automatic Storage Management uses two-way mirroring for datafiles and three-way mirroring for control files, to increase performance and reliability. Alternatively, you can use two-way mirroring or no mirroring. A normal redundancy disk group requires a minimum of two failure groups (or two disk devices) if you are using two-way mirroring. The effective disk space in a normal redundancy disk group is half the sum of the disk space in all of its devices.

      For most installations, Oracle recommends that you use normal redundancy disk groups.

    • High redundancy

      The contents of the disk group are three-way mirrored by default. To create a disk group with high redundancy, you must specify at least 3 failure groups (a minimum of 3 devices).

      Although high-redundancy disk groups provide a high level of data protection, you must consider the higher cost of additional storage devices before deciding to use this redundancy level.

  3. Determine the total amount of disk space that you require for the database files and recovery files.

    Use the following table to determine the minimum number of disks and the minimum disk space requirements for the installation:

    Redundancy Level Minimum Number of Disks Data Files Recovery Files Both File Types
    External 1 1.15 GB 2.3 GB 3.45 GB
    Normal 2 2.3 GB 4.6 GB 6.9 GB
    High 3 3.45 GB 6.9 GB 10.35 GB

    If an Automatic Storage Management instance is already running on the system, then you can use an existing disk group to meet these storage requirements. If necessary, you can add disks to an existing disk group during the installation.

    The following step describes how to identify existing disk groups and determine the free disk space that they contain.

  4. Optionally, identify failure groups for the Automatic Storage Management disk group devices.

    Note:

    You must perform this step only when you intend to use an installation method that runs Oracle Database Configuration Assistant in an interactive mode. For example, if you intend to choose the Custom installation type or the Advanced database configuration option. Other installation types do not enable you to specify failure groups.

    If you intend to use a normal or high redundancy disk group, then you can further protect the database against hardware failure by associating a set of disk devices in a custom failure group. By default, each device comprises its failure group. However, if two disk devices in a normal redundancy disk group are attached to the same SCSI controller, then the disk group becomes unavailable if the controller fails. The controller in this example is a single point of failure.

    To avoid failures of this type, you can use two SCSI controllers, each with two disks, and define a failure group for the disks attached to each controller. This configuration would enable the disk group to tolerate the failure of one SCSI controller.

    Note:

    If you define custom failure groups, then you must specify a minimum of two failure groups for normal redundancy disk groups and three failure groups for high redundancy disk groups.
  5. If you are sure that a suitable disk group does not exist on the system, then install or identify appropriate disk devices to add to a new disk group. Apply the following guidelines when identifying appropriate disk devices:

    • All the devices in an Automatic Storage Management disk group should be the same size and have the same performance characteristics.

    • Do not specify more than one partition on a single physical disk as a disk group device. Automatic Storage Management expects each disk group device to be on a separate physical disk.

    • Although you can specify a logical volume as a device in an Automatic Storage Management disk group, Oracle does not recommend its use. Logical volume managers can hide the physical disk architecture. This would prevent Automatic Storage Management from optimizing I/O across the physical devices.

    See Also:

    "Step 4: Configuring Disks for Automatic Storage Management" for information about completing this task

2.12.3 Step 2: Using an Existing Automatic Storage Management Disk Group

Note:

This is an optional step.

If you want to store either database or recovery files in an existing Automatic Storage Management disk group, then you have the following choices, depending on the installation method that you select:

  • If you select an installation method that runs Oracle Database Configuration Assistant in interactive mode (for example, choosing the Advanced database configuration option), then you can decide whether you want to create a disk group or use an existing one.

    The same choice is available to you if you use Oracle Database Configuration Assistant after the installation to create a database.

  • If you select an installation method that runs Oracle Database Configuration Assistant in noninteractive mode, then you must choose an existing disk group for the new database; you cannot create a disk group. However, you can add disk devices to an existing disk group if it has insufficient free space for your requirements.

Note:

The Automatic Storage Management instance that manages the existing disk group can be running in a different Oracle home directory.

