ORACLE

Oracle® Database
Advanced Application Developer's Guide

11gRelease 1 (11.1)
B28424-03

August 2008

Oracle Database Advanced Application Developer's Guide, 11g Release 1 (11.1)
B28424-03

Copyright © 1996, 2008, Oracle. All rights reserved.

Primary Author: Sheila Moore

Contributing Authors: D. Adams, L. Ashdown, M. Cowan, J. Melnick, R. Moran, E. Paapanen, J. Russell, R.
Strohm, R. Ward

Contributors: D. Alpern, G. Arora, C. Barclay, D. Bronnikov, T. Chang, L. Chen, B. Cheng, M. Davidson, R.
Day, R. Decker, G. Doherty, D. Elson, A. Ganesh, M. Hartstein, Y. Hu,]. Huang, C. Iyer, N. Jain, R. Jenkins
Jr., S. Kotsovolos, V. Krishnaswamy, S. Kumar, C. Lei, B. Llewellyn, D. Lorentz, V. Moore, K.
Muthukkaruppan, V. Moore,]. Muller, R. Murthy, R. Pang, B. Sinha, S. Vemuri, W. Wang, D. Wong, A.
Yalamanchi, Q. Yu

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUROIACE ... ettt enaeen XXVii
AN S Lo 1= VLT RRRORRRRRRRRRN XXVii
Documentation AcCeSSIDILItYccciiiiiiiiiiiiiiiii s XXVii
Related DOCUITIEIESoovieiviiieeeeeeeeeeete ettt ettt ettt e et e esaeeteeeseeenseesaeeesseesesenseessessesenseesseeanns XXViii
(@03 4 T£=3 015 (o) 0 =IO PR ORRRRRRRRPNY XXViii

What's New in Application Development? ... XXXi
Oracle Database 11g Release 1 (11.1) New Featurescccoooriiiiiiiiiiiiiiinciccec XXXi

1 Introduction to Oracle Programmatic Environments

Overview of Oracle Application Developmentccccccoiiiiiiiiini 1-1
CHENE/SEIVET IMOAEL ...ttt e e et e e et e e s st e e s saseeseaateesaeesssseesaseeesnseesanns 1-1
Server-Side COAINGccociuiuiiiiiiiiiieieiece et 1-2
Two-Tier and Three-Tier MOEIS........coiiiiiriiieieieeeeeee ettt sttt 1-2
USET INEEITACE ... ittt ettt ettt et et et e e teeae e beeaeebeesaebeenbesseeaseseessenseessenseeneas 1-2
Stateful and Stateless User INtErfaces.........coeiveireirieinieieieieeeeeeeee ettt 1-2

OVErview Of PL/SQL ..ottt ettt e e sttt s b e s be st et et e st ententeneeseebeebessesaens 1-3
WRhAt IS PL/SQLY ..ttt ettt ettt st s et et beseeseseeseseesesaesassesassesassesessesassasansns 1-3
Advantages of PL/SQL......cccccoviiiiiiiiiiiiccc s 1-4

Integration with Oracle Database...........ccoooriiiiiiiiiiii e 1-4
High Performance ..o 1-4
High Productivitycoueviici e 1-5
SCALADIIEY ..ot e 1-5
Manageabilityccccceviririiiiiiiiiiiiii s 1-5
Object-Oriented Programming SUPPOIt.........cccceviiiiiiiiiiiiiiiiiiieeeseeas 1-5
ODJECt TYPES .ottt 1-5
COILECHIONS. ...ttt ettt ettt et et e et e e te et e ae e beeseeeseessesseessebeessesseessebeensaessensanseensas 1-5
POTtability ...c.veiecieieieeceie e 1-6
SECUTILY vttt 1-6
PaCKAGES ... 1-6
PL/SQL Web Development TOOIS.........cccccoviiiiiiniiiiiiiic e 1-6

Overview of Java Support Built into the Databasecccccocoiiiiiii, 1-7
OVErvIEW Of Oracle JVMooioiiiiiieieieietetet ettt sttt ettt et sse st et e b e sae e enseseeseeseesessessens 1-7
Overview of Oracle Extensions t0 JDBCcccoovoiriireniririeiieienieeieiesieeee st esenes 1-8

JDBEC Tl DIIVET ..ttt sttt sttt sttt sttt e eseseese e esensesessssansesansesansesanses 1-9

JDBC OCT DILVET ...ttt ettt sttt st sae st saese et sttt st saestsseseeseseenenessenees 1-9

JDBC Server-Side INternal DIVcoioerierieiieeieeeieeie sttt eeae 1-9

Oracle Database Extensions to JDBC Standardsccoccoeeeieerierenienieniecieieeeeese e 1-9

Sample JDBC 2.0 PrOZIamc.cooiiuiiiiiicieieecte it 1-10

Sample Pre-2.0 JDBC Program..........cooccueiiicieieiiiicieeesie e 1-10

JDBC in SQLJ APPLCAtiONS.....c.cucuimiuiiiiiciiicicieieieicicteieieieee et 1-11
Overview of Oracle SQLcooiiiieeeee ettt ettt b e aen 1-11
Benefits Of SQLJ ..ottt ettt sttt ettt ne b e 1-12
Comparing SQLJ to JDBCccoviiiiiiiiiiiiie s 1-13

SQLJ Stored Subprograms in the Server...........c.cooioiiiiieiiicec 1-13
Overview of Oracle JPUDIISNETco.iiiiiiieeeee ettt 1-14
Overview of Java Stored SUDPIOgrams.........c.ccceeuiuiuiirieieiiiniirireceree s 1-14
Overview of Oracle Database Web Services ... 1-14
Overview of Writing Subprograms in Java...........cccceieioiiiicecc e, 1-15
Overview of Writing Database Triggers in Javacccccocvceeeieeiicceiceecceeeeeeenees 1-16

Why Use Java for Stored Subprograms and Triggers?.........ccccooeireiiiiiiciiiicicicinne 1-16
OVerview Of Pro*C/CH+ ...t 1-16
Implementing a Pro*C/C++ APPLCation.......ccccoevvviiiiirnriiccrreceer s 1-16
Highlights of Pro*C/C++ Features.........cccocoviiiiiiiniiiiiiiiiccscnnes 1-17
Overview of Pro*COBOL ... 1-18
Implementing a Pro*COBOL Application..........cccccooivviiiiiiiiiiiiiiiiiiiccccee 1-19
Highlights of Pro*COBOL FEaturescccooieuiueiiiniieiieice s 1-20
Overview of OCI and OCCT ... 1-20
Advantages of OCI and OCClL.........ccccciiiiiiiiiiiiieeeeceeee et 1-21
OCT and OCCI FUNCHONScucuiviiiiiiiiiiiiieieieieeeeeee e 1-21
Procedural and Nonprocedural Elements of OCI and OCCI Applicationscccccouuc.... 1-22
Building an OCI or OCCI APPLCAtION......c.cccueueueiiiiiiieicicieeiccieieeeieeeee s 1-22
Overview of Oracle Data Provider for NET (ODP.NET)cccccecivininiiiiniiiiiicccne 1-23
Overview of OTaOLEDB ..o 1-24
Overview of Oracle Objects for OLE (OO40)...........cccocooiviiiiiininiiiiiiiiiiens 1-24
0040 AUtOMAION SEIVET ...ovvviiiiititietc s 1-25
OO040 ODbject MOdelcocviiiiiiiiiiiiiiciiiiire s 1-26
OraSeSsSI0N....c.ciiiiiiiiiiiii e 1-27
OTFASEIVET ... 1-27
OraDatabase........c.coovueueuiiiiiici et 1-27
OraDynasetcciiiiiiiiiiiici e 1-28
OraField ..o 1-28
OraMetaData and OraMDAttribute.........ccccociiiiiiiiiiiccces 1-28
OraParameter and OraParameters...........ccccoccucceieicciimieeeeeeeeeeeeeeeee e 1-28
OraParamATITaY ..ottt 1-29

(@ =110) 15w | TR SRR 1-29

OTAAQ o 1-29
OFaAQMSE ...ttt 1-29
OraAQAZENt ... s 1-29
Support for Oracle LOB and Object Data TYPesccccevvuvuvueerirereeiirriccerreeeeeeeeeeeeeeenes 1-30
OraBLOB and OraCLOBi..........ccccoiiiiiiiiiiice s 1-30

OTABFILE ...ttt ettt ettt st ettt ettt et s bt saesbesae 1-31

(@) =T (SN D1 7= W @fe) 415 o) NSRS 1-31

Oracle Objects for OLE C++ Class Librarycooceoiiioiiieccccece e 1-31
Additional Sources of INfOrMationccoviiuiiiiiiiiiinii e 1-31
Choosing a Programming Environment ..o 1-31
Choosing a Precompiler or OCI...........ccooiiiiiiiiic e 1-32
Choosing PL/SQL OF JAVAcueuiuiuiirieiiiiiicieieicceieeeeeieieeeeeeeee et 1-32

Partl SQL for Application Developers

2 SAQL Processing for Application Developers

Description of SQL Statement Processing ..o 2-1
Processing Other Types of SQL Statements................cccccoviiiiiiiiiniies 2-4
DDL Statement ProCeSSINGccceeueieviiiiiieiiieieieieieee s 2-4
Transaction Control PrOCESSINGc.cccceueuriiiiiiiiieiiieieiciieieieieeeeeereeeeteee s 2-4
Other Processing TYPeS........coeueueiiiiiieiiicicte e 2-4
Grouping Operations into Transactionscccoeiiiiiiiiiiii s 2-5
Deciding How to Group Operations in Transactions...........ccccoceueeuereueecimeieieiceieeeeeeeeeeenes 2-5
Improving Transaction Performanceccccoocieiiiiiciiicci e 2-5
Committing TranSactions.........c.cciuiiiiiiiiiiiicicicic s 2-6
Managing Commit Red0o ACHONc.ccouiiiiiiiiiiiiiiicccccee e 2-6
Rolling Back Transactions.........cccucueiieiicieiiiiici et 2-8
Defining Transaction Savepoints...........cccoiiueiiiiiiiiiiiice e 2-9
Ensuring Repeatable Reads with Read-Only Transactionsccccoccoeiviviiiiiniiiniiiiinnn, 2-9
USING CUTSOTS ..ottt 2-10
How Many Cursors Can a Session Have? ... 2-11
Using a Cursor to Reexecute a Statement.............ccoeviiiiniiiiiiiiiiccee 2-11
ClOSING @ CUISOT -....vuivviiiiicicte sttt 2-12
Canceling @ CULSOTc.oviieeieieicecie ettt bbb 2-12
Locking Tables EXPLiCitly ..o 2-12
Privileges ReQUITEdccovviiiiiiiiiiiiiiiiciicccc s 2-13
Choosing a Locking Strategy ..o 2-13
When to Lock with ROW SHARE MODE and ROW EXCLUSIVE MODE 2-14

When to Lock with SHARE MODE..........cccccoviiiiiiiiicncsseanns 2-14

When to Lock with SHARE ROW EXCLUSIVE MODEccccccciiiiiniiiiiiiiicne 2-16

When to Lock with EXCLUSIVE MODE.........ccoooiviiiiiiii s 2-16

Letting Oracle Database Control Table LocKing..........ccooeueiiiciiiiiiicicc, 2-16
Explicitly Acquiring ROW LOCKScccccooiiiiiiiiiiiiiiiiiics 2-17
Using Oracle Lock Management Services ... 2-18
When to Use USer LOCKScccoiiiiiiiiiiiiiciiit s 2-18
Viewing and Monitoring LOCKS ... 2-19
Using Serializable Transactions for Concurrency Control..............cccoovvviiiniiiiiinniinnnnnen, 2-19
How Serializable Transactions INteract ..o 2-20
Setting the Isolation Level of a Serializable Transaction.............ccccccceeivvviiinnnnnnnnne, 2-21
Referential Integrity and Serializable Transactionscccccoceeicieeiiccceereceenenenenens 2-22
READ COMMITTED and SERIALIZABLE IsOlationccceviiiiiniiiiiiieicicececeee 2-24
Transaction Set CONSISTENCYccveviiiiiiiiiiiiiic e 2-24

Comparison of READ COMMITTED and SERIALIZABLE Transactions.............c.c...... 2-25

Choosing an Isolation Level for Transactions.............cccocceieiirieniiicciiicceecce 2-25
Application Tips fOr TranSaCtioNScccccueueuiuiieiiiieieieeeeeee et nenes 2-26
Autonomous Transactions ..o 2-26
Examples of Autonomous Transactionscoeecueiiiiieieiicceecc s 2-28
Ordering @ PrOdUCEccciiiiiiiiicccccccceeeee e 2-29
Withdrawing Money from a Bank Account............ccoooiiiiiiiiic 2-29
Scenario 1: Sufficient FUNS ... 2-29

Scenario 2: Insufficient Funds with Overdraft Protectioncccccoovvviiviiinininen. 2-30

Scenario 3: Insufficient Funds Without Overdraft Protection............ccccceeeviviiennnnn. 2-31

Defining Autonomous Transactionsccccceueiirieiicicieiecce e 2-32
Resuming Execution After Storage Allocation Error ... 2-33
What Operations Can Be Resumed After an Error Condition?..........cccccovvviiiiniinnnnnnnnn, 2-33
Handling Suspended Storage AIOCAtioncococurueiiiiiieiiiiccie e 2-34

3 Using SQL Data Types in Database Applications

Overview of SQL Data TYPESccccoiuimiiiiiiiiiiiiiiii s 3-1
Representing Character Datacooiiiiiiiiiiii s 3-2
Overview of Character Data TYPescccooerueiiiiiiieiii e 3-2
Specifying Column Lengths as Bytes or Characterscccccooiiiiiiiie, 3-3
Choosing Between CHAR and VARCHAR2 Data TYPeScccceuvuvurururirererirrerrecerererereeescrereeenne 3-3
Using Character Literals in SQL Statements............cccccoviiieiiiniiiiiiec 3-4
Representing Numeric Data.............ccocoooiiiiiii 3-4
Overview of Numeric Data TYPes.......ccccvvvviirrriiirrrcrrre e 3-5
Floating-Point Number FOrmats ..o 3-6
Using a Floating-Point Binary Format...........cccoooiii 3-6
Representing Special Values with Native Floating-Point Formatscccccccovvvinneence. 3-8
Comparison Operators for Native Floating-Point Data Typescccocovvvvvnnnninnnininnen, 3-9
Arithmetic Operations with Native Floating-Point Data Typesccccoeeiviriiiiiiicicieinen, 3-9
Conversion Functions for Native Floating-Point Data TYpescccoceeurrvrrvvrvvenrneene 3-10
Client Interfaces for Native Floating-Point Data Typesccccccooriiriiiieiiiiniicccecec 3-11
OCI Native Floating-Point Data Types SQLT_BFLOAT and SQLT_BDOUBLE............ 3-11

Native Floating-Point Data Types Supported in Oracle Database OBJECT Types........ 3-11
Pro*C/C++ Support for Native Floating-Point Data Types..........ccoeovvviiiiiniiniininnnns 3-11
Representing Date and Time Data.............ccccocooiiiiiiiiiiiiiicceeeee e 3-11
Overview of Date and Time Data TYPEScccceceuruiuiiiiiieiriiiiiiceeceeeeeeee s 3-12
Displaying Current Date and Time ... 3-13
Changing the Default Date Formatcccccccooiiiiiiiiiiiiiccccs 3-13
Changing the Default Time FOrmat.........cccccccoeiiiiiiiiiiiiicceccecceeeeeeeeeeeeeeees 3-14
Arithmetic Operations with Date and Time Data Typesccccccoveeviiiiiiiiniccceen, 3-14
Converting Between Date and Time Types..........cccoeueuiivirniniiiiiciciecece e, 3-15
Importing and Exporting Date and Time TYPescccccccevrririiirrnniirrrrcrreeeeeeeeeenes 3-15
Representing Specialized Data..............cccocooiiiiiiiiiiiii 3-15
Representing Geographic Data ... 3-16
Representing Multimedia Data..........ccccocoeuiiiiiiiiiiiiccecee e 3-16
Representing Large Amounts of Data..........cccceeiiiiiiiiiiiiiics 3-16
Representing Searchable TeXt..........cccciiiiiiiiiiii s 3-17

vi

Representing XMLcooooiii et 3-18

Representing Dynamically Typed Data.........cccooiiiiiiiiiic 3-19
Representing Data with ANSI/ISO, DB2, and SQL/DS Data Types......ccccceevvvverrverererunenee 3-21
Representing Conditional Expressions as Dataccccooeiiiiiiiiiicce, 3-22
Identifying RoOws by AddrIess............ccooiiiiiiiiiiiiiiic e 3-24
Querying the ROWID PseudoCOIUMINc.c.ceuimiiiiiiiiiiiiiiiiccieieceeeeee s 3-25
Accessing the ROWID Data Type.......ccoooueiiiiiiiiicie 3-26
Restricted ROWID ..ot 3-26
Extended ROWID ...t 3-26
External Binary ROWID.........coooiiiiiiiiiic s 3-26
Accessing the UROWID Data Type.......coueiiirieiiiiicieiccc e 3-27
How Oracle Database Converts Data Typesccccoviiiiiiiiiniiiies 3-27
Data Type Conversion During Assignments.............ccoeeurueiiicieieiiicicicsce e 3-27
Data Type Conversion During Expression Evaluation ..., 3-28
Metadata for SQL Built-In FUNCHONSccooeiiiiiiiiece ettt eve e re e 3-29

4 Using Regular Expressions in Database Applications

Overview of Regular EXPressions............ccccoviiiiiiiiiiiiiies 4-1
What Are Regular EXPIessions?..........ccoiciiiiiiieiiiicicee st 4-1
How Are Regular Expressions Useful?..........ccc.ooiiiiii 4-2
Oracle Database Implementation of Regular EXpressions.........c.cccccccocveccuieeecicencccnennns 4-2
Oracle Database Support for the POSIX Regular Expression Standard..........c.cccooevviiiiinnen. 4-4

Metacharacters in Regular EXpressions ..o, 4-4
POSIX Metacharacters in Oracle Database Regular Expressions..........c.cccccocccccucucniciccncnnes 4-4
Multilingual Extensions to POSIX Regular Expression Standardccooeiriiiiincicinnnn, 4-7
PERL-Influenced Extensions to POSIX Regular Expression Standardcccccooreiininnnan. 4-8

Using Regular Expressions in SQL Statements: Scenarios...............cccooviiiniiiiiniinnnne, 4-10
Using a Constraint to Enforce a Phone Number Format ..o, 4-10
Using Back References to Reposition Characters ... 4-12

5 Using Indexes in Database Applications

Privileges Needed to Create INdexes............cccoiiiiiiiiiiiiiiiiiiinic e 5-1
Guidelines for Application-Specific INAeXescccooioiriiniiniinincec e 5-1
Which Come First, Data Or INA@XES?oooiiiiriiiiieieecieeee ettt ettt et eve et neeevaeeaneeeveen 5-2
Create a New Temporary Table Space Before Creating Indexesccooeveveiiriiiiiciieininnnes 5-3
Index the Correct Tables and COIUMNSc.cccciiiiiiiiiiiiiiiicccceceeee e 5-3
Limit the Number of Indexes for Each Table...........ccccccoviiiiiiniiiiciccce 5-4
Choose Column Order in Composite IndeXes............ccoeueiirriiiiiiininicce e, 5-4
Gather INAex StatiStiCSccoeueuiuiiiiiiiiiiiciice e 5-5
Drop Unused INAEXES..........coviiiiviiiiiiiiiiiiiiiiiicc s 5-5
Examples of Creating Basic Indexesccccccoiiiiiiiiiiiiiis 5-6
When to Use Domain INAeXesccooeiiiiiiiiiiiiii e 5-7
When to Use Function-Based Indexes...............ccccouiuiuiininiiiiiiniiiiiiiccccas 5-7
Advantages of Function-Based IndeXes..............coovriiiiiiiiiniiiiicccce e 5-8
Restrictions on Function-Based INAEXESc.cccccccuiuiuiiiiiiiiiiiiiiiirrccrcecre e 5-11
Examples of Function-Based IndeXes.............ccccoovviiiiiiiiiiiiiiii 5-12

vii

Function-Based Index for Case-Insensitive Searches............ccccooovvviiiininniinnnn 5-12
Precomputing Arithmetic Expressions with a Function-Based Index.............cccccccueu.. 5-12
Function-Based Index for Language-Dependent Sortingcccccccccueueueieicuenereenenunenes 5-12

6 Maintaining Data Integrity in Database Applications

viii

Overview of ConStraints ... 6-1
Enforcing Business Rules with Constraints...........ccccooiieiiiiiiiiii 6-2
Enforcing Business Rules with Application LOZiCccouoiruiiiiiiiiiiiiicc e, 6-2
Creating Indexes for Use with CONSLraintsccccoeveeeueiiiieiiiiiieeceeeeeeee e 6-2
When to Use NOT NULL CONStraintsccocoiiiiiiiiiiiiicicccceicsseeese e 6-3
When to Use Default Column Values ..o, 6-4
Setting Default Colummn ValUes..........cccccccuiiiiiiiiiiiiiiiiccceeceeereee e 6-4
Choosing a Primary Key for a Tableccoooiiiiiiii e 6-5
When to Use UNIQUE CONSITAINTSccveeveiiiiieiieieiietecteetesieetesteeaesieeaesreessesseesessesssesseessesseesnas 6-5
When to Use Constraints On VIEWS ..o 6-6

Enforcing Referential Integrity with Constraints..............cccoooiii, 6-6
FOREIGN KEY Constraints and NULL Values..........cccccccoviininiiiniiiiiiiiinns 6-8
Defining Relationships Between Parent and Child Tablescccccocovvnnnnnnnnnnnnrene. 6-9
Rules for Multiple FOREIGN KEY Constraintsc.cccocevvvininiiiiiiiiis 6-10
Deferring Constraint Checks............ooiiiiiiiiii 6-10

Minimizing Space and Time Overhead for Indexes Associated with Constraints................... 6-12

Guidelines for Indexing Foreign Keys............cccooiiiiiiiiiiccce 6-13

Referential Integrity in a Distributed Databaseccccocooeiiiiiiiiii 6-13

When to Use CHECK Constraints............cccocovviviieiiiiiiiccc s 6-13
Restrictions on CHECK Constraintscccceeviiiiiiiiiiiciccces 6-14
Designing CHECK CONStIaintS........ccococuiuiiiiiiiiiiiiieicicicicce s 6-14
Rules for Multiple CHECK COnstraints........c.cccccueueicieieiiiiiieiiceeeceeeceieeeeeeeeeeeeeeeeeeeeeeees 6-15
Choosing Between CHECK and NOT NULL Constraints...........cccccooeeieiiiiceiniicicieicnen, 6-15

Examples of Defining Constraints.............ccccoiiiiiiiiiiii e 6-15
Privileges Needed to Define Constraints............cccoeecueuieiiciieiicicceeeceeeeeeereeeeeneenenes 6-17
Naming CONStraintscooeeiiiiiiiiiiiii s 6-17

Enabling and Disabling CONStraints...............ccoooiiiiiiiiiiiiiiccceeeeeeee e 6-18
Why Disable CONSEIaints?.........ccoiiiiiiiiiiccceeiccceeccee e eeees 6-18
Creating Enabled Constraints (Default)........c.cccccoeeueuiieiiiicnieeeeeeeeeeeeeeeeeeeenenens 6-19
Creating Disabled CONStraints ... 6-20
Enabling Existing CONSTraintsccccciiiiiiiiiiiiccccccccee et nees 6-21
Disabling Existing CONStraints........c.ccoiiiiiiiiiiiiiiicccc s 6-21
Guidelines for Enabling and Disabling Key Constraintscccccceviiiiviinincnnnnnnne, 6-22
Fixing Constraint EXCEPHONS.........cccoiiiiiiiiiiiiii s 6-22

Modifying Constraints ..o 6-23
Renaming COoNSIaintsccovveuiiiiiiiiiiiiiici s 6-24

Dropping Constraints............ccocooviiiiiiiiii 6-25

Managing FOREIGN KEY Constraintscccccocoviiiiiiiiiiiiccces 6-26
Data Types and Names for Foreign Key COIUMNScccoovviiimiieiiicninicceecceeccee, 6-26
Limit on Columns in Composite Foreign Keyscccccccoeeiiiiiiiiiiiccccceeeeeeeeees 6-26
Foreign Key References Primary Key by Default..........c.ccoooooiiie, 6-27
Privileges Required to Create FOREIGN KEY Constraints...........ccccoovveiviveeiniiceeeieccnnnn, 6-27

Choosing How Foreign Keys Enforce Referential Integritycocoooviiiiiiiiicia, 6-27
Viewing Information About Constraintsccccoovvviiiiiiiiiniii 6-28

Partll PL/SQL for Application Developers

7 Coding PL/SQL Subprograms and Packages

OVerview Of PL/SQL UNIES......cooiiiiieieieiiete ettt sttt sttt sa et est et ese b besbeseens 7-1
ANONYMOUS BLOCKS ... 7-2
SEOred PL/SQL UNtS..cuiiiiiiciieciieeieeeeeeetee ettt ettt e e e eeveeeaeeteestaeeaeetaeeseeesaeeabeesssesnsseseenssesnseens 7-4

Naming SUDPIOZIAMSccuoiiiiiiiiicie e 7-5
Subprogram Parameterscccccuicueueiiiiiiieiieeeeeeeee e 7-5
Parameter MOdescccevviiiiiiiiiiiiiiiic s 7-6
Parameter Data Types......c.coocuiiiiiiiiiiiiii s 7-6
%TYPE and %ROWTYPE Attributes ..o 7-7
Tables and ReCOrdsS.........ccooviiiiiiiiiiiiiiiiiiiiicc s 7-8
Default Parameter Values............cccooiiiiiiiiiiiiiiiiiiinnas 7-8
Creating SUDPIOZIAINSc.c.cuiimimiiiiiiiiieieicieieieieieie ettt 7-9
Altering SUDPIOZIAMS.........cueviiiicieiiiici s 7-10
Dropping Subprograms and Packagesccooruioiiiiiiii 7-10
External SUbDPrograms..........cccccciiiiiiiiiiiiccce s 7-10
PL/SQL Function Result Cache.........ccueoviiiiiiiiieiicieeeeete ettt ettt e 7-11
PL/SQL PaCKAGEScoovviiiiiiiiiciiciii s 7-11
PL/SQL Object Size LIMItS......cccceueuiiiiiiiiiiiiiiciciciicicieciciereeceeeeeeeeee e 7-14
Creating Packages..........cooeueiiiiiiic s 7-14
Creating Packaged ODbjJects ..o 7-15
Privileges to Needed to Create or Drop Packages..........cccccocvvurvrnvvrnnnnnncnccnnes 7-15
Naming Packages and Package Objectscccoouiiiiiiiiiiiiiiccc 7-15
Package Invalidations and Session State............ccceeioiiiiiiiiiicicc 7-15
Packages Supplied with Oracle Databaseccccoeueuerrriiiirnriicrcecereeceees 7-16
Overview of Bulk BINAingccoviiiiiiiiiiii s 7-16
When to Use Bulk Bindsccccceieiniriiiininiiiiiincceccseeeseseeeeeeee e 7-16
DML Statements that Reference Collections...........ccccoevviiiiiiiieriiniiciccecnes 7-17
SELECT Statements that Reference ColleCtionscccoevviviiniviiiniiniiiiiinnen, 7-17
FOR Loops that Reference Collections and Return DMLccccooiiiiiiiininnnnn. 7-18
TTIZGOTS .ot 7-19

Compiling PL/SQL Subprograms for Native Execution.............c.cccocoviiiiiiiiiiiiiienn, 7-19

CUISOT VariabIesc.coooiiiiiiiiiiiiiice ettt 7-19
Declaring and Opening Cursor Variables ... 7-20
Examples of Cursor Variables ... 7-20

Handling PL/SQL Compile-Time EITOISccccocoviiiiiiiiiiiiiiiiiiiiiiiiicnscsses s 7-23

Handling Run-Time PL/SQL EITOTSccccccooiiiiiiiiiiiiiiiiciiic s 7-24
Declaring Exceptions and Exception Handling Routinesc.ccccoeviiininiinnninninnnnn, 7-25
Unhandled EXCEPHIONSc.couiuiiiiiiiiiiiiiiiciiiic s 7-26
Handling Errors in Distributed QUETIes.........c.cccceuiuiiiiiiiiiiiiicccccceeeeceeeeeees 7-26
Handling Errors in Remote SUbPrograms.............ccceeueiiiciiiiiicieecciec e 7-27

Debugging Stored SUDPIrograms.............ccccovuviiiiiiiiiniiiiiiiiiiiiii s 7-27

PL/SCOPE .. 7-28

PL/SQL Hierarchical Profiler.......c.cocuiioiioiieiieceeecee ettt ettt eve e e et ereennas 7-28
Oracle JDEVEIOPETc.ccuiuiuiiiiiiiciiicciccce ettt eees 7-28
DBMS_OUTPUT Package..........ccccvuiiiiiiiiiiiiiiiiiiiciiniiieeese s 7-28
Privileges for Debugging PL/SQL and Java Stored Subprogramsccccceeveiceieiicnnnnnn. 7-29
Writing Low-Level Debugging Code...........cooiiiiiiiiiiiiiiiiccccccceeicecenee e 7-30
DBMS_DEBUG_JDWP Package.........ccccevivimimiininiiiiiiiiiniiisis s 7-30
DBMS_DEBUG PaCKage.......ccvimimiiiiiiiiiiiiciiii st 7-30
Invoking Stored SUbPrograms ... 7-30
Privileges Required to Invoke a Subprogram...........c.ccouveeieiiiiiciiiicccc e, 7-31
Invoking a Subprogram Interactively from Oracle ToOOISsccooviiiiiiiiiiic, 7-31
Invoking a Subprogram from Another SUbProgram...........ccccceeecceiecceeececeeeeenenees 7-33
Invoking a Subprogram from a 3GL Applicationcceeiiiiiniiiiieiiiiccees 7-34
Invoking Remote Subprograms ... 7-35
Synonyms for Remote SUDPTOGIams.........c.cccccuiiiiiiiiiiiiiicecceeeee s 7-35
Committing Transactions..........coerueiiiiiiiie e 7-36
Invoking Stored PL/SQL Functions from SQL Statementsc.ccccocciniiiinniininnccne. 7-37
Why Invoke Stored PL/SQL Subprograms from SQL Statements?...........ccccccoeeveiiiecnnee 7-38
Where PL/SQL Functions Can Appear in SQL Statementscccooeviiiniininciniennen, 7-38
When PL/SQL Functions Can Appear in SQL EXPressions............cccccoeeuvirmieieiiiciceieccncnen. 7-38
Controlling Side Effects........cccooiiiiiiiiiiiicccceeeeee e 7-40
ReSHTICHONSttt s 7-41
Declaring @ FUNCHON.c.ooiuiiicice s 7-41
Parallel Query and Parallel DML ... 7-43
PRAGMA RESTRICT_REFERENCES for Backward Compatibilitycccoceevivrrnnennnn. 7-44

Using the Keyword TRUST ... 7-46

Differences between Static and Dynamic SQL Statements..........ccccceeucueuvvriecnnnnnne. 7-47
Overloading Packaged PL/SQL FUNCHONScoviuiieiiiiicieiic 7-47

Serially Reusable PL/SQL PaCKagesccccorueieiiurieieiicicieieccie s 7-48
Package STAtes........c.ccuiuiiiiiiiiecee s 7-48

Why Serially Reusable Packages?............coooeviiiiiioiiiiiiicc s 7-49

Syntax of Serially Reusable PaCkagesccccoeeuiiiiiiiiiiciciiiiceiecc s 7-49
Semantics of Serially Reusable Packages.........ccccccovuvuriiiririviniiiiiriniiccrcccrceeeeeeeeaes 7-49
Examples of Serially Reusable Packagesc.cccccouueiririniiiiiiieiieieece e 7-50
Returning Large Amounts of Data from a Function................c.ccooiii, 7-54
Coding Your Own Aggregate FUNctions..............cccooiiiiniiiiic, 7-54

8 Using PL/Scope

Specifying Identifier Collection..............cccccocooiiiiiiiiniiiii s 8-1
PL/Scope Identifier Data for STANDARD and DBMS_STANDARDcccccocevinvvinnenncneennen. 8-2
How Much Space is PL/Scope Data Using?ccccoovviviinniininninnnnnnns s 8-4
Viewing PL/Scope Data............ccooiiiiiiiiiiiiiic 8-5
Static Data Dictionary VIEWS........coocuiiiiiiiiiici e 8-5
UnIQUE KEYS....viiiiiiiicicic s 8-5
COMEEXE ..ottt 8-5
SIGNALULE ..ot 8-7

DIEIMNO TOOL ...ttt 8-7

SOL DEVEIOPET......cviiiiiiiiiiiiciiiiicc s 8-8

Identifier Types that PL/Scope Collects.............cccccoiuiiiiiiiiiiiiiiiiiis 8-8
Usages that PL/Scope Reports...........ccocoiiiiiiiiiiiiiiii e 8-9
Sample PL/ScoPe SESSIONcccciiiiiiiiiiiiiiiiiii s 8-10

9 Using the PL/SQL Hierarchical Profiler

Overview of PL/SQL Hierarchical Profilercccccoooiiieiiieieiiieieie et 9-1
Collecting Profile Data............ccccoooiiiiiiiiiii s 9-2
Understanding Raw Profiler QOutput.............cccocooiviiiiiniiiis 9-4
Namespaces of Tracked SUDPIOZIamS.........ccccceveveviiiiiiiiiiiiiiiiii e 9-6
Special FuNction NamMEScocuiiiiiiieiece s 9-7
Analyzing Profile Data...........cccooiiiiiiiiii e 9-7
Creating Hierarchical Profiler Tables...........c.cccooruiiiiiiiiii 9-7
Understanding Hierarchical Profiler Tables ..o 9-8
Hierarchical Profiler Database Table COIUMNSccccoovuiviiiininiiiies 9-9
Distinguishing Between Overloaded Subprograms............ccooeoiiiiiiiiiice, 9-11
Hierarchical Profiler Tables for Sample PL/SQL Procedure...........ccccooovoiriiiiiiinicieines 9-11
Examples of Calls to DBMS_HPROF.analyze with Optionsccccccccevueueiiicrvinncnnnnnes 9-12
PISKPTOf UHIIIEY ... 9-14
PIShPIOf OPHIONS ..o 9-14
HTML Report from a Single Raw Profiler Output Filecccccoovvviinnniiiccenee 9-14
First Page of RePOItooouiiiiiiiic s 9-15
Function-Level RePOItScooiiiiiiiiiici s 9-16
Module-Level REPOILS......c.c.ciiuiiuiiiiiieiiiiiciceieieieieeete et neaees 9-16
Namespace-Level RePOItScccocvvviiiiiiiiiiiiiiiiiiiciiiccc s 9-17

Parents and Children Report for a FUNCtioN...........cooouoviiiiii 9-17

HTML Difference Report from Two Raw Profiler Output Files.........c.cccccocoeeiiiiininnnee. 9-19
Difference Report CONVENIONS.........ccociuiiiiiiiiiiiiiiiine 9-19

First Page of Difference Reportcoooooiiiiiiiiiii s 9-20
Function-Level Difference REPOItS..........cccciiiiiiiiiiiiiiiceeeeeeceeee e 9-21
Module-Level Difference RepOrtsc.cccooovieieiiiiiiiiiiiiiiiiiiicccs 9-22
Namespace-Level Difference Reports..........ccccovoeeiiiioiiiiiiiiicccccec 9-22

Parents and Children Difference Report for a Functionccccoccevvvvivnnvnnnnceccnes 9-23

10 Developing PL/SQL Web Applications

Overview of PL/SQL Web Applicationsc.cccoeoiniiiniiniiniiinieeeneeeneeeereeeeee e 10-1
Implementing PL/SQL Web Applications............cccooiiiiiiiiiiiiniiiiiiiccccces 10-2
PL/SQL GAEWAYovviiiiiiiiiiiirii s s 10-2
INOA_PISGL i 10-2
Embedded PL/SQL GateWaycccevvvuiiiiiieiiiiiiiiieiiiniieieeseeee s 10-3
PL/SQL WED TOOLKIE....vcueueueuuemereieteieieiereieieieieieuereteierereseteneseresenesesenesesesesesesesesesesesesesesesesesessssaes 10-3
Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application 10-4
Using Embedded PL/SQL GateWayccccocoviiiiiiiiiiiiiiiiiiiiic s 10-4
How Embedded PL/SQL Gateway Processes Client Requestsccccooveeeiiiiiicneinecnnnnn, 10-5
Installing Embedded PL/SQL GateWayc.cccccceuiuimicmiiiieiciiieiieieeeieeieeieeneeereneneseseneeeneneees 10-6
Configuring Embedded PL/SQL Gatewayccoccueieiiuiuciiiiiicieeccici i 10-6

xi

11

Xii

Configuring Embedded PL/SQL Gateway: OVerviewccccevvvieiiiereieieiineieiieneennens 10-6

