
Oracle® Database
Concepts

11g Release 1 (11.1)

B28318-06

January 2011

Oracle Database Concepts, 11g Release 1 (11.1)

B28318-06

Copyright © 1993, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Richard Strohm

Contributing Authors: Lance Ashdown, Mark Bauer, Michele Cyran, Steve Fogel, Janis Greenberg, Sumit
Jeloka, Paul Lane, Diana Lorentz, Jack Melnick, Sheila Moore, Antonio Romero, Vivian Schupmann, Cathy
Shea, Douglas Williams

Contributors: Omar Alonso, Penny Avril, Hermann Baer, Sandeepan Banerjee, Bill Bridge, Sandra
Cheevers, Carol Colrain, Vira Goorah, Mike Hartstein, John Haydu, Wei Hu, Ramkumar Krishnan, Vasudha
Krishnaswamy, Bill Lee, Bryn Llewellyn, Rich Long, Paul Manning, Mughees Minhas, Valarie Moore, Gopal
Mulagund, Muthu Olagappan, Jennifer Polk, Kathy Rich, John Russell, Bob Thome, Randy Urbano, Mark
Van de Wiel, Michael Verheij, Ron Weiss, Steve Wertheimer

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xxv

Audience... xxv
Documentation Accessibility ... xxv
Related Documentation.. xxvi
Conventions ... xxvi

Part I What Is Oracle?

1 Introduction to Oracle Database

Oracle Database Architecture ... 1-1
Overview of Grid Architecture .. 1-2
Overview of Application Architecture ... 1-2

Client/Server Architecture.. 1-2
Multitier Architecture: Application Servers ... 1-3
Multitier Architecture: Service-Oriented Architecture ... 1-3

Overview of Physical Database Structures... 1-3
Datafiles ... 1-4
Control Files... 1-4
Online Redo Log Files .. 1-5
Archived Redo Log Files.. 1-5
Parameter Files .. 1-5
Alert and Trace Log Files... 1-5
Backup Files ... 1-6

Overview of Logical Database Structures .. 1-6
Oracle Database Data Blocks... 1-6
Extents .. 1-6
Segments .. 1-7
Tablespaces .. 1-7

Overview of Schemas and Common Schema Objects .. 1-8
Tables .. 1-8
Indexes ... 1-8
Views .. 1-8
Clusters... 1-9
Synonyms... 1-9

Overview of the Oracle Database Data Dictionary ... 1-9

iv

Overview of the Oracle Database Instance... 1-9
Oracle Database Background Processes ... 1-10
Instance Memory Structures ... 1-11

Overview of Accessing the Database ... 1-11
Network Connections.. 1-11
Starting Up the Database .. 1-12
How Oracle Database Works .. 1-12

Overview of Oracle Database Utilities... 1-13
Oracle Database Features .. 1-13

Overview of Oracle Real Application Testing .. 1-13
Database Replay .. 1-13
SQL Performance Analyzer.. 1-14

Overview of Concurrency Features.. 1-14
Concurrency ... 1-15
Read Consistency .. 1-15
Caching Mechanisms... 1-16
Locking Mechanisms .. 1-16

Overview of Manageability Features ... 1-17
Self-Managing Database ... 1-17
Automatic Maintenance Tasks... 1-17
Oracle Enterprise Manager... 1-17
SQL Developer and SQL*Plus ... 1-18
Automatic Memory Management .. 1-18
Automatic Storage Management ... 1-18
Automatic Database Diagnostic Monitor .. 1-19
SQL Tuning Advisor .. 1-19
SQL Access Advisor ... 1-19
Streams Tuning Advisor .. 1-20
The Scheduler ... 1-20
Database Resource Manager ... 1-20

Overview of Diagnosability Features... 1-20
Overview of Database Backup and Recovery Features .. 1-20
Overview of High Availability Features.. 1-22
Overview of Business Intelligence Features.. 1-23

Data Warehousing ... 1-23
Materialized Views .. 1-24
Table Compression .. 1-24
Parallel Execution .. 1-25
Analytic SQL... 1-25
OLAP Capabilities ... 1-25
Data Mining .. 1-25
Very Large Databases (VLDB) ... 1-25

Overview of Content Management Features .. 1-26
XML in Oracle Database ... 1-26
LOBs... 1-27
SecureFiles... 1-27
Oracle Text ... 1-29

v

Oracle Ultra Search ... 1-29
Oracle Multimedia ... 1-29
Oracle Spatial.. 1-29

Overview of Security Features .. 1-30
Security Mechanisms .. 1-30

Overview of Data Integrity and Triggers .. 1-31
Integrity Constraints.. 1-31
Triggers ... 1-32

Overview of Information Integration Features... 1-32
Distributed SQL .. 1-32
Oracle Streams ... 1-33
Oracle Database Gateways and Generic Connectivity... 1-34

Oracle Database Application Development ... 1-34
Overview of Oracle SQL .. 1-35

SQL Statements .. 1-35
Overview of PL/SQL.. 1-36
Overview of Java ... 1-37
Overview of Application Programming Languages (APIs) ... 1-37
Overview of Application Development Environments .. 1-37
Overview of Datatypes... 1-38
Overview of Globalization .. 1-39

Part II Oracle Database Architecture

2 Data Blocks, Extents, and Segments

Introduction to Data Blocks, Extents, and Segments .. 2-1
Overview of Data Blocks .. 2-3

Data Block Format ... 2-3
Header (Common and Variable) .. 2-4
Table Directory.. 2-4
Row Directory ... 2-4
Overhead.. 2-4
Row Data.. 2-4
Free Space... 2-4

Free Space Management.. 2-5
Availability and Optimization of Free Space in a Data Block .. 2-5
Row Chaining and Migrating .. 2-5

PCTFREE, PCTUSED, and Row Chaining ... 2-6
The PCTFREE Parameter ... 2-6
The PCTUSED Parameter .. 2-7
How PCTFREE and PCTUSED Work Together ... 2-8

Overview of Extents.. 2-10
When Extents Are Allocated .. 2-10
Determine the Number and Size of Extents ... 2-10
How Extents Are Allocated .. 2-11
When Extents Are Deallocated .. 2-11

vi

Extents in Nonclustered Tables ... 2-12
Extents in Clustered Tables .. 2-12
Extents in Materialized Views and Their Logs.. 2-13
Extents in Indexes .. 2-13
Extents in Temporary Segments .. 2-13
Extents in Rollback Segments... 2-13

Overview of Segments ... 2-13
Introduction to Data Segments .. 2-14
Introduction to Index Segments ... 2-14
Introduction to Temporary Segments ... 2-14

Operations that Require Temporary Segments .. 2-15
Segments in Temporary Tables and Their Indexes .. 2-15
How Temporary Segments Are Allocated .. 2-15

Introduction to Undo Segments and Automatic Undo Management..................................... 2-16
Manual Undo Management ... 2-17
Undo Quota .. 2-17
Automatic Undo Retention... 2-17

3 Tablespaces, Datafiles, and Control Files

Introduction to Tablespaces, Datafiles, and Control Files ... 3-1
Oracle-Managed Files.. 3-2
Allocate More Space for a Database ... 3-2

Overview of Tablespaces .. 3-4
Bigfile Tablespaces ... 3-5

Benefits of Bigfile Tablespaces .. 3-5
Considerations with Bigfile Tablespaces... 3-6

The SYSTEM Tablespace .. 3-6
The Data Dictionary.. 3-6
PL/SQL Program Units Description.. 3-6

The SYSAUX Tablespace... 3-7
Undo Tablespaces .. 3-7

Creation of Undo Tablespaces .. 3-8
Default Temporary Tablespace .. 3-8

How to Specify a Default Temporary Tablespace.. 3-8
Using Multiple Tablespaces.. 3-8
Managing Space in Tablespaces .. 3-9

Locally Managed Tablespaces .. 3-9
Segment Space Management in Locally Managed Tablespaces 3-10
Dictionary Managed Tablespaces ... 3-10

Multiple Block Sizes.. 3-11
Online and Offline Tablespaces .. 3-11

Bringing Tablespaces Offline ... 3-11
Read-Only Tablespaces ... 3-12
Temporary Tablespaces.. 3-12

Sort Segments .. 3-13
Creation of Temporary Tablespaces ... 3-13

Transport of Tablespaces Between Databases ... 3-13

vii

Tablespace Repository... 3-14
How to Move or Copy a Tablespace to Another Database ... 3-14

Overview of Datafiles .. 3-15
Datafile Contents .. 3-15
Size of Datafiles .. 3-16
Offline Datafiles... 3-16
Temporary Datafiles ... 3-16

Overview of Control Files ... 3-17
Control File Contents ... 3-17
Multiplexed Control Files ... 3-18

4 Transaction Management

Introduction to Transactions .. 4-1
Statement Execution and Transaction Control .. 4-2
Statement-Level Rollback ... 4-3
Resumable Space Allocation... 4-3

Overview of Transaction Management .. 4-4
Commit Transactions .. 4-4
Rollback of Transactions .. 4-5
Savepoints In Transactions ... 4-6
Transaction Naming .. 4-7

How Transactions Are Named ... 4-7
Commit Comment .. 4-7

The Two-Phase Commit Mechanism ... 4-8
Overview of Autonomous Transactions .. 4-8

Autonomous PL/SQL Blocks .. 4-9
Transaction Control Statements in Autonomous Blocks ... 4-9

5 Schema Objects

Introduction to Schema Objects ... 5-1
Overview of Tables ... 5-3

How Table Data Is Stored ... 5-4
Row Format and Size .. 5-5
Rowids of Row Pieces ... 5-7
Column Order .. 5-7

Table Compression .. 5-7
Using Table Compression.. 5-8

Nulls Indicate Absence of Value.. 5-8
Default Values for Columns .. 5-9
Partitioned Tables ... 5-10
Nested Tables .. 5-10
Temporary Tables .. 5-10

Segment Allocation.. 5-11
Parent and Child Transactions .. 5-11

External Tables .. 5-12
The Access Driver .. 5-12

viii

Data Loading with External Tables ... 5-12
Parallel Access to External Tables ... 5-13

Overview of Views.. 5-13
How Views are Stored.. 5-14
How Views Are Used .. 5-15
Mechanics of Views ... 5-15

Globalization Support Parameters in Views.. 5-16
Use of Indexes Against Views.. 5-16

Dependencies and Views .. 5-16
Updatable Join Views .. 5-17
Object Views .. 5-17
Inline Views .. 5-17

Overview of Materialized Views ... 5-18
Define Constraints on Views ... 5-19
Refresh Materialized Views .. 5-19
Materialized View Logs .. 5-20

Overview of Dimensions ... 5-20
Overview of the Sequence Generator ... 5-21
Overview of Synonyms.. 5-22
Overview of Indexes ... 5-23

Unique and Nonunique Indexes .. 5-24
Visible and Invisible Indexes... 5-24
Composite Indexes.. 5-24
Indexes and Keys ... 5-25
Indexes and Nulls .. 5-25
Function-Based Indexes ... 5-26

Uses of Function-Based Indexes ... 5-26
Optimization with Function-Based Indexes ... 5-27
Dependencies of Function-Based Indexes ... 5-27

How Indexes Are Stored ... 5-28
Format of Index Blocks.. 5-28
The Internal Structure of Indexes .. 5-28
Index Properties ... 5-29
Advantages of B-tree Structure.. 5-30

Index Unique Scan .. 5-30
Index Range Scan .. 5-30
Key Compression ... 5-30

Prefix and Suffix Entries .. 5-31
Performance and Storage Considerations ... 5-31
Uses of Key Compression .. 5-31

Reverse Key Indexes .. 5-32
Bitmap Indexes ... 5-32

Benefits for Data Warehousing Applications ... 5-33
Cardinality .. 5-33
Bitmap Index Example .. 5-34
Bitmap Indexes and Nulls ... 5-35
Bitmap Indexes on Partitioned Tables .. 5-35

ix

Bitmap Join Indexes .. 5-36
Overview of Index-Organized Tables ... 5-36

Benefits of Index-Organized Tables .. 5-37
Index-Organized Tables with Row Overflow Area ... 5-38
Secondary Indexes on Index-Organized Tables ... 5-38
Bitmap Indexes on Index-Organized Tables ... 5-39

Mapping Table ... 5-39
Partitioned Index-Organized Tables .. 5-40
B-tree Indexes on UROWID Columns for Heap- and Index-Organized Tables 5-40
Index-Organized Table Applications ... 5-40

Overview of Application Domain Indexes .. 5-40
Overview of Clusters .. 5-41
Overview of Hash Clusters ... 5-42

6 Schema Object Dependencies

Overview of Schema Object Dependencies.. 6-1
Querying Object Dependencies .. 6-4
Object Status ... 6-4
Invalidation of Dependent Objects .. 6-4

Session State and Referenced Packages .. 6-8
Security Authorization .. 6-8

Guidelines for Reducing Invalidation ... 6-8
Add New Items to End of Package.. 6-8
Reference Each Table Through a View ... 6-8

Object Revalidation ... 6-9
Name Resolution in Schema Scope ... 6-10
Local Dependency Management .. 6-11
Remote Dependency Management.. 6-11

Dependencies Among Local and Remote Database Procedures ... 6-11
Dependencies Among Other Remote Objects... 6-11
Dependencies of Applications... 6-12

Remote Procedure Call (RPC) Dependency Management .. 6-12
Time-Stamp Checking .. 6-12
Signature Checking... 6-14

Switching Datatype Classes ... 6-16
Examples of Changing Procedure Signatures ... 6-17

Controlling Remote Dependencies .. 6-18
Dependency Resolution .. 6-19
Suggestions for Managing Dependencies .. 6-20

Shared SQL Dependency Management.. 6-20

7 The Data Dictionary

Introduction to the Data Dictionary ... 7-1
Structure of the Data Dictionary .. 7-2
SYS, Owner of the Data Dictionary ... 7-2

How the Data Dictionary Is Used ... 7-2

x

How Oracle Database Uses the Data Dictionary .. 7-2
Public Synonyms for Data Dictionary Views ... 7-3
Cache the Data Dictionary for Fast Access.. 7-3
Other Programs and the Data Dictionary ... 7-3

How to Use the Data Dictionary ... 7-3
Views with the Prefix USER .. 7-4
Views with the Prefix ALL .. 7-4
Views with the Prefix DBA.. 7-5
The DUAL Table ... 7-5

Dynamic Performance Tables ... 7-5
Database Object Metadata.. 7-5

8 Memory Architecture

Introduction to Oracle Database Memory Structures .. 8-1
Basic Memory Structures .. 8-1

Overview of the System Global Area... 8-2
Database Buffer Cache... 8-3

Organization of the Database Buffer Cache ... 8-3
The LRU Algorithm and Full Table Scans .. 8-4

Redo Log Buffer ... 8-4
Shared Pool .. 8-4

Library Cache .. 8-5
Dictionary Cache... 8-7
Result Cache .. 8-7

Large Pool.. 8-8
Java Pool .. 8-9
Streams Pool.. 8-9

Overview of the Program Global Area .. 8-9
Content of the PGA ... 8-9

Session Memory .. 8-9
Private SQL Area.. 8-10

PGA Memory Use in Dedicated and Shared Server Modes ... 8-11
Overview of Memory Management Methods ... 8-12
About Software Code Areas ... 8-14

9 Process Architecture

Introduction to Processes ... 9-1
Multiple-Process Oracle Systems .. 9-1
Types of Processes ... 9-2

Overview of User Processes ... 9-3
Connections and Sessions .. 9-3

Overview of Oracle Database Processes .. 9-3
Oracle Database Server Processes.. 9-4
Oracle Database Background Processes ... 9-4

Archiver Processes (ARCn) .. 9-5
Checkpoint Process (CKPT) ... 9-6
Database Writer Process (DBWn) .. 9-6

xi

Job Queue Processes ... 9-7
Log Writer Process (LGWR) ... 9-8
Process Monitor Process (PMON) ... 9-9
Queue Monitor Processes (QMNn) ... 9-9
Recoverer Process (RECO) .. 9-9
System Monitor Process (SMON) ... 9-10
Other Oracle Database Background Processes.. 9-10

Oracle Database Trace Files and the Alert Log .. 9-11
Shared Server Architecture ... 9-12

Dispatcher Request and Response Queues .. 9-13
Dispatcher Processes (Dnnn) .. 9-15
Shared Server Processes (Snnn) ... 9-15

Restricted Operations of the Shared Server .. 9-16
Dedicated Server Configuration ... 9-16
Database Resident Connection Pooling ... 9-18

Using Database Resident Connection Pooling ... 9-19
Connection Classes .. 9-20
Session Purity ... 9-20

The Program Interface ... 9-21
Program Interface Structure ... 9-21
Program Interface Drivers .. 9-21
Communications Software for the Operating System .. 9-22

10 Application Architecture

Introduction to Client/Server Architecture .. 10-1
Overview of Multitier Architecture .. 10-3

Clients ... 10-4
Application Servers... 10-4
Database Servers ... 10-4

Oracle Database as a Web Service Provider... 10-5
Overview of Oracle Net Services ... 10-5

How Oracle Net Services Works... 10-6
The Listener ... 10-6

Service Information Registration... 10-7

11 Oracle Database Utilities

Introduction to Oracle Database Utilities ... 11-1
Overview of Data Pump Export and Import .. 11-2

Data Pump Export... 11-2
Data Pump Import .. 11-2

Overview of the Data Pump API.. 11-2
Overview of the Metadata API ... 11-3
Overview of SQL*Loader .. 11-3
Overview of External Tables ... 11-4
Overview of LogMiner ... 11-4
Overview of DBVERIFY Utility ... 11-5

xii

Overview of DBNEWID Utility ... 11-5
ADRCI: ADR Command Interpreter ... 11-5

12 Database and Instance Startup and Shutdown

Introduction to an Oracle Instance ... 12-1
The Instance and the Database ... 12-2
Connection with Administrator Privileges .. 12-2
Initialization Parameter Files and Server Parameter Files .. 12-3

Server Parameter Files and Hardware Assisted Resilient Data .. 12-3
How Parameter Values Are Changed... 12-3

Overview of Instance and Database Startup .. 12-4
How an Instance Is Started .. 12-4

Restricted Mode of Instance Startup ... 12-5
Forced Startup in Abnormal Situations .. 12-5

How a Database Is Mounted ... 12-5
How a Database Is Mounted with Oracle Real Application Clusters 12-5
How a Clone Database Is Mounted... 12-6

What Happens When You Open a Database .. 12-6
Crash and Instance Recovery ... 12-6
Undo Space Acquisition and Management.. 12-9
Resolution of In-Doubt Distributed Transaction... 12-9
Open a Database in Read-Only Mode ... 12-9

Overview of Database and Instance Shutdown .. 12-10
Close a Database ... 12-11

Close the Database by Terminating the Instance .. 12-11
Unmount a Database ... 12-11
Shut Down an Instance .. 12-11

Abnormal Instance Shutdown ... 12-11

Part III Oracle Database Features

13 Data Concurrency and Consistency

Introduction to Data Concurrency and Consistency in a Multiuser Environment 13-1
Preventable Phenomena and Transaction Isolation Levels ... 13-2
Overview of Locking Mechanisms ... 13-2

How Oracle Database Manages Data Concurrency and Consistency... 13-3
Multiversion Concurrency Control ... 13-3
Statement-Level Read Consistency ... 13-4
Transaction-Level Read Consistency .. 13-5
Read Consistency with Oracle Real Application Clusters .. 13-5
Oracle Database Isolation Levels .. 13-5

Set the Isolation Level ... 13-6
Read Committed Isolation.. 13-6
Serializable Isolation.. 13-6

Comparison of Read Committed and Serializable Isolation 13-7
Transaction Set Consistency... 13-8

xiii

Row-Level Locking.. 13-8
Referential Integrity... 13-9
Distributed Transactions... 13-9

Choice of Isolation Level ... 13-9
Read Committed Isolation.. 13-10
Serializable Isolation.. 13-10
Quiesce Database ... 13-11

How Oracle Database Locks Data.. 13-13
Transactions and Data Concurrency .. 13-13

Modes of Locking... 13-14
Lock Duration... 13-14
Data Lock Conversion Versus Lock Escalation ... 13-14

Deadlocks ... 13-15
Deadlock Detection.. 13-15
Avoid Deadlocks.. 13-16

Types of Locks ... 13-16
DML Locks ... 13-16

Row Locks (TX) .. 13-17
Table Locks (TM) ... 13-17
DML Locks Automatically Acquired for DML Statements ... 13-21

DDL Locks.. 13-22
Exclusive DDL Locks... 13-23
Share DDL Locks.. 13-23
Breakable Parse Locks ... 13-23
Duration of DDL Locks ... 13-24
DDL Locks and Clusters ... 13-24

Latches and Internal Locks ... 13-24
Latches ... 13-24
Internal Locks ... 13-24

Explicit (Manual) Data Locking ... 13-25
Oracle Database Lock Management Services ... 13-26

Overview of Oracle Flashback Query ... 13-26
Flashback Query Benefits... 13-27
Some Uses of Flashback Query ... 13-28

14 Manageability

Installing Oracle Database 11g and Getting Started .. 14-1
Simplified Database Creation.. 14-2
Instant Client.. 14-2
Automated Upgrades ... 14-2
Basic Initialization Parameters .. 14-3
Data Loading, Transfer, and Archiving... 14-3

Intelligent Infrastructure ... 14-3
Automatic Workload Repository.. 14-4
Automatic Maintenance Tasks .. 14-4
Fault Diagnosability Infrastructure .. 14-5

Automatic Diagnostic Repository ... 14-6

xiv

Incident Packaging Service... 14-6
Server-Generated Alerts... 14-7
Advisor Framework.. 14-7
Hang Manager ... 14-7

Performance Diagnostics and Troubleshooting .. 14-8
Application and SQL Tuning .. 14-8
Memory Management .. 14-10
Space Management ... 14-11

Automatic Undo Management ... 14-11
Oracle-Managed Files... 14-12
Free Space Management... 14-12
Proactive Space Management.. 14-12
Intelligent Capacity Planning.. 14-13
Space Reclamation .. 14-13

Automatic Storage Management .. 14-14
Backup and Recovery ... 14-15

Recovery Manager .. 14-16
Mean Time to Recovery.. 14-17
Self Service Error Correction ... 14-17

Configuration Management .. 14-17
Workload Management .. 14-18

Overview of the Database Resource Manager.. 14-18
Database Resource Manager Concepts... 14-19

Overview of Services .. 14-20
Workload Management with Services.. 14-21
High Availability with Services ... 14-21

Oracle Scheduler ... 14-22
What Can the Scheduler Do?... 14-23

Schedule Job Execution ... 14-23
Time-Based Scheduling... 14-24
Event-Based Scheduling.. 14-24
Define Multi-Step Jobs .. 14-24
Schedule Job Processes that Model Business Requirements ... 14-24
Manage and Monitor Jobs .. 14-24
Execute and Manage Jobs in a Clustered Environment ... 14-25

15 Backup and Recovery

Introduction to Backup and Recovery... 15-1
Flash Recovery Area ... 15-2

Database Backups ... 15-3
What Are Database Backups? ... 15-3
Whole Database and Partial Database Backups ... 15-3
Consistent and Inconsistent Backups... 15-4

Overview of Consistent Backups... 15-4
Overview of Inconsistent Backups .. 15-4

RMAN and User-Managed Backups.. 15-5
Online Backups .. 15-5

xv

Control File Backups ... 15-6
Archived Redo Log Backups.. 15-6

Problems Requiring Data Repair ... 15-7
Media Failures ... 15-7
User Errors ... 15-8

Data Repair ... 15-8
Data Recovery Advisor .. 15-9
Oracle Flashback Technology.. 15-9

Oracle Flashback Database ... 15-10
Oracle Flashback Table.. 15-10
Oracle Flashback Drop .. 15-11

Media Recovery... 15-12
Datafile Media Recovery... 15-13
Block Media Recovery... 15-13
Complete Recovery.. 15-14
Database Point-in-Time Recovery ... 15-14
RMAN and User-Managed Recovery... 15-15

16 Business Intelligence

Introduction to Data Warehousing and Business Intelligence... 16-1
Characteristics of Data Warehousing... 16-1

Subject Oriented ... 16-2
Integrated .. 16-2
Nonvolatile ... 16-2
Time Variant ... 16-2

Differences Between Data Warehouse and OLTP Systems .. 16-2
Workload... 16-2
Data Modifications... 16-3
Schema Design ... 16-3
Typical Operations... 16-3
Historical Data.. 16-3

Data Warehouse Architecture ... 16-3
Data Warehouse Architecture (Basic) ... 16-3
Data Warehouse Architecture (with a Staging Area) ... 16-4
Data Warehouse Architecture (with a Staging Area and Data Marts)............................. 16-5

Overview of Extraction, Transformation, and Loading (ETL) .. 16-5
Transportable Tablespaces... 16-6
Table Functions.. 16-6
External Tables .. 16-7
Table Compression ... 16-8
Change Data Capture ... 16-8

Overview of Materialized Views for Data Warehouses... 16-8
Overview of Bitmap Indexes in Data Warehousing ... 16-9
Overview of Parallel Execution .. 16-10

How Parallel Execution Works ... 16-10
Overview of Analytic SQL .. 16-11

SQL for Aggregation... 16-12

xvi

SQL for Analysis.. 16-12
SQL for Modeling.. 16-13

Overview of OLAP Capabilities... 16-13
Full Integration of Multidimensional Technology ... 16-14
Ease of Application Development .. 16-14
Ease of Administration... 16-14
Security ... 16-15
Unmatched Performance and Scalability .. 16-15
Reduced Costs ... 16-15

Overview of Data Mining.. 16-16

17 High Availability

Introduction to High Availability .. 17-1
Causes Of Downtime.. 17-2
Protection Against Computer Failures .. 17-2

Overview of Enterprise Grids with Oracle Real Application Clusters and Oracle Clusterware ...
17-3
Fast Start Fault Recovery.. 17-4
Oracle Data Guard .. 17-4
Oracle Streams ... 17-5

Protection Against Data Failures.. 17-5
Protecting Against Storage Failures ... 17-6
Protecting Against Human Errors .. 17-7

Guarding Against Human Errors.. 17-7
Oracle Flashback Technology .. 17-7
LogMiner SQL-Based Log Analyzer .. 17-10
Protecting Against Data Corruptions ... 17-10
Protecting Against Site Failures... 17-13

Avoiding Downtime During Planned Maintenance .. 17-16
Avoiding Downtime for Data Changes ... 17-16

Online Schema and Data Reorganization... 17-17
Partitioned Tables and Indexes.. 17-17

Avoiding Downtime for System Changes... 17-18
Rolling Patch Updates... 17-18
Rolling Release Upgrade... 17-19
Dynamic Resource Provisioning.. 17-19

Maximum Availability Architecture (MAA) Best Practices .. 17-20

18 Very Large Databases (VLDB)

Introduction to Partitioning .. 18-1
Partition Key .. 18-2
Partitioned Tables ... 18-2
Partitioned Index-Organized Tables .. 18-3
Partitioning Methods.. 18-3

Overview of Partitioned Indexes ... 18-4
Local Partitioned Indexes... 18-4
Global Partitioned Indexes .. 18-5

xvii

Global Range Partitioned Indexes ... 18-5
Global Hash Partitioned Indexes... 18-5
Maintenance of Global Partitioned Indexes... 18-5

Global Nonpartitioned Indexes... 18-6
Miscellaneous Information about Creating Indexes on Partitioned Tables 18-6
Using Partitioned Indexes in OLTP Applications .. 18-6
Using Partitioned Indexes in Data Warehousing and DSS Applications 18-6
Partitioned Indexes on Composite Partitions ... 18-7

Partitioning to Improve Performance.. 18-7
Partition Pruning... 18-7

Partition Pruning Example ... 18-8
Partition-wise Joins ... 18-8

19 Content Management

Introduction to Content Management... 19-1
Overview of XML in Oracle Database .. 19-2
Overview of LOBs ... 19-3
Overview of Oracle Text... 19-3

Oracle Text Index Types... 19-4
Oracle Text Document Services .. 19-4
Oracle Text Query Package.. 19-5
Oracle Text Advanced Features .. 19-5

Overview of Oracle Ultra Search.. 19-5
Overview of Oracle Multimedia .. 19-6
Overview of Oracle Spatial ... 19-7

20 Database Security

Introduction to Database Security ... 20-1
Database Users and Schemas .. 20-1

Security Domain .. 20-2
Privileges .. 20-2
Roles .. 20-2
Storage Settings and Quotas.. 20-2

Default Tablespace .. 20-2
Temporary Tablespace ... 20-3
Tablespace Quotas ... 20-3
Profiles and Resource Limits.. 20-3

Overview of Transparent Data Encryption .. 20-3
Tablespace Encryption ... 20-4

Overview of Authentication Methods ... 20-4
Authentication by the Operating System ... 20-5
Authentication by the Network ... 20-5

Third Party-Based Authentication Technologies .. 20-5
Public-Key-Infrastructure-Based Authentication.. 20-5
Remote Authentication ... 20-6

Authentication by Oracle Database.. 20-6

xviii

Password Encryption .. 20-6
Account Locking ... 20-7
Password Lifetime and Expiration ... 20-7
Password Complexity Verification ... 20-7

Multitier Authentication and Authorization ... 20-7
Authentication by the Secure Socket Layer Protocol ... 20-8
Authentication of Database Administrators .. 20-8

Overview of Authorization .. 20-9
User Resource Limits and Profiles.. 20-9

Types of System Resources and Limits .. 20-10
Profiles 20-11

Introduction to Privileges .. 20-12
System Privileges ... 20-12
Schema Object Privileges .. 20-13

Introduction to Roles .. 20-13
Common Uses for Roles ... 20-14
Role Mechanisms ... 20-15
The Operating System and Roles .. 20-15

Secure Application Roles ... 20-15
Overview of Access Restrictions on Tables, Views, Synonyms, or Rows 20-16

Fine-Grained Access Control... 20-16
Dynamic Predicates .. 20-17

Application Context.. 20-17
Dynamic Contexts.. 20-17

Fine-Grained Auditing ... 20-18
Overview of Security Policies .. 20-18

System Security Policy.. 20-18
Database User Management... 20-19
User Authentication... 20-19
Operating System Security ... 20-19

Data Security Policy.. 20-19
User Security Policy .. 20-20

General User Security.. 20-20
End-User Security .. 20-20
Administrator Security.. 20-21
Application Developer Security... 20-21
Application Administrator Security.. 20-22

Password Management Policy .. 20-22
Auditing Policy.. 20-22

Overview of Database Auditing... 20-23
Types and Records of Auditing .. 20-23

Audit Records and the Audit Trails .. 20-24

21 Data Integrity

Introduction to Data Integrity... 21-1
Data Integrity Rules ... 21-1
How Oracle Database Enforces Data Integrity .. 21-2

xix

Constraint States.. 21-2
Overview of Integrity Constraints ... 21-3

Advantages of Integrity Constraints ... 21-4
Declarative Ease ... 21-4
Centralized Rules ... 21-4
Maximum Application Development Productivity.. 21-4
Immediate User Feedback .. 21-5
Flexibility for Data Loads and Identification of Integrity Violations 21-5

The Performance Cost of Integrity Constraints ... 21-5
Types of Integrity Constraints .. 21-5

NOT NULL Integrity Constraints .. 21-5
UNIQUE Key Integrity Constraints .. 21-6

Unique Keys.. 21-6
Combining UNIQUE Key and NOT NULL Integrity Constraints 21-6

PRIMARY KEY Integrity Constraints ... 21-6
Primary Keys .. 21-7
PRIMARY KEY Constraints and Indexes... 21-7

Referential Integrity Constraints .. 21-7
Self-Referential Integrity Constraints.. 21-9
Nulls and Foreign Keys... 21-9
Actions Defined by Referential Integrity Constraints .. 21-9
Concurrency Control, Indexes, and Foreign Keys .. 21-10

CHECK Integrity Constraints ... 21-12
The Check Condition... 21-13
Multiple CHECK Constraints .. 21-13

The Mechanisms of Constraint Checking .. 21-13
Default Column Values and Integrity Constraint Checking ... 21-15

Deferred Constraint Checking.. 21-15
Constraint Attributes ... 21-15
SET CONSTRAINTS Mode .. 21-15
Unique Constraints and Indexes .. 21-16

22 Triggers

Introduction to Triggers ... 22-1
How Triggers Are Used .. 22-2

Some Cautionary Notes about Triggers .. 22-3
Triggers Compared with Declarative Integrity Constraints ... 22-3

Components of a Trigger.. 22-3
The Triggering Event or Statement .. 22-4
Trigger Restriction .. 22-5
Trigger Action ... 22-5

Types of Triggers ... 22-5
Row Triggers and Statement Triggers .. 22-5

Row Triggers ... 22-6
Statement Triggers .. 22-6

BEFORE and AFTER Triggers .. 22-6
BEFORE Triggers .. 22-6

xx

AFTER Triggers ... 22-7
Trigger Type Combinations .. 22-7

Compound Triggers.. 22-7
INSTEAD OF Triggers ... 22-8

Modify Views .. 22-8
Views That Are Not Modifiable .. 22-9
INSTEAD OF Triggers on Nested Tables .. 22-9

Triggers on System Events and User Events .. 22-9
Event Publication .. 22-10
Event Attributes .. 22-10
System Events .. 22-11
User Events .. 22-11

Trigger Execution... 22-12
The Execution Model for Triggers and Integrity Constraint Checking 22-13
Data Access for Triggers ... 22-13
Storage of PL/SQL Triggers .. 22-13
Execution of Triggers ... 22-13
Dependency Maintenance for Triggers ... 22-13

23 Information Integration

Introduction to Oracle Information Integration.. 23-1
Federated Access.. 23-2

Distributed SQL... 23-2
Location Transparency ... 23-3
SQL and COMMIT Transparency... 23-3
Distributed Query Optimization .. 23-4

Information Sharing ... 23-4
Oracle Streams ... 23-5

Oracle Streams Architecture... 23-5
Replication with Oracle Streams.. 23-7
Oracle Streams Advanced Queuing.. 23-8
Database Change Notification ... 23-10
Change Data Capture .. 23-10
Heterogeneous Environments.. 23-11
Oracle Streams Use Cases... 23-11

Materialized Views ... 23-12
Data Comparison and Convergence at Oracle Databases ... 23-13
Integrating Non-Oracle Systems .. 23-13

Generic Connectivity .. 23-14
Oracle Database Gateways .. 23-14

Part IV Oracle Database Application Development

24 SQL

Introduction to SQL .. 24-1
SQL Statements ... 24-2

xxi

Data Manipulation Language Statements ... 24-2
DML Error Logging ... 24-3

Data Definition Language Statements ... 24-3
Transaction Control Statements.. 24-4
Session Control Statements.. 24-4
System Control Statements .. 24-4
Embedded SQL Statements ... 24-4

Cursors... 24-5
Scrollable Cursors ... 24-5

Shared SQL Areas .. 24-5
Parsing .. 24-6
Query Processing... 24-6
SQL Processing .. 24-7

flowchart of SQL Statement Execution .. 24-7
Description of SQL Statement Processing .. 24-8

Stage 1: Open or Create a Cursor... 24-9
Stage 2: Parse the Statement ... 24-9
Stage 3: Determine if there is a Query .. 24-9
Stage 4: Describe Results of a Query (Queries Only).. 24-9
Stage 5: Define Output of a Query (Queries Only) .. 24-10
Stage 6: Bind Any Variables ... 24-10
Stage 7: Parallelize the Statement (Optional)... 24-10
Stage 8: Run the Statement ... 24-10
Stage 9: Fetch Rows of a Query (Queries Only) ... 24-10
Stage 10: Close the Cursor ... 24-11

Processing Other Types of SQL Statements .. 24-11
DDL Statement Processing .. 24-11
Transaction Control Processing ... 24-11
Other Processing Types... 24-11

Overview of the Optimizer ... 24-11
SQL Plan Management (SPM)... 24-12
Execution Plans ... 24-12

Stored Outlines... 24-13
Editing Stored Outlines... 24-13

25 Supported Application Development Languages

Introduction to Oracle Application Development Languages ... 25-1
Overview of C/C++ Programming Languages... 25-1

Overview of Oracle Call Interface (OCI) ... 25-2
Overview of Oracle C++ Call Interface (OCCI).. 25-3

OCCI Associative Relational and Object Interfaces.. 25-3
OCCI Navigational Interface.. 25-3

Overview of the Oracle Type Translator .. 25-4
Overview of Pro*C/C++ Precompiler ... 25-4

Dynamic Creation and Access of Type Descriptions ... 25-5
Overview of PL/SQL... 25-5

How PL/SQL Runs .. 25-6

xxii

Interpreted Execution.. 25-6
Native Execution.. 25-6

Language Constructs for PL/SQL ... 25-8
Variables and Constants ... 25-8
Cursors .. 25-8
Exceptions ... 25-8
Dynamic SQL in PL/SQL .. 25-9

PL/SQL Program Units.. 25-9
Stored Procedures and Functions .. 25-9

Benefits of Procedures .. 25-11
Procedure Guidelines ... 25-12
Anonymous PL/SQL Blocks Compared with Stored Procedures 25-12
Standalone Procedures ... 25-13
Dependency Tracking for Stored Procedures ... 25-13
External Procedures .. 25-13
Table Functions .. 25-13

PL/SQL Packages .. 25-14
Benefits of Packages .. 25-15

PL/SQL Collections and Records ... 25-16
Collections... 25-16
Records .. 25-17

PL/SQL Server Pages ... 25-17
Overview of Java ... 25-17

Java and Object-Oriented Programming Terminology ... 25-18
Classes ... 25-18
Attributes .. 25-19
Methods... 25-19

Class Hierarchy ... 25-20
Interfaces .. 25-20
Polymorphism ... 25-21
Overview of the Java Virtual Machine (JVM)... 25-21
Why Use Java in Oracle Database?... 25-23

Multithreading ... 25-24
Automated Storage Management.. 25-24
Footprint.. 25-25
Performance.. 25-25
Dynamic Class Loading .. 25-26

Oracle's Java Application Strategy ... 25-27
Java Stored Procedures ... 25-27
PL/SQL Integration and Oracle Database Functionality... 25-28
JDBC... 25-28
SQLJ ... 25-29
JPublisher .. 25-29
Java Messaging Service ... 25-29

Overview of Microsoft Programming Languages... 25-30
Open Database Connectivity .. 25-30
Overview of Oracle Objects for OLE.. 25-31

xxiii

OO4O Automation Server .. 25-31
Oracle Data Control ... 25-31
The Oracle Objects for OLE C++ Class Library... 25-31

Oracle Data Provider for .NET.. 25-31
Overview of Legacy Languages .. 25-32

Overview of Pro*COBOL Precompiler .. 25-32
Overview of Pro*FORTRAN Precompiler... 25-32

26 Oracle Data Types

Introduction to Oracle Datatypes... 26-1
Overview of Character Datatypes .. 26-2

CHAR Datatype ... 26-2
VARCHAR2 and VARCHAR Datatypes .. 26-3

VARCHAR Datatype .. 26-3
Length Semantics for Character Datatypes... 26-3
NCHAR and NVARCHAR2 Datatypes .. 26-4

NCHAR ... 26-4
NVARCHAR2... 26-5

Use of Unicode Data in Oracle Database... 26-5
Implicit Type Conversion ... 26-5

LOB Character Datatypes ... 26-5
LONG Datatype ... 26-5

Overview of Numeric Datatypes.. 26-6
NUMBER Datatype... 26-6

Internal Numeric Format ... 26-7
Floating-Point Numbers... 26-7

BINARY_FLOAT Datatype .. 26-8
BINARY_DOUBLE Datatype ... 26-8

Overview of DATE Datatype .. 26-8
Use of Julian Dates ... 26-9
Date Arithmetic .. 26-9
Centuries and the Year 2000 ... 26-10
Daylight Savings Support .. 26-10
Time Zones... 26-10

Overview of LOB Datatypes ... 26-11
BLOB Datatype ... 26-12
CLOB and NCLOB Datatypes .. 26-12
BFILE Datatype ... 26-12

Overview of RAW and LONG RAW Datatypes .. 26-13
Overview of ROWID and UROWID Datatypes ... 26-13

The ROWID Pseudocolumn ... 26-14
Physical Rowids ... 26-14

Extended Rowids .. 26-15
Restricted Rowids ... 26-15
Examples of Rowid Use .. 26-16
How Rowids Are Used .. 26-17

Logical Rowids ... 26-17

xxiv

Comparison of Logical Rowids with Physical Rowids ... 26-18
Guesses in Logical Rowids .. 26-18

Rowids in Non-Oracle Databases .. 26-19
Overview of ANSI, DB2, and SQL/DS Datatypes .. 26-19
Overview of XML Datatypes... 26-19

XMLType Datatype... 26-19
Overview of URI Datatypes .. 26-20
Overview of Object Datatypes and Object Views .. 26-20
Data Conversion .. 26-20

Glossary

Index

xxv

Preface

This manual describes all features of the Oracle database server, an object-relational
database management system. It describes how the Oracle database server functions,
and it lays a conceptual foundation for much of the practical information contained in
other manuals. Information in this manual applies to the Oracle database server
running on all operating systems.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documentation

■ Conventions

Audience
Oracle Database Concepts is intended for database administrators, system
administrators, and database application developers.

To use this document, you must know the following:

■ Relational database concepts in general

■ Concepts and terminology in Chapter 1, "Introduction to Oracle Database"

■ The operating system environment under which you are running Oracle

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an

xxvi

otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documentation
For more information, see these Oracle resources:

■ Oracle Database Upgrade Guide for information about upgrading a previous release
of Oracle

■ Oracle Database Administrator's Guide for information about how to administer the
Oracle database server

■ Oracle Database Advanced Application Developer's Guide for information about
developing Oracle database applications

■ Oracle Database Performance Tuning Guide for information about optimizing
performance of an Oracle database

■ Oracle Database Data Warehousing Guide for information about data warehousing
and business intelligence

■ Oracle Database Utilities for information about the utilities mentioned in this
document

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
What Is Oracle?

Part I provides an overview of Oracle Database concepts and terminology. It contains
the following chapter:

■ Chapter 1, "Introduction to Oracle Database"

Introduction to Oracle Database 1-1

1
Introduction to Oracle Database

This chapter provides an overview of the Oracle database server. The topics include:

■ Oracle Database Architecture

■ Oracle Database Features

■ Oracle Database Application Development

Oracle Database Architecture
A database is a collection of data treated as a unit. The purpose of a database is to store
and retrieve related information. A database server is the key to information
management. In general, a server reliably manages a large amount of data in a
multiuser environment so that many users can concurrently access the same data. A
database server also prevents unauthorized access and provides efficient solutions for
failure recovery.

Oracle Database is the first database designed for enterprise grid computing, the most
flexible and cost-effective way to manage information and applications. Enterprise
grid computing creates large pools of industry-standard, modular storage and servers.
With this architecture, each new system can be rapidly provisioned from the pool of
components. There is no need to provide extra hardware to support peak workloads,
because capacity can be easily added or reallocated from the resource pools as needed.

The database has physical structures and logical structures. Because the physical and
logical structures are separate, the physical storage of data can be managed without
affecting access to logical storage structures.

The section contains the following topics:

■ Overview of Grid Architecture

■ Overview of Application Architecture

■ Overview of Physical Database Structures

■ Overview of Logical Database Structures

■ Overview of Schemas and Common Schema Objects

■ Overview of the Oracle Database Data Dictionary

■ Overview of the Oracle Database Instance

■ Overview of Accessing the Database

■ Overview of Oracle Database Utilities

Oracle Database Architecture

1-2 Oracle Database Concepts

Overview of Grid Architecture
Grid computing is an information technology (IT) architecture that produces more
resilient and lower cost enterprise information systems. With grid computing, groups
of independent, modular hardware and software components can be connected and
rejoined on demand to meet the changing needs of businesses.

The grid style of computing solves some common problems with enterprise IT:

■ Application silos that lead to underutilized, dedicated hardware resources

■ Monolithic, unwieldy systems that are expensive to maintain and difficult to
change

■ Fragmented and disintegrated information that cannot be fully exploited by the
enterprise as a whole.

Compared with other models of computing, IT systems designed and implemented in
the grid style deliver higher quality of service, lower cost, and greater flexibility.
Higher quality of service is achieved because there is no single point of failure, there is
a robust security infrastructure, and management is centralized and policy-driven.
Lower costs derive from increasing the utilization of resources and dramatically
reducing management and maintenance costs. Rather than dedicating a stack of
software and hardware to a specific task, all resources are pooled and allocated on
demand, thus eliminating underutilized capacity and redundant capabilities. Greater
flexibility is achieved because grid computing also enables the use of smaller
individual hardware components, thus reducing the cost of each individual
component and enabling the enterprise to devote resources in accordance with
changing needs.

Overview of Application Architecture
The two most common database architectures are client/server and multitier. As
internet computing becomes more prevalent in computing environments, many
database management systems are moving to a multitier environment.

This section includes the following topics:

■ Client/Server Architecture

■ Multitier Architecture: Application Servers

■ Multitier Architecture: Service-Oriented Architecture

Client/Server Architecture
An Oracle database system can easily take advantage of distributed processing by
using its client/server architecture. In this architecture, the database system has two
parts: a front-end or a client, and a back-end or a server.

The Client The client is a database application that initiates a request for an operation
to be performed on the database server. It requests, processes, and presents data
managed by the server. The client workstation can be optimized for its job. For
example, the client might not need large disk capacity, or it might benefit from graphic
capabilities. Often, the client runs on a different computer than the database server.
Many clients can simultaneously run against one server.

The Server The server runs Oracle Database software and handles the functions
required for concurrent, shared data access. The server receives and processes requests
that originate from client applications. The computer that manages the server can be

Oracle Database Architecture

Introduction to Oracle Database 1-3

optimized for its duties. For example, the server computer can have large disk capacity
and fast processors.

Multitier Architecture: Application Servers
A traditional multitier architecture has the following components:

■ A client or initiator process that starts an operation

■ One or more application servers that perform parts of the operation. An
application server contains a large part of the application logic, provides access to
the data for the client, and performs some query processing, thus removing some
of the load from the database server. The application server can serve as an
interface between clients and multiple database servers and can provide an
additional level of security.

■ An end server or database server that stores most of the data used in the operation

This architecture enables use of an application server to do the following:

■ Validate the credentials of a client, such as a Web browser

■ Connect to an Oracle Database server

■ Perform the requested operation on behalf of the client

If proxy authentication is being used, then the identity of the client is maintained
throughout all tiers of the connection.

Multitier Architecture: Service-Oriented Architecture
Service-oriented architecture (SOA) is a multitier architecture in which application
functionality is encapsulated in services. SOA services are usually implemented as Web
services. Web services can be accessed with the HTTP protocol and are based on a set
of XML-based open standards, such as WSDL and SOAP.

Beginning with Oracle Database 11g, Oracle Database can act as a Web service
provider in a traditional multitier or SOA environment.

Overview of Physical Database Structures
The following sections explain the physical database structures of an Oracle database,
including datafiles, control files, redo log files, archived redo log files, parameter files,
alert and trace log files, and backup files.

This section includes the following topics:

■ Datafiles

■ Control Files

■ Online Redo Log Files

■ Archived Redo Log Files

See Also:

■ "Oracle Database as a Web Service Provider" on page 10-5 for
more information about Oracle Database as a Web service
provider

■ Oracle XML DB Developer's Guide for more information about
using Web services with the database

Oracle Database Architecture

1-4 Oracle Database Concepts

■ Parameter Files

■ Alert and Trace Log Files

■ Backup Files

Datafiles
Every Oracle database has one or more physical datafiles, which contain all the
database data. The data of logical database structures, such as tables and indexes, is
physically stored in the datafiles allocated for a database.

Datafiles have the following characteristics:

■ One or more datafiles form a logical unit of database storage called a tablespace.

■ A datafile can be associated with only one tablespace.

■ Datafiles can be defined to extend automatically when they are full.

Data in a datafile is read, as needed, during normal database operation and stored in
the memory cache of Oracle Database. For example, if a user wants to access some
data in a table of a database, and if the requested information is not already in the
memory cache for the database, then it is read from the appropriate datafiles and
stored in memory.

Modified or new data is not necessarily written to a datafile immediately. To reduce
the amount of disk access and to increase performance, data is pooled in memory and
written to the appropriate datafiles all at once, as determined by the background
process database writer process (DBWn).

Datafiles that are stored in temporary tablespaces are called tempfiles. Tempfiles are
subject to some restrictions, as described in "Temporary Datafiles" on page 3-16.

Control Files
Every Oracle database has a control file. A control file contains entries that specify the
physical structure of the database, including the following information:

■ Database name

■ Names and locations of datafiles and redo log files

■ Timestamp of database creation

Oracle Database can multiplex the control file, that is, simultaneously maintain a
number of identical control file copies, to protect against a failure involving the control
file.

Every time an instance of an Oracle database is started, its control file identifies the
datafiles, tempfiles, and redo log files that must be opened for database operation to
proceed. If the physical makeup of the database is altered (for example, if a new
datafile or redo log file is created), then the control file is automatically modified by
Oracle Database to reflect the change. A control file is also used in database recovery.

See Also: "Overview of the Oracle Database Instance" on page 1-9
for more information about the Oracle Database memory and process
structures

See Also: Chapter 3, "Tablespaces, Datafiles, and Control Files"

Oracle Database Architecture

Introduction to Oracle Database 1-5

Online Redo Log Files
Every Oracle Database has a set of two or more online redo log files. These online
redo log files, together with archived copies of redo log files, are collectively known as
the redo log for the database. A redo log is made up of redo entries (also called redo
records), which record all changes made to data. If a failure prevents modified data
from being permanently written to the datafiles, then the changes can be obtained
from the redo log, so work is never lost.

To protect against a failure involving the redo log itself, Oracle Database lets you
create a multiplexed redo log so that two or more copies of the redo log can be
maintained on different disks.

Archived Redo Log Files
Archived redo log files are database-generated offline copies of online redo log files.
Oracle Database automatically archives redo log files when the database is in
ARCHIVELOG mode. Oracle recommends that you enable automatic archiving of the
online redo log.

Parameter Files
Parameter files contain a list of configuration parameters for that instance and
database. Both parameter files (pfiles) and server parameter files (spfiles) let you store
and manage your initialization parameters persistently in a server-side disk file. A
server parameter file has these additional advantages:

■ The file is concurrently updated when some parameter values are changed in the
active instance.

■ The file is centrally located for access by all instance in a Real Application Services
database.

Oracle recommends that you create a server parameter file as a dynamic means of
maintaining initialization parameters.

Alert and Trace Log Files
Each server and background process can write to an associated trace file. When an
internal error is detected by a process, the process dumps information about the error
to its trace file. Some of the information written to a trace file is intended for the
database administrator, while other information is for Oracle Support Services. Trace
file information is also used to tune applications and instances. The alert file, or alert
log, is a special trace file. The alert log of a database is a chronological log of messages
and errors.

The following features provide automation and assistance in the collection and
interpretation of trace and alert file information:

■ The Automatic Diagnostic Repository (ADR) is a system-managed repository for
storing and organizing trace files and other error diagnostic data. ADR provides a

See Also: "Overview of Database Backup and Recovery Features" on
page 1-20

See Also:

■ "Initialization Parameter Files and Server Parameter Files" on
page 12-3

■ Oracle Database Administrator's Guide for information about
creating and changing parameter files

Oracle Database Architecture

1-6 Oracle Database Concepts

comprehensive view of all the critical errors encountered by the database and
maintains all relevant data needed for problem diagnosis and eventual resolution.
When the same type of incident occurs too frequently, ADR performs flood control
to avoid excessive dumping of diagnostic information.

■ The Incident Packaging Service (IPS) extracts diagnostic and test case data
associated with critical errors from the ADR and packages the data for transport to
Oracle.

Backup Files
To restore a file is to replace it with a backup file. Typically, you restore a file when a
media failure or user error has damaged or deleted the original file.

User-managed backup and recovery requires you to actually restore backup files
before you can perform a trial recovery of the backups.

Server-managed backup and recovery manages the backup process, such as
scheduling of backups, as well as the recovery process, such as applying the correct
backup file when recovery is needed.

Overview of Logical Database Structures
This section discusses logical storage structures: data blocks, extents, segments, and
tablespaces. These logical storage structures enable Oracle Database to have
fine-grained control of disk space use.

This section includes the following topics:

■ Oracle Database Data Blocks

■ Extents

■ Segments

■ Tablespaces

Oracle Database Data Blocks
At the finest level of granularity, Oracle Database data is stored in data blocks. One
data block corresponds to a specific number of bytes of physical database space on
disk. The standard block size is specified by the DB_BLOCK_SIZE initialization
parameter. In addition, you can specify up to four other block sizes. A database uses
and allocates free database space in Oracle Database data blocks.

Extents
The next level of logical database space is an extent. An extent is a specific number of
contiguous data blocks, obtained in a single allocation, used to store a specific type of
information.

See Also: Oracle Database Administrator's Guide for more
information

See Also:

■ Chapter 15, "Backup and Recovery"

■ Oracle Database Backup and Recovery User's Guide

Oracle Database Architecture

Introduction to Oracle Database 1-7

Segments
Above extents, the level of logical database storage is a segment. A segment is a set of
extents allocated for a table, index, rollback segment, or for temporary use by a
session, transaction, or SQL parser. In relation to physical database structures, all
extents belonging to a segment exist in the same tablespace, but they may be in
different data files.

When the extents of a segment are full, Oracle Database dynamically allocates another
extent for that segment. Because extents are allocated as needed, the extents of a
segment may or may not be contiguous on disk.

Tablespaces
A database is divided into logical storage units called tablespaces, which group
related data blocks, extents, and segments. For example, tablespaces commonly group
together all application objects to simplify some administrative operations.

Each database is logically divided into two or more tablespaces. One or more datafiles
are explicitly created for each tablespace to physically store the data of all logical
structures in a tablespace. The combined size of the datafiles in a tablespace is the total
storage capacity of the tablespace.

Every Oracle database contains a SYSTEM tablespace and a SYSAUX tablespace. Oracle
Database creates them automatically when the database is created. The system default
is to create a smallfile tablespace, which is the traditional type of Oracle tablespace.
The SYSTEM and SYSAUX tablespaces are created as smallfile tablespaces.

Oracle Database also lets you create bigfile tablespaces, which are made up of single
large file rather than numerous smaller ones. Bigfile tablespaces let Oracle Database
utilize the ability of 64-bit systems to create and manage ultralarge files. As a result,
Oracle Database can scale up to 8 exabytes in size. With Oracle-Managed Files, bigfile
tablespaces make datafiles completely transparent for users. In other words, you can
perform operations on tablespaces, rather than the underlying datafiles.

Online and Offline Tablespaces A tablespace can be online or offline. A tablespace is
generally online, so that users can access the information in the tablespace. However,
to simplify administration, sometimes a tablespace is taken offline to make a portion of
the database unavailable while allowing normal access to the remainder of the
database.

Read-only Tablespaces A tablespace can be read only, which means that data in the
tablespace cannot be modified. The primary purpose of read-only tablespaces is to
eliminate the need to perform backup and recovery of large, static portions of a
database. Oracle Database never updates the files of a read-only tablespace, and
therefore the files can reside on read-only media such as CD-ROMs or WORM drives.

See Also:

■ Chapter 2, "Data Blocks, Extents, and Segments"

■ Chapter 3, "Tablespaces, Datafiles, and Control Files"

■ "Introduction to Undo Segments and Automatic Undo
Management" on page 2-16

■ "Read Consistency" on page 1-15

■ "Overview of Database Backup and Recovery Features" on
page 1-20

Oracle Database Architecture

1-8 Oracle Database Concepts

Overview of Schemas and Common Schema Objects
A schema is a collection of database objects. A schema is owned by a database user
and has the same name as that user. Schema objects are the logical structures that
directly refer to the database's data. There is no relationship between a tablespace and
a schema. Objects in the same schema can be in different tablespaces, and a tablespace
can hold objects from different schemas. Schema objects include structures such as
tables, views, and indexes. Some of the most common schema objects are defined in
the sections that follow.

This section includes the following topics:

■ Tables

■ Indexes

■ Views

■ Clusters

■ Synonyms

Tables
Tables are the basic unit of data storage in an Oracle database. Database tables hold all
user-accessible data. Each table has columns and rows. A table that has employee
information, for example, can have a column called employee_number, and each row
in that column is an employee number.

Indexes
Indexes are optional structures associated with tables. You can create indexes to
increase the performance of data retrieval. Just as the index in this manual helps you
quickly locate specific information, an Oracle database index provides an access path
to table data.

When processing a request, Oracle Database can use some or all of the available
indexes to locate the requested rows efficiently. Indexes are useful when applications
frequently query a table for a range of rows (for example, all employees with a salary
greater than 1000) or a specific row (for example, the employee with the highest
salary).

You create an index on one or more columns of a table. Thereafter, Oracle Database
automatically uses and maintains the index. Changes to table data (such as adding
new rows, updating rows, or deleting rows) are automatically incorporated into all
relevant indexes.

Views
Views are customized presentations of data in one or more tables or other views. A
view can also be considered a stored query. Views do not contain actual data. Rather,
they derive their data from the tables on which they are based, referred to as the base
tables of the views.

You can query, update, insert into, and delete views as you can with tables, with some
restrictions. If the view is updatable, then all operations performed on the view
actually affect the base tables of the view.

Views can provide table security by restricting access to a predetermined set of rows
and columns of a table. They also hide data complexity and store complex queries.

Oracle Database Architecture

Introduction to Oracle Database 1-9

Clusters
Clusters are groups of one or more tables physically stored together because they
share common columns and are often used together. Because related rows are
physically stored together, disk access time improves.

Like indexes, clusters do not affect application design. Whether a table is part of a
cluster is transparent to users and to applications. SQL statements access data stored in
a clustered table in the same way that they access data stored in a nonclustered table.

Synonyms
A synonym is an alias for any table, view, materialized view, sequence, operator,
procedure, function, package, Java class schema object, user-defined object type, or
another synonym. A synonym is simply an alias, so it requires no storage other than
its definition in the data dictionary.

Overview of the Oracle Database Data Dictionary
Each Oracle database has a data dictionary, which is a set of tables and views that
serve as a reference about the database. For example, a data dictionary stores
information about both the logical and physical structure of the database. A data
dictionary also stores the valid users of an Oracle database, information about
integrity constraints defined for tables in the database, and the amount of space
allocated for a schema object and how much of that space is in use, among much other
information.

A data dictionary is created when a database is created. To accurately reflect the status
of the database at all times, the data dictionary is automatically updated by Oracle
Database in response to specific actions, such as when the structure of the database is
altered. Database users cannot modify the data dictionary. Various database processes
rely on the data dictionary to record, verify, and conduct ongoing work. For example,
during database operation, Oracle Database reads the data dictionary to verify that
schema objects exist and that users have proper access to them.

Overview of the Oracle Database Instance
An Oracle Database server consists of an Oracle Database and one or more Oracle
Database instances. Every time a database is started, a shared memory area called the
system global area (SGA) is allocated and Oracle Database background processes are
started. The combination of the background processes and the SGA is called an Oracle
Database instance.

Oracle Real Application Clusters Some hardware architectures (for example, shared
disk systems) enable multiple computers to share access to data, software, or
peripheral devices. Oracle Real Application Clusters (Oracle RAC) comprises two or
more Oracle Database instances running on multiple clustered computers that
communicate with each other by means of an interconnect. Oracle RAC uses Oracle
Clusterware to access a shared database that resides on shared disks. Oracle RAC
combines the processing power of these multiple interconnected computers to provide
system redundancy, near linear scalability, and high availability. Oracle RAC also
offers significant advantages for both OLTP and data warehouse systems, and all
systems and applications can efficiently exploit clustered environments.

See Also: Chapter 5, "Schema Objects" for more information on
these and other schema objects

See Also: Chapter 7, "The Data Dictionary" for more information

Oracle Database Architecture

1-10 Oracle Database Concepts

You can scale applications in Oracle RAC environments to meet increasing data
processing demands without changing the application code. When you add resources
such as nodes or storage, Oracle RAC extends the processing powers of these
resources beyond the limits of the individual components.

When users connect to an Oracle Database server, they are connected to an Oracle
Database instance. The database instance services those users by allocating other
memory areas in addition to the SGA, and starting other processes in addition to the
Oracle Database background processes. The following sections describe the various
Oracle Database memory areas and processes:

■ Oracle Database Background Processes

■ Instance Memory Structures

Oracle Database Background Processes
An Oracle database uses memory structures and processes to manage and access the
database. All memory structures exist in the main memory of the computers that
constitute the database system. A process is a mechanism in an operating system that
can run a series of steps. Some operating systems use the terms job or task. Oracle
Database server uses three types of processes: Oracle processes—which include server
processes and background processes—and user processes. On almost all systems, the
Oracle processes and the user processes are on separate computers.

■ Oracle Database creates a set of background processes for each instance. The
background processes consolidate functions that would otherwise be handled by
multiple Oracle Database programs running for each user process. They
asynchronously perform I/O and monitor other Oracle Database processes to
provide increased parallelism for better performance and reliability.

■ User processes—sometimes called client processes—are created and maintained to
run the software code of an application program (such as an OCI or OCCI
program) or an Oracle tool (such as Oracle Enterprise Manager). Most
environments have separate machines (laptops, desktops, and so forth) for the
client processes. User processes also manage communication with the server
process through the program interface, which is described in a later section.

■ Oracle Database creates server processes to handle requests from connected user
processes. A server process communicates with the user process and interacts with
Oracle Database to carry out requests from the associated user process. For
example, if a user queries some data not already in the database buffers of the
SGA, then the associated server process reads the proper data blocks from the
datafiles into the SGA.

Oracle Database can be configured to vary the number of user processes for each
server process. In a dedicated server configuration, a server process handles
requests for a single user process. A shared server configuration lets many user
processes share a small number of server processes, minimizing the number of
server processes and maximizing the use of available system resources.

See Also: Oracle Real Application Clusters Administration and
Deployment Guide

See Also: "Oracle Database Background Processes" on page 9-4 for
more information on some of the most common background processes

See Also: Chapter 9, "Process Architecture"

Oracle Database Architecture

Introduction to Oracle Database 1-11

Instance Memory Structures
Oracle Database creates and uses memory structures for various purposes. For
example, memory stores program code being run, data shared among users, and
private data areas for each connected user. Two basic memory structures are associated
with an Oracle Database:

■ The System Global Area (SGA) is a group of shared memory structures, known as
SGA components, that contain data and control information for one Oracle
Database instance. The SGA is shared by all server and background processes.
Examples of data stored in the SGA include cached data blocks and shared SQL
areas.

■ The Program Global Areas (PGA) are memory regions that contain data and
control information for a server or background process. A PGA is nonshared
memory created by Oracle Database when a server or background process is
started. Access to the PGA is exclusive to the process. Each server process and
background process has its own PGA.

Overview of Accessing the Database
This section describes Oracle Net Services, as well as how to start up the database, in
the following sections:

■ Network Connections

■ Starting Up the Database

■ How Oracle Database Works

Network Connections
Oracle Net Services is the interface between Oracle Database and the network
communication protocols that facilitate distributed processing and distributed
databases. Communication protocols define the way that data is transmitted and
received on a network. Oracle Net Services supports communications on all major
network protocols, including TCP/IP, HTTP, FTP, and WebDAV.

Using Oracle Net Services, application developers do not need to be concerned with
supporting network communications in a database application. If a new protocol is
used, then the database administrator makes some minor changes, and the application
requires no modifications and continues to function.

Oracle Net, a component of Oracle Net Services, establishes and maintains a network
session from a client application to an Oracle Database server. Once a network session
is established, Oracle Net acts as the data courier for both the client application and
the database server, exchanging messages between them. Oracle Net can perform
these jobs because it is located on each computer in the network.

See Also: Chapter 8, "Memory Architecture" for more information

See Also:

■ Oracle Database Net Services Administrator's Guide for more
information about network connections

■ Oracle XML DB Developer's Guide for information about using
WebDAV with the database

Oracle Database Architecture

1-12 Oracle Database Concepts

Starting Up the Database
The three steps to starting an Oracle database and making it available for systemwide
use are:

1. Start an instance.

2. Mount the database.

3. Open the database.

A database administrator can perform these steps using Oracle Enterprise Manager,
the SQL*Plus STARTUP statement, the srvctl command-line tool, or the Express
Edition START command. When Oracle Database starts an instance, it reads the server
parameter file (spfile) or initialization parameter file (pfile) to determine the values of
initialization parameters. Then, it allocates an SGA and creates background processes.

How Oracle Database Works
The following example describes Oracle Database operations at the most basic level.
This illustrates an Oracle Database configuration where the user and associated server
process are on separate computers, connected through a network.