To determine whether an existing Automatic Storage Management disk group exists, or to determine whether there is sufficient disk space in a disk group, you can use Oracle Enterprise Manager Grid Control or Database Control. Alternatively, you can use the following procedure:

  1. View the contents of the oratab file to determine whether an Automatic Storage Management instance is configured on the system:

    # more /etc/oratab
    

    If an Automatic Storage Management instance is configured on the system, then the oratab file should contain a line similar to the following:

    +ASM:oracle_home_path:N
    

    In this example, +ASM is the system identifier (SID) of the Automatic Storage Management instance and oracle_home_path is the Oracle home directory where it is installed. By convention, the SID for an Automatic Storage Management instance begins with a plus sign.

  2. Open a shell window and temporarily set the ORACLE_SID and ORACLE_HOME environment variables to specify the appropriate values for the Automatic Storage Management instance that you want to use.

    For example, if the Automatic Storage Management SID is named OraDB11g+ASM and is located in the asm subdirectory of the ORACLE_BASE directory, then enter the following commands to create the required settings:

    • Bourne, Bash, or Korn shell:

      $ ORACLE_SID=OraDB11g+ASM
      $ export ORACLE_SID
      $ ORACLE_HOME=/u01/app/oracle/product/11.1.0/asm
      $ export ORACLE_HOME
      
    • C shell:

      % setenv ORACLE_SID OraDB11g+ASM
      % setenv ORACLE_HOME /u01/app/oracle/product/11.1.0/asm
      
  3. By using SQL*Plus, connect to the ASM instance as the SYS user with SYSDBA privilege and start the instance if necessary:

    # $ORACLE_HOME/bin/sqlplus "SYS/SYS_password as SYSDBA"
    SQL> STARTUP
    
  4. Enter the following command to display the existing disk groups, their redundancy level, and the amount of free disk space in each one:

    SQL> SELECT NAME,TYPE,TOTAL_MB,FREE_MB FROM V$ASM_DISKGROUP;
    
  5. From the output, identify a disk group with the appropriate redundancy level and note the free space that it contains.

  6. If necessary, install or identify the additional disk devices required to meet the storage requirements listed in the previous section.

    Note:

    If you are adding devices to an existing disk group, then Oracle recommends that you use devices that have the same size and performance characteristics as the existing devices in that disk group.

2.12.4 Step 3: Creating DAS or SAN Disk Partitions for Automatic Storage Management

In order to use a DAS or SAN disk in Automatic Storage Management, the disk must have a partition table. Oracle recommends creating exactly one partition for each disk containing the entire disk.

Note:

You can use any physical disk for Automatic Storage Management, as long as it is partitioned.

2.12.5 Step 4: Configuring Disks for Automatic Storage Management

To configure disks for use with Automatic Storage Management:

  1. If necessary, install the disks that you intend to use for the Automatic Storage Management disk group.

  2. To ensure that the disks are available, enter the following command:

    # /usr/sbin/ioscan -fun -C disk
    

    The output from this command is similar to the following:

    Class  I  H/W Path    Driver S/W State   H/W Type     Description
    ==========================================================================
    disk    0  0/0/1/0.6.0 sdisk  CLAIMED     DEVICE       HP   DVD 6x/32x
                           /dev/dsk/c0t6d0   /dev/rdsk/c0t6d0
    disk    1  0/0/1/1.2.0 sdisk  CLAIMED     DEVICE      SEAGATE ST39103LC
                           /dev/dsk/c1t2d0   /dev/rdsk/c1t2d0
    

    This command displays information about each disk attached to the system, including the block device name (/dev/dsk/cxtydz).

    Note:

    On HP-UX 11i v.3, you can also use agile view to review mass storage devices, including block devices (/dev/disk/diskxyz), or character raw devices (/dev/rdisk/diskxyz). For example:
    #>ioscan -funN -C disk
    Class I    H/W Path       Driver  S/W State H/W Type   Desc
    ===================================================================
    disk  4  64000/0xfa00/0x1 esdisk  CLAIMED    DEVICE  HP73.4GST373454LC   
               /dev/disk/disk4    /dev/rdisk/disk4
    disk 907 64000/0xfa00/0x2f esdisk  CLAIMED   DEVICE  COMPAQ MSA1000 VOLUME
               /dev/disk/disk907  /dev/rdisk/disk907
    
  3. If the ioscan command does not display device name information for a device that you want to use, then enter the following command to install the special device files for any new devices:

    # /usr/sbin/insf -e
    
  4. For each disk that you want to add to a disk group, enter the following command to verify that it is not already part of an LVM volume group:

    # /sbin/pvdisplay /dev/dsk/cxtydz
    

    If this command displays volume group information, then the disk is already part of a volume group. The disks that you choose must not be part of an LVM volume group.