Configuring User Authentication for Embedded PL/SQL Gateway.........cccccceouerurunnnnes 10-8
Configuring Static Authentication with DBMS_EPG..........cccccocovvnniinnvnicnene 10-9
Configuring Dynamic Authentication with DBMS_EPGcccccooiiiiiiiiiiine. 10-10
Configuring Anonymous Authentication with DBMS_EPGccccooiiiinnnnes 10-10
Determining the Authentication Mode of a DADccccccoeviivvvninircreene 10-11
Creating and Configuring DADs: Examples.........ccccooimiiniiiicniiccccee 10-11
Determining the Authentication Mode for a DAD: Example.cccccooovvinnnnn. 10-13
Determining the Authentication Mode for All DADs: Example..........cccccoieuenee. 10-14
Showing DAD Authorizations that Are Not in Effect: Example..........c...cccocc....... 10-14
Examining Embedded PL/SQL Gateway Configuration...........cccccccevvinniininnnne 10-15

Invoking PL/SQL Stored Subprograms Through Embedded PL/SQL Gateway............... 10-17
Securing Application Access with Embedded PL/SQL Gatewaycccccoeovuirieiiiinnennnee. 10-18
Restrictions in Embedded PL/SQL Gatewayccccoeeieviniiininiiiiiiiiiicinnis 10-18
Using Embedded PL/SQL Gateway: SCENATIOc.cccvuiuimiimiuimiiiiiciiiciccceiccnceesecneenens 10-18
Generating HTML Output with PL/SQL...........cccooooiiiiiiiiiccsnnes 10-20
Passing Parameters to PL/SQL Web Applicationscccoeiiiiiiiiiiiiiiiccnns 10-21
Passing List and Dropdown-List Parameters from an HTML Form..........ccccccccevviriinnnnne. 10-21
Passing Radio Button and Checkbox Parameters from an HTML Form..........ccccccoooeee... 10-22
Passing Entry-Field Parameters from an HTML FOrm.........cccooooiiiiiiiiiceccc 10-23
Passing Hidden Parameters from an HTML FOrmcccccoceeiiiininninnnniircrcececcnes 10-24
Uploading a File from an HTML FOIM........ccccooviiiiiiiiiiicicc e 10-24
Submitting a Completed HTML FOImM.........coooiiiiiiiiicc e 10-25
Handling Missing Input from an HTML FOrmc.cccccccceiiiiiinniiiircccncneeeeeceeaes 10-25
Maintaining State Information Between Web Pagescccooeueiiiiiiiicc, 10-25
Performing Network Operations in PL/SQL Subprograms..............cccccevvviiiinnniniiiinnn, 10-26
Sending E-Mail from PL/SQL........ccccoiiiiiiiiiiiinrir e 10-26
Getting a Host Name or Address from PL/SQL.......ccccccovviiiiniiiiiin, 10-27
Using TCP/IP Connections from PL/SQL.........cccccoviiiiiniiiiiii 10-27
Retrieving HTTP URL Contents from PL/SQL......ccccooviiiiiriirercrrreceececeeeeaes 10-27
Using Tables, Image Maps, Cookies, and CGI Variables from PL/SQLccccccccvrrnnnnn. 10-29

Developing PL/SQL Server Pages

What Are PL/SQL Server Pages and Why Use Them? ..o 11-1
Prerequisites for Developing and Deploying PL/SQL Server Pagescccccccceeuiiiiiiennnes 11-2
PL/SQL Server Pages and the HTP Package ... 11-3
PL/SQL Server Pages and Other Scripting Solutions ... 11-3
Developing PL/SQL Server Pages............cccccovviiiiiiniiiiiiiniiiiiiciciicicnsine s 11-4
Specifying Basic Server Page CharacteristiCs..........cccovvviiurririririinrrccirrreeeeeeeeeeeeeees 11-5
Specifying the Scripting Language...........ccoooeueuoiiieiiiiiiiiccc e 11-6
Returning Data to the Client Browser..........ccccccciiiiiiiiiiiiiiiiiiccccccccccees 11-6
Returning HTML ... s 11-6

Returning XML, Text, and Other Document Typesccccouovriereinircieiiinciee, 11-7

Returning Pages Containing Different Character Sets...........cccccccoeveuriiiiiiiccnnnne. 11-7

Handling SCript EITOTSc.c.coiiiiiiiiiccccieeceeeeeeie e enenes 11-7
Accepting User INPUL ..o 11-8
Naming the PL/SQL Stored Procedure............ccccccoiiiiiiiiiiiiiiiiniiiiiicciccccceees 11-9

12

Including the Contents of Other Files..........cccccccoviiiiiiiiiiiiiiiiicc 11-9

Declaring Global Variables in @ PSP SCIiptc.cooiiiiiiiiiieiicec e 11-10
Specifying Executable Statements in a PSP Script.......cccoeveciiiiiiiiiiciccccreeceeenes 11-11
Substituting Expression Values in a PSP Script........cccccovvvvniniiii 11-11
Quoting and Escaping Strings in @ PSP Script......ccconiiiiiiiiiiiecccc e, 11-12
Including Comments in @ PSP SCIiPtcccoeueveiiiiiiiiriiicrrcccrr s 11-12
Loading PL/SQL Server Pages into the Databaseccccoooiiiiiii 11-13
Querying PL/SQL Server Page Source Code.............ccocoiuiiiiiiiiiiiiiiiicccceennnes 11-14
Executing PL/SQL Server Pages Through URLS............cccccoiiiiininiiiiiiics 11-15
Examples of PL/SQL Server Pages............cccooiiiiiiiiiiiiiiiicieee s 11-16
Setup for PL/SQL Server Pages Examples..........cccccooioimiiiniiiininiiccecec i 11-16
Printing the Sample Table With @ LOOPccccciiiiiiiiiiiicccccceece s 11-17
Allowing a User Selection.........ccccuoiiiiiiiiii 11-18
Using an HTML Form to Invoke a PL/SQL Server Page...........cccooceeiiiiiiiiiieci 11-20
Including JavaScript in @ PSP File.......cooiiiiiiiiicccccccececcceeeee e 11-20
Debugging PL/SQL Server Pages.............cccooviiiiiiiiiiiiccncncsscssssessnn 11-21
Putting PL/SQL Server Pages into Productionccccooiiiiiin, 11-22
Using Continuous Query Notification
Object Change Notification (OCN) ..o 12-2
Query Result Change Notification (QRCN)ccccouiiiiiiiiiiiiiie 12-2
Guaranteed MOde ..o 12-3
BeSt-EffOrt MOc.oouiiiiiii s 12-3
Events that Generate Notifications.............cccooooiiiiiiii 12-4
Committed DML Transactions..........ccccoceiiiiiiiiiiniiiiiic s 12-5
Committed DDL Statementsccccceiiiiiiiiiiiiniiii s 12-5
Deregistrationcccciiiiiiiiiii s 12-6
GIODAl EVENESocvviiiiiiicic s 12-6
Notification CONtENtSc.cccevviiiiiiiiiiiiii s 12-7
Good Candidates fOr CONcooiiiiiiiieeieeieeeeeee ettt stteesreesteesbeessaeeebeesbaessseebaessseesseesssesseesseeas 12-7
Creating CON Registrationsccoiiiiiiiiiiii e 12-10
PL/SQL CQN Registration INterfacecccoovviiiiiiiiiiiiiccicccccccceceecennes 12-10
CON Registration OPtiONS.........cciiiiiiiiiiiiic e 12-11
Notification Type Option........ccveiiiiiiiiiiiniiii s 12-11
QRCN Mode (QRCN Notification Type Only)cccoeeieivininiiiniiniiiiiiiicccccccnes 12-11
ROWID OPHON...cciiiiiiiiiiccic s 12-12
Operations Filter Option (OCN Notification Type Only).......ccccceeeiiininnnnninnnn, 12-12
Transaction Lag Option (OCN Notification Type Only)cccccvvvvvvinnnnnnnnicne. 12-13
Notification Grouping OPHiONS.........cccvvviiriririiiic e enes 12-13
Reliable OPtion......cooiiiiiiiiiiiiiiiiciiiicc 12-14
Purge-on-Notify and Timeout Optionscccceceeieiiiiiiiiicceicec e 12-14
Prerequisites for Creating CQN Registrations..........c.ccovvevririrnerininnnineereccc e 12-14
Queries that Can Be Registered for Object Change Notification (OCN)cccccevvviinrnnnen. 12-15
Queries that Can Be Registered for Query Result Change Notification (QRCN)................ 12-15
Queries that Can Be Registered for QRCN in Guaranteed Mode...........ccccooeiuirncnnes 12-15
Queries that Can Be Registered for QRCN Only in Best-Effort Mode...........ccccoevuine. 12-16
Queries that Cannot Be Registered for QRCN in Either Mode.........cccccocoiiiiiinnnnes 12-17

xiii

Using PL/SQL to Register Queries for CONcccocoviiiiiiiiiniiiiis 12-18

Creating a PL/SQL Notification Handlerc.cccooviiiiiiiins 12-18
Creating a CQ_NOTIFICATIONS$_REG_INFO ODbject........ccceeimiieiiiiiiciceeenenes 12-19
Identifying Individual Queries in a Notification ..o 12-22
Adding Queries to an Existing Registrationccccoooeiiiiiiiiic 12-22

Best Practices for CQN Registrationsccccceucuevrriiirinrnernrirrreere s 12-23
Troubleshooting CON Registrations...........ccccueviiiiiiiiiiiiicieiicci 12-23
Querying CON Registrations...............ccooiiiiiiiiiiiic e 12-25
Interpreting Notifications..............cccocooiiiiii 12-25
Interpreting a CQ_NOTIFICATIONS$_DESCRIPTOR ODbject........ccccovvvvimimnviiniiiriiinininennn, 12-25
Interpreting a CQ_NOTIFICATIONS$_TABLE ODbjectcccccevuviniiiiiiiiiiiiiiiiiine 12-26
Interpreting a CQ_NOTIFICATION$_QUERY ODbject.....c.ccceueueururireriiiririricrrerereeeereeenes 12-27
Interpreting a CQ_NOTIFICATIONS$_ROW ODbjectcccoovuviiiiiiiiniiiiiiniiiiienns 12-27
Deleting Registrations..............cccooiiiiiiiiiiiiiiiiic e 12-28
Configuring CON: SCeNATIOccouvuiiiiiiiiii e 12-28
Creating a PL/SQL Notification Handler ... 12-28
Registering the QUETIescooruriiiiiciic 12-30

Part Il Advanced Topics for Application Developers

13 Using Oracle Flashback Technology

Overview of Oracle Flashback Technology............ccccocoiiiiiiiiiiic 13-1
Application Development FEatures...........ccccccuiiiiiiiiiiiiiicceecieeeeeeeeeeeeeeeeeeeee s 13-2
Database Administration Features ... 13-3

Configuring Your Database for Oracle Flashback Technology...........c.cccocoooeiiiniiiiiiiiicn, 13-4
Configuring Your Database for Automatic Undo Management...........c.cccccoeuecuccrereiecncnnnenne. 13-4
Configuring Your Database for Oracle Flashback Transaction Queryc.ccccooceueiinnnnen. 13-4
Configuring Your Database for Flashback Transactionccccccevvvnninininniinnnnnn, 13-5
Enabling Oracle Flashback Operations on Specific LOB Columns...........cccceceveuvuvrverenernenne. 13-5
Granting Necessary Privileges ... 13-5

Using Oracle Flashback Query (SELECT AS OF).........ccooooiiiiiiicc s 13-6
Example of Examining and Restoring Past Data...........cccccceeeieiiinnniiinincnnreeereceenes 13-7
Guidelines for Oracle Flashback QUETYcccccviiiiiiiiiii e, 13-7

Using Oracle Flashback Version QUETYc.ccococcuiviriiiiiiininiicinneecieee et 13-8

Using Oracle Flashback Transaction Query.............ccccococoiininiiiinniiiiniies 13-9

Using Oracle Flashback Transaction Query with Oracle Flashback Version Query 13-10

Using ORA_ROWSCN ...ttt 13-12
Scenario: Concurrency Control ... 13-12
ORA_ROWSCN and Tables with Virtual Private Database (VPD)......ccccoceveveiiinnncnennne 13-13

Using DBMS_FLASHBACK Packagecccoouoiiiiiiiiiiiiiccicccccccccecieee e 13-14

Using Flashback Transaction ... 13-15
TRANSACTION_BACKOUT ParametersS.......ccueeeevieeeueeiieeeeeieeeeeeeeeereeeeeeeeensaeeeevesessaeessnnees 13-15
TRANSACTION_BACKOUT REPOILSovuimiiiiiiieiiiicieriritie e 13-16

*_ FLASHBACK_TXN_STATEcooeiviiiiiiiiiicie e 13-16
* FLASHBACK_TXN_REPORTcccooviiiiiiiiiiiiniscssssssssnnns 13-16

Using Flashback Data Archive (Oracle Total Recall)cccoooovriiiiiiie 13-16

Creating a Flashback Data Archivecccccocoiiiiiiiiiiicceceeeeeeeee s 13-17

Xiv

14

Altering a Flashback Data Archive..........cccoviiiiiiiiic e 13-18

Dropping a Flashback Data Archiveccooiiiiiiiii e 13-19
Specifying the Default Flashback Data Archivecooviiiiiiiiiiiicccccceccecenenes 13-19
Enabling and Disabling Flashback Data Archive...........cccooiiiiiiiii, 13-20
DDL Statements Not Allowed on Tables Enabled for Flashback Data Archive.................. 13-21
Viewing Flashback Data Archive Dataccccooiiiiiiiiiiiiiicecccceeeeeeeeeeeenens 13-21
Flashback Data Archive SCeNarios............ccccviiiiieiiiiiiiiiiiiiiiici s 13-21
Scenario: Using Flashback Data Archive to Enforce Digital Shredding........................ 13-22
Scenario: Using Flashback Data Archive to Access Historical Data.........c.cccceveveununncee. 13-22
Scenario: Using Flashback Data Archive to Generate Reportscccoocueiiieieiinnnen 13-22
Scenario: Using Flashback Data Archive for Auditingcccoooioiiiiiii 13-23
Scenario: Using Flashback Data Archive to Recover Data...........cccccocevuveevnnnnnnnnnnes 13-23
General Guidelines for Oracle Flashback Technologycccccooiiiiiiiiiiiiiiins 13-24
Performance Guidelines for Oracle Flashback Technologyccccccoiiiiiiiiiiiinnnn. 13-25
Developing Applications Using Multiple Programming Languages

Overview of Multilanguage Programs...............cccooeiiiiiiiiiiiiiiiiiceeeeeeene e 14-1
What Is an External Procedure?...............ccocoooiiiiiiiiiiiiiiiieicccc s 14-3
Overview of Call Specification for External Procedures...............cccccoviiiniiiinninnicnne, 14-3
Loading External Procedures ... 14-4
Loading Java Class MethOdscccccceuiuiiiiiiiiiiiiiiniiicicececceeeeee s 14-4
Loading External C Procedurescooceueiiiurieiiiiicieieci e 14-4
Define the C Proceduresccccovviviiiiiiiiiiininiiiiiiiiinccess s 14-5

Set Up the ENVIFONMENt.......c.ccoiiiiiiiiiiiiiiiiieiccee e 14-6
Identify the DLL ... 14-8
Publish the External Procedures..............cccocoviiiiiiiiiiiiiiiiiniiiiccs 14-9
Publishing External Procedures ... 14-9
AS LANGUAGE Clause for Java Class Methodsccccvererieneneiininenenencseeieeeeeeeene 14-10

AS LANGUAGE Clause for External C Procedures............cccocovuvvninnninninnnnninnnnn 14-10
LIBRARY oottt 14-10

INAME .o 14-10
LANGUAGE ..ottt 14-11
CALLING STANDARD ..ottt 14-11

WITH CONTEXT ..ot ssnas 14-11
PARAMETERSooiiiiiiieiicccee st 14-11
AGENT IN Lot 14-11
Publishing Java Class Methods..............ccccocoiiiiiiiiiiiii e 14-11
Publishing External C Proceduresccccociiiiiiiiiiiiiiiiiiiiieeicseeeeae 14-12
Locations of Call Specificationsccoeiriiiniiiniiiniiice e 14-12
Example: Locating a Call Specification in a PL/SQL Package........ccccccovevrieieiiciciiiicnne, 14-13
Example: Locating a Call Specification in a PL/SQL Package Body.........ccceoeveruiriiinnnnne. 14-13
Example: Locating a Call Specification in an Object Type Specificationc.ccceceuverucncee. 14-14
Example: Locating a Call Specification in an Object Type Body......c.cccocevveiiiiiiiiiiinnnnnnn 14-14
Example: Java with AUTHIDcccccoiiiiiiiiiiiiiiiiic e 14-14
Example: C with Optional AUTHIDccocoiiiiiiir e 14-14
Example: Mixing Call Specifications in a Package.........cccooevvriiirinicininiiicicccce 14-15
Passing Parameters to External C Procedures with Call Specifications.................c.ccceee. 14-16

XV

15

XVi

Specifying Data TYPeS......cccocueiiiiiciiiciei 14-16

External Data Type Mappingscccccoeeueiiuiieininicicieiiceie et 14-18
Passing Parameters BY VALUE or BY REFERENCE...........cccccccoiviniinniins 14-19
Declaring Formal Parameters.............ccooocueuiiiieieiiiicicici 14-20
Overriding Default Data Type Mapping.......ccccooieieieiiicieieiiccieecci e 14-20
SPECIfYING PrOPEIIEscocvviiiiieiiiiciciieccecrecc e 14-20
INDICATOR ..ottt s 14-22
LENGTH and MAXLENccooiiiiiiiiiciice s 14-22
CHARSETID and CHARSETFORM.........c.ccoooiiiiiiiiiiiincesccene s 14-23
Repositioning Parameters...........ccooieiiiiiiiiiiiiii 14-23

SELF ..o bbb 14-23

BY REFERENCEcoooiiiiiiiiiiiec s 14-26

WITH CONTEXT ..ot 14-26
Interlanguage Parameter Mode Mappingscccococueieiiicicieiiiicicisiccie s 14-26
Executing External Procedures with CALL Statements.............c.ccccocooiniiinniiiniiins 14-27
Preconditions for External Procedures ... 14-27
Privileges of External Procedures...........c.ccoooiiiioiiiiiiiiiiccccc e 14-28
Managing Permissions..........ccccvviiiiiiiiiiiiiic e 14-28
Creating Synonyms for External Procedures..........c..cccooeviiiiiiiiininiciiccee 14-28

CALL Statement SYNtaXccooueieiiiiieieiieieiei 14-28
Calling Java Class Methodsc.ccceuruririiiiiriririiiiinrccrrr e 14-29
Calling External C Proc@durescoocueueiiiicieiiiiciciccei i 14-29
Handling Errors and Exceptions in Multilanguage Programscccooviiiiiiiiininn. 14-30
Using Service Routines with External C Procedures..............cccccocoviniiiinniiiniicne, 14-30
OCIExtProc AllocCallMEmMOTYc.covivrieiiieiieiiieicie ettt 14-31
OCIEXtProcRAISEEXCP ..ovovviiiiiiciiiit s 14-35
OCIExtProcRaise EXCPWItRIMSGc.coouiiiiiiiiiiiiiiciciiciciccerrcc e 14-36
Doing Callbacks with External C Procedures..............cccccooviiiiiiiiiniiiccccccccnines 14-37
OCIEXIPIOCGEIENY ..o.vviiiitt s 14-37
Object Support for OCI CallDaCks...........coveviiiiriiiiiiicccc e 14-38
Restrictions on Callbackscoiiiiiiiiiiiiiii e 14-39
Debugging External Procedures ... 14-40
Example: Calling an External Procedure............ccccccceiiiiiniiiiiiiincrccceeeeeeeeecnes 14-40
Global Variables in External C Procedurescccocooiviiiiiiniiiiiccccccncncnnines 14-40
Static Variables in External C Proceduresccccocccuiiiininiiiiiiiiiiiiiiicncccsscceseens 14-41
Restrictions on External C Procedures. ..o 14-42

Developing Applications with Oracle XA

X/Open Distributed Transaction Processing (DTP)............ccccccccoovviviiiinininiiie 15-1
DTP TerminOLOZYoovueveviiucieiiiiinicie ittt bbb 15-2
Required Public INfOrmation............ccciiiiiiiiiiiiiiicicee s 15-4

Oracle XA Library Subroutines ... 15-5
Oracle XA Library SUDIOUNESc.coiiuiiiiiiicieiccc 15-5
Oracle XA Interface EXTENSIONS.........ccciviririeiininiiciiniricce et 15-6

Developing and Installing XA Applications ... 15-6
DBA or System Administrator Responsibilitiescccooeoiiiiiiiiiic, 15-7
Application Developer ReSponsibilitiescccovuvviiiviniininniiiniiiiiiiircnnercccens 15-8

Defining the Xa_open String ... 15-8

Syntax of the xa_open StriNg ..o 15-8
Required Fields for the xa_open String ... 15-9
Optional Fields for the xa_open String..........cccceeviiiiiiiiiicc 15-9
Using Oracle XA with PrecOmpilerscccooovoiriiiiiiiicicc e 15-11
Using Precompilers with the Default Databaseccccoooiiiiiiiniiiiicciccceene 15-11
Using Precompilers with a Named Database...........cccooieieiiiiiiiiiicce 15-11
Using Oracle XA with OCT ... 15-12
Managing Transaction Control with Oracle XA ... 15-13
Examples of Precompiler Applications..........ccccvviveieiiiiiiiiiiininiiiiiiccs 15-14
Migrating Precompiler or OCI Applications to TPM Applications...........cccccevvevviriiininennes 15-14
Managing Oracle XA Library Thread Safetycccccoevvvivrnnniirrcrcnreeceeereecee 15-15
Specifying Threading in the Open String ..o 15-16
Restrictions on Threading in Oracle XAccooooiiiiiiiie e 15-16
Using the DBMS_XA Package ..o seeeeees 15-16
Troubleshooting XA Applications ..o 15-19
Accessing Oracle XA Trace Files..........coooiiiiiiic 15-19
xa_open String DDEEL.........cccccciiiiiiirr e 15-20
Trace File LOCAtIONScvviviiiiiiiiiiiiiiiccc s 15-20
Managing In-Doubt or Pending Oracle XA Transactions............cccooceueieiricieieiccieieicennne. 15-20
Using SYS Account Tables to Monitor Oracle XA Transactions...........c.cceeeeeveeecccicnecnce. 15-21
Oracle XA Issues and Restrictions ... 15-21
Using Database Links in Oracle XA Applications..........coceueiimiiieiiiciciciicceceece 15-21
Managing Transaction Branches in Oracle XA Applicationscccccveveeciicicccnccncnes 15-22
Using Oracle XA with Oracle Real Application Clusters (Oracle RAC).........ccccovvvviiinnne 15-23
GLOBAL_TXN_PROCESSES Initialization Parametercccocovvvvinnnnnnnninnnnes 15-23
Managing Transaction Branches on Oracle RAC.........ccccccooviviiininniirccerccees 15-23
Managing Instance Recovery in Oracle RAC with DTP Services (10.2)ccccccoovuenenee. 15-25
Global Uniqueness of XIDs in Oracle RAC ..o 15-25
Tight and Lo0se COUPLNEceurruiiiiiiriiicirrr e 15-25
SQL-Based Oracle XA ReStIiCHONScccveeiriieieieeietietereeiesreseeesteetessessessessesseessessesssessasseenns 15-25
Rollbacks and COMIMILSc.ccuvirieuiiiriiieiiiiieicerereee et 15-26
DDL Statementscoeveveiiieiiiiiiiii s 15-26
SESSION SHAtE.....vvviiiiciciic s 15-26
EXEC SQL ..ottt 15-26
Miscellaneous ReStriCtIONS.coovviiiiiiiiiiiiiic e 15-26

16 Developing Applications on the Publish-Subscribe Model

Introduction to the Publish-Subscribe Model..............ccccoeiririiininininienicccececeeseseeeeeene 16-1
Publish-Subscribe Architecturecocooiiiiiiiiiiiiie e 16-2
Database EVENTScc.ccueieiiieieieieteitetese sttt ettt ettt ae st e b e sbe s b s et e s e tesaenteneeseesesessessensan 16-2
Oracle Advanced QUEUINGc.c.ccueuiiiuiiiiiiiiiiiiiceeee et neees 16-2
ClENT NOBTICATION .. .cteetetiteteetet ettt ettt et eb bbbttt ettt e et et e b e sbesaeaan 16-3
Publish-Subscribe CONCePLscccoiiiiiiiiiiiiic e 16-3
Examples of a Publish-Subscribe MechaniSmccccccoeoiiininniniiniencceeneeneeneens 16-5

xvii

17 Using the Identity Code Package

Identity CONCEPLSccoovimiiimiiiiiii et 17-2
What is the Identity Code Package? ..o 17-5
Using the Identity Code Packagecccocovviiiiiiiiiiiiiiiiiiiicc s 17-6

Storing RFID Tags in Oracle Database Using MGD_ID Object Type........cccccoeueveiicuerrinnnnen. 17-6

Creating a Table with MGD_ID Column Type and Storing EPC Tag Encodings in the
Column 17-7

Constructing MGD_ID Objects to Represent RFID Tags.........ccoceveiimieieiiiciciicci 17-7
Constructing an MGD_ID Object (SGTIN-64) Passing in the Category ID and a List of
Components 17-7
Constructing an MGD_ID object (SGTIN-64) and Passing in the Category ID, the Tag
Identifier, and the List of Additional Required Parameters 17-8
Constructing an MGD_ID object (SGTIN-64) and Passing in the Category Name,
Category Version (if null, then the latest version will be used), and a List of
Components 17-8
Constructing an MGD_ID object (SGTIN-64) and Passing in the Category Name and
Category Version, the Tag Identifier, and the List of Additional Required Parameters

17-9
Inserting an MGD_ID Object into a Database Table..........c.cccccccoeciiiiiiiniccninienes 17-9
Querying MGD_ID Column TYpPe......cooeurieiiiiiieieiicicienie s 17-10
Building a Function-Based Index Using the Member Functions of the MGD_ID Column Type ..
17-10
Using MGD_ID Object Type FUNCHONSccoiuiiiiiiiiiiiiiiiccccs 17-11
Using the get_component Function with the MGD_ID Object..........ccccccoevviviininininnnnne. 17-11
Parsing Tag Data from Standard Representations...........cccceevoiiiiiiiiiiiiic 17-11
Reconstructing Tag Representations from Fieldsccoiiiiiiniiiiniiiccenes 17-13
Translating Between Tag Representations............ccooccueiiiiicieiicicicnccc e 17-13

Defining a New Category of Identity Codes and Adding Encoding Schemes to an Existing
Category 17-13

Creating a New Category of Identity Codes........c.oouiiiiiiiiiiiiiiccccccceeenenes 17-13
Adding Two New Metadata Schemes to a Newly Created Categoryccccounueneee 17-14
Identity Code Package TYPESccccoiiiiiiiiiiiiiiic e 17-18
DBMS_MGD_ID_UTL PacCKage...........ccccecvviiimiiiiiiiieieiicieieiccieiesie s 17-19
Identity Code Metadata Tables and VIieWs............cccoooiiiiiiiiiiiiccccccinas 17-20
Electronic Product Code (EPC) CONCEPLS.........coccoeuimimimimiiiiiiiiiiiiiiicicicecnce e 17-22
RFID Technology and EPC v1.1 Coding SChemesccccovuvirrrniririnininnnirncereecnes 17-22
Product Code Concepts and Their Current Use...........cccocevvviiiiniiiinininiiiniinn 17-23
Electronic Product Code (EPC)cocoviirinirenineinieieeteienteiesee sttt 17-23

EPC Pure Identityc.c.cveuiiiiiiiiciccc e 17-23

EPC ENCOAING....ocviviviiiiiiiiiiiciciiciiicc s 17-24

EPC Tag Bit-Level ENcOdingcccccoviviviviiiiniiiiiiiiinicccccaes 17-24

EPC Identity URIccoiiviimiiiiiiiiiicc s 17-24

EPC Tag URI ENCOAING.......cooviviiiiiiiiiiiiiiciciicii e 17-24

EPC Encoding Procedure ..o 17-24

EPC Decoding ProCedUTEc.ccoueueuiiiiiieiririiiicicereieeeeeereeseeeseeee e 17-24

Global Trade Identification Number (GTIN) and Serializable Global Trade Identification
Number (SGTIN) 17-24

Serial Shipping Container Code (SSCC).......cccouviiiiiiiiiiiiiiiicccccenes 17-24

xviii

Global Location Number (GLN) and Serializable Global Location Number (SGLN). 17-24

Global Returnable Asset Identifier (GRAL)cccoverieuereinieinicinenecnccnceeeeeieeie e 17-25
Global Individual Asset Identifier (GIAL)ccocevvevieieieieeeeeeeese et 17-25
RFEID EPC NEEWOTK.....viiririieiiiririeieiiinteieittntteiei st ies ettt sttt s esesesse s eessenenene 17-25
Oracle Database Tag Data Translation Schema.............ccccoooiiiiiii, 17-25

A Multithreaded extproc Agent

Why Use the Multithreaded extproc Agent?.............c.ccccoviiiiiiiii A-1
The Challenge of Dedicated Agent ArchiteCturecocoovviviiiirneinrireccer s A-1
The Advantage of Multithreading ..o A-1

Multithreaded extproc Agent Architecture ..o A-2
MONItOr TRIAdovviiiiiii s A-4
Dispatcher Threads ... A-4
Task Threads.......cccooiiiiiiiiiiiiiii s A-4

Administering the Multithreaded extproc Agent..............cccooiiiiniinnie, A-4
Agent Control Utility (agtctl) Commands...........coceeuiiiiiiieiiiiii e A-5
Using agtctl in Single-Line Command Mode...........c.ccooiiiiiiiiiiiiic e A-6

Setting Configuration Parameters for a Multithreaded extproc Agent..........ccccceevvvuenene. A-6
Starting a Multithreaded extproc Agent...........cc.cooiveiiiiiiiicc e, A-6
Shutting Down a Multithreaded extproc Agentcccooiiiiiie, A-7
Examining the Value of Configuration Parameters............cccccocvvevevrirrrnnrnrrnscrrecenes A-7
Resetting a Configuration Parameter to Its Default Valuec...ccccooeiiiiiiininnnnnn. A-7
Deleting an Entry for a Specific SID from the Control File...........cccccoooooiia, A-8
Requesting Help ..o s A-8
Using Shell Mode Commands...........cccueuiiuiieiiiiiicieccie s A-8
Example: Setting a Configuration Parametercccoocoveiircieiiiciicicceceee, A-8
Example: Starting a Multithreaded extproc Agentccccoevuvvvviinnnvinrrnrereenes A-8
Configuration Parameters for Multithreaded extproc Agent Control..........ccccccoovvriiiriinines A-9
Index

Xix

XX

List of Examples

4-3

6-10
611
6-12
7-1

7-3
7-4
7-5
7-6
77
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17

7-18
7-19
7-20
7-21
7-22
7-23
7-24

Simple PL/SQL EXamPIe........coiiiiiiiiiiieieieici v 1-3
LOCK TABLE with SHARE MODE..........cccooiiiiiiiiiiniscc e 2-15
USET LOCKS ..ottt 2-18
Marking a Packaged Subprogram as AUtoNOMOUS............ccooerueieiiiicicieeicicee e 2-32
Resumable Storage ALlOCAtIONc.couriiiiiiiiiiiicc s 2-34
Displaying Current Date and Time with AD or BC Qualifier..........cccoooeoiiiiinnnin 3-13
Changing the Default Date Formatcoooooiioiiii 3-13
Changing the Default Time FOrmatccooooiiiiiii 3-14
Accessing Information in a SYS.ANYDATA Column.........cooooiiiiiiiiiiiiiccieeeciee 3-19
Querying the ROWID Pseudocolumn ... 3-25
Enforcing a Phone Number Format with Regular Expressions..........ccccccooceieiniiniennnes 4-10
Inserting Phone Numbers in Correct and Incorrect Formats..........cccccoceevviiiviviniiinininnnnn, 4-11
Using Back References to Reposition Characters...........cocooeiiiiiiiiiiiccce, 4-12
VENDOR_PARTS TabIecovuriiiriiiiiiciicic i 5-4
Creating INAEXESccueiiieiiic s 5-6
Function-Based Index Allows Optimizer to Perform Range Scan............ccccceeverrierninnnen. 5-9
Function-Based INA@XESc.c.oveuiiiiiiiiieiicc s 5-10
Inserting NULL Values into Columns with NOT NULL Constraintscccccoeeverunuenne. 6-3
Deferring Constraint Checks............oooiiiiiiiiii 6-10
Defining Constraints with the CREATE TABLE Statementccoooevoiiiiiiiiinines 6-15
Defining Constraints with the ALTER TABLE Statementccocoooiiiiiiiine, 6-16
Creating Enabled CONStraintscooeuoiiriiioiiiccicci e 6-19
Creating Disabled CONnStraints............ccccocueioiiieieiiiicicce s 6-20
Enabling Existing CONStraints..........cooccueiiiirieieiiicceci e 6-21
Disabling Existing CONStraints............ccocoeueieiiiiieieiiicieeeccie e 6-22
Modifying CONSLIAINTScceueiiieieieicciee s 6-23
Renaming a Constraint..........oooiiiiiiiiiiiiic 6-24
Dropping CONStraints..........coceieiiiiiiiieiiiiiciic s 6-25
Viewing Information About Constraints..............ocoeoeueiiioiiieiiiiceicceece 6-28
ANONYMOUS BLOCK........viiiiiiii e 7-2
Anonymous Block with Exception Handler for Predefined Errorcccccooveriininn 7-3
Anonymous Block with Exception Handler for User-Defined Exception............ccccceueee. 7-3
Stored Procedure with Parameters............ocooououoiiiiiiiiciiic e 7-5
%TYPE and %ROWTYPE AHIIDULEScovvviiriiciiiic e 7-7
Creating PL/SQL Package and Invoking Packaged Subprogram.............cccccooevvvernnnnes 7-11
DML Statements that Reference Collections...........cccceuvviceriieiicininiiceeceees 7-17
SELECT Statements that Reference Collectionscoceeveiieiininiiineeiccecce 7-17
FOR Loops that Reference Collections and Return DMLcccccooiiiiiiiiiniiccenes 7-18
Fetching Data with Cursor Variable ... 7-21
Cursor Variable with Discriminator..........cocococvivviiiiiiiinniiiiinccs s 7-22
Compile-Time EITOTS......ccccciiiiiiiiiiiiiiiiiiicicc e 7-23
Invoking a Subprogram Interactively with SQL*PIUS..........ccccoeviviiiiiivniiiiiiine 7-31
Creating and Using a Session Variable with SQL*PIUS..........cccccoevninnninnniiiines 7-32
Invoking a Subprogram from Within Another Subprogramcccccoooeiiiiiiinininne, 7-33
PL/SQL Function that Can Appear in a SQL EXPression..........cccccccceueuvieiriciiicrivinicennnnnes 7-39

PL/SQL Function with Formal Parameter of PL/SQL Data Type, Invoked from a SQL
Expression 7-40

PRAGMA RESTRICT_REFERENCES........ooiitiiieeeeeeeeteeeeeeee ettt 7-45
PRAGMA RESTRICT REFERENCES with TRUST on Invokeeccccooeeeeveeveveenenee. 7-46
PRAGMA RESTRICT REFERENCES with TRUST on INVOKETcoocvvvvveeieieeecieeenee 7-47
Overloaded Packaged Function with PRAGMA RESTRICT_REFERENCES................. 7-48
Serially Reusable Package Specification............ccccccvuvueiciviniiiiiniiinininiiicicnccncniccnes 7-50
Serially Reusable Package Specification and Package Bodyccccccevviiiinvniinnnnn. 7-51
Open Cursors in Serially Reusable Packages at Call Boundaries...........ccccccocevivinicinennne. 7-52

XXi

XXii

SPOOOOO®®o®
OCURWN=2RARWOWN =

— —h
TTT
—

2
3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
121
12-2
12-3
12-4
12-5
12-6
12-7
131
13-2
13-3
151
15-2
15-3
15-4
15-5
A-1

Is STANDARD and DBMS_STANDARD PL/Scope Identifier Data Available?.............. 8-2