1. An instance has started on the computer running Oracle Database, often called the
host or database server.

2. A computer running an application (a local computer or client workstation) runs
an application in a user process. The client application attempts to establish a
connection to the server using the proper Oracle Net Services driver.

3. The server is running the proper Oracle Net Services driver. The server detects the
connection request from the application and creates a dedicated server process on
behalf of the user process.

4. The user runs a SQL statement and commits the transaction. For example, the user
changes a name in a row of a table.

5. The server process receives the statement and checks the shared pool (an SGA
component) for any shared SQL area that contains a similar SQL statement. If a
shared SQL area is found, then the server process checks the user's access
privileges to the requested data, and the existing shared SQL area is used to
process the statement. If not, then a new shared SQL area is allocated for the
statement, so it can be parsed and processed.

6. The server process retrieves any necessary data values, either from the actual
datafile (table) or those stored in the SGA.

7. The server process modifies data in the system global area. The database writer
process (DBWn) writes modified blocks permanently to disk when doing so is
efficient. Because the transaction is committed, the log writer process (LGWR)
immediately records the transaction in the redo log file.

8. If the transaction is successful, then the server process sends a message across the
network to the application. If it is not successful, then an error message is
transmitted.

9. Throughout this entire procedure, the other background processes run, watching
for conditions that require intervention. In addition, the database server manages
other users' transactions and prevents contention between transactions that
request the same data.

See Also: Chapter 12, "Database and Instance Startup and
Shutdown"

Oracle Database Features

Introduction to Oracle Database 1-13

Overview of Oracle Database Utilities
Oracle Database provides several utilities for data transfer, data maintenance, and
database administration They are described briefly in Chapter 11, "Oracle Database
Utilities" and more fully in Oracle Database Utilities.

Oracle Database Features
This section contains the following topics:

■ Overview of Oracle Real Application Testing

■ Overview of Concurrency Features

■ Overview of Manageability Features

■ Overview of Diagnosability Features

■ Overview of Database Backup and Recovery Features

■ Overview of High Availability Features

■ Overview of Business Intelligence Features

■ Overview of Content Management Features

■ Overview of Security Features

■ Overview of Data Integrity and Triggers

■ Overview of Information Integration Features

Overview of Oracle Real Application Testing
System changes, such as hardware and software upgrades and patch application, are
essential for businesses for compliance and security purposes or to maintain their
competitive edge. Oracle Real Application Testing helps you fully assess the effect of
system changes on real-world applications in test environments before deploying
them in production. Oracle Real Application Testing consists of two features:

■ Database Replay

■ SQL Performance Analyzer

Database Replay
Database Replay enables realistic testing of system changes by essentially re-creating
the production workload environment on a test system. It does this by capturing a
workload on the production system and then replaying it on a test system with the
exact timing, concurrency, and transaction characteristics of the original workload.
This makes possible complete assessment of the impact of the change including
undesired results, new contention points, and performance regressions. Extensive
analysis and reporting is provided to help identify any potential problems, such as
new errors encountered and performance divergences.

With Database Replay, businesses can rapidly test changes and adopt new
technologies with a high degree of confidence in the overall success of the effort and at
significantly lower risk.

See Also: Chapter 9, "Process Architecture" for more information
background processes

Oracle Database Features

1-14 Oracle Database Concepts

Database Replay can be used to assess the impact of the following types of system
changes:

■ Database upgrades, patches, parameter, and schema changes

■ Configuration changes, such as conversion from a single instance to Oracle Real
Application Clusters and Automatic Storage Management

■ Storage, network, and interconnect changes

■ Operating system patches, upgrades, and parameter changes and hardware
migrations

SQL Performance Analyzer
Changes that affect SQL execution plans can severely impact system performance and
availability. As a result, DBAs spend considerable time in identifying and fixing SQL
statements that have regressed due to a change.

SQL Performance Analyzer automates the process of assessing the overall effect of a
change on the full SQL workload by identifying performance divergence for each
statement. A report that shows the net impact on the workload performance due to the
change is provided. For regressed SQL statements, appropriate execution plan details,
along with recommendations to tune them, is also provided. As a result, DBAs can
remedy any negative outcome before their end users are affected and can confirm,
with significant time and cost savings, that the system change to the production
environment will, in fact, result in net improvement.

You can use the SQL Performance Analyzer to analyze the SQL performance impact of
any type of system change. Examples of common system changes include:

■ Database upgrades

■ Configuration changes to the operating system, hardware, or database

■ Database initialization parameter changes

■ Schema changes, such as adding new indexes or materialized views

■ Gathering optimizer statistics

■ SQL tuning actions, such as creating SQL profiles

Overview of Concurrency Features
All information management systems have these important requirements:

■ Data concurrency of a multiuser system must be maximized.

■ Data must be read and modified in a consistent fashion. The data a user is viewing
or changing must not changed (by other users) until the first user is finished with
the data.

■ High performance is required for maximum productivity from the many users of
the database system.

Oracle Database contains several software mechanisms that satisfy these requirements.
This contains the following sections:

■ Concurrency

See Also: Oracle Database Performance Tuning Guide to learn how to
use the SQL Performance Analyzer

Oracle Database Features

Introduction to Oracle Database 1-15

■ Read Consistency

■ Caching Mechanisms

■ Locking Mechanisms

Concurrency
A primary feature of a multiuser database management system is concurrency, which
is the simultaneous access of the same data by many users. Without adequate
concurrency controls, data could be updated or changed improperly, compromising
data integrity.

One way to manage data concurrency is to make each user wait for a turn. The goal of
a database management system is to reduce that wait so it is either nonexistent or not
noticeable to users. Data manipulation language operations (inserts, updates, and
deletes) should proceed with as little interference as possible, and destructive
interactions between concurrent transactions must be prevented. A destructive
interaction is one that incorrectly updates data or incorrectly alters underlying data
structures. Neither performance nor data integrity can be sacrificed.

Oracle Database resolves these issues by using various types of locks and a
multiversion consistency model. These features are based on the concept of a
transaction.

The transaction is key to the Oracle Database strategy for providing read consistency.
This unit of committed (or uncommitted) SQL statements:

■ Dictates the start point for read-consistent views generated on behalf of readers

■ Controls when modified data can be seen by other transactions of the database for
reading or updating

It is the application designer's responsibility to ensure that transactions fully exploit
these concurrency and consistency features.

Read Consistency
Read consistency, as provided by Oracle Database, achieves the following goals:

■ Guarantees that the set of data seen by a statement is consistent with respect to a
single point in time and does not change during statement execution
(statement-level read consistency)

■ Ensures that readers of database data do not wait for writers or other readers of
the same data

■ Ensures that writers of database data do not wait for readers of the same data

■ Ensures that writers only wait for other writers if they attempt to update identical
rows in concurrent transactions

In the Oracle Database implementation of read consistency, it is as if each user
operates a private copy of the database. This is sometimes called a multiversion
consistency model.

Read Consistency, Undo Records, and Transactions To manage the multiversion
consistency model, Oracle Database uses current information in the System Global
Area and information in the undo records to construct a read-consistent view of a

See Also: Chapter 4, "Transaction Management"

See Also: Chapter 13, "Data Concurrency and Consistency"

Oracle Database Features

1-16 Oracle Database Concepts

table's data for a query. When an update occurs, the original data values are recorded
in the database undo records. As long as this update remains part of an uncommitted
transaction, any user that later queries the modified data views the original data
values. Only when a transaction is committed are the changes of the transaction made
permanent. Queries that are initiated after the transaction is committed see the changes
made by the committed transaction.

Read-Only Transactions By default, Oracle Database guarantees statement-level read
consistency. The set of data returned by a single query is consistent with respect to a
single point in time. However, in some situations, you might also require
transaction-level read consistency. This is the ability to run multiple queries within a
single transaction, all of which are read-consistent with respect to the same point in
time, so that queries in this transaction do not see the effects of intervening committed
transactions. If you want to run a number of queries against multiple tables and if you
are not doing any updating, you can initiate the transaction with commands that
define it as a read-only transaction.

Caching Mechanisms
Oracle Database optimizes database performance by caching in memory user data, log
data, dictionary data, and other types of data.

Oracle Database also caches query results, so that if a query is repeated, the database
can return results from the cache instead of reprocessing the query and reading data
from storage. The cached results are stored in a dedicated portion of the shared pool.
Query retrieval from the query result cache is faster than rerunning the query. The
query result cache enables explicit caching of results in database memory. Frequently
executed queries especially see performance improvements when using the query
result cache.

Locking Mechanisms
Oracle Database also uses locks to control concurrent access to data. When updating
information, the data server holds that information with a lock until the update is
submitted or committed. Until that happens, no one else can make changes to the
locked information. This ensures the data integrity of the system.

Oracle Database provides unique nonescalating row-level locking. Unlike other data
servers that escalate locks to cover entire groups of rows or even the entire table,
Oracle Database always locks only the row of information being updated. Because the
database includes the locking information with the actual rows themselves, it can lock
an unlimited number of rows so users can work concurrently without unnecessary
delays.

Automatic Locking Oracle Database locking is performed automatically and requires no
user action. Implicit locking occurs for SQL statements as necessary, depending on the
action requested.

The Oracle Database lock manager maintains several different types of row locks,
depending on what type of operation established the lock. The two general types of
locks are exclusive locks and share locks. Only one exclusive lock can be placed on a
resource (such as a row or a table); however, many share locks can be placed on a
single resource. Both exclusive and share locks always permit queries on the locked
resource but prohibit other activity on the resource (such as updates and deletes).

See Also: Oracle Database Concepts for more information on
transaction-level read consistency

Oracle Database Features

Introduction to Oracle Database 1-17

Manual Locking Under some circumstances, you might want to override default locking.
With Oracle Database, you can manually override automatic locking features at both
the row level (by first querying for the rows that will be updated in a subsequent
statement) and the table level.

Overview of Manageability Features
People who administer the operation of an Oracle database system, known as database
administrators (DBAs), are responsible for creating Oracle databases, ensuring their
smooth operation, and monitoring their use. In addition to the many alerts and
advisors Oracle provides, Oracle Database also offers features described in the
following sections:

■ Self-Managing Database

■ Automatic Maintenance Tasks

■ Oracle Enterprise Manager

■ SQL Developer and SQL*Plus

■ Automatic Memory Management

■ Automatic Storage Management

■ Automatic Database Diagnostic Monitor

■ SQL Tuning Advisor

■ SQL Access Advisor

■ Streams Tuning Advisor

■ The Scheduler

■ Database Resource Manager

Self-Managing Database
Oracle Database provides a high degree of self-management by automating routine
DBA tasks and reducing complexity of space, memory, and resource administration.
Oracle Database self-managing features include the following: automatic undo
management, automatic server memory management, Oracle-managed files, free
space management, and Recovery Manager (RMAN).

Automatic Maintenance Tasks
Oracle Database automatically schedules periodic maintenance tasks such as statistics
collection and space recovery. These tasks run in a set of Oracle Scheduler windows
known as maintenance windows. You can control the start time and duration of these
maintenance windows, and limit the amount of CPU and I/O resources that they
consume.

Oracle Enterprise Manager
Oracle Enterprise Manager is a system management tool that provides central
management of your database environment. Combining a graphical console, Oracle
Management Servers, Oracle Intelligent Agents, common services, and administrative
tools, Oracle Enterprise Manager provides a comprehensive systems management
platform for managing Oracle products.

From the client interface, the Oracle Enterprise Manager Console, you can perform the
following tasks:

Oracle Database Features

1-18 Oracle Database Concepts

■ Administer the entire Oracle environment, including databases, Oracle
Application Server servers, applications, and services

■ Diagnose, modify, and tune multiple databases

■ Schedule tasks on multiple systems at varying time intervals

■ Monitor database conditions throughout the network

■ Administer multiple network nodes and services from many locations

■ Share tasks with other administrators

■ Group related targets together to facilitate administration tasks

■ Launch integrated Oracle and third-party tools

■ Customize the display of an Oracle Enterprise Manager administrator

SQL Developer and SQL*Plus
Oracle SQL Developer is a graphical development tool that provides a convenient way
to perform these tasks:

■ Browse, create, edit, and delete (drop) database objects

■ Edit and debug PL/SQL code

■ Run SQL statements and scripts

■ Manipulate and export data

■ Create and view reports

With SQL Developer, you can connect to any target Oracle database schema using
standard Oracle database authentication. Once connected, you can perform operations
on objects in the database. You can also connect to schemas for selected third-party
(non-Oracle) databases, such as MySQL, Microsoft SQL Server, and Microsoft Access,
view metadata and data in these databases, and migrate these databases to Oracle.

SQL*Plus is a basic command-line tool for entering and running ad hoc database
statements. It lets you run SQL statements and PL/SQL blocks, and perform many
additional tasks as well.

Automatic Memory Management
Beginning with Oracle Database 11g, Release 1, Oracle Database can manage the
System Global Area (SGA) memory and instance Program Global Area (PGA) memory
completely automatically. You designate only the total memory size to be used by the
instance, and Oracle Database dynamically exchanges memory between the SGA and
the instance PGA as needed to meet processing demands. This capability is referred to
as automatic memory management. In this memory management mode, the database
also dynamically tunes the sizes of the individual SGA components and the sizes of
the individual PGAs.

Automatic Storage Management
Automatic Storage Management automates and simplifies the management of all
types of database files. Database files are automatically distributed across all available

See Also: Oracle Database SQL Developer User's Guide and
SQL*Plus User's Guide and Reference for more information on these
tools

See Also: Oracle Database 2 Day DBA for more information

Oracle Database Features

Introduction to Oracle Database 1-19

disks, and database storage is rebalanced automatically whenever the storage
configuration changes. Automatic Storage Management also provides redundancy
through the mirroring of database files.

Oracle Database has built-in support for the network file system (NFS) and does not
depend on OS support for NFS. This improves manageability and diagnosability of
network attached storage accessed with NFS.

Automatic Database Diagnostic Monitor
The Automatic Database Diagnostic Monitor (ADDM) lets you conduct performance
analyzes over any time period defined by a pair of Automatic Workload Repository
(AWR) snapshots taken on a particular instance. Analysis is performed top down, first
identifying symptoms and then refining them to reach the root causes of performance
problems. ADDM also documents non-problem areas of the system. For example, wait
event classes that are not significantly affecting the performance of the system are
identified and removed from the tuning consideration at an early stage, saving time
and effort that would be spent on items with little or no impact on overall system
performance.

In addition to problem diagnostics, ADDM recommends possible solutions. When
appropriate, ADDM recommends multiple solutions for the DBA to choose from.
ADDM considers a variety of changes to a system while generating its
recommendations, which include hardware changes, database configuration changes,
modification of schema objects, modification of applications, and referrals to other
advisors.

SQL Tuning Advisor
Oracle Database provides a server utility called the SQL Tuning Advisor. The SQL
Tuning Advisor takes one or more SQL statements as input and invokes the Automatic
SQL Tuning Advisor to perform SQL tuning on the statements. The output of the SQL
Tuning Advisor is in the form of an advice or recommendation, along with a rationale
for each recommendation and its expected benefit. The recommendation relates to
collection of statistics on objects, creation of new indexes, restructuring of the SQL
statement, or creation of SQL Profile. Users can choose whether or not to accept the
recommendation to complete the tuning of the SQL statements.

SQL Access Advisor
The SQL Access Advisor makes schema modification recommendations. It can
recommend that you create access structures such as indexes and materialized views
to optimize SQL queries. It can also recommend that you partition tables, indexes, or
materialized views to improve query performance.

The SQL Access Advisor takes a SQL workload as input. You can select your workload
from various sources, including current and recent SQL activity, a SQL repository, or a
user-defined workload such as from a development environment. The advisor then
recommends changes to improve the performance of the workload as a whole.

See Also: Oracle Database 2 Day DBA for more information about
Automatic Database Diagnostic Monitor and Oracle Database
Performance Tuning Guide for more information about Automatic
Workload Repository

See Also: Oracle Database Performance Tuning Guide for more
information

Oracle Database Features

1-20 Oracle Database Concepts

Streams Tuning Advisor
A Streams topology is a representation of the databases in a Streams environment, the
Streams components configured in these databases, and the flow of messages between
these components. The Streams Performance Advisor reports performance
measurements for a Streams topology, including throughput and latency
measurements. The Streams Performance Advisor also identifies bottlenecks in a
Streams topology so that they can be corrected. In addition, the Streams Performance
advisor examines the Streams components in a Streams topology and recommends
ways to improve their performance.

The Scheduler
To help simplify management tasks, as well as providing a rich set of functionality for
complex scheduling needs, Oracle Database provides a collection of functions and
procedures in the DBMS_SCHEDULER package. Collectively, these functions are called
the Scheduler, and they are callable from any PL/SQL program.

The Scheduler lets database administrators and application developers control when
and where various tasks take place in the database environment. For example,
database administrators can schedule and monitor database maintenance jobs such as
backups or nightly data warehousing loads and extracts.

Database Resource Manager
Traditionally, operating systems regulated resource management among various
applications, including Oracle databases, that run on a system. The Database Resource
Manager controls the distribution of resources among various sessions by controlling
the execution schedule inside the database. By controlling which sessions run and for
how long, the Database Resource Manager can ensure that resource distribution
matches the plan directive and hence, the business objectives.

Overview of Diagnosability Features
Beginning with Oracle Database 11g, Oracle Database includes an advanced fault
diagnosability infrastructure for preventing, detecting, diagnosing, and resolving
problems. The problems that are targeted are critical errors such as those caused by
database code bugs, metadata corruption, and customer data corruption. For
information on the goals of this infrastructure and the Oracle technologies that achieve
these goals, see "Fault Diagnosability Infrastructure" on page 14-5.

Overview of Database Backup and Recovery Features
The possibility of a system or hardware failure exists in every database system. The
purpose of a backup and recovery strategy is to protect the database against data loss
caused by failures and reconstruct the database after data loss.

RMAN and User-Managed Backup and Recovery Database backups are the
cornerstone of any backup and recovery strategy. A backup is a copy of data. This

See Also: Oracle Database 2 Day + Performance Tuning Guide for more
information

See Also: Oracle Streams Concepts and Administration for more
information

See Also: Chapter 14, "Manageability" for more information on
Database Resource Manager

Oracle Database Features

Introduction to Oracle Database 1-21

copy can include important parts of the database such as datafiles, the control file, and
the server parameter file. Media recovery is the application of redo logs or incremental
backups to a restored backup datafile or individual data block. By reapplying the lost
changes, recovery rolls the backup forward in time.

When implementing a backup and recovery strategy, you have the following solutions
available:

■ Recovery Manager (RMAN). This tool integrates with sessions running on an
Oracle database to perform a range of backup and recovery activities, including
maintaining an RMAN repository of historical data about backups. You can access
RMAN through the command line or through Enterprise Manager.

■ User-managed backup and recovery. In this solution, you perform backup and
recovery with a mixture of host operating system commands and SQL*Plus
recovery commands.

Both of the preceding solutions are supported by Oracle and are fully documented, but
RMAN is the preferred solution for database backup and recovery. RMAN provides
access to several backup and recovery techniques and features not available with
user-managed backup and recovery. The most noteworthy are the following:

■ Incremental backups

■ Block media recovery

■ Unused block compression

■ Binary compression

■ Encrypted backups

Whether you use RMAN or user-managed methods, you can supplement physical
backups with logical backups of schema objects made with Data Pump Export utility.
You can later use Data Pump Import to re-create data after restore and recovery.

Oracle Flashback Technology Most Oracle flashback features operate at the logical
level, enabling you to view and manipulate database objects. The logical-level
flashback features of Oracle do not depend on RMAN and are available whether or not
RMAN is part of your backup strategy. With the exception of Flashback Drop, the
logical flashback features rely on undo data, which are records of the effects of each
database update and the values overwritten in the update. Oracle Database includes
the following logical flashback features:

■ Oracle Flashback Query

■ Oracle Flashback Version Query

■ Oracle Flashback Transaction Query

■ Oracle Flashback Transaction

■ Oracle Flashback Table

■ Oracle Flashback Drop

■ Flashback Data Archive

See Also: "RMAN and User-Managed Backups" on page 15-5 for
more information about these backup methods and Oracle Database
Utilities for more information about Data Pump

See Also: "Oracle Flashback Technology" on page 15-9 for more
information about these features

Oracle Database Features

1-22 Oracle Database Concepts

Data Recovery Advisor Oracle Database includes a Data Recovery Advisor tool that
automatically diagnoses persistent data failures, presents appropriate repair options,
and executes repairs at your request. The Data Recovery Advisor provides a single
point of entry for Oracle backup and recovery solutions. You can use Data Recovery
Advisor through the Enterprise Manager Database Control or Grid Control console or
through the RMAN command-line client.

Overview of High Availability Features
Computing environments configured to provide nearly full-time availability are
known as high availability systems. Such systems typically have redundant hardware
and software that makes the system available despite failures. Well-designed high
availability systems avoid having single points of failure.

Oracle Database includes a number of products and features that provide high
availability in cases of unplanned downtime or planned downtime. These features,
which are described in the sections that follow, can be used in various combinations to
meet specific high availability needs.

Oracle Real Application Clusters Oracle Real Application Clusters (Oracle RAC)
allows Oracle Database to run any packaged or custom application unchanged across
a set of clustered servers. This capability provides the highest levels of availability and
the most flexible scalability. If a clustered server fails, Oracle Database continues
running on the surviving servers. When more processing power is needed, you can
add another server without interrupting access to data.

Oracle Data Guard Oracle Data Guard provides a comprehensive set of services that
create, maintain, manage, and monitor one or more standby databases to enable
production Oracle databases to survive failures, disasters, errors, and data corruption.
Data Guard maintains these standby databases as transactionally consistent copies of
the production database. If the production database becomes unavailable due to a
planned or an unplanned outage, Data Guard can switch any standby database to the
production role, thus greatly reducing the downtime caused by the outage.

Oracle Streams Oracle Streams enables the propagation and management of data,
transactions, and events in a data stream, either within a database or from one
database to another. Streams provides a set of elements that enables you to control
what information is put into a data stream, how the stream is routed from node to
node, what happens to events in the stream as they flow into each node, and how the
stream terminates.

Oracle Flashback Technology Flashback technology provides a set of features that
let you switch between views of the data as it existed at different points in time. Using
flashback features you can query past versions of schema objects and historical data.
You can also perform change analysis and self-service repair to recover from logical
corruption while the database is online. Flashback technology is unique to Oracle
Database and supports recovery at all levels including row, transaction, table,
tablespace, and database.

See Also:

■ Chapter 15, "Backup and Recovery" for more information about
Oracle backup and recovery methods

■ "Data Recovery Advisor" on page 15-9 for more information about
this tool

Oracle Database Features

Introduction to Oracle Database 1-23

Online Table Redefinition Oracle provides a Reorganize Objects wizard in Oracle
Enterprise Manager that can automatically generate a script and perform online table
reorganization. The entire redefinition process occurs while users have full access to
the table.

Automatic Storage Management Automatic Storage Management (ASM) provides a
vertically integrated file system and volume manager directly in the Oracle kernel.
ASM spreads files across all available storage. To protect against data loss, ASM
extends the concept of SAME (stripe and mirror everything) and adds more flexibility
in that it can mirror at the database file level rather than the entire disk level. DBAs
using ASM create and administer a large-grained object called a disk group. The disk
group identifies the set of disks that are managed as a logical unit. Automation of file
naming and placement of the underlying database files save DBAs time and ensures
adherence to standard best practices.

Recovery Manager is an Oracle Database utility to manage the backup and recovery
of the database. RMAN determines the most efficient method of executing the
requested backup, restoration, or recovery operation and then submits these
operations to the Oracle Database server for processing. RMAN and the server
automatically identify modifications to the structure of the database and dynamically
adjust the required operation to adapt to the changes.

Flash Recovery Area The flash recovery area is a unified storage location for all
recovery-related files and activities in Oracle Database. When this feature is enabled,
all RMAN backups, archive logs, control file autobackups, and datafile copies are
automatically written to a specified file system or to an Automatic Storage
Management disk group. The management of this disk space is handled by RMAN
and the database server. The flash recovery area eliminates the bottleneck of writing to
tape. Further, if database media recovery is required, then datafile backups are readily
available.

Overview of Business Intelligence Features
This section describes the following business intelligence features:

■ Data Warehousing

■ Materialized Views

■ Table Compression

■ Parallel Execution

■ Analytic SQL

■ OLAP Capabilities

■ Data Mining

■ Very Large Databases (VLDB)

Data Warehousing
A data warehouse is a relational database designed for query and analysis rather than
for transaction processing. It usually contains historical data derived from transaction
data, but it can include data from other sources. It separates analysis workload from
transaction workload and enables an organization to consolidate data from several
sources.

See Also: Chapter 17, "High Availability"

Oracle Database Features

1-24 Oracle Database Concepts

In addition to a relational database, a data warehouse environment includes an
extraction, transformation, and loading (ETL) solution, an online analytical processing
(OLAP) engine, client analysis tools, and other applications that manage the process of
gathering data and delivering it to business users.

Extraction, Transformation, and Loading (ETL) You must load your data warehouse
regularly so that it can serve its purpose of facilitating business analysis. To perform
this operation, data from one or more operational systems must be extracted and
copied into the warehouse. The process of extracting data from source systems and
bringing it into the data warehouse is commonly called ETL, which stands for
extraction, transformation, and loading.

Bitmap Indexes in Data Warehousing The purpose of an index is to provide pointers
to the rows in a table that contain a given key value. In a regular index, this is achieved
by storing a list of rowids for each key corresponding to the rows with that key value.
Oracle Database stores each key value repeatedly with each stored rowid. Fully
indexing a large table with a traditional B-tree index can be prohibitively expensive in
terms of space because the indexes can be several times larger than the table data.

In a bitmap index, the database stores a bitmap for each key value instead of a list of
rowids. Bitmap indexes are typically only a fraction of the size of the indexed data in
the table. Data warehousing environments typically have large amounts of data and
ad hoc queries, but a low level of concurrent database manipulation language (DML)
transactions. For such applications, bitmap indexing provides several advantages:

■ Reduced response time for large classes of ad hoc queries

■ Reduced storage requirements compared with other indexing techniques

■ Dramatic performance gains even on hardware with a relatively small number of
CPUs or a small amount of memory

■ Efficient maintenance during parallel DML and loads

In addition, bitmap join indexes improve query performance for typical data
warehouse queries—which often include dimension/fact table joins—with about the
same space usage as regular bitmap indexes.

Materialized Views
A materialized view provides access to table data by storing the results of a query in a
separate schema object. Unlike an ordinary view, which does not take up any storage
space or contain any data, a materialized view contains the rows resulting from a
query against one or more base tables or views. Query response time is improved
because the query accesses the materialized view instead of executing against the base
tables. A materialized view can be stored in the same database as its base tables or in a
different database.

Materialized views stored in the same database as their base tables can further
improve query performance through query rewrite. Query rewrite is a mechanism
that automatically rewrites a SQL query to use a materialized view instead of its base
tables. With query rewrite, developers need not rewrite applications to take advantage
of materialized views. Query rewrite is particularly useful in a data warehouse
environment.

Table Compression
Oracle provides comprehensive data compression capabilities to compress all types of
data, backups, and network traffic in an application transparent manner. These
capabilities include table compression targeted at OLTP workloads, resulting in

Oracle Database Features

Introduction to Oracle Database 1-25

reduced storage consumption and improved query performance while incurring
minimal write performance overhead. Table compression can be used to compress any
relational data. To compress unstructured content use SecureFiles compression.
Deduplication provides the ability to automatically eliminate redundant copies of
SecureFiles data. A new faster compression algorithm is included to speed up RMAN
backups. Data Pump exports can now be compressed to reduce disk space
requirements. Finally, Data Guard can compress redo data resulting in reduced
network traffic and faster gap resolution.

Parallel Execution
When Oracle Database runs SQL statements in parallel, multiple processes work
together simultaneously to run a single SQL statement. By dividing the work
necessary to run a statement among multiple processes, Oracle Database can run the
statement more quickly than if only a single process ran it. This is called parallel
execution or parallel processing. Parallel execution dramatically reduces response
time for data-intensive operations on large databases.

Analytic SQL
Oracle Database has many SQL operations for performing analytic operations in the
database. These include ranking, moving averages, cumulative sums, ratio-to-reports,
and period-over-period comparisons.

OLAP Capabilities
Oracle online analytical processing (OLAP) provides native multidimensional storage
and speed-of-thought response times when analyzing data across multiple
dimensions. The database provides rich support for analytics such as time series
calculations, forecasting, advanced aggregation with additive and nonadditive
operators, and allocation operators. These capabilities make the Oracle database a
complete analytical platform, capable of supporting the entire spectrum of business
intelligence and advanced analytical applications. Oracle OLAP is fully integrated in
the database, so that you can use standard SQL administrative, querying, and
reporting tools.

Data Mining
With Oracle Data Mining, data never leaves the database — the data, data preparation,
model building, and model scoring results all remain in the database. This enables
Oracle Database to provide an infrastructure for application developers to integrate
data mining seamlessly with database applications. Typical applications of data
mining include call centers, ATMs, E-business relational management (ERM), and
business planning. Oracle Data mining supports a PL/SQL API, a Java API, SQL
functions for model scoring, and a graphical user interface called Oracle Data Miner.

Very Large Databases (VLDB)
Partitioning is a critical feature for managing very large databases (VLDB). Growth is
the basic challenge that partitioning addresses, and partitioning allows a database to
scale for very large datasets while maintaining consistent performance, without
unduly increasing administrative or hardware resources. Partitioning allows a table,
index, or index-organized table to be subdivided into smaller pieces called partitions.

See Also: "Table Compression" on page 5-7

See Also: Chapter 16, "Business Intelligence" for more
information about Oracle Data Mining

Oracle Database Features

1-26 Oracle Database Concepts

No modifications to applications are necessary when accessing a partitioned table
using SQL DML statements.

Partitioning can provide tremendous benefit to a wide variety of applications by
improving availability, manageability, and performance.

Information Lifecycle Management (ILM) Information Lifecycle Management (ILM) is a set
of processes and policies for managing data throughout its useful life. One of the
benefits of implementing an ILM solution is to reduce costs, by leveraging appropriate
storage tiers, while maintaining all of the data required for business or regulatory
purposes. Partitioning is the capability that enables an ILM solution to be
implemented within the database.

Overview of Content Management Features
Oracle Database includes datatypes to handle all the types of rich content such as
XML, text, audio, video, image, medical image, and spatial. These datatypes appear as
native types in the database. They can all be queried using SQL. A single SQL
statement can include data belonging to any or all of these datatypes.

This section includes the following topics:

■ XML in Oracle Database

■ LOBs

■ SecureFiles

■ Oracle Text

■ Oracle Ultra Search

■ Oracle Multimedia

■ Oracle Spatial

XML in Oracle Database
Oracle XML DB is a set of Oracle Database technologies related to high-performance
XML storage and retrieval. It provides native XML support by encompassing both
SQL and XML data models in an interoperable manner. Oracle XML DB includes the
following features:

■ Support for the World Wide Web Consortium (W3C) XML and XML Schema data
models and standard access methods for navigating and querying XML. The data
models are incorporated into Oracle Database.

■ The ability to store, query, update, and transform XML data while accessing it
using SQL.

■ The ability to perform XML operations on SQL data.

■ A simple, lightweight XML repository where you can organize and manage
database content, including XML, using a file/folder/URL metaphor.

■ An infrastructure independent of storage format, content, and programming
language for storing and managing XML data. This infrastructure provides new
ways of navigating and querying XML content stored in the database. For
example, Oracle XML DB Repository facilitates this by managing XML document
hierarchies.

See Also: Chapter 18, "Very Large Databases (VLDB)" for more
information about VLDB topics

Oracle Database Features

Introduction to Oracle Database 1-27

■ Industry-standard access to and update of XML. The standards include the W3C
XPath recommendation and the ISO-ANSI SQL/XML standard. FTP, HTTP(S), and
WebDAV can be used to move XML content into and out of Oracle Database.
Industry-standard APIs provide programmatic access and manipulation of XML
content using Java, C, and PL/SQL.

■ XML-specific memory management and optimizations.

■ Enterprise-level Oracle Database features for XML content: reliability, availability,
scalability, and security.

Oracle XML DB can be used in conjunction with Oracle XML Developer's Kit (XDK) to
build applications that run in the middle tier in either Oracle Application Server or
Oracle Database.

LOBs
The LOB datatypes BLOB, CLOB, NCLOB, and BFILE enable you to store and
manipulate large blocks of unstructured data (such as text, graphic images, video clips,
and sound waveforms) in binary or character format. They provide efficient, random,
piece-wise access to the data.

SecureFiles
SecureFiles is a new feature in Oracle Database 11g that offers the best solution for
storing file content, such as images, audio, video, PDFs, and spreadsheets.
Traditionally, relational data is stored in a database, while unstructured content—both
semi-structured and unstructured—is stored as files in file systems. SecureFiles is a
major paradigm shift in the choice of files storage. SecureFiles is specifically
engineered to deliver high performance for file data comparable to that of traditional
file systems, while retaining the advantages of Oracle Database. SecureFiles offers the
best database and file system architecture attributes for storing unstructured content.

Key Technical Advantages SecureFiles includes advanced features, typically found
in high-end file systems, such as:

■ Deduplication: Oracle Database automatically detects multiple, identical
SecureFiles data and stores only one copy, thereby saving storage space. In
addition to storing only one copy, SecureFiles maintains references to other
duplicates. Deduplication is completely transparent to applications and, in
addition to simplifying storage management, it also results in significantly better
performance, especially for copy operations. Duplicate detection happens within a
LOB segment. The lob_storage_clause allows for specifying deduplication at
a partition level so that duplicate detection does not span across partitions or
subpartitions for partitioned SecureFiles columns.

SecureFiles deduplication is part of the Advanced Compression option.

■ Compression: SecureFiles data is compressed using industry standard
compression algorithms. Compression not only results in significant savings in
storage but also improved performance by reducing I/O, buffer cache
requirements, redo generation, and encryption overhead. If the compression does
not yield any savings or if the data is already compressed, SecureFiles

See Also: Oracle Database SecureFiles and Large Objects Developer's
Guide for more information about SecureFiles LOBs

See Also: Oracle Database SecureFiles and Large Objects Developer's
Guide for more information about deduplication

Oracle Database Features

1-28 Oracle Database Concepts

automatically turns off compression for such columns. Compression is performed
on the server side and allows for random reads and writes to SecureFiles data.
SecureFiles provides for varying degrees of compression: MEDIUM (default) and
HIGH, which represent a trade-off between storage savings and latency.

SecureFiles compression is part of the Advanced Compression option.

■ Encryption: In Oracle Database 11g, Oracle has extended the encryption capability
to SecureFiles and uses the Transparent Data Encryption (TDE) syntax. Oracle
Database supports automatic key management for all SecureFiles columns within
a table and transparently encrypts and decrypts data, backups, and redo log files.
Applications require no changes and can take advantage of Oracle Database 11g
SecureFiles using TDE semantics. SecureFiles supports the following encryption
algorithms:

– 3DES168: Triple Data Encryption Standard with a 168-bit key size

– AES128: Advanced Encryption Standard with a 128 bit key size

– AES192: Advanced Encryption Standard with a 192-bit key size (default)

– AES256: Advanced Encryption Standard with a 256-bit key size

SecureFiles encryption is part of the Advanced Security option.

■ File System-like Logging: Modern file systems have the ability to keep a running
log of the file system metadata. Putting this metadata into a running log (called a
journal) that is flushed in a lazy fashion increases performance and removes the
need for file system checking operations like fsck. SecureFiles' file system-like
logging provides this same high performance journaling. File system-like logging
also allows for soft corruptions, so that if an error is found on a block, SecureFiles
returns a block with the LOB fill character. This allows the application to detect the
error by seeing known invalid data and to recover either through deletion of the
LOB (something that is not possible with the original implementation of LOBs) or
by other means.

In addition to the aforementioned advanced file system features, SecureFiles can take
advantage of several advanced Oracle Database capabilities, including:

■ Transactions, read consistency, and flashback

■ 100% backward compatibility with LOB interfaces

■ Readable standby, consistent backup, and point-in-time recovery

■ Fine-grained auditing and label security

■ XML indexing, XML queries, and XPath

■ Oracle Real Application Clusters

■ Automatic Storage Management

■ Partitioning and ILM

■ Search across metadata and file content

See Also: Oracle Database SecureFiles and Large Objects Developer's
Guide for more information about compression

See Also: Oracle Database SecureFiles and Large Objects Developer's
Guide for more information about encryption

Oracle Database Features

Introduction to Oracle Database 1-29

High Performance SecureFiles is designed from the ground up for high performance
and scalability. SecureFiles delivers comparable file system-like performance for basic
read and write operations. The optimized algorithms with SecureFiles make it up to 10
times faster than LOBs. The scalability associated with SecureFiles goes far beyond
what is offered in file systems. Organizations can scale-up using large SMP systems, or
scale-out using Oracle Real Application Clusters to hundreds of computers while still
preserving a single system image. Scaling of CPUs and disks can be done
independently and transparently. With Oracle Database 11g, organizations can store all
types of content and scale to store petabytes or exabytes of data.

Oracle Text
Oracle Text indexes any document or textual content to add fast, accurate retrieval of
information. Oracle Text lets you combine text searches with regular database searches
in a single SQL statement. The ability to find documents based on their textual content,
metadata, or attributes, makes the Oracle Database the single point of integration for
all data management.

The Oracle Text SQL API makes it simple and intuitive for application developers and
DBAs to create and maintain Text indexes and run Text searches.

Oracle Ultra Search
Oracle Ultra Search lets you index and search Web sites, database tables, files, mailing
lists, Oracle Application Server Portals, and user-defined data sources. This search
capability lets you use Oracle Ultra Search to build different kinds of search
applications.

Oracle Multimedia
Oracle Multimedia provides an array of services to simplify the development of
applications that include images, audio, and video. Oracle Multimedia objects are
accessed as columns in tables, like other more typical relational data. Multimedia
content can be stored and managed internally in the database, or externally by storing
references to the content in the database. Java and PL/SQL APIs provide metadata
extraction, image format conversion, and thumbnail image generation to greatly
reduce application development and maintenance costs. Excellent integration with
application development tools such as Oracle JDeveloper, Application Express, and
Oracle Application Server Portal enable application developers to create and maintain
media-rich applications with ease. In addition, Oracle Multimedia provides similar
support for Digital Imaging and Communications in Medicine (DICOM) content such
as single-frame and multiframe images, waveforms, slices of 3-D volumes, video
segments, and structured reports.

Oracle Spatial
Oracle Database includes built-in spatial features that let you store, index, and manage
location content—assets, buildings, roads, land parcels, sales regions, and so on—and
query location relationships using the power of the database. The Oracle Spatial
option adds advanced spatial features such as linear reference support and coordinate
systems.

See Also: Chapter 19, "Content Management" for more information
about Oracle Multimedia

See Also: Chapter 19, "Content Management" for more
information about Oracle Spatial

Oracle Database Features

1-30 Oracle Database Concepts

Overview of Security Features
Oracle Database includes security features that control how a database is accessed and
used. Security mechanisms are needed for several purposes:

■ To prevent unauthorized database access

■ To prevent unauthorized access to schema objects

■ To audit user actions

Associated with each database user is a schema by the same name. By default, each
database user creates and has access to all objects in the corresponding schema.

Database security can be classified into two categories: system security and data
security.

System security lets you control access to and use of the database at the system level.
System security mechanisms check whether a user is authorized to connect to the
database, whether database auditing is active, and which system operations a user can
perform. For example, system security includes:

■ Valid user name/password combinations

■ The amount of disk space available to a user's schema objects

■ The resource limits for a user

Data security lets you control access to and use of the database at the schema object
level. For example, data security determines:

■ Which users have access to a specific schema object and the specific types of
actions allowed for each user on the schema object (for example, user SCOTT can
issue SELECT and INSERT statements but not DELETE statements using the
employees table)

■ The actions, if any, that are audited for each schema object

■ Data encryption to prevent unauthorized users from bypassing Oracle Database
and accessing data

Security Mechanisms
Oracle Database provides discretionary access control, which is a means of restricting
access to information based on privileges. The appropriate privilege must be assigned
to a user in order for that user to access a schema object. Appropriately privileged
users can grant other users privileges at their discretion.

Oracle Database manages database security using several different facilities:

■ Authentication to validate the identity of the entities using your networks,
databases, and applications

■ Authorization processes to limit access and actions, limits that are linked to user's
identities and roles

■ Access restrictions on objects such as tables or rows

■ Security policies

■ Database auditing

See Also: Chapter 20, "Database Security" for more information
on security mechanisms

Oracle Database Features

Introduction to Oracle Database 1-31

Overview of Data Integrity and Triggers
Data must adhere to certain business rules, as determined by the database
administrator or application developer. For example, assume that a business rule says
that no row in the inventory table can contain a numeric value greater than nine in
the sale_discount column. If an INSERT or UPDATE statement attempts to violate
this integrity rule, Oracle Database must undo the invalid statement and return an
error to the application. Oracle Database provides integrity constraints and database
triggers to manage data integrity rules.

This section includes the following topics:

■ Integrity Constraints

■ Triggers

Integrity Constraints
An integrity constraint is a declarative way to define a business rule for a column of a
table. An integrity constraint is a statement about table data that is always true and
that follows these rules:

■ If an integrity constraint is created for a table and some existing table data does
not satisfy the constraint, then the constraint cannot be enforced.

■ After a constraint is defined, if any of the results of a DML statement violate the
integrity constraint, then the statement is rolled back, and an error is returned.

Integrity constraints are stored as part of the table's definition in the data dictionary, so
that all database applications adhere to the same set of rules. When a rule changes, you
define it only once at the database level and not once for each application. A key is the
column or set of columns included in the definition of certain types of integrity
constraints. Keys describe the relationships between the different tables and columns
of a relational database. Individual values in a key are called key values.

The following integrity constraints are supported by Oracle Database:

■ A not null constraint disallows nulls (empty entries) in a table's column.

■ A unique constraint disallows duplicate values in a column or set of columns. The
unique key is the column or set of columns included in the definition of a unique
constraint.

■ A primary key constraint disallows duplicate values and nulls in a column or set
of columns. The primary key is the column or set of columns included in the
definition of a table's primary key constraint. The primary key values uniquely
identify the rows in a table. You can define only one primary key for each table.

■ A foreign key constraint—sometimes called a referential integrity
constraint—requires each value in a column or set of columns to match a value in
another table's unique key or primary key. Foreign key constraints also define
referential integrity actions that dictate what Oracle Database should do with
dependent data if the data it references is altered. The foreign key is the column or

Note: Database triggers let you define and enforce integrity rules,
but a database trigger is not the same as an integrity constraint.
Among other things, a database trigger does not check data already
loaded into a table. Therefore, Oracle strongly recommends that you
use database triggers only when the integrity rule cannot be enforced
by integrity constraints.

Oracle Database Features

1-32 Oracle Database Concepts

set of columns included in the definition of the foreign key constraint. The
referenced key is the unique key or primary key of the same or a different table
referenced by a foreign key.

■ A check constraint disallows values that do not satisfy the logical expression of the
constraint.

Triggers
Triggers are procedures written in PL/SQL, Java, or C that run (fire) implicitly
whenever a table or view is modified or when some user actions or database system
actions occur.

Triggers supplement the standard capabilities of Oracle Database to provide a highly
customized database management system. For example, a trigger can restrict DML
operations against a table to those issued during regular business hours.

Overview of Information Integration Features
A distributed environment is a network of disparate systems that seamlessly
communicate with each other. Each system in the distributed environment is called a
node. The system to which a user is directly connected is called the local system. Any
additional systems accessed by this user are called remote systems. A distributed
environment lets applications access and exchange data from the local and remote
systems. All the data can be simultaneously accessed and modified.

This section includes the following topics:

■ Distributed SQL

■ Oracle Streams

■ Oracle Database Gateways and Generic Connectivity

Distributed SQL
A homogeneous distributed database system is a network of two or more Oracle
databases that reside on one or more computers. Distributed SQL enables applications
and users to simultaneously access or modify the data in several databases as easily as
they access or modify a single database.

A distributed Oracle database system can appear as though it is a single Oracle
database. Companies can use this distributed SQL feature to make all its Oracle
databases look like one and thus reduce some of the complexity of the distributed
system.

Oracle Database uses database links to enable users on one database to access objects
in a remote database. A local user can access a link to a remote database without
having to be a user on the remote database.

Location Transparency Location transparency occurs when the physical location of data
is transparent to applications and users. For example, a view that joins table data from
several databases provides location transparency because the user of the view does not
need to know from where the data originates.

See Also: Chapter 21, "Data Integrity" for more information about
integrity constraints

See Also: Chapter 22, "Triggers" for more information about
triggers

Oracle Database Features

Introduction to Oracle Database 1-33

SQL and Transaction Transparency Oracle Database provides query, update, and
transaction transparency. For example, standard SQL statements like SELECT,
INSERT, UPDATE, and DELETE manipulate data just as they do in a nondistributed
database environment. Applications can control transactions using the standard SQL
statements COMMIT, SAVEPOINT, and ROLLBACK. Oracle Database ensures the
integrity of data in a distributed transaction using the two-phase commit mechanism,
whereby all nodes in a distributed system are instructed to commit the transaction. If
this is not possible, then all nodes roll back the transaction.

Distributed Query Optimization Distributed query optimization uses cost-based
optimization to find or generate SQL expressions that extract only the necessary data
from remote tables, process that data at a remote site or sometimes at the local site, and
send the results to the local site for final processing. This operation reduces the
amount of required data transfer when compared to the time it takes to transfer all the
table data to the local site for processing.

Oracle Streams
Oracle Streams enables the propagation and management of data, transactions, and
events in a data stream either within a database or from one database to another. The
stream conveys published information to subscribed destinations.

Oracle Streams lets users control what information is put into a stream, how the
stream flows or is routed from node to node, what happens to events in the stream as
they flow into each node, and how the stream terminates. By specifying the
configuration of the elements acting on the stream, a user can address specific
requirements, such as message queuing or data replication.

Capture Oracle Streams implicitly and explicitly captures events and places them in
the staging area. Database events, such as DML and DDL operations, are implicitly
captured by mining the redo log files. Sophisticated subscription rules can determine
what events should be captured.

Staging The staging area is a queue that stores and manages captured events. Changes
to database tables are formatted as logical change records (LCRs), and stored in a
staging area until subscribers consume them. LCR staging provides a secure holding
area and supports auditing and tracking of LCR data.

Consumption Messages in a staging area are consumed by the apply engine, where
changes are applied to a database or consumed by an application. A flexible apply
engine lets you use a standard or custom apply function. Support for explicit dequeue
lets application developers use Oracle Streams to reliably exchange messages. They
can also notify applications of changes to data.

Message Queuing Oracle Streams Advanced Queuing is built on the flexible Oracle
Streams infrastructure. It provides a unified framework for processing events. Events
generated in applications, in workflow, or implicitly captured from redo logs or
database triggers can be captured in a queue. These events can be consumed in a
variety of ways. They can be automatically applied with a user-defined function or
database table operation, can be explicitly dequeued, or a notification can be sent to
the consuming application. These events can be transformed at any stage. If the
consuming application is on a different database, then the events are automatically

See Also: Oracle Database Administrator's Guide for more information
on the two-phase commit mechanism

Oracle Database Application Development

1-34 Oracle Database Concepts

propagated to the appropriate database. Operations on these events can be
automatically audited, and the history can be retained for a user-specified duration.

Data Replication Replication is the maintenance of database objects in two or more
databases. Oracle Streams provides powerful replication features that can be used to
synchronize multiple copies of distributed objects.

Oracle Streams automatically determines what information is relevant and shares that
information with those who need it. This active sharing of information includes
capturing and managing events in the database, including data changed with DML
operations, and propagating those events to other databases and applications. Data
changes can be applied directly to the replica database, or can call a user-defined
procedure to perform alternative work at the destination database, for example,
populate a staging table used to load a data warehouse.

Oracle Streams is an open information sharing solution, supporting heterogeneous
replication between Oracle and non-Oracle systems. Using a transparent gateway,
DML changes initiated at Oracle databases can be applied on non-Oracle platforms.

Oracle Streams is fully interoperational with materialized views, which can maintain
updatable or read-only, point-in-time copies of data. They can contain a full copy of a
table or a defined subset of the rows in the master table that satisfy a value-based
selection criterion. Materialized views can be multitier, where one materialized view is
a subset of another materialized view. Materialized views are periodically updated, or
refreshed, from their associated master tables through transactionally consistent batch
updates.

Oracle Database Gateways and Generic Connectivity
Oracle Database Gateways and Generic Connectivity extend distributed Oracle
database features to non-Oracle systems. Generic Connectivity is a generic solution.
Oracle Database Gateways are tailored solutions, specifically coded for a particular
non-Oracle system. Oracle Database can work with non-Oracle data sources,
non-Oracle message queuing systems, and non-SQL applications, ensuring
interoperability with other vendors' products and technologies.

Oracle Database Gateways and Generic Connectivity can be used for synchronous
access, using distributed SQL, and for asynchronous access, using Oracle Streams.
Introducing a Transparent Gateway into an Oracle Streams environment enables
replication of data from an Oracle database to a non-Oracle database.

Oracle Database Gateways and Generic Connectivity translate third-party SQL
dialects, data dictionaries, and datatypes into Oracle Database formats, thus making
the non-Oracle data store appear as a remote Oracle database. These features enable
companies to seamlessly integrate the different systems and provide a consolidated
view of the company as a whole.

Oracle Database Application Development
SQL and PL/SQL form the core of the Oracle Database application development stack:

■ Most enterprise back-ends run SQL

■ Web applications accessing databases do so using SQL (wrapped by Java classes as
JDBC)

■ Enterprise Application Integration applications generate XML from SQL queries

See Also: Chapter 23, "Information Integration"

Oracle Database Application Development

Introduction to Oracle Database 1-35

■ Content-repositories are built on top of SQL tables

SQL and PL/SQL provide a simple, widely understood, unified data model. They are
used standalone in many applications, but are also invoked directly from Java (JDBC),
Oracle Call Interface (OCI), Oracle C++ Call Interface (OCCI), or XSU (XML SQL
Utility). Stored packages, procedures, and triggers can all be written in PL/SQL or in
Java.

This section includes the following topics:

■ Overview of Oracle SQL

■ Overview of PL/SQL

■ Overview of Java

■ Overview of Application Programming Languages (APIs)

■ Overview of Application Development Environments

■ Overview of Datatypes

■ Overview of Globalization

Overview of Oracle SQL
Structured query language (SQL—pronounced "sequel") is the programming language
that defines and manipulates the database. SQL databases are relational databases,
which means that data is stored in a set of simple relations.

SQL Statements
All operations on the information in an Oracle database are performed using SQL
statements. A SQL statement is a string of SQL text. A statement must be the
equivalent of a complete SQL sentence, as in:

SELECT last_name, department_id FROM employees;

Only a complete SQL statement can run successfully. A sentence fragment like the
following one generates an error indicating that more text is required:

SELECT last_name

A SQL statement can be thought of as a very simple but powerful computer program
or instruction. SQL statements are divided into the following categories:

Data definition language (DDL) statements create, alter, maintain, and drop schema
objects. DDL statements also include statements that permit a user to grant other users
the privileges to access the database and specific objects within the database.

Data manipulation language (DML) statements manipulate data. Querying,
inserting, updating, and deleting rows of a table are all DML operations. The most
common SQL statement is the SELECT statement, which retrieves data from the
database. Locking a table or view and examining the execution plan of a SQL
statement are also DML operations.

Note: The end of a SQL statement is indicated differently in different
programming environments. This documentation set uses the default
SQL*Plus character, the semicolon (;).

Oracle Database Application Development

1-36 Oracle Database Concepts

Transaction control statements manage the changes made by DML statements. They
enable a user to group changes into logical transactions. Examples include COMMIT,
ROLLBACK, and SAVEPOINT.

Session control statements let a user control the properties of the current session,
including enabling and disabling roles and changing language settings. The two
session control statements are ALTER SESSION and SET ROLE.

System control statements changes the properties of the Oracle database instance.
ALTER SYSTEM is the only system control statement. It lets you change settings, such
as the minimum number of shared servers. It also lets you terminate a session and
perform other systemwide tasks.

Embedded SQL statements incorporate DDL, DML, and transaction control
statements in a procedural language program, such as those used with the Oracle
precompilers. Examples include OPEN, CLOSE, FETCH, and EXECUTE.

Overview of PL/SQL
PL/SQL is the Oracle procedural language extension to SQL. PL/SQL combines the
ease and flexibility of SQL with the procedural functionality of a structured
programming language, including such routines as IF ... THEN, WHILE, and LOOP.

When designing a database application, consider the following advantages of using
stored PL/SQL:

■ PL/SQL code can be stored in a database. Network traffic between applications
and the database is reduced, so application and system performance increases.
Even when PL/SQL is not stored in the database, applications can send to the
database blocks of PL/SQL rather than individual SQL statements, thereby
reducing network traffic.

■ Native compilation of PL/SQL code is very easy and offers significant
performance advantages.

■ Data access can be controlled by stored PL/SQL code. PL/SQL users can access
data only as intended by application developers, unless another access route is
granted.

■ Oracle supports PL/SQL Server Pages, so your application logic can be invoked
directly from your Web pages.

The following sections describe some of the PL/SQL program units that can be
defined and stored centrally in a database.

Procedures and functions are sets of SQL and PL/SQL statements grouped together
as a unit to solve a specific problem or to perform a set of related tasks. They are
created and stored in compiled form in the database and can be run by a user or a
database application. Procedures and functions are identical, except that functions
always return a single value to the user. Procedures do not return values.

Packages encapsulate and store related procedures, functions, variables, and other
constructs together as a unit in the database. They offer increased functionality. For
example, global package variables can be declared and used by any procedure in the
package. Packages also improve performance, because all objects of the package are
parsed, compiled, and loaded into memory once.

See Also: Chapter 24, "SQL" for more information about SQL

See Also: Chapter 24, "SQL" for more information about PL/SQL

Oracle Database Application Development

Introduction to Oracle Database 1-37

Overview of Java
Java is an object-oriented programming language efficient for application-level
programs. Oracle Database provides all types of JDBC drivers and enhances database
access from Java applications. Java Stored Procedures are portable and secure in terms
of access control, and they let non-Java and legacy applications transparently invoke
Java. In addition, native compilation of Java code is very easy and offers significant
performance advantages.

Overview of Application Programming Languages (APIs)
Oracle Database developers have a choice of languages for developing
applications—C, C++, Java, COBOL, PL/SQL, PHP, and Visual Basic. The entire
functionality of the database is available in all of the languages. All language-specific
standards are supported. Developers can choose the languages in which they are most
proficient or one that is most suitable for a specific task. For example, an application
might use Java on the server side to create dynamic Web pages, PL/SQL to implement
stored procedures in the database, and C++ to implement computationally intensive
logic in the middle tier.

Overview of Application Development Environments
Oracle provides different application development environments for different
application developer needs.

■ Oracle Application Express is a hosted declarative development environment for
developing and deploying database-centric Web applications. Using only a Web
browser and limited programming experience, you can develop and deploy
professional applications that are both fast and secure. The Application Express
engine lives completely within your Oracle database and is written in PL/SQL. It
renders applications in real time from data stored in database tables. When you
create or extend an application, Oracle Application Express creates or modifies
metadata stored in database tables. When the application is run, the Application
Express engine then reads the metadata and displays the application. Oracle
Application Express also transparently manages session state in the database.
Application developers can get and set session state using simple substitutions as
well as standard SQL bind variable syntax. Application Express is a tool to build
Web-based applications and the application development environment is also
conveniently Web based itself.

See Also: "Overview of Java" on page 25-17 for more information
about Java

See Also: The following books describe the various Oracle APIs:

■ Pro*C/C++ Programmer's Guide

■ Oracle Call Interface Programmer's Guide

■ Pro*COBOL Programmer's Guide

■ Oracle Database PL/SQL Language Reference

■ Oracle Database Data Cartridge Java API Reference

Also refer to Chapter 25, "Supported Application Development
Languages" for more information.

Oracle Database Application Development

1-38 Oracle Database Concepts

■ PHP—a self-referencing acronym for PHP - Hypertext Preprocessor—is a popular
scripting language commonly embedded with HTML to create dynamic web
pages. PHP is perfect for rapidly developing Web 2.0 applications. PHP's oci8
extension is a stable, high-performance PHP database driver that is fully
integrated with Oracle Database. Using PHP with Oracle Database, you can query
and update data, execute stored procedures and functions, load images, and easily
build scalable, global applications.

■ In the Microsoft Windows environment, Oracle provides the following
development environments:

– The Oracle Data Provider for .NET (ODP.NET) features optimized data access
to the Oracle database from a .NET environment. ODP.NET allows developers
to take advantage of advanced Oracle database functionality, including Oracle
Real Application Clusters, XML DB, and advanced security. The data provider
can be used from any .NET language, including C# and Visual Basic .NET.

Overview of Datatypes
Each column value and constant in a SQL statement has a datatype, which is
associated with a specific storage format, constraints, and a valid range of values.
When you create a table, you must specify a datatype for each of its columns.

Oracle Database lets you use many datatypes, in several categories:

■ Scalar datatypes, such as character, numeric, and datetime datatypes

■ Collection types such as variable-length arrays (varrays) and nested tables for
more fine-graine3d organization of and access to data in the database

■ ANSI-supported types, which facilitates working with data from non-Oracle
databases

■ Supplied datatypes, which are SQL-based interfaces for defining new types when
the built-in or ANSI-supported types are not sufficient. The behavior for these
types can be implemented in C/C++, Java, or PL/ SQL.

In addition, user-defined object types can be created from any built-in datatypes or
any previously created object types, object references, and collection types. Metadata
for user-defined types is stored in a schema available to SQL, PL/SQL, Java, and other
published interfaces.

A user-defined object type differs from native SQL datatypes in that it specifies both
the underlying persistent data (attributes) and the related behaviors (methods). Object
types are abstractions of the real-world entities and are sometimes called abstract
datatypes (ADTs).

See Also: Oracle Database Express Edition 2 Day Developer Guide for
more information

See Also: Oracle Database 2 Day + PHP Developer's Guide for more
information

See Also:

Oracle Database Application Development

Introduction to Oracle Database 1-39

Overview of Globalization
Oracle databases can be deployed anywhere in the world, and a single instance of
Oracle Database can be accessed by users across the globe. Information is presented to
each user in the language and format specific to his or her location.

The Globalization Development Kit (GDK) simplifies the development process and
reduces the cost of developing internet applications for a multilingual market. GDK
lets a single program work with text in any language from anywhere in the world.

See Also:

■ Oracle Database SQL Language Reference for a complete listing of
the Oracle built-in and supplied datatypes

Chapter 26, "Oracle Data Types"

■ Oracle Database Object-Relational Developer's Guide

See Also: Oracle Database Globalization Support Guide for more
information about globalization

Oracle Database Application Development

1-40 Oracle Database Concepts

Part II
Oracle Database Architecture

Part II describes the basic structural architecture of the Oracle database, including
physical and logical storage structures. Part II contains the following chapters:

■ Chapter 2, "Data Blocks, Extents, and Segments"

■ Chapter 3, "Tablespaces, Datafiles, and Control Files"

■ Chapter 4, "Transaction Management"

■ Chapter 5, "Schema Objects"

■ Chapter 6, "Schema Object Dependencies"

■ Chapter 7, "The Data Dictionary"

■ Chapter 8, "Memory Architecture"

■ Chapter 9, "Process Architecture"

■ Chapter 10, "Application Architecture"

■ Chapter 11, "Oracle Database Utilities"

■ Chapter 12, "Database and Instance Startup and Shutdown"

Data Blocks, Extents, and Segments 2-1

2
Data Blocks, Extents, and Segments

This chapter describes the nature of and relationships among the logical storage
structures in the Oracle database server.

This chapter contains the following topics:

■ Introduction to Data Blocks, Extents, and Segments

■ Overview of Data Blocks

■ Overview of Extents

■ Overview of Segments

Introduction to Data Blocks, Extents, and Segments
Oracle Database allocates logical database space for all data in a database. The units of
database space allocation are data blocks, extents, and segments. Figure 2–1 shows the
relationships among these data structures.

Introduction to Data Blocks, Extents, and Segments

2-2 Oracle Database Concepts

Figure 2–1 The Relationships Among Segments, Extents, and Data Blocks

At the finest level of granularity, Oracle Database stores data in data blocks (also
called logical blocks, Oracle blocks, or pages). One data block corresponds to a
specific number of bytes of physical database space on disk.

The next level of logical database space is an extent. An extent is a specific number of
contiguous data blocks allocated for storing a specific type of information.

The level of logical database storage greater than an extent is called a segment. A
segment is a set of extents, each of which has been allocated for a specific data
structure and all of which are stored in the same tablespace. For example, each table's
data is stored in its own data segment, while each index's data is stored in its own
index segment. If the table or index is partitioned, each partition is stored in its own
segment.

Oracle Database allocates space for segments in units of one extent. When the existing
extents of a segment are full, Oracle Database allocates another extent for that
segment. Because extents are allocated as needed, the extents of a segment may or may
not be contiguous on disk.

A segment and all its extents are stored in one tablespace. Within a tablespace, a
segment can include extents from more than one file; that is, the segment can span
datafiles. However, each extent can contain data from only one datafile.

Although you can allocate additional extents, the blocks themselves are allocated
separately. If you allocate an extent to a specific instance, the blocks are immediately
allocated to the free list. However, if the extent is not allocated to a specific instance,
then the blocks themselves are allocated only when the high water mark moves. The
high water mark is the boundary between used and unused space in a segment.

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

Data Blocks

Extent
24Kb

Extent
72Kb

Segment
96Kb

Overview of Data Blocks

Data Blocks, Extents, and Segments 2-3

Overview of Data Blocks
Oracle Database manages the storage space in the datafiles of a database in units
called data blocks. A data block is the smallest unit of data used by a database. In
contrast, at the physical, operating system level, all data is stored in bytes. Each
operating system has a block size. Oracle Database requests data in multiples of
Oracle Database data blocks, not operating system blocks.

The standard block size is specified by the DB_BLOCK_SIZE initialization parameter.
In addition, you can specify of up to five nonstandard block sizes. The data block sizes
should be a multiple of the operating system's block size within the maximum limit to
avoid unnecessary I/O. Oracle Database data blocks are the smallest units of storage
that Oracle Database can use or allocate.

This section includes the following topics:

■ Data Block Format

■ Free Space Management

■ PCTFREE, PCTUSED, and Row Chaining

Data Block Format
The Oracle Database data block format is similar regardless of whether the data block
contains table, index, or clustered data. Figure 2–2 illustrates the format of a data
block.

Figure 2–2 Data Block Format

Note: Oracle recommends that you manage free space automatically.
See "Free Space Management" on page 2-5.

See Also:

■ Your Oracle Database operating system-specific documentation
for more information about data block sizes

■ Multiple Block Sizes on page 3-11

Database Block

Common and Variable Header

Table Directory

Row Directory

Free Space

Row Data

Overview of Data Blocks

2-4 Oracle Database Concepts

This section discusses the following components of the data block:

■ Header (Common and Variable)

■ Table Directory

■ Row Directory

■ Overhead

■ Row Data

■ Free Space

Header (Common and Variable)
The header contains general block information, such as the block address and the type
of segment (for example, data or index).

Table Directory
This portion of the data block contains information about the table having rows in this
block.

Row Directory
This portion of the data block contains information about the actual rows in the block
(including addresses for each row piece in the row data area).

After the space has been allocated in the row directory of a data block's overhead, this
space is not reclaimed when the row is deleted. Therefore, a block that is currently
empty but had up to 50 rows at one time continues to have 100 bytes allocated in the
header for the row directory. Oracle Database reuses this space only when new rows
are inserted in the block.

Overhead
The data block header, table directory, and row directory are referred to collectively as
overhead. Some block overhead is fixed in size; the total block overhead size is
variable. On average, the fixed and variable portions of data block overhead total 84 to
107 bytes.

Row Data
This portion of the data block contains table or index data. Rows can span blocks.

Free Space
Free space is allocated for insertion of new rows and for updates to rows that require
additional space (for example, when a trailing null is updated to a nonnull value).

In data blocks allocated for the data segment of a table or cluster, or for the index
segment of an index, free space can also hold transaction entries. A transaction entry
is required in a block for each INSERT, UPDATE, DELETE, and SELECT...FOR UPDATE
statement accessing one or more rows in the block. The space required for transaction
entries is operating system dependent; however, transaction entries in most operating
systems require approximately 23 bytes.

See Also: "Row Chaining and Migrating" on page 2-5

Overview of Data Blocks

Data Blocks, Extents, and Segments 2-5

Free Space Management
Free space can be managed automatically or manually.