    Note:

    If you are using different volume management software, for example VERITAS Volume Manager, then refer to the appropriate documentation for information about verifying that a disk is not in use.
  5. Enter commands similar to the following to change the owner, group, and permissions on the character file for each disk that you want to add to a disk group:

    # chown oracle:dba /dev/rdsk/cxtydz
    # chmod 660 /dev/rdsk/cxtydz
    

    Note:

    For DSF (agile view) paths, enter commands using paths similar to the following:
    # chmod 660 /dev/rdisk/diskxyz
    

    Note:

    If you are using a multi-pathing disk driver with Automatic Storage Management, then ensure that you set the permissions only on the correct logical device name for the disk.

2.13 Stopping Existing Oracle Processes

Caution:

If you are installing additional Oracle Database 11g products in an existing Oracle home, then stop all processes running in the Oracle home. You must complete this task to enable Oracle Universal Installer to relink certain executables and libraries.

If you choose to create a database during the installation, then most installation types configure and start a default Oracle Net listener using TCP/IP port 1521 and the IPC key value EXTPROC. However, if an existing Oracle Net listener process is using the same port or key value, Oracle Universal Installer can only configure the new listener; it cannot start it. To ensure that the new listener process starts during the installation, you must shut down any existing listeners before starting Oracle Universal Installer.

To determine whether an existing listener process is running and to shut it down, if necessary:

  1. Switch user to oracle:

    # su - oracle
    
  2. Enter the following command to determine whether a listener process is running and to identify its name and the Oracle home directory in which it is installed:

    $ ps -ef | grep tnslsnr
    

    This command displays information about the Oracle Net listeners running on the system:

    ... oracle_home1/bin/tnslsnr LISTENER -inherit
    

    In this example, oracle_home1 is the Oracle home directory where the listener is installed and LISTENER is the listener name.

    Note:

    If no Oracle Net listeners run, then refer to the "Configuring the oracle User's Environment" section to continue.
  3. Set the ORACLE_HOME environment variable to specify the appropriate Oracle home directory for the listener:

    • Bourne, Bash, or Korn shell:

      $ ORACLE_HOME=oracle_home1
      $ export ORACLE_HOME
      
    • C or tcsh shell:

      % setenv ORACLE_HOME oracle_home1
      
  4. Enter the following command to identify the TCP/IP port number and IPC key value that the listener is using:

    $ $ORACLE_HOME/bin/lsnrctl status listenername
    

    Note:

    If the listener uses the default name LISTENER, then you do not must specify the listener name in this command.
  5. Enter a command similar to the following to stop the listener process:

    $ $ORACLE_HOME/bin/lsnrctl stop listenername
    
  6. Repeat this procedure to stop all listeners running on this system.

2.14 Configuring the oracle User's Environment

You run Oracle Universal Installer from the oracle account. However, before you start Oracle Universal Installer you must configure the environment of the oracle user. To configure the environment, you must:

  • Set the default file mode creation mask (umask) to 022 in the shell startup file.

  • Set the DISPLAY environment variable.

Caution:

Use shell programs supported by your operating system vendor. If you use a shell program that is not supported by your operating system, then you can encounter errors during installation.

To set the oracle user's environment:

  1. Start a new terminal session, for example, an X terminal (xterm).

  2. Enter the following command to ensure that X Window applications can display on this system:

    $ xhost fully_qualified_remote_host_name
    

    For example:

    $ xhost somehost.us.example.com
    
  3. If you are not already logged in to the system where you want to install the software, then log in to that system as the oracle user.