How Much Space is PL/Scope Data USINg?.........cccovoviiiiiiiiiiciiceiceenes 8-4
USAGE_CONTEXT_ID and USAGE_ID........ccccooimiiiiiii e 8-6
Program Unit with Two Identifiers Named p........cccooiiiiiiii 8-7
Profiling a PL/SQL Procedure...........cccocevuiiiiiiiiiiiiiniiiiiiiiiccccsc s 9-3
Invoking DBMS_HPROF.QNALYZE.......cocoeiiiiiiiiiiciici s 9-8
DBMSHP_RUNS Table for Sample PL/SQL Procedure..........cccccovviiiininniinninncncnn. 9-11
DBMSHP_FUNCTION_INFO Table for Sample PL/SQL Procedure.cccceuuuuueene. 9-11
DBMSHP_PARENT_CHILD_INFO Table for Sample PL/SQL Procedure.................... 9-11
Invoking DBMS_HPROF.analyze with Options ... 9-12
Creating and Configuring DADS...........c.ccooiiiiiiiiii e 10-12
Authorizing DADs to be Created or Changed Later.........ccocooiiiiic 10-13
Determining the Authentication Mode for a DADccoeiiiiiiiiiiie 10-13
Showing the Authentication Mode for All DADs..........cccoooiiiiiiiiiiiicecce 10-14
Showing DAD Authorizations that Are Not in Effect........cccoooii 10-15
epgstat.sql Script Output for Example 10-1.......cccccooiiiiiiicccnes 10-16
Using HTP Functions to Generate HTML Tagscccccooiiieiiiiiiciiiiiccece 10-20
Using HTP.PRINT to Generate HTML Tags........cccoooeueiiiiiririeiiicicicccc e 10-20
HTML Drop-DOWn LiStcooioiiiieiiiiieicieeecv et 10-22
Passing Entry-Field Parameters from an HTML Formccoooeoiiiiiiiiiicin 10-23
Sending E-Mail from PL/SQLccccccoviiiiiiniiiiiiics 10-26
Retrieving HTTP URL Contents from PL/SQL........ccccccoeiiiininiiiiinn 10-27
SIMPLE.PSP vttt s 11-1
Sample Returned HTML Pagecooeuiiiiiiiiiicici s 11-6
SIMPleWithUuSErINPUL. PSP ...cvoviviviiiiiiiiiic s 11-8
Sample Comments in @ PSP File ... 11-13
Loading PL/SQL Server Pagesccoceueiiirieiiiiiiceci s 11-14
Querying PL/SQL Server Page Source Codecoooeuniiiiiieiiiciciiiicceee 11-14
Show_prod_simple.psp ..o 11-17
Show_catalog_Taw . PSP ... 11-17
show_catalog_pretty.PsSp ... 11-18
show_product_partial. psp........cccceviiiiiiniiiii 11-18
show_product_highlighed.psp........cccccooiiiniiiiiiii 11-19
PrOAUCE_fOIMUPSP «eoviiiiiiiiiii s 11-20
show_product_javascript.psp ... 11-20
Query to be Registered for Change Notification...........ccooeeiiiiiiiiiinci 12-2
Query Too Complex for QRCN in Guaranteed Mode ..o, 12-3
Query Whose Simplified Version Invalidates Objectscccccoveiiiiiiiiiiiniiiniennen, 12-4
Creating a CQ_NOTIFICATIONS$_REG_INFO Object.........ccoevvuviviiriiniiniiiiiiniiniiinns 12-22
Adding a Query to an Existing Registration.........c.c.coooeeieiniiiiiiiiccc 12-23
Creating Server-Side PL/SQL Notification Handler ..o, 12-29
Registering @ QUETYccoeieiiiiiieieiicicie it 12-30
Retrieving a Lost Row with Oracle Flashback Query...........cccooeeiiiiiniiiiiiiic 13-7
Restoring a Lost Row After Oracle Flashback Query ..o 13-7
Function that Can Return Row SCN from Table that has VPDcccccccovviiiinnnnnn 13-13
XA_OPEI SHTANG ..ttt 15-8
Sample Open String Configuration..........c.ccoieieiiiiiciiicc s 15-12
Transaction Started by an Application Server...........cocooiviiiiies 15-14
Transaction Started by an Application Client...........ccocovvivinininnnies 15-14
Using the DBMS_XA Package..........cccoveurieiiimieieiiicicei s 15-16
Setting Configuration Parameters and Starting agtctl............coooeoiiiiiie, A-4

xXiii

List of Figures

XXiv

SRR RPPRT T
_IL—'-I\)—'-m\loj(ﬂ-b(,Ol\)—'-b(,Ol\)—'-

10-2
121
12-2
141
151
16-1
17-1
17-2
A-1

The OCI or OCCI Development PTOCeSSc.couirueieiiiicieiiicieieeece s 1-23
SOFtWAre LaYerS......cocuiiiieiiciei et 1-25
Objects and Their Relationscooviuiiiiicieic e 1-26
Supported Oracle Database Data Types........ccocoueiiriiiiiiiiciecccc s 1-30
Time Line for Two Transactions............cccceiiiiiiiiiiiiiiiicc s 2-21
Referential Integrity Check..........coouiiiiiiiicc 2-23
Transaction Control FIOW ... 2-27
Possible Sequences of Autonomous Transactionscccccevvvviinniniinnii 2-28
Example: A Buy Order ... 2-29
Bank Withdrawal—Sufficient Funds ..o, 2-30
Bank Withdrawal—Insufficient Funds with Overdraft Protection............cccccccevuniinnnnnn 2-31
Bank Withdrawal—Insufficient Funds Without Overdraft Protection.............ccc.cc........ 2-32
Table with a UNIQUE CONSIIAINTccveeevieeieiieiiciiciieieciieieeeeie ettt eve e te e ve e v saeae e 6-6
Tables with FOREIGN KEY CONSIaintscccoveuiueirininicinicisiceiec i 6-8
Exceptions and User-Defined Errors.............oooceieiiiiiiiiiciicecc e 7-26
PL/SQL Web APPLCAtIONoiiiiiiiiiciiiiccs e 10-2
Processing Client Requests with Embedded PL/SQL Gateway.......cccccccoovorueieiiiricnninnes 10-5
Middle-Tier Cachingcccccoviiiiiiiiiiiiiiiiii s 12-8
Basic Process of Continuous Query Notification (CQN)cccccoceiiiiiiiiiiiiiiiinn, 12-9
Oracle Database and External Procedurescococcuoiiiiiniiiiccicicccecee 14-27
Possible DTP MOdeL.........coiiiiiiiiiiicircce e 15-2
Oracle Publish-Subscribe Functionality.........cccccoooiiii 16-2
RFID Code Categories and Their Schemesccoooii 17-2
Oracle Database Tag Data Translation Markup Language Schema............ccccooooceiii 17-4
Multithreaded extproc Agent Architecture ..., A-3

List of Tables

PEEEE RNy T
OCONOOAOAPRWON—=-ANOOCOPL,ON ==

3-10
3-11

—l(O(O(O(IO(O(OCXJCXJ
OO WN=N=

— —h
230
2

2
3
10-4
11-1
121
12-2
12-3
12-4
12-5
12-6
12-7
131
13-2
13-3
141
14-2

PL/SQL and Java Equivalent Software ... 1-33
Options of COMMIT Statement and COMMIT_WRITE Initialization Parameter........... 2-7
Use of COMMIT, SAVEPOINT, and ROLLBACKccccooviiiiiiiiiciiccccens 2-9
Ways to Display Locking INformation...........cccooeviiiiiiiiiiiciciiccceeeeees 2-19
Summary of ANSI Isolation Levels.........cccccoooveiiiiiiiii 2-19
ANSI Isolation Levels and Oracle Databasec.cccooviiiiiiiiiiiiicccccnes 2-20
Read Committed and Serializable Transactions............ccccceevvvviviiinininininiinnaes 2-25
Possible Transaction OUtCOMESccoviviiiiiiiiiii e 2-28
Components of the Binary Format for Floating-Point Numbers............ccccccoevivinnnnennnn. 3-6
Summary of Binary Format Parameters...........c.cooooioiiiiiiiniiicicc 3-7
Summary of Binary Format Storage Parameters............ccoooviiiiiiiiiiiiniiiicc 3-7
Range and Precision of IEEE 754 formats............ccoooeueiiiiiieiiiinieeecccc s 3-7
Special Values for Negative Floating-Point Formats...........ccccooouviiiiiiiiiiiice, 3-8
Values Resulting from EXCepPHioNS.........cccvviuiiiiiiiiiiiiiiiiiiciciccccce e 3-10
Large Object Data TYPeS.......ccceeuviiiiiiiiiiniiiiiiiii e 3-16
ANSI Data Type Conversions to Oracle Database Data Types...........cccocovvivivininninne 3-21
SQL/DS, DB2 Data Type Conversions to Oracle Database Data Types.........cccoceu.uee. 3-22
Data Type FAmIlIescccooovviiiiiiiiiiiiiiiciccccc e 3-30
Display Types of SQL Built-In FUNCHONScevoiiiiriiiiic 3-30
SQL Regular Expression Functions and Conditions...........cccocovvvivinnninnnnnninnine, 4-3
POSIX Metacharacters in Oracle Database Regular Expressions ..o 4-5
POSIX and Multilingual Operator Relationships..........c.ccoeeiiiiiiiniiiiiien, 4-8
PERL-Influenced Extensions in Oracle Database Regular Expressions............cccccccuevuuee. 4-9
Pattern Matching MOifierscccoeiiiiiiiiiiiiiiii 4-10
Explanation of the Regular Expression Elements in Example 4—1cccccoevviiinnnnen. 4-11
Explanation of the Regular Expression Elements in Example 4-3cccccoovviinnnen. 4-13
Attributes of Subprogram Parameters..........c.cccooviueieiiiiieiiiic e 7-5
Parameter MOdeSccoviiiiiiiiiiiiiiicicc s 7-6
Identifier Types that PL/Scope Collects...........ccccvieiiiiiiininiiiiiiiiicicics 8-8
Usages that PL/Scope REPOILScccuiuiiiiiiiiiiiiiiiiiiiicicicec s 8-9
Raw Profiler Output File INdicators..........cccccevvieiiiiiiiiiiiiiiiiiicccccc 9-5
Function Names of Operations that the PL/SQL Hierarchical Profiler Tracks................ 9-7
PL/SQL Hierarchical Profiler Database Tables.........cccccouievieeiiicienieeieeetieeceeeeee e 9-7
DBMSHDP_RUNS Table COIUITINSooovvieiieie ettt ettt eete s saneessaeessneessnnnes 9-9
DBMSHP_FUNCTION_INFO Table COIUMNS.......coooviiiiiieeeeieeeeee e 9-9
DBMSHP_PARENT_CHILD_INFO Table Colummns..........cccccecvvvvininninininiiiiine, 9-10
Commonly Used Packages in the PL/SQL Web ToolKitcccccoouviiiiiiiiiinnnns 10-3
Mapping Between mod_plsql and Embedded PL/SQL Gateway DAD Attributes..... 10-7
Mapping Between mod_plsql and Embedded PL/SQL Gateway Global Attributes.. 10-8
Authentication Possibilities for a DAD...........cccooiiiiiiiiiics 10-11
PSP ELOMENES ...ttt 11-5
Continuous Query Notification Registration Optionsccceeveirriciiiiciciiine, 12-11
Attributes of CQ_NOTIFICATION$_REG_INFO........cccccceviviiiniiiiiiiiicicn, 12-19
Quality-0f-Service FIags.......ccccoiiiiiiiiiiciic 12-21
Attributes of CQ_NOTIFICATION$_DESCRIPTOR.........cccceouiviviiriiiiniiiineninnn, 12-26
Attributes of CQ_NOTIFICATIONS$_TABLEcccceooviniiiiniiccn, 12-27
Attributes of CQ_NOTIFICATIONS$_QUERYcccocoviviiiiiiiiinicnniccncnens 12-27
Attributes of CQ_NOTIFICATIONS_ROWcccccoviiviviiiiiiiinniiinens 12-28
Oracle Flashback Version Query Row Data Pseudocolumnsccccooviiiiiiinnnnes 13-8
Flashback TRANSACTION_BACKOUT Options.......ccccccceeiviririciininiiiininiicncneneeneaes 13-15
Static Data Dictionary Views for Flashback Data Archive Files.........c.ccccoooeuriinnnnnne. 13-21
Parameter Data Type Mappings.........coceoeveviviniiiiiniiiiiiciceccec s 14-17
External Data Type Mappingsccccceeeeieiniiieieiiininieiiininiecscssse s 14-18

XXV

XXVi

14-3
15-1
15-2
15-3
154
15-5
15-6
15-7
15-8
15-9
171
17-2
17-3
17-4
17-5
17-6
17-7
17-8
A1

A-2

Properties and Data TYPesccccocouvviviviiininiiniiii e 14-21

Required XA Features Published by Oracle Databasec.cccccocovivnnininnnnne, 15-4
XA Library SUDTOULINEScccceviiiiiiiiiiiiii e 15-5
Oracle XA Interface EXtENSIONScccoceuiviiiiiiiiiiciiiiiiiiccccc 15-6
Required Fields of Xa_open String.........c.cccceeieiiiiiiiiiiiiiiccc, 15-9
Optional Fields in the xa_open String.........ccccccovviiiiiiiiiiiccas 15-9
TX Interface FUNCHONScouiviviiiiiiiiiiicciccc s 15-13
TPM Replacement Statementsccocevveiiiiiiiiiiniiiiiiis 15-15
Sample Trace File CONENtScccoeuiuiiiiiiiiiiiiiiicc e 15-19
Tightly and Loosely Coupled Transaction Branches............c.ccoooiiiiiiinn 15-22
General Structure of EPC ENCOAINGScucvoviiiiiiiiiciiecci 17-3
Identity Code Package Object TYPes........ccccevvieiviiiiieiiiiiiiiiiiccccc, 17-18
MGD_ID Object Type SUDPIrograms...........cccceeveeiiiereviiiiiiniiieiiiieesseess e, 17-18
DBMS_MGD_ID_UTL Package Utility Subprograms............ccccoevvivnnninnninnninenene. 17-19
Definition and Description of the MGD_ID_CATEGORY Metadata View 17-21
Definition and Description of the USER_MGD_ID_CATEGORY Metadata View..... 17-21
Definition and Description of the MGD_ID_SCHEME Metadata View....................... 17-21
Definition and Description of the USER_MGD_ID_SCHEME Metadata View 17-21
Agent Control Utility (agtctl) Commands..........ccoouevoiiiiiiiiiici e A-5
Configuration Parameters for agtctl...........ooooiii e A-9

Audience

Preface

Oracle Database Advanced Application Developer’s Guide explains topics that experienced
application developers reference repeatedly. Information in this guide applies to
features that work the same on all supported platforms, and does not include
system-specific information.

Preface topics:

= Audience

= Documentation Accessibility
= Related Documents

s Conventions

Oracle Database Advanced Application Developer’s Guide is intended for application
developers who are either developing new applications or converting existing
applications to run in the Oracle Database environment. This guide is also valuable to
anyone who is interested in the development of database applications, such as systems
analysts and project managers.

To use this document effectively, you need a working knowledge of:
= Application programming
s Structured Query Language (SQL)

= Object-oriented programming

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

XXVii

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, 7 days a week. For TTY support,
call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documents

For more information, see the following documents in the Oracle Database 11g Release
1 (11.1) documentation set:

» Oracle Database PL/SQL Language Reference

» Oracle Call Interface Programmer’s Guide

» Oracle Database Security Guide

» Pro*C/C++ Programmer’s Guide

» Oracle Database SQL Language Reference

s Oracle Database Administrator’s Guide

» Oracle Database Concepts

» Oracle XML Developer’s Kit Programmer’s Guide
» Oracle XML DB Developer’s Guide

» Oracle Database Globalization Support Guide

» Oracle Database Sample Schemas

See also:

» Oracle PL/SQL Tips and Technigues by Joseph C. Trezzo. Oracle Press, 1999.

» Oracle PL/SQL Programming by Steven Feuerstein. 3rd Edition. O'Reilly &
Associates, 2002.

» Oracle PL/SQL Developer's Workbook by Steven Feuerstein. O'Reilly & Associates,
2000.

» Oracle PL/SQL Best Practices by Steven Feuerstein. O'Reilly & Associates, 2001.

Conventions

The following text conventions are used in this document:

XXViii

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

*_viewmeans all static data dictionary views whose names end with view. For
example, *_ ERRORS means ALL_ERRORS, DBA_ERRORS, and USER_ERRORS. For
more information about any static data dictionary view, or about static dictionary
views in general, see Oracle Database Reference.

XXiX

XXX

What's New in Application Development?

This topic briefly describes the new Oracle Database features that this book documents
and provides links to more information.

Oracle Database 11g Release 1 (11.1) New Features

The new application development features for Release 11.1 are:

WAIT Option for Data Definition Language (DDL) Statements
Binary XML Support for Oracle XML Database
Metadata for SQL Built-In Functions

Enhancements to Regular Expression Built-in Functions
Invisible Indexes

PL/SQL Function Result Cache

Sequences in PL/SQL Expressions

PL/Scope

PL/SQL Hierarchical Profiler

Query Result Change Notification

Flashback Transaction

Flashback Data Archive (Oracle Total Recall)

XA API Available Within PL/SQL

Support for XA /JTA in Oracle Real Application Clusters (Oracle RAC)
Environment

Identity Code Package

Enhanced Online Index Creation and Rebuilding

Embedded PL/SQL Gateway

Oracle Database Spawns Multithreaded extproc Agent Directly by Default

WAIT Option for Data Definition Language (DDL) Statements

DDL statements require exclusive locks on internal structures. If these locks are
unavailable when a DDL statement is issued, the DDL statement fails, though it might
have succeeded if it had been issued subseconds later. The WAIT option of the SQL
statement LOCK TABLE enables a DDL statement to wait for its locks for a specified
period of time before failing.

XXXi

XXXii

For more information, see Choosing a Locking Strategy on page 2-13.

Binary XML Support for Oracle XML Database

Binary XML is a third way to represent an XML document. Binary XML complements,
rather than replaces, the existing object-relational storage and CLOB storage
representations. Binary XML has two significant benefits:

s XML operations can be significantly optimized, whether or not an XML schema is
available.

s The internal representation of XML is the same on disk, in memory, and on wire.

As with other storage mechanisms, the details of binary XML storage are transparent
to you. You continue to use XMLType and its associated methods and operators.

For more information, see Representing XML on page 3-18.

See Also: Oracle XML DB Developer’s Guide

Metadata for SQL Built-In Functions

Metadata for SQL built-in functions is accessible through dynamic performance (V$)
views. Third-party tools can leverage built-in SQL functions without maintaining their
metadata in the application layer.

For more information, see Metadata for SQL Built-In Functions on page 3-29.

Enhancements to Regular Expression Built-in Functions

The regular expression built-in functions REGEXP_INSTR and REGEXP_SUBSTR have
increased functionality. A new regular expression built-in function, REGEXP_COUNT,
returns the number of times a pattern appears in a string. These functions act the same
in SQL and PL/SQL.

For more information, see Oracle Database Implementation of Regular Expressions on
page 4-2.

See Also: Oracle Database SQL Language Reference

Invisible Indexes

An invisible index is maintained by Oracle Database for every Data Manipulation
Language (DML) statement, but is ignored by the optimizer unless you explicitly set
the parameter OPTIMIZER_USE_INVISIBLE_INDEXES to TRUE on a session or
system level.

Making an index invisible is an alternative to making it unusable or dropping it. Using
invisible indexes, you can do the following:

» Test the removal of an index before dropping it

» Create invisible indexes temporarily for specialized, nonstandard operations, such
as online application upgrades, without affecting the behavior of existing
applications

For more information, see Drop Unused Indexes on page 5-5.

PL/SQL Function Result Cache

Before Release 11.1, if you wanted your PL/SQL application to cache the results of a
function, you had to design and code the cache and cache-management subprograms.
If multiple sessions ran your application, each session had to have its own copy of the

cache and cache-management subprograms. Sometimes each session had to perform
the same expensive computations.

As of Release 11.1, PL/SQL provides a function result cache. Because the function
result cache is stored in a shared global area (SGA), it is available to any session that
runs your application.

For more information, see PL/SQL Function Result Cache on page 7-11.

See Also: Oracle Database PL/SQL Language Reference

Sequences in PL/SQL Expressions

The pseudocolumns CURRVAL and NEXTVAL make writing PL/SQL source code easier
for you and improve run-time performance and scalability. You can use sequence_
name.CURRVAL and sequence_name.NEXTVAL wherever you can use a NUMBER
expression.

See Example 7-6 on page 7-11.

See Also: Oracle Database PL/SQL Language Reference

PL/Scope

PL/Scope is a compiler-driven tool that collects and organizes data about user-defined
identifiers from PL/SQL source code. Because PL/Scope is a compiler-driven tool, you
use it through interactive development environments (such as SQL Developer and
JDeveloper), rather than directly.

PL/Scope enables the development of powerful and effective PL/Scope source code
browsers that increase PL/SQL developer productivity by minimizing time spent
browsing and understanding source code.

For a detailed description of PL/Scope, see Chapter 8, "Using PL/Scope."

PL/SQL Hierarchical Profiler

Nonhierarchical (flat) profilers record the time that a program spends within each
subprogram—the function time or self time of each subprogram. Function time is
helpful, but often inadequate. For example, it is helpful to know that a program
spends 40% of its time in the subprogram INSERT_ORDER, but it is more helpful to
know which subprograms call INSERT_ORDER often and the total time the program
spends under INSERT_ORDER (including its descendent subprograms). Hierarchical
profilers provide such information.

The PL/SQL hierarchical profiler does the following:

= Reports the dynamic execution profile of your PL/SQL program, organized by
subprogram calls

= Accounts for SQL and PL/SQL execution times separately
= Requires no special source or compile-time preparation

m Stores results in database tables (hierarchical profiler tables) for custom report
generation by integrated development environment (IDE) tools (such as SQL
Developer and third-party tools)

To generate simple HTML reports from raw profiler output, you can use the
plshprof command-line utility.

Each subprogram-level summary in the dynamic execution profile includes
information such as:

XXXxiii

XXXiV

= Number of calls to the subprogram
= Time spent in the subprogram itself (function time or self time)

= Time spent in the subprogram itself and in its descendent subprograms (subtree
time)

s Detailed parent-children information, for example:
— All callers of a given subprogram (parents)
- All subprograms that a given subprogram called (children)
- How much time was spent in subprogram x when called from y
- How many calls to subprogram x were from y

You can browse the generated HTML reports in any browser. The browser's
navigational capabilities, combined with well chosen links, provide a powerful way to
analyze performance of large applications, improve application performance, and
lower development costs.

For a detailed description of PL/SQL hierarchical profiler, see Chapter 9, "Using the
PL/SQL Hierarchical Profiler."

Query Result Change Notification

Before Release 11.1, Continuous Query Notification (CQN) published only object
change notifications, which result from DML or DDL changes to the objects associated
with registered the queries.

As of Release 11.1, CQN can also publish query result change notifications, which
result from DML or DDL changes to the result set associated with the registered
queries. New static data dictionary views enable you to see which queries are
registered for result-set-change notifications (see Querying CQN Registrations on
page 12-25).

For more information, see Chapter 12, "Using Continuous Query Notification."

Flashback Transaction

The DBMS_FLASHBACK.TRANSACTION_BACKOUT procedure rolls back a transaction
and its dependent transactions while the database remains online. This recovery
operation uses undo data to create and execute the compensating transactions that
return the affected data to its original state.

For more information, see Using Flashback Transaction on page 13-15.

Flashback Data Archive (Oracle Total Recall)

A Flashback Data Archive provides the ability to store and track all transactional
changes to a record over its lifetime. It is no longer necessary to build this intelligence
into the application. A Flashback Data Archive is useful for compliance with record
stage policies and audit reports.

For more information, see Using Flashback Data Archive (Oracle Total Recall) on
page 13-16.

XA API Available Within PL/SQL

The XA interface functionality that supports transactions involving multiple resource
managers, such as databases and queues, is now available within PL/SQL. You can
use PL/SQL to switch and share transactions across SQL*Plus sessions and across
processes.

For more information, see Using the DBMS_XA Package on page 15-16.

Support for XA/JTA in Oracle Real Application Clusters (Oracle RAC)
Environment

An XA transaction now spans Oracle RAC instances by default, enabling any
application that uses XA to take full advantage of the Oracle RAC environment,
enhancing the availability and scalability of the application.

For more information, see Using Oracle XA with Oracle Real Application Clusters
(Oracle RAC) on page 15-23.

Identity Code Package

The Identity Code Package provides tools to store, retrieve, encode, decode, and
translate between various product or identity codes, including Electronic Product
Code (EPC), in Oracle Database. The Identity Code Package provides new data types,
metadata tables and views, and PL/SQL packages for storing EPC standard RFID tags
or new types of RFID tags in a user table.

The Identity Code Package enables Oracle Database to recognize EPC coding schemes,
to support efficient storage and component-level retrieval of EPC data, and to comply
with the EPCglobal Tag Data Translation 1.0 (TDT) standard that defines how to
decode, encode, and translate between various EPC RFID tag representations.

The Identity Code Package also provides an extensible framework that enables you to
use pre-existing coding schemes with applications that are not included in the EPC
standard and adapt Oracle Database both to these older systems and to evolving
identity codes that might become part of a future EPC standard.

The Identity Code Package also lets you create your own identity codes by first
registering the new encoding category, registering the new encoding type, and then
registering the new components associated with each new encoding type.

For more information, see Chapter 17, "Using the Identity Code Package."

Enhanced Online Index Creation and Rebuilding
Online index creation and rebuilding no longer requires a DML-blocking lock.

Before Release 11.1, online index creation and rebuilding required a very short-term
DML-blocking lock at the end of the rebuilding. The DML-blocking lock could cause a
spike in the number of waiting DML operations, and therefore a short drop and spike
of system usage. This system usage anomaly could trigger operating system alarm
levels.

Embedded PL/SQL Gateway

The PL/SQL gateway enables a user-written PL/SQL subprogram to be invoked in
response to a URL with parameters derived from an HTTP request. mod_plsqgl is a
form of the gateway that exists as a plug-in to the Oracle HTTP Server. Now the
PL/SQL gateway is also embedded in the database itself. The embedded PL/SQL
gateway uses the internal Oracle XML Database Listener and does not depend on the
Oracle HTTP Server. You configure the embedded version of the gateway with the
DBMS_EPG package.

For more information, see Using Embedded PL/SQL Gateway on page 10-4.
Oracle Database Spawns Multithreaded extproc Agent Directly by Default

When an application calls an external C procedure, either Oracle Database or Oracle
Listener starts the external procedure agent, extproc.

XXXV

XXXVi

Before Release 11.1, Oracle Listener spawned the multithreaded extproc agent, and
you defined environment variables for extproc in the file 1istener.ora.

As of Release 11.1, by default, Oracle Database spawns extproc directly, eliminating
the risk that Oracle Listener might spawn extproc unexpectedly. This default
configuration is recommended for maximum security. If you use it, you define
environment variables for extproc in the file extproc.ora.

For more information, including situations in which you cannot use the default
configuration, see Loading External Procedures on page 14-4.

1

Introduction to Oracle Programmatic
Environments

Topics:

Overview of Oracle Application Development
Overview of PL/SQL

Overview of Java Support Built into the Database
Overview of Pro*C/C++

Overview of Pro*COBOL

Overview of OCI and OCCI

Overview of Oracle Data Provider for NET (ODP.NET)
Overview of OraOLEDB

Overview of Oracle Objects for OLE (O0O40)

Choosing a Programming Environment

Overview of Oracle Application Development

As an application developer, you have many choices when writing a program to
interact with Oracle Database:

Client/Server Model
Server-Side Coding

Two-Tier and Three-Tier Models
User Interface

Stateful and Stateless User Interfaces

Client/Server Model

In a traditional client/server program, your application code runs on a client system;
that is, a system other than the database server. Database calls are transmitted from the
client system to the database server. Data is transmitted from the client to the server
for insert and update operations and returned from the server to the client for query
operations. The data is processed on the client system. Client/server programs are
typically written by using precompilers, whereas SQL statements are embedded
within the code of another language such as C, C++, or COBOL.

Introduction to Oracle Programmatic Environments 1-1

Overview of PL/SQL

Server-Side Coding

You can develop application logic that resides entirely inside the database by using
triggers that are executed automatically when changes occur in the database or stored
subprograms that are invoked explicitly. Off-loading the work from your application
lets you reuse code that performs verification and cleanup and control database
operations from a variety of clients. For example, by making stored subprograms
invocable through a Web server, you can construct a Web-based user interface that
performs the same functions as a client/server application.

Two-Tier and Three-Tier Models

Client/server computing is often referred to as a two-tier model: your application
communicates directly with the database server. In the three-tier model, a separate
application server processes the requests. The application server might be a basic Web
server, or might perform advanced functions like caching and load-balancing.
Increasing the processing power of this middle tier lets you lessen the resources
needed by client systems, resulting in a thin client configuration in which the client
system might need only a Web browser or other means of sending requests over the
TCP/IP or HTTP protocols.

User Interface

The user interface is what your application displays to end users. It depends on the
technology behind the application as well as the needs of the users themselves.
Experienced users can enter SQL statements that are passed on to the database. Novice
users can be shown a graphical user interface that uses the graphics libraries of the
client system (such as Windows or X-Windows). Any of these traditional user
interfaces can also be provided in a Web browser through HTML and Java.

Stateful and Stateless User Interfaces

In traditional client/server applications, the application can keep a record of user
actions and use this information over the course of one or more sessions. For example,
past choices can be presented in a menu so that they do not have to be entered again.
When the application is able to save information in this way, the application is
considered stateful.

Web or thin-client applications that are stateless are easier to develop. Stateless
applications gather all the required information, process it using the database, and
then start over with the next user. This is a popular way to process single-screen
requests such as customer registration.

There are many ways to add stateful action to Web applications that are stateless by
default. For example, an entry form on one Web page can pass information to
subsequent Web pages, enabling you to construct a wizard-like interface that
remembers the user's choices through several different steps. Cookies can be used to
store small items of information about the client system, and retrieve them when the
user returns to a Web site. Servlets can be used to keep a database session open and
store variables between requests from the same client.

Overview of PL/SQL

Topics:
s WhatIs PL/SQL?

1-2 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL

= Advantages of PL/SQL
s PL/SQL Web Development Tools

What Is PL/SQL?

PL/SQL is Oracle's procedural extension to SQL, the standard database access
language. It is an advanced fourth-generation programming language (4GL), which
means that it is an application-specific language. PL/SQL and SQL have built-in
treatment of the relational database domain.

In PL/SQL, you can manipulate data with SQL statements and control program flow
with procedural constructs such as loops. You can also do the following:

s Declare constants and variables
= Define subprograms
= Use collections and object types
s Trap run-time errors

Applications written in any of the Oracle Database programmatic interfaces can
invoke PL/SQL stored subprograms and send blocks of PL/SQL code to Oracle
Database for execution. 3GL applications can access PL/SQL scalar and composite
data types through host variables and implicit data type conversion. A 3GL language
is easier than assembler language for a human to understand and includes features
such as named variables. Unlike 4GL, it is not specific to an application domain.

Example 1-1 provides an example of a simple PL/SQL subprogram. The procedure
debit_account withdraws money from a bank account. It accepts an account
number and an amount of money as parameters. It uses the account number to
retrieve the account balance from the database, then computes the new balance. If this
new balance is less than zero, then the procedure jumps to an error routine; otherwise,
it updates the bank account.

Example 1-1 Simple PL/SQL Example
PROCEDURE debit_account (p_acct_id INTEGER, p_debit_amount REAL)

IS
v_old_balance REAL;
v_new_balance REAL;
e_overdrawn EXCEPTION;
BEGIN
SELECT bal
INTO v_old_balance
FROM accts
WHERE acct_no = p_acct_id;
v_new_balance := v_old_balance - p_debit_amount;
IF v_new balance < 0 THEN
RAISE e_overdrawn;
ELSE
UPDATE accts SET bal = v_new_balance
WHERE acct_no = p_acct_id;
END IF;
COMMIT;
EXCEPTION

WHEN e_overdrawn THEN
-- handle the error
END debit_account;

Introduction to Oracle Programmatic Environments 1-3

Overview of PL/SQL

See Also:
» Oracle Database PL/SQL Language Reference
» Oracle Database SQL Language Reference

Advantages of PL/SQL

PL/SQL is a portable, high-performance transaction processing language with the
following advantages:

s Integration with Oracle Database

= High Performance

= High Productivity

= Scalability

= Manageability

s Object-Oriented Programming Support
= Portability

= Security

= Packages

Integration with Oracle Database

PL/SQL enables you use all of the Oracle Database SQL data manipulation, cursor
control, and transaction control statements. PL/SQL also supports the SQL functions,
operators, and pseudocolumns. You can manipulate data in Oracle Database flexibly
and safely.

PL/SQL supports all SQL data types. Combined with the direct access that SQL
provides, these shared data types integrate PL/SQL with the Oracle Database data
dictionary.

PL/SQL supports Dynamic SQL, which is a programming technique that enables you
to build and process SQL statements "on the fly" at run time. It gives PL/SQL
flexibility comparable to scripting languages such as PERL, Korn shell, and Tcl.

The $TYPE and $ROWTYPE attributes enable your code to adapt as table definitions
change. For example, the $TYPE attribute declares a variable based on the type of a
database column. If the column data type changes, then the variable uses the correct
type at run time. This provides data independence and reduces maintenance costs.

High Performance

If your application is database intensive, then you can use PL/SQL blocks to group
SQL statements before sending them to Oracle Database for execution. This coding
strategy can drastically reduce the communication overhead between your application
and Oracle Database.

PL/SQL stored subprograms are compiled once and stored in executable form, so
subprogram calls are quick and efficient. A single call can start a compute-intensive
stored subprogram, reducing network traffic and improving round-trip response
times. Executable code is automatically cached and shared among users, lowering
memory requirements and call overhead.

1-4 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL

High Productivity

PL/SQL adds procedural capabilities such as Oracle Forms and Oracle Reports. For
example, you can use an entire PL/SQL block in an Oracle Forms trigger instead of
multiple trigger steps, macros, or user exits.

PL/SQL is the same in all environments. When you master PL/SQL with one Oracle
Database tool, you can transfer your knowledge to Oracle Database tools, multiplying
your productivity gains. For example, scripts written with one tool can be used by
other tools.

Scalability

PL/SQL stored subprograms increase scalability by centralizing application
processing on the server. Automatic dependency tracking helps you develop scalable
applications.

The shared memory facilities of the shared server enable Oracle Database to support
many thousands of concurrent users on a single node. For more scalability, you can
use the Oracle Connection Manager to multiplex network connections.

Manageability

After being validated, you can use a PL/SQL stored subprogram in any number of
applications. If its definition changes, then only the subprogram is affected, not the
applications that invoke it. This simplifies maintenance and enhancement. Also,
maintaining a subprogram on the Oracle Database is easier than maintaining copies on
various client systems.

Object-Oriented Programming Support
PL/SQL supports object-oriented programming with:

n Object Types

s Collections

Object Types An object type is a user-defined composite data type that encapsulates a
data structure along with the subprograms needed to manipulate the data. The
variables that form the data structure are called attributes. The subprograms that
characterize the action of the object type are called methods, which you can implement
in PL/SQL.

Object types are an ideal object-oriented modeling tool, which you can use to reduce
the cost and time required to build complex applications. Besides enabling you to
create software components that are modular, maintainable, and reusable, object types
enable different teams of programmers to develop software components concurrently.

Collections A collection is an ordered group of elements, all of the same type (for
example, the grades for a class of students). Each element has a unique subscript that
determines its position in the collection. PL/SQL offers three kinds of collections:
associative arrays (index-by tables), nested tables, and variable-size arrays (varrays).

Collections work like the set, queue, stack, and hash table data structures found in
most third-generation programming languages. Collections can store instances of an
object type and can also be attributes of an object type. Collections can be passed as
parameters. You can use collections to move columns of data into and out of database
tables or between client-side applications and stored subprograms. You can define
collection types in a PL/SQL package, then use the same types across many
applications.

Introduction to Oracle Programmatic Environments 1-5

Overview of PL/SQL

Portability

Applications written in PL/SQL can run on any operating system and hardware
platform on which Oracle Database runs. You can write portable program libraries and
reuse them in different environments.

Security

PL/SQL stored subprograms enable you to divide application logic between the client
and the server, which prevents client applications from manipulating sensitive Oracle
Database data. Database triggers written in PL/SQL can prevent applications from
making specified updates and can audit user queries.

You can restrict access to Oracle Database data by allowing users to manipulate it only
through stored subprograms that have a restricted set of privileges. For example, you
can grant users access to a subprogram that updates a table but not grant them access
to the table itself.

See Also: Oracle Database Security Guide for details on database
security features

Packages

A package is an encapsulated collection of related program objects stored together in
the database. Program objects are subprograms, variables, constants, cursors, and
exceptions. For information about built-in packages, see Oracle Database PL/SQL
Packages and Types Reference.

PL/SQL Web Development Tools

Oracle Database provides built-in tools and technologies that enable you to deploy
PL/SQL applications over the Web. Thus, PL/SQL serves as an alternative to Web
application frameworks such as CGL

The PL/SQL Web Toolkit is a set of PL/SQL packages that you can use to develop
stored procedures that can be invoked by a Web client. Two important consumers of
this technology are the PL/SQL Gateway and the Embedded PL/SQL Gateway. The
PL/SQL Gateway enables an HTTP client to invoke a PL/SQL stored procedure
through mod_plsql, which is a plug-in to Oracle HTTP Server. This module performs
the following actions:

1. Translates a URL passed by a browser client
2. Invokes an Oracle Database stored subprogram with the parameters in the URL
3. Returns output (typically HTML) to the client

The Embedded PL/SQL Gateway is a version of PL/SQL Gateway that uses Oracle
Database's own XML DB Listener to process HTTP requests. In this way, you can
develop Web applications without having to install or maintain Oracle HTTP Server
and mod_plsql.

The Embedded PL/SQL Gateway is a version of PL/SQL Gateway that uses Oracle
Database's own XML DB Listener to process HTTP requests. In this way, you can
develop Web applications without having to install or maintain Oracle HTTP Server
and mod_plsql.

See Also: Chapter 10, "Developing PL/SQL Web Applications,” to
learn how to use PL/SQL in Web development

1-6 Oracle Database Advanced Application Developer's Guide

Overview of Java Support Built into the Database

Overview of Java Support Built into the Database

This section provides an overview of built-in database features that support Java
applications. The database includes the core JDK libraries such as java.lang,
java.io, and so on. The database supports client-side Java standards such as JDBC
and SQLJ, and provides server-side JDBC and SQL] drivers that enable data-intensive
Java code to run within the database.