Free space can be managed automatically inside database segments. The in-segment
free/used space is tracked using bitmaps, as opposed to free lists. Automatic
segment-space management offers the following benefits:

■ Ease of use

■ Better space utilization, especially for the objects with highly varying row sizes

■ Better run-time adjustment to variations in concurrent access

■ Better multi-instance behavior in terms of performance/space utilization

You specify automatic segment-space management when you create a locally managed
tablespace. The specification then applies to all segments subsequently created in this
tablespace.

This section includes the following topics:

■ Availability and Optimization of Free Space in a Data Block

■ Row Chaining and Migrating

Availability and Optimization of Free Space in a Data Block
Two types of statements can increase the free space of one or more data blocks:
DELETE statements, and UPDATE statements that update existing values to smaller
values. The released space from these types of statements is available for subsequent
INSERT statements under the following conditions:

■ If the INSERT statement is in the same transaction and subsequent to the
statement that frees space, then the INSERT statement can use the space made
available.

■ If the INSERT statement is in a separate transaction from the statement that frees
space (perhaps being run by another user), then the INSERT statement can use the
space made available only after the other transaction commits and only if the
space is needed.

Released space may or may not be contiguous with the main area of free space in a
data block. Oracle Database coalesces the free space of a data block only when (1) an
INSERT or UPDATE statement attempts to use a block that contains enough free space
to contain a new row piece, and (2) the free space is fragmented so the row piece
cannot be inserted in a contiguous section of the block. Oracle Database does this
compression only in such situations, because otherwise the performance of a database
system decreases due to the continuous compression of the free space in data blocks.

Row Chaining and Migrating
In two circumstances, the data for a row in a table may be too large to fit into a single
data block. In the first case, the row is too large to fit into one data block when it is first
inserted. In this case, Oracle Database stores the data for the row in a chain of data
blocks (one or more) reserved for that segment. Row chaining most often occurs with
large rows, such as rows that contain a column of datatype LONG or LONG RAW. Row
chaining in these cases is unavoidable.

However, in the second case, a row that originally fit into one data block is updated so
that the overall row length increases, and the block's free space is already completely

See Also: Oracle Database Administrator's Guide

Overview of Data Blocks

2-6 Oracle Database Concepts

filled. In this case, Oracle Database migrates the data for the entire row to a new data
block, assuming the entire row can fit in a new block. Oracle Database preserves the
original row piece of a migrated row to point to the new block containing the migrated
row. The rowid of a migrated row does not change.

When a row is chained or migrated, I/O performance associated with this row
decreases because Oracle Database must scan more than one data block to retrieve the
information for the row.

PCTFREE, PCTUSED, and Row Chaining
For manually managed tablespaces, two space management parameters, PCTFREE
and PCTUSED, enable you to control the use of free space for inserts and updates to the
rows in all the data blocks of a particular segment. Specify these parameters when you
create or alter a table or cluster (which has its own data segment). You can also specify
the storage parameter PCTFREE when creating or altering an index (which has its own
index segment).

This section includes the following topics:

■ The PCTFREE Parameter

■ The PCTUSED Parameter

■ How PCTFREE and PCTUSED Work Together

The PCTFREE Parameter
The PCTFREE parameter sets the minimum percentage of a data block to be reserved
as free space for possible updates to rows that already exist in that block. For example,
assume that you specify the following parameter within a CREATE TABLE statement:

PCTFREE 20

This states that 20% of each data block in this table's data segment be kept free and
available for possible updates to the existing rows already within each block. New
rows can be added to the row data area, and corresponding information can be added
to the variable portions of the overhead area, until the row data and overhead total
80% of the total block size. Figure 2–3 illustrates PCTFREE.

See Also:

■ "Row Format and Size" on page 5-5 for more information on the
format of a row and a row piece

■ "Rowids of Row Pieces" on page 5-7 for more information on
rowids

■ "Physical Rowids" on page 26-14 for information about rowids

■ Oracle Database Performance Tuning Guide for information about
reducing chained and migrated rows and improving I/O
performance

Note: This discussion does not apply to LOB datatypes (BLOB,
CLOB, NCLOB, and BFILE). They do not use the PCTFREE storage
parameter or free lists.

See "Overview of LOB Datatypes" on page 26-11 for information.

Overview of Data Blocks

Data Blocks, Extents, and Segments 2-7

Figure 2–3 PCTFREE

The PCTUSED Parameter
The PCTUSED parameter sets the minimum percentage of a block that can be used for
row data plus overhead before new rows are added to the block. After a data block is
filled to the limit determined by PCTFREE, Oracle Database considers the block
unavailable for the insertion of new rows until the percentage of that block falls
beneath the parameter PCTUSED. Until this value is achieved, Oracle Database uses the
free space of the data block only for updates to rows already contained in the data
block. For example, assume that you specify the following parameter in a CREATE
TABLE statement:

PCTUSED 40

In this case, a data block used for this table's data segment is considered unavailable
for the insertion of any new rows until the amount of used space in the block falls to
39% or less (assuming that the block's used space has previously reached PCTFREE).
Figure 2–4 illustrates this.

PCTFREE = 20
Data Block

20% Free Space

Block allows row inserts
until 80% is occupied,
leaving 20% free for updates
to existing rows in the block

Overview of Data Blocks

2-8 Oracle Database Concepts

Figure 2–4 PCTUSED

How PCTFREE and PCTUSED Work Together
PCTFREE and PCTUSED work together to optimize the use of space in the data blocks
of the extents within a data segment. Figure 2–5 illustrates the interaction of these two
parameters.

61% Free
Space

No new rows are
inserted until amount
of used space falls
below 40%

PCTUSED = 40
Data Block

Overview of Data Blocks

Data Blocks, Extents, and Segments 2-9

Figure 2–5 Maintaining the Free Space of Data Blocks with PCTFREE and PCTUSED

In a newly allocated data block, the space available for inserts is the block size minus
the sum of the block overhead and free space (PCTFREE). Updates to existing data can
use any available space in the block. Therefore, updates can reduce the available space
of a block to less than PCTFREE, the space reserved for updates but not accessible to
inserts.

For each data and index segment, Oracle Database maintains one or more free
lists—lists of data blocks that have been allocated for that segment's extents and have
free space greater than PCTFREE. These blocks are available for inserts. When you
issue an INSERT statement, Oracle Database checks a free list of the table for the first
available data block and uses it if possible. If the free space in that block is not large
enough to accommodate the INSERT statement, and the block is at least PCTUSED,
then Oracle Database takes the block off the free list. Multiple free lists for each
segment can reduce contention for free lists when concurrent inserts take place.

After you issue a DELETE or UPDATE statement, Oracle Database processes the
statement and checks to see if the space being used in the block is now less than
PCTUSED. If it is, then the block goes to the beginning of the transaction free list, and it
is the first of the available blocks to be used in that transaction. When the transaction
commits, free space in the block becomes available for other transactions.

Rows are
inserted up to
80% only,
because
PCTFREE
specifies that
20% of the
block must
remain open
for updates of
existing rows.
This cycle
continues . . .

Updates to
exisiting rows
use the free
space
reserved in
the block.
No new rows
can be
inserted into
the block
until the
amount of
used
space is 39%
or less.

After the
amount of
used space
falls below
40%, new
rows can
again be
inserted into
this block.

Rows are
inserted up to
80% only,
because
PCTFREE
specifies that
20% of the
block must
remain open
for updates of
existing rows.

1

3

2

4

Overview of Extents

2-10 Oracle Database Concepts

Overview of Extents
An extent is a logical unit of database storage space allocation made up of a number of
contiguous data blocks. One or more extents in turn make up a segment. When the
existing space in a segment is completely used, Oracle Database allocates a new extent
for the segment.

This section includes the following topics:

■ When Extents Are Allocated

■ Determine the Number and Size of Extents

■ How Extents Are Allocated

■ When Extents Are Deallocated

When Extents Are Allocated
When you create a table, Oracle Database allocates to the table's data segment an
initial extent of a specified number of data blocks. Although no rows have been
inserted yet, the Oracle Database data blocks that correspond to the initial extent are
reserved for that table's rows.

If the data blocks of a segment's initial extent become full and more space is required
to hold new data, Oracle Database automatically allocates an incremental extent for
that segment. An incremental extent is a subsequent extent of the same or greater size
than the previously allocated extent in that segment.

For maintenance purposes, the header block of each segment contains a directory of
the extents in that segment.

Determine the Number and Size of Extents
Storage parameters expressed in terms of extents define every segment. Storage
parameters apply to all types of segments. They control how Oracle Database allocates
free database space for a given segment. For example, you can determine how much
space is initially reserved for a table's data segment or you can limit the number of
extents the table can allocate by specifying the storage parameters of a table in the
STORAGE clause of the CREATE TABLE statement. If you do not specify a table's
storage parameters, then it uses the default storage parameters of the tablespace.

You can have dictionary managed tablespaces, which rely on data dictionary tables to
track space utilization, or locally managed tablespaces, which use bitmaps (instead of
data dictionary tables) to track used and free space. Because of the better performance
and easier manageability of locally managed tablespaces, the default for non-SYSTEM
permanent tablespaces is locally managed whenever the type of extent management is
not explicitly specified.

A tablespace that manages its extents locally can have either uniform extent sizes or
variable extent sizes that are determined automatically by the system. When you
create the tablespace, the UNIFORM or AUTOALLOCATE (system-managed) clause
specifies the type of allocation.

Note: This chapter applies to serial operations, in which one server
process parses and runs a SQL statement. Extents are allocated
somewhat differently in parallel SQL statements, which entail
multiple server processes.

Overview of Extents

Data Blocks, Extents, and Segments 2-11

■ For uniform extents, you can specify an extent size or use the default size, which is
1 MB. Ensure that each extent contains at least five database blocks, given the
database block size. Temporary tablespaces that manage their extents locally can
only use this type of allocation.

■ For system-managed extents, Oracle Database determines the optimal size of
additional extents, with a minimum extent size of 64 KB. If the tablespaces are
created with 'segment space management auto', and if the database block size is
16K or higher, then Oracle Database manages segment size by creating extents
with a minimum size of 1M. This is the default for permanent tablespaces.

The storage parameters INITIAL, NEXT, PCTINCREASE, and MINEXTENTS cannot be
specified at the tablespace level for locally managed tablespaces. They can, however,
be specified at the segment level. In this case, INITIAL, NEXT, PCTINCREASE, and
MINEXTENTS are used together to compute the initial size of the segment. After the
segment size is computed, internal algorithms determine the size of each extent.

How Extents Are Allocated
Oracle Database uses different algorithms to allocate extents, depending on whether
they are locally managed or dictionary managed.

With locally managed tablespaces, Oracle Database looks for free space to allocate to a
new extent by first determining a candidate datafile in the tablespace and then
searching the datafile's bitmap for the required number of adjacent free blocks. If that
datafile does not have enough adjacent free space, then Oracle Database looks in
another datafile.

When Extents Are Deallocated
Oracle Database provides a Segment Advisor that helps you determine whether an
object has space available for reclamation based on the level of space fragmentation
within the object.

In general, the extents of a segment do not return to the tablespace until you drop the
schema object whose data is stored in the segment (using a DROP TABLE or DROP
CLUSTER statement). Exceptions to this include the following:

■ The owner of a table or cluster, or a user with the DELETE ANY privilege, can
truncate the table or cluster with a TRUNCATE...DROP STORAGE statement.

See Also:

■ "Managing Space in Tablespaces" on page 3-9

■ "Bigfile Tablespaces" on page 3-5

■ Oracle Database Administrator's Guide

Note: Oracle strongly recommends that you use locally managed
tablespaces.

See Also:

■ Oracle Database Administrator's Guide for guidelines on reclaiming
segment space

■ Oracle Database SQL Language Reference for SQL syntax and
semantics

Overview of Extents

2-12 Oracle Database Concepts

■ A database administrator (DBA) can deallocate unused extents using the following
SQL syntax:

ALTER TABLE table_name DEALLOCATE UNUSED;

■ Periodically, Oracle Database deallocates one or more extents of a rollback
segment if it has the OPTIMAL size specified.

When extents are freed, Oracle Database modifies the bitmap in the datafile (for locally
managed tablespaces) or updates the data dictionary (for dictionary managed
tablespaces) to reflect the regained extents as available space. Any data in the blocks of
freed extents becomes inaccessible.

This section includes the following topics:

■ Extents in Nonclustered Tables

■ Extents in Clustered Tables

■ Extents in Materialized Views and Their Logs

■ Extents in Indexes

■ Extents in Temporary Segments

■ Extents in Rollback Segments

Extents in Nonclustered Tables
As long as a nonclustered table exists or until you truncate the table, any data block
allocated to its data segment remains allocated for the table. Oracle Database inserts
new rows into a block if there is enough room. Even if you delete all rows of a table,
Oracle Database does not reclaim the data blocks for use by other objects in the
tablespace.

After you drop a nonclustered table, this space can be reclaimed when other extents
require free space. Oracle Database reclaims all the extents of the table's data and
index segments for the tablespaces that they were in and makes the extents available
for other schema objects in the same tablespace.

In dictionary managed tablespaces, when a segment requires an extent larger than the
available extents, Oracle Database identifies and combines contiguous reclaimed
extents to form a larger one. This is called coalescing extents. Coalescing extents is not
necessary in locally managed tablespaces, because all contiguous free space is
available for allocation to a new extent regardless of whether it was reclaimed from
one or more extents.

Extents in Clustered Tables
Clustered tables store information in the data segment created for the cluster.
Therefore, if you drop one table in a cluster, the data segment remains for the other
tables in the cluster, and no extents are deallocated. You can also truncate clusters
(except for hash clusters) to free extents.

See Also:

■ Oracle Database Administrator's Guide

■ Oracle Database SQL Language Reference

Overview of Segments

Data Blocks, Extents, and Segments 2-13

Extents in Materialized Views and Their Logs
Oracle Database deallocates the extents of materialized views and materialized view
logs in the same manner as for tables and clusters.

Extents in Indexes
All extents allocated to an index segment remain allocated as long as the index exists.
When you drop the index or associated table or cluster, Oracle Database reclaims the
extents for other uses within the tablespace.

Extents in Temporary Segments
When Oracle Database completes the execution of a statement requiring a temporary
segment, Oracle Database automatically drops the temporary segment and returns the
extents allocated for that segment to the associated tablespace. A single sort allocates
its own temporary segment in a temporary tablespace of the user issuing the statement
and then returns the extents to the tablespaces.

Multiple sorts, however, can use sort segments in temporary tablespaces designated
exclusively for sorts. These sort segments are allocated only once for the instance, and
they are not returned after the sort, but remain available for other multiple sorts.

A temporary segment in a temporary table contains data for multiple statements of a
single transaction or session. Oracle Database drops the temporary segment at the end
of the transaction or session, returning the extents allocated for that segment to the
associated tablespace.

Extents in Rollback Segments
Oracle Database periodically checks the rollback segments of the database to see if
they have grown larger than their optimal size. If a rollback segment is larger than is
optimal (that is, it has too many extents), then Oracle Database automatically
deallocates one or more extents from the rollback segment.

Overview of Segments
A segment is a set of extents that contains all the data for a specific logical storage
structure within a tablespace. For example, for each table, Oracle Database allocates
one or more extents to form that table's data segment, and for each index, Oracle
Database allocates one or more extents to form its index segment.

This section contains the following topics:

■ Introduction to Data Segments

■ Introduction to Index Segments

■ Introduction to Temporary Segments

■ Introduction to Undo Segments and Automatic Undo Management

See Also: "Overview of Materialized Views" on page 5-18

See Also:

■ "Introduction to Temporary Segments" on page 2-14

■ "Temporary Tables" on page 5-10

Overview of Segments

2-14 Oracle Database Concepts

Introduction to Data Segments
A single data segment in an Oracle Database database holds all of the data for one of
the following:

■ A table that is not partitioned or clustered

■ A partition of a partitioned table

■ A cluster of tables

Oracle Database creates this data segment when you create the table or cluster with the
CREATE statement.

The storage parameters for a table or cluster determine how its data segment's extents
are allocated. You can set these storage parameters directly with the appropriate
CREATE or ALTER statement. These storage parameters affect the efficiency of data
retrieval and storage for the data segment associated with the object.

Introduction to Index Segments
Every nonpartitioned index in an Oracle database has a single index segment to hold
all of its data. For a partitioned index, every partition has a single index segment to
hold its data.

Oracle Database creates the index segment for an index or an index partition when
you issue the CREATE INDEX statement. In this statement, you can specify storage
parameters for the extents of the index segment and a tablespace in which to create the
index segment. (The segments of a table and an index associated with it do not have to
occupy the same tablespace.) Setting the storage parameters directly affects the
efficiency of data retrieval and storage.

Introduction to Temporary Segments
When processing queries, Oracle Database often requires temporary workspace for
intermediate stages of SQL statement parsing and execution. Oracle Database
automatically allocates this disk space called a temporary segment. Typically, Oracle
Database requires a temporary segment as a database area for sorting. Oracle Database
does not create a segment if the sorting operation can be done in memory or if Oracle
Database finds some other way to perform the operation using indexes.

This section includes the following topics:

■ Operations that Require Temporary Segments

■ Segments in Temporary Tables and Their Indexes

■ How Temporary Segments Are Allocated

Note: Oracle Database creates segments for materialized views and
materialized view logs in the same manner as for tables and clusters.

See Also:

■ Oracle Database Advanced Replication for information on
materialized views and materialized view logs

■ Oracle Database SQL Language Reference for syntax

Overview of Segments

Data Blocks, Extents, and Segments 2-15

Operations that Require Temporary Segments
The following statements sometimes require the use of a temporary segment:

■ CREATE INDEX

■ SELECT ... ORDER BY

■ SELECT DISTINCT ...

■ SELECT ... GROUP BY

■ SELECT . . . UNION

■ SELECT ... INTERSECT

■ SELECT ... MINUS

Some unindexed joins and correlated subqueries can require use of a temporary
segment. For example, if a query contains a DISTINCT clause, a GROUP BY, and an
ORDER BY, Oracle Database can require as many as two temporary segments.

Segments in Temporary Tables and Their Indexes
Oracle Database can also allocate temporary segments for temporary tables and
indexes created on temporary tables. Temporary tables hold data that exists only for
the duration of a transaction or session.

How Temporary Segments Are Allocated
Oracle Database allocates temporary segments differently for queries and temporary
tables.

This section includes the following topics:

■ Allocation of Temporary Segments for Queries

■ Allocation of Temporary Segments for Temporary Tables and Indexes

Allocation of Temporary Segments for Queries Oracle Database allocates temporary
segments as needed during a user session in one of the temporary tablespaces of the
user issuing the statement. Specify these tablespaces with a CREATE USER or an
ALTER USER statement using the TEMPORARY TABLESPACE clause.

If no temporary tablespace is defined for the user, then the default temporary
tablespace is the SYSTEM tablespace. The default storage characteristics of the
containing tablespace determine those of the extents of the temporary segment. Oracle
Database drops temporary segments when the statement completes.

Because allocation and deallocation of temporary segments occur frequently, create at
least one special tablespace for temporary segments. By doing so, you can distribute
I/O across disk devices, and you can avoid fragmentation of the SYSTEM and other
tablespaces that otherwise hold temporary segments.

See Also: "Temporary Tables" on page 5-10

Note: You cannot assign a permanent tablespace as a user's
temporary tablespace.

Overview of Segments

2-16 Oracle Database Concepts

Entries for changes to temporary segments used for sort operations are not stored in
the redo log, except for space management operations on the temporary segment.

Allocation of Temporary Segments for Temporary Tables and Indexes Oracle Database
allocates segments for a temporary table when the first INSERT into that table is
issued. (This can be an internal insert operation issued by CREATE TABLE AS
SELECT.) The first INSERT into a temporary table allocates the segments for the table
and its indexes, creates the root page for the indexes, and allocates any LOB segments.

Segments for a temporary table are allocated in a temporary tablespace of the user
who created the temporary table.

Oracle Database drops segments for a transaction-specific temporary table at the end
of the transaction and drops segments for a session-specific temporary table at the end
of the session. If other transactions or sessions share the use of that temporary table,
the segments containing their data remain in the table.

Introduction to Undo Segments and Automatic Undo Management
Oracle Database maintains information to reverse changes made to the database. This
information consists of records of the actions of transactions, collectively known as
undo. Undo is stored in undo segments in an undo tablespace. Oracle Database uses
undo information to do the following:

■ Rollback an active transaction

■ Recover a terminated transaction

■ Provide read consistency

■ Recovery from logical corruptions

When a ROLLBACK statement is issued, undo records are used to undo changes that
were made to the database by the uncommitted transaction. During database recovery,
undo records are used to undo any uncommitted changes applied from the redo log to
the datafiles. Undo records provide read consistency by maintaining the before image
of the data for users who are accessing the data at the same time that another user is
changing it. See "How Oracle Database Manages Data Concurrency and Consistency"
on page 13-3 for more information on read consistency.

Oracle Database provides a fully automated mechanism, referred to as automatic
undo management, for managing undo information and space. In this management
mode, for all current sessions, the server automatically manages undo segments and
space in the undo tablespace.

Note: When the SYSTEM tablespace is locally managed, you must
define a default temporary tablespace when creating a database. A
locally managed SYSTEM tablespace cannot be used for default
temporary storage.

See Also:

■ "Bigfile Tablespaces" on page 3-5

■ Chapter 20, "Database Security" for more information about
assigning a user's temporary segment tablespace

See Also: "Temporary Tables" on page 5-10

Overview of Segments

Data Blocks, Extents, and Segments 2-17

Automatic undo management eliminates the complexities of managing rollback
segment space. In addition, the system automatically tunes itself to provide the best
possible retention of undo information to satisfy long-running queries that may
require this undo information. Automatic undo management is the default for new
installations of Oracle Database. The installation process automatically creates an undo
tablespace.

Oracle Database contains an Undo Advisor that provides advice on and helps
automate the establishment of your undo environment.

This section includes the following topics:

■ Manual Undo Management

■ Undo Quota

■ Automatic Undo Retention

Manual Undo Management
A database system can also run in manual undo management mode. In manual undo
management mode, undo space is managed through rollback segments, and no undo
tablespace is used.

Earlier releases of Oracle Database defaulted to manual undo management mode. To
change to automatic undo management, it was necessary to first create an undo
tablespace and then change an initialization parameter. If your Oracle Database is
release 9i or later and you want to change to automatic undo management, see Oracle
Database Upgrade Guide for instructions.

Undo Quota
In automatic undo management mode, the system controls exclusively the assignment
of transactions to undo segments, and controls space allocation for undo segments. An
ill-behaved transaction can potentially consume much of the undo space, thus
paralyzing the entire system. The Resource Manager directive UNDO_POOL is a more
explicit way to control large transactions. This lets database administrators group
users into consumer groups, with each group assigned a maximum undo space limit.
When the total undo space consumed by a group exceeds the limit, its users cannot
make further updates until undo space is freed up by other member transactions
ending.

The default value of UNDO_POOL is UNLIMITED, where users are allowed to consume
as much undo space as the undo tablespace has. Database administrators can limit a
particular user by using the UNDO_POOL directive.

Automatic Undo Retention
After a transaction is committed, undo data is no longer needed for rollback or
transaction recovery purposes. However, for consistent read purposes, long-running
queries may require this old undo information for producing older images of data

See Also: Oracle Database 2 Day DBA for information on the Undo
Advisor and on how to use advisors and see Oracle Database
Administrator's Guide for more information on using automatic undo
management

Note: Space management for rollback segments is complex. Oracle
strongly recommends using automatic undo management.

Overview of Segments

2-18 Oracle Database Concepts

blocks. Furthermore, the success of several Oracle Flashback features can also depend
upon the availability of older undo information. For these reasons, it is desirable to
retain the old undo information for as long as possible. If the undo tablespace has
space available for new transactions, then old undo information can be retained. When
available space in the tablespace becomes short, the database begins to overwrite old
undo information for transactions that have been committed.

Oracle Database automatically tunes the system to provide the best possible undo
retention for the current undo tablespace. The database collects usage statistics and
tunes the undo retention period based on these statistics and the undo tablespace size.
If the undo tablespace is configured with the AUTOEXTEND option, with maximum size
not specified, undo retention tuning is slightly different. In this case, the database
tunes the undo retention period to be slightly longer than the longest-running query, if
space allows.

See Also: Oracle Database Administrator's Guide for more details on
automatic tuning of undo retention

Tablespaces, Datafiles, and Control Files 3-1

3
Tablespaces, Datafiles, and Control Files

This chapter describes tablespaces, the primary logical database structures of any
Oracle database, and the physical datafiles that correspond to each tablespace.

This chapter contains the following topics:

■ Introduction to Tablespaces, Datafiles, and Control Files

■ Overview of Tablespaces

■ Overview of Datafiles

■ Overview of Control Files

Introduction to Tablespaces, Datafiles, and Control Files
Oracle Database stores data logically in tablespaces and physically in datafiles
associated with the corresponding tablespace. Figure 3–1 illustrates this relationship.

Figure 3–1 Datafiles and Tablespaces

Tablespace
(one or more datafiles)

Table

Index

Index

Index

Index

Index

Index

Index

Table

Table

Index

Index

Index

Datafiles
(physical structures associated
with only one tablespace)

Objects
(stored in tablespaces-
may span several datafiles)

Introduction to Tablespaces, Datafiles, and Control Files

3-2 Oracle Database Concepts

Databases, tablespaces, and datafiles are closely related, but they have important
differences:

■ An Oracle database consists of at least two logical storage units called tablespaces,
which collectively store all of the database's data. You must have the SYSTEM and
SYSAUX tablespaces and a third tablespace, called TEMP, is optional.

■ Each tablespace in an Oracle database consists of one or more files called datafiles,
which are physical structures that conform to the operating system in which
Oracle Database is running.

■ A database's data is collectively stored in the datafiles that constitute each
tablespace of the database. For example, the simplest Oracle database would have
one tablespace and one datafile. Another database can have three tablespaces, each
consisting of two datafiles (for a total of six datafiles).

This section includes the following topics:

■ Oracle-Managed Files

■ Allocate More Space for a Database

Oracle-Managed Files
Oracle-managed files eliminate the need for you, the DBA, to directly manage the
operating system files comprising an Oracle database. You specify operations in terms
of database objects rather than filenames. Oracle Database internally uses standard file
system interfaces to create and delete files as needed for the following database
structures:

■ Tablespaces

■ Redo log files

■ Control files

Through initialization parameters, you specify the file system directory to be used for
a particular type of file. Oracle Database then ensures that a unique file, an
Oracle-managed file, is created and deleted when no longer needed.

Allocate More Space for a Database
The size of a tablespace is the size of the datafiles that constitute the tablespace. The
size of a database is the collective size of the tablespaces that constitute the database.

You can enlarge a database in three ways:

■ Add a datafile to a tablespace

■ Add a new tablespace

■ Increase the size of a datafile

When you add another datafile to an existing tablespace, you increase the amount of
disk space allocated for the corresponding tablespace. Figure 3–2 illustrates this kind
of space increase.

See Also:

■ Oracle Database Administrator's Guide

■ "Automatic Storage Management" on page 14-14

Introduction to Tablespaces, Datafiles, and Control Files

Tablespaces, Datafiles, and Control Files 3-3

Figure 3–2 Enlarging a Database by Adding a Datafile to a Tablespace

Alternatively, you can create a new tablespace (which contains at least one additional
datafile) to increase the size of a database. Figure 3–3 illustrates this.

Figure 3–3 Enlarging a Database by Adding a New Tablespace

The third option for enlarging a database is to change a datafile's size or let datafiles in
existing tablespaces grow dynamically as more space is needed. You accomplish this
by altering existing files or by adding files with dynamic extension properties.
Figure 3–4 illustrates this.

DATA1.ORA DATA3.ORADATA2.ORA

System Tablespace

Database

ALTER TABLESPACE system
ADD DATAFILE 'DATA2.ORA'

ALTER TABLESPACE system
ADD DATAFILE 'DATA3.ORA'

Single Tablespace

Database size and
tablespace size increase
with the addition of
datafiles

DATA1.ORA DATA2.ORA DATA3.ORA

System Tablespace USERS Tablespace

Database

Two Tablespaces

CREATE TABLESPACE users
DATAFILE 'DATA3.ORA'

Overview of Tablespaces

3-4 Oracle Database Concepts

Figure 3–4 Enlarging a Database by Dynamically Sizing Datafiles

Overview of Tablespaces
A database is divided into one or more logical storage units called tablespaces.
Tablespaces are divided into logical units of storage called segments, which are further
divided into extents. Extents are a collection of contiguous blocks.

This section includes the following topics about tablespaces:

■ Bigfile Tablespaces

■ The SYSTEM Tablespace

■ The SYSAUX Tablespace

■ Undo Tablespaces

■ Default Temporary Tablespace

■ Using Multiple Tablespaces

■ Managing Space in Tablespaces

■ Multiple Block Sizes

■ Online and Offline Tablespaces

■ Read-Only Tablespaces

■ Temporary Tablespaces

See Also: Oracle Database Administrator's Guide for more information
about increasing the amount of space in your database

DATA1.ORA DATA2.ORA

System Tablespace USERS Tablespace

DATA3.ORA

Database

ALTER DATABASE
DATAFILE 'DATA3.ORA'
 AUTOEXTEND ON NEXT 20M
 MAXSIZE 1000M;

20 M

20 M

Overview of Tablespaces

Tablespaces, Datafiles, and Control Files 3-5

■ Transport of Tablespaces Between Databases

Bigfile Tablespaces
Oracle Database lets you create bigfile tablespaces. This allows Oracle Database to
contain tablespaces made up of single large files rather than numerous smaller ones.
This lets Oracle Database utilize the ability of 64-bit systems to create and manage
ultralarge files. The consequence of this is that Oracle Database can now scale up to 8
exabytes in size.

With Oracle-managed files, bigfile tablespaces make datafiles completely transparent
for users. In other words, you can perform operations on tablespaces, rather than the
underlying datafile. Bigfile tablespaces make the tablespace the main unit of the disk
space administration, backup and recovery, and so on. Bigfile tablespaces also simplify
datafile management with Oracle-managed files and Automatic Storage Management
by eliminating the need for adding new datafiles and dealing with multiple files.

The system default is to create a smallfile tablespace, which is the traditional type of
Oracle Database tablespace. The SYSTEM and SYSAUX tablespace types are always
created using the system default type.

Bigfile tablespaces are supported only for locally managed tablespaces with automatic
segment-space management. There are two exceptions: locally managed undo and
temporary tablespaces can be bigfile tablespaces, even though their segments are
manually managed.

An Oracle database can contain both bigfile and smallfile tablespaces. Tablespaces of
different types are indistinguishable in terms of execution of SQL statements that do
not explicitly refer to datafiles.

You can create a group of temporary tablespaces that let a user consume temporary
space from multiple tablespaces. A tablespace group can also be specified as the
default temporary tablespace for the database. This is useful with bigfile tablespaces,
where you could need a lot of temporary tablespace for sorts.

This section includes the following topics:

■ Benefits of Bigfile Tablespaces

■ Considerations with Bigfile Tablespaces

Benefits of Bigfile Tablespaces
■ Bigfile tablespaces can significantly increase the storage capacity of an Oracle

database. Smallfile tablespaces can contain up to 1024 files, but bigfile tablespaces
contain only one file that can be 1024 times larger than a smallfile tablespace. The
total tablespace capacity is the same for smallfile tablespaces and bigfile
tablespaces. However, because there is limit of 64K datafiles for each database, a
database can contain 1024 times more bigfile tablespaces than smallfile
tablespaces, so bigfile tablespaces increase the total database capacity by 3 orders
of magnitude. In other words, 8 exabytes is the maximum size of the Oracle
database when bigfile tablespaces are used with the maximum block size (32 k).

See Also:

■ Chapter 2, "Data Blocks, Extents, and Segments" for more
information about segments and extents

■ Oracle Database Administrator's Guide for detailed information on
creating and configuring tablespaces

Overview of Tablespaces

3-6 Oracle Database Concepts

■ Bigfile tablespaces simplify management of datafiles in ultra large databases by
reducing the number of datafiles needed. You can also adjust parameters to reduce
the SGA space required for datafile information and the size of the control file.

■ They simplify database management by providing datafile transparency.

Considerations with Bigfile Tablespaces
■ Bigfile tablespaces are intended to be used with Automatic Storage Management

or other logical volume managers that support dynamically extensible logical
volumes and striping or RAID.

■ Avoid creating bigfile tablespaces on a system that does not support striping
because of negative implications for parallel execution and RMAN backup
parallelization.

■ Avoid using bigfile tablespaces if there could possibly be no free space available
on a disk group, and the only way to extend a tablespace is to add a new datafile
on a different disk group.

■ Using bigfile tablespaces on platforms that do not support large file sizes is not
recommended and can limit tablespace capacity. Refer to your operating system
specific documentation for information about maximum supported file sizes.

■ Performance of database opens, checkpoints, and DBWR processes should
improve if data is stored in bigfile tablespaces instead of traditional tablespaces.
However, increasing the datafile size might increase time to restore a corrupted file
or create a new datafile.

The SYSTEM Tablespace
Every Oracle database contains a tablespace named SYSTEM, which Oracle Database
creates automatically when the database is created. The SYSTEM tablespace is always
online when the database is open.

To take advantage of the benefits of locally managed tablespaces, you can create a
locally managed SYSTEM tablespace, or you can migrate an existing dictionary
managed SYSTEM tablespace to a locally managed format.

In a database with a locally managed SYSTEM tablespace, dictionary managed
tablespaces cannot be created. It is possible to plug in a dictionary managed tablespace
using the transportable feature, but it cannot be made writable.

This section includes the following topics:

■ The Data Dictionary

■ PL/SQL Program Units Description

The Data Dictionary
The SYSTEM tablespace always contains the data dictionary tables for the entire
database.

PL/SQL Program Units Description
All data stored on behalf of stored PL/SQL program units (that is, procedures,
functions, packages, and triggers) resides in the SYSTEM tablespace. If the database

See Also: Oracle Database Administrator's Guide for details on
creating, altering, and administering bigfile tablespaces

Overview of Tablespaces

Tablespaces, Datafiles, and Control Files 3-7

contains many of these program units, then the database administrator must provide
the space the units need in the SYSTEM tablespace.

The SYSAUX Tablespace
The SYSAUX tablespace is an auxiliary tablespace to the SYSTEM tablespace. Many
database components use the SYSAUX tablespace as their default location to store data.
Therefore, the SYSAUX tablespace is always created during database creation or
database upgrade.

The SYSAUX tablespace provides a centralized location for database metadata that
does not reside in the SYSTEM tablespace. It reduces the number of tablespaces created
by default, both in the seed database and in user-defined databases.

During normal database operation, Oracle Database does not allow the SYSAUX
tablespace to be dropped or renamed. Transportable tablespaces for SYSAUX is not
supported.

Undo Tablespaces
Undo tablespaces are special tablespaces used solely for storing undo information. You
cannot create any other segment types (for example, tables or indexes) in undo
tablespaces. Undo tablespaces are used only when the database is in automatic undo
management mode (the default). A database can contain more than one undo
tablespace, but only one can be in use at any time. Undo data is managed within an
undo tablespace using undo segments that are automatically created and maintained
by the database.

When the first DML operation is run within a transaction, the transaction is bound
(assigned) to an undo segment (and therefore to a transaction table) in the current
undo tablespace. In rare circumstances, if the instance does not have a designated
undo tablespace, the transaction binds to the system undo segment.

Each undo tablespace is composed of a set of datafiles and is locally managed. Like
other types of tablespaces, undo blocks are grouped in extents and the status of each
extent is represented in the bitmap. At any point in time, an extent is either allocated to
(and used by) a transaction table, or it is free.

You can create a bigfile undo tablespace.

See Also:

■ Oracle Database Administrator's Guide for information about
creating or migrating to a locally managed SYSTEM tablespace

■ "Online and Offline Tablespaces" on page 3-11 for information
about the permanent online condition of the SYSTEM tablespace

■ Chapter 24, "SQL" and Chapter 22, "Triggers" for information
about the space requirements of PL/SQL program units

Note: If the SYSAUX tablespace is unavailable, such as due to a
media failure, then some database features may fail.

See Also: Oracle Database Administrator's Guide to learn about
database components that use the SYSAUX tablespace

Overview of Tablespaces

3-8 Oracle Database Concepts

Creation of Undo Tablespaces
An undo tablespace is automatically created with each new installation of Oracle
Database. Earlier versions of Oracle Database may not include an undo tablespace and
may instead use rollback segments. This is known as manual undo management
mode. When upgrading to Oracle Database 11g you can migrate to automatic undo
management by creating an undo tablespace and enabling automatic undo
management mode. See Oracle Database Upgrade Guide for details.

Default Temporary Tablespace
When the SYSTEM tablespace is locally managed, you must define at least one default
temporary tablespace when creating a database. A locally managed SYSTEM
tablespace cannot be used for default temporary storage.

If SYSTEM is dictionary managed and if you do not define a default temporary
tablespace when creating the database, then SYSTEM is still used for default temporary
storage. However, you will receive a warning in ALERT.LOG saying that a default
temporary tablespace is recommended and will be necessary in future releases.

How to Specify a Default Temporary Tablespace
Specify default temporary tablespaces when you create a database, using the DEFAULT
TEMPORARY TABLESPACE extension to the CREATE DATABASE statement.

You can create bigfile temporary tablespaces. A bigfile temporary tablespace, like all
temporary tablespaces, uses tempfiles instead of datafiles.

Using Multiple Tablespaces
A very small database may need only the SYSTEM tablespace; however, Oracle
recommends that you create at least one additional tablespace to store user data
separate from data dictionary information. This gives you more flexibility in various
database administration operations and reduces contention among dictionary objects
and schema objects for the same datafiles.

You can use multiple tablespaces to perform the following tasks:

■ Control disk space allocation for database data

■ Assign specific space quotas for database users

■ Control availability of data by taking individual tablespaces online or offline

See Also:

■ Oracle Database Administrator's Guide for information on
managing the undo tablespace

■ "Bigfile Tablespaces" on page 3-5

Note: You cannot make a default temporary tablespace permanent or
take it offline.

See Also:

■ Oracle Database SQL Language Reference for information about
defining and altering default temporary tablespaces

■ "Bigfile Tablespaces" on page 3-5

Overview of Tablespaces

Tablespaces, Datafiles, and Control Files 3-9

■ Perform partial database backup or recovery operations

■ Allocate data storage across devices to improve performance

A database administrator can perform the following actions:

■ Create new tablespaces

■ Add datafiles to tablespaces

■ Set and alter default segment storage settings for segments created in a tablespace

■ Make a tablespace read only or read/write

■ Make a tablespace temporary or permanent

■ Rename tablespaces

■ Drop tablespaces

■ Transport tablespaces across databases and platforms

Managing Space in Tablespaces
Tablespaces allocate space in extents. Tablespaces can use two different methods to
keep track of their free and used space:

■ Locally managed tablespaces: Extent management by the bitmaps

■ Dictionary managed tablespaces: Extent management by the data dictionary

When you create a tablespace, you choose one of these methods of space management.
Later, you can change the management method with the DBMS_SPACE_ADMIN
PL/SQL package.

This section includes the following topics:

■ Locally Managed Tablespaces

■ Segment Space Management in Locally Managed Tablespaces

■ Dictionary Managed Tablespaces

Locally Managed Tablespaces
A tablespace that manages its own extents maintains a bitmap in each datafile to keep
track of the free or used status of blocks in that datafile. Each bit in the bitmap
corresponds to a block or a group of blocks. When an extent is allocated or freed for
reuse, Oracle Database changes the bitmap values to show the new status of the
blocks.

Locally managed tablespaces have the following advantages over dictionary managed
tablespaces:

■ Local management of extents automatically tracks adjacent free space, eliminating
the need to coalesce free extents.

■ Local management of extents avoids recursive space management operations.
Such recursive operations can occur in dictionary managed tablespaces if
consuming or releasing space in an extent results in another operation that
consumes or releases space in a data dictionary table or rollback segment.

See Also: "Overview of Extents" on page 2-10

Overview of Tablespaces

3-10 Oracle Database Concepts

The sizes of extents that are managed locally are determined automatically by the
system. Alternatively, all extents can have the same size in a locally managed
tablespace and override object storage options.

The LOCAL clause of the CREATE TABLESPACE or CREATE TEMPORARY
TABLESPACE statement is specified to create locally managed permanent or
temporary tablespaces, respectively.

Segment Space Management in Locally Managed Tablespaces
When you create a locally managed tablespace using the CREATE TABLESPACE
statement, the SEGMENT SPACE MANAGEMENT clause lets you specify how free and
used space within a segment is to be managed. Your choices are:

■ AUTO

This keyword tells Oracle Database that you want to use bitmaps to manage the
free space within segments. A bitmap, in this case, is a map that describes the
status of each data block within a segment with respect to the amount of space in
the block available for inserting rows. As more or less space becomes available in a
data block, its new state is reflected in the bitmap. Bitmaps enable Oracle Database
to manage free space more automatically; thus, this form of space management is
called automatic segment-space management.

Locally managed tablespaces using automatic segment-space management can be
created as smallfile (traditional) or bigfile tablespaces. AUTO is the default.

■ MANUAL

This keyword tells Oracle Database that you want to use free lists for managing
free space within segments. Free lists are lists of data blocks that have space
available for inserting rows.

Dictionary Managed Tablespaces
If you created your database with Oracle9i, you could be using dictionary managed
tablespaces. For a tablespace that uses the data dictionary to manage its extents, Oracle
Database updates the appropriate tables in the data dictionary whenever an extent is
allocated or freed for reuse. Oracle Database also stores rollback information about
each update of the dictionary tables. Because dictionary tables and rollback segments
are part of the database, the space that they occupy is subject to the same space
management operations as all other data.

See Also:

■ Oracle Database SQL Language Reference for syntax

■ Oracle Database Administrator's Guide for more information about
automatic segment space management

■ "Determine the Number and Size of Extents" on page 2-10

■ "Temporary Tablespaces" on page 3-12 for more information about
temporary tablespaces

Note: If you do not specify extent management when you create a
tablespace, then the default is locally managed.

Overview of Tablespaces

Tablespaces, Datafiles, and Control Files 3-11

Multiple Block Sizes
Oracle Database supports multiple block sizes in a database. The standard block size
is used for the SYSTEM tablespace. This is set when the database is created and can be
any valid size. You specify the standard block size by setting the initialization
parameter DB_BLOCK_SIZE. Legitimate values are from 2K to 32K.

In the initialization parameter file or server parameter file, you can configure
subcaches within the buffer cache for each of these block sizes. Subcaches can also be
configured while an instance is running. You can create tablespaces having any of
these block sizes. The standard block size is used for the system tablespace and most
other tablespaces.

Multiple block sizes are useful primarily when transporting a tablespace from an
OLTP database to an enterprise data warehouse. This facilitates transport between
databases of different block sizes.

Online and Offline Tablespaces
A database administrator can bring any tablespace other than the SYSTEM tablespace
online (accessible) or offline (not accessible) whenever the database is open. The
SYSTEM tablespace is always online when the database is open because the data
dictionary must always be available to Oracle Database.

A tablespace is usually online so that the data contained within it is available to
database users. However, the database administrator can take a tablespace offline for
maintenance or backup and recovery purposes.

Bringing Tablespaces Offline
When a tablespace goes offline, Oracle Database does not permit any subsequent SQL
statements to reference objects contained in that tablespace. Active transactions with
completed statements that refer to data in that tablespace are not affected at the
transaction level. Oracle Database saves rollback data corresponding to those
completed statements in a deferred rollback segment in the SYSTEM tablespace. When
the tablespace is brought back online, Oracle Database applies the rollback data to the
tablespace, if needed.

When a tablespace goes offline or comes back online, this is recorded in the data
dictionary in the SYSTEM tablespace. If a tablespace is offline when you shut down a
database, the tablespace remains offline when the database is subsequently mounted
and reopened.

You can bring a tablespace online only in the database in which it was created because
the necessary data dictionary information is maintained in the SYSTEM tablespace of
that database. An offline tablespace cannot be read or edited by any utility other than
Oracle Database. Thus, offline tablespaces cannot be transposed to other databases.

Note: All partitions of a partitioned object must reside in tablespaces
of a single block size.

See Also:

■ "Transport of Tablespaces Between Databases" on page 3-13

■ Oracle Database Data Warehousing Guide for information about
transporting tablespaces in data warehousing environments

Overview of Tablespaces

3-12 Oracle Database Concepts

Oracle Database automatically switches a tablespace from online to offline when
certain errors are encountered. For example, Oracle Database switches a tablespace
from online to offline when the database writer process, DBWn, fails in several
attempts to write to a datafile of the tablespace. Users trying to access tables in the
offline tablespace receive an error. If the problem that causes this disk I/O to fail is
media failure, you must recover the tablespace after you correct the problem.

Read-Only Tablespaces
The primary purpose of read-only tablespaces is to eliminate the need to perform
backup and recovery of large, static portions of a database. Oracle Database never
updates the files of a read-only tablespace, and therefore the files can reside on
read-only media such as CD-ROMs or WORM drives.

Read-only tablespaces cannot be modified. To update a read-only tablespace, first
make the tablespace read/write. After updating the tablespace, you can then reset it to
be read only.

Because read-only tablespaces cannot be modified, and as long as they have not been
made read/write at any point, they do not need repeated backup. Also, if you must
recover your database, you do not need to recover any read-only tablespaces, because
they could not have been modified.

Temporary Tablespaces
You can manage space for sort operations more efficiently by designating one or more
temporary tablespaces exclusively for sorts. Doing so effectively eliminates
serialization of space management operations involved in the allocation and
deallocation of sort space. A single SQL operation can use more than one temporary
tablespace for sorting. For example, you can create indexes on very large tables, and
the sort operation during index creation can be distributed across multiple tablespaces.

See Also:

■ "Transport of Tablespaces Between Databases" on page 3-13 for
more information about transferring online tablespaces between
databases

■ Oracle Database Utilities for more information about tools for data
transfer

Note: Because you can only bring a tablespace online in the database
in which it was created, read-only tablespaces are not meant to satisfy
archiving requirements.

See Also:

■ Oracle Database Administrator's Guide for information about
changing a tablespace to read only or read/write mode

■ Oracle Database SQL Language Reference for more information about
the ALTER TABLESPACE statement

■ Oracle Database Backup and Recovery User's Guide for more
information about recovery

Overview of Tablespaces

Tablespaces, Datafiles, and Control Files 3-13

All operations that use sorts, including joins, index builds, ordering, computing
aggregates (GROUP BY), and collecting optimizer statistics, benefit from temporary
tablespaces. The performance gains are significant with Oracle Real Application
Clusters.

This section includes the following topics:

■ Sort Segments

■ Creation of Temporary Tablespaces

Sort Segments
One or more temporary tablespaces can be used only for sort segments. A temporary
tablespace is not the same as a tablespace that a user designates for temporary
segments, which can be any tablespace available to the user. No permanent schema
objects can reside in a temporary tablespace.

Sort segments are used when a segment is shared by multiple sort operations. One sort
segment exists for every instance that performs a sort operation in a given tablespace.

Temporary tablespaces provide performance improvements when you have multiple
sorts that are too large to fit into memory. The sort segment of a given temporary
tablespace is created at the time of the first sort operation. The sort segment expands
by allocating extents until the segment size is equal to or greater than the total storage
demands of all of the active sorts running on that instance.

Creation of Temporary Tablespaces
Create temporary tablespaces by using the CREATE TABLESPACE or CREATE
TEMPORARY TABLESPACE statement.

Transport of Tablespaces Between Databases
A transportable tablespace lets you move a subset of an Oracle database from one
Oracle database to another, even across different platforms. You can clone a tablespace
and plug it into another database, copying the tablespace between databases, or you
can unplug a tablespace from one Oracle database and plug it into another Oracle
database, moving the tablespace between databases.

Moving data by transporting tablespaces can be orders of magnitude faster than either
export/import or unload/load of the same data, because transporting a tablespace
involves only copying datafiles and integrating the tablespace metadata. When you
transport tablespaces you can also move index data, so you do not have to rebuild the
indexes after importing or loading the table data.

See Also: Chapter 2, "Data Blocks, Extents, and Segments" for more
information about segments

See Also:

■ "Temporary Datafiles" on page 3-16 for information about
TEMPFILES

■ "Managing Space in Tablespaces" on page 3-9 for information
about locally managed and dictionary managed tablespaces

■ Oracle Database SQL Language Reference for syntax

■ Oracle Database Performance Tuning Guide for information about
setting up temporary tablespaces for sorts and hash joins

Overview of Tablespaces

3-14 Oracle Database Concepts

You can transport tablespaces across platforms. (Many, but not all, platforms are
supported for cross-platform tablespace transport.) This can be used for the following:

■ Provide an easier and more efficient means for content providers to publish
structured data and distribute it to customers running Oracle Database on a
different platform

■ Simplify the distribution of data from a data warehouse environment to data
marts which are often running on smaller platforms

■ Enable the sharing of read only tablespaces across a heterogeneous cluster

■ Allow a database to be migrated from one platform to another

This section includes the following topics:

■ Tablespace Repository

■ How to Move or Copy a Tablespace to Another Database

Tablespace Repository
A tablespace repository is a collection of tablespace sets. Tablespace repositories are
built on file group repositories, but tablespace repositories only contain the files
required to move or copy tablespaces between databases. Different tablespace sets
may be stored in a tablespace repository, and different versions of a particular
tablespace set also may be stored. A version of a tablespace set in a tablespace
repository consists of the following files:

■ The Data Pump export dump file for the tablespace set

■ The Data Pump log file for the export

■ The datafiles that comprise the tablespace set

How to Move or Copy a Tablespace to Another Database
To move or copy a set of tablespaces, you must make the tablespaces read only, copy
the datafiles of these tablespaces, and use export/import to move the database
information (metadata) stored in the data dictionary. Both the datafiles and the
metadata export file must be copied to the target database. The transport of these files
can be done using any facility for copying flat files, such as the operating system
copying facility, ftp, or publishing on CDs.

After copying the datafiles and importing the metadata, you can optionally put the
tablespaces in read/write mode.

The first time a tablespace's datafiles are opened under Oracle Database with the
COMPATIBLE initialization parameter set to 10 or higher, each file identifies the
platform to which it belongs. These files have identical on disk formats for file header
blocks, which are used for file identification and verification. Read only and offline
files get the compatibility advanced after they are made read/write or are brought
online. This implies that tablespaces that are read only before Oracle Database 10g
must be made read/write at least once before they can use the cross platform
transportable feature.

See Also: Oracle Streams Concepts and Administration

Overview of Datafiles

Tablespaces, Datafiles, and Control Files 3-15

Overview of Datafiles
A tablespace in an Oracle database consists of one or more physical datafiles. A
datafile can be associated with only one tablespace and only one database.

Oracle Database creates a datafile for a tablespace by allocating the specified amount
of disk space plus the overhead required for the file header. When a datafile is created,
the operating system under which Oracle Database runs is responsible for clearing old
information and authorizations from a file before allocating it to Oracle Database. If
the file is large, this process can take a significant amount of time. The first tablespace
in any database is always the SYSTEM tablespace, so Oracle Database automatically
allocates the first datafiles of any database for the SYSTEM tablespace during database
creation.

This section includes the following topics:

■ Datafile Contents

■ Size of Datafiles

■ Offline Datafiles

■ Temporary Datafiles

Datafile Contents
When a datafile is first created, the allocated disk space is formatted but does not
contain any user data. However, Oracle Database reserves the space to hold the data
for future segments of the associated tablespace—it is used exclusively by Oracle
Database. As the data grows in a tablespace, Oracle Database uses the free space in the
associated datafiles to allocate extents for the segment.

The data associated with schema objects in a tablespace is physically stored in one or
more of the datafiles that constitute the tablespace. Note that a schema object does not
correspond to a specific datafile; rather, a datafile is a repository for the data of any
schema object within a specific tablespace. Oracle Database allocates space for the data

Note: In a database with a locally managed SYSTEM tablespace,
dictionary tablespaces cannot be created. It is possible to plug in a
dictionary managed tablespace using the transportable feature, but it
cannot be made writable.

See Also:

■ Oracle Database Administrator's Guide for details about how to
move or copy tablespaces to another database, including details
about transporting tablespaces across platforms

■ Oracle Database Utilities for import/export information

■ Oracle Database PL/SQL Packages and Types Reference for
information on the DBMS_FILE_TRANSFER package

■ Oracle Streams Concepts and Administration for more information on
ways to copy or transport files

See Also: Your Oracle Database operating system-specific
documentation for information about the amount of space required
for the file header of datafiles on your operating system

Overview of Datafiles

3-16 Oracle Database Concepts

associated with a schema object in one or more datafiles of a tablespace. Therefore, a
schema object can span one or more datafiles. Unless table striping is used (where
data is spread across more than one disk), the database administrator and end users
cannot control which datafile stores a schema object.

Size of Datafiles
You can alter the size of a datafile after its creation or you can specify that a datafile
should dynamically grow as schema objects in the tablespace grow. This functionality
enables you to have fewer datafiles for each tablespace and can simplify
administration of datafiles.

Offline Datafiles
You can take tablespaces offline or bring them online at any time, except for the
SYSTEM tablespace. All of the datafiles of a tablespace are taken offline or brought
online as a unit when you take the tablespace offline or bring it online, respectively.

You can take individual datafiles offline. However, this is usually done only during
some database recovery procedures.

Temporary Datafiles
Locally managed temporary tablespaces have temporary datafiles (tempfiles), which
are similar to ordinary datafiles, with the following exceptions:

■ Tempfiles are always set to NOLOGGING mode.

■ You cannot make a tempfile read only.

■ You cannot create a tempfile with the ALTER DATABASE statement.

■ Media recovery does not recognize tempfiles:

– BACKUP CONTROLFILE does not generate any information for tempfiles.

– CREATE CONTROLFILE cannot specify any information about tempfiles.

■ When you create or resize tempfiles, they are not always guaranteed allocation of
disk space for the file size specified. On certain file systems (for example, UNIX)
disk blocks are allocated not at file creation or resizing, but before the blocks are
accessed.

See Also: Chapter 2, "Data Blocks, Extents, and Segments" for more
information about use of space

Note: You need sufficient space on the operating system for
expansion.

See Also: Oracle Database Administrator's Guide for more information
about resizing datafiles

Caution: This enables fast tempfile creation and resizing; however,
the disk could run out of space later when the tempfiles are accessed.

Overview of Control Files

Tablespaces, Datafiles, and Control Files 3-17

■ Tempfile information is shown in the dictionary view DBA_TEMP_FILES and the
dynamic performance view V$TEMPFILE, but not in DBA_DATA_FILES or the
V$DATAFILE view.

Overview of Control Files
The database control file is a small binary file necessary for the database to start and
operate successfully. A control file is updated continuously by Oracle Database during
database use, so it must be available for writing whenever the database is open. If for
some reason the control file is not accessible, then the database cannot function
properly.

Each control file is associated with only one Oracle database.

This section includes the following topics:

■ Control File Contents

■ Multiplexed Control Files

Control File Contents
A control file contains information about the associated database that is required for
access by an instance, both at startup and during normal operation. Control file
information can be modified only by Oracle Database; no database administrator or
user can edit a control file.

Among other things, a control file contains information such as:

■ The database name

■ The timestamp of database creation

■ The names and locations of associated datafiles and redo log files

■ Tablespace information

■ Datafile offline ranges

■ The log history

■ Archived log information

■ Backup set and backup piece information

■ Backup datafile and redo log information

■ Datafile copy information

■ The current log sequence number

■ Checkpoint information

The database name and timestamp originate at database creation. The database name
is taken from either the name specified by the DB_NAME initialization parameter or the
name used in the CREATE DATABASE statement.

Each time that a datafile or a redo log file is added to, renamed in, or dropped from the
database, the control file is updated to reflect this physical structure change. These
changes are recorded so that:

See Also: "Managing Space in Tablespaces" on page 3-9 for more
information about locally managed tablespaces

Overview of Control Files

3-18 Oracle Database Concepts

■ Oracle Database can identify the datafiles and redo log files to open during
database startup

■ Oracle Database can identify files that are required or available in case database
recovery is necessary

Therefore, if you make a change to the physical structure of your database (using
ALTER DATABASE statements), then you should immediately make a backup of your
control file.

Control files also record information about checkpoints. Every three seconds, the
checkpoint process (CKPT) records information in the control file about the checkpoint
position in the redo log. This information is used during database recovery to tell
Oracle Database that all redo entries recorded before this point in the redo log group
are not necessary for database recovery; they were already written to the datafiles.

Multiplexed Control Files
As with redo log files, Oracle Database enables multiple, identical control files to be
open concurrently and written for the same database. By storing multiple control files
for a single database on different disks, you can safeguard against a single point of
failure with respect to control files. If a single disk that contained a control file crashes,
then the current instance fails when Oracle Database attempts to access the damaged
control file. However, when other copies of the current control file are available on
different disks, an instance can be restarted without the need for database recovery.

If all control files of a database are permanently lost during operation, then the
instance is aborted and media recovery is required. Media recovery is not
straightforward if an older backup of a control file must be used because a current
copy is not available. It is strongly recommended that you adhere to the following:

■ Use multiplexed control files with each database

■ Store each copy on a different physical disk

■ Use operating system mirroring

■ Monitor backups

See Also: Oracle Database Backup and Recovery User's Guide for
information about backing up a database's control file

Transaction Management 4-1

4
Transaction Management

This chapter defines a transaction and describes how you can manage your work
using transactions.

This chapter contains the following topics:

■ Introduction to Transactions

■ Overview of Transaction Management

■ Overview of Autonomous Transactions

Introduction to Transactions
A transaction is a logical unit of work that contains one or more SQL statements. A
transaction is an atomic unit. The effects of all the SQL statements in a transaction can
be either all committed (applied to the database) or all rolled back (undone from the
database).

A transaction begins with the first executable SQL statement. A transaction ends when
it is committed or rolled back, either explicitly with a COMMIT or ROLLBACK statement
or implicitly when a DDL statement is issued.

To illustrate the concept of a transaction, consider a banking database. When a bank
customer transfers money from a savings account to a checking account, the
transaction can consist of three separate operations:

■ Decrement the savings account

■ Increment the checking account

■ Record the transaction in the transaction journal

Oracle Database must allow for two situations. If all three SQL statements can be
performed to maintain the accounts in proper balance, the effects of the transaction can
be applied to the database. However, if a problem such as insufficient funds, invalid
account number, or a hardware failure prevents one or two of the statements in the
transaction from completing, the entire transaction must be rolled back so that the
balance of all accounts is correct.

Figure 4–1 illustrates the banking transaction example.

Introduction to Transactions

4-2 Oracle Database Concepts

Figure 4–1 A Banking Transaction

This section includes the following topics:

■ Statement Execution and Transaction Control

■ Statement-Level Rollback

■ Resumable Space Allocation

Statement Execution and Transaction Control
A SQL statement that runs successfully is different from a committed transaction.
Executing successfully means that a single statement was:

■ Parsed

■ Found to be a valid SQL construction

■ Run without error as an atomic unit. For example, all rows of a multirow update
are changed.

However, until the transaction that contains the statement is committed, the
transaction can be rolled back, and all of the changes of the statement can be undone.
A statement, rather than a transaction, runs successfully.

Committing means that a user has explicitly or implicitly requested that the changes
in the transaction be made permanent. An explicit request occurs when the user issues
a COMMIT statement. An implicit request occurs after normal termination of an
application or completion of a data definition language (DDL) operation. The changes
made by the SQL statement(s) of a transaction become permanent and visible to other
users only after that transaction commits. Queries that are issued after the transaction
commits will see the committed changes.

Transaction Begins

Transaction Ends

UPDATE savings_accounts
 SET balance = balance - 500
 WHERE account = 3209;

UPDATE checking_accounts
 SET balance = balance + 500
 WHERE account = 3208;

INSERT INTO journal VALUES
 (journal_seq.NEXTVAL, '1B'
 3209, 3208, 500);

COMMIT WORK;

Decrement Savings Account

Increment Checking Account

Record in Transaction Journal

End Transaction

Introduction to Transactions

Transaction Management 4-3

You can name a transaction using the SET TRANSACTION ... NAME statement before
you start the transaction. This makes it easier to monitor long-running transactions
and to resolve in-doubt distributed transactions.

Statement-Level Rollback
If at any time during execution a SQL statement causes an error, all effects of the
statement are rolled back. The effect of the rollback is as if that statement had never
been run. This operation is a statement-level rollback.

Errors discovered during SQL statement execution cause statement-level rollbacks. An
example of such an error is attempting to insert a duplicate value in a primary key.
Single SQL statements involved in a deadlock (competition for the same data) can also
cause a statement-level rollback. Errors discovered during SQL statement parsing,
such as a syntax error, have not yet been run, so they do not cause a statement-level
rollback.

A SQL statement that fails causes the loss only of any work it would have performed
itself. It does not cause the loss of any work that preceded it in the current transaction. If the
statement is a DDL statement, then the implicit commit that immediately preceded it is
not undone.

Resumable Space Allocation
Oracle Database provides a means for suspending, and later resuming, the execution
of large database operations in the event of space allocation failures. This enables an
administrator to take corrective action, instead of the Oracle database server returning
an error to the user. After the error condition is corrected, the suspended operation
automatically resumes.

A statement runs in a resumable mode only when the client explicitly enables
resumable semantics for the session using the ALTER SESSION statement.

Resumable space allocation is suspended when one of the following conditions occur:

■ Out of space condition

■ Maximum extents reached condition

■ Space quota exceeded condition

For nonresumable space allocation, these conditions result in errors and the statement
is rolled back.

Suspending a statement automatically results in suspending the transaction. Thus all
transactional resources are held through a statement suspend and resume.

When the error condition disappears (for example, as a result of user intervention or
perhaps sort space released by other queries), the suspended statement automatically
resumes execution.

See Also: "Transaction Naming" on page 4-7

Note: Users cannot directly refer to implicit savepoints in rollback
statements.

See Also: "Deadlocks" on page 13-15

Overview of Transaction Management

4-4 Oracle Database Concepts

Overview of Transaction Management
A transaction in Oracle Database begins when the first executable SQL statement is
encountered. An executable SQL statement is a SQL statement that generates calls to
an instance, including DML and DDL statements.

When a transaction begins, Oracle Database assigns the transaction to an available
undo tablespace to record the rollback entries for the new transaction.

A transaction ends when any of the following occurs:

■ A user issues a COMMIT or ROLLBACK statement without a SAVEPOINT clause.

■ A user runs a DDL statement such as CREATE, DROP, RENAME, or ALTER. If the
current transaction contains any DML statements, Oracle Database first commits
the transaction, and then runs and commits the DDL statement as a new, single
statement transaction.

■ A user disconnects from Oracle Database. The current transaction is committed.

■ A user process terminates abnormally. The current transaction is rolled back.

After one transaction ends, the next executable SQL statement automatically starts the
following transaction.

This section includes the following topics:

■ Commit Transactions

■ Rollback of Transactions

■ Savepoints In Transactions

■ Transaction Naming

■ The Two-Phase Commit Mechanism

Commit Transactions
Committing a transaction means making permanent the changes performed by the
SQL statements within the transaction.

Before a transaction that modifies data is committed, the following has occurred:

■ Oracle Database has generated undo information. The undo information contains
the old data values changed by the SQL statements of the transaction.

■ Oracle Database has generated redo log entries in the redo log buffer of the SGA.
The redo log record contains the change to the data block and the change to the
rollback block. These changes may go to disk before a transaction is committed.

■ The changes have been made to the database buffers of the SGA. These changes
may go to disk before a transaction is committed.

See Also: Oracle Database Administrator's Guide for information
about enabling resumable space allocation, what conditions are
correctable, and what statements can be made resumable.

Note: Applications should always explicitly commit or undo
transactions before program termination.

Overview of Transaction Management

Transaction Management 4-5

When a transaction is committed, the following occurs:

1. The internal transaction table for the associated undo tablespace records that the
transaction has committed, and the corresponding unique system change number
(SCN) of the transaction is assigned and recorded in the table.

2. The log writer process (LGWR) writes redo log entries in the SGA's redo log
buffers to the redo log file. It also writes the transaction's SCN to the redo log file.
This atomic event constitutes the commit of the transaction.

3. Oracle Database releases locks held on rows and tables.

4. Oracle Database marks the transaction complete.

Rollback of Transactions
Rolling back means undoing any changes to data that have been performed by SQL
statements within an uncommitted transaction. Oracle Database uses undo tablespaces
(or rollback segments) to store old values. The redo log contains a record of changes.

Oracle Database lets you roll back an entire uncommitted transaction. Alternatively,
you can roll back the trailing portion of an uncommitted transaction to a marker called
a savepoint.