  4. If you are not logged in as the oracle user, then switch user to oracle:

    $ su - oracle
    
  5. To determine the default shell for the oracle user, enter the following command:

    $ echo $SHELL
    
  6. Open the oracle user's shell startup file in any text editor:

    • C shell (csh or tcsh):

      % vi .login
      
  7. Enter or edit the following line, specifying a value of 022 for the default file mode creation mask:

    umask 022
    
  8. If the ORACLE_SID, ORACLE_HOME, or ORACLE_BASE environment variable is set in the file, then remove the appropriate lines from the file.

  9. Save the file, and exit from the editor.

  10. To run the shell startup script, enter one of the following commands:

    • Bash shell:

      $ . ./.bash_profile
      
    • Bourne or Korn shell:

      $ . ./.profile
      
    • C shell:

      % source ./.login
      
  11. If you are not installing the software on the local computer, then run the following command on the remote computer to set the DISPLAY variable:

    • Bourne, Bash or Korn shell:

      $ export DISPLAY=local_host:0.0      
      
    • C shell:

      % setenv DISPLAY local_host:0.0
      

    In this example, local_host is the host name or IP address of the local computer that you want to use to display Oracle Universal Installer.

    Run the following command on the remote computer to check if the shell and the DISPLAY environmental variable are set correctly:

    echo $SHELL
    echo $DISPLAY
    

    Now to enable X applications, run the following commands on the local computer:

    $ xhost + fully_qualified_remote_host_name
    

    To verify that X applications display is set properly, run a X11 based program that comes with the operating system such as xclock:

    $ xclock_path
    

    In this example, xclock_path is the directory path. For example, you can find xclock at /usr/X11R6/bin/xclocks. If the DISPLAY variable is set properly, then you can see xclock on your computer screen.

    See Also:

    PC-X Server or Operating System vendor documents for further assistance.
  12. If you determined that the /tmp directory has less than 400 MB of free disk space, then identify a file system with at least 400 MB of free space and set the TMP and TMPDIR environment variables to specify a temporary directory on this file system:

    1. Use the bdf command to identify a suitable file system with sufficient free space.

    2. If you are not logged in as the root user, then enter the following command to switch user to root:

      $ su -
      password:
      #
      

      If necessary, enter commands similar to the following to create a temporary directory on the file system that you identified, and set the appropriate permissions on the directory:

      # mkdir /mount_point/tmp
      # chmod a+wr /mount_point/tmp
      # exit
      
    3. Enter commands similar to the following to set the TMP and TMPDIR environment variables:

      • Bourne, Bash, or Korn shell:

        $ TMP=/mount_point/tmp
        $ TMPDIR=/mount_point/tmp
        $ export TMP TMPDIR
        
      • C shell:

        % setenv TMP /mount_point/tmp
        % setenv TMPDIR /mount_point/tmp
        
  13. Enter commands similar to the following to set the ORACLE_BASE environment variables:

    • Bourne, Bash, or Korn shell:

      $ ORACLE_BASE=/u01/app/oracle
      $ ORACLE_SID=sales
      
    • C shell:

      % setenv ORACLE_BASE /u01/app/oracle
      

    In these examples, /u01/app/oracle is the Oracle base directory that you created or identified earlier and sales is the name that you want to call the database (typically no more than five characters).

  14. Enter the following commands to ensure that the ORACLE_HOME and TNS_ADMIN environment variables are not set:

    • Bourne, Bash, or Korn shell:

      $ unset ORACLE_HOME
      $ unset TNS_ADMIN
      
    • C shell:

      % unsetenv ORACLE_HOME
      % unsetenv TNS_ADMIN
      

    Note:

    If the ORACLE_HOME environment variable is set, then Oracle Universal Installer uses the value that it specifies as the default path for the Oracle home directory. However, if you set the ORACLE_BASE environment variable, then Oracle recommends that you unset the ORACLE_HOME environment variable and choose the default path suggested by Oracle Universal Installer.
  15. To verify that the environment has been set correctly, enter the following commands:

    $ umask
    $ env | more
    

    Verify that the umask command displays a value of 22, 022, or 0022 and the environment variables that you set in this section have the correct values.