Topics:

s Overview of Oracle JVM

s Overview of Oracle Extensions to JDBC

s Overview of Oracle SQLJ

s Overview of Oracle JPublisher

s Overview of Java Stored Subprograms

= Overview of Oracle Database Web Services

s Overview of Writing Subprograms in Java

See Also:

» Oracle Database Java Developer’s Guide

» Oracle Database [DBC Developer’s Guide and Reference
» Oracle Database JPublisher User’s Guide

Overview of Oracle JVM

Oracle JVM, the Java Virtual Machine provided with the Oracle Database, is compliant
with the J2SE version 1.4.x specification and supports the database session
architecture.

Any database session can activate a dedicated JVM. All sessions share the same JVM
code and statics; however, private states for any given session are held, and
subsequently garbage collected, in an individual session space.

This design provides the following benefits:

= Java applications have the same session isolation and data integrity as SQL
operations.

= You need not run Java in a separate process for data integrity.
s Oracle JVM is a robust JVM with a small memory footprint.

s The JVM has the same linear Symmetric Multiprocessing (SMP) scalability as the
database and can support thousands of concurrent Java sessions.

Oracle JVM works consistently with every platform supported by Oracle Database.
Java applications that you develop with Oracle JVM can easily be ported to any
supported platform.

Oracle JVM includes a deployment-time native compiler that enables Java code to be
compiled once, stored in executable form, shared among users, and invoked more
quickly and efficiently.

Security features of the database are also available with Oracle JVM. Java classes must
be loaded in a database schema (by using Oracle JDeveloper, a third-party IDE,
SQL*Plus, or the loadjava utility) before they can be called. Java class calls are secured

Introduction to Oracle Programmatic Environments 1-7

Overview of Java Support Built into the Database

and controlled through database authentication and authorization, Java 2 security, and
invoker's rights (IR) or definer's rights (DR).

Overview of Oracle Extensions to JDBC

JDBC (Java Database Connectivity) is an API (Applications Programming Interface)
that enables Java to send SQL statements to an object-relational database such as
Oracle Database.

The JDBC standard defines four types of JDBC drivers:

Type Description

1 A JDBC-ODBC bridge. Software must be installed on client systems.

2 Native methods (calls C or C++) and Java methods. Software must be installed on the
client.

3 Pure Java. The client uses sockets to call middleware on the server.

4 The most pure Java solution. Talks directly to the database by using Java sockets.

JDBC is based on the X/Open SQL Call Level Interface, and complies with the SQL92
Entry Level standard.

You can use JDBC to do dynamic SQL. In dynamic SQL, the embedded SQL statement
to be executed is not known before the application is run and requires input to build
the statement.

The drivers that are implemented by Oracle have extensions to the capabilities in the
JDBC standard that was defined by Sun Microsystems. Oracle implementations of
JDBC drivers are described in the following sections. Oracle Database support of and
extensions to various levels of the JDBC standard are described in Oracle Database
Extensions to JDBC Standards on page 1-9.

Topics:

s JDBC Thin Driver

s JDBC OCI Driver

s JDBC Server-Side Internal Driver

» Oracle Database Extensions to JDBC Standards
= Sample JDBC 2.0 Program

= Sample Pre-2.0 JDBC Program

= JDBCin SQLJ Applications

JDBC Thin Driver

The JDBC thin driver is a Type 4 (100% pure Java) driver that uses Java sockets to
connect directly to a database server. It has its own implementation of a Two-Task
Common (TTC), a lightweight implementation of TCP/IP from Oracle Net. It is
written entirely in Java and is therefore platform-independent.

The thin driver does not require Oracle software on the client side. It does need a
TCP/IP listener on the server side. Use this driver in Java applets that are downloaded
into a Web browser or in applications for which you do not want to install Oracle
client software. The thin driver is self-contained, but it opens a Java socket, and thus
can only run in a browser that supports sockets.

1-8 Oracle Database Advanced Application Developer's Guide

Overview of Java Support Built into the Database

JDBC OCI Driver

The JDBC OCI driver is a Type 2 JDBC driver. It makes calls to the OCI (Oracle Call
Interface) written in C to interact with Oracle Database, thus using native and Java
methods.

The OCI driver provides access to more features than the thin driver, such as
Transparent Application Fail-Over, advanced security, and advanced LOB
manipulation.

The OCI driver provides the highest compatibility between different Oracle Database
versions. It also supports all installed Oracle Net adapters, including IPC, named
pipes, TCP/IP, and IPX/SPX.

Because it uses native methods (a combination of Java and C) the OCI driver is
platform-specific. It requires a client installation of version Oracle8i or later including
Oracle Net, OCI libraries, CORE libraries, and all other dependent files. The OCI
driver usually executes faster than the thin driver.

The OCI driver is not appropriate for Java applets, because it uses a C library that is
platform-specific and cannot be downloaded into a Web browser. It is usable in J2EE
components running in middle-tier application servers, such as Oracle Application
Server. Oracle Application Server provides middleware services and tools that support
access between applications and browsers.

JDBC Server-Side Internal Driver

The JDBC server-side internal driver is a Type 2 driver that runs inside the database
server, reducing the number of round-trips needed to access large amounts of data.
The driver, the Java server VM, the database, the Java native compiler (which speeds
execution by as much as 10 times), and the SQL engine all run within the same address
space.

This driver provides server-side support for any Java program used in the database.
You can also call PL/SQL stored subprograms and triggers.

The server driver fully supports the same features and extensions as the client-side
drivers.

Oracle Database Extensions to JDBC Standards
Oracle Database includes the following extensions to the JDBC 1.22 standard:

= Support for Oracle data types

s Performance enhancement by row prefetching

s Performance enhancement by execution batching

= Specification of query column types to save round-trips
= Control of DatabaseMetaData calls

Oracle Database supports all APIs from the JDBC 2.0 standard, including the core
APIs, optional packages, and numerous extensions. Some of the highlights include
datasources, JTA, and distributed transactions.

Oracle Database supports the following features from the JDBC 3.0 standard:
= Support for JDK 1.4.
» Toggling between local and global transactions.

s Transaction savepoints.

Introduction to Oracle Programmatic Environments 1-9

Overview of Java Support Built into the Database

= Reuse of prepared statements by connection pools.

Sample JDBC 2.0 Program

The following example shows the recommended technique for looking up a data
source using JNDI in JDBC 2.0:

// import the JDBC packages
import java.sql.*;

import javax.sql.*;

import oracle.jdbc.pool.*;

InitialContext ictx = new InitialContext();

DataSource ds = (DataSource)ictx.lookup ("jdbc/OracleDS");

Connection conn = ds.getConnection();

Statement stmt = conn.createStatement () ;

ResultSet rs = stmt.executeQuery("SELECT last_name FROM employees");
while (rs.next()) {

out.println(rs.getString("ename") + "
");

}

conn.close() ;

Sample Pre-2.0 JDBC Program

The following source code registers an Oracle JDBC thin driver, connects to the
database, creates a Statement object, executes a query, and processes the result set.

The SELECT statement retrieves and lists the contents of the 1ast_name column of
the hr.employees table.

import java.sqgl.*
import java.math.*
import java.io.*
import java.awt.*

class JdbcTest {
public static void main (String args []) throws SQLException {
// Load Oracle driver
DriverManager.registerDriver (new oracle.jdbc.OracleDriver());

// Connect to the local database
Connection conn =
DriverManager.getConnection ("jdbc:oracle:thin:@myhost:1521:0rcl",
"hr", "password");

// Query the employee names
Statement stmt = conn.createStatement ();
ResultSet rset = stmt.executeQuery ("SELECT last_name FROM employees");

// Print the name out
while (rset.next ())
System.out.println (rset.getString (1));
// Close the result set, statement, and the connection
rset.close();
stmt.close() ;
conn.close();

One Oracle Database extension to the JDBC drivers is a form of the
getConnection () method that uses a Properties object. The Properties object

1-10 Oracle Database Advanced Application Developer's Guide

Overview of Java Support Built into the Database

lets you specify user, password, and database information as well as row prefetching
and execution batching.

To use the OCI driver in this code, replace the Connection statement with the
following, where MyHostString is an entry in the tnsnames.ora file:

Connection conn = DriverManager.getConnection ("jdbc:oracle:oci8:@MyHostString",
"hr", "password");

If you are creating an applet, then the getConnection () and registerDriver ()
strings are different.

JDBC in SQLJ Applications

JDBC code and SQLJ code (see Overview of Oracle SQL]J on page 1-11) interoperate,
enabling dynamic SQL statements in JDBC to be used with both static and dynamic
SQL statements in SQLJ. A SQLJ iterator class corresponds to the JDBC result set.

See Also: Oracle Database [DBC Developer’s Guide and Reference for
more information about JDBC

Overview of Oracle SQLJ

SQLJ is an ANSI SQL-1999 standard for embedding SQL statements in Java source
code. SQL]J provides a simpler alternative to JDBC for both client-side and server-side
SQL data access from Java.

A SQL]J source file contains Java source with embedded SQL statements. Oracle SQLJ
supports dynamic as well as static SQL. Support for dynamic SQL is an Oracle
extension to the SQLJ standard.

Note: This document uses the term SQL]J to refer to the Oracle SQLJ
implementation, including Oracle SQL]J extensions.

Oracle Database provides a translator and a run time driver to support SQL]J. The SQL]
translator is 100% pure Java and is portable to any JVM that is compliant with JDK
version 1.1 or higher.

The Oracle SQLJ translator performs the following tasks:

» Translates SQLJ source to Java code with calls to the SQL]J run time driver. The
SQL]J translator converts the source code to pure Java source code and can check
the syntax and semantics of static SQL statements against a database schema and
verify the type compatibility of host variables with SQL types.

= Compiles the generated Java code with the Java compiler.

= (Optional) Creates profiles for the target database. SQL] generates "profile" files
with customization specific to Oracle Database.

Oracle Database supports SQLJ stored subprograms and triggers that execute in the
Oracle JVM. SQL] is integrated with JDeveloper. Source-level debugging support for
SQL] is available in JDeveloper.

The following is an example of a simple SQL]J executable statement, which returns one
value because employee_idis unique in the employee table:

String name;
#sqgl { SELECT first_name INTO :name FROM employees WHERE employee_id=112 };
System.out.println("Name is " + name + ", employee number = " + employee_id);

Introduction to Oracle Programmatic Environments 1-11

Overview of Java Support Built into the Database

Each host variable (or qualified name or complex Java host expression) included in a
SQL expression is preceded by a colon (:). Other SQL] statements declare Java types.
For example, you can declare an iterator (a construct related to a database cursor) for
queries that retrieve many values, as follows:

#sql iterator EmpIter (String EmpNam, int EmpNumb) ;

See Also: Oracle Database JPublisher User’s Guide for more examples
and details on Oracle SQLJ syntax

Topics:

= Benefits of SQL]J

s Comparing SQL]J to JDBC

= SQLJ Stored Subprograms in the Server

Benefits of SQLJ

Oracle SQLJ extensions to Java enable rapid development and easy maintenance of
applications that perform database operations through embedded SQL.

In particular, Oracle SQL]J does the following:

= Provides a concise, legible mechanism for database access from static SQL. Most
SQL in applications is static. SQL]J provides more concise and less error-prone
static SQL constructs than JDBC does.

= Provides an SQL Checker module for verification of syntax and semantics at
translate time.

= Provides flexible deployment configurations, which makes it possible to
implement SQLJ on the client, server, or middle tier.

= Supports a software standard. SQL]J is an effort of a group of vendors and is
supported by all of them. Applications can access multiple database vendors.

= Provides source code portability. Executables can be used with all of the vendor
DBMS:s if the code does not rely on any vendor-specific features.

= Enforces a uniform programming style for the clients and the servers.

= Integrates the SQL]J translator with Oracle JDeveloper, a graphical IDE that
provides SQLJ translation, Java compilation, profile customizing, and debugging
at the source code level, all in one step.

s Includes Oracle Database type extensions.

Comparing SQLJ to JDBC

JDBC provides a complete dynamic SQL interface from Java to databases. It gives
developers full control over database operations. SQL]J simplifies Java database
programming to improve development productivity.

JDBC provides fine-grained control of the execution of dynamic SQL from Java,
whereas SQL] provides a higher-level binding to SQL operations in a specific database
schema. Some differences between JDBC and SQL] are:

= SQLJ source code is more concise than equivalent JDBC source code.

1-12 Oracle Database Advanced Application Developer's Guide

Overview of Java Support Built into the Database

= SQLJ uses database connections to type-check static SQL code. JDBC, being a
completely dynamic API, does not.

= SQLJ provides strong typing of query outputs and return parameters and provides
type-checking on calls. JDBC passes values to and from SQL without compile-time
type checking.

s SQLJ programs enable direct embedding of Java bind expressions within SQL
statements. JDBC requires a separate get or set statement for each bind variable
and specifies the binding by position number.

s SQLJ provides simplified rules for calling SQL stored subprograms. For example,
the following JDBC excerpt requires a generic call to a stored subprogram, in this
case fun, to have the following syntax. (This example shows SQL92 and Oracle
JDBC syntaxes.)

prepStmt.prepareCall ("{call fun(?,?)}" //stored procedure SQL92

)
?)1"); //stored function SQL92

(
prepStmt.prepareCall ("{? = call fun(?,
prepStmt .prepareCall ("begin fun(:1,:2);end;"); //stored procedure Oracle
prepStmt.prepareCall ("begin :1 := fun(:2,:3);end;");//stored func Oracle

Following is the SQL]J equivalent:

#sql {call fun(param_ list) }; //Stored procedure
// Declare x

#sql x = {VALUES(fun(param list)) }; // Stored function
// where VALUES is the SQL construct
The following benefits are common to SQLJ and JDBC:
= SQLJ source files can contain JDBC calls. SQL] and JDBC are interoperable.

» Oracle JPublisher generates custom Java classes to be used in your SQLJ or JDBC
application for mappings to Oracle Database object types and collections.

= Java and PL/SQL stored subprograms can be used interchangeably.

SQLJ Stored Subprograms in the Server

SQLJ applications can be stored and executed in the server by using the following
techniques:

» Translate, compile, and customize the SQL]J source code on a client and load the
generated classes and resources into the server with the 1oadjava utility. The
classes are typically stored in a Java archive (.jar) file.

= Load the SQL]J source code into the server, also using 1oadjava, where it is

translated and compiled by the server's embedded translator.

See Also: Oracle Database [Publisher User’s Guide for more
information about using stored subprograms with Oracle SQL]

Overview of Oracle JPublisher

Oracle JPublisher is a code generator that automates the process of creating
database-centric Java classes by hand. Oracle JPublisher is a client-side utility and is
built into the database system. You can run Oracle JPublisher from the command line
or directly from the Oracle JDeveloper IDE.

Oracle JPublisher inspects PL/SQL packages and database object types such as SQL
object types, VARRAY types, and nested table types, and then generates a Java class

Introduction to Oracle Programmatic Environments 1-13

Overview of Java Support Built into the Database

that is a wrapper around the PL/SQL package with corresponding fields and
methods.

The generated Java class can be incorporated and used by Java clients or J2EE
components to exchange and transfer object type instances to and from the database
transparently.

See Also: Oracle Database [Publisher User’s Guide

Overview of Java Stored Subprograms

Java stored subprograms enable you to implement programs that run in the database
server and are independent of programs that run in the middle tier. Structuring
applications in this way reduces complexity and increases reuse, security,
performance, and scalability.

For example, you can create a Java stored subprogram that performs operations that
require data persistence and a separate program to perform presentation or business
logic operations.

Java stored subprograms interface with SQL by using a similar execution model as
PL/SQL.

See Also: Oracle Database Java Developer’s Guide

Overview of Oracle Database Web Services

Web services represent a distributed computing paradigm for Java application
development that is an alternative to earlier Java protocols such as JDBC, and which
enable applications to interact through the XML and Web protocols. For example, an
electronics parts vendor can provide a Web-based programmatic interface to its
suppliers for inventory management. The vendor can invoke a Web service as part of a
program and automatically order new stock based on the data returned.

The key technologies used in Web services are:

» Web Services Description Language (WSDL), which is a standard format for
creating an XML document. WSDL describes what a web service can do, where it
resides, and how to invoke it. Specifically, it describes the operations and
parameters, including parameter types, provided by a Web service. In addition, a
WSDL document describes the location, the transport protocol, and the invocation
style for the Web service.

= Simple Object Access Protocol (SOAP) messaging, which is an XML-based
message protocol used by Web services. SOAP does not prescribe a specific
transport mechanism such as HTTP, FTP, SMTP, or JMS; however, most Web
services accept messages that use HTTP or HTTPS.

= Universal Description, Discovery, and Integration (UDDI) business registry, which
is a directory that lists Web services on the internet. The UDDI registry is often
compared to a telephone directory, listing unique identifiers (white pages),
business categories (yellow pages), and instructions for binding to a service
protocol (green pages).

Web services can use a variety of techniques and protocols. For example:
= Dispatching can occur in a synchronous (typical) or asynchronous manner.

= You can invoke a Web service in an RPC-style operation in which arguments are
sent and a response returned, or in a message style such as a one-way SOAP
document exchange.

1-14 Oracle Database Advanced Application Developer's Guide

Overview of Java Support Built into the Database

= You can use different encoding rules: literal or encoded.

You can invoke a Web service statically, when you might know everything about it
beforehand, or dynamically, in which case you can discover its operations and
transport endpoints while using it.

Oracle Database can function as either a Web service provider or as a Web service
consumer. When used as a provider, the database enables sharing and disconnected
access to stored subprograms, data, metadata, and other database resources such as
the queuing and messaging systems.

As a Web service provider, Oracle Database provides a disconnected and
heterogeneous environment that:

= Exposes stored subprograms independently of the language in which the
subprograms are written

= Exposes SQL Queries and XQuery

Overview of Writing Subprograms in Java

Subprograms are named blocks that encapsulate a sequence of statements. They are
like building blocks that you can use to construct modular, maintainable applications.
Write these named blocks and then define them with the 1oadjava command or SQL
CREATE FUNCTION, CREATE PROCEDURE, or CREATE PACKAGE statements. These Java
methods can accept arguments and can be called from the following:

s SQL CALL statements

s Embedded SQL CALL statements

s PL/SQL blocks, subprograms, and packages

s DML statements

= Oracle development tools such as OCI, Pro*C/C++, and Oracle Developer

s Oracle Java interfaces such as JDBC, SQLJ statements, CORBA, and Enterprise
Java Beans

s Method calls from object types
Topics:
s Overview of Writing Database Triggers in Java

s Why Use Java for Stored Subprograms and Triggers?

Overview of Writing Database Triggers in Java

A database trigger is a stored procedure that Oracle Database invokes ("fires")
automatically when certain events occur, for example, when a DML operation
modifies a certain table. Triggers enforce business rules, prevent incorrect values from
being stored, and reduce the need to perform checking and cleanup operations in each
application.

Why Use Java for Stored Subprograms and Triggers?

» Stored subprograms and triggers are compiled once, are easy to use and maintain,
and require less memory and computing overhead.

= Network bottlenecks are avoided, and response time is improved. Distributed
applications are easier to build and use.

s Computation-bound subprograms run faster in the server.

Introduction to Oracle Programmatic Environments 1-15

Overview of Pro*C/C++

= Data access can be controlled by letting users have only stored subprograms and
triggers that execute with DR instead of IR.

s PL/SQL and Java stored subprograms can invoke each other.

= Javain the server follows the Java language specification and can use the SQL]
standard, so that databases other than Oracle Database are also supported.

= Stored subprograms and triggers can be reused in different applications as well as
different geographic sites.

Overview of Pro*C/C++

The Pro*C/C++ precompiler is a software tool that enables the programmer to embed
SQL statements in a C or C++ source file. Pro*C/C++ reads the source file as input and
outputs a C or C++ source file that replaces the embedded SQL statements with Oracle
Database run-time library calls and is then compiled by the C or C++ compiler.

When there are errors found during the precompilation or the subsequent compilation,
modify your precompiler input file and rerun the two steps.

Topics:
s Implementing a Pro*C/C++ Application
= Highlights of Pro*C/C++ Features

Implementing a Pro*C/C++ Application

The following is a simple code fragment from a C source file that queries the table
employees in the schema hr:

#define UNAME_LEN 10

int emp_number;
/* Define a host structure for the output values of a SELECT statement. */
/* No declare section needed if precompiler option MODE=ORACLE */
struct {

VARCHAR last_name [UNAME_LEN] ;

float salary;

float commission_pct;
} emprec;
/* Define an indicator structure to correspond to the host output structure. */
struct {

short emp_name_ind;
short sal_ind;
short comm_ind;

} emprec_ind;

/* Select columns last_name, salary, and commission_pct given the user's input
/* for employee_id. */
EXEC SQL SELECT last_name, salary, commission_pct
INTO :emprec INDICATOR :emprec_ind
FROM employees
WHERE employee_id = :emp_number;

The embedded SELECT statement differs slightly from the interactive (SQL*Plus)
SELECT statement. Every embedded SQL statement begins with EXEC SQL. The colon
(:) precedes every host (C) variable. The returned values of data and indicators (set

1-16 Oracle Database Advanced Application Developer's Guide

Overview of Pro*C/C++

when the data value is NULL or character columns were truncated) can be stored in
structs (such as in the preceding code fragment), in arrays, or in arrays of structs.
Multiple result set values are handled very simply in a manner that resembles the case
shown, where there is only one result, because of the unique employee number. Use
the actual names of columns and tables in embedded SQL.

Either use the default precompiler option values or enter values that give you control
over the use of resources, how errors are reported, the formatting of output, and how
cursors (which correspond to a particular connection or SQL statement) are managed.
Cursors are used when there are multiple result set values.

Enter the options either in a configuration file, on the command line, or inline inside
your source code with a special statement that begins with EXEC ORACLE. If there are
no errors found, you can compile, link, and execute the output source file, like any
other C program that you write.

Use the precompiler to create server database access from clients that can be on many
different platforms. Pro*C/C++ gives you the freedom to design your own user
interfaces and to add database access to existing applications.

Before writing your embedded SQL statements, you can test interactive versions of the
SQL in SQL*Plus and then make minor changes to start testing your embedded SQL
application.

Highlights of Pro*C/C++ Features

The following is a short subset of the capabilities of Pro*C/C++. For complete details,
see Pro*C/C++ Precompiler Programmer’s Guide.

= You can write your application in either C or C++.

= You can write multithreaded programs if your platform supports a threads
package. Concurrent connections are supported in either single-threaded or
multithreaded applications.

= You can improve performance by embedding PL/SQL blocks. These blocks can
invoke subprograms in Java or PL/SQL that are written by you or provided in
Oracle Database packages.

= Using precompiler options, you can check the syntax and semantics of your SQL
or PL/SQL statements during precompilation, as well as at run time.

= You can invoke stored PL/SQL and Java subprograms. Modules written in
COBOL or in C can be invoked from Pro*C/C++. External C subprograms in
shared libraries can be invoked by your program.

= You can conditionally precompile sections of your code so that they can execute in
different environments.

= You can use arrays, or structures, or arrays of structures as host and indicator
variables in your code to improve performance.

= You can deal with errors and warnings so that data integrity is guaranteed. As a
programmer, you control how errors are handled.

= Your program can convert between internal data types and C language data types.

s The Oracle Call Interface (OCI) and Oracle C++ Call Interface (OCCI), lower-level
C and C++ interfaces, are available for use in your precompiler source.

s Pro*C/C++ supports dynamic SQL, a technique that enables users to input
variable values and statement syntax.

Introduction to Oracle Programmatic Environments 1-17

Overview of Pro*COBOL

Pro*C/C++ can use special SQL statements to manipulate tables containing
user-defined object types. An Object Type Translator (OTT) maps the object types
and named collection types in your database to structures and headers that you
include in your source.

Two kinds of collection types, nested tables and VARRAY, are supported with a set
of SQL statements that give you a high degree of control over data.

Large Objects are accessed by another set of SQL statements.

A new ANSI SQL standard for dynamic SQL is supported for new applications, so
that you can execute SQL statements with a varying number of host variables. An
older technique for dynamic SQL is still usable by pre-existing applications.

Globalization support lets you use multibyte characters and UCS2 Unicode data.

Using scrollable cursors, you can move backward and forward through a result
set. For example, you can fetch the last row of the result set, or jump forward or
backward to an absolute or relative position within the result set.

A connection pool is a group of physical connections to a database that can be
shared by several named connections. Enabling the connection pool option can
help to optimize the performance of Pro*C/C++ application. The connection pool
option is not enabled by default.

Overview of Pro*COBOL

The Pro*COBOL precompiler is a software tool that enables the programmer to embed
SQL statements in a COBOL source code file. Pro*COBOL reads the source file as
input and outputs a COBOL source file that replaces the embedded SQL statements
with Oracle Database run-time library calls, and is then compiled by the COBOL
compiler.

When there are errors found during the precompilation or the subsequent compilation,
modify your precompiler input file and rerun the two steps.

Topics:

Implementing a Pro*COBOL Application
Highlights of Pro*COBOL Features

Implementing a Pro*COBOL Application

Here is a simple code fragment from a source file that queries the table employees in
the schema hr:

WORKING-STORAGE SECTION.

*

* DEFINE HOST INPUT AND OUTPUT HOST AND INDICATOR VARIABLES.
* NO DECLARE SECTION NEEDED IF MODE=ORACLE.

*

01 EMP-REC-VARS.

05 EMP-NAME PIC X(

10) VARYING.
05 EMP-NUMBER PIC S9(

(

(

(

0)

4) COMP VALUE ZERO.
05 SALARY PIC S9(5)V99 COMP-3 VALUE ZERO.
05 COMMISSION PIC S9(5)
4)

05 COMM-IND PIC S9

V99 COMP-3 VALUE ZERO.
COMP VALUE ZERO.

PROCEDURE DIVISION.

1-18 Oracle Database Advanced Application Developer's Guide

Overview of Pro*COBOL

EXEC SQL
SELECT last_name, salary, commission_pct
INTO :EMP-NAME, :SALARY, :COMMISSION:COMM-IND
FROM employees
WHERE employee_id = :EMP-NUMBER

END-EXEC.

The embedded SELECT statement is only slightly different from an interactive
(SQL*Plus) SELECT statement. Every embedded SQL statement begins with EXEC
SQL. The colon (:) precedes every host (COBOL) variable. The SQL statement is
terminated by END-EXEC. The returned values of data and indicators (set when the
data value is NULL or character columns were truncated) can be stored in group items
(such as in the preceding code fragment), in tables, or in tables of group items.
Multiple result set values are handled very simply in a manner that resembles the case
shown, where there is only one result, given the unique employee number. Use the
actual names of columns and tables in embedded SQL.

Use the default precompiler option values, or enter values that give you control over
the use of resources, how errors are reported, the formatting of output, and how
cursors are managed (cursors correspond to a particular connection or SQL statement).

Enter the options in a configuration file, on the command line, or inline inside your
source code with a special statement that begins with EXEC ORACLE. If there are no
errors found, you can compile, link, and execute the output source file, like any other
COBOL program that you write.

Use the precompiler to create server database access from clients that can be on many
different platforms. Pro*COBOL gives you the freedom to design your own user
interfaces and to add database access to existing COBOL applications.

The embedded SQL statements available conform to an ANSI standard, so that you
can access data from many databases in a program, including remote servers
networked through Oracle Net.

Before writing your embedded SQL statements, you can test interactive versions of the
SQL in SQL*Plus and then make minor changes to start testing your embedded SQL
application.

Highlights of Pro*COBOL Features
The following is a short subset of the capabilities of Pro*COBOL.

= You can invoke stored PL/SQL or Java subprograms. You can improve
performance by embedding PL/SQL blocks. These blocks can invoke PL/SQL
subprograms written by you or provided in Oracle Database packages.

= Precompiler options enable you to define how cursors, errors, syntax-checking, file
formats, and so on, are handled.

= Using precompiler options, you can check the syntax and semantics of your SQL
or PL/SQL statements during precompilation, as well as at run time.

= You can conditionally precompile sections of your code so that they can execute in
different environments.

= Use tables, or group items, or tables of group items as host and indicator variables
in your code to improve performance.

= You can program how errors and warnings are handled, so that data integrity is
guaranteed.

Introduction to Oracle Programmatic Environments 1-19

Overview of OCl and OCCI

Pro*COBOL supports dynamic SQL, a technique that enables users to input
variable values and statement syntax.

See Also: Pro*COBOL Programmer’s Guide for complete details

Overview of OCl and OCCI

The Oracle Call Interface (OCI) and Oracle C++ Call Interface (OCCI) are application
programming interfaces (APIs) that enable you to create applications that use native
subprogram invocations of a third-generation language to access Oracle Database and
control all phases of SQL statement execution. These APIs provide:

Improved performance and scalability through the efficient use of system memory
and network connectivity

Consistent interfaces for dynamic session and transaction management in a
two-tier client/server or multitier environment

N-tiered authentication

Comprehensive support for application development using Oracle Database
objects

Access to external databases

Ability to develop applications that service an increasing number of users and
requests without additional hardware investments

OCl lets you manipulate data and schemas in a database using a host programming
language, such as C. OCCl is an object-oriented interface suitable for use with C++.
These APIs provide a library of standard database access and retrieval functions in the
form of a dynamic run-time library (OCILIB) that can be linked in an application at
run time. This eliminates the need to embed SQL or PL/SQL within 3GL programs.

See Also: For more information about OCI and OCCI calls:
» Oracle Call Interface Programmer’s Guide

» Oracle C++ Call Interface Programmer’s Guide

» Oracle Streams Advanced Queuing User’s Guide

» Oracle Database Globalization Support Guide

» Oracle Database Data Cartridge Developer’s Guide

Topics:

Advantages of OCI and OCCI

OCI and OCCI Functions

Procedural and Nonprocedural Elements of OCI and OCCI Applications
Building an OCI or OCCI Application

Advantages of OCl and OCCI

OCI and OCCI provide significant advantages over other methods of accessing Oracle
Database:

More fine-grained control over all aspects of the application design.

High degree of control over program execution.

1-20 Oracle Database Advanced Application Developer's Guide

Overview of OCl and OCCI

Use of familiar 3GL programming techniques and application development tools
such as browsers and debuggers.

Support of dynamic SQL, method 4.

Availability on the broadest range of platforms of all the Oracle Database
programmatic interfaces.

Dynamic bind and define using callbacks.

Describe functionality to expose layers of server metadata.

Asynchronous event notification for registered client applications.

Enhanced array data manipulation language (DML) capability for arrays.

Ability to associate a commit request with an execute to reduce round-trips.
Optimization for queries using transparent prefetch buffers to reduce round-trips.

Thread safety, so you do not have to implement mutual exclusion (mutex) locks on
OCI and OCCI handles.

The server connection in nonblocking mode means that control returns to the OCI
or OCCI code when a call is still executing or cannot complete.

OCl and OCCI Functions
Both OCI and OCCI have four kinds of functions:

Kind of Function Purpose

Relational To manage database access and process SQL
statements

Navigational To manipulate objects retrieved from the database

Database mapping and manipulation = To manipulate data attributes of Oracle Database
types

External subprogram To write C callbacks from PL/SQL

Procedural and Nonprocedural Elements of OCI and OCCI Applications

OCI and OCCI enable you to develop applications that combine the nonprocedural
data access power of SQL with the procedural capabilities of most programming
languages, including C and C++. Procedural and nonprocedural languages have these
characteristics:

In a nonprocedural language program, the set of data to be operated on is
specified, but what operations are performed and how the operations are to be
carried out is not specified. The nonprocedural nature of SQL makes it an easy
language to learn and to use to perform database transactions. It is also the
standard language used to access and manipulate data in modern relational and
object-relational database systems.

In a procedural language program, the execution of most statements depends on
previous or subsequent statements and on control structures, such as loops or
conditional branches, which are not available in SQL. The procedural nature of
these languages makes them more complex than SQL, but it also makes them very
flexible and powerful.

Introduction to Oracle Programmatic Environments 1-21

Overview of OCl and OCCI

The combination of both nonprocedural and procedural language elements in an OCI
or OCCI program provides easy access to Oracle Database in a structured
programming environment.

OCI and OCCI support all SQL data definition, data manipulation, query, and
transaction control facilities that are available through Oracle Database. For example,
an OCI or OCCI program can run a query against Oracle Database. The queries can
require the program to supply data to the database using input (bind) variables, as
follows:

SELECT name FROM employees WHERE empno = :empnumber

In the preceding SQL statement, :empnumber is a placeholder for a value to be
supplied by the application.

Alternatively, you can use PL/SQL, Oracle's procedural extension to SQL. The
applications you develop can be more powerful and flexible than applications written
in SQL alone. OCI and OCCI also provide facilities for accessing and manipulating
objects in Oracle Database.

Building an OCI or OCCI Application

As Figure 1-1 shows, you compile and link an OCI or OCCI program in the same way
that you compile and link a nondatabase application. There is no need for a separate
preprocessing or precompilation step.

Figure 1-1 The OCI or OCCI Development Process

Source Files

v

Host Language Compiler

‘

Object Files H—=F OCl Library
Host Linker —
Application <+—>

Note: To properly link your OCI and OCCI programs, it might be
necessary on some platforms to include other libraries, in addition to
the OCI and OCCI libraries. Check your Oracle platform-specific
documentation for further information about extra libraries that might
be required.

1-22 Oracle Database Advanced Application Developer's Guide

Overview of OraOLEDB

Overview of Oracle Data Provider for .NET (ODP.NET)

Oracle Data Provider for NET (ODP.NET) is an implementation of a data provider for
Oracle Database.

ODP.NET uses APIs native to Oracle Database to offer fast and reliable access from
any .NET application to database features and data. It also uses and inherits classes
and interfaces available in the Microsoft .NET Framework Class Library.

For programmers using Oracle Provider for OLE DB, ADO (ActiveX Data Objects)
provides an automation layer that exposes an easy programming model. ADO.NET
provides a similar programming model, but without the automation layer, for better
performance. More importantly, the ADO.NET model enables native providers such as
ODP.NET to expose specific features and data types specific to Oracle Database.

See Also: Oracle Data Provider for NET Developer's Guide for Microsoft
Windows (32-Bit)

The following is a simple C# application that connects to Oracle Database and displays
its version number before disconnecting.

using System;
using Oracle.DataAccess.Client;

class Example

{

OracleConnection con;

void Connect ()
{
con = new OracleConnection();
con.ConnectionString = "User Id=hr;Password=password;Data Source=oracle";
con.Open() ;
Console.WriteLine("Connected to Oracle" + con.ServerVersion);

}

void Close()

{
con.Close();
con.Dispose();

}

static void Main()
{
Example example = new Example();
example.Connect () ;
example.Close();
}
}

Note: Additional samples are provided in directory ORACLE_
BASE\ ORACLE_HOME\ODP.NET\Samples.

Overview of OraOLEDB

Oracle Provider for OLE DB (OraOLEDB) is an OLE DB data provider that offers high
performance and efficient access to Oracle data by OLE DB consumers. In general, this
developer's guide assumes that you are using OraOLEDB through OLE DB or ADO.

Introduction to Oracle Programmatic Environments 1-23

Overview of Oracle Objects for OLE (0040)

See Also: Oracle Provider for OLE DB Developer’s Guide

Overview of Oracle Objects for OLE (0040)

Oracle Objects for OLE (OO40) is a product designed to provide easy access to data
stored in Oracle Database with any programming or scripting language that supports
the Microsoft COM Automation and ActiveX technology. This includes Visual Basic,
Visual C++, Visual Basic For Applications (VBA), IIS Active Server Pages (VBScript
and JavaScript), and others.

See the O040 online help for detailed information about using OO40.
Oracle Objects for OLE consists of the following software layers:

s 0040 "In-Process" Automation Server

= Oracle Data Control

s Oracle Objects for OLE C++ Class Library

Figure 1-2 illustrates the OO40O software components.

Figure 1-2 Software Layers

Data Aware
ActiveX
Controls

Automation
C++ Class Oracle Data Controllers

Libraries Control (VB, Excel, ASP)

COM/DCOM

0040
In-Process

Automation
Server

Oracle Client
Libraries
(OCl, CORE,
NLS)

Oracle
Database

Topics:

s 0040 Automation Server

s 0040 Object Model

= Support for Oracle LOB and Object Data Types
s Oracle Data Control

= Oracle Objects for OLE C++ Class Library

s Additional Sources of Information

1-24 Oracle Database Advanced Application Developer's Guide

Overview of Oracle Objects for OLE (0040)

0040 Automation Server

The OO40 Automation Server is a set of COM Automation objects for connecting to
Oracle Database, executing SQL statements and PL/SQL blocks, and accessing the
results.

Unlike other COM-based database connectivity APIs, such as Microsoft ADO, the
0040 Automation Server was developed specifically for use with Oracle Database.

It provides an optimized API for accessing features that are unique to Oracle Database
and are otherwise cumbersome or inefficient to use from ODBC or OLE
database-specific components.

0040 provides key features for accessing Oracle Database efficiently and easily in
environments ranging from the typical two-tier client/server applications, such as
those developed in Visual Basic or Excel, to application servers deployed in
multitiered application server environments such as Web server applications in
Microsoft Internet Information Server (IIS) or Microsoft Transaction Server (MTS).