All types of rollbacks use the same procedures:

■ Statement-level rollback (due to statement or deadlock execution error)

■ Rollback to a savepoint

■ Rollback of a transaction due to user request

■ Rollback of a transaction due to abnormal process termination

■ Rollback of all outstanding transactions when an instance terminates abnormally

Note: The data changes for a committed transaction, stored in the
database buffers of the SGA, are not necessarily written immediately
to the datafiles by the database writer (DBWn) background process.
This writing takes place when it is most efficient for the database to do
so. It can happen before the transaction commits or, alternatively, it
can happen some time after the transaction commits.

Note: The default behavior is for LGWR to write redo to the online
redo log files synchronously and for transactions to wait for the redo
to go to disk before returning a commit to the user. However, for
lower transaction commit latency application developers can specify
that redo be written asynchronously and that transactions do not need
to wait for the redo to be on disk.

See Also:

■ Oracle Database Advanced Application Developer's Guide for more
information on asynchronous commit

■ "Overview of Locking Mechanisms" on page 13-2

■ "Overview of Oracle Database Processes" on page 9-3 for more
information about the background processes LGWR and DBWn

Overview of Transaction Management

4-6 Oracle Database Concepts

■ Rollback of incomplete transactions during recovery

In rolling back an entire transaction, without referencing any savepoints, the
following occurs:

1. Oracle Database undoes all changes made by all the SQL statements in the
transaction by using the corresponding undo tablespace.

2. Oracle Database releases all the transaction's locks of data.

3. The transaction ends.

Savepoints In Transactions
You can declare intermediate markers called savepoints within the context of a
transaction. Savepoints divide a long transaction into smaller parts.

Using savepoints, you can arbitrarily mark your work at any point within a long
transaction. You then have the option later of rolling back work performed before the
current point in the transaction but after a declared savepoint within the transaction.
For example, you can use savepoints throughout a long complex series of updates, so
if you make an error, you do not need to resubmit every statement.

Savepoints are similarly useful in application programs. If a procedure contains
several functions, then you can create a savepoint before each function begins. Then, if
a function fails, it is easy to return the data to its state before the function began and
re-run the function with revised parameters or perform a recovery action.

After a rollback to a savepoint, Oracle Database releases the data locks obtained by
rolled back statements. Other transactions that were waiting for the previously locked
resources can proceed. Other transactions that want to update previously locked rows
can do so.

When a transaction is rolled back to a savepoint, the following occurs:

1. Oracle Database rolls back only the statements run after the savepoint.

2. Oracle Database preserves the specified savepoint, but all savepoints that were
established after the specified one are lost.

3. Oracle Database releases all table and row locks acquired since that savepoint but
retains all data locks acquired previous to the savepoint.

The transaction remains active and can be continued.

Whenever a session is waiting on a transaction, a rollback to savepoint does not free
row locks. To make sure a transaction does not hang if it cannot obtain a lock, use FOR
UPDATE ... NOWAIT before issuing UPDATE or DELETE statements. (This refers to locks
obtained before the savepoint to which has been rolled back. Row locks obtained after
this savepoint are released, as the statements executed after the savepoint have been
rolled back completely.)

See Also:

■ "Savepoints In Transactions" on page 4-6

■ "Overview of Locking Mechanisms" on page 13-2

■ Oracle Database Backup and Recovery User's Guide for information
about what happens to committed and uncommitted changes
during recovery

Overview of Transaction Management

Transaction Management 4-7

Transaction Naming
You can name a transaction, using a simple and memorable text string. This name is a
reminder of what the transaction is about. Transaction names replace commit
comments for distributed transactions, with the following advantages:

■ It is easier to monitor long-running transactions and to resolve in-doubt
distributed transactions.

■ You can view transaction names along with transaction IDs in applications. For
example, a database administrator can view transaction names in Enterprise
Manager when monitoring system activity.

■ Transaction names are written to the transaction auditing redo record, if
compatibility is set to Oracle9i or higher.

■ LogMiner can use transaction names to search for a specific transaction from
transaction auditing records in the redo log.

■ You can use transaction names to find a specific transaction in data dictionary
views, such as V$TRANSACTION.

This section includes the following topics:

■ How Transactions Are Named

■ Commit Comment

How Transactions Are Named
Name a transaction using the SET TRANSACTION ... NAME statement before you start
the transaction.

When you name a transaction, you associate the transaction's name with its ID.
Transaction names do not have to be unique; different transactions can have the same
transaction name at the same time by the same owner. You can use any name that
enables you to distinguish the transaction.

Commit Comment
In previous releases, you could associate a comment with a transaction by using a
commit comment. However, a comment can be associated with a transaction only
when a transaction is being committed.

Commit comments are still supported for backward compatibility. However, Oracle
strongly recommends that you use transaction names. Commit comments are ignored
in named transactions.

Note: In a future release, commit comments will be deprecated.

See Also:

■ Oracle Database Administrator's Guide for more information about
distributed transactions

■ Oracle Database SQL Language Reference for more information about
transaction naming syntax

Overview of Autonomous Transactions

4-8 Oracle Database Concepts

The Two-Phase Commit Mechanism
In a distributed database, Oracle Database must coordinate transaction control over a
network and maintain data consistency, even if a network or system failure occurs.

A distributed transaction is a transaction that includes one or more statements that
update data on two or more distinct nodes of a distributed database.

A two-phase commit mechanism guarantees that all database servers participating in
a distributed transaction either all commit or all undo the statements in the
transaction. A two-phase commit mechanism also protects implicit DML operations
performed by integrity constraints, remote procedure calls, and triggers.

The Oracle Database two-phase commit mechanism is completely transparent to users
who issue distributed transactions. In fact, users need not even know the transaction is
distributed. A COMMIT statement denoting the end of a transaction automatically
triggers the two-phase commit mechanism to commit the transaction. No coding or
complex statement syntax is required to include distributed transactions within the
body of a database application.

The recoverer (RECO) background process automatically resolves the outcome of
in-doubt distributed transactions—distributed transactions in which the commit was
interrupted by any type of system or network failure. After the failure is repaired and
communication is reestablished, the RECO process of each local Oracle database
automatically commits or rolls back any in-doubt distributed transactions consistently
on all involved nodes.

In the event of a long-term failure, Oracle Database allows each local administrator to
manually commit or undo any distributed transactions that are in doubt as a result of
the failure. This option enables the local database administrator to free any locked
resources that are held indefinitely as a result of the long-term failure.

If a database must be recovered to a point in the past, Oracle Database recovery
facilities enable database administrators at other sites to return their databases to the
earlier point in time also. This operation ensures that the global database remains
consistent.

Overview of Autonomous Transactions
Autonomous transactions are independent transactions that can be called from within
another transaction. An autonomous transaction lets you leave the context of the
calling transaction, perform some SQL operations, commit or undo those operations,
and then return to the calling transaction's context and continue with that transaction.

Once invoked, an autonomous transaction is totally independent of the main
transaction that called it. It does not see any of the uncommitted changes made by the
main transaction and does not share any locks or resources with the main transaction.
Changes made by an autonomous transaction become visible to other transactions
upon commit of the autonomous transactions.

One autonomous transaction can call another. There are no limits, other than resource
limits, on how many levels of autonomous transactions can be called.

Deadlocks are possible between an autonomous transaction and its calling transaction.
Oracle Database detects such deadlocks and returns an error. The application
developer is responsible for avoiding deadlock situations.

See Also: Oracle Database Heterogeneous Connectivity Administrator's
Guide

Overview of Autonomous Transactions

Transaction Management 4-9

Autonomous transactions are useful for implementing actions that need to be
performed independently, regardless of whether the calling transaction commits or
rolls back, such as transaction logging and retry counters.

Autonomous PL/SQL Blocks
You can call autonomous transactions from within a PL/SQL block. Use the pragma
AUTONOMOUS_TRANSACTION. A pragma is a compiler directive. You can declare the
following kinds of PL/SQL blocks to be autonomous:

■ Stored procedure or function

■ Local procedure or function

■ Package

■ Type method

■ Top-level anonymous block

When an autonomous PL/SQL block is entered, the transaction context of the caller is
suspended. This operation ensures that SQL operations performed in this block (or
other blocks called from it) have no dependence or effect on the state of the caller's
transaction context.

When an autonomous block invokes another autonomous block or itself, the called
block does not share any transaction context with the calling block. However, when an
autonomous block invokes a non-autonomous block (that is, one that is not declared to
be autonomous), the called block inherits the transaction context of the calling
autonomous block.

Transaction Control Statements in Autonomous Blocks
Transaction control statements in an autonomous PL/SQL block apply only to the
currently active autonomous transaction. Examples of such statements are:

SET TRANSACTION
COMMIT
ROLLBACK
SAVEPOINT
ROLLBACK TO SAVEPOINT

Similarly, transaction control statements in the main transaction apply only to that
transaction and not to any autonomous transaction that it calls. For example, rolling
back the main transaction to a savepoint taken before the beginning of an autonomous
transaction does not undo the autonomous transaction.

See Also: Oracle Database PL/SQL Language Reference

Overview of Autonomous Transactions

4-10 Oracle Database Concepts

Schema Objects 5-1

5
Schema Objects

This chapter discusses the different types of database objects contained in a user's
schema.

This chapter contains the following topics:

■ Introduction to Schema Objects

■ Overview of Tables

■ Overview of Views

■ Overview of Materialized Views

■ Overview of Dimensions

■ Overview of the Sequence Generator

■ Overview of Synonyms

■ Overview of Indexes

■ Overview of Index-Organized Tables

■ Overview of Application Domain Indexes

■ Overview of Clusters

■ Overview of Hash Clusters

Introduction to Schema Objects
A schema is a collection of logical structures of data, or schema objects. A schema is
owned by a database user and has the same name as that user. Each user owns a single
schema. Schema objects can be created and manipulated with SQL and include the
following types of objects:

■ Clusters

■ Constraints

■ Database links

■ Database triggers

■ Dimensions

■ External procedure libraries

■ Indexes and indextypes

■ Java classes, Java resources, and Java sources

Introduction to Schema Objects

5-2 Oracle Database Concepts

■ Materialized views and materialized view logs

■ Object tables, object types, and object views

■ Operators

■ Sequences

■ Stored functions, procedures, and packages

■ Synonyms

■ Tables and index-organized tables

■ Views

Other types of objects are also stored in the database and can be created and
manipulated with SQL but are not contained in a schema:

■ Contexts

■ Directories

■ Parameter files (PFILEs) and server parameter files (SPFILEs)

■ Profiles

■ Roles

■ Rollback segments

■ Tablespaces

■ Users

Schema objects are logical data storage structures. Schema objects do not have a
one-to-one correspondence to physical files on disk that store their information.
However, Oracle Database stores a schema object logically within a tablespace of the
database. The data of each object is physically contained in one or more of the
tablespace's datafiles. For some objects, such as tables, indexes, and clusters, you can
specify how much disk space Oracle Database allocates for the object within the
tablespace's datafiles.

There is no relationship between schemas and tablespaces: a tablespace can contain
objects from different schemas, and the objects for a schema can be contained in
different tablespaces.

Figure 5–1 illustrates the relationship among objects, tablespaces, and datafiles.

Overview of Tables

Schema Objects 5-3

Figure 5–1 Schema Objects, Tablespaces, and Datafiles

Overview of Tables
Tables are the basic unit of data storage in an Oracle database. Data is stored in rows
and columns. You define a table with a table name (such as employees) and set of
columns. You give each column a column name (such as employee_id, last_name,
and job_id), a datatype (such as VARCHAR2, DATE, or NUMBER), and a width. The
width can be predetermined by the datatype, as in DATE. If columns are of the NUMBER
datatype, define precision and scale instead of width.

You can specify rules called integrity constraints for each column. An example is a
NOT NULL integrity constraint, which forces the column to have a value in every row.

A table can contain a virtual column, which unlike normal columns does not consume
space on disk. Rather, the database derives the values in a virtual column on demand
by computing a set of user-specified expressions or functions. Virtual columns can be
used in queries, DML, and DDL statements. You can index virtual columns, collect
statistics on them, and create integrity constraints. Thus, they can be treated much as
nonvirtual columns.

You can also specify table columns for which data is encrypted before being stored in
the datafile. Encryption prevents users from circumventing database access control
mechanisms by looking inside datafiles directly with operating system tools.

See Also: Oracle Database Administrator's Guide

System Tablespace Data Tablespace

Index

Table

Index

Cluster

Index

Index

Index

Table Index

Index

Table

Index

Index

Index

Index

Index

Table

Index

Index

Table

Database

Drive 1

DBFILE3DBFILE2DBFILE1

Drive 1

Overview of Tables

5-4 Oracle Database Concepts

After you create a table, insert rows of data using SQL statements. A row is a collection
of column information corresponding to a single record. Table data can then be
queried, deleted, or updated using SQL.

Figure 5–2 shows a sample table.

Figure 5–2 The EMP Table

This section includes the following topics:

■ How Table Data Is Stored

■ Table Compression

■ Nulls Indicate Absence of Value

■ Default Values for Columns

■ Partitioned Tables

■ Nested Tables

■ Temporary Tables

■ External Tables

How Table Data Is Stored
When you create a table, Oracle Database automatically allocates a data segment in a
tablespace to hold the table's future data. You can control the allocation and use of
space for a table's data segment in the following ways:

■ You can control the amount of space allocated to the data segment by setting the
storage parameters for the data segment.

See Also:

■ Oracle Database Administrator's Guide for information on
managing tables

■ Oracle Database Advanced Security Administrator's Guide for
information on transparent data encryption

■ Oracle Database SQL Language Reference for reference
information about virtual columns

■ Chapter 26, "Oracle Data Types"

■ Chapter 21, "Data Integrity"

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Column not
allowing nulls

Column
allowing
nulls

Rows Columns

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CLERK
SALESMAN
SALESMAN
MANAGER

7902
7698
7698
7839

17–DEC–88
20–FEB–88
22–FEB–88
02–APR–88

800.00
1600.00
1250.00
2975.00

300.00
300.00
500.00

20
30
30
20

Column names

Overview of Tables

Schema Objects 5-5

■ You can control the use of the free space in the data blocks that constitute the data
segment's extents by setting the PCTFREE and PCTUSED parameters for the data
segment.

Oracle Database stores data for a clustered table in the data segment created for the
cluster instead of in a data segment in a tablespace. Storage parameters cannot be
specified when a clustered table is created or altered. The storage parameters set for
the cluster always control the storage of all tables in the cluster.

A table's data segment (or cluster data segment, when dealing with a clustered table)
is created in either the table owner's default tablespace or in a tablespace specifically
named in the CREATE TABLE statement.

This section includes the following topics:

■ Row Format and Size

■ Rowids of Row Pieces

■ Column Order

Row Format and Size
In the following circumstances, the data for a row in a table may be too large to fit into
a single data block:

■ The row is too large to fit into one data block when it is first inserted.

In row chaining, Oracle Database stores the data for the row in a chain of one or
more data blocks reserved for the segment. Row chaining most often occurs with
large rows. Examples include rows that contain a column of data type LONG or
LONG RAW, a VARCHAR2(4000) column in a 2 KB block, or a row with a huge
number of columns. Row chaining in these cases is unavoidable.

■ A row that originally fit into one data block is updated so that the overall row
length increases, but insufficient free space exists to hold the updated row.

In row migration, Oracle Database moves the entire row to a new data block,
assuming the row can fit in a new block. The original row piece of a migrated row
contains a pointer or "forwarding address" to the new block containing the
migrated row. The rowid of a migrated row does not change.

■ A row has more than 255 columns.

Oracle Database can only store 255 columns in a row piece. Thus, if you insert a
row into a table that has 1000 columns, then the database creates 4 row pieces,
typically chained over multiple blocks.

When a row is chained or migrated, the amount of I/O necessary to retrieve the data
increases because Oracle Database must scan more than one data block to retrieve the
information for the row. For example, if the database performs one I/O to read an
index and one I/O to read a table for a nonmigrated row, then the database requires an
additional I/O to obtain the actual row data for a migrated row.

Each row piece, chained or unchained, contains a row header and data for all or some
of the row's columns. Individual columns can also span row pieces and, consequently,
data blocks. Figure 5–3 shows the format of a row piece.

See Also: "PCTFREE, PCTUSED, and Row Chaining" on page 2-6

Overview of Tables

5-6 Oracle Database Concepts

Figure 5–3 The Format of a Row Piece

The row header precedes the data and contains information about:

■ Row pieces

■ Chaining (for chained row pieces only)

■ Columns in the row piece

■ Cluster keys (for clustered data only)

A row fully contained in one block has at least 3 bytes of row header. After the row
header information, each row contains column length and data. The column length
requires 1 byte for columns that store 250 bytes or less, or 3 bytes for columns that
store more than 250 bytes, and precedes the column data. Space required for column
data depends on the datatype. If the datatype of a column is variable length, then the
space required to hold a value can grow and shrink with updates to the data.

To conserve space, a null in a column only stores the column length (zero). Oracle
Database does not store data for the null column. Also, for trailing null columns,
Oracle Database does not even store the column length.

Clustered rows contain the same information as nonclustered rows. In addition, they
contain information that references the cluster key to which they belong.

Note: Each row also uses 2 bytes in the data block header's row
directory.

Row Header Column Data

Database
Block

Row Piece in a Database Block

Row Overhead

Number of Columns

Cluster Key ID (if clustered)

ROWID of Chained Row Pieces (if any)

Column Length

Column Value

Overview of Tables

Schema Objects 5-7

Rowids of Row Pieces
The rowid identifies each row piece by its location or address. After a rowid is
assigned to a row piece, the rowid can change in certain circumstances. For example, if
row movement is enabled, then the rowid can change because of partition key
updates, flashback table operations, shrink table operations, and so on. If row
movement is disabled, then a rowid can change if the row is exported and imported
using Oracle Database utilities.

Column Order
The column order is the same for all rows in a table. Columns are usually stored in the
order in which they were listed in the CREATE TABLE statement, but this order is not
guaranteed. For example, if a table has a column of datatype LONG, then Oracle
Database always stores this column last. Also, if a table is altered so that a new column
is added, then the new column becomes the last column stored.

In general, try to place columns that frequently contain nulls last so that rows take less
space. Note, though, that if the table you are creating includes a LONG column as well,
then the benefits of placing frequently null columns last are lost.

Table Compression
The Oracle Database table compression feature compresses data by eliminating
duplicate values in a database block. Compressed data stored in a database block (also
known as disk page) is self-contained. That is, all the information needed to re-create
the uncompressed data in a block is available within that block. Duplicate values in all
the rows and columns in a block are stored once at the beginning of the block, in what
is called a symbol table for that block. All occurrences of such values are replaced with
a short reference to the symbol table.

With the exception of a symbol table at the beginning, compressed database blocks
look very much like regular database blocks. All database features and functions that
work on regular database blocks also work on compressed database blocks. Database
objects that can be compressed include tables and materialized views. For partitioned
tables, you can choose to compress some or all partitions. Compression attributes can
be declared for a tablespace, a table, or a partition of a table. If declared at the
tablespace level, then all tables created in that tablespace are compressed by default.
You can alter the compression attribute for a table (or a partition or tablespace), and
the change only applies to new data going into that table. As a result, a single table or
partition may contain some compressed blocks and some regular blocks. This
guarantees that data size will not increase as a result of compression; in cases where
compression could increase the size of a block, it is not applied to that block.

See Also:

■ Oracle Database Administrator's Guide for more information about
clustered rows and tables

■ "Overview of Clusters" on page 5-41

■ "Row Chaining and Migrating" on page 2-5

■ "Nulls Indicate Absence of Value" on page 5-8

■ "Row Directory" on page 2-4

See Also: "Physical Rowids" on page 26-14

Overview of Tables

5-8 Oracle Database Concepts

Using Table Compression
Compression can occur while data is being inserted, updated, bulk inserted, or bulk
loaded into a compressed table. These operations include:

■ Direct path SQL*Loader

■ CREATE TABLE and AS SELECT statements

■ Parallel INSERT (or serial INSERT with an APPEND hint) statements

■ Single-row or array inserts

■ Single-row or array updates

Existing data in the database can also be compressed by moving it into compressed
form through ALTER TABLE and MOVE statements. This operation takes an exclusive
lock on the table, and therefore prevents any updates and loads until it completes. If
this is not acceptable, the Oracle Database online redefinition utility (the DBMS_
REDEFINITION PL/SQL package) can be used.

Data compression works for all datatypes except for all variants of LOBs and
datatypes derived from LOBs, such as varrays stored out of line or the XML datatype
stored in a CLOB.

Table compression is done as part of bulk loading data into the database or during
single-row or array inserts and updates. The overhead associated with compression is
most visible at that time. This overhead is the primary trade-off that must be taken into
account when considering compression.

Compressed tables or partitions can be modified the same as other Oracle Database
tables or partitions. Deleting compressed data is as fast as deleting uncompressed
data. Inserting new data is also as fast. Updating compressed data can be slower in
some cases. Because Oracle Database supports all DML operations (insert, update,
delete) on compressed tables, table compression is suitable for OLTP applications as
well as data warehousing applications. In both these environments, data should be
organized so that read only or infrequently changing portions of the data (for example,
historical data) are kept compressed.

Nulls Indicate Absence of Value
A null is the absence of a value in a column of a row. Nulls indicate missing,
unknown, or inapplicable data. A null should not be used to imply any other value,
such as zero. A column allows nulls unless a NOT NULL or PRIMARY KEY integrity
constraint has been defined for the column, in which case no row can be inserted
without a value for that column.

Nulls are stored in the database if they fall between columns with data values. In these
cases they require 1 byte to store the length of the column (zero).

Trailing nulls in a row require no storage because a new row header signals that the
remaining columns in the previous row are null. For example, if the last three columns
of a table are null, no information is stored for those columns. In tables with many
columns, the columns more likely to contain nulls should be defined last to conserve
disk space.

Most comparisons between nulls and other values are by definition neither true nor
false, but unknown. To identify nulls in SQL, use the IS NULL predicate. Use the SQL
function NVL to convert nulls to non-null values.

Nulls are not indexed, except when the cluster key column value is null or the index is
a bitmap index.

Overview of Tables

Schema Objects 5-9

Default Values for Columns
If a default value is not explicitly defined for a column, then the default for the column
is implicitly NULL. You can also assign a default value to a column of a table so that
when a new row is inserted and a value for the column is omitted or keyword
DEFAULT is supplied, a default value is supplied automatically.

Default column values work as though an INSERT statement actually specifies the
default value. The datatype of the default literal or expression must match or be
convertible to the column datatype.

Integrity constraint checking occurs after the row with a default value is inserted. For
example, in Figure 5–4, a row is inserted into the emp table that does not include a
value for the department number of the employee. Because no value is supplied for
the department number, Oracle Database inserts the deptno column's default value of
20. After inserting the default value, Oracle Database checks the FOREIGN KEY
integrity constraint defined on the deptno column.

Figure 5–4 DEFAULT Column Values

See Also:

■ Oracle Database SQL Language Reference for comparisons using
IS NULL and the NVL function

■ "Indexes and Nulls" on page 5-25

■ "Bitmap Indexes and Nulls" on page 5-35

INSERT
INTO

Table DEPT

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Default Value
(if no value is given for
this column, the default
of 20 is used)

Table EMP

Foreign Key

New row to be inserted, without value
for DEPTNO column.

DEPTNO DNAME LOC

Parent Key

20
30

RESEARCH
SALES

DALLAS
CHICAGO

7691 OSTER SALESMAN 7521 06–APR–90 2975.00 400.00

7329
7499
7521
7566
7691

SMITH
ALLEN
WARD
JONES
OSTER

CEO
VP_SALES
MANAGER
SALESMAN
SALESMAN

7329
7499
7521
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90
06–APR–90

9000.00
7500.00
5000.00
2975.00
2975.00

100.00
200.00
400.00
400.00

20
30
30
30
20

Overview of Tables

5-10 Oracle Database Concepts

For certain types of tables of column datatypes, when adding a column that has both a
NOT NULL constraint and a default value, the database can optimize the operation and
reduce the amount of time that the table is locked for DML.

Partitioned Tables
Partitioned tables allow your data to be broken down into smaller, more manageable
pieces called partitions, or even subpartitions. Indexes can be partitioned in similar
fashion. Each partition can be managed individually, and can operate independently
of the other partitions, thus providing a structure that can be better tuned for
availability and performance.

Nested Tables
You can create a table with a column whose datatype is another table. That is, tables
can be nested within other tables as values in a column. The Oracle database server
stores nested table data out of line from the rows of the parent table, using a store
table that is associated with the nested table column. The parent row contains a
unique set identifier value associated with a nested table instance.

Temporary Tables
In addition to permanent tables, Oracle Database can create temporary tables to hold
session-private data that exists only for the duration of a transaction or session.

The CREATE GLOBAL TEMPORARY TABLE statement creates a temporary table that
can be transaction-specific or session-specific. For transaction-specific temporary
tables, data exists for the duration of the transaction. For session-specific temporary
tables, data exists for the duration of the session. Data in a temporary table is private
to the session. Each session can only see and modify its own data. DML locks are not
acquired on the data of the temporary tables. The LOCK statement has no effect on a
temporary table, because each session has its own private data.

A TRUNCATE statement issued on a session-specific temporary table truncates data in
its own session. It does not truncate the data of other sessions that are using the same
table.

See Also: Chapter 21, "Data Integrity" for more information about
integrity constraints

Note: To reduce disk use and memory use (specifically, the buffer
cache), you can store tables and partitioned tables in a compressed
format inside the database. This often leads to a better scaleup for
read-only operations. Table compression can also speed up query
execution. There is, however, a slight cost in CPU overhead.

See Also:

■ "Table Compression" on page 16-8

■ Oracle Database VLDB and Partitioning Guide

See Also:

■ Oracle Database Object-Relational Developer's Guide for further
information on nested tables

■ Oracle Database Advanced Application Developer's Guide

Overview of Tables

Schema Objects 5-11

DML statements on temporary tables do not generate redo logs for the data changes.
However, undo logs for the data and redo logs for the undo logs are generated. Data
from the temporary table is automatically dropped in the case of session termination,
either when the user logs off or when the session terminates abnormally such as
during a session or instance failure.

You can create indexes for temporary tables using the CREATE INDEX statement.
Indexes created on temporary tables are also temporary, and the data in the index has
the same session or transaction scope as the data in the temporary table.

You can create views that access both temporary and permanent tables. You can also
create triggers on temporary tables.

Oracle Database utilities can export and import the definition of a temporary table.
However, no data rows are exported even if you use the ROWS clause. Similarly, you
can replicate the definition of a temporary table, but you cannot replicate its data.

This section includes the following topics:

■ Segment Allocation

■ Parent and Child Transactions

Segment Allocation
Temporary tables use temporary segments. Unlike permanent tables, temporary tables
and their indexes do not automatically allocate a segment when they are created.
Instead, segments are allocated when the first INSERT (or CREATE TABLE AS
SELECT) is performed. Consequently, if a SELECT, UPDATE, or DELETE is performed
before the first INSERT, then the table appears to be empty.

You can perform DDL statements (ALTER TABLE, DROP TABLE, CREATE INDEX, and
so on) on a temporary table only when no session is currently bound to it. A session
gets bound to a temporary table when an INSERT is performed on it. The session gets
unbound by a TRUNCATE, at session termination, or by doing a COMMIT or ROLLBACK
for a transaction-specific temporary table.

Temporary segments are deallocated at the end of the transaction for
transaction-specific temporary tables and at the end of the session for session-specific
temporary tables.

Parent and Child Transactions
Transaction-specific temporary tables are accessible by user transactions and their
child transactions. However, a given transaction-specific temporary table cannot be
used concurrently by two transactions in the same session, although it can be used by
transactions in different sessions.

If a user transaction does an INSERT into the temporary table, then none of its child
transactions can use the temporary table afterward.

If a child transaction does an INSERT into the temporary table, then at the end of the
child transaction, the data associated with the temporary table goes away. After that,
either the user transaction or any other child transaction can access the temporary
table.

See Also: "Extents in Temporary Segments" on page 2-13

Overview of Tables

5-12 Oracle Database Concepts

External Tables
External tables access data in external sources as if it were in a table in the database.
You can connect to the database and create metadata for the external table using DDL.
The DDL for an external table consists of two parts: one part that describes the Oracle
Database column types, and another part (the access parameters) that describes the
mapping of the external data to the Oracle Database data columns.

An external table does not describe any data that is stored in the database. Nor does it
describe how data is stored in the external source. Instead, it describes how the
external table layer must present the data to the server. It is the responsibility of the
access driver and the external table layer to do the necessary transformations required
on the data in the datafile so that it matches the external table definition.

External tables are read only; therefore, no DML operations are possible, and no index
can be created on them. Also, virtual columns are not supported.

This section includes the following topics:

■ The Access Driver

■ Data Loading with External Tables

■ Parallel Access to External Tables

The Access Driver
When you create an external table, you specify its type. Each type of external table has
its own access driver that provides access parameters unique to that type of external
table. The access driver ensures that data from the data source is processed so that it
matches the definition of the external table.

In the context of external tables, loading data refers to the act of reading data from an
external table and loading it into a table in the database. Unloading data refers to the
act of reading data from a table in the database and inserting it into an external table.

The default type for external tables is ORACLE_LOADER, which lets you read table data
from an external table and load it into a database. Oracle Database also provides the
ORACLE_DATAPUMP type, which lets you unload data (that is, read data from a table in
the database and insert it into an external table) and then reload it into an Oracle
database.

The definition of an external table is kept separately from the description of the data in
the data source. This separation has the following implications:

■ The source file can contain more or fewer fields than there are columns in the
external table.

■ The datatypes for fields in the data source can be different from the columns in the
external table.

Data Loading with External Tables
The main use for external tables is to use them as a row source for loading data into an
actual table in the database. After you create an external table, you can then use a
CREATE TABLE AS SELECT or INSERT INTO ... AS SELECT statement, using the
external table as the source of the SELECT clause.

Note: You cannot insert data into external tables or update records in
them; external tables are read only.

Overview of Views

Schema Objects 5-13

When you access the external table through a SQL statement, the fields of the external
table can be used just like any other field in a regular table. In particular, you can use
the fields as arguments for any SQL built-in function, PL/SQL function, or Java
function. This lets you manipulate data from the external source. For data
warehousing, you can do more sophisticated transformations in this way than you can
with simple datatype conversions. You can also use this mechanism in data
warehousing to do data cleansing.

While external tables cannot contain a column object, constructor functions can be
used to build a column object from attributes in the external table

Parallel Access to External Tables
After the metadata for an external table is created, you can query the external data
directly and in parallel, using SQL. As a result, the external table acts as a view, which
lets you run any SQL query against external data without loading the external data
into the database.

The degree of parallel access to an external table is specified using standard parallel
hints and with the PARALLEL clause. Using parallelism on an external table allows for
concurrent access to the datafiles that comprise an external table. Whether a single file
is accessed concurrently is dependent upon the access driver implementation, and
attributes of the datafile(s) being accessed (for example, record formats).

Overview of Views
A view is a tailored presentation of the data contained in one or more tables or other
views. A view takes the output of a query and treats it as a table. Therefore, a view can
be thought of as a stored query or a virtual table. You can use views in most places
where a table can be used.

For example, the employees table has several columns and numerous rows of
information. If you want users to see only five of these columns or only specific rows,
then you can create a view of that table for other users to access.

Figure 5–5 shows an example of a view called staff derived from the base table
employees. Notice that the view shows only five of the columns in the base table.

See Also:

■ Oracle Database Administrator's Guide for information about
managing external tables, external connections, and directories

■ Oracle Database Performance Tuning Guide for information about
tuning loads from external tables

■ Oracle Database Utilities for information about external tables and
import and export

■ Oracle Database SQL Language Reference for information about
creating and querying external tables

Overview of Views

5-14 Oracle Database Concepts

Figure 5–5 An Example of a View

Because views are derived from tables, they have many similarities. For example, you
can define views with up to 1000 columns, just like a table. You can query views, and
with some restrictions you can update, insert into, and delete from views. All
operations performed on a view actually affect data in some base table of the view and
are subject to the integrity constraints and triggers of the base tables.

You cannot explicitly define triggers on views, but you can define them for the
underlying base tables referenced by the view. Oracle Database does support
definition of logical constraints on views.

This section includes the following topics:

■ How Views are Stored

■ How Views Are Used

■ Mechanics of Views

■ Dependencies and Views

■ Updatable Join Views

■ Object Views

■ Inline Views

How Views are Stored
Unlike a table, a view is not allocated any storage space, nor does a view actually
contain data. Rather, a view is defined by a query that extracts or derives data from the
tables that the view references. These tables are called base tables. Base tables can in
turn be actual tables or can be views themselves (including materialized views).
Because a view is based on other objects, a view requires no storage other than storage
for the definition of the view (the stored query) in the data dictionary.

See Also: Oracle Database SQL Language Reference

employee_id last_name job_id

hr_rep
pr_rep
ac_rep
ac_account

marvis
baer
higgins
gietz

203
204
205
206

manager_id

101
101
101
205

hire_date

07–Jun–94
07–Jun–94
07–Jun–94
07–Jun–94

salary

6500
10000
12000
8300

department_id

40
70
110
110

employee_id last_name job_id

hr_rep
pr_rep
ac_rep
ac_account

marvis
baer
higgins
gietz

203
204
205
206

manager_id

101
101
101
205

department_id

40
70
110
110

employees

staffView

Base
Table

Overview of Views

Schema Objects 5-15

How Views Are Used
Views provide a means to present a different representation of the data that resides
within the base tables. Views are very powerful because they let you tailor the
presentation of data to different types of users. Views are often used to:

■ Provide an additional level of table security by restricting access to a
predetermined set of rows or columns of a table

For example, Figure 5–5 shows how the STAFF view does not show the salary or
commission_pct columns of the base table employees.

■ Hide data complexity

For example, a single view can be defined with a join, which is a collection of
related columns or rows in multiple tables. However, the view hides the fact that
this information actually originates from several tables.

■ Simplify statements for the user

For example, views allow users to select information from multiple tables without
actually knowing how to perform a join.

■ Present the data in a different perspective from that of the base table

For example, the columns of a view can be renamed without affecting the tables on
which the view is based.

■ Isolate applications from changes in definitions of base tables

For example, if a view's defining query references three columns of a four column
table, and a fifth column is added to the table, then the view's definition is not
affected, and all applications using the view are not affected.

■ Express a query that cannot be expressed without using a view

For example, a view can be defined that joins a GROUP BY view with a table, or a
view can be defined that joins a UNION view with a table.

■ Save complex queries

For example, a query can perform extensive calculations with table information.
By saving this query as a view, you can perform the calculations each time the
view is queried.

Mechanics of Views
Oracle Database stores a view's definition in the data dictionary as the text of the
query that defines the view. When you reference a view in a SQL statement, Oracle
Database:

1. Merges the statement that references the view with the query that defines the view

2. Parses the merged statement in a shared SQL area

3. Executes the statement

Oracle Database parses a statement that references a view in a new shared SQL area
only if no existing shared SQL area contains a similar statement. Therefore, you get the
benefit of reduced memory use associated with shared SQL when you use views.

This section includes the following topics:

See Also: Oracle Database SQL Language Reference for information
about the GROUP BY or UNION views

Overview of Views

5-16 Oracle Database Concepts

■ Globalization Support Parameters in Views

■ Use of Indexes Against Views

Globalization Support Parameters in Views
When Oracle Database evaluates views containing string literals or SQL functions that
have globalization support parameters as arguments (such as TO_CHAR, TO_DATE,
and TO_NUMBER), Oracle Database takes default values for these parameters from the
globalization support parameters for the session. You can override these default values
by specifying globalization support parameters explicitly in the view definition.

Use of Indexes Against Views
Oracle Database determines whether to use indexes for a query against a view by
transforming the original query when merging it with the view's defining query.

Consider the following view:

CREATE VIEW employees_view AS
 SELECT employee_id, last_name, salary, location_id
 FROM employees JOIN departments USING (department_id)
 WHERE departments.department_id = 10;

Now consider the following user-issued query:

SELECT last_name
 FROM employees_view
 WHERE employee_id = 9876;

The final query constructed by Oracle Database is:

SELECT last_name
 FROM employees, departments
 WHERE employees.department_id = departments.department_id AND
 departments.department_id = 10 AND
 employees.employee_id = 9876;

In all possible cases, Oracle Database merges a query against a view with the view's
defining query and those of any underlying views. Oracle Database optimizes the
merged query as if you issued the query without referencing the views. Therefore,
Oracle Database can use indexes on any referenced base table columns, whether the
columns are referenced in the view definition or in the user query against the view.

In some cases, Oracle Database cannot merge the view definition with the user-issued
query. In such cases, Oracle Database may not use all indexes on referenced columns.

Dependencies and Views
Because a view is defined by a query that references other objects (tables, materialized
views, or other views), a view depends on the referenced objects. Oracle Database
automatically handles the dependencies for views. For example, if you drop a base
table of a view and then create it again, Oracle Database determines whether the new
base table is acceptable to the existing definition of the view.

See Also: Oracle Database Globalization Support Guide for information
about globalization support

See Also: Oracle Database Performance Tuning Guide for more
information about query optimization

Overview of Views

Schema Objects 5-17

Updatable Join Views
A join view is defined as a view that has more than one table or view in its FROM
clause (a join) and that does not use any of these clauses: DISTINCT, aggregation,
GROUP BY, START WITH, CONNECT BY, ROWNUM, and set operations (UNION ALL,
INTERSECT, and so on).

An updatable join view is a join view that involves two or more base tables or views,
where UPDATE, INSERT, and DELETE operations are permitted. The data dictionary
views ALL_UPDATABLE_COLUMNS, DBA_UPDATABLE_COLUMNS, and USER_
UPDATABLE_COLUMNS contain information that indicates which of the view columns
are updatable. In order to be inherently updatable, a view cannot contain any of the
following constructs:

■ A set operator

■ A DISTINCT operator

■ An aggregate or analytic function

■ A GROUP BY, ORDER BY, CONNECT BY, or START WITH clause

■ A collection expression in a SELECT list

■ A subquery in a SELECT list

■ Joins (with some exceptions)

Views that are not updatable can be modified using INSTEAD OF triggers.

Object Views
In the Oracle object-relational database, an object view let you retrieve, update, insert,
and delete relational data as if it was stored as an object type. You can also define
views with columns that are object datatypes, such as objects, REFs, and collections
(nested tables and VARRAYs).

Inline Views
An inline view is not a schema object. It is a subquery with an alias (correlation name)
that you can use like a view within a SQL statement.

See Also: Chapter 6, "Schema Object Dependencies"

See Also:

■ Oracle Database Administrator's Guide

■ Oracle Database SQL Language Reference for more information about
updatable views

■ "INSTEAD OF Triggers" on page 22-8

See Also:

■ Oracle Database Object-Relational Developer's Guide

■ Oracle Database Advanced Application Developer's Guide

Overview of Materialized Views

5-18 Oracle Database Concepts

Overview of Materialized Views
Materialized views are schema objects that can be used to summarize, compute,
replicate, and distribute data. They are suitable in various computing environments
such as data warehousing, decision support, and distributed or mobile computing:

■ In data warehouses, materialized views are used to compute and store aggregated
data such as sums and averages. Materialized views in these environments are
typically referred to as summaries because they store summarized data. They can
also be used to compute joins with or without aggregations. If compatibility is set
to Oracle9i or higher, then materialized views can be used for queries that include
filter selections.

The optimizer can use materialized views to improve query performance by
automatically recognizing when a materialized view can and should be used to
satisfy a request. The optimizer transparently rewrites the request to use the
materialized view. Queries are then directed to the materialized view and not to
the underlying detail tables or views.

■ In distributed environments, materialized views are used to replicate data at
distributed sites and synchronize updates done at several sites with conflict
resolution methods. The materialized views as replicas provide local access to data
that otherwise has to be accessed from remote sites.

■ In mobile computing environments, materialized views are used to download a
subset of data from central servers to mobile clients, with periodic refreshes from
the central servers and propagation of updates by clients back to the central
servers.

Materialized views are similar to indexes in several ways:

■ They consume storage space.

■ They must be refreshed when the data in their master tables changes.

■ They improve the performance of SQL execution when they are used for query
rewrites.

■ Their existence is transparent to SQL applications and users.

Unlike indexes, materialized views can be accessed directly using a SELECT statement.
Depending on the types of refresh that are required, they can also be accessed directly
in an INSERT, UPDATE, or DELETE statement.

A materialized view can be partitioned. You can define a materialized view on a
partitioned table and one or more indexes on the materialized view.

This section includes the following topics:

■ Define Constraints on Views

■ Refresh Materialized Views

■ Materialized View Logs

See Also:

■ Oracle Database SQL Language Reference for information about
subqueries

■ Oracle Database Performance Tuning Guide for an example of an
inline query causing a view

Overview of Materialized Views

Schema Objects 5-19

Define Constraints on Views
Data warehousing applications recognize multidimensional data in the Oracle
database by identifying Referential Integrity (RI) constraints in the relational schema.
RI constraints represent primary and foreign key relationships among tables. By
querying the Oracle Database data dictionary, applications can recognize RI
constraints and therefore recognize the multidimensional data in the database. In some
environments, database administrators, for schema complexity or security reasons,
define views on fact and dimension tables. Oracle Database provides the ability to
constrain views. By allowing constraint definitions between views, database
administrators can propagate base table constraints to the views, thereby allowing
applications to recognize multidimensional data even in a restricted environment.

Only logical constraints, that is, constraints that are declarative and not enforced by
Oracle Database, can be defined on views. The purpose of these constraints is not to
enforce any business rules but to identify multidimensional data. The following
constraints can be defined on views:

■ Primary key constraint

■ Unique constraint

■ Referential Integrity constraint

Given that view constraints are declarative, DISABLE, NOVALIDATE is the only valid
state for a view constraint. However, the RELY or NORELY state is also allowed,
because constraints on views may be used to enable more sophisticated query
rewrites; a view constraint in the RELY state allows query rewrites to occur when the
rewrite integrity level is set to trusted mode.

Refresh Materialized Views
Oracle Database maintains the data in materialized views by refreshing them after
changes are made to their master tables. The refresh method can be incremental (fast
refresh) or complete. For materialized views that use the fast refresh method, a
materialized view log or direct loader log keeps a record of changes to the master
tables.

Materialized views can be refreshed either on demand or at regular time intervals.
Alternatively, materialized views in the same database as their master tables can be
refreshed whenever a transaction commits its changes to the master tables.

See Also:

■ "Overview of Indexes" on page 5-23

■ Oracle Database VLDB and Partitioning Guide

■ Oracle Database Data Warehousing Guide for information about
materialized views in a data warehousing environment

Note: Although view constraint definitions are declarative in nature,
operations on views are subject to the integrity constraints defined on
the underlying base tables, and constraints on views can be enforced
through constraints on base tables.

Overview of Dimensions

5-20 Oracle Database Concepts

Materialized View Logs
A materialized view log is a schema object that records changes to a master table's
data so that a materialized view defined on the master table can be refreshed
incrementally.

Each materialized view log is associated with a single master table. The materialized
view log resides in the same database and schema as its master table.

Overview of Dimensions
A dimension defines hierarchical (parent/child) relationships between pairs of
columns or column sets. Each value at the child level is associated with one and only
one value at the parent level. A hierarchical relationship is a functional dependency
from one level of a hierarchy to the next level in the hierarchy. A dimension is a
container of logical relationships between columns, and it does not have any data
storage assigned to it.

The CREATE DIMENSION statement specifies:

■ Multiple LEVEL clauses, each of which identifies a column or column set in the
dimension

■ One or more HIERARCHY clauses that specify the parent/child relationships
between adjacent levels

■ Optional ATTRIBUTE clauses, each of which identifies an additional column or
column set associated with an individual level

The columns in a dimension can come either from the same table (denormalized) or
from multiple tables (fully or partially normalized). To define a dimension over
columns from multiple tables, connect the tables using the JOIN clause of the
HIERARCHY clause.

For example, a normalized time dimension can include a date table, a month table, and
a year table, with join conditions that connect each date row to a month row, and each
month row to a year row. In a fully denormalized time dimension, the date, month,
and year columns are all in the same table. Whether normalized or denormalized, the
hierarchical relationships among the columns need to be specified in the CREATE
DIMENSION statement.

See Also:

■ Oracle Database Data Warehousing Guide for information about
materialized views and materialized view logs in a warehousing
environment

■ Oracle Database Advanced Replication for information about
materialized views used for replication

See Also:

■ Oracle Database Data Warehousing Guide for information about how
dimensions are used in a warehousing environment

■ Oracle Database SQL Language Reference for information about
creating dimensions

Overview of the Sequence Generator

Schema Objects 5-21

Overview of the Sequence Generator
The sequence generator provides a sequential series of numbers. The sequence
generator is especially useful in multiuser environments for generating unique
sequential numbers without the overhead of disk I/O or transaction locking. For
example, assume two users are simultaneously inserting new employee rows into the
employees table. By using a sequence to generate unique employee numbers for the
employee_id column, neither user has to wait for the other to enter the next
available employee number. The sequence automatically generates the correct values
for each user.

 Therefore, the sequence generator reduces serialization where the statements of two
transactions must generate sequential numbers at the same time. By avoiding the
serialization that results when multiple users wait for each other to generate and use a
sequence number, the sequence generator improves transaction throughput, and a
user's wait is considerably shorter.

Sequence numbers are integers of up to 38 digits defined in the database. A sequence
definition indicates general information, such as the following:

■ The name of the sequence

■ Whether the sequence ascends or descends

■ The interval between numbers

■ Whether Oracle Database should cache sets of generated sequence numbers in
memory

Oracle Database stores the definitions of all sequences for a particular database as
rows in a single data dictionary table in the SYSTEM tablespace. Therefore, all sequence
definitions are always available, because the SYSTEM tablespace is always online.

Sequence numbers are used by SQL statements that reference the sequence. You can
issue a statement to generate a new sequence number or use the current sequence
number. After a statement in a user's session generates a sequence number, the
particular sequence number is available only to that session. Each user that references
a sequence has access to the current sequence number.

Sequence numbers are generated independently of tables. Therefore, the same
sequence generator can be used for more than one table. Sequence number generation
is useful to generate unique primary keys for your data automatically and to
coordinate keys across multiple rows or tables. Individual sequence numbers can be
skipped if they were generated and used in a transaction that was ultimately rolled
back. Applications can make provisions to catch and reuse these sequence numbers, if
desired.

Caution: If your application can never lose sequence numbers,
then you cannot use Oracle Database sequences, and you may
choose to store sequence numbers in database tables. Be careful
when implementing sequence generators using database tables.
Even in a single instance configuration, for a high rate of sequence
values generation, a performance overhead is associated with the
cost of locking the row that stores the sequence value.

Overview of Synonyms

5-22 Oracle Database Concepts

Overview of Synonyms
A synonym is an alias for any table, view, materialized view, sequence, procedure,
function, package, type, Java class schema object, user-defined object type, or another
synonym. Because a synonym is simply an alias, it requires no storage other than its
definition in the data dictionary.

Synonyms are often used for security and convenience. For example, they can do the
following:

■ Mask the name and owner of an object

■ Provide location transparency for remote objects of a distributed database

■ Simplify SQL statements for database users

■ Enable restricted access similar to specialized views when exercising fine-grained
access control

You can create both public and private synonyms. A public synonym is owned by the
special user group named PUBLIC and every user in a database can access it. A
private synonym is in the schema of a specific user who has control over its
availability to others.

Synonyms are very useful in both distributed and nondistributed database
environments because they hide the identity of the underlying object, including its
location in a distributed system. This is advantageous because if the underlying object
must be renamed or moved, then only the synonym must be redefined. Applications
based on the synonym continue to function without modification.

Synonyms can also simplify SQL statements for users in a distributed database system.
The following example shows how and why public synonyms are often created by a
database administrator to hide the identity of a base table and reduce the complexity
of SQL statements. Assume the following:

■ A table called SALES_DATA is in the schema owned by the user JWARD.

■ The SELECT privilege for the SALES_DATA table is granted to PUBLIC.

At this point, you must query the table SALES_DATA with a SQL statement similar to
the following:

SELECT * FROM jward.sales_data;

Notice how you must include both the schema that contains the table along with the
table name to perform the query.

Assume that the database administrator creates a public synonym with the following
SQL statement:

CREATE PUBLIC SYNONYM sales FOR jward.sales_data;

After the public synonym is created, you can query the table SALES_DATA with a
simple SQL statement:

SELECT * FROM sales;

See Also:

■ Oracle Database Advanced Application Developer's Guide for
performance implications when using sequences

■ Oracle Database SQL Language Reference for information about the
CREATE SEQUENCE statement

Overview of Indexes

Schema Objects 5-23

Notice that the public synonym SALES hides the name of the table SALES_DATA and
the name of the schema that contains the table.

Overview of Indexes
Indexes are optional structures associated with tables and clusters. You can create
indexes on one or more columns of a table to speed SQL statement execution on that
table. Just as the index in this manual helps you locate information faster than if there
were no index, an Oracle Database index provides a faster access path to table data.
Indexes are the primary means of reducing disk I/O when properly used.

You can create many indexes for a table as long as the combination of columns differs
for each index. You can create more than one index using the same columns if you
specify distinctly different combinations of the columns. For example, the following
statements specify valid combinations:

CREATE INDEX employees_idx1 ON employees (last_name, job_id);
CREATE INDEX employees_idx2 ON employees (job_id, last_name);

Oracle Database provides several indexing schemes, which provide complementary
performance functionality:

■ B-tree indexes

■ B-tree cluster indexes

■ Hash cluster indexes

■ Reverse key indexes

■ Bitmap indexes

■ Bitmap join indexes

Oracle Database also provides support for function-based indexes and domain indexes
specific to an application or cartridge.

The absence or presence of an index does not require a change in the wording of any
SQL statement. An index is merely a fast access path to the data. It affects only the
speed of execution. Given a data value that has been indexed, the index points directly
to the location of the rows containing that value.

Indexes are logically and physically independent of the data in the associated table.
You can create or drop an index at any time without affecting the base tables or other
indexes. If you drop an index, all applications continue to work. However, access of
previously indexed data can be slower. Indexes, as independent structures, require
storage space.

Oracle Database automatically maintains and uses indexes after they are created.
Oracle Database automatically reflects changes to data, such as adding new rows,
updating rows, or deleting rows, in all relevant indexes with no additional action by
users.

Retrieval performance of indexed data remains almost constant, even as new rows are
inserted. However, the presence of many indexes on a table decreases the performance
of updates, deletes, and inserts, because Oracle Database must also update the indexes
associated with the table.

The optimizer can use an existing index to build another index. This results in a much
faster index build.

This section includes the following topics:

Overview of Indexes

5-24 Oracle Database Concepts

■ Unique and Nonunique Indexes

■ Visible and Invisible Indexes

■ Composite Indexes

■ Indexes and Keys

■ Indexes and Nulls

■ Function-Based Indexes

■ How Indexes Are Stored

■ Index Unique Scan

■ Index Range Scan

■ Key Compression

■ Reverse Key Indexes

■ Bitmap Indexes

■ Bitmap Join Indexes

Unique and Nonunique Indexes
Indexes can be unique or nonunique. Unique indexes guarantee that no two rows of a
table have duplicate values in the key column (or columns). Nonunique indexes do
not impose this restriction on the column values.

Oracle recommends that unique indexes be created explicitly, using CREATE UNIQUE
INDEX. Creating unique indexes through a primary key or unique constraint is not
guaranteed to create a new index, and the index they create is not guaranteed to be a
unique index.

Visible and Invisible Indexes
Indexes can be visible or invisible. An invisible index is maintained by DML
operations and cannot be used by the optimizer.

Making an index invisible is an alternative to making it unusable or dropping it.

Composite Indexes
A composite index (also called a concatenated index) is an index that you create on
multiple columns in a table. Columns in a composite index can appear in any order
and need not be adjacent in the table.

Composite indexes can speed retrieval of data for SELECT statements in which the
WHERE clause references all or the leading portion of the columns in the composite

See Also: Oracle Database Administrator's Guide for information
about creating unique indexes explicitly

See Also:

■ Oracle Database Administrator's Guide for information about
creating invisible indexes

■ Oracle Database Administrator's Guide for information about
making indexes invisible

Overview of Indexes

Schema Objects 5-25

index. Therefore, the order of the columns used in the definition is important.
Generally, the most commonly accessed or most selective columns go first.

Figure 5–6 illustrates the VENDOR_PARTS table that has a composite index on the
VENDOR_ID and PART_NO columns.

Figure 5–6 Composite Index Example

No more than 32 columns can form a regular composite index. For a bitmap index, the
maximum number columns is 30. A key value cannot exceed roughly half (minus
some overhead) the available data space in a data block.

Indexes and Keys
Although the terms are often used interchangeably, indexes and keys are different.
Indexes are structures actually stored in the database, which users create, alter, and
drop using SQL statements. You create an index to provide a fast access path to table
data. Keys are strictly a logical concept. Keys correspond to another feature of Oracle
Database called integrity constraints, which enforce the business rules of a database.

Because Oracle Database uses indexes to enforce some integrity constraints, the terms
key and index are often are used interchangeably. However, do not confuse them with
each other.

Indexes and Nulls
NULL values in indexes are considered to be distinct except when all the non-NULL
values in two or more rows of an index are identical, in which case the rows are
considered to be identical. Therefore, UNIQUE indexes prevent rows containing NULL
values from being treated as identical. This does not apply if there are no non-NULL
values—in other words, if the rows are entirely NULL.

Oracle Database does not index table rows in which all key columns are NULL, except
in the case of bitmap indexes or when the cluster key column value is NULL.

See Also: Oracle Database Performance Tuning Guide for more
information about using composite indexes

See Also: Chapter 21, "Data Integrity"

See Also: "Bitmap Indexes and Nulls" on page 5-35

VENDOR_PARTS
VEND ID PART NO UNIT COST

.25

.39
4.95

.27
5.10
1.33
1.19
5.28

10–440
10–441

457
10–440

457
08–300
08–300

457

1012
1012
1012
1010
1010
1220
1012
1292

Concatenated Index
(index with multiple columns)

Overview of Indexes

5-26 Oracle Database Concepts

Function-Based Indexes
You can create indexes on functions and expressions that involve one or more columns
in the table being indexed. A function-based index computes the value of the function
or expression and stores it in the index. You can create a function-based index as either
a B-tree or a bitmap index.

The function used for building the index can be an arithmetic expression or an
expression that contains a PL/SQL function, package function, C callout, or SQL
function. The expression cannot contain any aggregate functions, and it must be
DETERMINISTIC. For building an index on a column containing an object type, the
function can be a method of that object, such as a map method. However, you cannot
build a function-based index on a LOB column, REF, or nested table column, nor can
you build a function-based index if the object type contains a LOB, REF, or nested
table.

This section includes the following topics:

■ Uses of Function-Based Indexes

■ Optimization with Function-Based Indexes

■ Dependencies of Function-Based Indexes

Uses of Function-Based Indexes
Function-based indexes provide an efficient mechanism for evaluating statements that
contain functions in their WHERE clauses. The value of the expression is computed and
stored in the index. When it processes INSERT and UPDATE statements, however,
Oracle Database must still evaluate the function to process the statement.

For example, if you create the following index:

CREATE INDEX idx ON table_1 (a + b * (c - 1), a, b);

Oracle Database can use it when processing queries such as this:

SELECT a FROM table_1 WHERE a + b * (c - 1) < 100;

Function-based indexes defined on UPPER(column_name) or LOWER(column_
name) can facilitate case-insensitive searches. For example, the following index:

CREATE INDEX uppercase_idx ON employees (UPPER(first_name));

can facilitate processing queries such as this:

SELECT * FROM employees WHERE UPPER(first_name) = 'RICHARD';

A function-based index can also be used for a globalization support sort index that
provides efficient linguistic collation in SQL statements.

See Also:

■ "Bitmap Indexes"

■ Oracle Database Performance Tuning Guide for more information
about using function-based indexes

See Also: Oracle Database Globalization Support Guide for information
about linguistic indexes

Overview of Indexes

Schema Objects 5-27

Optimization with Function-Based Indexes
You must gather statistics about function-based indexes for the optimizer. Otherwise,
the indexes cannot be used to process SQL statements.

The optimizer can use an index range scan on a function-based index for queries with
expressions in WHERE clause. For example, in this query:

SELECT * FROM t WHERE a + b < 10;

the optimizer can use index range scan if an index is built on a+b. The range scan
access path is especially beneficial when the predicate (WHERE clause) has low
selectivity. In addition, the optimizer can estimate the selectivity of predicates
involving expressions more accurately if the expressions are materialized in a
function-based index.

The optimizer performs expression matching by parsing the expression in a SQL
statement and then comparing the expression trees of the statement and the
function-based index. This comparison is case-insensitive and ignores blank spaces.

Dependencies of Function-Based Indexes
Function-based indexes depend on the function used in the expression that defines the
index. If the function is a PL/SQL function or package function, the index is disabled
by any changes to the function specification.

To create a function-based index, the user must be granted CREATE INDEX or CREATE
ANY INDEX.

To use a function-based index:

■ The table must be analyzed after the index is created.

■ The query must be guaranteed not to need any NULL values from the indexed
expression, because NULL values are not stored in indexes.

The following sections describe additional requirements.

DETERMINISTIC Functions Any user-written function used in a function-based index
must have been declared with the DETERMINISTIC keyword to indicate that the
function will always return the same output return value for any given set of input
argument values, now and in the future.

Privileges on the Defining Function The index owner needs the EXECUTE privilege on the
function used to define a function-based index. If the EXECUTE privilege is revoked,
Oracle Database marks the index DISABLED. The index owner does not need the
EXECUTE WITH GRANT OPTION privilege on this function to grant SELECT
privileges on the underlying table.

Resolve Dependencies of Function-Based Indexes A function-based index depends on any
function that it is using. If the function or the specification of a package containing the
function is redefined (or if the index owner's EXECUTE privilege is revoked), then the
following conditions hold:

■ The index is marked as DISABLED.

■ Queries on a DISABLED index fail if the optimizer chooses to use the index.

See Also: Oracle Database Performance Tuning Guide for more
information about gathering statistics

See Also: Oracle Database Performance Tuning Guide

Overview of Indexes

5-28 Oracle Database Concepts

■ DML operations on a DISABLED index fail unless the index is also marked
UNUSABLE and the initialization parameter SKIP_UNUSABLE_INDEXES is set to
true.

To re-enable the index after a change to the function, use the ALTER INDEX ... ENABLE
statement.

How Indexes Are Stored
When you create an index, Oracle Database automatically allocates an index segment
to hold the index's data in a tablespace. You can control allocation of space for an
index's segment and use of this reserved space in the following ways:

■ Set the storage parameters for the index segment to control the allocation of the
index segment's extents.

■ Set the PCTFREE parameter for the index segment to control the free space in the
data blocks that constitute the index segment's extents.

The tablespace of an index's segment is either the owner's default tablespace or a
tablespace specifically named in the CREATE INDEX statement. You do not have to
place an index in the same tablespace as its associated table. Furthermore, you can
improve performance of queries that use an index by storing an index and its table in
different tablespaces located on different disk drives, because Oracle Database can
retrieve both index and table data in parallel.

This section includes the following topics:

■ Format of Index Blocks

■ The Internal Structure of Indexes

■ Index Properties

■ Advantages of B-tree Structure

Format of Index Blocks
Space available for index data is the Oracle Database block size minus block overhead,
entry overhead, rowid, and one length byte for each value indexed.

When you create an index, Oracle Database fetches and sorts the columns to be
indexed and stores the rowid along with the index value for each row. Then Oracle
Database loads the index from the bottom up. For example, consider the statement:

CREATE INDEX employees_last_name ON employees(last_name);

Oracle Database sorts the employees table on the last_name column. It then loads
the index with the last_name and corresponding rowid values in this sorted order.
When it uses the index, Oracle Database does a quick search through the sorted last_
name values and then uses the associated rowid values to locate the rows having the
sought last_name value.

The Internal Structure of Indexes
Oracle Database uses B-trees to store indexes to speed up data access. With no indexes,
you must do a sequential scan on the data to find a value. For n rows, the average
number of rows searched is n/2. This does not scale very well as data volumes
increase.

See Also: "PCTFREE, PCTUSED, and Row Chaining" on page 2-6

Overview of Indexes

Schema Objects 5-29

Consider an ordered list of the values divided into block-wide ranges (leaf blocks). The
end points of the ranges along with pointers to the blocks can be stored in a search tree
and a value in log(n) time for n entries could be found. This is the basic principle
behind Oracle Database indexes.

Figure 5–7 illustrates the structure of a B-tree index.

Figure 5–7 Internal Structure of a B-tree Index

The upper blocks (branch blocks) of a B-tree index contain index data that points to
lower-level index blocks. The lowest level index blocks (leaf blocks) contain every
indexed data value and a corresponding rowid used to locate the actual row. The leaf
blocks are doubly linked. Indexes in columns containing character data are based on
the binary values of the characters in the database character set.

For a unique index, one rowid exists for each data value. For a nonunique index, the
rowid is included in the key in sorted order, so nonunique indexes are sorted by the
index key and rowid. Key values containing all nulls are not indexed, except for
cluster indexes. Two rows can both contain all nulls without violating a unique index.

Index Properties
The two kinds of blocks:

■ Branch blocks for searching

■ Leaf blocks that store the values

Branch Blocks Branch blocks store the following:

■ The minimum key prefix needed to make a branching decision between two keys

■ The pointer to the child block containing the key

If the blocks have n keys then they have n+1 pointers. The number of keys and
pointers is limited by the block size.

K
ar

l,
R

O
W

ID

K
at

hy
, R

O
W

ID

K
im

, R
O

W
ID

La
nc

e,
 R

O
W

ID

P
ab

lo
, R

O
W

ID

P
au

la
, R

O
W

ID

P
au

la
, R

O
W

ID

P
et

er
, R

O
W

ID

Lu
is

, R
O

W
ID

M
ar

k,
 R

O
W

ID

M
ar

y,
 R

O
W

ID

M
ik

e,
 R

O
W

ID

M
ik

e,
 R

O
W

ID

N
an

cy
, R

O
W

ID

N
an

cy
 R

O
W

ID

N
an

cy
, R

O
W

ID

N
ic

ol
e,

 R
O

W
ID

N
or

m
, R

O
W

ID

P
hi

l,
R

O
W

ID

P
ie

rr
e,

 R
O

W
ID

R
ac

he
l,

R
O

W
ID

R
aj

iv
, R

O
W

ID

R
ao

ul
, R

O
W

ID

Leaf Blocks

B C C
r

S
am

S
t

S
u

N P P
h

F H K
ar

Branch Blocks

Di Lu Rh

Overview of Indexes

5-30 Oracle Database Concepts

Leaf Blocks All leaf blocks are at the same depth from the root branch block. Leaf
blocks store the following:

■ The complete key value for every row

■ ROWIDs of the table rows

All key and ROWID pairs are linked to their left and right siblings. They are sorted by
(key, ROWID).

Advantages of B-tree Structure
The B-tree structure has the following advantages:

■ All leaf blocks of the tree are at the same depth, so retrieval of any record from
anywhere in the index takes approximately the same amount of time.

■ B-tree indexes automatically stay balanced.

■ All blocks of the B-tree are three-quarters full on the average.

■ B-trees provide excellent retrieval performance for a wide range of queries,
including exact match and range searches.

■ Inserts, updates, and deletes are efficient, maintaining key order for fast retrieval.

■ B-tree performance is good for both small and large tables and does not degrade as
the size of a table grows.

Index Unique Scan
Index unique scan is one of the most efficient ways of accessing data. This access
method is used for returning the data from B-tree indexes. The optimizer chooses a
unique scan when all columns of a unique (B-tree) index are specified with equality
conditions.

Index Range Scan
Index range scan is a common operation for accessing selective data. It can be
bounded (bounded on both sides) or unbounded (on one or both sides). Data is
returned in the ascending order of index columns. Multiple rows with identical values
are sorted (in ascending order) by the ROWIDs.

Key Compression
Key compression lets you compress portions of the primary key column values in an
index or index-organized table, which reduces the storage overhead of repeated
values.

Generally, keys in an index have two pieces, a grouping piece and a unique piece. If
the key is not defined to have a unique piece, Oracle Database provides one in the
form of a rowid appended to the grouping piece. Key compression is a method of
breaking off the grouping piece and storing it so it can be shared by multiple unique
pieces.

This section includes the following topics:

■ Prefix and Suffix Entries

■ Performance and Storage Considerations

See Also: Computer science texts for more information about B-tree
indexes

Overview of Indexes

Schema Objects 5-31

■ Uses of Key Compression

Prefix and Suffix Entries
Key compression breaks the index key into a prefix entry (the grouping piece) and a
suffix entry (the unique piece). Compression is achieved by sharing the prefix entries
among the suffix entries in an index block. Only keys in the leaf blocks of a B-tree
index are compressed. In the branch blocks the key suffix can be truncated, but the key
is not compressed.