Features include:

= Support for execution of PL/SQL and Java stored subprograms, and PL/SQL
anonymous blocks. This includes support for Oracle Database data types used as
parameters to stored subprograms, including PL/SQL cursors. See Support for
Oracle LOB and Object Data Types on page 1-30.

= Support for scrollable and updatable cursors for easy and efficient access to result
sets of queries.

s Thread-safe objects and Connection Pool Management Facility for developing
efficient Web server applications.

s Full support for Oracle Database object-relational and LOB data types.
s Full support for Advanced Queuing.
= Support for array inserts and updates.

= Support for Microsoft Transaction Server (MTS).

0040 Object Model
The Oracle Objects for OLE object model is illustrated in Figure 1-3.

Introduction to Oracle Programmatic Environments 1-25

Overview of Oracle Objects for OLE (0040)

Figure 1-3 Objects and Their Relations

OraSession

—| OraDatabase

OraServer

ﬁ- —(OraDynaset

OraField

OraMDAttribute

OraParameter

OraParamArray

~ &~ &

OraAQMsg

I 11

Topics:

OraSession

OraServer

OraDatabase

OraDynaset

OraField

OraMetaData and OraMDAttribute
OraParameter and OraParameters
OraParamArray

OraSQLStmt

OraAQ

OraAQMsg

OraAQAgent

OraSession

An OraSession object manages collections of OraDatabase, OraConnection, and
OraDynaset objects used within an application.

Typically, a single OraSession object is created for each application, but you can create
named OraSession objects for shared use within and between applications.

The OraSession object is the top-most object for an application. It is the only object
created by the CreateObject VB/VBA API and not by an Oracle Objects for OLE
method. The following code fragment shows how to create an OraSession object:

Dim OraSession as Object
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

1-26 Oracle Database Advanced Application Developer's Guide

Overview of Oracle Objects for OLE (0040)

OraServer
OraServer represents a physical network connection to Oracle Database.

The OraServer interface is introduced to expose the connection-multiplexing feature
provided in the Oracle Call Interface. After an OraServer object is created, multiple
user sessions (OraDatabase) can be attached to it by calling the OpenDatabase
method. This feature is particularly useful for application components, such as
Internet Information Server (IIS), that use Oracle Objects for OLE in n-tier distributed
environments.

The use of connection multiplexing when accessing Oracle Database with a large
number of user sessions active can help reduce server processing and resource
requirements while improving server scalability.

OraServer is used to share a single connection across multiple OraDatabase objects
(multiplexing), whereas each OraDatabase obtained from an OraSession has its own
physical connection.

OraDatabase

An OraDatabase interface adds additional methods for controlling transactions and
creating interfaces representing of Oracle Database object types. Attributes of schema
objects can be retrieved using the Describe method of the OraDatabase interface.

In releases prior to Oracle8i, an OraDatabase object is created by calling the
OpenDatabase method of an OraSession interface. The Oracle Net alias, user
name, and password are passed as arguments to this method. In Oracle8i and later,
calling this method results in implicit creation of an OraServer object.

An OraDatabase object can also be created using the OpenDatabase method of the
OraServer interface.

Transaction control methods are available at the OraDatabase (user session) level.
Transactions might be started as Read-Write (default), Serializable, or
Read-only. Transaction control methods include:

s BeginTrans

m CommitTrans

m RollbackTrans
For example:

UserSession.BeginTrans (0040_TXN_READ_WRITE)
UserSession.ExecuteSQL ("delete emp where empno = 1234")
UserSession.CommitTrans

OraDynaset

An OraDynaset object permits browsing and updating of data created from a SQL
SELECT statement.

The OraDynaset object can be thought of as a cursor, although in actuality several
real cursors might be used to implement the semantics of OraDynaset. An
OraDynaset object automatically maintains a local cache of data fetched from the
server and transparently implements scrollable cursors within the browse data. Large
queries might require significant local disk space; application developers are
encouraged to refine queries to limit disk usage.

Introduction to Oracle Programmatic Environments 1-27

Overview of Oracle Objects for OLE (0040)

OraField

An OraField object represents a single column or data item within a row of a
dynaset.

If the current row is being updated, then the OraField object represents the currently
updated value, although the value might not have been committed to the database.

Assignment to the Value property of a field is permitted only if a record is being
edited (using Edit) or a new record is being added (using AddNew). Other attempts to
assign data to a field's Value property results in an error.

OralMetaData and OraMDAttribute

An OraMetaData object is a collection of OraMDAt tribute objects that represent the
description information about a particular schema object in the database.

The OraMetaData object can be visualized as a table with three columns:
m Metadata Attribute Name

m Metadata Attribute Value

» Flag specifying whether the Value is another OraMetaData object

The OraMDAttribute objects contained in the OraMetaData object can be accessed
by subscripting using ordinal integers or by using the name of the property.
Referencing a subscript that is not in the collection results in the return of a NULL
OraMDAttribute object.

OraParameter and OraParameters

An OraParameter object represents a bind variable in a SQL statement or PL/SQL
block.

OraParameter objects are created, accessed, and removed indirectly through the
OraParameters collection of an OraDatabase object. Each parameter has an
identifying name and an associated value. You can automatically bind a parameter to
SQL and PL/SQL statements of other objects (as noted in the object descriptions), by
using the parameter name as a placeholder in the SQL or PL/SQL statement. Such use
of parameters can simplify dynamic queries and increase program performance.

OraParamArray

An OraParamArray object represents an array-type bind variable in a SQL statement
or PL/SQL block, as opposed to a scalar-type bind variable represented by the
OraParameter object.

OraParamArray objects are created, accessed, and removed indirectly through the
OraParameters collection of an OraDatabase object. Each OraParamArray object
has an identifying name and an associated value.

OraSQLStmt

An OrasQLStmt object represents a single SQL statement. Use the CreateSQL
method to create an OraSQLStmt object from an OraDatabase object.

During create and refresh, OrasQLStmt objects automatically bind all relevant,
enabled input parameters to the specified SQL statement, using the parameter names
as placeholders in the SQL statement. This can improve the performance of SQL
statement execution without reparsing the SQL statement.

1-28 Oracle Database Advanced Application Developer's Guide

Overview of Oracle Objects for OLE (0040)

The OrasSQLStmt object can be used later to execute the same query using a different
value for the :SALARY placeholder. This is done as follows (updatesStmt is the
OraSQLStmt object here):

OraDatabase.Parameters ("SALARY") .value = 200000
updateStmt.Parameters ("ENAME") .value = "KING"
updateStmt.Refresh

OraAQ
An OraAQ object is instantiated by calling the CreateAQ method of the
OraDatabase interface. It represents a queue that is present in the database.

Oracle Objects for OLE provides interfaces for accessing Oracle Advanced Queuing
(AQ) feature. It makes AQ accessible from popular COM-based development
environments such as Visual Basic. For a detailed description of Oracle Advanced
Queuing, see Oracle Streams Advanced Queuing User’s Guide.

OraAQMsg

The OraAQMsg object encapsulates the message to be enqueued or dequeued. The
message can be of any user-defined or raw type.

For a detailed description of Oracle Advanced Queuing, see Oracle Streams Advanced
Queuing User’s Guide.

OraAQAgent

The OraAQAgent object represents a message recipient and is only valid for queues
that support multiple consumers. It is a child of OraAQMsg.

An OraAQAgent object can be instantiated by calling the AQAgent method. For
example:

Set agent = gMsg.AQAgent (name)
An OraAQAgent object can also be instantiated by calling the AddRecipient
method. For example:

Set agent = gMsg.AddRecipient (name, address, protocol).

Support for Oracle LOB and Object Data Types

Oracle Objects for OLE (OO40) provides full support for accessing and manipulating
instances of object data types and LOBs in Oracle Database. Figure 14 illustrates the
data types supported by OO4O.

Instances of these types can be fetched from the database or passed as input or output
variables to SQL statements and PL/SQL blocks, including stored subprograms. All
instances are mapped to COM Automation Interfaces that provide methods for
dynamic attribute access and manipulation.

Introduction to Oracle Programmatic Environments 1-29

Overview of Oracle Objects for OLE (0040)

Figure 1-4 Supported Oracle Database Data Types

[OraField

[OraParameter

—(OraRef H OraAttribute]D
—(OraCollection H Element Values]D
—(OraBLOB J

(OraParamArray

—(Value of all other scalar types J

Topics:
s OraBLOB and OraCLOB
s OraBFILE

OraBLOB and OraCLOB

The OraBlob and OraClob interfaces in Oracle Objects for OLE provide methods for
performing operations on large database objects of data type BLOB, CLOB, and NCLOB.
BLOB, CLOB, and NCLOB data types are also referred to here as LOB data types.

LOB data is accessed using Read and the CopyToFile methods.

LOB data is modified using Write, Append, Erase, Trim, Copy, CopyFromFile,
and CopyFromBFile methods. Before modifying the content of a LOB column in a
row, a row lock must be obtained. If the LOB column is a field of an OraDynaset,
object, then the lock is obtained by calling the Edit method.

OraBFILE

The OraBFile interface in Oracle Objects for OLE provides methods for performing
operations on large database objects of data type BFILE.

BFILE objects are large binary data objects stored in operating system files outside of
the database tablespaces.

Oracle Data Control

Oracle Data Control (ODC) is an ActiveX Control that is designed to simplify the
exchange of data between Oracle Database and visual controls such edit, text, list, and
grid controls in Visual Basic and other development tools that support custom
controls.

ODC acts as an agent to handle the flow of information from Oracle Database and a
visual data-aware control, such as a grid control, that is bound to it. The data control
manages various user interface (UI) tasks such as displaying and editing data. It also
executes and manages the results of database queries.

Oracle Data Control is compatible with the Microsoft data control included with
Visual Basic. If you are familiar with the Visual Basic data control, learning to use

1-30 Oracle Database Advanced Application Developer's Guide

Choosing a Programming Environment

Oracle Data Control is quick and easy. Communication between data-aware controls
and a Data Control is governed by a protocol that Microsoft specified.

Oracle Objects for OLE C++ Class Library

Oracle Objects for OLE (OO40) C++ Class Library is a collection of C++ classes that
provide programmatic access to the Oracle Object Server. Although the class library is
implemented using OLE Automation, neither the OLE development kit nor any OLE
development knowledge is necessary to use it. This library helps C++ developers
avoid the chore of writing COM client code for accessing the OO40O interfaces.

Additional Sources of Information

For detailed information about Oracle Objects for OLE see the online help provided
with the OO40 product:

= Oracle Objects for OLE Help
= Oracle Objects for OLE C++ Class Library Help

For examples of how to use Oracle Objects for OLE, see the samples in the ORACLE_
HOME\ 0040 directory of the Oracle Database installation and in the following;:

» Oracle Database SecureFiles and Large Objects Developer’s Guide

» Oracle Streams Advanced Queuing User’s Guide

Choosing a Programming Environment
To choose a programming environment for a new development project:
= Review the preceding overviews and the manuals for each environment.

= Read the platform-specific manual that explains which compilers are approved for
use with your platforms.

» If a particular language does not provide a feature you need, remember that
PL/SQL and Java stored subprograms can both be invoked from code written in
any of the languages in this chapter. Stored subprograms include triggers and
object type methods.

= External subprograms written in C can be invoked from OCI, Java, PL/SQL or
SQL. The external subprogram itself can call back into the database using either
SQL, OCI, or Pro*C (but not C++).

The following examples illustrate easy choices:

= Pro*COBOL does not support object types or collection types, while Pro*C/C++
does.

= SQLJ does not support dynamic SQL the way that JDBC does.
Topics:

s Choosing a Precompiler or OCI

s Choosing PL/SQL or Java

Choosing a Precompiler or OCI

Precompiler applications typically contain less code than equivalent OCI applications,
which can help productivity.

Introduction to Oracle Programmatic Environments 1-31

Choosing a Programming Environment

Some situations require detailed control of the database and are suited for OCI
applications (either pure OCI or a precompiler application with embedded OCI calls):

s OCI provides more detailed control over multiplexing and migrating sessions.

= OCI provides dynamic bind and define using callbacks that can be used for any
arbitrary structure, including lists.

s OCI has many calls to handle metadata.

= OCI enables asynchronous event notifications to be received by a client
application. It provides a means for clients to generate notifications for
propagation to other clients.

s OCI enables DML statements to use arrays to complete as many iterations as
possible before returning any error messages.

» OCI calls for special purposes include Advanced Queuing, globalization support,
Data Cartridges, and support of the date and time data types.

s OCI calls can be embedded in a Pro*C/C++ application.

Choosing PL/SQL or Java
Both Java and PL/SQL have built-in packages and libraries.

PL/SQL and Java interoperate in the server. You can execute a PL/SQL package from
Java or wrap a PL/SQL class with a Java wrapper so that it can be invoked from
distributed CORBA and Enterprise Java Beans clients. Table 1-1 shows PL/SQL
packages and their Java equivalents.

Table 1-1 PL/SQL and Java Equivalent Software

PL/SQL Package Java Equivalent

DBMS_ALERT Call package with SQL]J or JDBC.

DBMS_DDL JDBC has this functionality.

DBMS_JOB Schedule a job that has a Java stored subprogram.
DBMS_LOCK Call with SQLJ or JDBC.

DBMS_MATIL Use JavaMail.

DBMS_OUTPUT Use subclass

oracle.aurora.rdbms.OracleDBMSOutputStream or Java
stored subprogram DBMS_JAVA.SET_STREAMS.

DBMS_PIPE Call with SQLJ or JDBC.

DBMS_SESSION Use JDBC to execute an ALTER SESSION statement.

DBMS_SNAPSHOT Call with SQLJ or JDBC.

DBMS_SQL Use JDBC.

DBMS_TRANSACTION Use JDBC to execute an ALTER SESSION statement.

DBMS_UTILITY Call with SQL]J or JDBC.

UTL_FILE Grant the JAVAUSERPRIV privilege and then use Java I/O entry
points.

Both Java and PL/SQL can be used to build applications in the database. Here are
some guidelines for their use:

s PL/SQL is optimized for database access

1-32 Oracle Database Advanced Application Developer's Guide

Choosing a Programming Environment

PL/SQL uses the same data types as SQL. SQL data types are thus easier to use
and SQL operations are faster than with Java, especially when a large amount of
data is involved, when mostly database access is done, or when bulk operations
are used.

PL/SQL is integrated with the database

PL/SQL is an extension to SQL offering data encapsulation, information hiding,
overloading, and exception-handling.

Some advanced PL/SQL capabilities are not available for Java in Oracle9i.
Examples are autonomous transactions and the dblink facility for remote
databases. Code development is usually faster in PL/SQL than in Java.

Both Java and PL/SQL have object-oriented features

Java has inheritance, polymorphism, and component models for developing
distributed systems. PL/SQL has inheritance and type evolution, the ability to
change methods and attributes of a type while preserving subtypes and table data
that use the type.

Java is used for open distributed applications

Java has a richer type system than PL/SQL and is an object-oriented language.
Java can use CORBA (which can have many different computer languages in its
clients) and Enterprise Java Beans. PL/SQL packages can be invoked from
CORBA or Enterprise Java Beans clients.

You can run XML tools, the Internet File System, or JavaMail from Java.

Many Java-based development tools are available throughout the industry.

Introduction to Oracle Programmatic Environments 1-33

Choosing a Programming Environment

1-34 Oracle Database Advanced Application Developer's Guide

Part |

SQL for Application Developers

This part presents information that application developers need about Structured
Query Language (SQL), which is used to manage information in an Oracle Database.

Chapters:

» Chapter 2, "SQL Processing for Application Developers"

s Chapter 3, "Using SQL Data Types in Database Applications"

» Chapter 4, "Using Regular Expressions in Database Applications"
» Chapter 5, "Using Indexes in Database Applications"

s Chapter 6, "Maintaining Data Integrity in Database Applications"

See Also: Oracle Database SQL Language Reference for a complete
description of SQL

2

SQL Processing for Application Developers

This chapter explains what application developers must know about how Oracle
Database processes SQL statements. Before reading this chapter, read the basic
information about SQL processing in Oracle Database Concepts.

Topics:

» Description of SQL Statement Processing

» Processing Other Types of SQL Statements

= Grouping Operations into Transactions

» Ensuring Repeatable Reads with Read-Only Transactions
s Using Cursors

s Locking Tables Explicitly

= Using Oracle Lock Management Services

= Using Serializable Transactions for Concurrency Control
s Autonomous Transactions

= Resuming Execution After Storage Allocation Error

Description of SQL Statement Processing

This topic provides an example of what happens during the execution of a SQL
statement in each stage of processing. While this example specifically processes a DML
statement, you can generalize it for other types of SQL statements. For information
about how execution of other types of SQL statements might differ from this
description, see Processing Other Types of SQL Statements on page 2-4.

Assume that you are using a Pro*C program to increase the salary for all employees in
a department. The program you are using has connected to Oracle Database and you
are connected to the proper schema to update the employees table. You can embed
the following SQL statement in your program:

EXEC SQL UPDATE employees SET salary = 1.10 * salary
WHERE department_id = :department_id;

Department_id is a program variable containing a value for department number.
When the SQL statement is run, the value of department_1id is used, as provided by
the application program.

SQL Processing for Application Developers 2-1

Description of SQL Statement Processing

Stages of SQL Statement Processing

The following are the stages necessary for each type of statement processing. (For a
flowchart of this process, see Oracle Database Concepts.

1.

Open or create a cursor.

A program interface call opens or creates a cursor. The cursor is created
independent of any SQL statement: it is created in expectation of a SQL statement.
In most applications, cursor creation is automatic. However, in precompiler
programs, cursor creation can either occur implicitly or be explicitly declared.

Parse the statement.

During parsing, the SQL statement is passed from the user process to Oracle
Database, and a parsed representation of the SQL statement is loaded into a shared
SQL area. Many errors can be caught during this stage of statement processing.

See Also: Oracle Database Concepts for more information about
parsing

Determine if the statement is a query.

This stage determines if the SQL statement starts with a query.

See Also:
» Oracle Database Concepts for information about parsing

s Shared SQL Areas on page 2-3

If the statement is a query, describe its results.

This stage is necessary only if the characteristics of a query's result are not known;
for example, when a query is entered interactively by a user. In this case, the
describe stage determines the characteristics (data types, lengths, and names) of a
query's result.

If the statement is a query, define its output.

In this stage, you specify the location, size, and data type of variables defined to
receive each fetched value. These variables are called define variables. Oracle
Database performs data type conversion if necessary:.)

See Also: Oracle Database Concepts for information about the
DEFINE stage

Bind any variables.

At this point, Oracle Database knows the meaning of the SQL statement but still
does not have enough information to run the statement. Oracle Database needs
values for any variables listed in the statement; in the example, Oracle Database
needs a value for department_id. The process of obtaining these values is called
binding variables.

A program must specify the location (memory address) where the value can be
found. End users of applications may be unaware that they are specifying bind
variables, because the Oracle Database utility can simply prompt them for a new
value.

Because you specify the location (binding by reference), you need not rebind the
variable before reexecution. You can change its value and Oracle Database looks
up the value on each execution, using the memory address.

2-2 Oracle Database Advanced Application Developer's Guide

Description of SQL Statement Processing

You must also specify a data type and length for each value (unless they are
implied or defaulted) if Oracle Database must perform data type conversion.

See Also: For more information about specifying a data type and
length for a value:

» Oracle Call Interface Programmer’s Guide

» Pro*C/C++ Programmer’s Guide

7. (Optional) Parallelize the statement.

Oracle Database can parallelize queries and some DDL operations such as index
creation, creating a table with a subquery, and operations on partitions.
Parallelization causes multiple server processes to perform the work of the SQL
statement so it can complete faster.

See Also: Oracle Database Concepts for an overview of parallel
execution

8. Run the statement.

At this point, Oracle Database has all necessary information and resources, so the
statement is run. If the statement is a query or an INSERT statement, no rows need
to be locked because no data is being changed. If the statement is an UPDATE or
DELETE statement, however, all rows that the statement affects are locked until the
next COMMIT, ROLLBACK, or SAVEPOINT for the transaction. This ensures data
integrity.

For some statements you can specify a number of executions to be performed. This
is called array processing. Given n number of executions, the bind and define
locations are assumed to be the beginning of an array of size n.

9. If the statement is a query, fetch its rows.

In the fetch stage, rows are selected and ordered (if requested by the query), and
each successive fetch retrieves another row of the result until the last row has been
fetched.

10. Close the cursor.

The final stage of processing a SQL statement is closing the cursor.

Shared SQL Areas

Oracle Database automatically notices when applications send similar SQL statements
to the database. The SQL area used to process the first occurrence of the statement is
shared—that is, used for processing subsequent occurrences of that same statement.
Therefore, only one shared SQL area exists for a unique statement. Because shared
SQL areas are shared memory areas, any Oracle Database process can use a shared
SQL area. The sharing of SQL areas reduces memory use on the database server,
thereby increasing system throughput.

In evaluating whether statements are similar or identical, Oracle Database considers
SQL statements issued directly by users and applications as well as recursive SQL
statements issued internally by a DDL statement.

See Also: For more information about shared SQL.:
» Oracle Database Advanced Application Developer’s Guide

» Oracle Database Performance Tuning Guide

SQL Processing for Application Developers 2-3

Processing Other Types of SQL Statements

Processing Other Types of SQL Statements

The following topics discuss how DDL, Transaction Control, and other SQL statements
can differ from the process just described in Description of SQL Statement Processing
on page 2-1:

s DDL Statement Processing
s Transaction Control Processing

» Other Processing Types

DDL Statement Processing

The execution of DDL statements differs from the execution of DML statements and
queries, because the success of a DDL statement requires write access to the data
dictionary. For these statements, parsing (Stage 2) actually includes parsing, data
dictionary lookup, and execution.

Transaction Control Processing

In general, only application designers using the programming interfaces to Oracle
Database are concerned with the types of actions that are grouped together as one
transaction. Transactions must be defined so that work is accomplished in logical units
and data is kept consistent. A transaction consists of all of the necessary parts for one
logical unit of work, no more and no less.

s Data in all referenced tables should be in a consistent state before the transaction
begins and after it ends.

» Transactions should consist of only the SQL statements that make one consistent
change to the data.

For example, a transfer of funds between two accounts (the transaction or logical unit
of work) should include the debit to one account (one SQL statement) and the credit to
another account (one SQL statement). Both actions should either fail or succeed
together as a unit of work; the credit should not be committed without the debit. Other
unrelated actions, such as a new deposit to one account, should not be included in the
transfer of funds transaction.

Other Processing Types

Transaction management, session management, and system management SQL
statements are processed using the parse and run stages. To rerun them, simply
perform another execute.

Grouping Operations into Transactions
Topics:
s Deciding How to Group Operations in Transactions
s Improving Transaction Performance
s Committing Transactions
s Managing Commit Redo Action
= Rolling Back Transactions

s Defining Transaction Savepoints

2-4 Oracle Database Advanced Application Developer's Guide

Grouping Operations into Transactions

Deciding How to Group Operations in Transactions

In general, deciding how to group operations in transactions is the concern of
application designers who use the programming interfaces to Oracle Database. When
deciding how to group transactions:

= Define transactions such that work is accomplished in logical units and data
remains consistent.

s Ensure that data in all referenced tables is in a consistent state before the
transaction begins and after it ends.

= Ensure that each transaction consists only of the SQL statements or PL/SQL blocks
that comprise one consistent change to the data.

For example, suppose that you write a Web application that enables users to transfer
funds between accounts. The transaction must include the debit to one account, which
is executed by one SQL statement, and the credit to another account, which is executed
by a second SQL statement. Both statements must fail or succeed together as a unit of
work; the credit must not be committed without the debit. Other unrelated actions,
such as a new deposit to one account, must not be included in the same transaction.

Improving Transaction Performance

As an application developer, you must consider whether you can improve
performance. Consider the following performance enhancements when designing and
writing your application:

= Use the SET TRANSACTION statement with the USE ROLLBACK SEGMENT clause to
explicitly assign a transaction to a rollback segment. This technique can eliminate
the need to allocate additional extents dynamically, which can reduce system
performance. This clause is valid only if you use rollback segments for undo. If
you use automatic undo management, then Oracle Database ignores this clause.

= Establish standards for writing SQL statements so that you can take advantage of
shared SQL areas. Oracle Database recognizes identical SQL statements and
enables them to share memory areas. This reduces memory usage on the database
server and increases system throughput.

s Collect statistics that can be used by Oracle Database to implement a cost-based
approach to SQL statement optimization. You can supply additional "hints" to the
optimizer as needed.

For the collection of most statistics, use the DBMS_STATS package, which lets you
collect statistics in parallel, collect global statistics for partitioned objects, and fine
tune your statistics collection in other ways. For more information about this
package, see Oracle Database PL/SQL Packages and Types Reference.

For statistics collection not related to the cost-based optimizer (such as collecting
information about freelist blocks), use the SQL statement ANALYZE. For more
information about this statement, see Oracle Database SQL Language Reference.

s Invoke the DBMS_APPLICATION_INFO.SET_ACTION procedure before beginning
a transaction to register and name a transaction for later use when measuring
performance across an application. Specify which type of activity a transaction
performs so that the system tuners can later see which transactions are taking up
the most system resources.

= Increase user productivity and query efficiency by including user-written PL/SQL
functions in SQL expressions as described in Invoking Stored PL/SQL Functions
from SQL Statements on page 7-37.

SQL Processing for Application Developers 2-5

Grouping Operations into Transactions

s Create explicit cursors when writing a PL/SQL application.

= Reduce frequency of parsing and improve performance in precompiler programs
by increasing the number of cursors with MAX_OPEN_CURSORS.

s Use the SET TRANSACTION statement with the ISOLATION LEVEL set to
SERIALIZABLE to get ANSI/ISO serializable transactions.

See Also:
= How Serializable Transactions Interact on page 2-20
s Using Cursors on page 2-10

» Oracle Database Concepts for more information about transaction
management

Committing Transactions

To commit a transaction, use the COMMIT statement. The following two statements are
equivalent and commit the current transaction:

COMMIT WORK;
COMMIT;

The COMMIT statements lets you include the COMMENT parameter along with a
comment that provides information about the transaction being committed. This
option is useful for including information about the origin of the transaction when you
commit distributed transactions:

COMMIT COMMENT 'Dallas/Accts_pay/Trans_type 10B';

Managing Commit Redo Action

When a transaction updates the database, it generates a redo entry corresponding to
this update. Oracle Database buffers this redo in memory until the completion of the
transaction. When the transaction commits, the log writer process (LGWR) writes redo
for the commit, along with the accumulated redo of all changes in the transaction, to
disk. By default, Oracle Database writes the redo to disk before the call returns to the
client. This action introduces a latency in the commit because the application must
wait for the redo to be persisted on disk.

Suppose that you are writing an application that requires very high transaction
throughput. If you are willing to trade commit durability for lower commit latency,
then you can change the default COMMIT options so that the application need not wait
for the database to write data to the online redo logs.

Oracle Database enables you to change the handling of commit redo depending on the
needs of your application. You can change the commit action in the following
locations:

= COMMIT_WRITE initialization parameter at the system or session level
= COMMIT statement

The options in the COMMIT statement override the current settings in the initialization
parameter. Table 2-1 describes redo persistence options that you can set in either
location.

2-6 Oracle Database Advanced Application Developer's Guide

Grouping Operations into Transactions

Caution: With the NOWAIT option of COMMIT or COMMIT _WRITE, a
failure that occurs after the commit message is received, but before the
redo log record(s) are written, can falsely indicate to a transaction that
its changes are persistent.

Table 2-1 Options of COMMIT Statement and COMMIT_WRITE Initialization Parameter
Option Effect

WAIT Ensures that the commit returns only after the corresponding redo information is

(default) persistent in the online redo log. When the client receives a successful return
from this COMMIT statement, the transaction has been committed to durable
media.

A failure that occurs after a successful write to the log might prevent the success
message from returning to the client, in which case the client cannot tell whether
or not the transaction committed.

NOWAIT The commit returns to the client whether or not the write to the redo log has
completed. This behavior can increase transaction throughput.

BATCH The redo information is buffered to the redo log, along with other concurrently
executing transactions. When sufficient redo information is collected, a disk
write to the redo log is initiated. This behavior is called group commit, as redo
information for multiple transactions is written to the log in a single I/O
operation.

IMMEDIATE LGWR writes the transaction's redo information to the log. Because this
(default) operation option forces a disk I/0, it can reduce transaction throughput.

The following example shows how to set the commit action to BATCH and NOWAIT in
the initialization parameter file:

COMMIT_WRITE = BATCH, NOWAIT

You can change the commit action at the system level by executing ALTER SYSTEM as
in the following example:

ALTER SYSTEM SET COMMIT_WRITE = BATCH, NOWAIT

After the initialization parameter is set, a COMMIT statement with no options conforms
to the options specified in the parameter. Alternatively, you can override the current

initialization parameter setting by specifying options directly on the COMMIT
statement as in the following example:

COMMIT WRITE BATCH NOWAIT
In either case, your application specifies that log writer does not have to write the redo

for the commit immediately to the online redo logs and need not wait for confirmation
that the redo was written to disk.

Note: You cannot change the default IMMEDIATE and WAIT action
for distributed transactions.

If your application uses OCI, then you can modify redo action by setting the following
flags in the OCITransCommit function within your application:

s OCI_TRANS_WRITEBATCH

s OCI_TRANS_WRITENOWAIT

SQL Processing for Application Developers 2-7

Grouping Operations into Transactions

s OCI_TRANS_WRITEIMMED

s OCI_TRANS_WRITEWAIT

Caution: There is a potential for silent transaction loss when you use
OCI_TRANS_WRITENOWAIT. Transaction loss occurs silently with
shutdown termination, startup force, and any instance or node failure.
On a RAC system asynchronously committed changes might not be
immediately available to read on other instances.

The specification of the NOWAIT and BATCH options has a small window of
vulnerability in which Oracle Database can roll back a transaction that your
application view as committed. Your application must be able to tolerate the following
scenarios:

s The database host fails, which causes the database to lose redo that was buffered
but not yet written to the online redo logs.

= A fileI/O problem prevents log writer from writing buffered redo to disk. If the
redo logs are not multiplexed, then the commit is lost.
See Also:

» Oracle Database SQL Language Reference for information about the
COMMIT statement

» Oracle Call Interface Programmer’s Guide for information about the
OCITransCommit function

Rolling Back Transactions

To roll back an entire transaction, or to roll back part of a transaction to a savepoint,
use the ROLLBACK statement. For example, either of the following statements rolls
back the entire current transaction:

ROLLBACK WORK;
ROLLBACK;
The WORK option of the ROLLBACK statement has no function.

To roll back to a savepoint defined in the current transaction, use the TO option of the
ROLLBACK statement. For example, either of the following statements rolls back the
current transaction to the savepoint named POINT1:

SAVEPOINT Pointl;

ROLLBACK TO SAVEPOINT Pointl;
ROLLBACK TO Pointl;

Defining Transaction Savepoints

To define a savepoint in a transaction, use the SAVEPOINT statement. The following
statement creates the savepoint named ADD_EMP1 in the current transaction:

SAVEPOINT Add_empl;
If you create a second savepoint with the same identifier as an earlier savepoint, the

earlier savepoint is erased. After creating a savepoint, you can roll back to the
savepoint.

2-8 Oracle Database Advanced Application Developer's Guide

Ensuring Repeatable Reads with Read-Only Transactions

There is no limit on the number of active savepoints for each session. An active
savepoint is one that was specified since the last commit or rollback.

Table 2-2 shows a series of SQL statements that illustrates the use of COMMIT,
SAVEPOINT, and ROLLBACK statements within a transaction.

Table 2-2

Use of COMMIT, SAVEPOINT, and ROLLBACK

SQL Statement

Results

SAVEPOINT a;
DELETE...;
SAVEPOINT b;
INSERT INTO...;
SAVEPOINT c;
UPDATE...;
ROLLBACK TO c;

ROLLBACK TO b;

ROLLBACK TO c;
INSERT INTO...;

COMMIT;

First savepoint of this transaction

First DML statement of this transaction

Second savepoint of this transaction

Second DML statement of this transaction

Third savepoint of this transaction

Third DML statement of this transaction.

UPDATE statement is rolled back, savepoint C remains defined

INSERT statement is rolled back, savepoint C is lost, savepoint B remains
defined

ORA-01086
New DML statement in this transaction

Commits all actions performed by the first DML statement (the DELETE

statement) and the last DML statement (the second INSERT statement)

All other statements (the second and the third statements) of the
transaction were rolled back before the COMMIT. The savepoint A is no
longer active.

Ensuring Repeatable Reads with Read-Only Transactions

By default, the consistency model for Oracle Database guarantees statement-level read
consistency, but does not guarantee transaction-level read consistency (repeatable
reads). If you want transaction-level read consistency, and if your transaction does not
require updates, then you can specify a read-only transaction. After indicating that
your transaction is read-only, you can execute as many queries as you like against any
database table, knowing that the results of each query in the read-only transaction are
consistent with respect to a single point in time.

A read-only transaction does not acquire any additional data locks to provide
transaction-level read consistency. The multi-version consistency model used for
statement-level read consistency is used to provide transaction-level read consistency;
all queries return information with respect to the system change number (SCN)
determined when the read-only transaction begins. Because no data locks are acquired,
other transactions can query and update data being queried concurrently by a
read-only transaction.

Long-running queries sometimes fail because undo information required for consistent
read (CR) operations is no longer available. This happens when committed undo
blocks are overwritten by active transactions. Automatic undo management provides a
way to explicitly control when undo space can be reused; that is, how long undo
information is retained. Your database administrator can specify a retention period by
using the parameter UNDO_RETENTION.

See Also: Oracle Database Administrator’s Guide for information
about long-running queries and resumable space allocation

SQL Processing for Application Developers 2-9

Using Cursors

For example, if UNDO_RETENTION is set to 30 minutes, then all committed undo
information in the system is retained for at least 30 minutes. This ensures that all
queries running for 30 minutes or less, under usual circumstances, do not encounter
the OER error "snapshot too old."

A read-only transaction is started with a SET TRANSACTION statement that includes
the READ ONLY option. For example:

SET TRANSACTION READ ONLY;

The SET TRANSACTION statement must be the first statement of a new transaction. If
any statement except a DDL statement precedes a SET TRANSACTION READ ONLY
statement, an error is returned. After a SET TRANSACTION READ ONLY statement
successfully executes, the transaction can include only SELECT (without a FOR
UPDATE clause), COMMIT, ROLLBACK, or non-DML statements (such as SET ROLE,
ALTER SYSTEM, LOCK TABLE). Otherwise, an error is returned. A COMMIT,
ROLLBACK, or DDL statement terminates the read-only transaction; a DDL statement
causes an implicit commit of the read-only transaction and commits in its own
transaction.

Using Cursors

PL/SQL implicitly declares a cursor for all SQL data manipulation statements,
including queries that return only one row. For queries that return more than one row,
you can explicitly declare a cursor to process the rows individually.

A cursor is a handle to a specific private SQL area. In other words, a cursor can be
thought of as a name for a specific private SQL area. A PL/SQL cursor variable
enables the retrieval of multiple rows from a stored subprogram. Cursor variables
enable you to pass cursors as parameters in your 3GL application. Cursor variables are
described in Oracle Database PL/SQL Language Reference.

Although most Oracle Database users rely on the automatic cursor handling of the
database utilities, the programmatic interfaces offer application designers more control
over cursors. In application development, a cursor is a named resource available to a
program, which can be specifically used for parsing SQL statements embedded within
the application.

Topics:

s How Many Cursors Can a Session Have?
= Using a Cursor to Reexecute a Statement
s Closing a Cursor

= Canceling a Cursor

How Many Cursors Can a Session Have?

There is no absolute limit to the total number of cursors one session can have open at
one time, subject to two constraints:

s Each cursor requires virtual memory, so a session's total number of cursors is
limited by the memory available to that process.

= A systemwide limit of cursors for each session is set by the initialization parameter
named OPEN_CURSORS found in the parameter file (such as INIT.ORA).

See Also: Oracle Database Reference for more information about
OPEN_CURSORS

2-10 Oracle Database Advanced Application Developer's Guide

Using Cursors

Explicitly creating cursors for precompiler programs has advantages in tuning those
applications. For example, increasing the number of cursors can reduce the frequency
of parsing and improve performance. If you know how many cursors might be
required at a given time, you can open that many cursors simultaneously.

Using a Cursor to Reexecute a Statement

After each stage of execution, the cursor retains enough information about the SQL
statement to reexecute the statement without starting over, as long as no other SQL
statement was associated with that cursor. The statement can be reexecuted without
including the parse stage.

By opening several cursors, the parsed representation of several SQL statements can
be saved. Repeated execution of the same SQL statements can thus begin at the
describe, define, bind, or execute step, saving the repeated cost of opening cursors and
parsing.

To understand the performance characteristics of a cursor, a DBA can retrieve the text
of the query represented by the cursor using the V$SQL dynamic performance view.
Because the results of EXPLAIN PLAN on the original query might differ from the way
the query is actually processed, a DBA can get more precise information by examining
the following dynamic performance views:

View Description

V$SQL_PLAN Execution plan information for each child cursor loaded in the
library cache.

V$SQL_STATISTICS Execution statistics at the row source level for each child cursor.

V$SQL_STATISTICS_ALL Memory usage statistics for row sources that use SQL memory
(sort or hash-join). This view concatenates information in
V$SQL_PLAN with execution statistics from V$SQL_PLAN_
STATISTICS and V$SQL_WORKAREA.

See Also: Oracle Database Reference for details of the preceding
dynamic performance views

Closing a Cursor

Closing a cursor means that the information currently in the associated private area is
lost and its memory is deallocated. Once a cursor is opened, it is not closed until one of
the following events occurs:

= The user program terminates its connection to the server.

s If the user program is an OCI program or precompiler application, then it
explicitly closes any open cursor during the execution of that program. (However,
when this program terminates, any cursors remaining open are implicitly closed.)

Canceling a Cursor

Canceling a cursor frees resources from the current fetch.The information currently in
the associated private area is lost but the cursor remains open, parsed, and associated
with its bind variables.

Note: You cannot cancel cursors using Pro*C/C++ or PL/SQL.

SQL Processing for Application Developers 2-11

Locking Tables Explicitly

See Also: Oracle Call Interface Programmer’s Guide for information
about canceling a cursor with the OCIStmtFetch2 statement

Locking Tables Explicitly

Oracle Database always performs necessary locking to ensure data concurrency,
integrity, and statement-level read consistency. You can override these default locking
mechanisms. For example, you might want to override the default locking of Oracle
Database if:

= You want transaction-level read consistency or "repeatable reads"—where
transactions query a consistent set of data for the duration of the transaction,
knowing that the data was not changed by any other transactions. This level of
consistency can be achieved by using explicit locking, read-only transactions,
serializable transactions, or overriding default locking for the system.

= A transaction requires exclusive access to a resource. To proceed with its
statements, the transaction with exclusive access to a resource does not have to
wait for other transactions to complete.

The automatic locking mechanisms can be overridden at the transaction level.
Transactions including the following SQL statements override Oracle Database's
default locking:

= LOCK TABLE
= SELECT, including the FOR UPDATE clause

m SET TRANSACTION with the READ ONLY or ISOLATION LEVEL SERIALIZABLE
options

Locks acquired by these statements are released after the transaction is committed or

rolled back.

The following topics describe each option available for overriding the default locking
of Oracle Database. The initialization parameter DML_LOCKS determines the
maximum number of DML locks.

See Also: Oracle Database Reference for more information about DML_
LOCKS

Although the default value is usually enough, you might need to increase it if you use
additional manual locks.

Caution: If you override the default locking of Oracle Database at
any level, be sure that the overriding locking subprograms operate
correctly: Ensure that data integrity is guaranteed, data concurrency is

acceptable, and deadlocks are either impossible or appropriately
handled.

Topics:

= Privileges Required

» Choosing a Locking Strategy

= Letting Oracle Database Control Table Locking
= Explicitly Acquiring Row Locks

2-12 Oracle Database Advanced Application Developer's Guide

Locking Tables Explicitly

Privileges Required

You can automatically acquire any type of table lock on tables in your schema. To
acquire a table lock on a table in another schema, you must have the LOCK ANY TABLE
system privilege or any object privilege (for example, SELECT or UPDATE) for the
table.

Choosing a Locking Strategy

A transaction explicitly acquires the specified table locks when a LOCK TABLE
statement is executed. A LOCK TABLE statement manually overrides default locking.
When a LOCK TABLE statement is issued on a view, the underlying base tables are
locked. The following statement acquires exclusive table locks for the emp_tab and
dept_tab tables on behalf of the containing transaction:

LOCK TABLE emp_tab, dept_tab
IN EXCLUSIVE MODE NOWAIT;

You can specify several tables or views to lock in the same mode; however, only a
single lock mode can be specified for each LOCK TABLE statement.

Note: When a table is locked, all rows of the table are locked. No
other user can modify the table.

In the LOCK TABLE statement, you can also indicate how long you want to wait for the
table lock:

= If you do not want to wait, specify either NOWAIT or WAIT O.

You acquire the table lock only if it is immediately available; otherwise, an error
notifies you that the lock is not available at this time.

= If you want to wait up to n seconds to acquire the table lock, specify WAIT n,
where 7 is greater than 0 and less than or equal to 100000.

If the table lock is still unavailable after n seconds, an error notifies you that the
lock is not available at this time.

s If you want to wait indefinitely to acquire the lock, specify neither NOWAIT nor
WAIT.

The database waits indefinitely until the table is available, locks it, and returns
control to you. When the database is executing DDL statements concurrently with
DML statements, a timeout or deadlock can sometimes result. The database
detects such timeouts and deadlocks and returns an error.

For the syntax of the LOCK TABLE statement, see Oracle Database SQL Language
Reference.

Topics:

s When to Lock with ROW SHARE MODE and ROW EXCLUSIVE MODE
= When to Lock with SHARE MODE

s When to Lock with SHARE ROW EXCLUSIVE MODE

s When to Lock with EXCLUSIVE MODE

SQL Processing for Application Developers 2-13

Locking Tables Explicitly

When to Lock with ROW SHARE MODE and ROW EXCLUSIVE MODE
ROW SHARE and ROW EXCLUSIVE table locks offer the highest degree of concurrency.
You might use these locks if:

= Your transaction must prevent another transaction from acquiring an intervening
share, share row, or exclusive table lock for a table before your transaction can
update that table.

If another transaction acquires an intervening share, share row, or exclusive table
lock, no other transactions can update the table until the locking transaction
commits or rolls back.

= Your transaction must prevent a table from being altered or dropped before your
transaction can modify that table.

When to Lock with SHARE MODE

SHARE table locks are rather restrictive data locks. You might use these locks if:

= Your transaction only queries the table, and requires a consistent set of the table
data for the duration of the transaction.

= You can hold up other transactions that try to update the locked table, until all
transactions that hold SHARE locks on the table either commit or roll back.

s Other transactions might acquire concurrent SHARE table locks on the same table,
also giving them the option of transaction-level read consistency.

Caution: Your transaction might or might not update the table later
in the same transaction. However, if multiple transactions
concurrently hold share table locks for the same table, no transaction
can update the table (even if row locks are held as the result of a
SELECT FOR UPDATE statement). Therefore, if concurrent share table
locks on the same table are common, updates cannot proceed and
deadlocks are common. In this case, use share row exclusive or
exclusive table locks instead.

Scenario: Tables employees and budget_tab require a consistent set of data in a
third table, departments. For a given department number, you want to update the
information in employees and budget_tab, and ensure that no new members are
added to the department between these two transactions.

Solution: Lock the departments table in SHARE MODE, as shown in Example 2-1.
Because the departments table is rarely updated, locking it probably does not cause
many other transactions to wait long.

Example 2-1 LOCK TABLE with SHARE MIODE

SQL> -- Create and populate table:
SQL>
SQL> DROP TABLE budget_tab;
DROP TABLE budget_tab
*
ERROR at line 1:
ORA-00942: table or view does not exist

SQL> CREATE TABLE budget_tab (

2 sal NUMBER (8, 2) ,
3 deptno NUMBER(4)) ;

2-14 Oracle Database Advanced Application Developer's Guide

Locking Tables Explicitly

Table created.

SQL> INSERT INTO budget_tab

2
3

107

SELECT salary, department_id
FROM employees;

rows created.

SQL> -- Lock departments and update employees and budget_tab:
SQL>
SQL> LOCK TABLE departments IN SHARE MODE;

Table(s) Locked.

SQL> UPDATE employees

2
3
4

SET salary = salary * 1.1
WHERE department_id IN
(SELECT department_id FROM departments WHERE location_id = 1700);

18 rows updated.

SQL> UPDATE budget_tab

2
3
4

SET sal = sal * 1.1
WHERE deptno IN
(SELECT department_id FROM departments WHERE location_id = 1700);

18 rows updated.

SQL> =-- COMMIT releases lock
SQL> COMMIT;
SQL>

When to Lock with SHARE ROW EXCLUSIVE MODE
You might use a SHARE ROW EXCLUSIVE table lock if:

Your transaction requires both transaction-level read consistency for the specified
table and the ability to update the locked table.

You do not care if other transactions acquire explicit row locks (using SELECT FOR
UPDATE), which might make UPDATE and INSERT statements in the locking
transaction wait and might cause deadlocks.

You only want a single transaction to have this action.

When to Lock with EXCLUSIVE MODE
You might use an EXCLUSIVE table if:

Your transaction requires immediate update access to the locked table. When your
transaction holds an exclusive table lock, other transactions cannot lock specific
rows in the locked table.

Your transaction also ensures transaction-level read consistency for the locked
table until the transaction is committed or rolled back.

You are not concerned about low levels of data concurrency, making transactions
that request exclusive table locks wait in line to update the table sequentially.

SQL Processing for Application Developers 2-15

Locking Tables Explicitly

Letting Oracle Database Control Table Locking

Letting Oracle Database control table locking means your application needs less
programming logic, but also has less control, than if you manage the table locks
yourself.

Issuing the statement SET TRANSACTION ISOLATION LEVEL SERIALIZABLE or
ALTER SESSION ISOLATION LEVEL SERIALIZABLE preserves ANSI serializability
without changing the underlying locking protocol. This technique gives concurrent
access to the table while providing ANSI serializability. Getting table locks greatly
reduces concurrency.

See Also:

» Oracle Database SQL Language Reference for information about the
SET TRANSACTION statement

» Oracle Database SQL Language Reference for information about the
ALTER SESSTION statements

Change the settings for these parameters only when an instance is shut down. If
multiple instances are accessing a single database, then all instances must use the same
setting for these parameters.

Explicitly Acquiring Row Locks

You can override default locking with a SELECT statement that includes the FOR
UPDATE clause. This statement acquires exclusive row locks for selected rows (as an
UPDATE statement does), in anticipation of updating the selected rows in a subsequent
statement.

You can use a SELECT FOR UPDATE statement to lock a row without actually changing
it. For example, several triggers in Oracle Database PL/SQL Language Reference show
how to implement referential integrity. In the EMP_DEPT_CHECK trigger, the row that
contains the referenced parent key value is locked to guarantee that it remains for the
duration of the transaction; if the parent key is updated or deleted, referential integrity
is violated.

SELECT FOR UPDATE statements are often used by interactive programs that enable a
user to modify fields of one or more specific rows (which might take some time); row
locks are acquired so that only a single interactive program user is updating the rows
at any given time.

If a SELECT FOR UPDATE statement is used when defining a cursor, the rows in the
return set are locked when the cursor is opened (before the first fetch) rather than
being locked as they are fetched from the cursor. Locks are only released when the
transaction that opened the cursor is committed or rolled back, not when the cursor is
closed.

Each row in the return set of a SELECT FOR UPDATE statement is locked individually;
the SELECT FOR UPDATE statement waits until the other transaction releases the
conflicting row lock. If a SELECT FOR UPDATE statement locks many rows in a table,
and if the table experiences a lot of update activity, it might be faster to acquire an
EXCLUSIVE table lock instead.

2-16 Oracle Database Advanced Application Developer's Guide

Using Oracle Lock Management Services

Note: The return set for a SELECT FOR UPDATE might change while
the query is running; for example, if columns selected by the query are
updated or rows are deleted after the query started. When this
happens, SELECT FOR UPDATE acquires locks on the rows that did not
change, gets a new read-consistent snapshot of the table using these
locks, and then restarts the query to acquire the remaining locks.

This can cause a deadlock between sessions querying the table
concurrently with DML operations when rows are locked in a
nonsequential order. To prevent such deadlocks, design your
application so that any concurrent DML on the table does not affect
the return set of the query. If this is not feasible, you might want to
serialize queries in your application.

By default, the transaction waits until the requested row lock is acquired. If you are not
willing to wait to acquire the row lock, use either the NOWAIT clause of the LOCK
TABLE statement (see Choosing a Locking Strategy on page 2-13) or the SKIP LOCKED
clause of the SELECT FOR UPDATE statement.

If you can lock some of the requested rows, but not all of them, the SKIP LOCKED
option skips the rows that you cannot lock and locks the rows that you can lock.

See Also: Oracle Database SQL Language Reference for information
about the SELECT FOR UPDATE statement and an example of the SKIP
LOCKED clause

Using Oracle Lock Management Services

You can use Oracle Lock Management services (user locks) for your applications by
invoking subprograms the DBMS_LOCK package. It is possible to request a lock of a
specific mode, give it a unique name recognizable in another subprogram in the same
or another instance, change the lock mode, and release it. Because a reserved user lock
is the same as an Oracle Database lock, it has all the features of a database lock, such as
deadlock detection. Be certain that any user locks used in distributed transactions are
released upon COMMIT, or an undetected deadlock can occur.

See Also: Oracle Database PL/SQL Packages and Types Reference for
detailed information about the DBMS_LOCK package

Topics:

= When to Use User Locks

= Viewing and Monitoring Locks

When to Use User Locks

User locks can help to:

m Provide exclusive access to a device, such as a terminal

= Provide application-level enforcement of read locks

» Detect when a lock is released and cleanup after the application

= Synchronize applications and enforce sequential processing

SQL Processing for Application Developers 2-17

Using Serializable Transactions for Concurrency Control

The following Pro*COBOL precompiler example shows how locks can be used to
ensure that there are no conflicts when multiple people must access a single device.

Example 2-2 User Locks

LRSS SRS R R SRR S S EE SRR SRS E SRS EE RS S SR SRR EEEEEEEEEEEEEEEEEEEEEE]

* Print Check *
* Any cashier may issue a refund to a customer returning goods. *
* Refunds under $50 are given in cash, more than $50 by check. *
* This code prints the check. One printer is opened by all *
* the cashiers to avoid the overhead of opening and closing it *
* for every check, meaning that lines of output from multiple *
* cashiers can become interleaved if you do not ensure exclusive *
* access to the printer. The DBMS_LOCK package is used to *
* ensure exclusive access. *

LRSS SR SRR EEEEEE SRR R R R R EEEEEREEEEEEEREREREEEEEEEEEEEEEEEEEEE SRR

CHECK-PRINT
* Get the lock "handle" for the printer lock.
MOVE "CHECKPRINT" TO LOCKNAME-ARR.
MOVE 10 TO LOCKNAME-LEN.
EXEC SQL EXECUTE
BEGIN DBMS_LOCK.ALLOCATE_UNIQUE (:LOCKNAME, :LOCKHANDLE);
END; END-EXEC.
* Lock the printer in exclusive mode (default mode).
EXEC SQL EXECUTE
BEGIN DBMS_LOCK.REQUEST (:LOCKHANDLE) ;
END; END-EXEC.
* You now have exclusive use of the printer, print the check.

* Unlock the printer so other people can use it
EXEC SQL EXECUTE
BEGIN DBMS_LOCK.RELEASE (:LOCKHANDLE) ;
END; END-EXEC.

Viewing and Monitoring Locks

Table 2-5 describes the Oracle Database facilities that display locking information for
ongoing transactions within an instance.

Table 2-3 Ways to Display Locking Information

Tool Description

Oracle Enterprise From the Additional Monitoring Links section of the Database
Manager 10g Database Performance page, click Database Locks to display user blocks,
Control blocking locks, or the complete list of all database locks. See Oracle

Database 2 Day DBA for more information.

UTLLOCKT.SQL The UTLLOCKT.SQL script displays a simple character lock wait-for
graph in tree structured fashion. Using any SQL tool (such as
SQL*Plus) to execute the script, it prints the sessions in the system
that are waiting for locks and the corresponding blocking locks. The
location of this script file is operating system dependent. (You must
have run the CATBLOCK.SQL script before using UTLLOCKT.SQL.)

Using Serializable Transactions for Concurrency Control

By default, Oracle Database permits concurrently executing transactions to moditfy,

add, or delete rows in the same table, and in the same data block. Changes made by
one transaction are not seen by another concurrent transaction until the transaction

that made the changes commits.

2-18 Oracle Database Advanced Application Developer's Guide

Using Serializable Transactions for Concurrency Control

If a transaction A attempts to update or delete a row that has been locked by another
transaction B (by way of a DML or SELECT FOR UPDATE statement), then A's DML
statement blocks until B commits or rolls back. Once B commits, transaction A can see
changes that B has made to the database.

For most applications, this concurrency model is the appropriate one, because it
provides higher concurrency and thus better performance. But some rare cases require
transactions to be serializable. Serializable transactions must execute in such a way
that they appear to be executing one at a time (serially), rather than concurrently.
Concurrent transactions executing in serialized mode can make only the database
changes that they could make if the transactions ran one after the other.

Figure 2-1 shows a serializable transaction (B) interacting with another transaction
(A).

The ANSI/ISO SQL standard SQL92 defines three possible kinds of transaction
interaction, and four levels of isolation that provide increasing protection against these
interactions. These interactions and isolation levels are summarized in Table 2—4.

Table 2-4 Summary of ANSI Isolation Levels

Isolation Level Dirty Read' Unrepeatable Read? Phantom Read?®
READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Not possible Possible Possible
REPEATABLE READ Not possible Not possible Possible
SERIALIZABLE Not possible Not possible Not possible

1 A transaction can read uncommitted data changed by another transaction.
2 A transaction rereads data committed by another transaction and sees the new data.

3 A transaction can execute a query again, and discover new rows inserted by another
committed transaction.

The action of Oracle Database with respect to these isolation levels is summarized in
Table 2-5.

Table 2-5 ANSI Isolation Levels and Oracle Database

Isolation Level Description

READ UNCOMMITTED Oracle Database never permits "dirty reads." Although some other
database products use this undesirable technique to improve
thoughput, it is not required for high throughput with Oracle Database.

READ COMMITTED Oracle Database meets the READ COMMITTED isolation standard. This is
the default mode for all Oracle Database applications. Because an
Oracle Database query only sees data that was committed at the
beginning of the query (the snapshot time), Oracle Database actually
offers more consistency than is required by the ANSI/ISO SQL92
standards for READ COMMITTED isolation.

REPEATABLE READ Oracle Database does not normally support this isolation level, except
as provided by SERIALIZABLE.

SERIALIZABLE Oracle Database does not normally support this isolation level, except
as provided by SERIALIZABLE.

Topics:
s How Serializable Transactions Interact

» Setting the Isolation Level of a Serializable Transaction

SQL Processing for Application Developers 2-19

Using Serializable Transactions for Concurrency Control

= Referential Integrity and Serializable Transactions
= READ COMMITTED and SERIALIZABLE Isolation

= Application Tips for Transactions

How Serializable Transactions Interact

Figure 2-1 on page 2-21 shows how a serializable transaction (Transaction B) interacts
with another transaction (A, which can be either SERTALIZABLE or READ
COMMITTED).

When a serializable transaction fails with ORA-08177, the application can take any of
several actions:

s Commit the work executed to that point

= Execute additional, different, statements, perhaps after rolling back to a prior
savepoint in the transaction

= Roll back the entire transaction and try it again

Oracle Database stores control information in each data block to manage access by
concurrent transactions. To use the SERIALIZABLE isolation level, you must use the
INITRANS clause of the CREATE TABLE or ALTER TABLE statement to set aside
storage for this control information. To use serializable mode, INITRANS must be set
to at least 3.

2-20 Oracle Database Advanced Application Developer's Guide

Using Serializable Transactions for Concurrency Control

Figure 2—-1 Time Line for Two Transactions

TRANSACTION A TRANSACTION B
(arbitrary) (serializable)
] . SET TRANSACTION
begin work Issue update "too recent" ISOLATION LEVEL
update row 2 for B to see SERIALIZABLE <+

in block 1 read row 1 in block 1

Change other row in update row 1 in block 1
same block, see own read updated row 1 in
changes block 1

Create possible

insert row 4 "phantom" row

. read old row 2 in block 1
Uncommitted changes search for row 4

invisible (notfound)

Make changes visible
commit to transactions that
begin later

Make changes IR .

after A commits update row 3 in block 1

B can see its own changes irr?'gfoi?(%pdated row 1

but not the committed search for row 4 (not found)

changes of transaction A. read old row 2 in block 1

Failure on attempt to update N)

N update row 2 in block 1 e

: ; row updated and committed FAILS: rollback and retr

since transaction B began | ’ y

TIME

Setting the Isolation Level of a Serializable Transaction

You can change the isolation level of a transaction using the ISOLATION LEVEL clause
of the SET TRANSACTION statement, which must be the first statement issued in a
transaction.

Use the ALTER SESSION statement to set the transaction isolation level on a
session-wide basis.

See Also:

» Oracle Database SQL Language Reference for the syntax of the ALTER
SESSION statement

» Oracle Database SQL Language Reference for the syntax of the SET
TRANSACTION statement

SQL Processing for Application Developers 2-21

Using Serializable Transactions for Concurrency Control

Oracle Database stores control information in each data block to manage access by
concurrent transactions. Therefore, if you set the transaction isolation level to
SERIALIZABLE, then you must use the ALTER TABLE statement to set INITRANS to
at least 3. This parameter causes Oracle Database to allocate sufficient storage in each
block to record the history of recent transactions that accessed the block. Use higher
values for tables that will undergo many transactions updating the same blocks.

Referential Integrity and Serializable Transactions

Because Oracle Database does not use read locks, even in SERIALIZABLE
transactions, data read by one transaction can be overwritten by another. Transactions
that perform database consistency checks at the application level must not assume that
the data they read will not change during the execution of the transaction (even
though such changes are not visible to the transaction). Database inconsistencies can
result unless such application-level consistency checks are coded carefully, even when
using SERTALIZABLE transactions.

Note: Examples in this topic apply to both READ COMMITTED and
SERIALIZABLE transactions.

Figure 2-2 on page 2-23 shows two different transactions that perform
application-level checks to maintain the referential integrity parent/child relationship
between two tables. One transaction checks that a row with a specific primary key
value exists in the parent table before inserting corresponding child rows. The other
transaction checks to see that no corresponding detail rows exist before deleting a
parent row. In this case, both transactions assume (but do not ensure) that data they
read will not change before the transaction completes.

Figure 2-2 Referential Integrity Check

B's query does

not prevent this

e TRANSACTION A TRANSACTION B
read parent (it exists) read child rows (not found)
ey insert child row(s) delete parent <=
commit work commit work

A's query does

not prevent this
delete

The read issued by transaction A does not prevent transaction B from deleting the
parent row, and transaction B's query for child rows does not prevent transaction A

2-22 Oracle Database Advanced Application Developer's Guide

Using Serializable Transactions for Concurrency Control

from inserting child rows. This scenario leaves a child row in the database with no
corresponding parent row. This result occurs even if both A and B are SERIALIZABLE
transactions, because neither transaction prevents the other from making changes in
the data it reads to check consistency.

As this example shows, sometimes you must take steps to ensure that the data read by
one transaction is not concurrently written by another. This requires a greater degree
of transaction isolation than defined by SQL92 SERIALIZABLE mode.

Fortunately, it is straightforward in Oracle Database to prevent the anomaly described:

s Transaction A can use SELECT FOR UPDATE to query and lock the parent row and
thereby prevent transaction B from deleting the row.

s Transaction B can prevent Transaction A from gaining access to the parent row by
reversing the order of its processing steps. Transaction B first deletes the parent
row, and then rolls back if its subsequent query detects the presence of
corresponding rows in the child table.

Referential integrity can also be enforced in Oracle Database using database triggers,
instead of a separate query as in Transaction A. For example, an INSERT into the child
table can fire a BEFORE INSERT row-level trigger to check for the corresponding
parent row. The trigger queries the parent table using SELECT FOR UPDATE, ensuring
that parent row (if it exists) remains in the database for the duration of the transaction
inserting the child row. If the corresponding parent row does not exist, the trigger
rejects the insert of the child row.

SQL statements issued by a database trigger execute in the context of the SQL
statement that caused the trigger to fire. All SQL statements executed within a trigger
see the database in the same state as the triggering statement. Thus, in a READ
COMMITTED transaction, the SQL statements in a trigger see the database as of the
beginning of the triggering statement execution, and in a transaction executing in
SERIALIZABLE mode, the SQL statements see the database as of the beginning of the
transaction. In either case, the use of SELECT FOR UPDATE by the trigger correctly
enforces referential integrity.

READ COMMITTED and SERIALIZABLE Isolation

Oracle Database gives you a choice of two transaction isolation levels with different
characteristics. Both the READ COMMITTED and SERIALIZABLE isolation levels
provide a high degree of consistency and concurrency. Both levels reduce contention,
and are designed for deploying real-world applications. The rest of this topic compares
the two isolation modes and provides information helpful in choosing between them.

Topics:
s Transaction Set Consistency
s Comparison of READ COMMITTED and SERIALIZABLE Transactions

s Choosing an Isolation Level for Transactions

Transaction Set Consistency

A useful way to describe the READ COMMITTED and SERIALIZABLE isolation levels in
Oracle Database is to consider:

= A collection of database tables (or any set of data)
= A sequence of reads of rows in those tables

= The set of transactions committed at any moment

SQL Processing for Application Developers 2-23

Using Serializable Transactions for Concurrency Control

An operation (a query or a transaction) is transaction set consistent if its read
operations all return data written by the same set of committed transactions. When an
operation is not transaction set consistent, some reads reflect the changes of one set of
transactions, and other reads reflect changes made by other transactions. Such an
operation sees the database in a state that reflects no single set of committed
transactions.

Oracle Database transactions executing in READ COMMITTED mode are transaction-set
consistent on an individual-statement basis, because all rows read by a query must be
committed before the query begins.

Oracle Database transactions executing in SERIALIZABLE mode are transaction set
consistent on an individual-transaction basis, because all statements in a
SERIALIZABLE transaction execute on an image of the database as of the beginning of
the transaction.

In other database systems, a single query run in READ COMMITTED mode provides
results that are not transaction set consistent. The query is not transaction set
consistent, because it might see only a subset of the changes made by another
transaction. For example, a join of a master table with a detail table can see a master
record inserted by another transaction, but not the corresponding details inserted by
that transaction, or vice versa. The READ COMMITTED mode avoids this problem, and
so provides a greater degree of consistency than read-locking systems.

In read-locking systems, at the cost of preventing concurrent updates, SQL92
REPEATABLE READ isolation provides transaction set consistency at the statement
level, but not at the transaction level. The absence of phantom protection means two
queries issued by the same transaction can see data committed by different sets of
other transactions. Only the throughput-limiting and deadlock-susceptible
SERIALIZABLE mode in these systems provides transaction set consistency at the
transaction level.

Comparison of READ COMMITTED and SERIALIZABLE Transactions

Table 2-6 summarizes key similarities and differences between READ COMMITTED and
SERIALIZABLE transactions.

Table 2-6 Read Committed and Serializable Transactions

Operation Read Committed Serializable
Dirty write Not Possible Not Possible
Dirty read Not Possible Not Possible
Unrepeatable read Possible Not Possible
Phantoms Possible Not Possible
Compliant with ANSI/ISO SQL 92 Yes Yes

Read snapshot time Statement Transaction
Transaction set consistency Statement level =~ Transaction level
Row-level locking Yes Yes

Readers block writers No No

Writers block readers No No
Different-row writers block writers No No
Same-row writers block writers Yes Yes

Waits for blocking transaction Yes Yes

2-24 Oracle Database Advanced Application Developer's Guide

Autonomous Transactions

Table 2-6 (Cont.) Read Committed and Serializable Transactions

Operation Read Committed Serializable
Subject to "cannot serialize access" error No Yes
Error after blocking transaction terminates No No
Error after blocking transaction commits No Yes

Choosing an Isolation Level for Transactions

Choose an isolation level that is appropriate to the specific application and workload.
You might choose different isolation levels for different transactions. The choice
depends on performance and consistency needs, and consideration of application
coding requirements.

For environments with many concurrent users rapidly submitting transactions, you
must assess transaction performance against the expected transaction arrival rate and
response time demands, and choose an isolation level that provides the required
degree of consistency while performing well. Frequently, for high performance
environments, you must trade-off between consistency and concurrency (transaction
throughput).

Both Oracle Database isolation modes provide high levels of consistency and
concurrency (and performance) through the combination of row-level locking and
Oracle Database's multi-version concurrency control system. Because readers and
writers do not block one another in Oracle Database, while queries still see consistent
data, both READ COMMITTED and SERIALIZABLE isolation provide a high level of
concurrency for high performance, without the need for reading uncommitted ("dirty")
data.

READ COMMITTED isolation can provide considerably more concurrency with a
somewhat increased risk of inconsistent results (due to phantoms and unrepeatable
reads) for some transactions. The SERIALIZABLE isolation level provides somewhat
more consistency by protecting against phantoms and unrepeatable reads, and might
be important where a read /write transaction executes a query more than once.
However, SERIALIZABLE mode requires applications to check for the "cannot
serialize access" error, and can significantly reduce throughput in an environment with
many concurrent transactions accessing the same data for update. Application logic
that checks database consistency must take into account the fact that reads do not
block writes in either mode.

Application Tips for Transactions

When a transaction runs in serializable mode, any attempt to change data that was
changed by another transaction since the beginning of the serializable transaction
causes ORA-08177.

When you get this error, roll back the current transaction and execute it again. The
transaction gets a new transaction snapshot, and the operation is likely to succeed.

To minimize the performance overhead of rolling back transactions and executing
them again, try to put DML statements that might conflict with other concurrent
transactions near the beginning of your transaction.

Autonomous Transactions

This topic gives a brief overview of autonomous transactions and what you can do
with them.

SQL Processing for Application Developers 2-25

Autonomous Transactions

See Also: Oracle Database PL/SQL Language Reference for detailed
information about autonomous transactions

At times, you might want to commit or roll back some changes to a table
independently of a primary transaction's final outcome. For example, in a stock
purchase transaction, you might want to commit a customer's information regardless
of whether the overall stock purchase actually goes through. Or, while running that
same transaction, you might want to log error messages to a debug table even if the
overall transaction rolls back. Autonomous transactions enable you to do such tasks.

An autonomous transaction (AT) is an independent transaction started by another
transaction, the main transaction (MT). It lets you suspend the main transaction, do
SQL operations, commit or roll back those operations, then resume the main
transaction.

An autonomous (independent) transaction executes within an autonomous scope. An
autonomous scope is a routine you mark with the pragma (compiler directive)
AUTONOMOUS_TRANSACTION. The pragma instructs the PL/SQL compiler to mark a
routine as autonomous.

Figure 2-3 shows how control flows from the main routine (MT) to an autonomous
routine (AT) and back again. As you can see, the autonomous routine can commit
more than one transaction (AT1 and AT2) before control returns to the main routine.

Figure 2-3 Transaction Control Flow

Main Routine Autonomous Routine
PROCEDURE procl IS PROCEDURE proc2 IS
emp_id NUMBER; PRAGMA AUTON. . .
BEGIN dept_id NUMBER;
emp_id := 7788; BEGIN MT suspends
INSERT ... — MT begins dept_id := 20;
SELECT ... UPDATE ... — AT1 begins
proc2; > INSERT ...
DELETE ... UPDATE ...
COMMIT; —F & — MT ends coMMIiT; —F— AT1 ends
END; INSERT ... —— L ATD begins
INSERT ...
coMMIT; —+— AT2ends
END; MT resumes

When you enter the executable section of an autonomous routine, the main routine
suspends. When you exit the routine, the main routine resumes. COMMIT and
ROLLBACK end the active autonomous transaction but do not exit the autonomous
routine. As Figure 2-3 shows, when one transaction ends, the next SQL statement
begins another transaction.

A few more characteristics of autonomous transactions:

» The changes autonomous transactions effect do not depend on the state or the
eventual disposition of the main transaction. For example:

- An autonomous transaction does not see any changes made by the main
transaction.

— When an autonomous transaction commits or rolls back, it does not affect the
outcome of the main transaction.

2-26 Oracle Database Advanced Application Developer's Guide

Autonomous Transactions

s The changes an autonomous transaction effects are visible to other transactions as
soon as that autonomous transaction commits. Therefore, users can access the
updated information without having to wait for the main transaction to commit.

s Autonomous transactions can start other autonomous transactions.

Figure 2—4 illustrates some of the possible sequences autonomous transactions can
follow.

Figure 2-4 Possible Sequences of Autonomous Transactions

,(AMT_egn tran)sgction Sﬁope
cope) begins the main

fransaction. MTx, MTx MT Scope AT Scope 1 AT Scope 2 AT Scope 3 AT Scope 4
invokes the first autonomous
transaction scope (AT MTx
Scope1). MTx suspends. AT
Scope 1 begins the >
transaction Tx1.1. Tx1.1

A

At Scope 1 commits or rolls MT
back Tx1.1, than ends. MTx X ><
resumes.

MTx invokes AT Scope 2. MT
suspends, passing control to P
AT Scope 2 which, initially, is

performing queries.

AT Scope 2 then begins
Tx2.1 by, say, doing an
update. AT Scope 2 commits
or rolls back Tx2.1.

Tx2.1

Later, AT Scope 2 begins a
second transaction, Tx2.2, Tx2.2
then commits or rolls it back.

AT Scope 2 performs a few <
queries, then ends, passing MTx ><
control back to MTx.

MTx invokes AT Scope 3.
MTx suspends, AT Scope 3
begins.

AT Scope 3 begins Tx3.1
which, in turn, invokes AT
Scope 4. Tx3.1 suspends, AT
Scope 4 begins.

Tx3.1

Tx4.1

AT Scope 4 begins Tx4.1,
commits or rolls it back, then
ends. AT Scope 3 resumes.

AT Scope 3 commits or rolls ™1 ><

back Tx3.1, then ends. MTx
resumes.

Finally, MT Scope commits or MTx

rolls back MTx, then ends. ><

Examples of Autonomous Transactions
s Ordering a Product

X

= Withdrawing Money from a Bank Account

SQL Processing for Application Developers 2-27

Autonomous Transactions

As these examples illustrate, there are four possible outcomes when you use
autonomous and main transactions (see Table 2-7). There is no dependency between
the outcome of an autonomous transaction and that of a main transaction.

Table 2-7 Possible Transaction Outcomes

Autonomous Transaction Main Transaction

Commits Commits
Commits Rolls back
Rolls back Commits
Rolls back Rolls back
Ordering a Product

In the example illustrated by Figure 2-5, a customer orders a product. The customer's
information (such as name, address, phone) is committed to a customer information
table—even though the sale does not go through.

Figure 2-5 Example: A Buy Order

MT Scope begins the main
transaction, MTx inserts the
buy order into a table. me M

MTx invokes the autonomous
transaction scope (AT

Scope). When AT Scope ATx
begins, MT Scope suspends.

ATX, updates the audit table
with customer information.

A

MTx seeks to validate the
order, finds that the selected MTx ><

item is unavailable, and

therefore rolls back the main

transaction.

Withdrawing Money from a Bank Account

In this example, a customer tries to withdraw money from a bank account. In the

process, a main transaction invokes one of two autonomous transaction scopes (AT
Scope 1 or AT Scope 2).

The possible scenarios for this transaction are:

= Scenario 1: Sufficient Funds

» Scenario 2: Insufficient Funds with Overdraft Protection

» Scenario 3: Insufficient Funds Without Overdraft Protection

Scenario 1: Sufficient Funds There are sufficient funds to cover the withdrawal, so the
bank releases the funds (see Figure 2-6).

2-28 Oracle Database Advanced Application Developer's Guide

Autonomous Transactions

Figure 2-6 Bank Withdrawal—Sufficient Funds

MTx generates a
transaction ID.

Tx1.1 inserts the transaction
ID into the audit table and
commits.

MTx validates the balance on
the account.

Tx2.1, updates the audit table
using the transaction ID
generated above, then
commits.

MTx releases the funds. MT
Scope ends.

MT Scope AT Scope 1 AT Scope 2
MTx
Tx1.1

di

|
MTx ><

> Tx2.1

di

|
MTx

X

X

Scenario 2: Insufficient Funds with Overdraft Protection There are insufficient funds to cover
the withdrawal, but the customer has overdraft protection, so the bank releases the

funds (see Figure 2-7).

SQL Processing for Application Developers 2-29

Autonomous Transactions

Figure 2-7 Bank Withdrawal—Insufficient Funds with Overdraft Protection

MT Scope AT Scope 1 AT Scope 2

MTx

Tx1.1

A

MTx discovers that there are

insufficient funds to cover the MTx ><
withdrawal. It finds that the

customer has overdraft

protection and sets a flag to
the appropriate value.

Tx2.1, updates the P
audit table. ™21

A

MTX, releases the funds. MT MTx ><

Scope ends.

Scenario 3: Insufficient Funds Without Overdraft Protection There are insufficient funds to
cover the withdrawal and the customer does not have overdraft protection, so the
bank withholds the requested funds (see Figure 2-8).

2-30 Oracle Database Advanced Application Developer's Guide

Autonomous Transactions

Figure 2-8 Bank Withdrawal—Insufficient Funds Without Overdraft Protection

MT Scope AT Scope 1 AT Scope 2

MTx

Tx1.1

A

MTx discovers that there are

insufficient funds to cover the MTx ><
withdrawal. It finds that the

customer does not have
overdraft protection and sets
a flag to the appropriate
value.

Tx2.1, updates the >
audit table.

MTx Scope rolls back MTx,
denying the release of funds.
MT Scope ends.

MTx

X

X

Defining Autonomous Transactions

To define autonomous transactions, use PRAGMA AUTONOMOUS_ TRANSACTION, which
instructs the PL/SQL compiler to mark the routine as autonomous.

In Example 2-3, the function balance is autonomous.