Key compression is done within an index block but not across multiple index blocks.
Suffix entries form the compressed version of index rows. Each suffix entry references
a prefix entry, which is stored in the same index block as the suffix entry.

By default, the prefix consists of all key columns excluding the last one. For example,
in a key made up of three columns (column1, column2, column3) the default prefix is
(column1, column2). For a list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5), (1,3,4), (1,4,4) the
repeated occurrences of (1,2), (1,3) in the prefix are compressed.

Alternatively, you can specify the prefix length, which is the number of columns in the
prefix. For example, if you specify prefix length 1, then the prefix is column1 and the
suffix is (column2, column3). For the list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5), (1,3,4),
(1,4,4) the repeated occurrences of 1 in the prefix are compressed.

The maximum prefix length for a nonunique index is the number of key columns, and
the maximum prefix length for a unique index is the number of key columns minus
one.

Prefix entries are written to the index block only if the index block does not already
contain a prefix entry whose value is equal to the present prefix entry. Prefix entries
are available for sharing immediately after being written to the index block and
remain available until the last deleted referencing suffix entry is cleaned out of the
index block.

Performance and Storage Considerations
Key compression can lead to a huge saving in space, letting you store more keys in
each index block, which can lead to less I/O and better performance.

Although key compression reduces the storage requirements of an index, it can
increase the CPU time required to reconstruct the key column values during an index
scan. It also incurs some additional storage overhead, because every prefix entry has
an overhead of 4 bytes associated with it.

Uses of Key Compression
Key compression is useful in many different scenarios, such as:

■ In a nonunique regular index, Oracle Database stores duplicate keys with the
rowid appended to the key to break the duplicate rows. If key compression is
used, Oracle Database stores the duplicate key as a prefix entry on the index block
without the rowid. The rest of the rows are suffix entries that consist of only the
rowid.

■ This same behavior can be seen in a unique index that has a key of the form (item,
time stamp), for example (stock_ticker, transaction_time). Thousands of
rows can have the same stock_ticker value, with transaction_time
preserving uniqueness. On a particular index block a stock_ticker value is
stored only once as a prefix entry. Other entries on the index block are
transaction_time values stored as suffix entries that reference the common
stock_ticker prefix entry.

Overview of Indexes

5-32 Oracle Database Concepts

■ In an index-organized table that contains a VARRAY or NESTED TABLE datatype,
the object identifier is repeated for each element of the collection datatype. Key
compression lets you compress the repeating object identifier values.

In some cases, however, key compression cannot be used. For example, in a unique
index with a single attribute key, key compression is not possible, because even though
there is a unique piece, there are no grouping pieces to share.

Reverse Key Indexes
Creating a reverse key index, compared to a standard index, reverses the bytes of each
column indexed (except the rowid) while keeping the column order. Such an
arrangement can help avoid performance degradation with Oracle Real Application
Clusters where modifications to the index are concentrated on a small set of leaf
blocks. By reversing the keys of the index, the insertions become distributed across all
leaf keys in the index.

Using the reverse key arrangement eliminates the ability to run an index range
scanning query on the index. Because lexically adjacent keys are not stored next to
each other in a reverse-key index, only fetch-by-key or full-index (table) scans can be
performed.

Sometimes, using a reverse-key index can make an OLTP Oracle Real Application
Clusters application faster. For example, keeping the index of mail messages in an
e-mail application: some users keep old messages, and the index must maintain
pointers to these as well as to the most recent.

The REVERSE keyword provides a simple mechanism for creating a reverse key index.
You can specify the keyword REVERSE along with the optional index specifications in
a CREATE INDEX statement:

CREATE INDEX i ON t (a,b,c) REVERSE;

You can specify the keyword NOREVERSE to REBUILD a reverse-key index into one
that is not reverse keyed:

ALTER INDEX i REBUILD NOREVERSE;

Rebuilding a reverse-key index without the NOREVERSE keyword produces a rebuilt,
reverse-key index.

Bitmap Indexes
The purpose of an index is to provide pointers to the rows in a table that contain a
given key value. In a regular index, this is achieved by storing a list of rowids for each
key corresponding to the rows with that key value. Oracle Database stores each key
value repeatedly with each stored rowid. In a bitmap index, a bitmap for each key
value is used instead of a list of rowids.

Each bit in the bitmap corresponds to a possible rowid. If the bit is set, then it means
that the row with the corresponding rowid contains the key value. A mapping
function converts the bit position to an actual rowid, so the bitmap index provides the
same functionality as a regular index even though it uses a different representation
internally. If the number of different key values is small, then bitmap indexes are very
space efficient.

See Also: "Overview of Index-Organized Tables" on page 5-36

Overview of Indexes

Schema Objects 5-33

Bitmap indexing efficiently merges indexes that correspond to several conditions in a
WHERE clause. Rows that satisfy some, but not all, conditions are filtered out before the
table itself is accessed. This improves response time, often dramatically.

This section includes the following topics:

■ Benefits for Data Warehousing Applications

■ Cardinality

■ Bitmap Index Example

■ Bitmap Indexes and Nulls

■ Bitmap Indexes on Partitioned Tables

Benefits for Data Warehousing Applications
Bitmap indexing benefits data warehousing applications which have large amounts of
data and ad hoc queries but a low level of concurrent transactions. For such
applications, bitmap indexing provides:

■ Reduced response time for large classes of ad hoc queries

■ A substantial reduction of space use compared to other indexing techniques

■ Dramatic performance gains even on very low end hardware

■ Very efficient parallel DML and loads

Fully indexing a large table with a traditional B-tree index can be prohibitively
expensive in terms of space, because the index can be several times larger than the
data in the table. Bitmap indexes are typically only a fraction of the size of the indexed
data in the table.

Bitmap indexes are not suitable for OLTP applications with large numbers of
concurrent transactions modifying the data. These indexes are primarily intended for
decision support in data warehousing applications where users typically query the
data rather than update it.

Bitmap indexes are also not suitable for columns that are primarily queried with less
than or greater than comparisons. For example, a salary column that usually appears
in WHERE clauses in a comparison to a certain value is better served with a B-tree
index. Bitmapped indexes are only useful with equality queries, especially in
combination with AND, OR, and NOT operators.

Bitmap indexes are integrated with the Oracle Database optimizer and execution
engine. They can be used seamlessly in combination with other Oracle Database
execution methods. For example, the optimizer can decide to perform a hash join
between two tables using a bitmap index on one table and a regular B-tree index on
the other. The optimizer considers bitmap indexes and other available access methods,
such as regular B-tree indexes and full table scan, and chooses the most efficient
method, taking parallelism into account where appropriate.

Parallel query and parallel DML work with bitmap indexes as with traditional
indexes. Bitmap indexes on partitioned tables must be local indexes. Parallel create
index and concatenated indexes are also supported.

Cardinality
The advantages of using bitmap indexes are greatest for low cardinality columns: that
is, columns in which the number of distinct values is small compared to the number of
rows in the table. If the number of distinct values of a column is less than 1% of the
number of rows in the table, or if the values in a column are repeated more than 100

Overview of Indexes

5-34 Oracle Database Concepts

times, then the column is a candidate for a bitmap index. Even columns with a lower
number of repetitions and thus higher cardinality can be candidates if they tend to be
involved in complex conditions in the WHERE clauses of queries.

For example, on a table with 1 million rows, a column with 10,000 distinct values is a
candidate for a bitmap index. A bitmap index on this column can out-perform a B-tree
index, particularly when this column is often queried in conjunction with other
columns.

B-tree indexes are most effective for high-cardinality data: that is, data with many
possible values, such as CUSTOMER_NAME or PHONE_NUMBER. In some situations, a
B-tree index can be larger than the indexed data. Used appropriately, bitmap indexes
can be significantly smaller than a corresponding B-tree index.

In ad hoc queries and similar situations, bitmap indexes can dramatically improve
query performance. AND and OR conditions in the WHERE clause of a query can be
quickly resolved by performing the corresponding Boolean operations directly on the
bitmaps before converting the resulting bitmap to rowids. If the resulting number of
rows is small, the query can be answered very quickly without resorting to a full table
scan of the table.

Bitmap Index Example
Table 5–1 shows a portion of a company's customer data.

MARITAL_STATUS, REGION, GENDER, and INCOME_LEVEL are all low-cardinality
columns. There are only three possible values for marital status and region, two
possible values for gender, and four for income level. Therefore, it is appropriate to
create bitmap indexes on these columns. A bitmap index should not be created on
CUSTOMER# because this is a high-cardinality column. Instead, use a unique B-tree
index on this column to provide the most efficient representation and retrieval.

Table 5–2 illustrates the bitmap index for the REGION column in this example. It
consists of three separate bitmaps, one for each region.

Table 5–1 Bitmap Index Example

CUSTOMER #
MARITAL_
STATUS REGION GENDER

INCOME_
LEVEL

101 single east male bracket_1

102 married central female bracket_4

103 married west female bracket_2

104 divorced west male bracket_4

105 single central female bracket_2

106 married central female bracket_3

Overview of Indexes

Schema Objects 5-35

Each entry or bit in the bitmap corresponds to a single row of the CUSTOMER table. The
value of each bit depends upon the values of the corresponding row in the table. For
instance, the bitmap REGION='east' contains a one as its first bit. This is because the
region is east in the first row of the CUSTOMER table. The bitmap REGION='east'
has a zero for its other bits because none of the other rows of the table contain east as
their value for REGION.

An analyst investigating demographic trends of the company's customers can ask,
"How many of our married customers live in the central or west regions?" This
corresponds to the following SQL query:

SELECT COUNT(*) FROM CUSTOMER
 WHERE MARITAL_STATUS = 'married' AND REGION IN ('central','west');

Bitmap indexes can process this query with great efficiency by counting the number of
ones in the resulting bitmap, as illustrated in Figure 5–8. To identify the specific
customers who satisfy the criteria, the resulting bitmap can be used to access the table.

Figure 5–8 Running a Query Using Bitmap Indexes

Bitmap Indexes and Nulls
Bitmap indexes can include rows that have NULL values, unlike most other types of
indexes. Indexing of nulls can be useful for some types of SQL statements, such as
queries with the aggregate function COUNT.

Bitmap Indexes on Partitioned Tables
Like other indexes, you can create bitmap indexes on partitioned tables. The only
restriction is that bitmap indexes must be local to the partitioned table—they cannot be
global indexes. Global bitmap indexes are supported only on nonpartitioned tables.

Table 5–2 Sample Bitmap

REGION='east' REGION='central' REGION='west'

1 0 0

0 1 0

0 0 1

0 0 1

0 1 0

0 1 0

AND OR = AND =

0

1

1

0

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

1

1

0

0

1

0

1

1

1

1

1

0

1

1

0

0

1

status =
'married'

region =
'central'

region =
'west'

Overview of Index-Organized Tables

5-36 Oracle Database Concepts

Bitmap Join Indexes
In addition to a bitmap index on a single table, you can create a bitmap join index,
which is a bitmap index for the join of two or more tables. A bitmap join index is a
space efficient way of reducing the volume of data that must be joined by performing
restrictions in advance. For each value in a column of a table, a bitmap join index
stores the rowids of corresponding rows in one or more other tables. In a data
warehousing environment, the join condition is an equi-inner join between the
primary key column or columns of the dimension tables and the foreign key column
or columns in the fact table.

Bitmap join indexes are much more efficient in storage than materialized join views, an
alternative for materializing joins in advance. This is because the materialized join
views do not compress the rowids of the fact tables.

Overview of Index-Organized Tables
An index-organized table has a storage organization that is a variant of a primary
B-tree. Unlike an ordinary (heap-organized) table whose data is stored as an
unordered collection (heap), data for an index-organized table is stored in a B-tree
index structure in a primary key sorted manner. Besides storing the primary key
column values of an index-organized table row, each index entry in the B-tree stores
the nonkey column values as well.

As shown in Figure 5–9, the index-organized table is somewhat similar to a
configuration consisting of an ordinary table and an index on one or more of the table
columns, but instead of maintaining two separate storage structures, one for the table
and one for the B-tree index, the database system maintains only a single B-tree index.
Also, rather than having a row's rowid stored in the index entry, the nonkey column
values are stored. Thus, each B-tree index entry contains <primary_key_value,
non_primary_key_column_values>.

Figure 5–9 Structure of a Regular Table Compared with an Index-Organized Table

See Also:

■ Oracle Database VLDB and Partitioning Guide for information about
partitioned tables and descriptions of local and global indexes

■ Oracle Database VLDB and Partitioning Guide

■ Oracle Database Performance Tuning Guide for more information
about using bitmap indexes, including an example of indexing
null values

See Also: Oracle Database Data Warehousing Guide for more
information on bitmap join indexes

Finance
Invest

5543
6879

Table
Finance 5543
Invest 6879

Index

Regular Table and Index Index-Organized Table

Finance ROWID
Invest ROWID

Index

Table Data Stored
in Index

Overview of Index-Organized Tables

Schema Objects 5-37

Applications manipulate the index-organized table just like an ordinary table, using
SQL statements. However, the database system performs all operations by
manipulating the corresponding B-tree index.

Table 5–3 summarizes the differences between index-organized tables and ordinary
tables.

This section includes the following topics:

■ Benefits of Index-Organized Tables

■ Index-Organized Tables with Row Overflow Area

■ Secondary Indexes on Index-Organized Tables

■ Bitmap Indexes on Index-Organized Tables

■ Partitioned Index-Organized Tables

■ B-tree Indexes on UROWID Columns for Heap- and Index-Organized Tables

■ Index-Organized Table Applications

Benefits of Index-Organized Tables
Index-organized tables provide faster access to table rows by the primary key or any
key that is a valid prefix of the primary key. Presence of nonkey columns of a row in
the B-tree leaf block itself avoids an additional block access. Also, because rows are
stored in primary key order, range access by the primary key (or a valid prefix)
involves minimum block accesses.

In order to allow even faster access to frequently accessed columns, you can use a row
overflow segment (as described later) to push out infrequently accessed nonkey
columns from the B-tree leaf block to an optional (heap-organized) overflow segment.
This allows limiting the size and content of the portion of a row that is actually stored
in the B-tree leaf block, which may lead to a higher number of rows in each leaf block
and a smaller B-tree.

Unlike a configuration of heap-organized table with a primary key index where
primary key columns are stored both in the table and in the index, there is no such
duplication here because primary key column values are stored only in the B-tree
index.

Table 5–3 Comparison of Index-Organized Tables with Ordinary Tables

Ordinary Table Index-Organized Table

Rowid uniquely identifies a row. Primary key
can be optionally specified

Primary key uniquely identifies a row.
Primary key must be specified

Physical rowid in ROWID pseudocolumn
allows building secondary indexes

Logical rowid in ROWID pseudocolumn allows
building secondary indexes

Access is based on rowid Access is based on logical rowid

Sequential scan returns all rows Full-index scan returns all rows

Can be stored in a cluster with other tables Cannot be stored in a cluster

Can contain a column of the LONG datatype
and columns of LOB datatypes

Can contain LOB columns but not LONG
columns

Can contain virtual columns (only relational
heap tables are supported)

Cannot contain virtual columns

Overview of Index-Organized Tables

5-38 Oracle Database Concepts

Because rows are stored in primary key order, a significant amount of additional
storage space savings can be obtained through the use of key compression.

Use of primary-key based logical rowids, as opposed to physical rowids, in secondary
indexes on index-organized tables allows high availability. This is because, due to the
logical nature of the rowids, secondary indexes do not become unusable even after a
table reorganization operation that causes movement of the base table rows. At the
same time, through the use of physical guess in the logical rowid, it is possible to get
secondary index based index-organized table access performance that is comparable to
performance for secondary index based access to an ordinary table.

Index-Organized Tables with Row Overflow Area
B-tree index entries are usually quite small, because they only consist of the key value
and a ROWID. In index-organized tables, however, the B-tree index entries can be large,
because they consist of the entire row. This may destroy the dense clustering property
of the B-tree index.

Oracle Database provides the OVERFLOW clause to handle this problem. You can
specify an overflow tablespace so that, if necessary, a row can be divided into the
following two parts that are then stored in the index and in the overflow storage area
segment, respectively:

■ The index entry, containing column values for all the primary key columns, a
physical rowid that points to the overflow part of the row, and optionally a few of
the nonkey columns

■ The overflow part, containing column values for the remaining nonkey columns

With OVERFLOW, you can use two clauses, PCTTHRESHOLD and INCLUDING, to control
how Oracle Database determines whether a row should be stored in two parts and if
so, at which nonkey column to break the row. Using PCTTHRESHOLD, you can specify
a threshold value as a percentage of the block size. If all the nonkey column values can
be accommodated within the specified size limit, the row will not be broken into two
parts. Otherwise, starting with the first nonkey column that cannot be accommodated,
the rest of the nonkey columns are all stored in the row overflow segment for the table.

The INCLUDING clause lets you specify a column name so that any nonkey column,
appearing in the CREATE TABLE statement after that specified column, is stored in the
row overflow segment. Note that additional nonkey columns may sometimes need to
be stored in the overflow due to PCTTHRESHOLD-based limits.

Secondary Indexes on Index-Organized Tables
Secondary index support on index-organized tables provides efficient access to
index-organized table using columns that are not the primary key nor a prefix of the
primary key.

See Also:

■ "Key Compression" on page 5-30

■ "Secondary Indexes on Index-Organized Tables" on page 5-38

■ Oracle Database Administrator's Guide for information about
creating and maintaining index-organized tables

See Also: Oracle Database Administrator's Guide for examples of
using the OVERFLOW clause

Overview of Index-Organized Tables

Schema Objects 5-39

Oracle Database constructs secondary indexes on index-organized tables using logical
row identifiers (logical rowids) that are based on the table's primary key. A logical
rowid includes a physical guess, which identifies the block location of the row. Oracle
Database can use these physical guesses to probe directly into the leaf block of the
index-organized table, bypassing the primary key search. Because rows in
index-organized tables do not have permanent physical addresses, the physical
guesses can become stale when rows are moved to new blocks.

For an ordinary table, access by a secondary index involves a scan of the secondary
index and an additional I/O to fetch the data block containing the row. For
index-organized tables, access by a secondary index varies, depending on the use and
accuracy of physical guesses:

■ Without physical guesses, access involves two index scans: a secondary index scan
followed by a scan of the primary key index.

■ With accurate physical guesses, access involves a secondary index scan and an
additional I/O to fetch the data block containing the row.

■ With inaccurate physical guesses, access involves a secondary index scan and an
I/O to fetch the wrong data block (as indicated by the physical guess), followed by
a scan of the primary key index.

Bitmap Indexes on Index-Organized Tables
Oracle Database supports bitmap indexes on partitioned and nonpartitioned
index-organized tables. A mapping table is required for creating bitmap indexes on an
index-organized table.

Mapping Table
The mapping table is a heap-organized table that stores logical rowids of the
index-organized table. Specifically, each mapping table row stores one logical rowid
for the corresponding index-organized table row. Thus, the mapping table provides
one-to-one mapping between logical rowids of the index-organized table rows and
physical rowids of the mapping table rows.

A bitmap index on an index-organized table is similar to that on a heap-organized
table except that the rowids used in the bitmap index on an index-organized table are
those of the mapping table as opposed to the base table. There is one mapping table for
each index-organized table and it is used by all the bitmap indexes created on that
index-organized table.

In both heap-organized and index-organized base tables, a bitmap index is accessed
using a search key. If the key is found, the bitmap entry is converted to a physical
rowid. In the case of heap-organized tables, this physical rowid is then used to access
the base table. However, in the case of index-organized tables, the physical rowid is
then used to access the mapping table. The access to the mapping table yields a logical
rowid. This logical rowid is used to access the index-organized table.

Though a bitmap index on an index-organized table does not store logical rowids, it is
still logical in nature.

See Also: "Logical Rowids" on page 26-17

Overview of Application Domain Indexes

5-40 Oracle Database Concepts

Partitioned Index-Organized Tables
You can partition an index-organized table by RANGE, HASH, or LIST on column
values. The partitioning columns must form a subset of the primary key columns. Just
like ordinary tables, local partitioned (prefixed and non-prefixed) index as well as
global partitioned (prefixed) indexes are supported for partitioned index-organized
tables.

B-tree Indexes on UROWID Columns for Heap- and Index-Organized Tables
UROWID datatype columns can hold logical primary key-based rowids identifying
rows of index-organized tables. Oracle Database supports indexes on UROWID
datatypes of a heap- or index-organized table. The index supports equality predicates
on UROWID columns. For predicates other than equality or for ordering on UROWID
datatype columns, the index is not used.

Index-Organized Table Applications
The superior query performance for primary key based access, high availability
aspects, and reduced storage requirements make index-organized tables ideal for the
following kinds of applications:

■ Online transaction processing (OLTP)

■ Internet (for example, search engines and portals)

■ E-commerce (for example, electronic stores and catalogs)

■ Data warehousing

■ Analytic functions

Overview of Application Domain Indexes
Oracle Database provides extensible indexing to accommodate indexes on
customized complex datatypes such as documents, spatial data, images, and video
clips and to make use of specialized indexing techniques. With extensible indexing,
you can encapsulate application-specific index management routines as an indextype
schema object and define a domain index (an application-specific index) on table
columns or attributes of an object type. Extensible indexing also provides efficient
processing of application-specific operators.

The application software, called the cartridge, controls the structure and content of a
domain index. The Oracle database server interacts with the application to build,
maintain, and search the domain index. The index structure itself can be stored in the
Oracle database as an index-organized table or externally as a file.

Note: Movement of rows in an index-organized table does not leave
the bitmap indexes built on that index-organized table unusable.
Movement of rows in the index-organized table does invalidate the
physical guess in some of the mapping table's logical rowid entries.
However, the index-organized table can still be accessed using the
primary key.

See Also: Oracle Database Data Cartridge Developer's Guide for
information about using data cartridges within the Oracle database
extensibility architecture

Overview of Clusters

Schema Objects 5-41

Overview of Clusters
Clusters are an optional method of storing table data. A cluster is a group of tables
that share the same data blocks because they share common columns and are often
used together. For example, the employees and departments table share the
department_id column. When you cluster the employees and departments
tables, Oracle Database physically stores all rows for each department from both the
employees and departments tables in the same data blocks.

Figure 5–10 shows what happens when you cluster the employees and
departments tables:

Figure 5–10 Clustered Table Data

Because clusters store related rows of different tables together in the same data blocks,
properly used clusters offers these benefits:

■ Disk I/O is reduced for joins of clustered tables.

■ Access time improves for joins of clustered tables.

Related data stored
together, more

efficiently

related data stored
apart, taking up

more space

Clustered Tables Unclustered Tables

department_name20 location_id

marketing 1800

employee_id last_name

201
202

Hartstein
Fay

. . .

. . .

. . .

department_name110 location_id

accounting 1700

employee_id last_name

205
206

Higgins
Gietz

. . .

. . .

. . .

Clustered Key
department_id

last_nameemployee_id

201
202
203
204
205
206

department_id

Hartstein
Fay
Mavris
Baer
Higgins
Gietz

20
20
40
70
110
110

. . .

. . .

. . .

. . .

. . .

. . .

. . .

employees

department_namedepartment_id

20
110

location_id

Marketing
Accounting

1800
1700

departments

Overview of Hash Clusters

5-42 Oracle Database Concepts

■ In a cluster, a cluster key value is the value of the cluster key columns for a
particular row. Each cluster key value is stored only once each in the cluster and
the cluster index, no matter how many rows of different tables contain the value.
Therefore, less storage is required to store related table and index data in a cluster
than is necessary in nonclustered table format. For example, in Figure 5–10, notice
how each cluster key (each department_id) is stored just once for many rows
that contain the same value in both the employees and departments tables.

Overview of Hash Clusters
Hash clusters group table data in a manner similar to regular index clusters (clusters
keyed with an index rather than a hash function). However, a row is stored in a hash
cluster based on the result of applying a hash function to the row's cluster key value.
All rows with the same key value are stored together on disk.

Hash clusters are a better choice than using an indexed table or index cluster when a
table is queried frequently with equality queries (for example, return all rows for
department 10). For such queries, the specified cluster key value is hashed. The
resulting hash key value points directly to the area on disk that stores the rows.

Hashing is an optional way of storing table data to improve the performance of data
retrieval. To use hashing, create a hash cluster and load tables into the cluster. Oracle
Database physically stores the rows of a table in a hash cluster and retrieves them
according to the results of a hash function.

Sorted hash clusters allow faster retrieval of data for applications where data is
consumed in the order in which it was inserted.

Oracle Database uses a hash function to generate a distribution of numeric values,
called hash values, which are based on specific cluster key values. The key of a hash
cluster, like the key of an index cluster, can be a single column or composite key
(multiple column key). To find or store a row in a hash cluster, Oracle Database applies
the hash function to the row's cluster key value. The resulting hash value corresponds
to a data block in the cluster, which Oracle Database then reads or writes on behalf of
the issued statement.

A hash cluster is an alternative to a nonclustered table with an index or an index
cluster. With an indexed table or index cluster, Oracle Database locates the rows in a
table using key values that Oracle Database stores in a separate index. To find or store
a row in an indexed table or cluster, at least two I/Os must be performed:

■ One or more I/Os to find or store the key value in the index

■ Another I/O to read or write the row in the table or cluster

See Also: Oracle Database Administrator's Guide for information
about creating and managing clusters

See Also: Oracle Database Administrator's Guide for information
about creating and managing hash clusters

Schema Object Dependencies 6-1

6
Schema Object Dependencies

If the definition of object A references object B, then A depends on B. This chapter
explains dependencies among schema objects, and how Oracle Database automatically
tracks and manages these dependencies. Because of this automatic dependency
management, A never uses an obsolete version of B, and you almost never have to
explicitly recompile A after you change B.

Topics:

■ Overview of Schema Object Dependencies

■ Querying Object Dependencies

■ Object Status

■ Invalidation of Dependent Objects

■ Guidelines for Reducing Invalidation

■ Object Revalidation

■ Name Resolution in Schema Scope

■ Local Dependency Management

■ Remote Dependency Management

■ Remote Procedure Call (RPC) Dependency Management

■ Shared SQL Dependency Management

Overview of Schema Object Dependencies
Some types of schema objects can reference other objects in their definitions. For
example, a view is defined by a query that references tables or other views, and the
body of a subprogram can include SQL statements that reference other objects. If the
definition of object A references object B, then A is a dependent object (with respect to
B) and B is a referenced object (with respect to A).

The following query shows which object types in your database are dependent on
other objects:

SELECT DISTINCT TYPE
 FROM DBA_DEPENDENCIES
 [ORDER BY TYPE]

The following query shows which object types in your database are referenced by
other objects:

SELECT DISTINCT REFERENCED_TYPE

Overview of Schema Object Dependencies

6-2 Oracle Database Concepts

 FROM DBA_DEPENDENCIES
 [ORDER BY REFERENCED_TYPE]

The SQL*Plus script in Example 6–1 shows output from the preceding two queries.

Example 6–1 Displaying Dependent and Referenced Object Types

SQL> SELECT DISTINCT TYPE
 2 FROM DBA_DEPENDENCIES
 3 ORDER BY TYPE;

TYPE

DIMENSION
EVALUATION CONTXT
FUNCTION
INDEX
INDEXTYPE
JAVA CLASS
JAVA DATA
MATERIALIZED VIEW
OPERATOR
PACKAGE
PACKAGE BODY
PROCEDURE
RULE
RULE SET
SYNONYM
TABLE
TRIGGER
TYPE
TYPE BODY
UNDEFINED
VIEW
XML SCHEMA

22 rows selected.

SQL> SELECT DISTINCT REFERENCED_TYPE
 2 FROM DBA_DEPENDENCIES
 3 ORDER BY REFERENCED_TYPE;

REFERENCED_TYPE

EVALUATION CONTXT
FUNCTION
INDEXTYPE
JAVA CLASS
LIBRARY
NON-EXISTENT
OPERATOR
PACKAGE
PROCEDURE
SEQUENCE
SYNONYM
TABLE
TYPE
VIEW
XML SCHEMA

Overview of Schema Object Dependencies

Schema Object Dependencies 6-3

15 rows selected.

SQL>

If you alter the definition of a referenced object, dependent objects might or might not
continue to function without error, depending on the type of alteration. For example, if
you drop a table, no view based on the dropped table is usable.

As an example of a schema object change that invalidates some dependents but not
others, consider the two views in Example 6–2, which are based on the
HR.EMPLOYEES table.

Suppose you determine that the EMAIL column in the EMPLOYEES table must be
lengthened. You alter the table as follows:

ALTER TABLE employees MODIFY email VARCHAR2(100);

Because the COMMISSIONED view does not include EMAIL in its select list, it is not
invalidated. However, because the SIXFIGURES view selects all columns in the table,
it is invalidated.

select object_name, status from user_objects where object_type = 'VIEW';

OBJECT_NAME STATUS
-------------------- -------
COMMISSIONED VALID
SIXFIGURES INVALID

Example 6–2 Schema Object Change that Invalidates Some Dependents

CREATE VIEW commissioned AS
SELECT first_name, last_name, commission_pct FROM employees
WHERE commission_pct > 0.00;

CREATE VIEW sixfigures AS
SELECT * FROM employees
WHERE salary >= 100000;

select object_name, status from user_objects where object_type = 'VIEW';

OBJECT_NAME STATUS
-------------------- -------
COMMISSIONED VALID
SIXFIGURES VALID

A view depends on every object referenced in its query. The view in Example 6–3, oc_
inventories, depends on the object type inventory_typ, the function
warehouse_typ, and the tables inventories and warehouse.

Example 6–3 View that Depends on Multiple Objects

CREATE TYPE inventory_typ
 OID '82A4AF6A4CD4656DE034080020E0EE3D'
 AS OBJECT
 (product_id NUMBER(6)
 , warehouse warehouse_typ
 , quantity_on_hand NUMBER(8)
) ;
/
CREATE OR REPLACE VIEW oc_inventories OF inventory_typ
 WITH OBJECT OID (product_id)

Querying Object Dependencies

6-4 Oracle Database Concepts

 AS SELECT i.product_id,
 warehouse_typ(w.warehouse_id, w.warehouse_name, w.location_id),
 i.quantity_on_hand
 FROM inventories i, warehouses w
 WHERE i.warehouse_id=w.warehouse_id;

Querying Object Dependencies
The static data dictionary views USER_DEPENDENCIES, ALL_DEPENDENCIES, and
DBA_DEPENDENCIES describe dependencies between database objects.

The utldtree.sql SQL script creates the view DEPTREE, which contains
information on the object dependency tree, and the view IDEPTREE, a presorted,
pretty-print version of DEPTREE.

Object Status
Every database object has one of the status values described in Table 6–1.

Invalidation of Dependent Objects
If object A depends on object B, which depends on object C, then A is a direct
dependent of B, B is a direct dependent of C, and A is an indirect dependent of C.

Direct dependents are invalidated only by changes to the referenced object that affect
them (changes to the signature of the referenced object).

Notes:

■ CREATE statements automatically update all dependencies.

■ Dynamic SQL statements do not create dependencies. For
example, the following statement does not create a dependency on
tab1:

EXECUTE IMMEDIATE 'SELECT * FROM tab1 ...'

See Also: Oracle Database Reference for more information about the
DEPTREE, IDEPTREE, and utldtree.sql script

Table 6–1 Database Object Status

Status Meaning

Valid The object was successfully compiled, using the current definition in
the data dictionary.

Compiled with errors The most recent attempt to compile the object produced errors.

Invalid The object is marked invalid because an object that it references has
changed. (Only a dependent object can be invalid.)

Unauthorized An access privilege on a referenced object was revoked. (Only a
dependent object can be unauthorized.)

Note: The static data dictionary views USER_OBJECTS, ALL_
OBJECTS, and DBA_OBJECTS do not distinguish between "Compiled
with errors," "Invalid," and "Unauthorized"—they describe all of these
as INVALID.

Invalidation of Dependent Objects

Schema Object Dependencies 6-5

Indirect dependents can be invalidated by changes to the reference object that do not
affect them: If a change to C invalidates B, it invalidates A (and all other direct and
indirect dependents of B). This is called cascading invalidation.

Table 6–2 shows how objects are affected by changes to other objects on which they
depend.

Table 6–2 Operations that Affect Object Status

Operation Resulting Status of Dependent Objects

ALTER TABLE table ADD column INVALID when:

■ Dependent object (except a view) uses
SELECT * on table.

■ Dependent object uses
table%rowtype.

■ Dependent object performs INSERT on
table without specifying column list.

■ Dependent object references table in
query that contains a SQL join.

■ Dependent object references table in
query that references a PL/SQL
variable.

Otherwise, no change.

ALTER TABLE table
{MODIFY|RENAME|DROP|SET UNUSED}
column

ALTER TABLE table DROP CONSTRAINT not_
null_constraint

INVALID when:

■ Dependent object directly references
column.

■ Dependent object uses SELECT * on
table.

■ Dependent object uses
table%rowtype.

■ Dependent object performs INSERT on
table without specifying column list.

Otherwise, no change.

Invalidation of Dependent Objects

6-6 Oracle Database Concepts

CREATE OR REPLACE VIEW view

Online Table Redefinition (DBMS_
REDEFINITION)

INVALID when column lists of new and old
definitions differ, and at least one of the
following is true:

■ Dependent object references column
that is modified or dropped in new
view or table definition.

■ Dependent object uses view%rowtype
or table%rowtype.

■ Dependent object performs INSERT on
view or table without specifying
column list.

■ New view definition introduces new
columns, and dependent object
references view or table in query that
contains a SQL join.

■ New view definition introduces new
columns, and dependent object
references view or table in query that
references a PL/SQL variable.

■ Dependent object references view or
table in RELIES ON clause.

Otherwise, no change.

CREATE OR REPLACE SYNONYM synonym INVALID when:

■ New and old synonym targets differ,
and one is not a table.

■ Both old and new synonym targets are
tables, and the tables have different
column lists or different privilege
grants.

■ Both old and new synonym targets are
tables, and dependent object is a view
that references a column that
participates in a unique index on the
old target but not in a unique index on
the new target.

Otherwise, no change.

RENAME
{TABLE|VIEW|SEQUENCE|SYNONYM}

INVALID

DROP INDEX A dependent of the table on which the
index is built becomes INVALID when:

■ The index is a function-based index
and the dependent object is a trigger.

■ The index is a unique index, the
dependent object is a view, and the
view references a column participating
in the unique index.

DROP object INVALID

Table 6–2 (Cont.) Operations that Affect Object Status

Operation Resulting Status of Dependent Objects

Invalidation of Dependent Objects

Schema Object Dependencies 6-7

Topics:

■ Session State and Referenced Packages

■ Security Authorization

CREATE OR REPLACE
{PROCEDURE|FUNCTION}

INVALID if the call signature changes. The
call signature is the parameter list (order,
names, and types of parameters), return
type, purity1, determinism, parallelism,
pipelining, and (if the procedure or
function is implemented in C or Java)
implementation properties.

Valid for other changes, including changes
to the procedure or function body.

CREATE OR REPLACE PACKAGE INVALID when:

■ Dependent object references a dropped
or renamed package item.

■ Dependent object references a package
procedure or function whose call
signature or entry-point number2,
changed.

If referenced procedure or function has
multiple overload candidates,
dependent object is invalidated if any
overload candidate's call signature or
entry point number changed, or if a
candidate was added or dropped.

■ Dependent object references a package
cursor whose call signature, rowtype,
or entry point number changed.

■ Dependent object references a package
type or subtype whose definition
changed.

■ Dependent object references a package
variable or constant whose name,
datatype, initial value, or offset
number changed.

■ Package purity1 changed.

Otherwise, no change.

CREATE OR REPLACE PACKAGE BODY No change.

REVOKE DML-object-privilege3 ON object
FROM user

All objects of user that depend on object
are INVALID.4

REVOKE DML-object-privilege3 ON object
FROM PUBLIC

All objects in database that depend on
object are INVALID.4

1 Purity refers to a set of rules for preventing side effects (such as unexpected data changes) when invoking
PL/SQL functions within SQL queries. Package purity refers to the purity of the code in the package
initialization block.

2 The entry-point number of a procedure or function is determined by its location in the PL/SQL package
code. A procedure or function added to the end of a PL/SQL package is given a new entry-point number.

3 DML object privileges are SELECT, INSERT, UPDATE, DELETE, and EXECUTE.
4 Revalidation does not require recompilation. For explanation, see "Fast Revalidation of Invalid PL/SQL

Objects" on page 6-9.

Table 6–2 (Cont.) Operations that Affect Object Status

Operation Resulting Status of Dependent Objects

Guidelines for Reducing Invalidation

6-8 Oracle Database Concepts

Session State and Referenced Packages
Each session that references a package construct has its own instantiation of that
package, including a persistent state of any public and private variables, cursors, and
constants. All of a session's package instantiations, including state, can be lost if any of
the session's instantiated packages are subsequently invalidated and revalidated.

Security Authorization
Oracle Database notices when a DML object or system privilege is granted to or
revoked from a user or PUBLIC and automatically invalidates all the owner's
dependent objects. Oracle Database invalidates the dependent objects to verify that an
owner of a dependent object continues to have the necessary privileges for all
referenced objects.

Guidelines for Reducing Invalidation
To reduce invalidation of dependent objects, follow these guidelines:

■ Add New Items to End of Package

■ Reference Each Table Through a View

Add New Items to End of Package
When adding new items to a package, add them to the end of the package. This
preserves the entrypoint numbers of existing top-level package items, preventing their
invalidation.

For example, consider the following package:

CREATE OR REPLACE PACKAGE pkg1 IS
 FUNCTION get_var RETURN VARCHAR2;
END;

Adding an item to the end of pkg1, as follows, does not invalidate dependents that
reference the get_var function:

CREATE OR REPLACE PACKAGE pkg1 IS
 FUNCTION get_var RETURN VARCHAR2;
 PROCEDURE set_var (v VARCHAR2);
END;

Inserting an item between the get_var function and the set_var procedure, as
follows, invalidates dependents that reference the set_var function:

CREATE OR REPLACE PACKAGE pkg1 IS
 FUNCTION get_var RETURN VARCHAR2;
 PROCEDURE assert_var (v VARCHAR2);
 PROCEDURE set_var (v VARCHAR2);
END;

Reference Each Table Through a View
Reference tables indirectly, using views. This enables you to do the following:

■ Add columns to the table without invalidating dependent views or dependent
PL/SQL objects

■ Modify or delete columns not referenced by the view without invalidating
dependent objects

Object Revalidation

Schema Object Dependencies 6-9

The statement CREATE OR REPLACE VIEW does not invalidate an existing view or its
dependents if the new ROWTYPE matches the old ROWTYPE.

Object Revalidation
An object that is not valid when it is referenced must be validated before it can be
used. Validation occurs automatically when an object is referenced; it does not require
explicit user action.

If an object is not valid, its status is either compiled with errors, unauthorized, or
invalid. For definitions of these terms, see Table 6–1.

Topics:

■ Revalidation of Objects that Compiled with Errors

■ Revalidation of Unauthorized Objects

■ Revalidation of Invalid SQL Objects

■ Revalidation of Invalid PL/SQL Objects

■ Fast Revalidation of Invalid PL/SQL Objects

Revalidation of Objects that Compiled with Errors
The compiler cannot automatically revalidate an object that compiled with errors. The
compiler recompiles the object, and if it recompiles without errors, it is revalidated;
otherwise, it remains invalid.

Revalidation of Unauthorized Objects
The compiler checks whether the unauthorized object has access privileges to all of its
referenced objects. If so, the compiler revalidates the unauthorized object without
recompiling it. If not, the compiler issues appropriate error messages.

Revalidation of Invalid SQL Objects
The SQL compiler recompiles the invalid object. If the object recompiles without
errors, it is revalidated; otherwise, it remains invalid.

Revalidation of Invalid PL/SQL Objects
For an invalid PL/SQL program unit (procedure, function, or package), the PL/SQL
compiler checks whether any referenced object changed in a way that affects the
invalid object. If so, the compiler recompiles the invalid object. If the object recompiles
without errors, it is revalidated; otherwise, it remains invalid. If not, the compiler
revalidates the invalid object without recompiling it—see "Fast Revalidation of Invalid
PL/SQL Objects".

Fast Revalidation of Invalid PL/SQL Objects
For an invalid PL/SQL program unit (procedure, function, or package), the PL/SQL
compiler checks whether any referenced object changed in a way that affects the
invalid object. If not, the compiler revalidates the invalid object without recompiling it.
Fast revalidation is usually performed on objects that were invalidated due to
cascading invalidation.

For example, consider the following table, package, and procedure:

CREATE TABLE tab1(n NUMBER);

CREATE OR REPLACE PACKAGE pkg1 IS

Name Resolution in Schema Scope

6-10 Oracle Database Concepts

 TYPE rec1 IS tab1%ROWTYPE; -- pkg1 depends on tab1
 PROCEDURE p(n NUMBER);
END pkg1;

CREATE OR REPLACE PROCEDURE proc1 IS
BEGIN
 pkg1.p(5); -- proc1 depends on pkg1
END proc1;

The following statement invalidates pkg1 (which depends on tab1), and this
invalidation cascades to proc1 (which depends on pkg1):

ALTER TABLE tab1 ADD(v VARCHAR2(20));

However, because the signature of pkg1.p has not changed, the PL/SQL compiler can
revalidate proc1 without recompiling it.

Name Resolution in Schema Scope
Object names referenced in SQL statements have one or more pieces. Pieces are
separated by periods—for example, hr.employees.department_id.

Oracle Database uses the following procedure to try to resolve an object name:

1. Try to qualify the first piece of the object name.

If the object name has only one piece, then that piece is the first piece. Otherwise,
the first piece is the piece to the left of the leftmost period; for example, in
hr.employees.department_id, hr is the first piece.

The procedure for trying to qualify the first piece is:

a. If the object name is a table name that appears in the FROM clause of a SELECT
statement, and the object name has more than one piece, go to step d.
Otherwise, go to step b.

b. Search the current schema for an object whose name matches the first piece.

If found, go to step 2. Otherwise, go to step c.

c. Search for a public synonym that matches the first piece.

If found, go to step 2. Otherwise, go to step d.

d. Search for a schema whose name matches the first piece.

If found, and if the object name has a second piece, go to step e. Otherwise,
return an error—the object name cannot be qualified.

e. Search the schema found at step d for a built-in function whose name matches
the second piece of the object name.

If found, the schema redefined that built-in function. The object name resolves
to the original built-in function, not to the schema-defined function of the
same name. Go to step 2.

If not found, return an error—the object name cannot be qualified.

2. A schema object has been qualified. Any remaining pieces of the object name must
match a valid part of this schema object.

For example, if the object name is hr.employees.department_id, hr is
qualified as a schema. If employees is qualified as a table, department_id must
correspond to a column of that table. If employees is qualified as a package,

Remote Dependency Management

Schema Object Dependencies 6-11

department_id must correspond to a public constant, variable, procedure, or
function of that package.

Because of how Oracle Database resolves references, an object can depend on the
nonexistence of other objects. This situation occurs when the dependent object uses a
reference that would be interpreted differently if another object were present.

Local Dependency Management
Local dependency management occurs when Oracle Database manages dependencies
among the objects in a single database. For example, a statement in a procedure can
reference a table in the same database.

Remote Dependency Management
Remote dependency management occurs when Oracle Database manages
dependencies in distributed environments across a network. For example, an Oracle
Forms trigger can depend on a schema object in the database. In a distributed
database, a local view's defining query can reference a remote table.

Oracle Database also manages distributed database dependencies. For example, an
Oracle Forms application might contain a trigger that references a table. The database
system must account for dependencies among such objects. Oracle Database uses
different mechanisms to manage remote dependencies, depending on the objects
involved.

Topics:

■ Dependencies Among Local and Remote Database Procedures

■ Dependencies Among Other Remote Objects

■ Dependencies of Applications

Dependencies Among Local and Remote Database Procedures
Dependencies among stored procedures (including functions, packages, and triggers)
in a distributed database system are managed using either time-stamp checking or
signature checking (see "Time-Stamp Checking" on page 6-12 and "Signature
Checking" on page 6-14).

The dynamic initialization parameter REMOTE_DEPENDENCIES_MODE determines
whether time stamps or signatures govern remote dependencies.

Dependencies Among Other Remote Objects
Oracle Database does not manage dependencies among remote schema objects other
than local-procedure-to-remote-procedure dependencies.

For example, assume that a local view is created and defined by a query that
references a remote table. Also assume that a local procedure includes a SQL statement
that references the same remote table. Later, the definition of the table is altered.

As a result, the local view and procedure are never invalidated, even if the view or
procedure is used after the table is altered, and even if the view or procedure now
returns errors when used. In this case, the view or procedure must be altered manually

See Also: Oracle Database Administrator's Guide for more details

See Also: Oracle Database PL/SQL Language Reference

Remote Procedure Call (RPC) Dependency Management

6-12 Oracle Database Concepts

so that errors are not returned. In such cases, lack of dependency management is
preferable to unnecessary recompilations of dependent objects.

Dependencies of Applications
Code in database applications can reference objects in the connected database. For
example, OCI and precompiler applications can submit anonymous PL/SQL blocks.
Triggers in Oracle Forms applications can reference a schema object.

Such applications are dependent on the schema objects they reference. Dependency
management techniques vary, depending on the development environment. Oracle
Database does not automatically track application dependencies.

Remote Procedure Call (RPC) Dependency Management
Remote procedure call (RPC) dependency management occurs when a local stored
procedure calls a remote procedure in a distributed database system.

Topics:

■ Time-Stamp Checking

■ Signature Checking

■ Controlling Remote Dependencies

Time-Stamp Checking
In the time-stamp checking dependency model, whenever a procedure is compiled or
recompiled, its time stamp (the time it is created, altered, or replaced) is recorded in
the data dictionary. The time stamp is a record of the time the procedure is created,
altered, or replaced. Additionally, the compiled version of the procedure contains
information about each remote procedure that it references, including the remote
procedure's schema, package name, procedure name, and time stamp.

When a dependent procedure is used, Oracle Database compares the remote time
stamps recorded at compile time with the current time stamps of the remotely
referenced procedures. Depending on the result of this comparison, two situations can
occur:

■ The local and remote procedures run without compilation if the time stamps
match.

■ The local procedure is invalidated if any time stamps of remotely referenced
procedures do not match, and an error is returned to the calling environment.
Furthermore, all other local procedures that depend on the remote procedure with
the new time stamp are also invalidated. For example, assume several local
procedures call a remote procedure, and the remote procedure is recompiled.
When one of the local procedures is run and notices the different time stamp of the
remote procedure, every local procedure that depends on the remote procedure is
invalidated.

Actual time stamp comparison occurs when a statement in the body of a local
procedure runs a remote procedure. Only at this moment are the time stamps
compared using the distributed database's communications link. Therefore, all
statements in a local procedure that precede an invalid procedure call might run

See Also: Manuals for your application development tools and your
operating system for more information about managing the remote
dependencies within database applications

Remote Procedure Call (RPC) Dependency Management

Schema Object Dependencies 6-13

successfully. Statements subsequent to an invalid procedure call do not run at all.
Compilation is required.

Depending on how the invalid procedure is called, DML statements run before the
invalid procedure call are rolled back. For example, in the following, the UPDATE
results are rolled back as the complete PL/SQL block changes are rolled back.

BEGIN
UPDATE table set ...
invalid_proc;
COMMIT;
END;

However, with the following, the UPDATE results are final. Only the PROC call is rolled
back.

UPDATE table set ...
EXECUTE invalid_proc;
COMMIT;

If time stamps are used to handle dependencies among PL/SQL program units, then
whenever you alter a program unit or a relevant schema object, all of its dependent
units are marked as invalid and must be recompiled before they can be run.

Each program unit carries a time stamp that is set by the server when the unit is
created or recompiled. Figure 6–1 demonstrates this graphically. Procedures P1 and P2
call stored procedure P3. Stored procedure P3 references table T1. In this example,
each of the procedures is dependent on table T1. P3 depends upon T1 directly, while
P1 and P2 depend upon T1 indirectly.

Figure 6–1 Dependency Relationships

If P3 is altered, then P1 and P2 are marked as invalid immediately, if they are on the
same server as P3. The compiled states of P1 and P2 contain records of the time stamp
of P3. Therefore, if the procedure P3 is altered and recompiled, then the time stamp on
P3 no longer matches the value that was recorded for P3 during the compilation of P1
and P2.

If P1 and P2 are on a client system, or on another Oracle Database instance in a
distributed environment, then the time stamp information is used to mark them as
invalid at run time.

The disadvantage of this dependency model is that it is unnecessarily restrictive.
Recompilation of dependent objects across the network are often performed when not
strictly necessary, leading to performance degradation.

Furthermore, on the client side, the time stamp model can lead to situations that block
an application from running at all, if the client-side application is built using PL/SQL
version 2. Earlier releases of tools, such as Oracle Forms, that used PL/SQL version 1
on the client side did not use this dependency model, because PL/SQL version 1 had
no support for stored procedures.

For releases of Oracle Forms that are integrated with PL/SQL version 2 on the client
side, the time stamp model can present problems. For example, during the installation

P1 P3 T1

P2

Remote Procedure Call (RPC) Dependency Management

6-14 Oracle Database Concepts

of the application, the application is rendered invalid unless the client-side PL/SQL
procedures that it uses are recompiled at the client site. Also, if a client-side procedure
depends on a server procedure, and if the server procedure is changed or
automatically recompiled, then the client-side PL/SQL procedure must then be
recompiled. Yet in many application environments (such as Forms run-time
applications), there is no PL/SQL compiler available on the client. This blocks the
application from running at all. The client application developer must then
redistribute new versions of the application to all customers.

Signature Checking
Oracle Database provides the additional capability of remote dependencies using RPC
signatures. The RPC signature capability affects only remote dependencies. Local
dependencies are not affected, as recompilation is always possible in this environment.

The RPC signature of a procedure contains information about the following items:

■ Name of the package, procedure, or function

■ Base types of the parameters

■ Modes of the parameters (IN, OUT, and IN OUT)

If the RPC signature dependency model is in effect, a dependency on a remote
program unit causes an invalidation of the dependent unit if the dependent unit
contains a call to a procedure in the parent unit, and the RPC signature of this
procedure has been changed in an incompatible manner. A program unit can be a
package, stored procedure, stored function, or trigger.

To alleviate some of the problems with the time-stamp-only dependency model,
Oracle Database provides the additional capability of remote dependencies using RPC
signatures. The RPC signature capability affects only remote dependencies. Local
(same server) dependencies are not affected, as recompilation is always possible in this
environment.

An RPC signature is associated with each compiled stored program unit. It identifies
the unit using the following criteria:

■ The name of the unit (the package, procedure, or function name).

■ The types of each of the parameters of the subprogram.

■ The modes of the parameters (IN, OUT, IN OUT).

■ The number of parameters.

■ The type of the return value for a function.

The user has control over whether RPC signatures or time stamps govern remote
dependencies.

When the RPC signature dependency model is used, a dependency on a remote
program unit causes an invalidation of the dependent unit if the dependent unit
contains a call to a subprogram in the parent unit, and if the RPC signature of this
subprogram has been changed in an incompatible manner.

Note: Only the types and modes of parameters are significant. The
name of the parameter does not affect the RPC signature.

See Also: "Controlling Remote Dependencies" on page 6-18

Remote Procedure Call (RPC) Dependency Management

Schema Object Dependencies 6-15

For example, consider a procedure get_emp_name stored on a server in Boston
(BOSTON_SERVER). The procedure is defined as the following:

CREATE OR REPLACE PROCEDURE get_emp_name (
 emp_number IN NUMBER,
 hire_date OUT VARCHAR2,
 emp_name OUT VARCHAR2) AS
BEGIN
 SELECT ename, to_char(hiredate, 'DD-MON-YY')
 INTO emp_name, hire_date
 FROM emp
 WHERE empno = emp_number;
END;

When get_emp_name is compiled on BOSTON_SERVER, its RPC signature, as well as
its time stamp, is recorded.

Suppose that on another server in California, some PL/SQL code calls get_emp_name
identifying it using a DBlink called BOSTON_SERVER, as follows:

CREATE OR REPLACE PROCEDURE print_ename (emp_number IN NUMBER) AS
 hire_date VARCHAR2(12);
 ename VARCHAR2(10);
BEGIN
 get_emp_name@BOSTON_SERVER(emp_number, hire_date, ename);
 dbms_output.put_line(ename);
 dbms_output.put_line(hire_date);
END;

When this California server code is compiled, the following actions take place:

■ A connection is made to the Boston server.

■ The RPC signature of get_emp_name is transferred to the California server.

■ The RPC signature is recorded in the compiled state of print_ename.

At run time, during the remote procedure call from the California server to the Boston
server, the recorded RPC signature of get_emp_name that was saved in the compiled
state of print_ename gets sent to the Boston server, regardless of whether or not
there were any changes.

If the timestamp dependency mode is in effect, then a mismatch in time stamps causes
an error status to be returned to the calling procedure.

However, if the RPC signature mode is in effect, then any mismatch in time stamps is
ignored, and the recorded RPC signature of get_emp_name in the compiled state of
Print_ename on the California server is compared with the current RPC signature of
get_emp_name on the Boston server. If they match, then the call succeeds. If they do
not match, then an error status is returned to the print_name procedure.

The get_emp_name procedure on the Boston server could have changed, or its time
stamp could be different from that recorded in the print_name procedure on the
California server, possibly due to the installation of a new release of the server. As long
as the RPC signature remote dependency mode is in effect on the California server, a
time stamp mismatch does not cause an error when get_emp_name is called.

Remote Procedure Call (RPC) Dependency Management

6-16 Oracle Database Concepts

Topics:

■ Switching Datatype Classes

■ Examples of Changing Procedure Signatures

Switching Datatype Classes
A RPC signature changes when you switch from one datatype class to another. A
datatype class can include several datatypes. Changing a parameter datatype to
another datatype in a class does not change the RPC signature.

Table 6–3 lists the datatype classes and the datatypes that comprise them. Datatypes
that are not listed in Table 6–3, such as NCHAR or TIMESTAMP, are not part of any class;
changing their type always causes a RPC signature mismatch.

Note: DETERMINISTIC, PARALLEL_ENABLE, and purity
information do not show in the RPC signature mode. Optimizations
based on these settings are not automatically reconsidered if a
function on a remote system is redefined with different settings. This
might lead to incorrect query results when calls to the remote function
occur, even indirectly, in a SQL statement, or if the remote function is
used, even indirectly, in a function-based index.

Table 6–3 Datatype Classes

Datatype Class Datatypes in Class

Character CHAR
CHARACTER

VARCHAR VARCHAR
VARCHAR2
STRING
LONG
ROWID

Raw RAW
LONG RAW

Integer BINARY_INTEGER
PLS_INTEGER
SIMPLE_INTEGER
BOOLEAN
NATURAL
NATURALN
POSITIVE
POSITIVEN

Number NUMBER
INT
INTEGER
SMALLINT
DEC
DECIMAL
REAL
FLOAT
NUMERIC
DOUBLE PRECISION

Remote Procedure Call (RPC) Dependency Management

Schema Object Dependencies 6-17

Modes Changing to or from an explicit specification of the default parameter mode IN
does not change the RPC signature of a subprogram. For example, changing between:

PROCEDURE P1 (Param1 NUMBER);
PROCEDURE P1 (Param1 IN NUMBER);

does not change the RPC signature. Any other change of parameter mode does change
the RPC signature.

Default Parameter Values Changing the specification of a default parameter value does
not change the RPC signature. For example, procedure P1 has the same RPC signature
in the following two examples:

PROCEDURE P1 (Param1 IN NUMBER := 100);
PROCEDURE P1 (Param1 IN NUMBER := 200);

An application developer who requires that callers get the new default value must
recompile the called procedure, but no RPC signature-based invalidation occurs when
a default parameter value assignment is changed.

Examples of Changing Procedure Signatures
Using the Get_emp_names procedure shown previously in this chapter, if the
procedure body is changed to the following:

DECLARE
 Emp_number NUMBER;
 Hire_date DATE;
BEGIN
-- date format model changes

 SELECT Ename, To_char(Hiredate, 'DD/MON/YYYY')
 INTO Emp_name, Hire_date
 FROM Emp_tab
 WHERE Empno = Emp_number;
END;

The specification of the procedure has not changed, so its RPC signature has not
changed.

But if the procedure specification is changed to the following:

CREATE OR REPLACE PROCEDURE Get_emp_name (
 Emp_number IN NUMBER,
 Hire_date OUT DATE,
 Emp_name OUT VARCHAR2) AS

And if the body is changed accordingly, then the RPC signature changes, because the
parameter Hire_date has a different datatype.

Date DATE
TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

Table 6–3 (Cont.) Datatype Classes

Datatype Class Datatypes in Class

Remote Procedure Call (RPC) Dependency Management

6-18 Oracle Database Concepts

However, if the name of that parameter changes to When_hired, and the datatype
remains VARCHAR2, and the mode remains OUT, the RPC signature does not change.
Changing the name of a formal parameter does not change the RPC signature of the
unit.

Consider the following example:

CREATE OR REPLACE PACKAGE Emp_package AS
 TYPE Emp_data_type IS RECORD (
 Emp_number NUMBER,
 Hire_date VARCHAR2(12),
 Emp_name VARCHAR2(10));
 PROCEDURE Get_emp_data
 (Emp_data IN OUT Emp_data_type);
END;

CREATE OR REPLACE PACKAGE BODY Emp_package AS
 PROCEDURE Get_emp_data
 (Emp_data IN OUT Emp_data_type) IS
 BEGIN
 SELECT Empno, Ename, TO_CHAR(Hiredate, 'DD/MON/YY')
 INTO Emp_data
 FROM Emp_tab
 WHERE Empno = Emp_data.Emp_number;
 END;
END;
If the package specification is changed so that the record's field names are changed,
but the types remain the same, then this does not affect the RPC signature. For
example, the following package specification has the same RPC signature as the
previous package specification example:

CREATE OR REPLACE PACKAGE Emp_package AS
 TYPE Emp_data_type IS RECORD (
 Emp_num NUMBER, -- was Emp_number
 Hire_dat VARCHAR2(12), -- was Hire_date
 Empname VARCHAR2(10)); -- was Emp_name
 PROCEDURE Get_emp_data
 (Emp_data IN OUT Emp_data_type);
END;

Changing the name of the type of a parameter does not cause a change in the RPC
signature if the type remains the same as before. For example, the following package
specification for Emp_package is the same as the first one:

CREATE OR REPLACE PACKAGE Emp_package AS
 TYPE Emp_data_record_type IS RECORD (
 Emp_number NUMBER,
 Hire_date VARCHAR2(12),
 Emp_name VARCHAR2(10));
 PROCEDURE Get_emp_data
 (Emp_data IN OUT Emp_data_record_type);
END;

Controlling Remote Dependencies
The dynamic initialization parameter REMOTE_DEPENDENCIES_MODE controls
whether the time stamp or the RPC signature dependency model is in effect.

■ If the initialization parameter file contains the following specification:

REMOTE_DEPENDENCIES_MODE = TIMESTAMP

Remote Procedure Call (RPC) Dependency Management

Schema Object Dependencies 6-19

Then only time stamps are used to resolve dependencies (if this is not explicitly
overridden dynamically).

■ If the initialization parameter file contains the following parameter specification:

REMOTE_DEPENDENCIES_MODE = SIGNATURE

Then RPC signatures are used to resolve dependencies (if this not explicitly
overridden dynamically).

■ You can alter the mode dynamically by using the DDL statements. For example,
this example alters the dependency model for the current session:

ALTER SESSION SET REMOTE_DEPENDENCIES_MODE =
 {SIGNATURE | TIMESTAMP}
Thise example alters the dependency model systemwide after startup:
ALTER SYSTEM SET REMOTE_DEPENDENCIES_MODE =
 {SIGNATURE | TIMESTAMP}

If the REMOTE_DEPENDENCIES_MODE parameter is not specified, either in the
init.ora parameter file or using the ALTER SESSION or ALTER SYSTEM DDL
statements, TIMESTAMP is the default value. Therefore, unless you explicitly use the
REMOTE_DEPENDENCIES_MODE parameter, or the appropriate DDL statement, your
server is operating using the time-stamp dependency model.

When you use REMOTE_DEPENDENCIES_MODE=SIGNATURE:

■ If you change the default value of a parameter of a remote procedure, then the
local procedure calling the remote procedure is not invalidated. If the call to the
remote procedure does not supply the parameter, then the default value is used. In
this case, because invalidation/recompilation does not automatically occur, the old
default value is used. If you want to see the new default values, then you must
recompile the calling procedure manually.

■ If you add a new overloaded procedure in a package (a new procedure with the
same name as an existing one), then local procedures that call the remote
procedure are not invalidated. If it turns out that this overloading results in a
rebinding of existing calls from the local procedure under the time-stamp mode,
then this rebinding does not happen under the RPC signature mode, because the
local procedure does not get invalidated. You must recompile the local procedure
manually to achieve the new rebinding.

■ If the types of parameters of an existing packaged procedure are changed so that
the new types have the same shape as the old ones, then the local calling
procedure is not invalidated or recompiled automatically. You must recompile the
calling procedure manually to get the semantics of the new type.

Topics:

■ Dependency Resolution

■ Suggestions for Managing Dependencies

Dependency Resolution
When REMOTE_DEPENDENCIES_MODE = TIMESTAMP (the default value),
dependencies among program units are handled by comparing time stamps at run
time. If the time stamp of a called remote procedure does not match the time stamp of
the called procedure, then the calling (dependent) unit is invalidated and must be
recompiled. In this case, if there is no local PL/SQL compiler, then the calling
application cannot proceed.

Shared SQL Dependency Management

6-20 Oracle Database Concepts

In the time-stamp dependency mode, RPC signatures are not compared. If there is a
local PL/SQL compiler, then recompilation happens automatically when the calling
procedure is run.

When REMOTE_DEPENDENCIES_MODE = SIGNATURE, the recorded time stamp in
the calling unit is first compared to the current time stamp in the called remote unit. If
they match, then the call proceeds. If the time stamps do not match, then the RPC
signature of the called remote subprogram, as recorded in the calling subprogram, is
compared with the current RPC signature of the called subprogram. If they do not
match (using the criteria described in the section "Switching Datatype Classes" on
page 6-16), then an error is returned to the calling session.

Suggestions for Managing Dependencies
Follow these guidelines for setting the REMOTE_DEPENDENCIES_MODE parameter:

■ Server-side PL/SQL users can set the parameter to TIMESTAMP (or let it default to
that) to get the time-stamp dependency mode.

■ Server-side PL/SQL users can choose to use the RPC signature dependency mode
if they have a distributed system and they want to avoid possible unnecessary
recompilations.

■ Client-side PL/SQL users must set the parameter to SIGNATURE. This allows:

– Installation of new applications at client sites, without the need to recompile
procedures.

– Ability to upgrade the server, without encountering time stamp mismatches.

■ When using RPC signature mode on the server side, add new procedures to the
end of the procedure (or function) declarations in a package specification. Adding
a new procedure in the middle of the list of declarations can cause unnecessary
invalidation and recompilation of dependent procedures.

Shared SQL Dependency Management
In addition to managing dependencies among schema objects, Oracle Database also
manages dependencies of each shared SQL area in the shared pool. If a table, view,
synonym, or sequence is created, altered, or dropped, or a procedure or package
specification is recompiled, all dependent shared SQL areas are invalidated. At a
subsequent execution of the cursor that corresponds to an invalidated shared SQL
area, Oracle Database reparses the SQL statement to regenerate the shared SQL area.

The Data Dictionary 7-1

7
The Data Dictionary

This chapter describes the central set of read-only reference tables and views of each
Oracle database, known collectively as the data dictionary.

This chapter contains the following topics:

■ Introduction to the Data Dictionary

■ How the Data Dictionary Is Used

■ Dynamic Performance Tables

■ Database Object Metadata

Introduction to the Data Dictionary
One of the most important parts of an Oracle database is its data dictionary, which is a
read-only set of tables that provides information about the database. A data dictionary
contains:

■ The definitions of all schema objects in the database (tables, views, indexes,
clusters, synonyms, sequences, procedures, functions, packages, triggers, and so
on)

■ How much space has been allocated for, and is currently used by, the
schema objects

■ Default values for columns

■ Integrity constraint information

■ The names of Oracle Database users

■ Privileges and roles each user has been granted

■ Auditing information, such as who has accessed or updated various schema
objects

■ Other general database information

The data dictionary is structured in tables and views, just like other database data. All
the data dictionary tables and views for a given database are stored in that database's
SYSTEM tablespace.

Not only is the data dictionary central to every Oracle database, it is an important tool
for all users, from end users to application designers and database administrators. Use
SQL statements to access the data dictionary. Because the data dictionary is read only,
you can issue only queries (SELECT statements) against it's tables and views.

How the Data Dictionary Is Used

7-2 Oracle Database Concepts

This section includes the following topics:

■ Structure of the Data Dictionary

■ SYS, Owner of the Data Dictionary

Structure of the Data Dictionary
The data dictionary consists of the following:

Base Tables: The underlying tables that store information about the associated
database. Only Oracle Database should write to and read these tables. Users rarely
access them directly because they are normalized, and most of the data is stored in a
cryptic format.

User-Accessible Views: The views that summarize and display the information stored
in the base tables of the data dictionary. These views decode the base table data into
useful information, such as user or table names, using joins and WHERE clauses to
simplify the information. Most users are given access to the views rather than the base
tables.

SYS, Owner of the Data Dictionary
The Oracle Database user SYS owns all base tables and user-accessible views of the
data dictionary. No Oracle Database user should ever alter (UPDATE, DELETE, or
INSERT) any rows or schema objects contained in the SYS schema, because such
activity can compromise data integrity. The security administrator must keep strict
control of this central account.

How the Data Dictionary Is Used
The data dictionary has three primary uses:

■ Oracle Database accesses the data dictionary to find information about users,
schema objects, and storage structures.

■ Oracle Database modifies the data dictionary every time that a data definition
language (DDL) statement is issued.

■ Any Oracle Database user can use the data dictionary as a read-only reference for
information about the database.

This section includes the following topics:

■ How Oracle Database Uses the Data Dictionary

■ How to Use the Data Dictionary

How Oracle Database Uses the Data Dictionary
Data in the base tables of the data dictionary is necessary for Oracle Database to function.
Therefore, only Oracle Database should write or change data dictionary information.

See Also: "Bigfile Tablespaces" on page 3-5 for more information
about SYSTEM tablespaces

Caution: Altering or manipulating the data in data dictionary
tables can permanently and detrimentally affect the operation of a
database.

How the Data Dictionary Is Used

The Data Dictionary 7-3

Oracle Database provides scripts to modify the data dictionary tables when a database
is upgraded or downgraded.

During database operation, Oracle Database reads the data dictionary to ascertain that
schema objects exist and that users have proper access to them. Oracle Database also
updates the data dictionary continuously to reflect changes in database structures,
auditing, grants, and data.

For example, if user Kathy creates a table named parts, then new rows are added to
the data dictionary that reflect the new table, columns, segment, extents, and the
privileges that Kathy has on the table. This new information is then visible the next
time the dictionary views are queried.

This section includes the following topics:

■ Public Synonyms for Data Dictionary Views

■ Cache the Data Dictionary for Fast Access

■ Other Programs and the Data Dictionary

Public Synonyms for Data Dictionary Views
Oracle Database creates public synonyms for many data dictionary views so users can
access them conveniently. The security administrator can also create additional public
synonyms for schema objects that are used systemwide. Users should avoid naming
their own schema objects with the same names as those used for public synonyms.

Cache the Data Dictionary for Fast Access
Much of the data dictionary information is kept in the SGA in the dictionary cache,
because Oracle Database constantly accesses the data dictionary during database
operation to validate user access and to verify the state of schema objects. All
information is stored in memory using the least recently used (LRU) algorithm.

Parsing information is typically kept in the caches. The COMMENTS columns describing
the tables and their columns are not cached unless they are accessed frequently.

Other Programs and the Data Dictionary
Other Oracle Database products can reference existing views and create additional
data dictionary tables or views of their own. Application developers who write
programs that refer to the data dictionary should refer to the public synonyms rather
than the underlying tables: the synonyms are less likely to change between software
releases.

How to Use the Data Dictionary
The views of the data dictionary serve as a reference for all database users. Access the
data dictionary views with SQL statements. Some views are accessible to all Oracle
Database users, and others are intended for database administrators only.

The data dictionary is always available when the database is open. It resides in the
SYSTEM tablespace, which is always online.

Caution: No data in any data dictionary table should be altered or
deleted by any user.

How the Data Dictionary Is Used

7-4 Oracle Database Concepts

The data dictionary consists of sets of views. In many cases, a set consists of three
views containing similar information and distinguished from each other by their
prefixes, as shown in Table 7–1.

The set of columns is identical across views, with these exceptions:

■ Views with the prefix USER usually exclude the column OWNER. This column is
implied in the USER views to be the user issuing the query.

■ Some DBA views have additional columns containing information useful to the
administrator.

This section includes the following topics:

■ Views with the Prefix USER

■ Views with the Prefix ALL

■ Views with the Prefix DBA

■ The DUAL Table

Views with the Prefix USER
The views most likely to be of interest to typical database users are those with the
prefix USER. These views:

■ Refer to the user's own private environment in the database, including
information about schema objects created by the user, grants made by the user,
and so on

■ Display only rows pertinent to the user

■ Have columns identical to the other views, except that the column OWNER is
implied

■ Return a subset of the information in the ALL views

■ Can have abbreviated PUBLIC synonyms for convenience

For example, the following query returns all the objects contained in your schema:

SELECT object_name, object_type FROM USER_OBJECTS;

Views with the Prefix ALL
Views with the prefix ALL refer to the user's overall perspective of the database. These
views return information about schema objects to which the user has access through
public or explicit grants of privileges and roles, in addition to schema objects that the
user owns. For example, the following query returns information about all the objects
to which you have access:

Table 7–1 Data Dictionary View Prefixes

Prefix Scope

USER User's view (what is in the user's schema)

ALL Expanded user's view (what the user can access)

DBA Database administrator's view (what is in all users' schemas)

See Also: Oracle Database Reference for a complete list of data
dictionary views and their columns

Database Object Metadata

The Data Dictionary 7-5

SELECT owner, object_name, object_type FROM ALL_OBJECTS;

Views with the Prefix DBA
Views with the prefix DBA show a global view of the entire database. Synonyms are
not created for these views, because DBA views should be queried only by
administrators. Therefore, to query the DBA views, administrators must prefix the view
name with its owner, SYS, as in the following:

SELECT owner, object_name, object_type FROM SYS.DBA_OBJECTS;

Oracle recommends that you implement data dictionary protection to prevent users
having the ANY system privileges from using such privileges on the data dictionary. If
you enable dictionary protection (O7_DICTIONARY_ACCESSIBILITY is false), then
access to objects in the SYS schema (dictionary objects) is restricted to users with the
SYS schema. These users are SYS and those who connect as SYSDBA.

The DUAL Table
The table named DUAL is a small table in the data dictionary that Oracle Database and
user-written programs can reference to guarantee a known result. This table has one
column called DUMMY and one row containing the value X.

Dynamic Performance Tables
Throughout its operation, Oracle Database maintains a set of virtual tables that record
current database activity. These tables are called dynamic performance tables.

Dynamic performance tables are not true tables, and they should not be accessed by
most users. However, database administrators can query and create views on the
tables and grant access to those views to other users. These views are sometimes called
fixed views because they cannot be altered or removed by the database administrator.

SYS owns the dynamic performance tables; their names all begin with V_$. Views are
created on these tables, and then public synonyms are created for the views. The
synonym names begin with V$. For example, the V$DATAFILE view contains
information about the database's datafiles, and the V$FIXED_TABLE view contains
information about all of the dynamic performance tables and views in the database.

Database Object Metadata
The DBMS_METADATA package provides interfaces for extracting complete definitions
of database objects. The definitions can be expressed either as XML or as SQL DDL.
Two styles of interface are provided:

■ A flexible, sophisticated interface for programmatic control

■ A simplified interface for ad hoc querying

See Also: Oracle Database Administrator's Guide for detailed
information on system privileges restrictions

See Also: Oracle Database SQL Language Reference for more
information about the DUAL table

See Also: Oracle Database Reference for a complete list of the
dynamic performance views' synonyms and their columns

Database Object Metadata

7-6 Oracle Database Concepts

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about DBMS_METADATA

Memory Architecture 8-1

8
Memory Architecture

This chapter discusses the memory architecture of an Oracle Database instance. It
contains the following topics:

■ Introduction to Oracle Database Memory Structures

■ Overview of the System Global Area

■ Overview of the Program Global Area

■ Overview of Memory Management Methods

■ About Software Code Areas

Introduction to Oracle Database Memory Structures
Oracle Database uses memory to store information such as the following:

■ Program code

■ Information about a connected session, even if it is not currently active

■ Information needed during program execution (for example, the current state of a
query from which rows are being fetched)

■ Information that is shared and communicated among Oracle Database processes
(for example, locking information)

■ Cached data (for example, data blocks and redo log entries) that is also
permanently stored on storage devices

Basic Memory Structures
The basic memory structures associated with Oracle Database include:

■ Software code areas

Software code areas are portions of memory used to store code that is being run or
can be run. Oracle Database code is stored in a software area that is typically at a
different location from users' programs—a more exclusive or protected location.

■ System global area (SGA)

The SGA is a group of shared memory structures, known as SGA components, that
contain data and control information for one Oracle Database instance. The SGA is
shared by all server and background processes. Examples of data stored in the
SGA include cached data blocks and shared SQL areas.

See Also: Oracle Database Administrator's Guide for instructions for
configuring and managing memory

Overview of the System Global Area

8-2 Oracle Database Concepts

■ Program global area (PGA)

A PGA is a memory region that contains data and control information for a server
process. It is nonshared memory created by Oracle Database when a server
process is started. Access to the PGA is exclusive to the server process. There is
one PGA for each server process. Background processes also allocate their own
PGAs. The total memory used by all individual PGAs is known as the total
instance PGA memory, and the collection of individual PGAs is referred to as the
total instance PGA, or just instance PGA. You use database initialization
parameters to set the size of the instance PGA, not individual PGAs.

Figure 8–1 illustrates the relationships among these memory structures.

Figure 8–1 Oracle Database Memory Structures

Overview of the System Global Area
The System Global Area (SGA) and the set of database processes constitute an Oracle
Database instance. Oracle Database automatically allocates memory for an SGA when
you start an instance, and the operating system reclaims the memory when you shut
down the instance. Each instance has its own SGA.

The SGA is read/write. All database background processes and all server processes
that execute on behalf of users can read information contained within the instance's
SGA, and several processes write to the SGA during database operation.

Part of the SGA contains general information about the state of the database and the
instance, which the background processes need to access. This is called the fixed SGA.
No user data is stored here. The SGA also includes information communicated
between processes, such as locking information.

See Also:

■ "Overview of the System Global Area" on page 8-2

■ "Overview of the Program Global Area" on page 8-9

■ "About Software Code Areas" on page 8-14

■ "Overview of Oracle Database Processes" on page 9-3

Background
Process

Server
Process

1

Server
Process

2
PGA

Server
Process

3

Background
Process

System Global Area

Shared
Pool

Java
Pool

Buffer
Cache

Streams
Pool

Large
Pool

Redo
Buffer

Other
Components

PGA

PGA PGA

PGA

Overview of the System Global Area

Memory Architecture 8-3

If the system uses shared server architecture, then the request and response queues
and some contents of the PGA are in the SGA.

As shown in Figure 8–1 on page 8-2, the SGA consists of a number of memory
components, which are pools of memory used to satisfy a particular class of memory
allocation requests.

The most important SGA components are the following:

■ Database Buffer Cache

■ Redo Log Buffer

■ Shared Pool

■ Large Pool

■ Java Pool

■ Streams Pool

Database Buffer Cache
The database buffer cache is the portion of the SGA that holds copies of data blocks
read from datafiles. All users concurrently connected to the instance share access to the
database buffer cache.

This section includes the following topics:

■ Organization of the Database Buffer Cache

■ The LRU Algorithm and Full Table Scans

Organization of the Database Buffer Cache
The buffers in the cache are organized in two lists: the write list and the least recently
used (LRU) list. The write list holds dirty buffers, which contain data that has been
modified but has not yet been written to disk. The LRU list holds free buffers, pinned
buffers, and dirty buffers that have not yet been moved to the write list. Free buffers
do not contain any useful data and are available for use. Pinned buffers are currently
being accessed.

When an Oracle Database process accesses a buffer, the process moves the buffer to the
most recently used (MRU) end of the LRU list. As more buffers are continually moved
to the MRU end of the LRU list, dirty buffers age toward the LRU end of the LRU list.

The first time an Oracle Database user process requires a particular piece of data, it
searches for the data in the database buffer cache. If the process finds the data already
in the cache (a cache hit), it can read the data directly from memory. If the process
cannot find the data in the cache (a cache miss), it must copy the data block from a
datafile on disk into a buffer in the cache before accessing the data. Accessing data
through a cache hit is faster than data access through a cache miss.

Before reading a data block into the cache, the process must first find a free buffer. The
process searches the LRU list, starting at the least recently used end of the list. The

See Also:

■ "Introduction to an Oracle Instance" on page 12-1 for more
information about an Oracle Database instance

■ "Overview of the Program Global Area" on page 8-9

■ "Dispatcher Request and Response Queues" on page 9-13

Overview of the System Global Area

8-4 Oracle Database Concepts

process searches either until it finds a free buffer or until it has searched the threshold
limit of buffers.

If the user process finds a dirty buffer as it searches the LRU list, it moves that buffer
to the write list and continues to search. When the process finds a free buffer, it reads
the data block from disk into the buffer and moves the buffer to the MRU end of the
LRU list.

If an Oracle Database user process searches the threshold limit of buffers without
finding a free buffer, the process stops searching the LRU list and signals the DBW0
background process to write some of the dirty buffers to disk.

The LRU Algorithm and Full Table Scans
When the user process is performing a full table scan, it reads the blocks of the table
into buffers and puts them on the LRU end (instead of the MRU end) of the LRU list.
This is because a fully scanned table usually is needed only briefly, so the blocks
should be moved out quickly to leave more frequently used blocks in the cache.

You can control this default behavior of blocks involved in table scans on a
table-by-table basis. To specify that blocks of the table are to be placed at the MRU end
of the list during a full table scan, use the CACHE clause when creating or altering a
table or cluster. You can specify this behavior for small lookup tables or large static
historical tables to avoid I/O on subsequent accesses of the table.

Redo Log Buffer
The redo log buffer is a circular buffer in the SGA that holds information about
changes made to the database. This information is stored in redo entries. Redo entries
contain the information necessary to reconstruct, or redo, changes made to the
database by INSERT, UPDATE, DELETE, CREATE, ALTER, or DROP operations. Redo
entries are used for database recovery, if necessary.

Redo entries are copied by Oracle Database processes from the user's memory space to
the redo log buffer in the SGA. The redo entries take up continuous, sequential space
in the buffer. The background process LGWR writes the redo log buffer to the active
redo log file (or group of files) on disk.

Shared Pool
The shared pool portion of the SGA contains the library cache, the dictionary cache,
the result cache, buffers for parallel execution messages, and control structures.

This section includes the following topics:

■ Library Cache

See Also: "Database Writer Process (DBWn)" on page 9-6 for more
information about DBWn processes

See Also: Oracle Database SQL Language Reference for information
about the CACHE clause

See Also:

■ "Log Writer Process (LGWR)" on page 9-8 for more information
about how the redo log buffer is written to disk

■ Oracle Database Backup and Recovery User's Guide for information
about redo log files and groups

Overview of the System Global Area

Memory Architecture 8-5

■ Dictionary Cache

■ Result Cache

Library Cache
The library cache includes the shared SQL areas, private SQL areas (in the case of a
shared server configuration), PL/SQL procedures and packages, and control
structures such as locks and library cache handles.

Shared SQL areas are accessible to all users, so the library cache is contained in the
shared pool within the SGA.

Shared SQL Areas and Private SQL Areas Oracle Database represents each SQL statement
it runs with a shared SQL area and a private SQL area. Oracle Database recognizes
when two users are executing the same SQL statement and reuses the shared SQL area
for those users. However, each user must have a separate copy of the statement's
private SQL area.

A shared SQL area contains the parse tree and execution plan for a given SQL
statement. Oracle Database saves memory by using one shared SQL area for SQL
statements run multiple times, which often happens when many users run the same
application.

Oracle Database allocates memory from the shared pool when a new SQL statement is
parsed, to store in the shared SQL area. The size of this memory depends on the
complexity of the statement. If the entire shared pool has already been allocated,
Oracle Database can deallocate items from the pool using a modified LRU (least
recently used) algorithm until there is enough free space for the new statement's
shared SQL area. If Oracle Database deallocates a shared SQL area, the associated SQL
statement must be reparsed and reassigned to another shared SQL area at its next
execution.

PL/SQL Program Units and the Shared Pool Oracle Database processes PL/SQL program
units (procedures, functions, packages, anonymous blocks, and database triggers)
much the same way it processes individual SQL statements. Oracle Database allocates
a shared area to hold the parsed, compiled form of a program unit. Oracle Database
allocates a private area to hold values specific to the session that runs the program
unit, including local, global, and package variables (also known as package
instantiation) and buffers for executing SQL. If more than one user runs the same
program unit, then a single, shared area is used by all users, while each user maintains
a separate copy of his or her private SQL area, holding values specific to his or her
session.

Individual SQL statements contained within a PL/SQL program unit are processed as
described in the previous sections. Despite their origins within a PL/SQL program
unit, these SQL statements use a shared area to hold their parsed representations and a
private area for each session that runs the statement.

Allocation and Reuse of Memory in the Shared Pool In general, any item (shared SQL area or
dictionary row) in the shared pool remains until it is flushed according to a modified
LRU algorithm. The memory for items that are not being used regularly is freed if
space is required for new items that must be allocated some space in the shared pool.

See Also:

■ "Private SQL Area" on page 8-10

■ Oracle Database Performance Tuning Guide

Overview of the System Global Area

8-6 Oracle Database Concepts

A modified LRU algorithm allows shared pool items that are used by many sessions to
remain in memory as long as they are useful, even if the process that originally created
the item terminates. As a result, the overhead and processing of SQL statements
associated with a multiuser Oracle Database system is minimized.

When a SQL statement is submitted to Oracle Database for execution, Oracle Database
automatically performs the following memory allocation steps:

1. Oracle Database checks the shared pool to see if a shared SQL area already exists
for an identical statement. If so, that shared SQL area is used for the execution of
the subsequent new instances of the statement. Alternatively, if there is no shared
SQL area for a statement, Oracle Database allocates a new shared SQL area in the
shared pool. In either case, the user's private SQL area is associated with the
shared SQL area that contains the statement.

2. Oracle Database allocates a private SQL area on behalf of the session. The location
of the private SQL area depends on the type of connection established for the
session.

Oracle Database also flushes a shared SQL area from the shared pool in these
circumstances:

■ When the ANALYZE statement is used to update or delete the statistics of a table,
cluster, or index, all shared SQL areas that contain statements referencing the
analyzed schema object are flushed from the shared pool. The next time a flushed
statement is run, the statement is parsed in a new shared SQL area to reflect the
new statistics for the schema object.

■ If a schema object is referenced in a SQL statement and that object is later modified
in any way, the shared SQL area is invalidated (marked invalid), and the
statement must be reparsed the next time it is run.

■ If you change a database's global database name, all information is flushed from
the shared pool.

■ The administrator can manually flush all information in the shared pool to assess
the performance (with respect to the shared pool, not the data buffer cache) that
can be expected after instance startup without shutting down the current instance.
The statement ALTER SYSTEM FLUSH SHARED_POOL is used to do this.

Note: A shared SQL area can be flushed from the shared pool, even
if the shared SQL area corresponds to an open cursor that has not been
used for some time. If the open cursor is subsequently used to run its
statement, Oracle Database reparses the statement, and a new shared
SQL area is allocated in the shared pool.

See Also:

■ "Shared SQL Areas and Private SQL Areas" on page 8-5 for more
information about the location of the private SQL area

■ Chapter 6, "Schema Object Dependencies" for more information
about the invalidation of SQL statements and dependency issues

■ Oracle Database SQL Language Reference for information about
using ALTER SYSTEM FLUSH SHARED_POOL

■ Oracle Database Reference for information about V$SQL and
V$SQLAREA dynamic views

Overview of the System Global Area

Memory Architecture 8-7

Dictionary Cache
The data dictionary is a collection of database tables and views containing reference
information about the database, its structures, and its users. Oracle Database accesses
the data dictionary frequently during SQL statement parsing. This access is essential to
the continuing operation of Oracle Database.

The data dictionary is accessed so often by Oracle Database that two special locations
in memory are designated to hold dictionary data. One area is called the data
dictionary cache, also known as the row cache because it holds data as rows instead of
buffers (which hold entire blocks of data). The other area in memory to hold dictionary
data is the library cache. All Oracle Database user processes share these two caches for
access to data dictionary information.

Result Cache
The result cache is composed of the SQL query result cache and PL/SQL function
result cache, which share the same infrastructure.

The DBMS_RESULT_CACHE package provides administration subprograms, which, for
example, flush all cached results and turn result-caching on or off systemwide. The
dynamic performance views V$RESULT_CACHE_* allow the developer and DBA to
determine, for example, the cache-hit success for a certain SQL query or PL/SQL
function.

Similar to the result cache, the client result cache also caches results, except that the
caching is done on the client side.

SQL Query Result Cache

Results of queries and query fragments can be cached in memory in the SQL query
result cache. The database can then use cached results to answer future executions of
these queries and query fragments. Because retrieving results from the SQL query
result cache is faster than rerunning a query, frequently run queries experience a
significant performance improvement when their results are cached. Users can
annotate a query or query fragment with a result cache hint to indicate that results are
to be stored in the SQL query result cache.

You can set the RESULT_CACHE_MODE initialization parameter to control whether the
SQL query result cache is used for all queries (when possible), or only for queries that
are annotated.

The database automatically invalidates a cached result whenever a transaction
modifies the data or metadata of any of the database objects used to construct that
cached result.

See Also: Chapter 7, "The Data Dictionary"

See Also:

■ Oracle Database Administrator's Guide for information about sizing
the result cache

■ Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_RESULT_CACHE package

■ Oracle Database Reference for information about dynamic
performance ($V) views

■ Oracle Call Interface Programmer's Guide for more information
about the client result cache

Overview of the System Global Area

8-8 Oracle Database Concepts

PL/SQL Function Result Cache

A PL/SQL function is sometimes used to return the result of a computation whose
inputs are one or several parameterized queries issued by the function. In some cases,
these queries access data (for example, the catalog of wares in a shopping application)
that changes very infrequently compared to the frequency of calling the function. You
can include syntax in the source text of a PL/SQL function to request that its results be
cached and, to ensure correctness, that the cache be purged when any of a list of tables
experiences DML. The look-up key for the cache is the combination of actual
arguments with which the function is invoked. When a particular invocation of the
result-cached function is a cache hit, then the function body is not executed; instead,
the cached value is returned immediately.

Large Pool
The database administrator can configure an optional memory area called the large
pool to provide large memory allocations for:

■ Session memory for the shared server and the Oracle XA interface (used where
transactions interact with more than one database)

■ I/O server processes

■ Oracle Database backup and restore operations

By allocating session memory from the large pool for shared server, Oracle XA, or
parallel query buffers, Oracle Database can use the shared pool primarily for caching
shared SQL and avoid the performance overhead caused by shrinking the shared SQL
cache.

In addition, the memory for Oracle Database backup and restore operations, for I/O
server processes, and for parallel buffers is allocated in buffers of a few hundred
kilobytes. The large pool is better able to satisfy such large memory requests than the
shared pool.

The large pool does not have an LRU list. It is different from reserved space in the
shared pool, which uses the same LRU list as other memory allocated from the shared
pool.

See Also: Oracle Database Performance Tuning Guide for information
about the RESULT_CACHE_MODE initialization parameter

See Also: Oracle Database PL/SQL Language Reference for more
information about the PL/SQL function result cache

See Also:

■ "Shared Server Architecture" on page 9-12 for information about
allocating session memory from the large pool for the shared
server

■ Oracle Database Advanced Application Developer's Guide for
information about Oracle XA

■ Oracle Database Performance Tuning Guide for more information
about the large pool, reserve space in the shared pool, and I/O
server processes

■ "Overview of Parallel Execution" on page 16-10 for information
about allocating memory for parallel execution

Overview of the Program Global Area

Memory Architecture 8-9

Java Pool
Java pool memory is used in server memory for all session-specific Java code and data
within the JVM. Java pool memory is used in different ways, depending on the mode
in which Oracle Database is running.

The Java Pool Advisor statistics provide information about library cache memory used
for Java and predict how changes in the size of the Java pool can affect the parse rate.
The Java Pool Advisor is internally turned on when statistics_level is set to
TYPICAL or higher. These statistics reset when the advisor is turned off.

Streams Pool
The streams pool is used exclusively by Oracle Streams. The Streams pool stores
buffered queue messages, and it provides memory for Oracle Streams capture
processes and apply processes.

Unless you specifically configure it, the size of the Streams pool starts at zero. The pool
size grows dynamically as needed when Oracle Streams is used.

Overview of the Program Global Area
Oracle Database allocates a program global area (PGA) for each server process. The
PGA is used to process SQL statements and to hold logon and other session
information. For the purposes of memory management, the collection of all PGAs is
known as the instance PGA. Using an initialization parameter, you set the size of the
instance PGA, and the database distributes memory to individual PGAs as needed.

This section contains the following topics:

■ Content of the PGA

■ PGA Memory Use in Dedicated and Shared Server Modes

Content of the PGA
The content of the PGA memory varies, depending on whether or not the instance is
running the shared server option. Generally speaking, the PGA memory is divided
into the following areas:

■ Session Memory

■ Private SQL Area

Session Memory
Session memory is the memory allocated to hold a session's variables (logon
information) and other information related to the session. For a shared server, the
session memory is shared and not private.

See Also: Oracle Database Java Developer's Guide

See Also: Oracle Streams Concepts and Administration

Note: Background processes also allocate their own PGAs. This
discussion focuses on server process PGAs only.

See Also: "Connections and Sessions" on page 9-3 for information
about sessions

Overview of the Program Global Area

8-10 Oracle Database Concepts

Private SQL Area
The private SQL area contains data such as bind variable values, query execution state
information, and query execution work areas. Each session that issues a SQL statement
has a private SQL area. Each user that submits the same SQL statement has his or her
own private SQL area that uses a single shared SQL area. Thus, many private SQL
areas can be associated with the same shared SQL area.

The location of a private SQL area depends on the type of connection established for a
session. If a session is connected through a dedicated server, private SQL areas are
located in the server process's PGA. However, if a session is connected through a
shared server, part of the private SQL area is kept in the SGA.

This section includes the following topics:

■ Cursors and SQL Areas

■ Private SQL Area Components

■ SQL Work Areas

Cursors and SQL Areas The application developer of an Oracle Database precompiler
program or OCI program can explicitly open cursors, or handles to specific private
SQL areas, and use them as a named resource throughout the execution of the
program. Recursive cursors that Oracle Database issues implicitly for some SQL
statements also use shared SQL areas.

The management of private SQL areas is the responsibility of the user process. The
allocation and deallocation of private SQL areas depends largely on which application
tool you are using, although the number of private SQL areas that a user process can
allocate is always limited by the initialization parameter OPEN_CURSORS. The default
value of this parameter is 50.

A private SQL area continues to exist until the corresponding cursor is closed or the
statement handle is freed. Although Oracle Database frees the run-time area after the
statement completes, the persistent area remains waiting. Application developers close
all open cursors that will not be used again to free the persistent area and to minimize
the amount of memory required for users of the application.

Private SQL Area Components The private SQL area of a cursor is itself divided into two
areas whose lifetimes are different:

■ The persistent area—This area contains bind variable values. It is freed only when
the cursor is closed.

■ The runtime area—Oracle Database creates this area as the first step of an execute
request. It contains the following structures:

– Query execution state information

See Also:

■ "Connections and Sessions" on page 9-3 for more information
about sessions

■ Oracle Database Net Services Administrator's Guide

See Also: "Shared SQL Areas and Private SQL Areas" on page 8-5

See Also: "Cursors" on page 24-5

Overview of the Program Global Area

Memory Architecture 8-11

For example, for a full table scan, this area contains information on the
progress of the scan

– SQL work areas

These areas are allocated as needed for memory-intensive operations like
sorting or hash-joins. More detail is provided later in this section.

For DML, the run-time area is freed when the statement finishes running. For
queries, it is freed after all rows are fetched or the query is canceled.

SQL Work Areas SQL work areas are allocated to support memory-intensive operators
such as the following:

■ Sort-based operators (order by, group-by, rollup, window function)

■ Hash-join

■ Bitmap merge

■ Bitmap create

For example, a sort operator uses a work area (sometimes called the sort area) to
perform the in-memory sort of a set of rows. Similarly, a hash-join operator uses a
work area (also called the hash area) to build a hash table from its left input. If the
amount of data to be processed by these two operators does not fit into a work area,
the input data is divided into smaller pieces. This enables some data pieces to be
processed in memory while the rest are spilled to temporary disk storage to be
processed later. Although bitmap operators do not spill to disk when their associated
work area is too small, their complexity is inversely proportional to the size of their
work area. Thus, these operators run faster with larger work area.

The size of a work area can be controlled and tuned. The database automatically tunes
work area sizes when automatic PGA memory management is enabled. See "Overview
of Memory Management Methods" on page 8-12 for more information.

Generally, bigger work areas can significantly improve the performance of a particular
operator at the cost of higher memory consumption. Optimally, the size of a work area
is big enough to accommodate the input data and auxiliary memory structures
allocated by its associated SQL operator. If not, response time increases, because part
of the input data must be spilled to temporary disk storage. In the extreme case, if the
size of a work area is far too small compared to the input data size, multiple passes
over the data pieces must be performed. This can dramatically increase the response
time of the operator.

PGA Memory Use in Dedicated and Shared Server Modes
PGA memory allocation depends, in some specifics, on whether the system uses
dedicated or shared server architecture. Table 8–1 shows the differences.

Table 8–1 Differences in Memory Allocation Between Dedicated and Shared Servers

Memory Area
Dedicated
Server

Shared
Server

Nature of session memory Private Shared

Location of the persistent area PGA SGA

Location of part of the run-time area for SELECT statements PGA PGA

Location of the run-time area for DML/DDL statements PGA PGA

Overview of Memory Management Methods

8-12 Oracle Database Concepts

Overview of Memory Management Methods
Memory management involves maintaining optimal sizes for the Oracle database
instance memory structures as demands on the database change. The memory that
must be managed is the system global area (SGA) memory and the instance program
global area (instance PGA) memory. The instance PGA memory is the collection of
memory allocations for all individual PGAs.

Oracle Database supports various memory management methods, which are chosen
by initialization parameter settings. Oracle recommends that you enable the automatic
memory management method.

Automatic Memory Management – For Both the SGA and Instance PGA
Beginning with Oracle Database 11g, Oracle Database can manage the SGA memory
and instance PGA memory completely automatically. You designate only the total
memory size to be used by the instance, and Oracle Database dynamically exchanges
memory between the SGA and the instance PGA as needed to meet processing
demands. This capability is referred to as automatic memory management. With this
memory management method, the database also dynamically tunes the sizes of the
individual SGA components and the sizes of the individual PGAs.

Automatic Shared Memory Management – For the SGA
If you want to exercise more direct control over the size of the SGA, you can disable
automatic memory management and enable automatic shared memory management. With
automatic shared memory management, you set target and maximum sizes for the
SGA. The database then tunes the total size of the SGA to your designated target, and
dynamically tunes the sizes of all SGA components.

Manual Shared Memory Management – For the SGA
If you want complete control of individual SGA component sizes, you can disable both
automatic memory management and automatic shared memory management. This
effectively enables manual shared memory management. In this mode, you set the sizes of
several individual SGA components, thereby determining the overall SGA size. You
then manually tune these individual SGA components on an ongoing basis.

Automatic PGA Memory Management – For the Instance PGA
When you disable automatic memory management and enable automatic shared
memory management or manual shared memory management, you also implicitly
enable automatic PGA memory management. With automatic PGA memory management,
you set a target size for the instance PGA. The database then tunes the size of the
instance PGA to your target, and dynamically tunes the sizes of individual PGAs.
Because automatic PGA memory management is the default method for the instance
PGA, if you do not explicitly set a target size, the database automatically computes
and configures a reasonable default.

Manual PGA Memory Management – For the Instance PGA
Previous releases of Oracle Database required the DBA to manually specify the
maximum work area size for each type of SQL operator (such as sort or hash-join).
This proved to be very difficult, because the workload is always changing. Although
the current release of Oracle Database supports this manual PGA memory
management method, Oracle strongly recommends that you leave automatic PGA
memory management enabled.

Overview of Memory Management Methods

Memory Architecture 8-13

Summary of Memory Management Methods
Table 8–2 summarizes the various memory management methods. If you do not enable
automatic memory management, you must separately configure one memory
management method for the SGA and one for the PGA.

Memory Management Options and Defaults for Database Installation
If you create your database with Database Configuration Assistant (DBCA) and choose
the basic installation option, automatic memory management is enabled by default. If
you choose advanced installation, Database Configuration Assistant (DBCA) enables
you to select from the following three memory management configurations:

■ Automatic memory management

■ Automatic shared memory management + automatic PGA memory management

■ Manual shared memory management + automatic PGA memory management

If you create the database with a CREATE DATABASE SQL statement and do not
choose the memory management mode by specifying the required memory
initialization parameters, manual shared memory management and automatic PGA
memory management are configured by default.

Note: When automatic memory management is not enabled, the
default method for the instance PGA is automatic PGA memory
management.

Table 8–2 Oracle Database Memory Management Modes

Memory Management Mode For You Set
Oracle Database
Automatically Tunes

Automatic memory management SGA
and
PGA

■ Total memory target size
for the Oracle instance

■ (Optional) Maximum
memory size for the
Oracle instance

■ Total SGA size

■ SGA component sizes

■ Instance PGA size

■ Individual PGA sizes

Automatic shared memory management

(Automatic memory management disabled)

SGA ■ SGA target size

■ (Optional) SGA
maximum size

SGA component sizes

Manual shared memory management

(Automatic memory management and
automatic shared memory management
disabled)

SGA ■ Shared pool size

■ Buffer cache size

■ Java pool size

■ Large pool size

-

Automatic PGA memory management PGA Instance PGA target size Individual PGA sizes

Manual PGA memory management

(not recommended)

PGA Maximum work area size for
each type of SQL operator

-

See Also: Oracle Database Administrator's Guide because automatic
memory management is not available on all platforms

See also: Oracle Database Administrator's Guide for more information
about memory management and about memory management
initialization parameters.

About Software Code Areas

8-14 Oracle Database Concepts

About Software Code Areas
Software code areas are portions of memory used to store code that is being run or can
be run. Oracle Database code is stored in a software area that is typically at a different
location from users' programs—a more exclusive or protected location.

Software areas are usually static in size, changing only when software is updated or
reinstalled. The required size of these areas varies by operating system.

Software areas are read only and can be installed shared or nonshared. When possible,
Oracle Database code is shared so that all users can access it without having multiple
copies in memory. This results in a saving of real main memory and improves overall
performance.

User programs can be shared or nonshared. Some Oracle tools and utilities (such as
Oracle Forms and SQL*Plus) can be installed shared, but some cannot. Multiple
instances of Oracle Database can use the same Oracle Database code area with
different databases if running on the same computer.

Note: The option of installing software shared is not available for all
operating systems (for example, on PCs operating Windows).

See your Oracle Database operating system-specific documentation
for more information.

Process Architecture 9-1

9
Process Architecture

This chapter discusses the processes in an Oracle database system and the different
configurations available for an Oracle database system.

This chapter contains the following topics:

■ Introduction to Processes

■ Overview of User Processes

■ Overview of Oracle Database Processes

■ Shared Server Architecture

■ Dedicated Server Configuration

■ Database Resident Connection Pooling

■ The Program Interface

Introduction to Processes
All connected Oracle Database users must run two modules of code to access an
Oracle Database instance.

■ Application or Oracle tool: A database user runs a database application (such as a
precompiler program) or an Oracle tool (such as SQL*Plus), which issues SQL
statements to an Oracle database.

■ Oracle database server code: Each user has some Oracle database code executing
on his or her behalf, which interprets and processes the application's SQL
statements.

These code modules are run by processes. A process is a "thread of control" or a
mechanism in an operating system that can run a series of steps. (Some operating
systems use the terms job or task.) A process normally has its own private memory
area in which it runs.

This section includes the following topics:

■ Multiple-Process Oracle Systems

■ Types of Processes

Multiple-Process Oracle Systems
Multiple-process Oracle (also called multiuser Oracle) uses several processes to run
different parts of the Oracle code and additional processes for the users—either one
process for each connected user or one or more processes shared by multiple users.

Introduction to Processes

9-2 Oracle Database Concepts

Most database systems are multiuser, because one of the primary benefits of a
database is managing data needed by multiple users at the same time.

Each process in an Oracle Database instance performs a specific job. By dividing the
work of Oracle Database and database applications into several processes, multiple
users and applications can connect to a single database instance simultaneously while
the system maintains excellent performance.

Types of Processes
The processes in an Oracle Database system can be categorized into two major groups:

■ User processes run the application or Oracle tool code.

■ Oracle Database processes run the Oracle database server code. They include
server processes and background processes.

The process structure varies for different Oracle Database configurations, depending
on the operating system and the choice of Oracle Database options. The code for
connected users can be configured as a dedicated server or a shared server.

With dedicated server, for each user, the database application is run by a different
process (a user process) than the one that runs the Oracle database server code (a
dedicated server process).

With shared server, the database application is run by a different process (a user
process) than the one that runs the Oracle database server code. Each server process
that runs Oracle database server code (a shared server process) can serve multiple
user processes.

Figure 9–1 illustrates a dedicated server configuration. Each connected user has a
separate user process, and several background processes run Oracle Database.

Figure 9–1 An Oracle Database Instance

Figure 9–1 can represent multiple concurrent users running an application on the same
computer as Oracle Database. This particular configuration usually runs on a
mainframe or minicomputer.

Oracle
Processes
(background
processes)

User
processesUser User User User

Archiver
(ARC0)

Log
Writer

(LGWR)

Recoverer
(RECO)

Process
Monitor
(PMON)

System
Monitor
(SMON)

Database
Writer

(DBW0)

System Global Area
(SGA)

Overview of Oracle Database Processes

Process Architecture 9-3

Overview of User Processes
When a user runs an application program (such as a Pro*C program) or an Oracle tool
(such as Oracle Enterprise Manager or SQL*Plus), Oracle Database creates a user
process to run the user's application.

Connections and Sessions
Connection and session are closely related to user process but are very different in
meaning.

A connection is a communication pathway between a user process and an Oracle
Database instance. A communication pathway is established using available
interprocess communication mechanisms (on a computer that runs both the user
process and Oracle Database) or network software (when different computers run the
database application and Oracle Database, and communicate through a network).

A session is a specific connection of a user to an Oracle Database instance through a
user process. For example, when a user starts SQL*Plus, the user must provide a valid
user name and password, and then a session is established for that user. A session lasts
from the time the user connects until the time the user disconnects or exits the
database application.

Multiple sessions can be created and exist concurrently for a single Oracle Database
user using the same user name. For example, a user with the user name/password of
SCOTT/TIGER can connect to the same Oracle Database instance several times.

In configurations without the shared server, Oracle Database creates a server process
on behalf of each user session. However, with the shared server, many user sessions
can share a single server process.

Overview of Oracle Database Processes
This section describes the two types of processes that run the Oracle database server
code (server processes and background processes). It also describes the trace files and
alert logs, which record database events for the Oracle Database processes.

This section includes the following topics:

■ Oracle Database Server Processes

■ Oracle Database Background Processes

■ Oracle Database Trace Files and the Alert Log

See Also:

■ "Overview of User Processes" on page 9-3

■ "Overview of Oracle Database Processes" on page 9-3

■ "Dedicated Server Configuration" on page 9-16

■ "Shared Server Architecture" on page 9-12

■ Your Oracle Database operating system-specific documentation
for more details on configuration choices

See Also: "Shared Server Architecture" on page 9-12

Overview of Oracle Database Processes

9-4 Oracle Database Concepts

Oracle Database Server Processes
Oracle Database creates server processes to handle the requests of user processes
connected to the instance. In some situations when the application and Oracle
Database operate on the same computer, it is possible to combine the user process and
corresponding server process into a single process to reduce system overhead.
However, when the application and Oracle Database operate on different computers, a
user process always communicates with Oracle Database through a separate server
process.

Server processes (or the server portion of combined user/server processes) created on
behalf of each user's application can perform one or more of the following:

■ Parse and run SQL statements issued through the application

■ Read necessary data blocks from datafiles on disk into the shared database buffers
of the SGA, if the blocks are not already present in the SGA

■ Return results in such a way that the application can process the information

Oracle Database Background Processes
To maximize performance and accommodate many users, a multiprocess Oracle
Database system uses some additional Oracle Database processes called background
processes.

An Oracle Database instance can have many background processes; not all are always
present. There are numerous background processes. See the V$BGPROCESS view for
more information on the background processes. The background processes in an
Oracle Database instance can include the following:

■ Archiver Processes (ARCn)

■ Checkpoint Process (CKPT)

■ Database Writer Process (DBWn)

■ Job Queue Processes

■ Log Writer Process (LGWR)

■ Process Monitor Process (PMON)

■ Queue Monitor Processes (QMNn)

■ Recoverer Process (RECO)

■ System Monitor Process (SMON)

■ Other Oracle Database Background Processes

On many operating systems, background processes are created automatically when an
instance is started.

Figure 9–2 illustrates how each background process interacts with the different parts of
an Oracle database, and the rest of this section describes each process.

Overview of Oracle Database Processes

Process Architecture 9-5

Figure 9–2 Background Processes of a Multiple-Process Oracle Database Instance

Archiver Processes (ARCn)
The archiver processes (ARCn) copy redo log files to a designated storage device after
a log switch has occurred. In addition, they can collect transaction redo data and

See Also:

■ Oracle Real Application Clusters Administration and Deployment
Guide and Oracle Clusterware Administration and Deployment
Guide for more information. Oracle Real Application Clusters is
not illustrated in Figure 9–2

■ Your operating system-specific documentation for details on
how these processes are created

Datafiles

Redo Log
Files

Control
Files

Offline
Storage
Device

SMONPMONRECO

System Global Area

Database
Buffer Cache

Redo Log
Buffer

User
Process

User Processes

D000

User
Process

LGWR

Dedicated
Server

Process

CKPT

DBW0

Legend:

RECO
PMON
SMON
CKPT
ARC0
DBW0
LGWR
D000

Recoverer process
Process monitor
System monitor
Checkpoint
Archiver
Database writer
Log writer
Dispatcher Process

ARC0

Shared
Server

Process

DBW0

ARC0

LGWR

Overview of Oracle Database Processes

9-6 Oracle Database Concepts

transmit that data to standby destinations. ARCn processes are present only when the
database is in ARCHIVELOG mode, and automatic archiving is enabled.

If you anticipate a heavy workload for archiving, such as during bulk loading of data,
you can increase the maximum number of archiver processes with the LOG_ARCHIVE_
MAX_PROCESSES initialization parameter. The ALTER SYSTEM statement can change
the value of this parameter dynamically to increase or decrease the number of ARCn
processes.

Checkpoint Process (CKPT)
When a checkpoint occurs, Oracle Database must update the headers of all datafiles to
record the details of the checkpoint. This is done by the CKPT process. The CKPT
process does not write blocks to disk; DBWn always performs that work.

The statistic DBWR checkpoints displayed by the System_Statistics monitor in
Oracle Enterprise Manager indicates the number of checkpoint requests completed.

Database Writer Process (DBWn)
The database writer process (DBWn) writes the contents of buffers to datafiles. The
DBWn processes are responsible for writing modified (dirty) buffers in the database
buffer cache to disk. Although one database writer process (DBW0) is adequate for
most systems, you can configure additional processes (DBW1 through DBW9 and
DBWa through DBWj) to improve write performance if your system modifies data
heavily. These additional DBWn processes are not useful on uniprocessor systems.

When a buffer in the database buffer cache is modified, it is marked dirty. A cold
buffer is a buffer that has not been recently used according to the least recently used
(LRU) algorithm. The DBWn process writes cold, dirty buffers to disk so that user
processes are able to find cold, clean buffers that can be used to read new blocks into
the cache. As buffers are dirtied by user processes, the number of free buffers
diminishes. If the number of free buffers drops too low, user processes that must read
blocks from disk into the cache are not able to find free buffers. DBWn manages the
buffer cache so that user processes can always find free buffers.

By writing cold, dirty buffers to disk, DBWn improves the performance of finding free
buffers while keeping recently used buffers resident in memory. For example, blocks
that are part of frequently accessed small tables or indexes are kept in the cache so that
they do not need to be read in again from disk. The LRU algorithm keeps more
frequently accessed blocks in the buffer cache so that when a buffer is written to disk,
it is unlikely to contain data that will be useful soon.

The initialization parameter DB_WRITER_PROCESSES specifies the number of DBWn
processes. The maximum number of DBWn processes is 20. If it is not specified by the
user during startup, Oracle Database determines how to set DB_WRITER_PROCESSES
based on the number of CPUs and processor groups.

See Also:

■ "Oracle Database Trace Files and the Alert Log" on page 9-11

■ Oracle Database Backup and Recovery User's Guide

■ Your operating system-specific documentation for details about
using the ARCn processes

See Also: Oracle Real Application Clusters Administration and
Deployment Guide for information about CKPT with Oracle Real
Application Clustersc

Overview of Oracle Database Processes

Process Architecture 9-7

The DBWn process writes dirty buffers to disk under the following conditions:

■ When a server process cannot find a clean reusable buffer after scanning a
threshold number of buffers, it signals DBWn to write. DBWn writes dirty buffers
to disk asynchronously while performing other processing.

■ DBWn periodically writes buffers to advance the checkpoint, which is the position
in the redo thread (log) from which instance recovery begins. This log position is
determined by the oldest dirty buffer in the buffer cache.

In all cases, DBWn performs batched (multiblock) writes to improve efficiency. The
number of blocks written in a multiblock write varies by operating system.

Job Queue Processes
Job queue processes are used for batch processing. They run user jobs. They can be
viewed as a scheduler service that can be used to schedule jobs as PL/SQL statements
or procedures on an Oracle Database instance. Given a start date and an interval, the
job queue processes try to run the job at the next occurrence of the interval.

Job queue processes are managed dynamically. This allows job queue clients to use
more job queue processes when required. The resources used by the new processes are
released when they are idle.

Dynamic job queue processes can run a large number of jobs concurrently at a given
interval. The job queue processes run user jobs as they are assigned by the CJQ
process. Here's what happens:

1. The coordinator process, named CJQ0, periodically selects jobs that need to be run
from the system JOB$ table. New jobs selected are ordered by time.

2. The CJQ0 process dynamically spawns job queue slave processes (J000…J999) to
run the jobs.

3. The job queue process runs one of the jobs that was selected by the CJQ process for
execution. The processes run one job at a time.

4. After the process finishes execution of a single job, it polls for more jobs. If no jobs
are scheduled for execution, then it enters a sleep state, from which it wakes up at
periodic intervals and polls for more jobs. If the process does not find any new
jobs, then it aborts after a preset interval.

The initialization parameter JOB_QUEUE_PROCESSES represents the maximum
number of job queue processes that can concurrently run on an instance. However,
clients should not assume that all job queue processes are available for job execution.

See Also:

■ "Database Buffer Cache" on page 8-3

■ Oracle Database Performance Tuning Guide for advice on setting DB_
WRITER_PROCESSES and for information about how to monitor
and tune the performance of a single DBW0 process or multiple
DBWn processes

■ Oracle Database Backup and Recovery User's Guide

Note: The coordinator process is not started if the initialization
parameter JOB_QUEUE_PROCESSES is set to 0.

Overview of Oracle Database Processes

9-8 Oracle Database Concepts

Log Writer Process (LGWR)
The log writer process (LGWR) is responsible for redo log buffer
management—writing the redo log buffer to a redo log file on disk. LGWR writes all
redo entries that have been copied into the buffer since the last time it wrote.

The redo log buffer is a circular buffer. When LGWR writes redo entries from the redo
log buffer to a redo log file, server processes can then copy new entries over the entries
in the redo log buffer that have been written to disk. LGWR normally writes fast
enough to ensure that space is always available in the buffer for new entries, even
when access to the redo log is heavy.

LGWR writes one contiguous portion of the buffer to disk. LGWR writes:

■ A commit record when a user process commits a transaction

■ Redo log buffers

– Every three seconds

– When the redo log buffer is one-third full

– When a DBWn process writes modified buffers to disk, if necessary

LGWR writes synchronously to the active mirrored group of redo log files. If one of
the files in the group is damaged or unavailable, LGWR continues writing to other
files in the group and logs an error in the LGWR trace file and in the system alert log.
If all files in a group are damaged, or the group is unavailable because it has not been
archived, LGWR cannot continue to function.

When a user issues a COMMIT statement, LGWR puts a commit record in the redo log
buffer and writes it to disk immediately, along with the transaction's redo entries. The
corresponding changes to data blocks are deferred until it is more efficient to write
them. This is called a fast commit mechanism. The atomic write of the redo entry
containing the transaction's commit record is the single event that determines the
transaction has committed. Oracle Database returns a success code to the committing
transaction, although the data buffers have not yet been written to disk.

When a user commits a transaction, the transaction is assigned a system change
number (SCN), which Oracle Database records along with the transaction's redo
entries in the redo log. SCNs are recorded in the redo log so that recovery operations
can be synchronized in Real Application Clusters and distributed databases.

See Also: Oracle Database Administrator's Guide for more information
about job queues

Note: Before DBWn can write a modified buffer, all redo records
associated with the changes to the buffer must be written to disk (the
write-ahead protocol). If DBWn finds that some redo records have not
been written, it signals LGWR to write the redo records to disk and
waits for LGWR to complete writing the redo log buffer before it can
write out the data buffers.

Note: Sometimes, if more buffer space is needed, LGWR writes redo
log entries before a transaction is committed. These entries become
permanent only if the transaction is later committed.

Overview of Oracle Database Processes

Process Architecture 9-9

In times of high activity, LGWR can write to the redo log file using group commits. For
example, assume that a user commits a transaction. LGWR must write the
transaction's redo entries to disk, and as this happens, other users issue COMMIT
statements. However, LGWR cannot write to the redo log file to commit these
transactions until it has completed its previous write operation. After the first
transaction's entries are written to the redo log file, the entire list of redo entries of
waiting transactions (not yet committed) can be written to disk in one operation,
requiring less I/O than do transaction entries handled individually. Therefore, Oracle
Database minimizes disk I/O and maximizes performance of LGWR. If requests to
commit continue at a high rate, then every write (by LGWR) from the redo log buffer
can contain multiple commit records.

Process Monitor Process (PMON)
The process monitor (PMON) performs process recovery when a user process fails.
PMON is responsible for cleaning up the database buffer cache and freeing resources
that the user process was using. For example, it resets the status of the active
transaction table, releases locks, and removes the process ID from the list of active
processes.

PMON periodically checks the status of dispatcher and server processes, and restarts
any that have stopped running (but not any that Oracle Database has terminated
intentionally). PMON also registers information about the instance and dispatcher
processes with the network listener.

Like SMON, PMON checks regularly to see whether it is needed and can be called if
another process detects the need for it.

Queue Monitor Processes (QMNn)
The queue monitor process is an optional background process for Oracle Streams
Advanced Queuing, which monitors the message queues. You can configure up to 10
queue monitor processes. These processes, like the job queue processes, are different
from other Oracle Database background processes in that process failure does not
cause the instance to fail.

Recoverer Process (RECO)
The recoverer process (RECO) is a background process used with the distributed
database configuration that automatically resolves failures involving distributed
transactions. The RECO process of a node automatically connects to other databases

See Also:

■ Redo Log Buffer on page 8-4

■ "Oracle Database Trace Files and the Alert Log" on page 9-11

■ Oracle Real Application Clusters Administration and Deployment
Guide for more information about SCNs and how they are used

■ Oracle Database Administrator's Guide for more information about
SCNs and how they are used

■ Oracle Database Performance Tuning Guide for information about
how to monitor and tune the performance of LGWR

See Also:

■ "Oracle Streams Advanced Queuing" on page 23-8

■ Oracle Streams Advanced Queuing User's Guide

Overview of Oracle Database Processes

9-10 Oracle Database Concepts

involved in an in-doubt distributed transaction. When the RECO process reestablishes
a connection between involved database servers, it automatically resolves all in-doubt
transactions, removing from each database's pending transaction table any rows that
correspond to the resolved in-doubt transactions.

If the RECO process fails to connect with a remote server, RECO automatically tries to
connect again after a timed interval. However, RECO waits an increasing amount of
time (growing exponentially) before it attempts another connection. The RECO process
is present only if the instance permits distributed transactions. The number of
concurrent distributed transactions is not limited.

System Monitor Process (SMON)
The system monitor process (SMON) performs recovery, if necessary, at instance
startup. SMON is also responsible for cleaning up temporary segments that are no
longer in use and for coalescing contiguous free extents within dictionary managed
tablespaces. If any terminated transactions were skipped during instance recovery
because of file-read or offline errors, SMON recovers them when the tablespace or file
is brought back online. SMON checks regularly to see whether it is needed. Other
processes can call SMON if they detect a need for it.

With Real Application Clusters, the SMON process of one instance can perform
instance recovery for a failed CPU or instance.

Other Oracle Database Background Processes
There are several other background processes that might be running. You can view the
background processes running on your system by issuing the following SQL query:

SELECT * FROM V$BGPROCESS
WHERE PADDR != '00'
ORDER BY NAME;

These background processes can include the following:

■ ACMS (atomic control file to memory service) per-instance process is an agent that
contributes to ensuring a distributed SGA memory update is either globally
committed on success or globally aborted in the event of a failure in an Oracle
RAC environment.

■ DBRM (database resource manager) process is responsible for setting resource
plans and other resource manager related tasks.

■ DIA0 (diagnosability process 0) (only 0 is currently being used) is responsible for
hang detection and deadlock resolution.

■ DIAG (diagnosability) process performs diagnostic dumps and executes global
oradebug commands.

■ EMNC (event monitor coordinator) is the background server process used for
database event management and notifications.

See Also: Oracle Database Administrator's Guide for more information
about distributed transaction recovery

See Also: Oracle Real Application Clusters Administration and
Deployment Guide for more information about SMON

See Also: "Overview of the Database Resource Manager" on
page 14-18 for more information about the database resource manager

Overview of Oracle Database Processes

Process Architecture 9-11

■ FBDA (flashback data archiver process) archives the historical rows of tracked
tables into flashback data archives. Tracked tables are tables which are enabled for
flashback archive. When a transaction containing DML on a tracked table
commits, this process stores the pre-image of the rows into the flashback archive. It
also keeps metadata on the current rows.

FBDA is also responsible for automatically managing the flashback data archive
for space, organization, and retention and keeps track of how far the archiving of
tracked transactions has occurred.

■ GTX0-j (global transaction) processes provide transparent support for XA global
transactions in an Oracle RAC environment. The database autotunes the number
of these processes based on the workload of XA global transactions. Global
transaction processes are only seen in an Oracle RAC environment.

■ MMAN is used for internal database tasks.

■ MMNL performs frequent and light-weight manageability-related tasks, such as
session history capture and metrics computation.

■ MMON performs various manageability-related background tasks, for example:

– Issuing alerts whenever a given metrics violates its threshold value

– Taking snapshots by spawning additional process (MMON slaves)

– Capturing statistics value for SQL objects which have been recently modified

■ ARBn performs the actual rebalance data extent movements in an Automatic
Storage Management instance. There can be many of these at a time, called ARB0,
ARB1, and so forth.

■ PSP0 (process spawner) spawns Oracle processes.

■ RBAL coordinates rebalance activity for disk groups in an Automatic Storage
Management instance. It performs a global open on Automatic Storage
Management disks.

■ SMCO (space management coordinator) process coordinates the execution of
various space management related tasks, such as proactive space allocation and
space reclamation. It dynamically spawns slave processes (Wnnn) to implement
the task.

■ VKTM (virtual keeper of time) is responsible for providing a wall-clock time
(updated every second) and reference-time counter (updated every 20 ms and
available only when running at elevated priority).

Oracle Database Trace Files and the Alert Log
Beginning with Oracle Database 11g, an advanced fault diagnosability infrastructure is
included for preventing, detecting, diagnosing, and resolving problems. The problems

See Also:

■ Oracle Clusterware Administration and Deployment Guide for more
information about Oracle Clusterware background processes

■ Oracle Real Application Clusters Administration and Deployment
Guide for more information about Oracle Real Application
Clusters background processes

■ Oracle Database Storage Administrator's Guide to learn about the
ASM background processes

Shared Server Architecture

9-12 Oracle Database Concepts

that are targeted in particular are critical errors such as those caused by database code
bugs, metadata corruption, and customer data corruption.

When a critical error occurs, it is assigned an incident number, and diagnostic data for
the error (such as trace files) are immediately captured and tagged with this number.
The data is then stored in the Automatic Diagnostic Repository (ADR)—a file based
repository outside the database—where it can later be retrieved by incident number
and analyzed.

Each server and background process can write to an associated trace file. When a
process detects an internal error, it dumps information about the error to its trace file.
If an internal error occurs and information is written to a trace file, the administrator
should contact Oracle Support Services.

All filenames of trace files associated with a background process contain the name of
the process that generated the trace file. The one exception to this is trace files
generated by job queue processes (Jnnn).

Additional information in trace files can provide guidance for tuning applications or
an instance. Background processes always write this information to a trace file when
appropriate.

Each database also has an alert.log. The alert log of a database is a chronological
log of messages and errors, including the following:

■ All internal errors (ORA-600), block corruption errors (ORA-1578), and deadlock
errors (ORA-60) that occur

■ Administrative operations, such as the SQL statements CREATE/ALTER/DROP
DATABASE/TABLESPACE and the Oracle Enterprise Manager or SQL*Plus
statements STARTUP, SHUTDOWN, ARCHIVE LOG, and RECOVER

■ Several messages and errors relating to the functions of shared server and
dispatcher processes

■ Errors during the automatic refresh of a materialized view

Oracle Database uses the alert log to keep a record of these events as an alternative to
displaying the information on an operator's console. (Many systems also display this
information on the console.) If an administrative operation is successful, a message is
written in the alert log as "completed" along with a time stamp.

Shared Server Architecture
Shared server architecture eliminates the need for a dedicated server process for each
connection. A dispatcher directs multiple incoming network session requests to a pool
of shared server processes. An idle shared server process from a shared pool of server
processes picks up a request from a common queue, which means a small number of
shared servers can perform the same amount of processing as many dedicated servers.
Also, because the amount of memory required for each user is relatively small, less
memory and process management are required, and more users can be supported.

A number of different processes are needed in a shared server system:

See Also:

■ Oracle Database Performance Tuning Guide for information about
enabling the SQL trace facility

■ Oracle Database Error Messages for information about error
messages

Shared Server Architecture

Process Architecture 9-13

■ A network listener process that connects the user processes to dispatchers or
dedicated servers (the listener process is part of Oracle Net Services, not Oracle
Database).

■ One or more dispatcher processes

■ One or more shared server processes

Shared server processes require Oracle Net Services or SQL*Net version 2.

When an instance starts, the network listener process opens and establishes a
communication pathway through which users connect to Oracle Database. Then, each
dispatcher process gives the listener process an address at which the dispatcher listens
for connection requests. At least one dispatcher process must be configured and
started for each network protocol that the database clients will use.

When a user process makes a connection request, the listener examines the request and
determines whether the user process can use a shared server process. If so, the listener
returns the address of the dispatcher process that has the lightest load, and the user
process connects to the dispatcher directly.

Some user processes cannot communicate with the dispatcher, so the network listener
process cannot connect them to a dispatcher. In this case, or if the user process requests
a dedicated server, the listener creates a dedicated server and establishes an
appropriate connection.

The Oracle Database shared server architecture increases the scalability of applications
and the number of clients simultaneously connected to the database. It can enable
existing applications to scale up without making any changes to the application itself.

This section includes the following topics:

■ Dispatcher Request and Response Queues

■ Restricted Operations of the Shared Server

Dispatcher Request and Response Queues
A request from a user is a single program interface call that is part of the user's SQL
statement. When a user makes a call, its dispatcher places the request on the request
queue, where it is picked up by the next available shared server process.

The request queue is in the SGA and is common to all dispatcher processes of an
instance. The shared server processes check the common request queue for new
requests, picking up new requests on a first-in-first-out basis. One shared server
process picks up one request in the queue and makes all necessary calls to the database
to complete that request.

Note: To use shared servers, a user process must connect through
Oracle Net Services or SQL*Net version 2, even if the process runs on
the same computer as the Oracle Database instance.

See Also:

■ "Restricted Operations of the Shared Server" on page 9-16

■ Oracle Database Net Services Administrator's Guide for more
information about the network listener

Shared Server Architecture

9-14 Oracle Database Concepts

When the server completes the request, it places the response on the calling
dispatcher's response queue. Each dispatcher has its own response queue in the SGA.
The dispatcher then returns the completed request to the appropriate user process.

For example, in an order entry system each clerk's user process connects to a
dispatcher and each request made by the clerk is sent to that dispatcher, which places
the request in the request queue. The next available shared server process picks up the
request, services it, and puts the response in the response queue. When a clerk's
request is completed, the clerk remains connected to the dispatcher, but the shared
server process that processed the request is released and available for other requests.
While one clerk is talking to a customer, another clerk can use the same shared server
process.

Figure 9–3 illustrates how user processes communicate with the dispatcher across the
program interface and how the dispatcher communicates users' requests to shared
server processes.

Figure 9–3 The Shared Server Configuration and Processes

Application
Code

System Global Area

User
Process

Database Server

Client Workstation

Shared
Server

Processes

Dispatcher Processes

Oracle
Server Code

Request
Queues

Response
Queues

Shared Server Architecture

Process Architecture 9-15

This section includes the following topics:

■ Dispatcher Processes (Dnnn)

■ Shared Server Processes (Snnn)

Dispatcher Processes (Dnnn)
The dispatcher processes support shared server configuration by allowing user
processes to share a limited number of server processes. With the shared server, fewer
shared server processes are required for the same number of users, Therefore, the
shared server can support a greater number of users, particularly in client/server
environments where the client application and server operate on different computers.

You can create multiple dispatcher processes for a single database instance. At least
one dispatcher must be created for each network protocol used with Oracle Database.
The database administrator starts an optimal number of dispatcher processes
depending on the operating system limitation and the number of connections for each
process, and can add and remove dispatcher processes while the instance runs.

In a shared server configuration, a network listener process waits for connection
requests from client applications and routes each to a dispatcher process. If it cannot
connect a client application to a dispatcher, the listener process starts a dedicated
server process, and connects the client application to the dedicated server. The listener
process is not part of an Oracle Database instance; rather, it is part of the networking
processes that work with Oracle Database.

Shared Server Processes (Snnn)
Each shared server process serves multiple client requests in the shared server
configuration. Shared server processes and dedicated server processes provide the
same functionality, except shared server processes are not associated with a specific
user process. Instead, a shared server process serves any client request in the shared
server configuration.

The PGA of a shared server process does not contain user-related data (which must be
accessible to all shared server processes). The PGA of a shared server process contains
only stack space and process-specific variables.

All session-related information is contained in the SGA. Each shared server process
must be able to access all sessions' data spaces so that any server can handle requests
from any session. Space is allocated in the SGA for each session's data space. You can
limit the amount of space that a session can allocate by setting the resource limit
PRIVATE_SGA to the desired amount of space in the user's profile.

Oracle Database dynamically adjusts the number of shared server processes based on
the length of the request queue. The number of shared server processes that can be

Note: Each user process that connects to a dispatcher must do so
through Oracle Net Services or SQL*Net version 2, even if both
processes are running on the same computer.

See Also:

■ "Shared Server Architecture" on page 9-12

■ Oracle Database Net Services Administrator's Guide for more
information about the network listener

Dedicated Server Configuration

9-16 Oracle Database Concepts

created ranges between the values of the initialization parameters SHARED_SERVERS
and MAX_SHARED_SERVERS.

Restricted Operations of the Shared Server
Certain administrative activities cannot be performed while connected to a dispatcher
process, including shutting down or starting an instance and media recovery. An error
message is issued if you attempt to perform these activities while connected to a
dispatcher process.

These activities are typically performed when connected with administrator privileges.
When you want to connect with administrator privileges in a system configured with
shared servers, you must state in your connect string that you want to use a dedicated
server process (SERVER=DEDICATED) instead of a dispatcher process.

Dedicated Server Configuration
Figure 9–4 illustrates Oracle Database running on two computers using the dedicated
server architecture. In this configuration, a user process runs the database application
on one computer, and a server process runs the associated Oracle database server on
another computer.