Example 2-3 Marking a Packaged Subprogram as Autonomous

SQL> -- Create table that package will use:
SQL>
SQL> DROP TABLE accounts;
DROP TABLE accounts
*
ERROR at line 1:
ORA-00942: table or view does not exist

SQL> CREATE TABLE accounts (account INTEGER, balance REAL);
Table created.

SQL> -- Create package:
SQL>
SQL> CREATE OR REPLACE PACKAGE banking AS
2 FUNCTION balance (acct_id INTEGER) RETURN REAL;
3 -- Additional functions and packages
4 END banking;
5 /

Package created.

SQL Processing for Application Developers 2-31

Resuming Execution After Storage Allocation Error

SQL> CREATE OR REPLACE PACKAGE BODY banking AS
2 FUNCTION balance (acct_id INTEGER) RETURN REAL IS

3 PRAGMA AUTONOMOUS_TRANSACTION;
4 my_bal REAL;
5 BEGIN
6 SELECT balance INTO my_bal FROM accounts
7 WHERE account=acct_id;
8 RETURN my_bal;
9 END;
10 -- Additional functions and packages
11 END banking;
12/

Package body created.
SQL>

See Also: Oracle Database PL/SQL Language Reference for more
information about autonomous transactions

Resuming Execution After Storage Allocation Error

When a long-running transaction is interrupted by an out-of-space error condition,
your application can suspend the statement that encountered the problem and resume
it after the space problem is corrected. This capability is known as resumable storage
allocation. It lets you avoid time-consuming rollbacks. It also lets you avoid splitting
the operation into smaller pieces and writing code to track its progress.

See Also:

» Oracle Database Concepts for more information about resumable
storage allocation

s Oracle Database Administrator’s Guide for more information about
resumable storage allocation
Topics:
= What Operations Can Be Resumed After an Error Condition?

= Handling Suspended Storage Allocation

What Operations Can Be Resumed After an Error Condition?

Queries, DML operations, and certain DDL operations can all be resumed if they
encounter an out-of-space error. The capability applies if the operation is performed
directly by a SQL statement, or if it is performed within a stored subprogram,
anonymous PL/SQL block, SQL*Loader, or an OCI call such as OCIStmtExecute.

Operations can be resumed after these kinds of error conditions:
= Out of space errors, such as ORA-01653.

= Space limit errors, such as ORA-01628.

= Space quota errors, such as ORA-01536.

Certain storage errors cannot be handled using this technique. In dictionary-managed
tablespaces, you cannot resume an operation if you run into the limit for rollback
segments, or the maximum number of extents while creating an index or a table. Use

2-32 Oracle Database Advanced Application Developer's Guide

Resuming Execution After Storage Allocation Error

locally managed tablespaces and automatic undo management in combination with
this feature.

Handling Suspended Storage Allocation

When a statement is suspended, your application does not receive the usual error
code. Therefore, it must do any logging or notification by coding a trigger to detect the
AFTER SUSPEND event and invoke functions in the DBMS_RESUMABLE package to get
information about the problem.

Within the body of the trigger, you can perform any notifications, such as sending
e-mail to alert an operator to the space problem.

Alternatively, the DBA can periodically check for suspended statements using the
static data dictionary view DBA_RESUMABLE and the dynamic performance view Vs$_
SESSION_WATT.

See Also:

» Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_RESUMABLE package

» Oracle Database Reference for information about the static data
dictionary view DBA_RESUMABLE

s Oracle Database Reference for information about the dynamic
performance view V$_SESSION_WAIT

When the space condition is corrected (usually by the DBA), the suspended statement
automatically resumes execution. If not corrected before the timeout period expires,
the statement raises a SERVERERROR exception.

To reduce the chance of out-of-space errors within the trigger itself, declare it as an
autonomous transaction, so that it uses a rollback segment in the SYSTEM tablespace. If
the trigger encounters a deadlock condition because of locks held by the suspended
statement, the trigger terminates and your application receives the original error
condition, as if the statement was never suspended. If the trigger encounters an
out-of-space condition, both the trigger and the suspended statement are rolled back.
You can prevent the rollback through an exception handler in the trigger, and wait for
the statement to be resumed.

The trigger in Example 2—4 handles storage errors within the database. For some kinds
of errors, it terminates the statement and alerts the DBA that this has happened
through an e-mail. For other errors, which might be temporary, it specifies that the
statement waits for eight hours before resuming, with the expectation that the storage
problem will be fixed by then. To execute this example, you must be logged in as
SYSDBA.

Example 2-4 Resumable Storage Allocation

SQL> -- Create table used by trigger body
SQL>
SQL> DROP TABLE rbs_error;
DROP TABLE rbs_error
*
ERROR at line 1:
ORA-00942: table or view does not exist

SQL> CREATE TABLE rbs_error (
2 SQI, TEXT VARCHAR2 (64),

SQL Processing for Application Developers 2-33

Resuming Execution After Storage Allocation Error

3 ERROR_MSG VARCHAR2 (64),
4 SUSPEND_TIME VARCHAR2 (64));

Table created.

SQL> -- Resumable Storage Allocation

SQL>

SQL> CREATE OR REPLACE TRIGGER suspend_example
2 AFTER SUSPEND

3 ON DATABASE

4 DECLARE

5 cur_sid NUMBER;

6 cur_inst NUMBER;

7 err_type VARCHAR2 (64) ;
8 object_owner VARCHAR2 (64) ;
9 object_type VARCHAR2 (64) ;
10 table_space_name VARCHAR2 (64);
11 object_name VARCHAR2 (64) ;
12 sub_object_name VARCHAR2 (64);
13 msg_body VARCHAR2 (64) ;
14 ret_value BOOLEAN;
15 error_txt VARCHAR2 (64) ;
16 mail_conn UTL_SMTP.CONNECTION;
17 BEGIN

18 SELECT DISTINCT(SID) INTO cur_sid FROM VSMYSTAT;
19 cur_inst := USERENV('instance');
20 ret_value := DBMS_RESUMABLE.SPACE ERROR_INFO

21 (err_type,

22 object_owner,

23 object_type,

24 table_space_name,

25 object_name,

26 sub_object_name);

27 IF object_type = 'ROLLBACK SEGMENT' THEN

28 INSERT INTO rbs_error

29 (SELECT SQL_TEXT, ERROR_MSG, SUSPEND_TIME

30 FROM DBA_RESUMABLE

31 WHERE SESSION_ID = cur_sid

32 AND INSTANCE_ID = cur_inst);

33 SELECT ERROR_MSG INTO error_txt

34 FROM DBA_RESUMABLE

35 WHERE SESSION_ID = cur_sid

36 AND INSTANCE_ID = cur_inst;

37 msg_body :=

38 'Space error occurred: Space limit reached for rollback segment '
39 || object_name || ' on ' || to_char(SYSDATE, 'Month dd, YYYY, HH:MIam')
40 || '. Error message was: ' || error_txt;

41 mail_conn := UTL_SMTP.OPEN_CONNECTION('localhost', 25);
42 UTL_SMTP.HELO (mail_conn, 'localhost');

43 UTL_SMTP.MAIL (mail_conn, 'sender@localhost');

44 UTL_SMTP.RCPT (mail_conn, 'recipient@localhost');
45 UTL_SMTP.DATA (mail_conn, msg_body) ;

46 UTL_SMTP.QUIT (mail_conn) ;

47 DBMS_RESUMABLE.ABORT (cur_sid);

48 ELSE

49 DBMS_RESUMABLE.SET TIMEOUT(3600%*8);

50 END IF;

51 COMMIT;

52 END;

53 /

2-34 Oracle Database Advanced Application Developer's Guide

Resuming Execution After Storage Allocation Error

Trigger created.

SQL>

SQL Processing for Application Developers 2-35

Resuming Execution After Storage Allocation Error

2-36 Oracle Database Advanced Application Developer's Guide

3

Using SQL Data Types in Database
Applications

This chapter explains how to use SQL data types in database applications.
Topics:

s Overview of SQL Data Types

» Representing Character Data

s Representing Numeric Data

= Representing Date and Time Data

= Representing Specialized Data

= Representing Conditional Expressions as Data
s Identifying Rows by Address

s How Oracle Database Converts Data Types

s Metadata for SQL Built-In Functions

See Also:

» Oracle Database Object-Relational Developer’s Guide for information
about more complex types, such as object types, varrays, and
nested tables

» Oracle Database SecureFiles and Large Objects Developer’s Guide for
information about LOB data types

» Oracle Database PL/SQL Language Reference to learn about the
PL/SQL data types. Many SQL data types are the same or similar
in PL/SQL.

Overview of SQL Data Types

A data type associates a fixed set of properties with the values that can be used in a
column of a table or in an argument of a subprogram. These properties cause Oracle
Database to treat values of one data type differently from values of another data type.
For example, Oracle Database can add values of NUMBER data type, but not values of
RAW data type.

Oracle Database provides a number of built-in data types as well as several categories
for user-defined types that can be used as data types.

Using SQL Data Types in Database Applications 3-1

Representing Character Data

The Oracle precompilers recognize other data types in embedded SQL programs.
These data types are called external data types and are associated with host variables.
Do not confuse Oracle Database built-in data types and user-defined types with
external data types.

See Also:

» Oracle Database SQL Language Reference for complete reference
information about the SQL data types

s Pro*COBOL Programmer’s Guide and Pro*C/C++ Programmer’s
Guide for information about external data types, including how
Oracle Database converts between them and built-in or
user-defined types

» Oracle Database Concepts to learn about Oracle Database built-in
data types

Representing Character Data
Topics:
s Overview of Character Data Types
s Specifying Column Lengths as Bytes or Characters
s Choosing Between CHAR and VARCHAR? Data Types
s Using Character Literals in SQL Statements

Overview of Character Data Types
You can use the following SQL data types to store alphanumeric data:
= CHAR and NCHAR data types store fixed-length character literals.
= VARCHAR2 and NVARCHAR2 data types store variable-length character literals.
= NCHAR and NVARCHAR?2 data types store Unicode character data only.

= CLOB and NCLOB data types store single-byte and multibyte character strings of up
to (4 gigabytes - 1) * (the value obtained from DBMS_LOB.GETCHUNKSIZE).

s The LONG data type stores variable-length character strings containing up to two
gigabytes, but with many restrictions. This data type is provided only for
backward compatibility with existing applications. In general in new applications,
use CLOB and NCLOB data types to store large amounts of character data, and
BLOB and BFILE to store large amounts of binary data.

s The LONG RAW data type is similar to the RAW data type, except that it stores raw
data with a length up to two gigabytes. The LONG RAW data type is provided only
for backward compatibility with existing applications.

See Also:

» Oracle Database SecureFiles and Large Objects Developer’s Guide for
information about LOB data types and migration from LONG to
LOB data types

» Oracle Database SQL Language Reference for restrictions on LONG
data types

3-2 Oracle Database Advanced Application Developer's Guide

Representing Character Data

Specifying Column Lengths as Bytes or Characters

You can specify the lengths of CHAR and VARCHAR2 columns as either bytes or
characters. The lengths of NCHAR and NVARCHAR2 columns are always specified in
characters, making them ideal for storing Unicode data, where a character might
consist of multiple bytes.

Consider the following list of column length specifications:
m 1d VARCHAR2 (32 BYTE)

The id column contains only single-byte data, up to 32 bytes.
s name VARCHAR2 (32 CHAR)

The name column contains data in the database character set. If the database
character set includes multibyte characters, then the 32 characters can be stored as
more than 32 bytes.

s biography NVARCHAR2 (2000)

The biography column can represent 2000 characters in any
Unicode-representable language. The encoding depends on the national character
set, but the column can contain multibyte values even if the database character set
is single-byte.

n comment VARCHAR2 (2000)

The representation of comment as 2000 bytes or characters depends on the
initialization parameter NL.S_ LENGTH_SEMANTICS.

When using a multibyte database character encoding scheme, consider carefully the
space required for tables with character columns. If the database character encoding
scheme is single-byte, then the number of bytes and the number of characters in a
column is the same. If it is multibyte, however, then there generally is no such
correspondence. A character might consist of one or more bytes, depending upon the
specific multibyte encoding scheme and whether shift-in/shift-out control codes are
present. To avoid overflowing buffers, specify data as NCHAR or NVARCHAR? if it might
use a Unicode encoding that is different from the database character set.

See Also:

» Oracle Database Globalization Support Guide for more information
about SQL data types NCHAR and NVARCHAR2

» Oracle Database SQL Language Reference for more information about
SQL data types NCHAR and NVARCHAR2

Choosing Between CHAR and VARCHAR2 Data Types

When deciding which data type to use for a column that stores alphanumeric data in a
table, consider the following points of distinction:

= Space usage

To store data more efficiently, use the VARCHAR2 data type. The CHAR data type
blank-pads and stores trailing blanks up to a fixed column length for all column
values, whereas the VARCHAR?2 data type does not add extra blanks.

= Comparison semantics

Use the CHAR data type when you require ANSI compatibility in comparison
semantics (when trailing blanks are not important in string comparisons). Use the
VARCHAR?2 when trailing blanks are important in string comparisons.

Using SQL Data Types in Database Applications 3-3

Representing Numeric Data

= Future compatibility

The CHAR and VARCHAR2 data types are fully supported. At this time, the
VARCHAR data type automatically corresponds to the VARCHAR2 data type and is
reserved for future use.

When an application interfaces with Oracle Database, there is a character set on the
client and server side. Oracle Database uses the NLS_LANGUAGE parameter to
automatically convert CHAR, VARCHAR2, and LONG data from the database character
set to the character set defined for the user session, if these are different.

Oracle Database SQL Language Reference explains the comparison semantics that Oracle
Database uses to compare character data. Because Oracle Database blank-pads values
stored in CHAR columns but not in VARCHAR2 columns, a value stored in a VARCHAR?2
column can take up less space than the same value in a CHAR column. For this reason,
a full table scan on a large table containing VARCHAR2 columns may read fewer data
blocks than a full table scan on a table containing the same data stored in CHAR
columns. If your application often performs full table scans on large tables containing
character data, then you may be able to improve performance by storing data in
VARCHAR2 rather than in CHAR columns.

Performance is not the only factor to consider when deciding which data type to use.
Oracle Database uses different semantics to compare values of each data type. You
might choose one data type over the other if your application is sensitive to the
differences between these semantics. For example, if you want Oracle Database to
ignore trailing blanks when comparing character values, then you must store these
values in CHAR columns.

See Also: Oracle Database SQL Language Reference for more
information about comparison semantics for these data types

Using Character Literals in SQL Statements

Many SQL statements, functions, expressions, and conditions require character literals.
For information about using character literals in SQL statements, see Oracle Database
SQL Language Reference.

Representing Numeric Data
Topics:
s Overview of Numeric Data Types
s Floating-Point Number Formats
s Comparison Operators for Native Floating-Point Data Types
= Arithmetic Operations with Native Floating-Point Data Types
s Conversion Functions for Native Floating-Point Data Types

s Client Interfaces for Native Floating-Point Data Types

Overview of Numeric Data Types

The SQL data types NUMBER, BINARY_ FLOAT, and BINARY_DOUBLE store numeric
data.

Use the NUMBER data type to store real numbers in a fixed-point or floating-point
format. Numbers using this data type are guaranteed to be portable among different
Oracle Database platforms, and offer up to 38 decimal digits of precision. You can store

3-4 Oracle Database Advanced Application Developer's Guide

Representing Numeric Data

positive and negative numbers of magnitude 1 x 10" through 9.99 x10'%, as well as 0,
in a NUMBER column.

The BINARY_FLOAT and BINARY_DOUBLE data types store floating-point data in the
32-bit IEEE 754 format and the double precision 64-bit IEEE 754 format respectively.
Compared to the Oracle Database NUMBER data type, arithmetic operations on
floating-point data are usually faster for BINARY_FLOAT and BINARY_DOUBLE. Also,
high-precision values require less space when stored as BINARY_FLOAT and BINARY_
DOUBLE.

In client interfaces supported by Oracle Database, the native instruction set supplied
by the hardware vendor performs arithmetic operations on BINARY_FLOAT and
BINARY_DOUBLE data types. The term native floating-point data types refers to data
types including BINARY_FLOAT and BINARY_DOUBLE and to all implementations of
these types in supported client interfaces.

The floating-point number system is a common way of representing and manipulating
numeric values in computer systems. A floating-point number is characterized by the
following components:

= Binary-valued sign
= Signed exponent

= Significand

= Base

A floating-point value is the signed product of its significand and the base raised to
the power of its exponent, as in the following formula:

(-1)%i9" - gignificand * base ©*®Poment

For example, the number 4.31 is represented as follows:

(-1)% - 431 - 10 ?

The components of the preceding representation are as follows:

Component Name Component Value

Sign 0
Significand 431
Base 10
Exponent -2
See Also:

» Oracle Database Concepts for information about the internal format
for the NUMBER data type

» Oracle Database SQL Language Reference for more information about
the NUMBER data type

» Oracle Database SQL Language Reference for more information about
the BINARY_FLOAT and BINARY_DOUBLE data types

Floating-Point Number Formats

A floating-point number format specifies how components of a floating-point number
are represented. The choice of representation determines the range and precision of the

Using SQL Data Types in Database Applications 3-5

Representing Numeric Data

values the format can represent. By definition, the range is the interval bounded by the
smallest and the largest values the format can represent and the precision is the
number of digits in the significand.

Formats for floating-point values support neither infinite precision nor infinite range.
There are a finite number of bits to represent a number and only a finite number of
values that a format can represent. A floating-point number that uses more precision
than available with a given format is rounded.

A floating-point number can be represented in a binary system, as in the IEEE 754
standard, or in a decimal system, such as Oracle Database NUMBER. The base affects
many properties of the format, including how a numeric value is rounded.

For a decimal floating-point number format like Oracle Database NUMBER, rounding is
done to the nearest decimal place (for example. 1000, 10, or 0.01). The IEEE 754 formats
use a binary format for floating-point values and round numbers to the nearest binary
place (for example: 1024, 512, or 1/64).

The native floating-point data types supported by the database round to the nearest
binary place, so they are not satisfactory for applications that require decimal
rounding. Use the Oracle Database NUMBER data type for applications in which
decimal rounding is required on floating-point data.

Topics:
= Using a Floating-Point Binary Format

= Representing Special Values with Native Floating-Point Formats

Using a Floating-Point Binary Format

The value of a floating-point number that uses a binary format is determined by the
following formula:

(-1)° 2% (by by by ... by4)
Table 3-1 describes the components of the formula.

Table 3-1 Components of the Binary Format for Floating-Point Numbers

Component Specifies ...

s Oorl
E Any integer between E,;, and E,,,, inclusive (see Table 3-2)
b; 0 or 1, where the sequence of bits represents a number in base 2 (see Table 3-2)

The leading bit of the significand, b,, must be set (1), except for subnormal numbers
(explained later). Therefore, the leading bit is not actually stored, so the formats
provide n bits of precision although only n-1 bits are stored.

Note: The IEEE 754 specification also defines extended
single-precision and extended double-precision formats, which are not
supported by Oracle Database.

The parameters for these formats are described in Table 3-2.

3-6 Oracle Database Advanced Application Developer's Guide

Representing Numeric Data

Table 3-2 Summary of Binary Format Parameters

Parameter Single-precision (32-bit) Double-precision (64-bit)
p 24 53

in -126 -1022
E +127 +1023

The storage parameters for the formats are described in Table 3-3. The in-memory
formats for single-precision and double-precision data types are specified by IEEE 754.

Table 3-3 Summary of Binary Format Storage Parameters

Data Type Sign bits Exponent bits Significand bits Total bits
Single-precision 1 8 24 (23 stored) 32
Double-precision 1 11 53 (52 stored) 64

A significand is normalized when the leading bit of the significand is set. IEEE 754
defines denormal or subnormal values as numbers that are too small to be
represented with an implied leading set bit in the significand. The number is too small
because its exponent would be too large if its significand were normalized to have an
implied leading bit set. IEEE 754 formats support subnormal values. Subnormal values
preserve this property: If x - y == 0.0 (using floating-point subtraction), then: x ==y.

Table 3—4 shows the range and precision of the required formats in the IEEE 754
standard and those of Oracle Database NUMBER. Range limits are expressed here in
terms of positive numbers; they also apply to the absolute value of a negative number.
(The notation "number e exponent" used here stands for number multiplied by 10 raised
to the exponent power: number - 10 Pone,)

Table 3-4 Range and Precision of IEEE 754 formats

Oracle Database

Range and Single-precision Double-precision NUMBER Data
Precision 32-bit! 64-bit’ Type

Max positive normal 3.40282347e+38 1.7976931348623157e+308 < 1.0e126
number

Min positive normal 1.17549435e-38 2.2250738585072014e-308 1.0e-130
number

Max positive 1.17549421e-38 2.2250738585072009e-308 not applicable
subnormal number

Min positive 1.40129846e-45 4.9406564584124654e-324 not applicable
subnormal number

Precision (decimal 6-9 15-17 38 -40

digits)

! These numbers are quoted from the IEEE Numerical Computation Guide.

See Also:

» Oracle Database SQL Language Reference, section "Numeric Literals",
for information about literal representation of numeric values

» Oracle Database SQL Language Reference for more information about
floating-point formats

Using SQL Data Types in Database Applications 3-7

Representing Numeric Data

Representing Special Values with Native Floating-Point Formats
Table 3-5 shows the special values that IEEE 754 supports.

Table 3-5 Special Values for Negative Floating-Point Formats

Value Meaning

+INF Positive infinity
-INF Negative infinity
NaN Not a number
+0 Positive zero

-0 Negative zero

NaN represent results of operations that are undefined. Many bit patterns in IEEE 754
represent NaN. Bit patterns can represent NaN with and without the sign bit set. IEEE
754 distinguishes between signalling NaNs and quiet NaNs.

IEEE 754 specifies action for when exceptions are enabled and disabled. In Oracle
Database, exceptions cannot be enabled; the database action is that specified by IEEE
754 for when exceptions are disabled. In particular, Oracle Database makes no
distinction between signalling and quiet NaNs. Programmers who use OCI can retrieve
NaN values from Oracle Database; whether a retrieved NaN value is signalling or quiet
depends on the client platform and beyond the control of Oracle Database.

IEEE 754 does not define the bit pattern for either type of NaN. Positive infinity,
negative infinity, positive zero, and negative zero are each represented by a specific bit
pattern.

Ignoring signs, there are the following classes of values, with each of the classes except
for NaN greater than the one preceding it in the list:

s Zero

= Subnormal

= Normal

s Infinity

= NaN

In IEEE 754, NaN is unordered with other classes of special values and with itself.

When used with the database, special values of native floating-point data types act as
follows:

= AllNaNs are quiet.
» IEEE 754 exceptions are not raised.
= NaN is ordered as follows:

All non-NaN < NaN

Any NaN == any other NaN
s -0is converted to +0.
= All NaNs are converted to the same bit pattern.

See Also: Comparison Operators for Native Floating-Point Data

Types on page 3-9 for more information about NaN compared to other
values

3-8 Oracle Database Advanced Application Developer's Guide

Representing Numeric Data

Comparison Operators for Native Floating-Point Data Types

Oracle Database defines the following comparison operators for operations involving
floating-point data types:

= Equalto

= Notequal to

s Greater than

s Greater than or equal to

s Less than

= Less than or equal to

s Unordered

Special cases:

s Comparisons ignore the sign of zero (-0 is equal to, not less than, +0).

s In Oracle Database, NaN is equal to itself. NaN is greater than everything except
itself. That is, NaN == NaN and NaN > x, unless x is NaN.

See Also: Representing Special Values with Native Floating-Point
Formats on page 3-8 for more information about comparison results,
ordering, and other actions of special values

Arithmetic Operations with Native Floating-Point Data Types
Oracle Database defines operators for the following arithmetic operations:
= Multiplication
= Division
= Addition
= Subtraction
= Remainder
= Square root

You can define the mode used to round the result of the operation. Exceptions can be
raised when operations are performed. Exceptions can also be disabled.

Formerly, Java required floating-point arithmetic to be exactly reproducible. IEEE 754
does not have this requirement. Therefore, results of operations (including arithmetic
operations) can be delivered to a destination that uses a range greater than the range
that the operands of the operation use.

You can compute the result of a double-precision multiplication at an extended
double-precision destination. When this is done, the result must be rounded as if the
destination were single-precision or double-precision. The range of the result, that is,
the number of bits used for the exponent, can use the range supported by the wider
(extended double-precision) destination. This occurrence may result in a
double-rounding error in which the least significant bit of the result is incorrect.

This situation can occur only for double-precision multiplication and division on
hardware that implements the IA-32 and IA-64 instruction set architecture. Thus, with
the exception of this case, arithmetic for these data types is reproducible across
platforms. When the result of a computation is NaN, all platforms produce a value for
which IS NAN is true. However, all platforms do not have to use the same bit pattern.

Using SQL Data Types in Database Applications 3-9

Representing Numeric Data

Conversion Functions for Native Floating-Point Data Types

Oracle Database defines functions that convert between floating-point and other
formats, including string formats that use decimal precision (precision may be lost
during the conversion). For example, you can use the following functions:

= TO_BINARY_DOUBLE, which converts float to double, decimal (string) to double,
and float or double to integer-valued double

= TO_BINARY_FLOAT, which converts double to float, decimal (string) to float, and
float or double to integer-valued float

= TO_CHAR, which converts float or double to decimal (string)
= TO_NUMBER, which converts a float, double, or string to a number

Oracle Database can raise exceptions during conversion. The IEEE 754 specification
defines the following exceptions:

s Invalid

s Inexact

= Divide by zero

s Underflow

s Overflow

Oracle Database does not raise these exceptions for native floating-point data types.

Generally, situations that raise exceptions produce the values described in Table 3-6.

Table 3-6 Values Resulting from Exceptions

Exception Value

Underflow 0

Overflow -INF, +INF

Invalid Operation NaN

Divide by Zero -INF, +INF, NaN

Inexact Any value - rounding was performed

Client Interfaces for Native Floating-Point Data Types

Oracle Database has implemented support for native floating-point data types in the
following client interfaces:

= SQL

= PL/SQL

= OCIand OCCI

s Pro*C/C++

= JDBC

Topics:

= OCI Native Floating-Point Data Types SQLT_BFLOAT and SQLT_BDOUBLE

= Native Floating-Point Data Types Supported in Oracle Database OBJECT Types
s Pro*C/C++ Support for Native Floating-Point Data Types

3-10 Oracle Database Advanced Application Developer's Guide

Representing Date and Time Data

OCI Native Floating-Point Data Types SQLT_BFLOAT and SQLT_BDOUBLE

The OCI API implements the IEEE 754 single precision and double precision native
floating-point data types with the data types SQLT_BFLOAT and SQLT_BDOUBLE
respectively. Conversions between these types and the SQL types BINARY_FLOAT and
BINARY_DOUBLE are exact on platforms that implement the IEEE 754 standard for the
C data types FLOAT and DOUBLE.

See Also: Oracle Call Interface Programmer’s Guide

Native Floating-Point Data Types Supported in Oracle Database OBJECT Types

Oracle Database supports the SQL data types BINARY_FLOAT and BINARY_DOUBLE
as attributes of Oracle Database OBJECT types.

Pro*C/C++ Support for Native Floating-Point Data Types

Pro*C/C++ supports the native FLOAT and DOUBLE data types using the column data
types BINARY_FLOAT and BINARY_DOUBLE. You can use these data types in the same
way that Oracle Database NUMBER data type is used. You can bind the native C/C++
data types FLOAT and DOUBLE to BINARY_FLOAT and BINARY_DOUBLE types
respectively by setting the Pro*C/C++ precompiler command line option NATIVE_
TYPES to Y (yes) when you compile your application.

Representing Date and Time Data
Topics:
s Overview of Date and Time Data Types
s Changing the Default Date Format
s Changing the Default Time Format
= Arithmetic Operations with Date and Time Data Types
s Converting Between Date and Time Types
s Importing and Exporting Date and Time Types

Overview of Date and Time Data Types
Oracle Database supports the following date and time data types:
s DATE

Use the DATE data type to store point-in-time values (dates and times) in a table.
The DATE data type stores the century, year, month, day, hours, minutes, and
seconds.

s TIMESTAMP

Use the TIMESTAMP data type to store values that are precise to fractional seconds.
For example, an application that must decide which of two events occurred first
might use TIMESTAMP. An application that specifies the time for a job might use
DATE.

s TIMESTAMP WITH TIME ZONE

Because TIMESTAMP WITH TIME ZONE can also store time zone information, it is
particularly suited for recording date information that must be gathered or
coordinated across geographic regions.

Using SQL Data Types in Database Applications 3-11

Representing Date and Time Data

s TIME STAMP WITH LOCAL TIME ZONE

Use TIMESTAMP WITH LOCAL TIME ZONE when the time zone is not significant.
For example, you might use it in an application that schedules teleconferences,
where participants each see the start and end times for their own time zone.

The TIMESTAMP WITH LOCAL TIME ZONE type is appropriate for two-tier
applications in which you want to display dates and times that use the time zone
of the client system. It is generally inappropriate in three-tier applications because
data displayed in a Web browser is formatted according to the time zone of the
Web server, not the time zone of the browser. The Web server is the database client,
so its local time is used.

s INTERVAL DAY TO SECOND

Use the INTERVAL DAY TO SECOND data type to represent the precise difference
between two datetime values. For example, you might use this value to set a
reminder for a time 36 hours in the future or to record the time between the start
and end of a race. To represent long spans of time with high precision, you can use
a large value for the days portion.

s INTERVAL YEAR TO MONTH

Use the INTERVAL YEAR TO MONTH data type to represent the difference between
two datetime values, where the only significant portions are the year and the
month. For example, you might use this value to set a reminder for a date 18
months in the future, or check whether 6 months have elapsed since a particular
date.

Oracle Database stores dates in its own internal format. Date data is stored in
fixed-length fields of seven bytes each, corresponding to century, year, month, day,
hour, minute, and second.

See Also: Oracle Call Interface Programmer’s Guide for a complete
description of the Oracle Database internal date format

Displaying Current Date and Time

Use the SQL function SYSDATE to return the system date and time. You can use the
FIXED_DATE initialization parameter to set SYSDATE to a constant, which can be
useful for testing.

By default, SYSDATE is printed without a BC or AD qualifier. You can add BC to the
format string to print the date with the appropriate qualifier, as in Example 3-1.

Example 3-1 Displaying Current Date and Time with AD or BC Qualifier
SQL> SELECT TO_CHAR (SYSDATE, 'DD-MON-YYYY BC') NOW FROM DUAL;

27-SEP-2007 AD
1 row selected.
SQL>

For input and output of dates, the standard Oracle Database default date format is
DD-MON-RR. The RR datetime format element enables you store 20th century dates in
the 21st century by specifying only the last two digits of the year. For example, the

3-12 Oracle Database Advanced Application Developer's Guide

Representing Date and Time Data

format ' 13-NOV-54" refers to the year 1954 in a query issued between 1950 and 2049,
but to the year 2054 in a query issued between 2050 and 2099.

See Also: Oracle Database SQL Language Reference for information
about the RR datetime format element.

Changing the Default Date Format
Use the following techniques to change the default date format:

= To change on an instance-wide basis, use the NLS_DATE_FORMAT parameter.
= To change during a session, use the ALTER SESSION statement.

To enter dates that are not in the current default date format, use the TO_DATE
function with a format mask, as in Example 3-2.

Example 3-2 Changing the Default Date Format

SQL> SELECT TO_CHAR (TO_DATE('27-0CT-98', 'DD-MON-RR'), 'YYYY') "Year"
2 FROM DUAL;

Year

1998
1 row selected.
SQL>

Be careful when using a date format such as DD-MON-YY. The YY indicates the year in
the current century. For example, 31-DEC-92 is December 31, 2092, not 1992 as you
might expect. If you want to indicate years in any century other than the current one,
use a different format mask, such as the default RR.

See Also: Oracle Database Concepts for information about Julian
dates. Oracle Database Julian dates might not be compatible with
Julian dates generated by other date algorithms.

Changing the Default Time Format

Time is stored in the 24-hour format: HH24:MI:SS

By default, the time in a DATE column is 12:00:00 A.M. (midnight) if no time portion is
specified or if the DATE is truncated.

In a time-only entry, the date portion defaults to the first day of the current month. To
enter the time portion of a date, use the TO_DATE function with a format mask
indicating the time portion, as in Example 3-3.

Example 3-3 Changing the Default Time Format

SQL> DROP TABLE birthdays;
DROP TABLE birthdays
*
ERROR at line 1:
ORA-00942: table or view does not exist

SQL>
SQL> CREATE TABLE birthdays (name VARCHAR2(20), day DATE);

Using SQL Data Types in Database Applications 3-13

Representing Date and Time Data

Table created.

SQL>
SQL> INSERT INTO birthdays (name, day)

VALUES ('ANNIE',
TO_DATE ('13-NOV-92 10:56 A.M.', 'DD-MON-YY HH:MI A.M.')
)

1 row created.

SQL>

Arithmetic Operations with Date and Time Data Types

Oracle Database provides a number of features to help with date arithmetic, so that
you need not perform your own calculations on the number of seconds in a day, the
number of days in each month, and so on. Some useful features include the following;:

ADD_MONTHS function, which returns the date plus the specified number of
months.

SYSDATE function, which returns the current date and time set for the operating
system on which the database resides.

SYSTIMESTAMP function, which returns the system date, including fractional
seconds and time zone, of the system on which the database resides.

TRUNC function, which when applied to a DATE value, trims off the time portion
so that it represents the very beginning of the day (the stroke of midnight). By
truncating two DATE values and comparing them, you can determine whether
they refer to the same day. You can also use TRUNC along with a GROUP BY clause
to produce daily totals.

Arithmetic operators such as + and -. For example, SYSDATE-7 refers to 7 days
before the current system date.

INTERVAL data types, which enable you to represent constants when performing
date arithmetic rather than performing your own calculations. For example, you
can add or subtract INTERVAL constants from DATE values or subtract two DATE
values and compare the result to an INTERVAL.

Comparison operators such as >, <, =, and BETWEEN.

Converting Between Date and Time Types

Oracle Database provides several useful functions that enable you to convert to a from
datetime data types. Some useful functions include:

EXTRACT, which extracts and returns the value of a specified datetime field from a
datetime or interval value expression

NUMTODSINTERVAL, which converts a NUMBER or expression that can be implicitly
converted to a NUMBER value to an INTERVAL DAY TO SECOND literal

NUMTOYMINTERVAL, which converts a NUMBER or expression that can be implicitly
converted to a NUMBER value to an INTERVAL YEAR TO MONTH literal

TO_DATE, which converts character data to a DATE data type

TO_CHAR, which converts DATE data to character data

3-14 Oracle Database Advanced Application Developer's Guide

Representing Specialized Data

s TO_DSINTERVAL, which converts a character string to an INTERVAL DAY TO
SECOND value

s TO_TIMESTAMP, which converts character data to a value of TIMESTAMP data
type

s TO_TIMESTAMP_TZ, which converts character data to a value of TIMESTAMP
WITH TIME ZONE data type

= TO_YMINTERVAL, which converts a character string to an INTERVAL YEAR TO
MONTH type

See Also: Oracle Database SQL Language Reference for details about
each function

Importing and Exporting Date and Time Types

TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE values are
always stored in normalized format, so that you can export, import, and compare
them without worrying about time zone offsets. DATE and TIMESTAMP values do not
store an associated time zone, and you must adjust them to account for any time zone
differences between source and target databases.

Representing Specialized Data
This section contains the following topics:
= Representing Geographic Data
= Representing Multimedia Data
= Representing Large Amounts of Data
= Representing Searchable Text
= Representing XML
= Representing Dynamically Typed Data
= Representing Data with ANSI/ISO, DB2, and SQL/DS Data Types

Representing Geographic Data

To represent Geographic Information System (GIS) or spatial data in the database, you
can use Oracle Spatial features, including the type MDSYS.SDO_GEOMETRY. You can
store the data in the database by using either an object-relational or a relational model.
You can use a set of PL/SQL packages to query and manipulate the data.

See Also: Oracle Spatial Developer’s Guide to learn how to use
MDSYS.SDO_GEOMETRY

Representing Multimedia Data

Oracle Multimedia enables Oracle Database to store, manage, and retrieve images,
audio, video, or other heterogeneous media data in an integrated fashion with other
enterprise information. Oracle Multimedia extends Oracle Database reliability,
availability, and data management to multimedia content in traditional, Internet,
electronic commerce, and media-rich applications.

Whether you store such multimedia data inside the database as BLOB or BFILE
values, or store it externally on a Web server or other kind of server, you can use

Using SQL Data Types in Database Applications 3-15

Representing Specialized Data

Oracle Multimedia to access the data using either an object-relational or a relational
model, and manipulate and query the data using a set of object types.

Oracle Multimedia provides the ORDAudio, ORDDoc, ORDImage,
ORDImageSignature, ORDVideo, and SI_StillImage object types and methods
for these purposes:

= Extracting metadata and attributes from multimedia data

s Retrieving and managing multimedia data from Oracle Multimedia, Web servers,
file systems, and other servers

s Performing manipulation operations on image data

See Also: Oracle Multimedia Reference for information about Oracle
Multimedia types

Representing Large Amounts of Data

Oracle Database provides several data types for representing large amounts of data.
These data types are grouped under the general category of Large Objects (LOBs).
Table 3-7 describes the different LOBs.

Table 3-7 Large Object Data Types

Data Type Name Description

BLOB Binary large object Represents large amounts of binary data such as images,
video, or other multimedia data.

CLOB Character large object Represents large amounts of character data. CLOB types are
stored by using the database character set. Oracle Database
stores a CLOB up to 4,000 bytes inline as a VARCHAR2. If the
CLOB exceeds this length, then Oracle Database moves the
CLOB out of line.

NCLOB National character Represents large amounts of character data in National
large objects Character Set format.
BFILE External large object ~ Stores objects in the operating system 's file system,

outside of the database files or tablespace. The BFILE type
is read-only; other LOB types are read /write. BFILE
objects are also sometimes referred to as external LOBs.

An instance of type BLOB, CLOB, or NCLOB can exist as either a persistent LOB instance
or a temporary LOB instance. Persistent and temporary instances differ as follows:

= A temporary LOB instance is declared in the scope of your application.
= A persistent LOB instance is created and stored in the database.

With the exception of declaring, freeing, creating, and committing, operations on
persistent and temporary LOB instances are performed the same way.

The RAW and LONG RAW data types store data that is not interpreted by Oracle
Database, that is, it is not converted when moving data between different systems.
These data types are intended for binary data and byte strings. For example, LONG RAW
can store graphics, sound, documents, and arrays of binary data; the interpretation is
dependent on the use.

Oracle Net and the Export and Import utilities do not perform character conversion
when transmitting RAW or LONG RAW data. When Oracle Database automatically
converts RAW or LONG RAW data to and from CHAR data, as is the case when entering
RAW data as a literal in an INSERT statement, the database represents the data as one

3-16 Oracle Database Advanced Application Developer's Guide

Representing Specialized Data

hexadecimal character representing the bit pattern for every four bits of RAW data. For
example, one byte of RAW data with bits 11001011 is displayed and entered as CB.

You cannot index LONG RAW data, but you can index RAW data. In earlier releases, the
LONG and LONG RAW data types were typically used to store large amounts of data. Use
of these types is no longer recommended for new development. If your existing
application still uses these types, migrate your application to use LOB types. Oracle
recommends that you convert LONG RAW columns to binary LOB (BLOB) columns and
convert LONG columns to character LOB (CLOB or NCLOB) columns. LOB columns are
subject to far fewer restrictions than LONG and LONG RAW columns.

See Also:

» See Oracle Database SecureFiles and Large Objects Developer's Guide
for more information about LOBs

» See Oracle Database SQL Language Reference for restrictions on
LONG and LONG RAW data types

Representing Searchable Text

Rather than writing low-level code to do full-text searches, you can use Oracle Text. It
stores the search data in a special kind of index, and lets you query the data with
operators and PL/SQL packages. This technology enables you to create your own
search engine using data from tables, files, or URLs, and combine the search logic with
relational queries. You can also search XML data this way with the XPath notation.

See Also: Oracle Text Application Developer’s Guide for more
information

Representing XML

If you have information stored as files in XML format, or if you want to take an object
type and store it as XML, then you can use the XMLType built-in type.

XMLType columns store their data as either CLOB or binary XML. The XMLType
constructor can turn an existing object of any data type into an XML object.

When an XML object is inside the database, you can use queries to traverse it (using
the XML XPath notation) and extract all or part of its data.

You can also produce XML output from existing relational data and split XML
documents across relational tables and columns. You can use the following packages
to transfer XML data into and out of relational tables:

= DBMS_XMLQUERY, which provides database-to-XMLType functionality

= DBMS_XMLGEN, which converts the results of a SQL query to a canonical XML
format

= DBMS_XMLSAVE, which provides XML to database-type functionality
You can use the following SQL functions to process XML:

= EXTRACT, which applies a VARCHAR2 XPath string and returns an XMLType
instance containing an XML fragment

= SYS_XMLAGG, which aggregates all of the XML documents or fragments
represented by an expression and produces a single XML document

Using SQL Data Types in Database Applications 3-17

Representing Specialized Data

m SYS_XMLGEN, which takes an expression that evaluates to a particular row and
column of the database, and returns an instance of type XMLType containing an
XML document

= UPDATEXML, which takes as arguments an XMLType instance and an XPath-value
pair and returns an XMLType instance with the updated value

= XMLAGG, which takes a collection of XML fragments and returns an aggregated
XML document

= XMLCOLATTVAL, which creates an XML fragment and then expands the resulting
XML so that each XML fragment has the name column with the attribute name

= XMLCONCAT, which takes as input a series of XMLType instances, concatenates the
series of elements for each row, and returns the concatenated series

= XMLELEMENT, which takes an element name for identifier, an optional collection of
attributes for the element, and arguments that make up the content of the element

= XMLFOREST, which converts each of its argument parameters to XML, and then
returns an XML fragment that is the concatenation of these converted arguments

= XMLSEQUENCE, which either takes as input an XML Type instance and returns a
varray of the top-level nodes in the XML Type, or takes as input a REFCURSOR
instance, with an optional instance of the XMLFormat object, and returns as an
XMLSequence type an XML document for each row of the cursor

XMLTRANSFORM, which takes as arguments an XMLType instance and an XSL style
sheet, applies the style sheet to the instance, and returns an XMLType

See Also:

» Oracle XML DB Developer’s Guide for details about the XMLType
data type

» Oracle XML Developer’s Kit Programmer’s Guide for information
about client-side programming with XML

» Oracle Database SQL Language Reference for information about XML
functions

Representing Dynamically Typed Data

Some languages allow data types to change at run time or let a program check the type
of a variable. For example, C has the union keyword and the void * pointer, and
Java has the typeof operator and wrapper types such as Number. In Oracle Database,
you can create variables and columns that can hold data of any type and test such data
values to determine their underlying representation. For example, you can have a
single table column represent a numeric value in one row, a string value in another
row, and an object in another row.

You can use the built-in object type SYS.ANYDATA to represent values of any scalar or
object type. SYS.ANYDATA has methods that accept scalar values of any type, and turn
them back into scalars or objects. Similarly, you can use the built-in object type
SYS.ANYDATASET to represent values of any collection type. To check and manipulate
type information, use the DBMS_TYPES package, as in Example 3—4. With OCI, use the
OCIType, OCIAnyData, and OCIAnyDataSet interfaces.

3-18 Oracle Database Advanced Application Developer's Guide

Representing Specialized Data

See Also:

s Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_TYPES package

» Oracle Database Object-Relational Developer’s Guide for information
about the ANYDATA, ANYDATASET, and ANYTYPE types

» Oracle Call Interface Programmer’s Guide for information about the
OClI interfaces

Example 3-4 Accessing Information in a SYS.ANYDATA Column
SQL> CREATE OR REPLACE TYPE employee_type AS

2 OBJECT (empno NUMBER, ename VARCHAR2 (10));
3/
Type created.
SQL> CREATE TABLE mytab (id NUMBER, data SYS.ANYDATA);

Table created.

SQL> INSERT INTO mytab
2 VALUES (1, SYS.ANYDATA.ConvertNumber(5));

1 row created.

SQL> INSERT INTO mytab
2 VALUES (2, SYS.ANYDATA.ConvertObject (Employee_type (5555, 'john')));

1 row created.
SQL>

SQL> CREATE OR REPLACE PROCEDURE p IS
2 CURSOR cur IS SELECT id, data FROM mytab;

3 v_id mytab.id$TYPE;
4 v_data mytab.data%TYPE;
5 v_type SYS.ANYTYPE;
6 vV_typecode PLS_INTEGER;
7 vV_typename VARCHAR2 (60) ;
8 v_dummy PLS_INTEGER;
9 v_n NUMBER;
10 v_employee employee_type;
11 non_null_anytype_for_NUMBER exception;
12 unknown_typename exception;
13 BEGIN
14 OPEN cur;
15 LOOP
16 FETCH cur INTO v_id, v_data;
17 EXIT WHEN cur%NOTFOUND;
18
19 /* typecode signifies type represented by v_data.
20 GetType also produces a value of type SYS.ANYTYPE with methods you
21 can call to find precision and scale of a number, length of a
22 string, and so on. */
23
24 v_typecode := v_data.GetType (v_type /* OUT */);
25
26 /* Compare typecode to DBMS_TYPES constants to determine type of data
27 and decide how to display it. */

Using SQL Data Types in Database Applications 3-19

Representing Specialized Data

28

29 CASE v_typecode

30 WHEN DBMS_TYPES.TYPECODE_NUMBER THEN

31 IF v_type IS NOT NULL THEN -- This condition should never happen.
32 RAISE non_null_anytype_for NUMBER;

33 END IF;

34

35 -- For each type, there is a Get method.

36 v_dummy := v_data.GetNUMBER (v_n /* OUT */);

37 DBMS_OUTPUT. PUT_LINE

38 (TO_CHAR(v_id) || ': NUMBER = ' || TO_CHAR(v_n));

39

40 WHEN DBMS_TYPES.TYPECODE_ OBJECT THEN

41 v_typename := v_data.GetTypeName() ;

42 IF v_typename NOT IN ('HR.EMPLOYEE_TYPE') THEN

43 RAISE unknown_typename;

44 END IF;

45 v_dummy := v_data.GetObject (v_employee /* OUT */);

46 DBMS_OUTPUT.PUT_LINE

47 (TO_CHAR(v_id) || ': user-defined type = ' || v_typename |
48 " (' || v_employee.empno || ', ' || v_employee.ename || ')');
49 END CASE;

50 END LOOP;

51 CLOSE cur;

52 EXCEPTION

53 WHEN non_null_anytype_for_ NUMBER THEN

54 RAISE Application_Error (-20000,

55 '‘Paradox: the return AnyType instance FROM GetType ' ||

56 'should be NULL for all but user-defined types');

57 WHEN unknown_typename THEN

58 RAISE Application_Error(-20000, 'Unknown user-defined type ' ||

59 v_typename || ' - program written to handle only HR.EMPLOYEE TYPE');
60 END;

61 /

Procedure created.
SQL> SELECT t.data.gettypename() AS "Type Name" FROM mytab t;

Type Name

SYS.NUMBER
HR.EMPLOYEE_TYPE

2 rows selected.

SQL>

Representing Data with ANSI/ISO, DB2, and SQL/DS Data Types

You can define columns of tables in Oracle Database through ANSI/ISO, DB2, and
SQL/DS data types. Oracle Database internally converts such data types to Oracle
Database data types.

The ANSI data type conversions are shown in Table 3-8. The ANSI/ISO data types
NUMERIC, DECIMAL, and DEC can specify only fixed-point numbers. For these data
types, s defaults to 0.

3-20 Oracle Database Advanced Application Developer's Guide

Representing Conditional Expressions as Data

Table 3-8 ANSI Data Type Conversions to Oracle Database Data Types

ANSI SQL Data Type Oracle Database Data Type
CHARACTER (n) CHAR (n)

CHAR (n)

NUMERIC (p,s) NUMBER (p, s)

DECIMAL (p, s)

DEC (p, s)

INTEGER NUMBER (38)
INT

SMALLINT

FLOAT (p) FLOAT (p)
REAL FLOAT (63)
DOUBLE PRECISION FLOAT (126)
CHARACTER VARYING (n) VARCHAR2 (n)

CHAR VARYING (n)
TIMESTAMP TIMESTAMP

TIMESTAMP WITH TIME ZONE TIMESTAMP WITH TIME ZONE

Table 3-9 shows the SQL /DS and DB2 conversions.

Table 3-9 SQL/DS, DB2 Data Type Conversions to Oracle Database Data Types

DB2 or SQL/DS Data Type Oracle Database Data Type
CHARACTER (n) CHAR (n)

VARCHAR (n) VARCHAR2 (n)

LONG VARCHAR LONG

DECIMAL (p,s) NUMBER (p, s)

INTEGER NUMBER (38)

SMALLINT

FLOAT (p) FLOAT (p)

DATE DATE

TIMESTAMP TIMESTAMP

The data types TIME, GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC of IBM
products SQL /DS and DB2 have no corresponding Oracle Database data type, and
they cannot be used.

Representing Conditional Expressions as Data

The Oracle Expression Filter feature enables you to store conditional expressions as
data in the database. The Oracle Expression Filter provides a mechanism that you can
use to place a constraint on a VARCHAR2 column to ensure that the values stored are
valid SQL WHERE clause expressions. This mechanism also identifies the set of
attributes that are legal to reference in the conditional expressions.

Using SQL Data Types in Database Applications 3-21

Representing Conditional Expressions as Data

Scenario: You created the following table, in which each row holds data for a
stock-trading account holder, and you want to define a column that stores information
about the stocks in which each trader is interested as a conditional expression.

SQL> DROP TABLE traders;
DROP TABLE traders
*
ERROR at line 1:
ORA-00942: table or view does not exist

SQL> CREATE TABLE traders

2 (name VARCHAR2 (10),
3 email VARCHAR2 (20),
4 interest VARCHAR2 (30));

Table created.
SQL>

Solution:

1. Create a type with attributes for the trading symbol, limit price, and amount of
change in the stock price:

SQL> CREATE OR REPLACE TYPE ticker AS OBJECT

2 (symbol VARCHAR2 (20),
3 price NUMBER,

4 change NUMBER) ;

5 /

Type created.
SQL>

2. Create an attribute set based on the type ticker:

SQL> BEGIN
2 DBMS_EXPFIL.DROP_ATTRIBUTE SET (attr_set => 'ticker');
3 END;
4 /

PL/SQL procedure successfully completed.

SOL> BEGIN
2 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET
3 (attr_set => 'ticker',
4 from type => 'YES');
5 END;
6 /

PL/SQL procedure successfully completed.
SQL>
3. Associate the attribute set with the expression set stored in the database column

trader.interest:

SQL> BEGIN
2 DBMS_EXPFIL.ASSIGN ATTRIBUTE_SET
3 (attr_set => 'ticker',
4 expr_tab => 'traders',
5 expr_col => 'interest');

3-22 Oracle Database Advanced Application Developer's Guide

Identifying Rows by Address

6 END;
7/

PL/SQL procedure successfully completed.
SQL>
The preceding code ensures that the interest column stores valid conditional

expressions.

4. Populate the table with trader names, e-mail addresses, and conditional
expressions that represent stocks in which the trader is interested, at particular
prices. For example:

SQL> INSERT INTO traders (name, email, interest)
2 VALUES ('Vishu', 'vishu@example.com', 'symbol = ''ABC'' AND price >
25');

1 row created.
SQL>

5. Use the EVALUATE operator to identify the conditional expressions that evaluate
to TRUE for a given data item. For example, the following query returns traders
who are interested in the stock quote (symbol='ABC', price=31,
change=5.2):

SQL> SELECT name, email
2 FROM traders

3 WHERE EVALUATE (interest,
4 'symbol=>"'"ABC'",
5 price=>31,
6 change=>5.2"
7) = 1;
NAME EMATL
Vishu vishu@example.com

1 row selected.
SQL>

To speed up this type of query, you can create an Oracle Expression Filter index on
the interest column.

See Also: Oracle Database Rules Manager and Expression Filter
Developer’s Guide for details on Oracle Expression Filter

Identifying Rows by Address

Each row in a database table has an address called a rowid. You can examine a row
address by querying the pseudocolumn ROWID, whose values are strings representing
the address of each row. These strings have the data type ROWID or UROWID. You can
also create tables and clusters that contain actual columns having the ROWID data type.
Oracle Database does not guarantee that the values of such columns are valid rowids.

Rowid values are important for application development for the following reasons:

s They are the fastest way to access a single row.

Using SQL Data Types in Database Applications 3-23

Identifying Rows by Address

s They can show you how the rows in a table are stored.

s They are unique identifiers for rows in a table.

See Also:

» Oracle Database Concepts for general information about the ROWID
pseudocolumn and the ROWID data type

» Oracle Database SQL Language Reference to learn about the ROWID
pseudocolumn

Topics:

s Querying the ROWID Pseudocolumn
= Accessing the ROWID Data Type

= Accessing the UROWID Data Type

Querying the ROWID Pseudocolumn

Each table in Oracle Database has a pseudocolumn named ROWID. You can use the
ROWID pseudocolumn in the SELECT list or the WHERE clause of a query.

Because pseudocolumns are not stored in the database, you cannot insert, update, or
delete their values.

If a row is too large to fit within a single data block, then its ROWID identifies the initial
row piece. Although rowids are usually unique, different rows can have the same
rowid if they are in the same data block but in different clustered tables.

Example 3-5 uses the ROWID pseudocolumn in the SELECT list of a query.

Example 3-5 Querying the ROWID Pseudocolumn
SQL> CREATE TABLE t_tab (coll ROWID);

Table created.

SQL> INSERT INTO t_tab
2 SELECT ROWID
3 FROM employees
4 WHERE employee_id > 199;

7 rows created.

SQL> SELECT employee_id, rowid
2 FROM employees
3 WHERE employee_id > 199;

EMPLOYEE_ID ROWID
200 AAAPeSAAFAAAABTAAC
201 AAAPeSAAFAAAABTAAD
202 AAAPeSAAFAAAABTAAE
203 AAAPeSAAFAAAABTAAF
204 AAAPeSAAFAAAABTAAG
205 AAAPeSAAFAAAABTAAH
206 AAAPeSAAFAAAABTAAI

7 rows selected.

3-24 Oracle Database Advanced Application Developer's Guide

Identifying Rows by Address

SQL> SELECT * FROM t_tab;

AAAPeSAAFAAAABTAAC
AAAPeSAAFAAAABTAAD
AAAPeSAAFAAAABTAAE
AAAPeSAAFAAAABTAAF
AAAPeSAAFAAAABTAAG
AAAPeSAAFAAAABTAAH
AAAPeSAAFAAAABTAAT

7 rows selected.

Accessing the ROWID Data Type

In tables that are not index-organized and foreign tables, the values of the ROWID
pseudocolumn have the data type ROWID. The format of this data type is either
extended or restricted.

Topics:

s Restricted ROWID

s Extended ROWID

= External Binary ROWID

Restricted ROWID

Internally, the ROWID is a structure that holds information that the database server
must access a row. The restricted internal ROWID is 6 bytes on most platforms. Each
restricted rowid includes the following data:

s Datafile identifier
s Block identifier
s Row identifier

The restricted ROWID pseudocolumn is returned to client applications in the form of an
18-character string with a hexadecimal encoding of the datablock, row, and datafile
components of the ROWID.

Extended ROWID

The extended ROWID data type includes the data in the restricted rowid plus a data
object number. The data object number is an identification number assigned to every
database segment. The extended internal ROWID is 10 bytes on most platforms.

Data in an extended ROWID pseudocolumn is returned to the client application in the
form of an 18-character string (for example, "AAAASMAALAAAAQKAAA"), which
represents a base 64 encoding of the components of the extended ROWID in a
four-piece format, OOOOOOFFFBBBBBBRRR. Extended rowids are not available directly.
You can use a supplied package, DBMS_ROWID, to interpret extended rowid contents.
The package functions extract and provide information that is available directly from a
restricted rowid as well as information specific to extended rowids.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_ROWID package

Using SQL Data Types in Database Applications 3-25

How Oracle Database Converts Data Types

External Binary ROWID

Some client applications use a binary form of the ROWID. For example, OCI and some
precompiler applications can map the ROWID data type to a 3GL structure on bind or
define calls. The size of the binary ROWID is the same for extended and restricted
ROWIDs. The information for the extended ROWID is included in an unused field of the
restricted ROWID structure.

The format of the extended binary ROWID, expressed as a C struct, is as follows:

struct riddef ({
ub4d ridobjnum; /* data obj#--this field is
unused in restricted ROWIDs */
ub2 ridfilenum;
ubl filler;
ubd ridblocknum;
ub?2 ridslotnum;

Accessing the UROWID Data Type

The rows of some tables have addresses that are not physical or permanent or were not
generated by Oracle Database. For example, the row addresses of index-organized
tables are stored in index leaves, which can move. Oracle Database provides these
tables with logical row identifiers, called logical rowids. Rowids of foreign tables, such
as DB2 tables accessed through a gateway, are not standard Oracle Database rowids.
Oracle Database provides foreign tables with identifiers called foreign rowids.Oracle
Database uses universal rowids (urowids) to store the addresses of index-organized
and foreign tables. Both types of urowid are stored in the ROWID pseudocolumn, as are
the physical rowids of heap-organized tables.Oracle Database creates logical rowids
based on the primary key of the table. The logical rowids do not change as long as the
primary key does not change. The ROWID pseudocolumn of an index-organized table
has a data type of UROWID. You can access this pseudocolumn as you would access the
ROWID pseudocolumn of a heap-organized table (that is, using a SELECT ROWID
statement). To store the rowids of an index-organized table, define a column of type
UROWID for the table and retrieve the value of the ROWID pseudocolumn into that
column.

How Oracle Database Converts Data Types

In some cases, Oracle Database accepts data of one data type where it expects data of a
different data type. Generally, an expression cannot contain values with different data
types. However, Oracle Database can use various SQL functions to automatically
convert data to the expected data type.

See Also: Oracle Database SQL Language Reference for details about
data type conversion

Topics:

= Data Type Conversion During Assignments

= Data Type Conversion During Expression Evaluation

Data Type Conversion During Assignments

The data type conversion for an assignment succeeds if Oracle Database can convert
the data type of the value used in the assignment to that of the assignment target.

3-26 Oracle Database Advanced Application Developer's Guide

How Oracle Database Converts Data Types

For the examples in the following list, assume that test_package, its public variable
varl,and tablel_tab are declared as follows:

SQL> DROP TABLE tablel_tab;
DROP TABLE tablel_tab

*

ERROR at line 1:
ORA-00942: table or view does not exist

SQL> CREATE OR REPLACE PACKAGE test_package AS
2 varl CHAR(5);
3 END;
4 /

Package created.

SQL> CREATE TABLE tablel_tab (coll NUMBER);
Table created.

SQL>

m variable := expression

The data type of expression must be either the same as, or convertible to, the
data type of variable. For example, Oracle Database automatically converts the
data provided in the following assignment within the body of a stored
subprogram:

varl := 0;

s INSERT INTO tablel_tab VALUES (expressionl, expression2, ...)

The data types of expressionl, expression2, and so on, must be either the
same as, or convertible to, the data types of the corresponding columns in
tablel_tab. For example, Oracle Database automatically converts the data
provided in the following INSERT statement for tablel_tab:

INSERT INTO tablel_tab VALUES ('19');

s UPDATE tablel_tab SET column = expression

The data type of expression must be either the same as, or convertible to, the
data type of column. For example, Oracle Database automatically converts the
data provided in the following UPDATE statement issued against tablel_tab:

UPDATE tablel_tab SET coll = '30';

n SELECT column INTO variable FROM tablel_tab

The data type of column must be either the same as, or convertible to, the data
type of variable. For example, Oracle Database automatically converts data
selected from the table before assigning it to the variable in the following
statement:

SELECT Coll INTO Varl FROM Tablel_tab WHERE Coll = 30;
Data Type Conversion During Expression Evaluation

For expression evaluation, Oracle Database can automatically perform the same
conversions as for assignments. An expression is converted to a type based on its

Using SQL Data Types in Database Applications 3-27

Metadata for SQL Built-In Functions

context. For example, operands to arithmetic operators are converted to NUMBER, and
operands to string functions are converted to VARCHAR2.

Oracle Database can automatically convert the following:
s VARCHAR2 or CHAR to NUMBER
s VARCHAR2 or CHAR to DATE

Character to NUMBER conversions succeed only if the character string represents a
valid number. Character to DATE conversions succeed only if the character string
satisfies the session default format, which is specified by the initialization parameter
NLS_DATE_FORMAT.

Some common types of expressions are:
= Simple expressions, such as:

commission + '500'

= Boolean expressions, such as:

bonus > salary / '10°'

= Subprogram calls, such as:

MOD (counter, '2")

s WHERE clause conditions, such as:

WHERE hiredate = TO_DATE('1997-01-01"', 'yyyy-mm-dd')

m WHERE clause conditions, such as:
WHERE rowid = 'AAAAaOAATAAAADAAA'
In general, Oracle Database uses the rule for expression evaluation when a data type
conversion is needed in places not covered by the rule for assignment conversions.
In assignments of the form:
variable := expression
Oracle Database first evaluates expression using the conversion rules for expressions;
expression can be as simple or complex as desired. If it succeeds, then the evaluation of

expression results in a single value and data type. Then, Oracle Database tries to assign
this value to the target variable using the conversion rules for assignments.

Metadata for SQL Built-In Functions

You can see metadata for SQL built-in functions with the dynamic performance views
V$SQLFN_METADATA (which has general metadata) and V$SQLFN_ARG_METADATA
(which has metadata about arguments). You can join these views on the column
FUNCID. For functions with unlimited arguments, such as LEAST and GREATEST,
V$SQLFN_ARG_METADATA has only one row for each repeating argument.

These views enable third-party tools to leverage SQL built-in functions without
maintaining their metadata in the application layer.

See Also: Oracle Database Reference for detailed information about
the dynamic performance views V$SQLFN_METADATA and V$SQLFN_
ARG_METADATA

3-28 Oracle Database Advanced Application Developer's Guide

Metadata for SQL Built-In Functions

Often, an argument for a SQL built-in function can have any data type in a data type
family. Table 3-10 shows which data types belong to which families.

Table 3—-10 Data Type Families

Family Data Types

STRING CHARACTER
VARCHAR2
CLOB
NCHAR
NVARCHAR2
NCLOB

NUMERIC NUMBER
BINARY_FLOAT
BINARY_DOUBLE

DATETYPE DATE
TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND

BINARY BLOB
RAW
LONGRAW

ARGn Data Type

In the view V$SQLFN_METADATA, ARGn is the data type of a function whose return
value has the same data type as its nth argument. For example:

s The MAX function returns a value that has the data type of its first argument, so the
MAX function has data type ARG1.

= The DECODE function returns a value that has the data type of its third argument,
so the DECODE function has data type ARG3.

EXPR Data Type

In the view V$SQLFN_ARG_METADATA, EXPR is the data type of an argument that can
be any expression. An expression is either a single value or a combination of values
and SQL functions that has a single value.

Table 3-11 Display Types of SQL Built-In Functions

Display Type Description Example
NORMAL FUNC(A,B,...) LEAST (A, B,C)
ARITHMETIC A FUNC B) A+B
PARENTHESIS FUNC () SYS_GUID()
RELOP A FUNC B) A IN B

Using SQL Data Types in Database Applications 3-29

Metadata for SQL Built-In Functions

Table 3-11 (Cont.) Display Types of SQL Built-In Functions

Display Type Description Example
CASE_LIKE CASE statement or DECODE decode
NOPAREN FUNC SYSDATE

3-30 Oracle Database Advanced Application Developer's Guide

4

Using Regular Expressions in Database
Applications

This chapter explains how to use regular expressions in database applications.
Topics:

= Overview of Regular Expressions

= Metacharacters in Regular Expressions

= Using Regular Expressions in SQL Statements: Scenarios

See Also:

» Oracle Database SQL Language Reference for information about
Oracle Database SQL functions for regular expressions

» Oracle Database Globalization Support Guide for details on using
SQL regular expression functions in a multilingual environment

» Oracle Regular Expressions Pocket Reference by Jonathan Gennick,
O'Reilly & Associates

» Mastering Regular Expressions by Jeffrey E. E. Friedl, O'Reilly &
Associates

Overview of Regular Expressions
Topics:
= What Are Regular Expressions?
s How Are Regular Expressions Useful?
= Oracle Database Implementation of Regular Expressions

s Oracle Database Support for the POSIX Regular Expression Standard

What Are Regular Expressions?

Regular expressions enable you to search for patterns in string data by using
standardized syntax conventions. You specify a regular expression through the
following types of characters:

= Metacharacters, which are operators that specify search algorithms

= Literals, which are the characters for which you are searching

Using Regular Expressions in Database Applications 4-1

Overview of Regular Expressions

A regular expression can specify complex patterns of character sequences. For
example, the following regular expression searches for the literals £ or ht, the t literal,
the p literal optionally followed by the s literal, and finally the colon (:) literal:

(f|ht) tps?:

The parentheses are metacharacters that group a series of pattern elements to a single
element; the pipe symbol (|) matches one of the alternatives in the group. The
question mark (?) is a metacharacter indicating that the preceding pattern, in this case
the s character, is optional. Thus, the preceding regular expression matches the http:,
https:, ftp:, and ftps: strings.

How Are Regular Expressions Useful?

Regular expressions are a powerful text processing component of programming
languages such as PERL and Java. For example, a PERL script can process each HTML
file in a directory, read its contents into a scalar variable as a single string, and then use
regular expressions to search for URLs in the string. One reason that many developers
write in PERL is for its robust pattern matching functionality.

Oracle Database support of regular expressions enables developers to implement
complex match logic in the database. This technique is useful for the following
reasons:

= By centralizing match logic in Oracle Database, you avoid intensive string
processing of SQL results sets by middle-tier applications. For example, life
science customers often rely on PERL to do pattern analysis on bioinformatics data
stored in huge databases of DNAs and proteins. Previously, finding a match for a
protein sequence such as [AG].{4}GK[ST] was handled in the middle tier. The
SQL regular expression functions move the processing logic closer to the data,
thereby providing a more efficient solution.

» Prior to Oracle Database 10g, developers often coded data validation logic on the
client, requiring the same validation logic to be duplicated for multiple clients.
Using server-side regular expressions to enforce constraints solves this problem.

s The built-in SQL and PL/SQL regular expression functions and conditions make
string manipulations more powerful and less cumbersome than in previous
releases of Oracle Database.

Oracle Database Implementation of Regular Expressions

Oracle Database implements regular expression support with a set of Oracle Database
SQL functions and conditions that enable you to search and manipulate string data.
You can use these functions in any environment that supports Oracle Database SQL.
You can use these functions on a text literal, bind variable, or any column that holds
character data such as CHAR, NCHAR, CLOB, NCLOB, NVARCHAR2, and VARCHAR?2 (but
not LONG).

Table 4-1 describes the regular expression functions and conditions.

4-2 Oracle Database Advanced Application Developer's Guide

Overview of Regular Expressions

Table 4-1 SQL Regular Expression Functions and Conditions

SQL Element Category Description

REGEXP_LIKE Condition Searches a character column for a pattern. Use this function in
the WHERE clause of a query to return rows matching a regular
expression. The condition is also valid in a constraint or as a
PL/SQL function returning a boolean.

The following WHERE clause filters employees with a first name
of Steven or Stephen:

WHERE REGEXP_LIKE(first_name, 'ASte(v|ph)en$')

REGEXP_REPLACE Function Searches for a pattern in a character column and replaces each
occurrence of that pattern with the specified string.

The following function call puts a space after each character in
the country_name column:

REGEXP_REPLACE (country_name, '(.)', "\1 ')

REGEXP_INSTR Function Searches a string or substring for a given occurrence of a regular
expression pattern (a substring) and returns an integer
indicating the position in the string or substring where the
match is found. You specify which occurrence you want to find
and the start position.

The following function call performs a boolean test for a valid
e-mail address in the email column:

REGEXP_INSTR (email, '\w+@\w+(\.\w+)+') > 0

REGEXP_SUBSTR Function Searches a string or substring for a given occurrence of a regular
expression pattern (a substring) and returns the substring itself.
You specify which occurrence you want to find and the start
position.
The following function call uses the x flag to match the first
string by ignoring spaces in the regular expression:

REGEXP_SUBSTR('oracle', 'oracle', 1, 1, 'x")

REGEXP_COUNT Function Returns the number of times a pattern appears in a string. You
specify the string and the pattern. You can also specify the start
position and matching options (for example, c for case
sensitivity).

The following function call returns the number of times that e
(but not E) appears in the string 'Albert Einstein’, starting
at character position 7 (that is, one):

REGEXP_COUNT ('Albert Einstein', 'e', 7, 'c')

A string literal in a REGEXP function or condition conforms to the rules of SQL text
literals. By default, regular expressions must be enclosed in single quotes. If your
regular expression includes the single quote character, then enter two single quotation
marks to represent one single quotation mark within the expression. This technique
ensures that the entire expression is interpreted by the SQL function and improves the
readability of your code. You can also use the g-quote syntax to define your own
character to terminate a text literal. For example, you can delimit your regular
expression with the pound sign (#) and then use a single quote within the expression.

Note: If your expression comes from a column or a bind variable,
then the same rules for quoting do not apply.

Using Regular Expressions in Database Applications 4-3

Metacharacters in Regular Expressions

See Also:

» Oracle Database SQL Language Reference for syntax, descriptions,
and examples of the REGEXP functions and conditions

» Oracle Database SQL Language Reference for information about
character literals

Oracle Database Support for the POSIX Regular Expression Standard

Oracle Database implementation of regular expressions conforms to the following
standards:

= IEEE Portable Operating System Interface (POSIX) standard draft 1003.2/D11.2
s Unicode Regular Expression Guidelines of the Unicode Consortium

Oracle Database follows the exact syntax and matching semantics for these operators
as defined in the POSIX standard for matching ASCII (English language) data. You can
find the POSIX standard draft at the following URL:

http://www.opengroup.org/onlinepubs/007908799/xbd/re.html

Oracle Database enhances regular expression support in the following ways:

= Extends the matching capabilities for multilingual data beyond what is specified
in the POSIX standard.

= Adds support for the common PERL regular expression extensions that are not
included in the POSIX standard but do not conflict with it. Oracle Database
provides built-in support for some of the most heavily used PERL regular
expression operators, for example, character class shortcuts, the "nongreedy"
modifier, and so on.

Oracle Database supports a set of common metacharacters used in regular expressions.
The action of supported metacharacters and related features is described in
Metacharacters in Regular Expressions on page 4-4.

Note: The interpretation of metacharacters differs between tools that
support regular expressions. If you are porting regular expressions
from another environment to Oracle Database, ensure that the regular
expression syntax is supported and the action is what you expect.

Metacharacters in Regular Expressions
This section contains the following topics:
s POSIX Metacharacters in Oracle Database Regular Expressions
= Multilingual Extensions to POSIX Regular Expression Standard
s PERL-Influenced Extensions to POSIX Regular Expression Standard

POSIX Metacharacters in Oracle Database Regular Expressions

Table 4-2 lists the list of metacharacters supported for use in regular expressions
passed to SQL regular expression functions and conditions. These metacharacters
conform to the POSIX standard; any differences in action from the standard are noted
in the "Description” column.

4-4 Oracle Database Advanced Application Developer's Guide

Metacharacters in Regular Expressions

Table 4-2 POSIX Metacharacters in Oracle Database Regular Expressions

Syntax Operator Name Description Example
Any Character — Matches any character in the database character set. The expression a.b matches the
Dot If the n flag is set, it matches the newline character. ~ strings abb, acb, and adb, but does
The newline is recognized as the linefeed character not match acc.
(\x0a) on Linux, UNIX, and Windows or the
carriage return character (\x0d) on Macintosh
platforms.
Note: In the POSIX standard, this operator matches
any English character except NULL and the
newline character.
+ One or More — Matches one or more occurrences of the preceding The expression a+ matches the
Plus Quantifier subexpression. strings a, aa, and aaa, but does not
match bbb.
? Zero or One — Matches zero or one occurrence of the preceding The expression ab?c matches the
Question Mark subexpression. strings abc and ac, but does not
Quantifier match abbc.
* Zero or More — Matches zero or more occurrences of the preceding The expression ab*c matches the
Star Quantifier subexpression. By default, a quantifier match is strings ac, abc, and abbc, but does
"greedy," because it matches as many occurrences as not match abb.
possible while allowing the rest of the match to
succeed.
{m} Interval—Exact ~ Matches exactly m occurrences of the preceding The expression a {3} matches the
Count subexpression. strings aaa, but does not match aa.
{m,} Interval—At Matches at least m occurrences of the preceding The expression a{3, } matches the
Least Count subexpression. strings aaa and aaaa, but does not
match aa.
{m, n} Interval—Betwee Matches at least m, but not more than n occurrences The expression a{3, 5} matches

n Count

of the preceding subexpression.

the strings aaa, aaaa, and aaaaa,
but does not match aa.

Matching
Character List

Matches any single character in the list within the
brackets. The following operators are allowed
within the list, but other metacharacters included
are treated as literals:

= Range operator: -

. POSIX character class: [: :]

. POSIX collation element: [. .]

n POSIX character equivalence class: [= =]

A dash (-) is a literal when it occurs first or last in
the list, or as an ending range point in a range
expression, as in [#--]. A right bracket (1) is
treated as a literal if it occurs first in the list.

Note: In the POSIX standard, a range includes all
collation elements between the start and end of the
range in the linguistic definition of the current
locale. Thus, ranges are linguistic rather than byte
values ranges; the semantics of the range
expression are independent of character set. In
Oracle Database, the linguistic range is determined
by the NLS_SORT initialization parameter.

The expression [abc] matches the
first character in the strings all,
bill, and cold, but does not
match any characters in do11.

Nonmatching
Character List

Matches any single character not in the list within
the brackets. Characters not in the nonmatching
character list are returned as a match. See the
description of the Matching Character List operator
for an account of metacharacters allowed in the
character list.

The expression [~abc] matches
the character d in the string
abcdef, but not the character a, b,
or c. The expression [“abc]+
matches the sequence def in the
string abcdef, but not a, b, or c.

The expression [~a-1] excludes
any character between a and 1
from the search result. This
expression matches the character j
in the string hij, but does not
match any characters in the string
abcdefghi.

Using Regular Expressions in Database Applications 4-5