See Also:

■ "Overview of the Program Global Area" on page 8-9 for more
information about the content of a PGA in different types of
instance configurations

■ Chapter 20, "Database Security"for more information about
resource limits and profiles

See Also:

■ Your operating system-specific documentation

■ Oracle Database Net Services Administrator's Guide for the proper
connect string syntax

Dedicated Server Configuration

Process Architecture 9-17

Figure 9–4 Oracle Database Using Dedicated Server Processes

The user and server processes are separate, distinct processes. The separate server
process created on behalf of each user process is called a dedicated server process (or
shadow process), because this server process acts only on behalf of the associated user
process.

This configuration maintains a one-to-one ratio between the number of user processes
and server processes. Even when the user is not actively making a database request,
the dedicated server process remains (though it is inactive and can be paged out on
some operating systems).

Figure 9–4 shows user and server processes running on separate computers connected
across a network. However, the dedicated server architecture is also used if the same
computer runs both the client application and the Oracle database server code but the
host operating system could not maintain the separation of the two programs if they
were run in a single process. UNIX is a common example of such an operating system.

In the dedicated server configuration, the user and server processes communicate
using different mechanisms:

■ If the system is configured so that the user process and the dedicated server
process run on the same computer, the program interface uses the host operating
system's interprocess communication mechanism to perform its job.

■ If the user process and the dedicated server process run on different computers,
the program interface provides the communication mechanisms (such as the
network software and Oracle Net Services) between the programs.

■ Dedicated server architecture can sometimes result in inefficiency. Consider an
order entry system with dedicated server processes. A customer places an order as
a clerk enters the order into the database. For most of the transaction, the clerk is

User
Process

Application
Code

System Global Area

User
Process

Application
Code

Oracle
Server Code

Program
Interface

Database Server

Client Workstation

Dedicated
Server
Process

Oracle
Server Code

Database Resident Connection Pooling

9-18 Oracle Database Concepts

talking to the customer while the server process dedicated to the clerk's user
process remains idle. The server process is not needed during most of the
transaction, and the system is slower for other clerks entering orders. For
applications of this kind, the shared server architecture may be preferable.

Database Resident Connection Pooling
Database Resident Connection Pooling (DRCP) provides a connection pool in the
database server for typical Web application usage scenarios. DRCP pools dedicated
servers, which comprise of a server foreground combined with a database session, to
create pooled servers.

A Web application typically acquires a database connection, uses the connection for a
short period, and then releases the connection. DRCP enables multiple Web
application threads and processes to share the pooled servers for their connection
needs.

DRCP complements middle-tier connection pools that share connections between
threads in a middle-tier process. DRCP also enables you to share database connections
across multiple middle-tier processes. These middle-tier processes may belong to the
same or different middle-tier host.

DRCP enables a significant reduction in key database resources that are required to
support a large number of client connections. DRCP reduces the amount of memory
required for the database server and boosts the scalability of both the database server
and the middle-tier. The pool of readily available servers also reduces the cost of
re-creating client connections.

DRCP is especially useful for architectures with multi-process, single-threaded
application servers, such as PHP and Apache servers, that cannot do middle-tier
connection pooling. The database can scale to tens of thousands of simultaneous
connections with DRCP.

The pooled server model closely follows the dedicated model, which is used to
connect to Oracle by default. The pooled server model does away with the overhead of
dedicating a server for every connection that requires the server for a short period.
DRCP allows a connection to acquire, and then voluntarily release the pooled server
for use by other similar connections. On being acquired by a connection, a pooled
server essentially transforms into a dedicated server for that connection until it is
released back into the pool. Clients getting connections out of the database resident
connection pool connect to an Oracle background process known as the connection
broker. The connection broker implements the pool functionality and multiplexes
pooled servers among inbound connections from client processes.

See Also:

■ Your operating system-specific documentation

■ Oracle Database Net Services Administrator's Guide

for more information about communication links

See Also:

■ "About Database Resident Connection Pooling" in the Oracle
Database Administrator's Guide

■ Oracle Call Interface Programmer's Guide

Database Resident Connection Pooling

Process Architecture 9-19

When a client must perform some back-end database work, the connection broker
picks up a pooled server from the pool and assigns it to the client. Subsequently, the
client is directly connected to the pooled server until the request is served. After the
server has finished processing the client request, the server goes back into the pool and
the connection from the client is restored to the connection broker process. Figure 9–5
illustrates database resident connection pooling.

Figure 9–5 Pool of Dedicated Server Processes Handling Connections Through the Connection Broker
Process

Using Database Resident Connection Pooling
Database resident connection pooling enables you to freely scale your middle-tier
hardware without worrying about running out of memory on the database side. This
is because a smaller pool of dedicated server processes can serve a larger number of
middle-tier processes.

The default connection pool is called, SYS_DEFAULT_CONNECTION_POOL. To use
database resident connection pooling, the database administrator must explicitly start
the pool. The following example illustrates this:

Log into SQL*Plus as SYSDBA

Run the following command:

SQL> EXECUTE DBMS_CONNECTION_POOL.START_POOL('SYS_DEFAULT_CONNECTION_POOL');

After Handoff-
Direct

connection

Connection
Broker

Connection
Broker

Connection
Broker

Pooled Servers
Pooled Servers

RAC Instance 1

Handoff

Persistent
connections to

Connection Broker

Persistent
connections to

Connection Broker

RAC Instance 2

After Handoff-
Direct

connection

Physical
Store

Middle Tier

Middle-
Tier

process

Middle-
Tier

process

Middle-
Tier

process

Middle-
Tier

process

Middle-
Tier

process

Middle-
Tier

process

Middle Tier

Database Resident Connection Pooling

9-20 Oracle Database Concepts

To connect to the shared pool, the server type should be set to POOLED in the database
connection string. For example:

ServerPool = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=somehost)
 (PORT=1521))(CONNECT_DATA=(SERVICE_NAME=testdb)(SERVER=POOLED)))

You can also connect to the shared pool using the easy connect naming method. You
must use the keyword POOLED with the database service name. For example:

CONNECT joeuser@myhost.example.com:1521/mydb:POOLED
Enter password: password

This section includes the following topics:

■ Connection Classes

■ Session Purity

Connection Classes
A connection class defines a logical name for the type of connection required by the
application. Two different users cannot share connections, or sessions, among
themselves. For example, a session first created for user HR is only given out to
subsequent requests on behalf of the user HR. A connection class enables further
separation between the sessions of a given user. The connection class lets different
applications, connecting as the same database user, identify their sessions using a
logical name that corresponds to the application. DRCP then ensures that sessions
belonging to a particular connection class are not shared outside the connection class.

Session Purity
Session purity specifies whether the application requires a brand new session
(PURITY=NEW), or whether the application logic is set up to reuse a pooled session
(PURITY=SELF). If the application can reuse a pooled session, then a free session with
the requested connection class is allotted to the application.

Connection classes and session purity are specified by the client as attributes of a
DRCP connection. The default connection class value is username.SHARED. By
default, sessions with the same username are shared when purity is SELF.

Note: Currently, only the default connection pool is supported.

See Also: "Enabling Database Resident Connection Pooling" in the
Oracle Database Administrator's Guide

Note: For simplicity in demonstrating this feature, this example does
not perform the password management techniques that a deployed
system normally uses. In a production environment, follow the Oracle
Database password management guidelines, and disable any sample
accounts. See Oracle Database Security Guide for password management
guidelines and other security recommendations.

The Program Interface

Process Architecture 9-21

The default value for purity is NEW. The defaults can differ for different application
scenarios. Please see the respective application manuals for details on using DRCP
with your application.

The Program Interface
The program interface is the software layer between a database application and Oracle
Database. The program interface:

■ Provides a security barrier, preventing destructive access to the SGA by client user
processes

■ Acts as a communication mechanism, formatting information requests, passing
data, and trapping and returning errors

■ Converts and translates data, particularly between different types of computers or
to external user program datatypes

The Oracle code acts as a server, performing database tasks on behalf of an
application (a client), such as fetching rows from data blocks. It consists of several
parts, provided by both Oracle Database software and operating system-specific
software.

This section includes the following topics:

■ Program Interface Structure

■ Program Interface Drivers

■ Communications Software for the Operating System

Program Interface Structure
The program interface consists of the following pieces:

■ Oracle call interface (OCI) or the Oracle run-time library (SQLLIB)

■ The client or user side of the program interface

■ Various Oracle Net Services drivers (protocol-specific communications software)

■ Operating system communications software

■ The server or Oracle Database side of the program interface (also called the OPI)

Both the user and Oracle Database sides of the program interface run Oracle software,
as do the drivers.

Oracle Net Services is the portion of the program interface that allows the client
application program and the Oracle database server to reside on separate computers in
your communication network.

Program Interface Drivers
Drivers are pieces of software that transport data, usually across a network. They
perform operations such as connect, disconnect, signal errors, and test for errors.
Drivers are specific to a communications protocol, and there is always a default driver.

You can install multiple drivers (such as the asynchronous or DECnet drivers) and
select one as the default driver, but allow an individual user to use other drivers by

See Also: Oracle Call Interface Programmer's Guide for details on using
connection classes and session purity

The Program Interface

9-22 Oracle Database Concepts

specifying the desired driver at the time of connection. Different processes can use
different drivers. A single process can have concurrent connections to a single
database or to multiple databases (either local or remote) using different Oracle Net
Services drivers.

Communications Software for the Operating System
The lowest-level software connecting the user side to the Oracle Database side of the
program interface is the communications software, which is provided by the host
operating system. DECnet, TCP/IP, LU6.2, and ASYNC are examples. The
communication software can be supplied by Oracle, but it is usually purchased
separately from the hardware vendor or a third-party software supplier.

See Also:

■ Your system installation and configuration guide for details about
choosing, installing, and adding drivers

■ Your system Oracle Net Services documentation for information
about selecting a driver at run time while accessing Oracle
Database

■ Oracle Database Net Services Administrator's Guide

See Also: Your Oracle Database operating system-specific
documentation for more information about the communication
software of your system

Application Architecture 10-1

10
Application Architecture

This chapter defines application architecture and describes how the Oracle database
server and database applications work in a distributed processing environment. This
material applies to almost every type of Oracle Database system environment.

This chapter contains the following topics:

■ Introduction to Client/Server Architecture

■ Overview of Multitier Architecture

■ Overview of Oracle Net Services

Introduction to Client/Server Architecture
In the Oracle Database system environment, the database application and the database
are separated into two parts: a front-end or client portion, and a back-end or server
portion—hence the term client/server architecture. The client runs the database
application that accesses database information and interacts with a user through the
keyboard, screen, and pointing device, such as a mouse. The server runs the Oracle
Database software and handles the functions required for concurrent, shared data
access to an Oracle database.

Although the client application and Oracle Database can be run on the same computer,
greater efficiency can often be achieved when the client portions and server portion are
run by different computers connected through a network. The following sections
discuss possible variations in the Oracle Database client/server architecture.

Distributed processing is the use of more than one processor, located in different
systems, to perform the processing for an individual task. Examples of distributed
processing in Oracle Database systems appear in Figure 10–1.

■ In Part A of the figure, the client and server are located on different computers,
and these computers are connected through a network. The server and clients of
an Oracle Database system communicate through Oracle Net Services, Oracle's
network interface.

■ In Part B of the figure, a single computer has more than one processor, and
different processors separate the execution of the client application from Oracle
Database.

Note: This chapter applies to environments with one database on
one server. In a distributed database, one server (Oracle Database)
may need to access a database on another server.

Introduction to Client/Server Architecture

10-2 Oracle Database Concepts

Figure 10–1 The Client/Server Architecture and Distributed Processing

Oracle Database client/server architecture in a distributed processing environment
provides the following benefits:

■ Client applications are not responsible for performing any data processing. Rather,
they request input from users, request data from the server, and then analyze and
present this data using the display capabilities of the client workstation or the
terminal (for example, using graphics or spreadsheets).

■ Client applications are not dependent on the physical location of the data. Even if
the data is moved or distributed to other database servers, the application
continues to function with little or no modification.

■ Oracle Database exploits the multitasking and shared-memory facilities of its
underlying operating system. As a result, it delivers the highest possible degree of
concurrency, data integrity, and performance to its client applications.

■ Client workstations or terminals can be optimized for the presentation of data (for
example, by providing graphics and mouse support), and the server can be
optimized for the processing and storage of data (for example, by having large
amounts of memory and disk space).

■ In networked environments, you can use inexpensive client workstations to access
the remote data of the server effectively.

NetworkA

B

client
client

Database Server

Database Server

Client Client

Overview of Multitier Architecture

Application Architecture 10-3

■ If necessary, Oracle Database can be scaled as your system grows. You can add
multiple servers to distribute the database processing load throughout the
network (horizontally scaled), or you can move Oracle Database to a
minicomputer or mainframe, to take advantage of a larger system's performance
(vertically scaled). In either case, all data and applications are maintained with
little or no modification, because Oracle Database is portable between systems.

■ In networked environments, shared data is stored on the servers rather than on all
computers in the system. This makes it easier and more efficient to manage
concurrent access.

■ In networked environments, client applications submit database requests to the
server using SQL statements. After it is received, the SQL statement is processed
by the server, and the results are returned to the client application. Network traffic
is kept to a minimum, because only the requests and the results are shipped over
the network.

Overview of Multitier Architecture
In a traditional multitier architecture environment, an application server provides data
for clients and serves as an interface between clients and database servers. This
architecture is particularly important because of the prevalence of Internet use.

This architecture enables use of an application server to:

■ Validate the credentials of a client, such as a Web browser

■ Connect to a database server

■ Perform the requested operation

An example of a multitier architecture appears in Figure 10–2.

See Also:

■ "Overview of Oracle Net Services" on page 10-5 for more
information about Oracle Net Services

■ Oracle Database Administrator's Guide for more information about
clients and servers in distributed databases

Overview of Multitier Architecture

10-4 Oracle Database Concepts

Figure 10–2 A Multitier Architecture Environment Example

This section includes the following topics:

■ Clients

■ Application Servers

■ Database Servers

Clients
A client initiates a request for an operation to be performed on the database server.
The client can be a Web browser or other end-user process. In a multitier architecture,
the client connects to the database server through one or more application servers.

Application Servers
An application server provides access to the data for the client. It serves as an interface
between the client and one or more database servers, which provides an additional
level of security. It can also perform some of the query processing for the client, thus
removing some of the load from the database server.

The application server assumes the identity of the client when it is performing
operations on the database server for that client. The application server's privileges are
restricted to prevent it from performing unneeded and unwanted operations during a
client operation.

Database Servers
A database server provides the data requested by an application server on behalf of a
client. The database server does all of the remaining query processing.

The Oracle database server can audit operations performed by the application server
on behalf of individual clients as well as operations performed by the application

Database Server

Database Server

Thin Client

Thin Client

Thin Client

Application
Server 1

Database Server

Database Server

Application
Server n

Database Server

Database Server

Application
Server 2

Request

Query

Data

Overview of Oracle Net Services

Application Architecture 10-5

server on its own behalf. For example, a client operation can be a request for
information to be displayed on the client, whereas an application server operation can
be a request for a connection to the database server.

Oracle Database as a Web Service Provider
Beginning in Oracle Database 11g, Oracle Database can serve as a Web service
provider in traditional multitier or service oriented architecture (SOA) environments.
SOA is a multitier architecture in which application functionality is encapsulated in
services. Services are designed to support interoperable machine-to-machine
interaction over a network. They can be dynamically discovered, and can be queried
on available functions and calling sequences.

SOA services are usually implemented as Web services. Web services can be accessed
with the HTTP protocol and are based on a set of XML-based open standards, such as
WSDL and SOAP.

The Oracle Database Web service capability, which is implemented as part of XML DB,
must be specifically enabled by the DBA. Applications can then accomplish the
following through database Web services:

■ Submit SQL or XQuery queries and receive results as XML.

■ Invoke standalone PL/SQL functions and receive results.

■ Invoke PL/SQL package functions and receive results.

In a multitier environment, both clients and application servers can invoke database
Web services.

Overview of Oracle Net Services
Oracle Net Services provides enterprise-wide connectivity solutions in distributed,
heterogeneous computing environments. Oracle Net Services enables a network
session from a client application to an Oracle database.

Oracle Net Services uses the communication protocols or application programmatic
interfaces (APIs) supported by a wide range of networks to provide a distributed
database and distributed processing for Oracle Database.

See Also: Chapter 20, "Database Security"

Note: Database Web services provide a simple way to add Web
services to your application environment without the need for an
application server. However, invoking Web services through
application servers such as Oracle Fusion Middleware offers more in
the way of security, scalability, UDDI registration, and reliable
messaging in an SOA environment. Nevertheless, because database
Web services integrate easily with Oracle Fusion Middleware, they
may be an appropriate way to help optimize SOA solutions. See the
Oracle Fusion Middleware documentation for more information on
SOA and Web services.

See Also: Oracle XML DB Developer's Guide for information on
enabling and using database Web services.

Overview of Oracle Net Services

10-6 Oracle Database Concepts

■ A communication protocol is a set of rules that determine how applications access
the network and how data is subdivided into packets for transmission across the
network.

■ An API is a set of subroutines that provide, in the case of networks, a means to
establish remote process-to-process communication through a communication
protocol.

After a network session is established, Oracle Net Services acts as a data courier for the
client application and the database server. It is responsible for establishing and
maintaining the connection between the client application and database server, as well
as exchanging messages between them. Oracle Net Services is able to perform these
jobs because it is located on each computer in the network.

Oracle Net Services provides location transparency, centralized configuration and
management, and quick out-of-the-box installation and configuration. It also lets you
maximize system resources and improve performance. The Oracle Database shared
server architecture increases the scalability of applications and the number of clients
simultaneously connected to the database.The Virtual Interface (VI) protocol places
most of the messaging burden on high-speed network hardware, freeing the CPU for
more important tasks.

This section includes the following topics:

■ How Oracle Net Services Works

■ The Listener

How Oracle Net Services Works
Oracle's support of industry network protocols provides an interface between Oracle
Database processes running on the database server and the user processes of Oracle
Database applications running on other computers of the network.

The Oracle Database protocols take SQL statements from the interface of the Oracle
applications and package them for transmission to Oracle Database through one of the
supported industry-standard higher level protocols or programmatic interfaces. The
protocols also take replies from Oracle Database and package them for transmission to
the applications through the same higher level communications mechanism. This is all
done independently of the network operating system.

Depending on the operation system that runs Oracle Database, the Oracle Net Services
software of the database server could include the driver software and start an
additional Oracle Database background process.

The Listener
When an instance starts, a listener process establishes a communication pathway to
Oracle Database. When a user process makes a connection request, the listener
determines whether it should use a shared server dispatcher process or a dedicated
server process and establishes an appropriate connection.

The listener also establishes a communication pathway between databases. When
multiple databases or instances run on one computer, as in Oracle Real Application

See Also: Oracle Database Net Services Administrator's Guide for more
information about these features

See Also: Oracle Database Net Services Administrator's Guide for
more information about how Oracle Net Services works

Overview of Oracle Net Services

Application Architecture 10-7

Clusters, service names enable instances to register automatically with other listeners
on the same computer. A service name can identify multiple instances, and an instance
can belong to multiple services. Clients connecting to a service do not have to specify
which instance they require.

Service Information Registration
Dynamic service registration reduces the administrative overhead for multiple
databases or instances. Information about the services to which the listener forwards
client requests is registered with the listener. Service information can be dynamically
registered with the listener through a feature called service registration or statically
configured in the listener.ora file.

Service registration relies on the PMON process—an instance background process—to
register instance information with a listener, as well as the current state and load of the
instance and shared server dispatchers. The registered information enables the listener
to forward client connection requests to the appropriate service handler. Service
registration does not require configuration in the listener.ora file.

The initialization parameter SERVICE_NAMES identifies which database services an
instance belongs to. On startup, each instance registers with the listeners of other
instances belonging to the same services. During database operations, the instances of
each service pass information about CPU use and current connection counts to all of
the listeners in the same services. This enables dynamic load balancing and connection
failover.

See Also:

■ "Shared Server Architecture" on page 9-12

■ "Dedicated Server Configuration" on page 9-16 for more
information about server processes

■ Oracle Database Net Services Administrator's Guide for more
information about the listener

■ Your platform-specific Oracle Real Application Clusters
installation guide and Oracle Real Application Clusters
Administration and Deployment Guide for information about
instance registration and client/service connections in Oracle Real
Application Clusters

Overview of Oracle Net Services

10-8 Oracle Database Concepts

Oracle Database Utilities 11-1

11
Oracle Database Utilities

This chapter describes Oracle Database utilities for data transfer, data maintenance,
and database administration.

This chapter contains the following topics:

■ Introduction to Oracle Database Utilities

■ Overview of Data Pump Export and Import

■ Overview of the Data Pump API

■ Overview of the Metadata API

■ Overview of SQL*Loader

■ Overview of External Tables

■ Overview of LogMiner

■ Overview of DBVERIFY Utility

■ Overview of DBNEWID Utility

■ ADRCI: ADR Command Interpreter

Introduction to Oracle Database Utilities
Oracle Database utilities let you perform the following tasks:

■ High-speed movement of data and metadata from one database to another using
Data Pump Export and Import

■ Extract and manipulate complete representations of the metadata for database
objects, using the Metadata API

■ Move all or part of the data and metadata for a site from one database to another,
using the Data Pump API

■ Load data into Oracle Database tables from operating system files using
SQL*Loader or from external sources using external tables

■ Manage Oracle Database diagnostic data using the ADR Command Interpreter
(ADRCI).

■ Query redo log files through a SQL interface with LogMiner

■ Perform physical data structure integrity checks on an offline (for example,
backup) database or datafile with DBVERIFY.

■ Maintain the internal database identifier (DBID) and the database name
(DBNAME) for an operational database, using the DBNEWID utility

Overview of Data Pump Export and Import

11-2 Oracle Database Concepts

Overview of Data Pump Export and Import
Oracle Data Pump technology enables very high-speed movement of data and
metadata from one database to another. This technology is the basis for Oracle
Database data movement utilities, Data Pump Export and Data Pump Import.

Data Pump enables you to specify whether a job should move a subset of the data and
metadata. This is done using data filters and metadata filters, which are implemented
through Export and Import parameters.

This section includes the following topics:

■ Data Pump Export

■ Data Pump Import

Data Pump Export
Data Pump Export (hereinafter referred to as Export for ease of reading) is a utility for
unloading data and metadata into a set of operating system files called a dump file set.
The dump file set can be moved to another system and loaded by the Data Pump
Import utility.

The dump file set is made up of one or more disk files that contain table data, database
object metadata, and control information. The files are written in a proprietary, binary
format, which can be read only by Data Pump Import. During an import operation,
the Data Pump Import utility uses these files to locate each database object in the
dump file set.

Data Pump Import
Data Pump Import (hereinafter referred to as Import for ease of reading) is a utility for
loading an export dump file set into a target system. The dump file set is made up of
one or more disk files that contain table data, database object metadata, and control
information. The files are written in a proprietary, binary format.

Import can also be used to load a target database directly from a source database with
no intervening files, which allows export and import operations to run concurrently,
minimizing total elapsed time. This is known as network import.

Import also enables you to see all of the SQL DDL that the Import job will be
executing, without actually executing the SQL. This is implemented through the
Import SQLFILE parameter.

Overview of the Data Pump API
The Data Pump API provides a high-speed mechanism to move all or part of the data
and metadata for a site from one database to another. To use the Data Pump API, you
use the procedures provided in the DBMS_DATAPUMP PL/SQL package. The Data
Pump Export and Data Pump Import utilities are based on the Data Pump API.

See Also: Oracle Database Utilities for more information on all of the
utilities described in this chapter

Overview of SQL*Loader

Oracle Database Utilities 11-3

Overview of the Metadata API
The Metadata application programming interface (API), provides a means for you to
do the following:

■ Retrieve an object's metadata as XML

■ Transform the XML in a variety of ways, including transforming it into SQL DDL

■ Submit the XML to re-create the object extracted by the retrieval

To use the Metadata API, you use the procedures provided in the DBMS_METADATA
PL/SQL package. For the purposes of the Metadata API, every entity in the database is
modeled as an object that belongs to an object type. For example, the table scott.emp
is an object and its object type is TABLE. When you fetch an object's metadata you
must specify the object type.

Overview of SQL*Loader
SQL*Loader loads data from external files into tables of an Oracle database. It has a
powerful data parsing engine that puts little limitation on the format of the data in the
datafile. You can use SQL*Loader to do the following:

■ Load data from multiple datafiles during the same load session.

■ Load data into multiple tables during the same load session.

■ Specify the character set of the data.

■ Selectively load data (you can load records based on the records' values).

■ Manipulate the data before loading it, using SQL functions.

■ Generate unique sequential key values in specified columns.

■ Use the operating system's file system to access the datafiles.

■ Load data from disk, tape, or named pipe.

■ Generate sophisticated error reports, which greatly aids troubleshooting.

■ Load arbitrarily complex object-relational data.

■ Use secondary datafiles for loading LOBs and collections.

■ Use either conventional or direct path loading. While conventional path loading is
very flexible, direct path loading provides superior loading performance.

See Also:

■ Oracle Database Utilities for information about how the Data
Pump API works

■ Oracle Database PL/SQL Packages and Types Reference for a
description of the DBMS_DATAPUMP package

See Also:

■ Oracle Database Utilities for information about how to use the
Metadata API

■ Oracle Database PL/SQL Packages and Types Reference for a
description of the DBMS_METADATA package

Overview of External Tables

11-4 Oracle Database Concepts

A typical SQL*Loader session takes as input a control file, which controls the behavior
of SQL*Loader, and one or more datafiles. The output of SQL*Loader is an Oracle
database (where the data is loaded), a log file, a bad file, and potentially, a discard file.

Overview of External Tables
The external tables feature is a complement to existing SQL*Loader functionality. It
lets you access data in external sources as if it were in a table in the database. External
tables can be written to using the ORACLE_DATAPUMP access driver. Neither data
manipulation language (DML) operations nor index creation are allowed on an
external table. Therefore, SQL*Loader may be the better choice in data loading
situations that require additional indexing of the staging table.

To use the external tables feature, you must have some knowledge of the file format
and record format of the datafiles on your platform. You must also know enough
about SQL to be able to create an external table and perform queries against it.

Overview of LogMiner
Oracle LogMiner enables you to query redo log files through a SQL interface. All
changes made to user data or to the database dictionary are recorded in the Oracle
Database redo log files. Therefore, redo log files contain all the necessary information
to perform recovery operations.

LogMiner functionality is available through a command-line interface or through the
Oracle LogMiner Viewer graphical user interface (GUI). The LogMiner Viewer is a part
of Oracle Enterprise Manager.

The following are some of the potential uses for data contained in redo log files:

■ Pinpointing when a logical corruption to a database, such as errors made at the
application level, may have begun. This enables you to restore the database to the
state it was in just before corruption.

■ Detecting and whenever possible, correcting user error, which is a more likely
scenario than logical corruption. User errors include deleting the wrong rows
because of incorrect values in a WHERE clause, updating rows with incorrect
values, dropping the wrong index, and so forth.

■ Determining what actions you would have to take to perform fine-grained
recovery at the transaction level. If you fully understand and consider existing
dependencies, it may be possible to perform a table-based undo operation to roll
back a set of changes.

■ Performance tuning and capacity planning through trend analysis. You can
determine which tables get the most updates and inserts. That information
provides a historical perspective on disk access statistics, which can be used for
tuning purposes.

■ Performing post-auditing. The redo log files contain all the information necessary
to track any DML and DDL statements run on the database, the order in which
they were run, and who executed them.

See Also: Oracle Database Utilities to learn more about LogMiner

See Also: "External Tables" on page 5-12

ADRCI: ADR Command Interpreter

Oracle Database Utilities 11-5

Overview of DBVERIFY Utility
DBVERIFY is an external command-line utility that performs a physical data structure
integrity check. It can be used on offline or online databases, as well on backup files.
You use DBVERIFY primarily when you must ensure that a backup database (or
datafile) is valid before it is restored or as a diagnostic aid when you have encountered
data corruption problems.

Because DBVERIFY can be run against an offline database, integrity checks are
significantly faster.

DBVERIFY checks are limited to cache-managed blocks (that is, data blocks). Because
DBVERIFY is only for use with datafiles, it will not work against control files or redo
logs.

There are two command-line interfaces to DBVERIFY. With the first interface, you
specify disk blocks of a single datafile for checking. With the second interface, you
specify a segment for checking.

Overview of DBNEWID Utility
DBNEWID is a database utility that can change the internal, unique database identifier
(DBID) and the database name (DBNAME) for an operational database. The
DBNEWID utility lets you change any of the following:

■ Only the DBID of a database

■ Only the DBNAME of a database

■ Both the DBNAME and DBID of a database

Therefore, you can manually create a copy of a database and give it a new DBNAME
and DBID by re-creating the control file, and you can register a seed database and a
manually copied database together in the same RMAN repository.

ADRCI: ADR Command Interpreter
ADRCI is a command-line tool that is part of the fault diagnosability infrastructure
introduced in Oracle Database 11g. ADRCI enables you to:

■ View diagnostic data within the Automatic Diagnostic Repository (ADR)

■ Package incident and problem information into a zip file for transmission to
Oracle Support

Diagnostic data includes incident and problem descriptions, trace files, dumps, health
monitor reports, alert log entries, and more.

ADRCI has a rich command set, and can be used in interactive mode or within scripts.
In addition, ADRCI can execute scripts of ADRCI commands in the same way that
SQL*Plus executes scripts of SQL and PL/SQL commands.

See Also: Oracle Database Utilities for more information on ADRCI

ADRCI: ADR Command Interpreter

11-6 Oracle Database Concepts

Database and Instance Startup and Shutdown 12-1

12
Database and Instance Startup and

Shutdown

This chapter explains the procedures involved in starting and stopping an Oracle
database instance and database.

This chapter contains the following topics:

■ Introduction to an Oracle Instance

■ Overview of Instance and Database Startup

■ Overview of Database and Instance Shutdown

Introduction to an Oracle Instance
Every running Oracle Database is associated with an Oracle database instance. When a
database is started on a database server (regardless of the type of computer), Oracle
Database allocates a memory area called the System Global Area (SGA) and starts one
or more Oracle Database processes. This combination of the SGA and the Oracle
Database processes is called an Oracle instance. The memory and processes of an
instance manage the associated database's data efficiently and serve the one or
multiple users of the database.

Figure 12–1 shows an Oracle database instance.

Figure 12–1 An Oracle Instance

Oracle Processes

System Global Area (SGA)

Redo Log
Buffer

Context Areas

Database Buffer
Cache

Introduction to an Oracle Instance

12-2 Oracle Database Concepts

This section includes the following topics:

■ The Instance and the Database

■ Connection with Administrator Privileges

■ Initialization Parameter Files and Server Parameter Files

The Instance and the Database
After starting an instance, Oracle Database associates the instance with the specified
database. This is a mounted database. The database is then ready to be opened, which
makes it accessible to authorized users.

Multiple instances can run concurrently on the same computer, each accessing its own
physical database. In large-scale cluster systems, Oracle Real Application Clusters
enables multiple instances to mount a single database.

Only the database administrator can start up an instance and open the database. If a
database is open, then the database administrator can shut down the database so that
it is closed. When a database is closed, users cannot access the data that it contains.

Security for database startup and shutdown is controlled through connections to
Oracle Database with administrator privileges. Normal users do not have control over
the current status of an Oracle database.

Connection with Administrator Privileges
Database startup and shutdown are powerful administrative options and are restricted
to users who connect to Oracle Database with administrator privileges. Depending on
the operating system, one of the following conditions establishes administrator
privileges for a user:

■ The user's operating system privileges allow him or her to connect using
administrator privileges.

■ The user is granted the SYSDBA or SYSOPER privileges and the database uses
password files to authenticate database administrators.

When you connect with SYSDBA privileges, you are in the schema owned by SYS.
When you connect as SYSOPER, you are in the public schema. SYSOPER privileges are
a subset of SYSDBA privileges.

See Also:

■ Chapter 8, "Memory Architecture"

■ Chapter 9, "Process Architecture"

See Also:

■ Your operating system-specific Oracle Database documentation
for more information about how administrator privileges work on
your operating system

■ Chapter 20, "Database Security" for more information about
password files and authentication schemes for database
administrators

Introduction to an Oracle Instance

Database and Instance Startup and Shutdown 12-3

Initialization Parameter Files and Server Parameter Files
To start an instance, Oracle Database must read either an initialization parameter file
or a server parameter file. These files contain a list of configuration parameters for
that instance and database. Oracle Database traditionally stored initialization
parameters in a text initialization parameter file. You can also choose to maintain
initialization parameters in a server-side binary server parameter file (SPFILE).

Initialization parameters stored in a server parameter file are persistent, in that any
changes made to the parameters while an instance is running can persist across
instance shutdown and startup.

Initialization parameters are divided into two groups: basic and advanced. In the
majority of cases, it is necessary to set and tune only the basic parameters to get
reasonable performance. In rare situations, modification to the advanced parameters
may be needed for optimal performance.

Most initialization parameters belong to one of the following groups:

■ Parameters that name things, such as files

■ Parameters that set limits, such as maximums

■ Parameters that affect capacity, such as the size of the SGA, which are called
variable parameters

Among other things, the initialization parameters tell Oracle Database:

■ The name of the database for which to start up an instance

■ How much memory to use for memory structures in the SGA

■ What to do with filled redo log files

■ The names and locations of the database control files

■ The names of undo tablespaces in the database

This section includes the following topics:

■ Server Parameter Files and Hardware Assisted Resilient Data

■ Initialization Parameter Files and Server Parameter Files

Server Parameter Files and Hardware Assisted Resilient Data
The Oracle Hardware Assisted Resilient Data (HARD) initiative is a comprehensive
program designed to prevent data corruptions before they happen. By implementing
the Oracle data validation algorithms inside storage devices, Oracle Database can
prevent corrupted data from being written to permanent storage. Starting in Oracle
Database 11g, you can create a server parameter file in a new format that is usable on a
HARD-compliant storage system. The database can read and write server parameter
files in both the old and new format.

How Parameter Values Are Changed
The database administrator can adjust variable parameters to improve the
performance of a database system. Exactly which parameters most affect a system
depends on numerous database characteristics and variables.

See Also: Oracle Database Administrator's Guide

See Also: Oracle Database Administrator's Guide to learn how to create
and manage a server parameter file

Overview of Instance and Database Startup

12-4 Oracle Database Concepts

Some parameters can be changed dynamically with the ALTER SESSION or ALTER
SYSTEM statement while the instance is running. Unless you are using a server
parameter file (SPFILE), changes made using the ALTER SYSTEM statement are only
in effect for the current instance. You must manually update the text initialization
parameter file for the changes to be known the next time you start up an instance.

When you use a server parameter file, you can use the ALTER SYSTEM SET statement
to change parameter values in memory, disk, or both. The database prints the new
value and the old value (if it exists) to the alert log. As a preventative measure, the
database performs validation steps when you change a basic parameter to prevent
illegal values from being written to the server parameter file.

Oracle Database provides values in the starter initialization parameter file provided
with your database software, or as created for you by the Database Configuration
Assistant. You can edit these Oracle-supplied initialization parameters and add others,
depending upon your configuration and options and how you plan to tune the
database. For any relevant initialization parameters not specifically included in the
initialization parameter file, Oracle Database supplies defaults. If you are creating a
database for the first time, it is suggested that you minimize the number of parameter
values that you alter.

Overview of Instance and Database Startup
The three steps to starting an Oracle database and making it available for systemwide
use are:

1. Start an instance.

2. Mount the database.

3. Open the database.

A database administrator can perform these steps using the SQL*Plus STARTUP
statement or Enterprise Manager.

This section includes the following topics:

■ How an Instance Is Started

■ How a Database Is Mounted

■ What Happens When You Open a Database

How an Instance Is Started
When Oracle Database starts an instance, it reads the server parameter file (SPFILE) or
initialization parameter file to determine the values of initialization parameters. Then,
it allocates an SGA, which is a shared area of memory used for database information,
and creates background processes. At this point, no database is associated with these
memory structures and processes.

See Also:

■ Oracle Database Administrator's Guide for a discussion of
initialization parameters and the use of a server parameter file

■ Oracle Database Reference for descriptions of all initialization
parameters

See Also: Oracle Database 2 Day DBA

Overview of Instance and Database Startup

Database and Instance Startup and Shutdown 12-5

When the instance starts, the database writes all explicit parameter settings to the alert
log in valid parameter syntax. If necessary, you can copy and paste this text into a new
parameter file and restart the instance.

This section includes the following topics:

■ Restricted Mode of Instance Startup

■ Forced Startup in Abnormal Situations

Restricted Mode of Instance Startup
You can start an instance in restricted mode (or later alter an existing instance to be in
restricted mode). This restricts connections to only those users who have been granted
the RESTRICTED SESSION system privilege.

Forced Startup in Abnormal Situations
In unusual circumstances, a previous instance might not have been shut down cleanly.
For example, one of the instance's processes might not have terminated properly. In
such situations, the database can return an error during normal instance startup. To
resolve this problem, you must terminate all remnant Oracle Database processes of the
previous instance before starting the new instance.

How a Database Is Mounted
The instance mounts a database to associate the database with that instance. To mount
the database, the instance finds the database control files and opens them. Control files
are specified in the CONTROL_FILES initialization parameter in the parameter file
used to start the instance. Oracle Database then reads the control files to get the names
of the database's datafiles and redo log files.

At this point, the database is still closed and is accessible only to the database
administrator. The database administrator can keep the database closed while
completing specific maintenance operations. However, the database is not yet
available for normal operations.

This section includes the following topics:

■ How a Database Is Mounted with Oracle Real Application Clusters

■ How a Clone Database Is Mounted

How a Database Is Mounted with Oracle Real Application Clusters
If Oracle Database allows multiple instances to mount the same database concurrently,
the database administrator can use the CLUSTER_DATABASE initialization parameter
to make the database available to multiple instances. The default value of the
CLUSTER_DATABASE parameter is false. Versions of Oracle Database that do not
support Oracle RAC only allow CLUSTER_DATABASE to be false.

If CLUSTER_DATABASE is false for the first instance that mounts a database, then
only that instance can mount the database. If CLUSTER_DATABASE is set to true on
the first instance, then other instances can mount the database if their CLUSTER_

See Also:

■ Chapter 8, "Memory Architecture" for information about the SGA

■ Chapter 9, "Process Architecture" for information about
background processes

Overview of Instance and Database Startup

12-6 Oracle Database Concepts

DATABASE parameters are set to true. The number of instances that can mount the
database is subject to a predetermined maximum, which you can specify when
creating the database.

How a Clone Database Is Mounted
A clone database is a specialized copy of a database that can be used for tablespace
point-in-time recovery. When you perform tablespace point-in-time recovery, you
mount the clone database and recover the tablespaces to the desired time, then export
metadata from the clone to the primary database and copy the datafiles from the
recovered tablespaces.

What Happens When You Open a Database
Opening a mounted database makes it available for normal database operations. Any
valid user can connect to an open database and access its information. Usually, a
database administrator opens the database to make it available for general use.

When you open the database, Oracle Database opens the online datafiles and redo log
files. If a tablespace was offline when the database was previously shut down, the
tablespace and its corresponding datafiles will still be offline when you reopen the
database.

If any of the datafiles or redo log files are not present when you attempt to open the
database, then Oracle Database returns an error. You must perform recovery on a
backup of any damaged or missing files before you can open the database.

This section includes the following topics:

■ Crash and Instance Recovery

■ Undo Space Acquisition and Management

■ Resolution of In-Doubt Distributed Transaction

■ Open a Database in Read-Only Mode

Crash and Instance Recovery
Database buffers in the buffer cache in the SGA are written to disk only when
necessary, using a least-recently-used (LRU) algorithm. Because of the way that the
database writer process uses this algorithm to write database buffers to datafiles,

See Also:

■ Oracle Real Application Clusters Installation and Configuration
Guide

■ Oracle Real Application Clusters Administration and Deployment
Guide

for more information about the use of multiple instances with a
single database

See Also: Oracle Database Backup and Recovery User's Guide for
information about clone databases and tablespace point-in-time
recovery

See Also: "Online and Offline Tablespaces" on page 3-11 for
information about opening an offline tablespace

Overview of Instance and Database Startup

Database and Instance Startup and Shutdown 12-7

datafiles could contain some data blocks modified by uncommitted transactions and
some data blocks missing changes from committed transactions.

Two potential problems can result if an instance failure occurs:

■ Data blocks modified by a transaction might not be written to the datafiles at
commit time and might only appear in the redo log. Therefore, the redo log
contains changes that must be reapplied to the database during recovery.

■ After the roll forward phase, the datafiles could contain changes that had not been
committed at the time of the failure. These uncommitted changes must be rolled
back to ensure transactional consistency. These changes were either saved to the
datafiles before the failure, or introduced during the roll forward phase.

If the database was last closed abnormally, either because the database administrator
terminated its instance or because of a power failure, Oracle Database automatically
performs instance or crash recovery when the database is reopened.

Crash recovery is used to recover from a failure either when a single-instance database
fails or all instances of an Oracle Real Application Clusters database fail. Instance
recovery refers to the case where a surviving instance recovers a failed instance in an
Oracle Real Application Clusters database.

The goal of crash and instance recovery is to restore the data block changes located in
the cache of the terminated instance and to close the redo thread that was left open.
Instance and crash recovery use only online redo log files and current online datafiles.
Oracle Database recovers the redo threads of the terminated instances together.

When recovering a database with encrypted tablespaces (for example after a
SHUTDOWN ABORT or a catastrophic error that brings down the database instance),
you must open the Oracle Wallet after database mount and before database open, so
the recovery process can decrypt data blocks and redo.

Crash and instance recovery involve two distinct operations: rolling forward the
current, online datafiles by applying both committed and uncommitted transactions
contained in online redo records, and then rolling back changes made in uncommitted
transactions to their original state.

Crash and instance recovery have the following shared characteristics:

■ Redo the changes using the current online datafiles (as left on disk after the failure
or SHUTDOWN ABORT)

■ Use only the online redo logs and never require the use of the archived logs

■ Have a recovery time governed by the number of terminated instances, amount of
redo generated in each terminated redo thread since the last checkpoint, and by
user-configurable factors such as the number and size of redo log files, checkpoint
frequency, and the parallel recovery setting

Oracle Database performs this recovery automatically on two occasions:

■ At the first database open after the failure of a single-instance database or all
instances of an Oracle RAC database (crash recovery).

■ When some but not all instances of an Oracle RAC configuration fail (instance
recovery). The recovery is performed automatically by a surviving instance in the
configuration.

The important point is that in both crash and instance recovery, Oracle Database
applies the redo automatically: no user intervention is required to supply redo logs.
Nevertheless, you can set parameters in the database server that can tune the duration

Overview of Instance and Database Startup

12-8 Oracle Database Concepts

of instance and crash recovery performance. Also, you can tune the rolling forward
and rolling back phases of instance recovery separately.

To solve this dilemma, two separate steps are generally used by Oracle Database for a
successful recovery of a system failure: rolling forward with the redo log (cache
recovery) and rolling back with the rollback or undo segments (transaction recovery).

This section includes the following topics:

■ Cache Recovery

■ Transaction Recovery

Cache Recovery To solve this dilemma, two separate steps are generally used by Oracle
Database for a successful recovery of a system failure: rolling forward with the redo
log (cache recovery) and rolling back with the rollback or undo segments (transaction
recovery).

The online redo log is a set of operating system files that record all changes made to
any database block, including data, index, and rollback segments, whether the changes
are committed or uncommitted. All changes to Oracle Database blocks are recorded in the
online redo log.

The first step of recovery from an instance or media failure is called cache recovery or
rolling forward, and involves reapplying all of the changes recorded in the redo log to
the datafiles. Because rollback data is also recorded in the redo log, rolling forward
also regenerates the corresponding rollback segments.

Rolling forward proceeds through as many redo log files as necessary to bring the
database forward in time. Rolling forward usually includes online redo log files
(instance recovery or media recovery) and could include archived redo log files (media
recovery only).

After rolling forward, the data blocks contain all committed changes. They could also
contain uncommitted changes that were either saved to the datafiles before the failure,
or were recorded in the redo log and introduced during cache recovery.

Transaction Recovery After the roll forward, any changes that were not committed must
be undone. Oracle Database applies undo blocks to roll back uncommitted changes in
data blocks that were either written before the failure or introduced by redo
application during cache recovery. This process is called rolling back or transaction
recovery.

Figure 12–2 illustrates rolling forward and rolling back, the two steps necessary to
recover from any type of system failure.

Overview of Instance and Database Startup

Database and Instance Startup and Shutdown 12-9

Figure 12–2 Basic Recovery Steps: Rolling Forward and Rolling Back

Oracle Database can roll back multiple transactions simultaneously as needed. All
transactions that were active at the time of failure are marked as terminated. Instead of
waiting for SMON to roll back terminated transactions, new transactions can recover
blocking transactions themselves to get the row locks they need.

Undo Space Acquisition and Management
When you open the database, the instance attempts to acquire an undo tablespace. If
more than one undo tablespace exists, the UNDO_TABLESPACE initialization parameter
designates the undo tablespace to use. If this parameter is blank, the first available
undo tablespace in the database is chosen.

Resolution of In-Doubt Distributed Transaction
Occasionally a database closes abnormally with one or more distributed transactions
in doubt (neither committed nor rolled back). When you reopen the database and
recovery is complete, the RECO background process automatically, immediately, and
consistently resolves any in-doubt distributed transactions.

Open a Database in Read-Only Mode
You can open any database in read-only mode to prevent its data from being modified
by user transactions. Read-only mode restricts database access to read-only
transactions, which cannot write to the datafiles or to the redo log files.

See Also:

■ Oracle Database Performance Tuning Guide for a discussion of
instance recovery mechanics and instructions for tuning
instance and crash recovery

■ "Introduction to Undo Segments and Automatic Undo
Management" on page 2-16 for more information about undo

See Also: "Introduction to Undo Segments and Automatic Undo
Management" on page 2-16 for more information about undo
tablespaces.

See Also: Oracle Database Administrator's Guide for information
about recovery from distributed transaction failures

Database with
committed and
uncommitted
transactions

Redo Logs
applied

Undo blocks
applied

Backup of
Database
that needs
recovery

Database with
just committed
transactions

Committed

Uncommitted

Database

Redo
Log

Redo
Log

DatabaseDatabase

Overview of Database and Instance Shutdown

12-10 Oracle Database Concepts

Disk writes to other files, such as control files, operating system audit trails, trace files,
and alert logs, can continue in read-only mode. Temporary tablespaces for sort
operations are not affected by the database being open in read-only mode. However,
you cannot take permanent tablespaces offline while a database is open in read-only
mode. Also, job queues are not available in read-only mode.

Read-only mode does not restrict database recovery or operations that change the
database's state without generating redo data. For example, in read-only mode:

■ Datafiles can be taken offline and online

■ Offline datafiles and tablespaces can be recovered

■ The control file remains available for updates about the state of the database

One useful application of read-only mode is that standby databases can function as
temporary reporting databases.

Limitations of a Read-only Database
■ An application must not write database objects while executing against a

read-only database. For example, an application writes database objects when it
inserts, deletes, updates, or merges rows in a database table, including a global
temporary table. An application writes database objects when it manipulates a
database sequence. An application writes database objects when it locks rows,
when it runs EXPLAIN PLAN, or when it executes DDL. Many of the functions
and procedures in Oracle-supplied PL/SQL packages, such as DBMS_SCHEDULER,
write database objects. If your application calls any of these functions and
procedures, or if it performs any of the preceding operations, your application
writes database objects and hence is not read-only.

■ When executing on a read-only database, you must commit or roll back any
in-progress transaction that involves one database link before you use another
database link. This is true even if you execute a generic SELECT statement on the
first database link and the transaction is currently read-only.

■ You cannot compile or recompile PL/SQL stored procedures on a read-only
database. To minimize PL/SQL invalidation because of remote procedure calls,
use REMOTE_DEPENDENCIES_MODE=SIGNATURE in any session that does remote
procedure calls on a read-only database.

■ You cannot invoke a remote procedure (even a read-only remote procedure) from
a read-only database if the remote procedure has never been called on the
database. This limitation applies to remote procedure calls in anonymous PL/SQL
blocks and in SQL statements. You can either put the remote procedure call in a
stored procedure, or you can invoke the remote procedure in the database prior to
it becoming read only.

Overview of Database and Instance Shutdown
The three steps to shutting down a database and its associated instance are:

1. Close the database.

2. Unmount the database.

3. Shut down the instance.

See Also: Oracle Database Administrator's Guide for information
about how to open a database in read-only mode

Overview of Database and Instance Shutdown

Database and Instance Startup and Shutdown 12-11

A database administrator can perform these steps using Enterprise Manager. Oracle
Database automatically performs all three steps whenever an instance is shut down.

This section includes the following topics:

■ Close a Database

■ Unmount a Database

■ Shut Down an Instance

Close a Database
When you close a database, Oracle Database writes all database data and recovery
data in the SGA to the datafiles and redo log files, respectively. Next, Oracle Database
closes all online datafiles and redo log files. (Any offline datafiles of any offline
tablespaces have been closed already. If you subsequently reopen the database, any
tablespace that was offline and its datafiles remain offline and closed, respectively.) At
this point, the database is closed and inaccessible for normal operations. The control
files remain open after a database is closed but still mounted.

Close the Database by Terminating the Instance
In rare emergency situations, you can terminate the instance of an open database to
close and completely shut down the database instantaneously. This process is fast,
because the operation of writing all data in the buffers of the SGA to the datafiles and
redo log files is skipped. The subsequent reopening of the database requires recovery,
which Oracle Database performs automatically.

Unmount a Database
After the database is closed, Oracle Database unmounts the database to disassociate it
from the instance. At this point, the instance remains in the memory of your computer.

After a database is unmounted, Oracle Database closes the control files of the database.

Shut Down an Instance
The final step in database shutdown is shutting down the instance. When you shut
down an instance, the SGA is removed from memory and the background processes
are terminated.

Abnormal Instance Shutdown
In unusual circumstances, shutdown of an instance might not occur cleanly; all
memory structures might not be removed from memory or one of the background
processes might not be terminated. When remnants of a previous instance exist, a
subsequent instance startup most likely will fail. In such situations, the database
administrator can force the new instance to start up by first removing the remnants of
the previous instance and then starting a new instance, or by issuing a SHUTDOWN
ABORT statement in SQL*Plus or using Enterprise Manager.

See Also: Oracle Database 2 Day DBA

Note: If a system or power failure occurs while the database is open,
then the instance is, in effect, terminated, and recovery is performed
when the database is reopened.

Overview of Database and Instance Shutdown

12-12 Oracle Database Concepts

See Also: Oracle Database Administrator's Guide for more detailed
information about instance and database startup and shutdown

Part III
Oracle Database Features

Part III describes the core feature areas in the Oracle Database.

Part III contains the following chapters:

■ Chapter 13, "Data Concurrency and Consistency"

■ Chapter 14, "Manageability"

■ Chapter 15, "Backup and Recovery"

■ Chapter 16, "Business Intelligence"

■ Chapter 17, "High Availability"

■ Chapter 18, "Very Large Databases (VLDB)"

■ Chapter 19, "Content Management"

■ Chapter 20, "Database Security"

■ Chapter 21, "Data Integrity"

■ Chapter 22, "Triggers"

■ Chapter 23, "Information Integration"

Data Concurrency and Consistency 13-1

13
Data Concurrency and Consistency

This chapter explains how Oracle Database maintains consistent data in a multiuser
database environment.

This chapter contains the following topics:

■ Introduction to Data Concurrency and Consistency in a Multiuser Environment

■ How Oracle Database Manages Data Concurrency and Consistency

■ How Oracle Database Locks Data

■ Overview of Oracle Flashback Query

Introduction to Data Concurrency and Consistency in a Multiuser
Environment

In a single-user database, the user can modify data in the database without concern for
other users modifying the same data at the same time. However, in a multiuser
database, the statements within multiple simultaneous transactions can update the
same data. Transactions executing at the same time need to produce meaningful and
consistent results. Therefore, control of data concurrency and data consistency is vital
in a multiuser database.

■ Data concurrency means that many users can access data at the same time.

■ Data consistency means that each user sees a consistent view of the data,
including visible changes made by the user's own transactions and transactions of
other users.

To describe consistent transaction behavior when transactions run at the same time,
database researchers have defined a transaction isolation model called serializability.
The serializable mode of transaction behavior tries to ensure that transactions run in
such a way that they appear to be executed one at a time, or serially, rather than
concurrently.

While this degree of isolation between transactions is generally desirable, running
many applications in this mode can seriously compromise application throughput.
Complete isolation of concurrently running transactions could mean that one
transaction cannot perform an insert into a table being queried by another transaction.
In short, real-world considerations usually require a compromise between perfect
transaction isolation and performance.

Oracle Database offers two isolation levels, providing application developers with
operational modes that preserve consistency and provide high performance.

Introduction to Data Concurrency and Consistency in a Multiuser Environment

13-2 Oracle Database Concepts

This section includes the following topics:

■ Preventable Phenomena and Transaction Isolation Levels

■ Overview of Locking Mechanisms

Preventable Phenomena and Transaction Isolation Levels
The ANSI/ISO SQL standard (SQL92) defines four levels of transaction isolation with
differing degrees of impact on transaction processing throughput. These isolation
levels are defined in terms of three phenomena that must be prevented between
concurrently executing transactions.

The three preventable phenomena are:

■ Dirty reads: A transaction reads data that has been written by another transaction
that has not been committed yet.

■ Nonrepeatable (fuzzy) reads: A transaction rereads data it has previously read and
finds that another committed transaction has modified or deleted the data.

■ Phantom reads (or phantoms): A transaction re-runs a query returning a set of
rows that satisfies a search condition and finds that another committed transaction
has inserted additional rows that satisfy the condition.

SQL92 defines four levels of isolation in terms of the phenomena a transaction running
at a particular isolation level is permitted to experience. They are shown in Table 13–1.

Oracle Database offers the read committed and serializable isolation levels, as well as a
read-only mode that is not part of SQL92. Read committed is the default.

Overview of Locking Mechanisms
In general, multiuser databases use some form of data locking to solve the problems
associated with data concurrency, consistency, and integrity. Locks are mechanisms
that prevent destructive interaction between transactions accessing the same resource.

Resources include two general types of objects:

■ User objects, such as tables and rows (structures and data)

■ System objects not visible to users, such as shared data structures in the memory
and data dictionary rows

See Also: Chapter 21, "Data Integrity" for information about data
integrity, which enforces business rules associated with a database

Table 13–1 Preventable Read Phenomena by Isolation Level

Isolation Level Dirty Read Nonrepeatable Read Phantom Read

Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

See Also: "How Oracle Database Manages Data Concurrency and
Consistency" on page 13-3 for a full discussion of read committed and
serializable isolation levels

How Oracle Database Manages Data Concurrency and Consistency

Data Concurrency and Consistency 13-3

How Oracle Database Manages Data Concurrency and Consistency
Oracle Database maintains data consistency in a multiuser environment by using a
multiversion consistency model and various types of locks and transactions. The
following topics are discussed in this section:

■ Multiversion Concurrency Control

■ Statement-Level Read Consistency

■ Transaction-Level Read Consistency

■ Read Consistency with Oracle Real Application Clusters

■ Oracle Database Isolation Levels

■ Comparison of Read Committed and Serializable Isolation

■ Choice of Isolation Level

Multiversion Concurrency Control
Oracle Database automatically provides read consistency to a query so that all the data
that the query sees comes from a single point in time (statement-level read
consistency). Oracle Database can also provide read consistency to all of the queries in
a transaction (transaction-level read consistency).

Oracle Database uses the information maintained in its rollback segments to provide
these consistent views. The rollback segments contain the old values of data that have
been changed by uncommitted or recently committed transactions. Figure 13–1 shows
how Oracle Database provides statement-level read consistency using data in rollback
segments.

See Also: "How Oracle Database Locks Data" on page 13-13 for
more information about locks

How Oracle Database Manages Data Concurrency and Consistency

13-4 Oracle Database Concepts

Figure 13–1 Transactions and Read Consistency

As a query enters the execution stage, the current system change number (SCN) is
determined. In Figure 13–1, this system change number is 10023. As data blocks are
read on behalf of the query, only blocks written with the observed SCN are used.
Blocks with changed data (more recent SCNs) are reconstructed from data in the
rollback segments, and the reconstructed data is returned for the query. Therefore,
each query returns all committed data with respect to the SCN recorded at the time
that query execution began. Changes of other transactions that occur during a query's
execution are not observed, guaranteeing that consistent data is returned for each
query.

Statement-Level Read Consistency
Oracle Database always enforces statement-level read consistency. This guarantees
that all the data returned by a single query comes from a single point in time—the time
that the query began. Therefore, a query never sees dirty data or any of the changes
made by transactions that commit during query execution. As query execution
proceeds, only data committed before the query began is visible to the query. The
query does not see changes committed after statement execution begins.

A consistent result set is provided for every query, guaranteeing data consistency, with
no action on the user's part. The SQL statements SELECT, INSERT with a subquery,
UPDATE, and DELETE all query data, either explicitly or implicitly, and all return
consistent data. Each of these statements uses a query to determine which data it will
affect (SELECT, INSERT, UPDATE, or DELETE, respectively).

A SELECT statement is an explicit query and can have nested queries or a join
operation. An INSERT statement can use nested queries. UPDATE and DELETE
statements can use WHERE clauses or subqueries to affect only some rows in a table
rather than all rows.

Queries used in INSERT, UPDATE, and DELETE statements are guaranteed a consistent
set of results. However, they do not see the changes made by the DML statement itself.

SELECT . . .
(SCN 10023)

10021

10021

10024

10008

10024

10011

10021

10008

10021

Data Blocks

Scan Path

Rollback Segment

How Oracle Database Manages Data Concurrency and Consistency

Data Concurrency and Consistency 13-5

In other words, the query in these operations sees data as it existed before the
operation began to make changes.

Transaction-Level Read Consistency
Oracle Database also offers the option of enforcing transaction-level read consistency.
When a transaction runs in serializable mode, all data accesses reflect the state of the
database as of the time the transaction began. Thus, the data seen by all queries within
the same transaction is consistent with respect to a single point in time, except that
queries made by a serializable transaction do see changes made by the transaction
itself. Transaction-level read consistency produces repeatable reads and does not
expose a query to phantoms.

Read Consistency with Oracle Real Application Clusters
Oracle Real Application Clusters (Oracle RAC)s uses a cache-to-cache block transfer
mechanism known as Cache Fusion to transfer read-consistent images of blocks from
one instance to another. Oracle RAC does this using high speed, low latency
interconnects to satisfy remote requests for data blocks.

Oracle Database Isolation Levels
Oracle Database provides the transaction isolation levels shown in Table 13–2.

This section includes the following topics:

Note: If a SELECT list contains a function, then the database applies
statement-level read consistency at the statement level for SQL run
within the PL/SQL function code, rather than at the parent SQL level.
For example, a function could access a table whose data is changed
and committed by another user. For each execution of the SELECT in
the function, a new read consistent snapshot is established.

See Also: Oracle Real Application Clusters Administration and
Deployment Guide

Table 13–2 Transaction Isolation Levels

Isolation Level Description

Read committed This is the default transaction isolation level. Each query
executed by a transaction sees only data that was committed
before the query (not the transaction) began. An Oracle Database
query never reads dirty (uncommitted) data.

Because Oracle Database does not prevent other transactions
from modifying the data read by a query, that data can be
changed by other transactions between two executions of the
query. Thus, a transaction that runs a given query twice can
experience both nonrepeatable read and phantoms.

Serializable Serializable transactions see only those changes that were
committed at the time the transaction began, plus those changes
made by the transaction itself through INSERT, UPDATE, and
DELETE statements. Serializable transactions do not experience
nonrepeatable reads or phantoms.

Read-only Read-only transactions see only those changes that were
committed at the time the transaction began and do not allow
INSERT, UPDATE, and DELETE statements.

How Oracle Database Manages Data Concurrency and Consistency

13-6 Oracle Database Concepts

■ Set the Isolation Level

■ Read Committed Isolation

■ Serializable Isolation

Set the Isolation Level
Application designers, application developers, and database administrators can
choose appropriate isolation levels for different transactions, depending on the
application and workload. You can set the isolation level of a transaction by using one
of these statements at the beginning of a transaction:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SET TRANSACTION READ ONLY;

To save the networking and processing cost of beginning each transaction with a SET
TRANSACTION statement, you can use the ALTER SESSION statement to set the
transaction isolation level for all subsequent transactions:

ALTER SESSION SET ISOLATION_LEVEL = SERIALIZABLE;

ALTER SESSION SET ISOLATION_LEVEL = READ COMMITTED;

Read Committed Isolation
The default isolation level for Oracle Database is read committed. This degree of
isolation is appropriate for environments where few transactions are likely to conflict.
Oracle Database causes each query to run with respect to its own materialized view
time, thereby permitting nonrepeatable reads and phantoms for multiple executions of
a query, but providing higher potential throughput. Read committed isolation is the
appropriate level of isolation for environments where few transactions are likely to
conflict.

Serializable Isolation
Serializable isolation is suitable for environments:

■ With large databases and short transactions that update only a few rows

■ Where the chance that two concurrent transactions will modify the same rows is
relatively low

■ Where relatively long-running transactions are primarily read only

Serializable isolation permits concurrent transactions to make only those database
changes they could have made if the transactions had been scheduled to run one after
another. Specifically, Oracle Database permits a serializable transaction to modify a
data row only if it can determine that prior changes to the row were made by
transactions that had committed when the serializable transaction began.

To make this determination efficiently, Oracle Database uses control information
stored in the data block that indicates which rows in the block contain committed and
uncommitted changes. In a sense, the block contains a recent history of transactions
that affected each row in the block. The amount of history that is retained is controlled
by the INITRANS parameter of CREATE TABLE and ALTER TABLE.

See Also: Oracle Database SQL Language Reference for detailed
information on any of these SQL statements

How Oracle Database Manages Data Concurrency and Consistency

Data Concurrency and Consistency 13-7

Under some circumstances, Oracle Database can have insufficient history information
to determine whether a row has been updated by a too recent transaction. This can
occur when many transactions concurrently modify the same data block, or do so in a
very short period. You can avoid this situation by setting higher values of
INITRANS for tables that will experience many transactions updating the same blocks.
Doing so enables Oracle Database to allocate sufficient storage in each block to record
the history of recent transactions that accessed the block.

Oracle Database generates an error when a serializable transaction tries to update or
delete data modified by a transaction that commits after the serializable transaction
began:

ORA-08177: Cannot serialize access for this transaction

When a serializable transaction fails with the Cannot serialize access error, the
application can take any of several actions:

■ Commit the work executed to that point

■ Execute additional (but different) statements (perhaps after rolling back to a
savepoint established earlier in the transaction)

■ Undo the entire transaction

Figure 13–2 shows an example of an application that rolls back and retries the
transaction after it fails with the Cannot serialize access error:

Figure 13–2 Serializable Transaction Failure

Comparison of Read Committed and Serializable Isolation
Oracle Database gives the application developer a choice of two transaction isolation
levels with different characteristics. Both the read committed and serializable isolation
levels provide a high degree of consistency and concurrency. Both levels provide the
contention-reducing benefits of the Oracle Database read consistency multiversion
concurrency control model and exclusive row-level locking implementation and are
designed for real-world application deployment.

This section includes the following topics:

■ Transaction Set Consistency

■ Row-Level Locking

LOOP and retry
THEN ROLLBACK;

SET TRANSACTION ISOLATION

SELECT...

SELECT...

UPDATE...

Repeated query sees the same
data, even if it was changed by
another concurrent user

LEVEL SERIALIZABLE

Fails if attempting to update a
row changed and committed by
another transaction since this
transaction began

”Can’t Serialize Access”IF

How Oracle Database Manages Data Concurrency and Consistency

13-8 Oracle Database Concepts

■ Referential Integrity

■ Distributed Transactions

Transaction Set Consistency
A useful way to view the read committed and serializable isolation levels in Oracle
Database is to consider the following scenario: Assume you have a collection of
database tables (or any set of data), a particular sequence of reads of rows in those
tables, and the set of transactions committed at any particular time. An operation (a
query or a transaction) is transaction set consistent if all its reads return data written
by the same set of committed transactions. An operation is not transaction set
consistent if some reads reflect the changes of one set of transactions and other reads
reflect changes made by other transactions. An operation that is not transaction set
consistent in effect sees the database in a state that reflects no single set of committed
transactions.

Oracle Database provides transactions executing in read committed mode with
transaction set consistency for each statement. Serializable mode provides transaction
set consistency for each transaction.

Table 13–3 summarizes key differences between read committed and serializable
transactions in Oracle Database.

Row-Level Locking
Both read committed and serializable transactions use row-level locking, and both will
wait if they try to change a row updated by an uncommitted concurrent transaction.
The second transaction that tries to update a given row waits for the other transaction
to commit or undo and release its lock. If that other transaction rolls back, the waiting

Table 13–3 Read Committed and Serializable Transactions

Behavior Read Committed Serializable

Dirty write Not possible Not possible

Dirty read Not possible Not possible

Nonrepeatable read Possible Not possible

Phantoms Possible Not possible

Compliant with ANSI/ISO SQL 92 Yes Yes

Read materialized view time Statement Transaction

Transaction set consistency Statement level Transaction level

Row-level locking Yes Yes

Readers block writers No No

Writers block readers No No

Different-row writers block writers No No

Same-row writers block writers Yes Yes

Waits for blocking transaction Yes Yes

Subject to cannot serialize access No Yes

Error after blocking transaction terminates No No

Error after blocking transaction commits No Yes

How Oracle Database Manages Data Concurrency and Consistency

Data Concurrency and Consistency 13-9

transaction, regardless of its isolation mode, can proceed to change the previously
locked row as if the other transaction had not existed.

However, if the other blocking transaction commits and releases its locks, a read
committed transaction proceeds with its intended update. A serializable transaction,
however, fails with the error Cannot serialize access error, because the other
transaction has committed a change that was made since the serializable transaction
began.

Referential Integrity
Because Oracle Database does not use read locks in either read-consistent or
serializable transactions, data read by one transaction can be overwritten by another.
Transactions that perform database consistency checks at the application level cannot
assume that the data they read will remain unchanged during the execution of the
transaction even though such changes are not visible to the transaction. Database
inconsistencies can result unless such application-level consistency checks are coded
with this in mind, even when using serializable transactions.

Distributed Transactions
In a distributed database environment, a given transaction updates data in multiple
physical databases protected by two-phase commit to ensure all nodes or none
commit. In such an environment, all servers, whether Oracle or non-Oracle, that
participate in a serializable transaction are required to support serializable isolation
mode.

If a serializable transaction tries to update data in a database managed by a server that
does not support serializable transactions, the transaction receives an error. The
transaction can undo and retry only when the remote server does support serializable
transactions.

In contrast, read committed transactions can perform distributed transactions with
servers that do not support serializable transactions.

Choice of Isolation Level
Application designers and developers should choose an isolation level based on
application performance and consistency needs as well as application coding
requirements.

For environments with many concurrent users rapidly submitting transactions,
designers must assess transaction performance requirements in terms of the expected
transaction arrival rate and response time demands. Frequently, for high-performance
environments, the choice of isolation levels involves a trade-off between consistency
and concurrency.

Application logic that checks database consistency must take into account the fact that
reads do not block writes in either mode.

See Also: Oracle Database Advanced Application Developer's Guide
for more information about referential integrity and serializable
transactions

Note: You can use both read committed and serializable
transaction isolation levels with Oracle Real Application Clusters.

See Also: Oracle Database Administrator's Guide

How Oracle Database Manages Data Concurrency and Consistency

13-10 Oracle Database Concepts

Oracle Database isolation modes provide high levels of consistency, concurrency, and
performance through the combination of row-level locking and the Oracle Database
multiversion concurrency control system. Readers and writers do not block one
another in Oracle Database. Therefore, while queries still see consistent data, both read
committed and serializable isolation provide a high level of concurrency for high
performance, without the need for reading uncommitted data.

This section includes the following topics:

■ Read Committed Isolation

■ Serializable Isolation

■ Quiesce Database

Read Committed Isolation
For many applications, read committed is the most appropriate isolation level. Read
committed isolation can provide considerably more concurrency with a somewhat
increased risk of inconsistent results due to phantoms and non-repeatable reads for
some transactions.

Many high-performance environments with high transaction arrival rates require more
throughput and faster response times than can be achieved with serializable isolation.
Other environments that supports users with a very low transaction arrival rate also
face very low risk of incorrect results due to phantoms and nonrepeatable reads. Read
committed isolation is suitable for both of these environments.

Oracle Database read committed isolation provides transaction set consistency for
every query. That is, every query sees data in a consistent state. Therefore, read
committed isolation will suffice for many applications that might require a higher
degree of isolation if run on other database management systems that do not use
multiversion concurrency control.

Read committed isolation mode does not require application logic to trap the Cannot
serialize access error and loop back to restart a transaction. In most applications,
few transactions have a functional need to issue the same query twice, so for many
applications protection against phantoms and non-repeatable reads is not important.
Therefore many developers choose read committed to avoid the need to write such
error checking and retry code in each transaction.

Serializable Isolation
The Oracle Database serializable isolation is suitable for environments where there is a
relatively low chance that two concurrent transactions will modify the same rows and
the long-running transactions are primarily read only. It is most suitable for
environments with large databases and short transactions that update only a few rows.

Serializable isolation mode provides somewhat more consistency by protecting against
phantoms and nonrepeatable reads and can be important where a read/write
transaction runs a query more than once.

Unlike other implementations of serializable isolation, which lock blocks for read as
well as write, Oracle Database provides nonblocking queries and the fine granularity
of row-level locking, both of which reduce read/write contention. For applications
that experience mostly read/write contention, Oracle Database serializable isolation
can provide significantly more throughput than other systems. Therefore, some
applications might be suitable for serializable isolation on Oracle Database but not on
other systems.

How Oracle Database Manages Data Concurrency and Consistency

Data Concurrency and Consistency 13-11

All queries in an Oracle Database serializable transaction see the database as of a
single point in time, so this isolation level is suitable where multiple consistent queries
must be issued in a read/write transaction. A report-writing application that generates
summary data and stores it in the database might use serializable mode because it
provides the consistency that a READ ONLY transaction provides, but also allows
INSERT, UPDATE, and DELETE.

Coding serializable transactions requires extra work by the application developer to
check for the Cannot serialize access error and to undo and retry the
transaction. Similar extra coding is needed in other database management systems to
manage deadlocks. For adherence to corporate standards or for applications that are
run on multiple database management systems, it may be necessary to design
transactions for serializable mode. Transactions that check for serializability failures
and retry can be used with Oracle Database read committed mode, which does not
generate serializability errors.

Serializable mode is probably not the best choice in an environment with relatively
long transactions that must update the same rows accessed by a high volume of short
update transactions. Because a longer running transaction is unlikely to be the first to
modify a given row, it will repeatedly need to roll back, wasting work. Note that a
conventional read-locking, pessimistic implementation of serializable mode would not
be suitable for this environment either, because long-running transactions—even read
transactions—would block the progress of short update transactions and vice versa.

Application developers should consider the cost of rolling back and retrying
transactions when using serializable mode. As with read-locking systems, where
deadlocks occur frequently, use of serializable mode requires rolling back the work
done by terminated transactions and retrying them. In a high contention environment,
this activity can use significant resources.

In most environments, a transaction that restarts after receiving the Cannot
serialize access error is unlikely to encounter a second conflict with another
transaction. For this reason, it can help to run those statements most likely to contend
with other transactions as early as possible in a serializable transaction. However,
there is no guarantee that the transaction will complete successfully, so the application
should be coded to limit the number of retries.

Although Oracle Database serializable mode is compatible with SQL92 and offers
many benefits compared with read-locking implementations, it does not provide
semantics identical to such systems. Application designers must consider the fact that
reads in Oracle Database do not block writes as they do in other systems. Transactions
that check for database consistency at the application level can require coding
techniques such as the use of SELECT FOR UPDATE. This issue should be considered
when applications using serializable mode are ported to Oracle Database from other
environments.

Quiesce Database
You can put the system into quiesced state. The system is in quiesced state if there are
no active sessions, other than SYS and SYSTEM. An active session is defined as a
session that is currently inside a transaction, a query, a fetch or a PL/SQL procedure,
or a session that is currently holding any shared resources (for example,
enqueues--enqueues are shared memory structures that serialize access to database

Note: Transactions containing DML statements with subqueries
should use serializable isolation to guarantee consistent read.

How Oracle Database Manages Data Concurrency and Consistency

13-12 Oracle Database Concepts

resources and are associated with a session or transaction). Database administrators
are the only users who can proceed when the system is in quiesced state.

Database administrators can perform certain actions in the quiesced state that cannot
be safely done when the system is not quiesced. These actions include:

■ Actions that might fail if there are concurrent user transactions or queries. For
example, changing the schema of a database table will fail if a concurrent
transaction is accessing the same table.

■ Actions whose intermediate effect could be detrimental to concurrent user
transactions or queries. For example, suppose there is a big table T and a PL/SQL
package that operates on it. You can split table T into two tables T1 and T2, and
change the PL/SQL package to make it refer to the new tables T1 and T2, instead
of the old table T.

When the database is in quiesced state, you can do the following:

CREATE TABLE T1 AS SELECT ... FROM T;
CREATE TABLE T2 AS SELECT ... FROM T;
DROP TABLE T;

You can then drop the old PL/SQL package and re-create it.

For systems that must operate continuously, the ability to perform such actions
without shutting down the database is critical.

The Database Resource Manager blocks all actions that were initiated by a user other
than SYS or SYSTEM while the system is quiesced. Such actions are allowed to proceed
when the system goes back to normal (unquiesced) state. Users do not get any
additional error messages from the quiesced state.

How a Database Is Quiesced The database administrator uses the ALTER SYSTEM
QUIESCE RESTRICTED statement to quiesce the database. Only users SYS and
SYSTEM can issue the ALTER SYSTEM QUIESCE RESTRICTED statement. For all
instances with the database open, issuing this statement has the following effect:

■ Oracle Database instructs the Database Resource Manager in all instances to
prevent all inactive sessions (other than SYS and SYSTEM) from becoming active.
No user other than SYS and SYSTEM can start a new transaction, a new query, a
new fetch, or a new PL/SQL operation.

■ Oracle Database waits for all existing transactions in all instances that were
initiated by a user other than SYS or SYSTEM to finish (either commit or
terminate). Oracle Database also waits for all running queries, fetches, and
PL/SQL procedures in all instances that were initiated by users other than SYS or
SYSTEM and that are not inside transactions to finish. If a query is carried out by
multiple successive OCI fetches, Oracle Database does not wait for all fetches to
finish. It waits for the current fetch to finish and then blocks the next fetch. Oracle
Database also waits for all sessions (other than those of SYS or SYSTEM) that hold
any shared resources (such as enqueues) to release those resources. After all these
operations finish, Oracle Database places the database into quiesced state and
finishes executing the QUIESCE RESTRICTED statement.

■ If an instance is running in shared server mode, Oracle Database instructs the
Database Resource Manager to block logins (other than SYS or SYSTEM) on that
instance. If an instance is running in non-shared-server mode, Oracle Database
does not impose any restrictions on user logins in that instance.

During the quiesced state, you cannot change the Resource Manager plan in any
instance.

How Oracle Database Locks Data

Data Concurrency and Consistency 13-13

The ALTER SYSTEM UNQUIESCE statement puts all running instances back into normal
mode, so that all blocked actions can proceed. An administrator can determine which
sessions are blocking a quiesce from completing by querying the
v$blocking_quiesce view.

How Oracle Database Locks Data
Locks are mechanisms that prevent destructive interaction between transactions
accessing the same resource—either user objects such as tables and rows or system
objects not visible to users, such as shared data structures in memory and data
dictionary rows.

In all cases, Oracle Database automatically obtains necessary locks when executing
SQL statements, so users need not be concerned with such details. Oracle Database
automatically uses the lowest applicable level of restrictiveness to provide the highest
degree of data concurrency yet also provide fail-safe data integrity. Oracle Database
also allows the user to lock data manually.

This section includes the following topics:

■ Transactions and Data Concurrency

■ Deadlocks

■ Types of Locks

■ DML Locks

■ DDL Locks

■ Latches and Internal Locks

■ Explicit (Manual) Data Locking

■ Oracle Database Lock Management Services

Transactions and Data Concurrency
Oracle Database provides data concurrency and integrity between transactions using
its locking mechanisms. Because the locking mechanisms of Oracle Database are tied
closely to transaction control, application designers need only define transactions
properly, and Oracle Database automatically manages locking.

Keep in mind that Oracle Database locking is fully automatic and requires no user
action. Implicit locking occurs for all SQL statements so that database users never need
to lock any resource explicitly. The Oracle Database default locking mechanisms lock
data at the lowest level of restrictiveness to guarantee data integrity while allowing the
highest degree of data concurrency.

This section includes the following topics:

■ Modes of Locking

See Also:

■ Oracle Database SQL Language Reference

■ Oracle Database Administrator's Guide

See Also: "Types of Locks" on page 13-16

See Also: "Explicit (Manual) Data Locking" on page 13-25

How Oracle Database Locks Data

13-14 Oracle Database Concepts

■ Lock Duration

■ Data Lock Conversion Versus Lock Escalation

Modes of Locking
Oracle Database uses two modes of locking in a multiuser database:

■ Exclusive lock mode prevents the associated resource from being shared. This lock
mode is obtained to modify data. The first transaction to lock a resource
exclusively is the only transaction that can alter the resource until the exclusive
lock is released.

■ Share lock mode allows the associated resource to be shared, depending on the
operations involved. Multiple users reading data can share the data, holding share
locks to prevent concurrent access by a writer (who needs an exclusive lock).
Several transactions can acquire share locks on the same resource.

Lock Duration
All locks acquired by statements within a transaction are held for the duration of the
transaction, preventing destructive interference including dirty reads, lost updates,
and destructive DDL operations from concurrent transactions. The changes made by
the SQL statements of one transaction become visible only to other transactions that
start after the first transaction is committed.

Oracle Database releases all locks acquired by the statements within a transaction
when you either commit or undo the transaction. Oracle Database also releases locks
acquired after a savepoint when rolling back to the savepoint. However, only
transactions not waiting for the previously locked resources can acquire locks on the
now available resources. Waiting transactions will continue to wait until after the
original transaction commits or rolls back completely.

Data Lock Conversion Versus Lock Escalation
A transaction holds exclusive row locks for all rows inserted, updated, or deleted
within the transaction. Because row locks are acquired at the highest degree of
restrictiveness, no lock conversion is required or performed.

Oracle Database automatically converts a table lock of lower restrictiveness to one of
higher restrictiveness as appropriate. For example, assume that a transaction uses a
SELECT statement with the FOR UPDATE clause to lock rows of a table. As a result, it
acquires the exclusive row locks and a row share table lock for the table. If the
transaction later updates one or more of the locked rows, the row share table lock is
automatically converted to a row exclusive table lock.

Lock escalation occurs when numerous locks are held at one level of granularity (for
example, rows) and a database raises the locks to a higher level of granularity (for
example, table). For example, if a single user locks many rows in a table, some
databases automatically escalate the user's row locks to a single table. The number of
locks is reduced, but the restrictiveness of what is being locked is increased.

Oracle Database never escalates locks. Lock escalation greatly increases the likelihood of
deadlocks. Imagine the situation where the system is trying to escalate locks on behalf
of transaction T1 but cannot because of the locks held by transaction T2. A deadlock is
created if transaction T2 also requires lock escalation of the same data before it can
proceed.

See Also: "Table Locks (TM)" on page 13-17

How Oracle Database Locks Data

Data Concurrency and Consistency 13-15

Deadlocks
A deadlock can occur when two or more users are waiting for data locked by each
other. Deadlocks prevent some transactions from continuing to work. Figure 13–3 is a
hypothetical illustration of two transactions in a deadlock.

In Figure 13–3, no problem exists at time point A, as each transaction has a row lock on
the row it attempts to update. Each transaction proceeds without being terminated.
However, each tries next to update the row currently held by the other transaction.
Therefore, a deadlock results at time point B, because neither transaction can obtain
the resource it must proceed or terminate. It is a deadlock because no matter how long
each transaction waits, the conflicting locks are held.

Figure 13–3 Two Transactions in a Deadlock

This section includes the following topics:

■ Deadlock Detection

■ Avoid Deadlocks

Deadlock Detection
Oracle Database automatically detects deadlock situations and resolves them by
rolling back one of the statements involved in the deadlock, thereby releasing one set
of the conflicting row locks. A corresponding message also is returned to the
transaction that undergoes statement-level rollback. The statement rolled back is the
one belonging to the transaction that detects the deadlock. Usually, the signalled
transaction should be rolled back explicitly, but it can retry the rolled-back statement
after waiting.

Deadlocks most often occur when transactions explicitly override the default locking
of Oracle Database. Because Oracle Database itself does no lock escalation and does

Note: In distributed transactions, local deadlocks are detected
by analyzing wait data, and global deadlocks are detected by a time
out. Once detected, nondistributed and distributed deadlocks are
handled by the database and application in the same way.

UPDATE emp
 SET sal = sal*1.1
 WHERE empno = 1000;

UPDATE emp
 SET sal = sal*1.1
 WHERE empno = 2000;

ORA–00060:
 deadlock detected while
 waiting for resource

UPDATE emp

 WHERE empno = 2000;

UPDATE emp
 SET mgr = 1342
 WHERE empno = 1000;

 SET mgr = 1342

A

B

C

Transaction 1 (T1) Time Transaction 2 (T2)

How Oracle Database Locks Data

13-16 Oracle Database Concepts

not use read locks for queries, but does use row-level locking (rather than page-level
locking), deadlocks occur infrequently in Oracle Database.

Avoid Deadlocks
Multitable deadlocks can usually be avoided if transactions accessing the same tables
lock those tables in the same order, either through implicit or explicit locks. For
example, all application developers might follow the rule that when both a master and
detail table are updated, the master table is locked first and then the detail table. If
such rules are properly designed and then followed in all applications, deadlocks are
very unlikely to occur.

When you know you will require a sequence of locks for one transaction, consider
acquiring the most exclusive (least compatible) lock first.

Types of Locks
Oracle Database automatically uses different types of locks to control concurrent
access to data and to prevent destructive interaction between users. Oracle Database
automatically locks a resource on behalf of a transaction to prevent other transactions
from doing something also requiring exclusive access to the same resource. The lock is
released automatically when some event occurs so that the transaction no longer
requires the resource.

Throughout its operation, Oracle Database automatically acquires different types of
locks at different levels of restrictiveness depending on the resource being locked and
the operation being performed.

Oracle Database locks fall into one of three general categories shown in Table 13–4.

The following sections discuss DML locks, DDL locks, and internal locks.

DML Locks
The purpose of a DML lock (data lock) is to guarantee the integrity of data being
accessed concurrently by multiple users. DML locks prevent destructive interference
of simultaneous conflicting DML or DDL operations. DML statements automatically
acquire both table-level locks and row-level locks.

See Also: "Explicit (Manual) Data Locking" on page 13-25 for
more information about manually acquiring locks

Table 13–4 Types of Locks

Lock Description

DML locks (data locks) DML locks protect data. For example, table locks lock entire
tables, row locks lock selected rows.

DDL locks (dictionary locks) DDL locks protect the structure of schema objects—for example,
the definitions of tables and views.

Internal locks and latches Internal locks and latches protect internal database structures
such as datafiles. Internal locks and latches are entirely
automatic.

How Oracle Database Locks Data

Data Concurrency and Consistency 13-17

This section includes the following topics:

■ Row Locks (TX)

■ Table Locks (TM)

■ DML Locks Automatically Acquired for DML Statements

Row Locks (TX)
Row-level locks are primarily used to prevent two transactions from modifying the
same row. When a transaction must modify a row, a row lock is acquired.

There is no limit to the number of row locks held by a statement or transaction, and
Oracle Database does not escalate locks from the row level to a coarser granularity.
Row locking provides the finest grain locking possible and so provides the best
possible concurrency and throughput.

The combination of multiversion concurrency control and row-level locking means
that users contend for data only when accessing the same rows, specifically:

■ Readers of data do not wait for writers of the same data rows.

■ Writers of data do not wait for readers of the same data rows unless SELECT ...
FOR UPDATE is used, which specifically requests a lock for the reader.

■ Writers only wait for other writers if they attempt to update the same rows at the
same time.

A transaction acquires an exclusive row lock for each individual row modified by one
of the following statements: INSERT, UPDATE, DELETE, and SELECT with the FOR
UPDATE clause.

A modified row is always locked exclusively so that other transactions cannot modify
the row until the transaction holding the lock is committed or rolled back. However, if
the transaction dies due to instance failure, block-level recovery makes a row available
before the entire transaction is recovered. Row locks are always acquired automatically
by Oracle Database as a result of the statements listed previously.

If a transaction obtains a row lock for a row, the transaction also acquires a table lock
for the corresponding table. The table lock prevents conflicting DDL operations that
would override data changes in a current transaction.

Table Locks (TM)
Table-level locks are primarily used to do concurrency control with concurrent DDL
operations, such as preventing a table from being dropped in the middle of a DML
operation. When a DDL or DML statement is on a table, a table lock is acquired. Table

Note: The acronym in parentheses after each type of lock or lock
mode is the abbreviation used in the Locks Monitor of Enterprise
Manager. Enterprise Manager might display TM for any table lock,
rather than indicate the mode of table lock (such as RS or SRX).

Note: Readers of data may have to wait for writers of the same data
blocks in some very special cases of pending distributed transactions.

See Also: "DDL Locks" on page 13-22

How Oracle Database Locks Data

13-18 Oracle Database Concepts

locks do not affect concurrency of DML operations. For partitioned tables, table locks
can be acquired at both the table and the subpartition level.

A transaction acquires a table lock when a table is modified in the following DML
statements: INSERT, UPDATE, DELETE, SELECT with the FOR UPDATE clause, and
LOCK TABLE. These DML operations require table locks for two purposes: to reserve
DML access to the table on behalf of a transaction and to prevent DDL operations that
would conflict with the transaction. Any table lock prevents the acquisition of an
exclusive DDL lock on the same table and thereby prevents DDL operations that
require such locks. For example, a table cannot be altered or dropped if an
uncommitted transaction holds a table lock for it.

A table lock can be held in any of several modes: row share (RS), row exclusive (RX),
share (S), share row exclusive (SRX), and exclusive (X). The restrictiveness of a table
lock's mode determines the modes in which other table locks on the same table can be
obtained and held.

Table 13–5 shows the table lock modes that statements acquire. The last five columns
of the table show operations that the table locks permit (Y) and prohibit (N).

RS: row share

RX: row exclusive

S: share

SRX: share row exclusive

X: exclusive

*Yes, if no conflicting row locks are held by another transaction. Otherwise, waits
occur.

The following sections explain each mode of table lock, from least restrictive to most
restrictive. They also describe the actions that cause the transaction to acquire a table

Table 13–5 Summary of Table Locks

SQL Statement
Table Lock
Mode RS RX S SRX X

SELECT...FROM table... none Y Y Y Y Y

INSERT INTO table ... RX Y Y N N N

UPDATE table ... RX Y* Y* N N N

DELETE FROM table ... RX Y* Y* N N N

SELECT ... FROM table
FOR UPDATE OF ...

RX Y* Y* N N N

LOCK TABLE table IN
ROW SHARE MODE

RS Y Y Y Y N

LOCK TABLE table IN
ROW EXCLUSIVE MODE

RX Y Y N N N

LOCK TABLE table IN
SHARE MODE

S Y N Y N N

LOCK TABLE table IN
SHARE ROW EXCLUSIVE
MODE

SRX Y N N N N

LOCK TABLE table IN
EXCLUSIVE MODE

X N N N N N

How Oracle Database Locks Data

Data Concurrency and Consistency 13-19

lock in that mode and which actions are permitted and prohibited in other transactions
by a lock in that mode.

This section includes the following topics:

■ Row Share Table Locks (RS)

■ Row Exclusive Table Locks (RX)

■ Share Table Locks (S)

■ Share Row Exclusive Table Locks (SRX)

■ Exclusive Table Locks (X)

Row Share Table Locks (RS) A row share table lock (also sometimes called a subshare
table lock, SS) indicates that the transaction holding the lock on the table has locked
rows in the table and intends to update them. A row share table lock is automatically
acquired for a table when the following SQL statement is run:

LOCK TABLE table IN ROW SHARE MODE;

A row share table lock is the least restrictive mode of table lock, offering the highest
degree of concurrency for a table.

Permitted Operations: A row share table lock held by a transaction allows other
transactions to query, insert, update, delete, or lock rows concurrently in the same
table. Therefore, other transactions can obtain simultaneous row share, row exclusive,
share, and share row exclusive table locks for the same table.

Prohibited Operations: A row share table lock held by a transaction prevents other
transactions from exclusive write access to the same table using only the following
statement:

LOCK TABLE table IN EXCLUSIVE MODE;

Row Exclusive Table Locks (RX) A row exclusive table lock (also called a subexclusive
table lock, SX) generally indicates that the transaction holding the lock has made one
or more updates to rows in the table or issued SELECT ... FOR UPDATE. A row
exclusive table lock is acquired automatically for a table modified by the following
types of statements:

SELECT ... FROM table ... FOR UPDATE OF ...;

INSERT INTO table ... ;

UPDATE table ... ;

DELETE FROM table ... ;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

A row exclusive table lock is slightly more restrictive than a row share table lock.

Permitted Operations: A row exclusive table lock held by a transaction allows other
transactions to query, insert, update, delete, or lock rows concurrently in the same
table. Therefore, row exclusive table locks allow multiple transactions to obtain
simultaneous row exclusive and row share table locks for the same table.

See Also: "Explicit (Manual) Data Locking" on page 13-25

How Oracle Database Locks Data

13-20 Oracle Database Concepts

Prohibited Operations: A row exclusive table lock held by a transaction prevents other
transactions from manually locking the table for exclusive reading or writing.
Therefore, other transactions cannot concurrently lock the table using the following
statements:

LOCK TABLE table IN SHARE MODE;

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

Share Table Locks (S) A share table lock is acquired automatically for the table specified
in the following statement:

LOCK TABLE table IN SHARE MODE;

Permitted Operations: A share table lock held by a transaction allows other transactions
only to query the table (without using SELECT ... FOR UPDATE) or to run LOCK
TABLE ... IN SHARE MODE statements successfully. No updates are allowed by other
transactions. Multiple transactions can hold share table locks for the same table
concurrently. In this case, no transaction can update the table. Therefore, a transaction
that has a share table lock can update the table only if no other transactions also have a
share table lock on the same table.

Prohibited Operations: A share table lock held by a transaction prevents other
transactions from modifying the same table and from executing the following
statements:

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

Share Row Exclusive Table Locks (SRX) A share row exclusive table lock (also sometimes
called a share-subexclusive table lock, SSX) is more restrictive than a share table lock.
A share row exclusive table lock is acquired for a table as follows:

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

Permitted Operations: Only one transaction at a time can acquire a share row exclusive
table lock on a given table. A share row exclusive table lock held by a transaction
allows other transactions to query the table (without using SELECT ... FOR
UPDATE) but not update the table.

Prohibited Operations: A share row exclusive table lock held by a transaction prevents
other transactions from obtaining row exclusive table locks and modifying the same
table. A share row exclusive table lock also prohibits other transactions from obtaining
share, share row exclusive, and exclusive table locks, which prevents other
transactions from executing the following statements:

LOCK TABLE table IN SHARE MODE;

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

How Oracle Database Locks Data

Data Concurrency and Consistency 13-21

Exclusive Table Locks (X) An exclusive table lock is the most restrictive mode of table
lock, allowing the transaction that holds the lock exclusive write access to the table. An
exclusive table lock is acquired for a table as follows:

LOCK TABLE table IN EXCLUSIVE MODE;

Permitted Operations: Only one transaction can obtain an exclusive table lock for a table.
An exclusive table lock permits other transactions only to query the table.

Prohibited Operations: An exclusive table lock held by a transaction prohibits other
transactions from performing any type of DML statement or placing any type of lock
on the table.

DML Locks Automatically Acquired for DML Statements
The previous sections explained the different types of data locks, the modes in which
they can be held, when they can be obtained, when they are obtained, and what they
prohibit. The following sections summarize how Oracle Database automatically locks
data on behalf of different DML operations.

Table 13–6 summarizes the information in the following sections.

X: exclusive

RX: row exclusive

RS: row share

S: share

SRX: share row exclusive

This section includes the following topics:

■ Default Locking for Queries

■ Default Locking for INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE

Default Locking for Queries Queries are the SQL statements least likely to interfere with
other SQL statements because they only read data. INSERT, UPDATE, and DELETE

Table 13–6 Locks Obtained By DML Statements

DML Statement Row Locks? Mode of Table Lock

SELECT ... FROM table

INSERT INTO table ... X RX

UPDATE table ... X RX

DELETE FROM table ... X RX

SELECT ... FROM table ...
FOR UPDATE OF ...

X RX

LOCK TABLE table IN ...

 ROW SHARE MODE RS

 ROW EXCLUSIVE MODE RX

 SHARE MODE S

 SHARE EXCLUSIVE MODE SRX

 EXCLUSIVE MODE X

How Oracle Database Locks Data

13-22 Oracle Database Concepts

statements can have implicit queries as part of the statement. Queries include the
following kinds of statements:

SELECT

INSERT ... SELECT ... ;

UPDATE ... ;

DELETE ... ;

They do not include the following statement:

SELECT ... FOR UPDATE OF ... ;

The following characteristics are true of all queries that do not use the FOR UPDATE
clause:

■ A query acquires no data locks. Therefore, other transactions can query and
update a table being queried, including the specific rows being queried. Because
queries lacking FOR UPDATE clauses do not acquire any data locks to block other
operations, such queries are often referred to in Oracle Database as nonblocking
queries.

■ A query does not have to wait for any data locks to be released; it can always
proceed. (Queries may have to wait for data locks in some very specific cases of
pending distributed transactions.)

Default Locking for INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE The locking
characteristics of INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE statements
are as follows:

■ The transaction that contains a DML statement acquires exclusive row locks on the
rows modified by the statement. Other transactions cannot update or delete the
locked rows until the locking transaction either commits or rolls back.

■ The transaction that contains a DML statement does not need to acquire row locks
on any rows selected by a subquery or an implicit query, such as a query in a
WHERE clause. A subquery or implicit query in a DML statement is guaranteed to
be consistent as of the start of the query and does not see the effects of the DML
statement it is part of.

■ A query in a transaction can see the changes made by previous DML statements in
the same transaction, but cannot see the changes of other transactions begun after
its own transaction.

■ In addition to the necessary exclusive row locks, a transaction that contains a DML
statement acquires at least a row exclusive table lock on the table that contains the
affected rows. If the containing transaction already holds a share, share row
exclusive, or exclusive table lock for that table, the row exclusive table lock is not
acquired. If the containing transaction already holds a row share table lock, Oracle
Database automatically converts this lock to a row exclusive table lock.

DDL Locks
A data dictionary lock (DDL) protects the definition of a schema object while that
object is acted upon or referred to by an ongoing DDL operation. Recall that a DDL
statement implicitly commits its transaction. For example, assume that a user creates a
procedure. On behalf of the user's single-statement transaction, Oracle Database
automatically acquires DDL locks for all schema objects referenced in the procedure

How Oracle Database Locks Data

Data Concurrency and Consistency 13-23

definition. The DDL locks prevent objects referenced in the procedure from being
altered or dropped before the procedure compilation is complete.

Oracle Database acquires a dictionary lock automatically on behalf of any DDL
transaction requiring it. Users cannot explicitly request DDL locks. Only individual
schema objects that are modified or referenced are locked during DDL operations. The
whole data dictionary is never locked.

DDL locks fall into three categories: exclusive DDL locks, share DDL locks, and
breakable parse locks.

This section includes the following topics:

■ Exclusive DDL Locks

■ Share DDL Locks

■ Breakable Parse Locks

■ Duration of DDL Locks

■ DDL Locks and Clusters

Exclusive DDL Locks
Most DDL operations, except for those listed in the section, "Share DDL Locks" on
page 13-23 require exclusive DDL locks for a resource to prevent destructive
interference with other DDL operations that might modify or reference the same
schema object. For example, a DROP TABLE operation is not allowed to drop a table
while an ALTER TABLE operation is adding a column to it, and vice versa.

During the acquisition of an exclusive DDL lock, if another DDL lock is already held
on the schema object by another operation, the acquisition waits until the older DDL
lock is released and then proceeds.

DDL operations also acquire DML locks (data locks) on the schema object to be
modified.

Share DDL Locks
Some DDL operations require share DDL locks for a resource to prevent destructive
interference with conflicting DDL operations, but allow data concurrency for similar
DDL operations. For example, when a CREATE PROCEDURE statement is run, the
containing transaction acquires share DDL locks for all referenced tables. Other
transactions can concurrently create procedures that reference the same tables and
therefore acquire concurrent share DDL locks on the same tables, but no transaction
can acquire an exclusive DDL lock on any referenced table. No transaction can alter or
drop a referenced table. As a result, a transaction that holds a share DDL lock is
guaranteed that the definition of the referenced schema object will remain constant for
the duration of the transaction.

A share DDL lock is acquired on a schema object for DDL statements that include the
following statements: AUDIT, NOAUDIT, COMMENT, CREATE [OR REPLACE] VIEW/
PROCEDURE/PACKAGE/PACKAGE BODY/FUNCTION/ TRIGGER, CREATE SYNONYM,
and CREATE TABLE (when the CLUSTER parameter is not included).

Breakable Parse Locks
A SQL statement (or PL/SQL program unit) in the shared pool holds a parse lock for
each schema object it references. Parse locks are acquired so that the associated shared
SQL area can be invalidated if a referenced object is altered or dropped. A parse lock

How Oracle Database Locks Data

13-24 Oracle Database Concepts

does not disallow any DDL operation and can be broken to allow conflicting DDL
operations, hence the name breakable parse lock.

A parse lock is acquired during the parse phase of SQL statement execution and held
as long as the shared SQL area for that statement remains in the shared pool.

Duration of DDL Locks
The duration of a DDL lock depends on its type. Exclusive and share DDL locks last
for the duration of DDL statement execution and automatic commit. A parse lock
persists as long as the associated SQL statement remains in the shared pool.

DDL Locks and Clusters
A DDL operation on a cluster acquires exclusive DDL locks on the cluster and on all
tables and materialized views in the cluster. A DDL operation on a table or
materialized view in a cluster acquires a share lock on the cluster, in addition to a
share or exclusive DDL lock on the table or materialized view. The share DDL lock on
the cluster prevents another operation from dropping the cluster while the first
operation proceeds.

Latches and Internal Locks
Latches and internal locks protect internal database and memory structures. Both are
inaccessible to users, because users have no need to control over their occurrence or
duration. The following section helps to interpret the Enterprise Manager LOCKS and
LATCHES monitors.

This section includes the following topics:

■ Latches

■ Internal Locks

Latches
Latches are simple, low-level serialization mechanisms to protect shared data
structures in the system global area (SGA). For example, latches protect the list of users
currently accessing the database and protect the data structures describing the blocks
in the buffer cache. A server or background process acquires a latch for a very short
time while manipulating or looking at one of these structures. The implementation of
latches is operating system dependent, particularly in regard to whether and how long
a process will wait for a latch.

Internal Locks
Internal locks are higher-level, more complex mechanisms than latches and serve a
variety of purposes.

This section includes the following topics:

■ Dictionary Cache Locks

■ File and Log Management Locks

■ Tablespace and Rollback Segment Locks

See Also: Chapter 6, "Schema Object Dependencies"

How Oracle Database Locks Data

Data Concurrency and Consistency 13-25

Dictionary Cache Locks These locks are of very short duration and are held on entries in
dictionary caches while the entries are being modified or used. They guarantee that
statements being parsed do not see inconsistent object definitions.

Dictionary cache locks can be shared or exclusive. Shared locks are released when the
parse is complete. Exclusive locks are released when the DDL operation is complete.

File and Log Management Locks These locks protect various files. For example, one lock
protects the control file so that only one process at a time can change it. Another lock
coordinates the use and archiving of the redo log files. Datafiles are locked to ensure
that multiple instances mount a database in shared mode or that one instance mounts
it in exclusive mode. Because file and log locks indicate the status of files, these locks
are necessarily held for a long time.

Tablespace and Rollback Segment Locks These locks protect tablespaces and rollback
segments. For example, all instances accessing a database must agree on whether a
tablespace is online or offline. Rollback segments are locked so that only one instance
can write to a segment.

Explicit (Manual) Data Locking
Oracle Database always performs locking automatically to ensure data concurrency,
data integrity, and statement-level read consistency. However, you can override the
Oracle Database default locking mechanisms. Overriding the default locking is useful
in situations such as these:

■ Applications require transaction-level read consistency or repeatable reads. In
other words, queries in them must produce consistent data for the duration of the
transaction, not reflecting changes by other transactions. You can achieve
transaction-level read consistency by using explicit locking, read-only transactions,
serializable transactions, or by overriding default locking.

■ Applications require that a transaction have exclusive access to a resource so that
the transaction does not have to wait for other transactions to complete.

Oracle Database automatic locking can be overridden at the transaction level or the
session level.

At the transaction level, transactions that include the following SQL statements
override Oracle Database default locking:

■ The SET TRANSACTION ISOLATION LEVEL statement

■ The LOCK TABLE statement (which locks either a table or, when used with views,
the underlying base tables)

■ The SELECT ... FOR UPDATE statement

Locks acquired by these statements are released after the transaction commits or rolls
back.

At the session level, a session can set the required transaction isolation level with the
ALTER SESSION statement.

Overview of Oracle Flashback Query

13-26 Oracle Database Concepts

Oracle Database Lock Management Services
With Oracle Database Lock Management services, an application developer can
include statements in PL/SQL blocks that:

■ Request a lock of a specific type

■ Give the lock a unique name recognizable in another procedure in the same or in
another instance

■ Change the lock type

■ Release the lock

Because a reserved user lock is the same as an Oracle Database lock, it has all the
Oracle Database lock functionality including deadlock detection. User locks never
conflict with Oracle Database locks, because they are identified with the prefix UL.

The Oracle Database Lock Management services are available through procedures in
the DBMS_LOCK package.

Overview of Oracle Flashback Query
Oracle Flashback Query lets you view and repair historical data. You can perform
queries on the database as of a certain wall clock time or user-specified system change
number (SCN).

Flashback Query uses the Oracle Database multiversion read-consistency capabilities
to restore data by applying undo as needed. Oracle Database 11g automatically tunes a
parameter called the undo retention period. The undo retention period indicates the
amount of time that must pass before old undo information—that is, undo information
for committed transactions—can be overwritten. The database collects usage statistics
and tunes the undo retention period based on these statistics and on undo tablespace
size.

Using Flashback Query, you can query the database as it existed this morning,
yesterday, or last week. The speed of this operation depends only on the amount of
data being queried and the number of changes to the data that need to be backed out.

Note: If Oracle Database default locking is overridden at any level,
the database administrator or application developer should ensure
that the overriding locking procedures operate correctly. The locking
procedures must satisfy the following criteria: data integrity is
guaranteed, data concurrency is acceptable, and deadlocks are not
possible or are appropriately handled.

See Also: Oracle Database SQL Language Reference for detailed
descriptions of the SQL statements LOCK TABLE and SELECT ...
FOR UPDATE

See Also:

■ Oracle Database Advanced Application Developer's Guide for more
information about Oracle Database Lock Management services

■ Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_LOCK

Overview of Oracle Flashback Query

Data Concurrency and Consistency 13-27

You can query the history of a given row or a transaction. Using undo data stored in
the database, you can view all versions of a row and revert to a previous version of
that row. Flashback Transaction Query history lets you examine changes to the
database at the transaction level.

You can audit the rows of a table and get information about the transactions that
changed the rows and the times when it was changed. With the transaction ID, you
can do transaction mining through LogMiner to get complete information about the
transaction.

You set the date and time you want to view. Then, any SQL query you run operates on
data as it existed at that time. If you are an authorized user, then you can correct errors
and back out the restored data without needing the intervention of an administrator.

With the AS OF SQL clause, you can choose different snapshots for each table in the
query. Associating a snapshot with a table is known as table decoration. If you do not
decorate a table with a snapshot, then a default snapshot is used for it. All tables
without a specified snapshot get the same default snapshot.

For example, suppose you want to write a query to find all the new customer accounts
created in the past hour. You could do set operations on two instances of the same
table decorated with different AS OF clauses.

DML and DDL operations can use table decoration to choose snapshots within
subqueries. Operations such as INSERT TABLE AS SELECT and CREATE TABLE AS
SELECT can be used with table decoration in the subqueries to repair tables from
which rows have been mistakenly deleted. Table decoration can be any arbitrary
expression: a bind variable, a constant, a string, date operations, and so on. You can
open a cursor and dynamically bind a snapshot value (a timestamp or an SCN) to
decorate a table with.

This section includes the following topics:

■ Flashback Query Benefits

■ Some Uses of Flashback Query

Flashback Query Benefits
This section lists some of the benefits of using Flashback Query.

■ Application Transparency

Packaged applications, like report generation tools that only do queries, can run in
Flashback Query mode by using logon triggers. Applications can run
transparently without requiring changes to code. All the constraints that the

See Also:

■ Oracle Database Administrator's Guide for more information on the
automatic tuning of undo retention and on LogMiner

■ "Automatic Undo Retention" on page 2-17

See Also:

■ "Overview of High Availability Features" on page 1-22 for an
overview of all Oracle Flashback features

■ Oracle Database SQL Language Reference for information on the AS
OF clause

Overview of Oracle Flashback Query

13-28 Oracle Database Concepts

application must be satisfied are guaranteed to hold good, because there is a
consistent version of the database as of the Flashback Query time.

■ Application Performance

If an application requires recovery actions, it can do so by saving SCNs and
flashing back to those SCNs. This is a lot easier and faster than saving data sets
and restoring them later, which would be required if the application were to do
explicit versioning. Using Flashback Query, there are no costs for logging that
would be incurred by explicit versioning.

■ Online Operation

Flashback Query is an online operation. Concurrent DMLs and queries from other
sessions are allowed while an object is queried inside Flashback Query.The speed
of these operations is unaffected. Moreover, different sessions can flash back to
different Flashback times or SCNs on the same object concurrently. The speed of
the Flashback Query itself depends on the amount of undo that must be applied,
which is proportional to how far back in time the query goes.

■ Easy Manageability

There is no additional management on the part of the user, except setting the
appropriate retention interval, having the right privileges, and so on. No
additional logging has to be turned on, because past versions are constructed
automatically, as needed.

Some Uses of Flashback Query
This section lists some ways to use Flashback Query.

■ Self-Service Repair

Perhaps you accidentally deleted some important rows from a table and wanted to
recover the deleted rows. To do the repair, you can move backward in time and see
the missing rows and re-insert the deleted row into the current table.

Note:

■ Flashback Query does not undo anything. It is only a query
mechanism. You can take the output from a Flashback Query and
perform an undo yourself in many circumstances.

■ Flashback Query does not tell you what changed. LogMiner does
that.

■ Flashback Query can undo changes and can be very efficient if
you know the rows that need to be moved back in time. You can
use it to move a full table back in time, but this is very expensive if
the table is large since it involves a full table copy.

■ Flashback Query does not work through DDL operations that
modify columns, or drop or truncate tables.

■ In general, LogMiner is very good for getting change history, but
it gives you changes in terms of deltas (insert, update, delete) and
not in terms of the before and after image of a row. The SQL
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA statement
only adds minimal supplemental logging and does not log all
columns for a modified row.

Overview of Oracle Flashback Query

Data Concurrency and Consistency 13-29

■ E-mail or Voice Mail Applications

You might have deleted mail in the past. Using Flashback Query, you can restore
the deleted mail by moving back in time and re-inserting the deleted message into
the current message box.

■ Account Balances

You can view account prior account balances as of a certain day in the month.

■ Packaged Applications

Packaged applications (like report generation tools) can make use of Flashback
Query without any changes to application logic. Any constraints that the
application expects are guaranteed to be satisfied, because users see a consistent
version of the Database as of the given time or SCN.

In addition, Flashback Query could be used after examination of audit information to
see the before-image of the data. In DSS environments, it could be used for extraction
of data as of a consistent point in time from OLTP systems.

See Also:

■ Oracle Database Advanced Application Developer's Guide for more
information about using Oracle Flashback Query

■ Oracle Database PL/SQL Packages and Types Reference for a
description of the DBMS_FLASHBACK package

■ Oracle Database Administrator's Guide for information about undo
tablespaces and setting retention period

Overview of Oracle Flashback Query

13-30 Oracle Database Concepts

Manageability 14-1

14
Manageability

Oracle Database 11g represents a major milestone in Oracle's drive toward
self-managing databases. It automates many routine administrative tasks, and
considerably simplifies key DBA functions, such as performance diagnostics, SQL
tuning, and space and memory management. It also provides several advisors that
guide DBAs in managing key components of the database by giving specific
recommendations along with potential benefit. Furthermore, Oracle Database 11g
proactively sends alerts when a problem is anticipated, thus facilitating proactive
rather than reactive database management.

This chapter contains the following topics:

■ Installing Oracle Database 11g and Getting Started

■ Intelligent Infrastructure

■ Performance Diagnostics and Troubleshooting

■ Application and SQL Tuning

■ Memory Management

■ Space Management

■ Automatic Storage Management

■ Backup and Recovery

■ Configuration Management

■ Workload Management

■ Oracle Scheduler

Installing Oracle Database 11g and Getting Started
The Oracle Universal Installer is a GUI tool for installing Oracle software. It automates
all installation tasks, performs comprehensive prerequisite checks (such as operating
system version, software patches, and capacity), installs selected software components,
and performs all postinstall configuration.

The installation process is self-contained to automatically set up the required
infrastructure for routine monitoring and administration. The Oracle Enterprise
Manager Database Management Console is automatically configured to let you to get
started with database administrative tasks without any manual configuration. The
Oracle Enterprise Manager Database Console provides all essential functionality for
managing a single database, including alert notification, job scheduling, and software
management. In addition, all Oracle Database server components such as the database,

Installing Oracle Database 11g and Getting Started

14-2 Oracle Database Concepts

listener, management framework, and so on, are configured for automated startup and
shutdown.

This section includes the following topics:

■ Simplified Database Creation

■ Instant Client

■ Automated Upgrades

■ Basic Initialization Parameters

■ Data Loading, Transfer, and Archiving

Simplified Database Creation
The Database Creation Assistant (DBCA) is a GUI tool for database creation. It lets you
create all possible configurations of the database, be it a standalone database, an
Oracle Real Application Clusters database, or a standby database. During the database
creation process, the DBCA guides you in setting up an automated disk-based backup
and registering the database with a LDAP server, if available. A database created using
the DBCA is fully setup and ready to use in all respects.

Instant Client
The Instant Client is the simplest way to deploy a full Oracle Client application built
with OCI, OCCI, JDBC-OCI, or ODBC drivers. It provides the necessary Oracle Client
libraries in a small set of files. Installation is as easy as copying a few shared libraries
to a directory on the client computer. If this directory is accessible through the
operating system library path variable (for instance, LD_LIBRARY_PATH or PATH)
then the application will operate in the Instant Client mode. Instant Client deployment
does not require the ORACLE_HOME environment, nor does it require the large number
of code and data files provided in a full Oracle Client install, thereby significantly
reducing the client application disk space needs. There is no loss in functionality or
performance for an application deployed using Instant Client when compared to the
same application running in a full ORACLE_HOME environment.

Automated Upgrades
With the Database Upgrade Assistant (DBUA), you can upgrade any database
configuration, including Oracle Real Application Clusters (Oracle RAC) and standby,
just by answering a few simple questions. It automatically checks that adequate
resources are available, ensures adherence to the best practices – such as backing up
the database before beginning the upgrade process, replacing the obsolete and
deprecate initialization parameters, and so on – and, verifies the successful completion
of the operation.

See Also: "Configuration Management" on page 14-17 for more
information about Oracle Enterprise Manager

See Also:

■ Chapter 24, "SQL" and Chapter 25, "Supported Application
Development Languages" for more information about JDBC, OCI,
and OCCI

■ Oracle Call Interface Programmer's Guide for more information
about Instant Client

Intelligent Infrastructure

Manageability 14-3

The upgrade process is restartable, allowing it to automatically resume from the point
of interruption. You can also get a time estimation of how long the upgrade process is
likely to take.

Basic Initialization Parameters
The Oracle Database provides a number of initialization parameters to optimize its
operation in diverse environments. Only a few of these parameters need to be
explicitly set, because the default values are adequate in the majority of cases.

There are approximately 30 basic parameters. The remainder of the parameters are
preserved to allow expert DBAs to adapt the behavior of the Oracle Database to meet
unique requirements without overwhelming those who have no such requirements.

Data Loading, Transfer, and Archiving
Data Pump enables very high-speed data and metadata loading and unloading to and
from the Oracle Database. It automatically manages and schedules multiple, parallel
streams of load or unload for maximum throughput.

The transportable tablespace feature lets you quickly move a tablespace across Oracle
databases. This can be much faster than performing either an export/import or
unload/load of the same data, because transporting a tablespace only requires the
copying of datafiles and integrating the tablespace structural information. You can also
use transportable tablespaces to move index data, thereby avoiding the index rebuilds
you would have to perform when importing or loading table data.

Data Pump functionality together with cross-platform transportable tablespace feature
provides powerful, easy to use, and high performance tools for moving data in and
out of the database.

Intelligent Infrastructure
Oracle Database has a sophisticated self-management infrastructure that allows the
database to learn about itself and use this information to adapt to workload variations
or to automatically remedy any potential problem. The self-management
infrastructure includes the following:

■ Automatic Workload Repository

■ Automatic Maintenance Tasks

■ Fault Diagnosability Infrastructure

■ Server-Generated Alerts

■ Advisor Framework

■ Hang Manager

See Also: Oracle Database Administrator's Guide

See Also:

■ "Overview of Data Pump Export and Import" on page 11-2

■ "Transport of Tablespaces Between Databases" on page 3-13

Intelligent Infrastructure

14-4 Oracle Database Concepts

Automatic Workload Repository
The Automatic Workload Repository (AWR) is a built-in repository that contains
performance statistics used by Oracle Database for problem detection and self-tuning
purposes. At regular intervals, Oracle Database makes a snapshot of vital statistics and
workload information and stores them in the AWR. The data contained in the
snapshots is then analyzed by the Automatic Database Diagnostic Monitor (ADDM).
The difference between snapshots is compared to determine which SQL statements to
capture based on the effect on the system load. This reduces the number of SQL
statements that need to be captured over time. By default, the snapshots are taken once
every hour and retained in the AWR for 8 days, after which they are automatically
purged. You can change both the frequency and the retention period of snapshots.

Snapshots from specific time periods can be preserved in a baseline for comparison
with other similar workload periods. The snapshots contained in a baseline are
excluded from the automatic AWR purging process and are retained indefinitely.
There are several types of available baselines in Oracle Database: fixed baselines,
moving window baselines, and baseline templates. A fixed baseline corresponds to a
fixed, contiguous time period in the past. Fixed baselines captured when the system is
operating at an optimal level can be compared with other baselines or snapshots
captured during periods of poor performance to analyze performance degradation
over time. A moving window baseline corresponds to all AWR data that exists within
the AWR retention period. This is useful when using adaptive thresholds because the
AWR data in the entire AWR retention period can be used to compute metric threshold
values. Baseline templates can be used to create baselines for contiguous time periods
in the future. There are two types of baseline templates: single and repeating. A single
baseline template can be used to create a baseline for a single contiguous time period
in the future. This is useful if you know beforehand of a time period that you want to
capture in the future. A repeating baseline template can be used to create and drop
baselines based on a repeating time schedule. This is useful if you want Oracle
Database to automatically capture a contiguous time period on an ongoing basis.

AWR forms the foundation for all self-management functionality of Oracle Database. It
is the source of information that gives Oracle Database a historical perspective on how
the database is being used, and enables ADDM to accurately diagnose and resolve
potential performance problems.

Automatic Maintenance Tasks
By analyzing the information stored in AWR, the database can identify the need to
perform routine maintenance tasks. The automated maintenance tasks infrastructure
(known as AutoTask) enables Oracle Database to automatically schedule such
operations. AutoTask schedules automatic maintenance tasks to run in a set of Oracle
Scheduler windows known as maintenance windows. Maintenance windows are those
windows that are members of the Oracle Scheduler window group
MAINTENANCE_WINDOW_GROUP.

By default, MAINTENANCE_WINDOW_GROUP contains one window for each day of the
week. Weekday windows (Monday through Friday) are configured to be open (active)
for 4 hours starting at 10:00 p.m. Weekend windows (Saturday and Sunday) begin at
6:00 a.m. and remain open for 20 hours. You can customize all attributes of these
maintenance windows, including start and end time, frequency, days of the week, and
so on. You can also add and remove maintenance windows from the group.

See Also: Oracle Database Performance Tuning Guide for information
about the Automatic Workload Repository

Intelligent Infrastructure

Manageability 14-5

The following are the tasks that AutoTask automatically schedules in these
maintenance windows:

■ Optimizer statistics gathering

■ Automatic Segment Advisor

■ SQL Tuning Advisor

Using Oracle Enterprise Manager or PL/SQL package procedures, you can adjust
which of these tasks run in which maintenance windows.

Limiting Automatic Maintenance Task Resource Allocation
The impact of automated maintenance tasks on normal database operations is limited
by the default Database Resource Manager resource plan. You can modify the default
plan, or create your own resource plans and activate them either at the systemwide
level or at the individual maintenance window level. AutoTask runs all automatic
maintenance tasks as Oracle Scheduler jobs that belong to particular resource
consumer groups. Resource plans then limit CPU resources that are allocated to these
resource consumer groups. Because your user applications can be assigned to resource
consumer groups, you can adjust the resource allocation for maintenance tasks not
only relative to other maintenance tasks, but also relative to your applications.

Fault Diagnosability Infrastructure
Oracle Database includes an advanced fault diagnosability infrastructure for
preventing, detecting, diagnosing, and resolving problems. The problems that are
targeted are critical errors such as those caused by database code bugs, metadata
corruption, and customer data corruption. The goals of the advanced fault
diagnosability infrastructure are the following:

■ Detecting problems proactively

■ Limiting damage and interruptions after a problem is detected

■ Reducing problem diagnostic time

■ Reducing problem resolution time

■ Simplifying customer interaction with Oracle Support

The keys to achieving these goals are the following technologies:

■ The Health Monitor, which performs deeper analysis of a critical error upon
detection, creates health check reports and adds these reports to the diagnostic
data collected for the error. The DBA can also manually invoke health checks and
obtain reports.

See Also:

■ Oracle Database Administrator's Guide and Oracle Database 2 Day
DBA for instructions for managing automatic maintenance tasks

■ "Oracle Scheduler" on page 14-22

■ "Overview of the Database Resource Manager" on page 14-18

■ Oracle Database Administrator's Guide for information about
Automatic Segment Advisor

■ Oracle Database Performance Tuning Guide for information about
SQL Tuning Advisor

Intelligent Infrastructure

14-6 Oracle Database Concepts

■ First-failure data capture, which captures comprehensive diagnostic data upon the
first occurrence of a critical error

■ Standardized trace and dump formats for easier analysis

■ Incident packaging service, which enables the DBA to automatically package all
diagnostic information surrounding a critical error into an archive suitable for
transmission to Oracle Support.

■ Data Recovery Advisor, which displays data corruption problems, assesses the
extent of the problems, and recommends repair options

■ SQL Test Case Builder, which helps Oracle Support reproduce customer problems
that are related to SQL failures

■ Support Workbench, which is a guided workflow that assists you with capturing
critical error diagnostic information, transmitting it to Oracle Support, and filing a
service request

This section further discusses two components of this new infrastructure:

■ Automatic Diagnostic Repository

■ Incident Packaging Service

Automatic Diagnostic Repository
The Automatic Diagnostic Repository (ADR) is a file-based repository for database
diagnostic data such as traces, the alert log, health monitor reports, and more. It has a
unified directory structure across multiple instances and multiple products. Beginning
with Oracle Database 11g, the database, Automatic Storage Management (ASM), and
other Oracle products or components store all diagnostic data in the ADR. Each
instance of each product stores diagnostic data underneath its own ADR home
directory. For example, in an Oracle Real Application Clusters environment with
shared storage and ASM, each database instance and each ASM instance has a home
directory within the ADR. ADR's unified directory structure, consistent diagnostic
data formats across products and instances, and a unified set of tools enable customers
and Oracle Support to correlate and analyze diagnostic data across multiple instances.

Incident Packaging Service
A DBA can automatically and easily gather all diagnostic data (traces, health check
reports, SQL test cases, and more) pertaining to a critical error and package the data
into a zip file suitable for transmission to Oracle Support. Because all diagnostic data
relating to a critical error are tagged with that error's incident number, the DBA does
not have to search through trace files and other files to determine the files that are
required for analysis; the incident packaging service identifies all required files
automatically and adds them to the package.

See Also: Oracle Database Administrator's Guide for more information
on the fault diagnosability infrastructure and on the Support
Workbench

See Also:

■ Oracle Database Administrator's Guide for more information about
these components

■ Oracle Database Net Services Administrator's Guide and Oracle
Database Net Services Reference for information on ADR usage

Intelligent Infrastructure

Manageability 14-7

Server-Generated Alerts
For problems that cannot be resolved automatically and require administrators to be
notified, such as running out of space, the Oracle Database provides server-generated
alerts. Oracle Database can monitor itself and send out alerts to notify you of any
problem in an efficient and timely manner.

Monitoring activities take place as the database performs its regular operation. This
ensures that the database is aware of problems the moment they arise. The alerts
produced by Oracle Database not only notify the problem, they also provide
recommendations on how the reported problem can be resolved. This ensures quick
problem resolution and helps prevent potential failures.

Advisor Framework
Oracle Database includes a number of advisors for different sub-systems in the
database to automatically determine how the operation of the corresponding
subcomponents could be further optimized. The SQL Tuning Advisor and the SQL
Access Advisor, for example, provide recommendations for running SQL statements
faster. Memory advisors help size the various memory components without resorting
to trial-and-error techniques. The Segment Advisor handles space-related issues, such
as recommending wasted-space reclamation and analyzing growth trends, while the
Undo Advisor guides you in sizing the undo tablespace correctly. The various advisors
are discussed more throughout this chapter.

To ensure the consistency and uniformity in the way advisors function and allow them
to interact with each other seamlessly, Oracle Database includes an advisor
framework. The advisor framework provides a consistent manner in which advisors
are invoked and results are reported. Although these advisors are primarily used by
the database to optimize its own performance, they can be invoked by administrators
to get more insight into the functioning of a particular subcomponent.

Hang Manager
Active entities that attempt to obtain restrictive access to shared resources or request
services from other Oracle Database processes, sessions, and transactions are in danger
of hanging. A hang chain is a chain of processes with each one waiting on a resource
held by the next, with a single process serving as the root of the hang.

Hangs in Oracle Database can cost a great deal in terms of system unavailability.
Specifically, hangs lead to the following problems:

■ Extended system outages. These outages may occur frequently before a fix is
found, which adds to the total downtime.

■ Analyzing the hang to determine where the problem lies can be lengthy, complex,
and prone to error.

The Hang Manager is an Oracle Database infrastructure that can detect hangs, analyze
them, and then obtain the required diagnostic data from Oracle. The Hang Manager is
enabled by default in Oracle RAC databases and Automatic Storage Management
(ASM) instances. Hang manager data is output to trace files.

See Also: Oracle Database 2 Day DBA for more information about
using advisors

Performance Diagnostics and Troubleshooting

14-8 Oracle Database Concepts

Performance Diagnostics and Troubleshooting
Building upon the data captured in AWR, the Automatic Database Diagnostic Monitor
(ADDM) lets Oracle Database diagnose its own performance and determine how
identified problems could be resolved. ADDM runs automatically after each AWR
statistics capture, making the performance diagnostic data readily available.

ADDM examines data captured in AWR and performs analysis to determine the major
issues on the system on a proactive basis. In many cases, it recommends solutions and
quantifies expected benefits. ADDM takes a holistic approach to the performance of
the system, using time as a common currency between components. ADDM identifies
those areas of the system that are consuming the most time. ADDM drills down to
identify the root cause of problems, rather than just the symptoms, and reports the
impact that the problem is having on the system overall. If a recommendation is made,
it reports the benefits that can be expected in terms of time. The use of time throughout
allows the impact of several problems or recommendations to be compared.

ADDM focuses on activities that the database is spending most time on and then drills
down through a sophisticated problem classification tree. Some common problems
detected by ADDM include the following:

■ CPU bottlenecks

■ Poor connection management

■ Excessive parsing

■ Lock contention

■ I/O capacity

■ Undersizing of Oracle Database memory structures; for example, PGA, buffer
cache, log buffer

■ High load SQL statements

■ High PL/SQL and Java time

■ High checkpoint load and cause; for example, small log files, aggressive MTTR
setting

■ Oracle RAC-specific issues

Besides reporting potential performance issues, ADDM also documents non-problem
areas of the system. The subcomponents, such as I/O and memory, that are not
significantly impacting system performance are pruned from the classification tree at
an early stage and are listed so that you can quickly see that there is little to be gained
by performing actions in those areas.

You no longer need to first collect huge volumes of diagnostic data and spend hours
analyzing them in order to find out answers to performance issues. You can simply
follow the recommendation made by ADDM with just a few mouse clicks.

Application and SQL Tuning
Oracle Database completely automates the SQL tuning process. ADDM identifies SQL
statements consuming unusually high system resources and therefore causing
performance problems. In addition, the top SQL statements in terms of CPU and
shared memory consumption are automatically captured in AWR. Thus, the
identification of high load SQL statements happens automatically in Oracle Database
and requires no intervention.

Application and SQL Tuning

Manageability 14-9

After identifying the top resource-consuming SQL statements, Oracle Database can
automatically analyze them and recommend solutions using the Automatic SQL
Tuning Advisor. Automatic SQL Tuning is exposed with an advisor, called the SQL
Tuning Advisor. The SQL Tuning Advisor takes one or more SQL statements as input
and produces well-tuned plans along with tuning advice. You do not need to do
anything other than invoke the SQL Tuning Advisor.

The solution comes right from the optimizer and not from external tools using
pre-defined heuristics. This provides several advantages: a) the tuning is done by the
system component that is ultimately responsible for the execution plans and SQL
performance, b) the tuning process is fully cost-based, and it naturally accounts for
any changes and enhancements done to the query optimizer, c) the tuning process
considers the past execution statistics of a SQL statement and customizes the optimizer
settings for that statement, and d) it collects auxiliary information in conjunction with
the regular statistics based on what is considered useful by the query optimizer.

The recommendation of the Automatic SQL Tuning Advisor can fall into one of the
following categories

■ Statistics Analysis: The Automatic SQL Tuning Advisor checks each query object
for missing or stale statistics and makes recommendations to gather relevant
statistics. It also collects auxiliary information to supply missing statistics or
correct stale statistics in case recommendations are not implemented. Because
Oracle Database automatically gathers optimizer statistics, this should not be the
problem unless the automatic statistics gathering functionality has been disabled.

■ SQL Profiling: The Automatic SQL Tuning Advisor verifies its own estimates and
collects auxiliary information to remove estimation errors. It also collects auxiliary
information in the form of customized optimizer settings (for example, first rows
or all rows) based on past execution history of the SQL statement. It builds a SQL
profile using the auxiliary information and makes a recommendation to create it. It
then enables the query optimizer (under normal mode) to generate a well-tuned
plan. The most powerful aspect of SQL profiles is that they enable tuning of
queries without requiring any syntactical changes and thereby proving a unique
database –resident solution to tune the SQL statements embedded in packaged
applications.

■ Access Path Analysis: The Automatic SQL Tuning Advisor considers whether a
new index can be used to significantly improve access to each table in the query
and when appropriate makes recommendations to create such indexes.

■ SQL Structure Analysis: The Automatic SQL Tuning Advisor tries to identify SQL
statements that lend themselves to bad plans and makes relevant suggestions to
restructure them. The suggested restructuring can be syntactic as well as semantic
changes to the SQL code.

Both access path and SQL structure analysis can be useful in tuning the performance
of an application under development or a homegrown production application where
the administrators and developers have access to application code.

The SQL Access Advisor can automatically analyze the schema design for a given
workload and recommend indexes, function-based indexes, partitions, and
materialized views to create, retain, or drop as appropriate for the workload. For
single statement scenarios, the advisor only recommends adjustments that affect the
current statement. For complete business workloads, the advisor makes
recommendations after considering the impact on the entire workload.

While generating recommendations, the SQL Access Advisor considers the impact of
adding new indexes, partitions, and materialized views on data manipulation
activities, such as insert, update, and delete, in addition to the performance

Memory Management

14-10 Oracle Database Concepts

improvement they are likely to provide for queries. After the SQL Access Advisor has
filtered the workload, but while it is still identifying all possible solutions, you can
asynchronously interrupt the process to get the best solution up to that point in time.

The SQL Access Advisor provides an easy to use interface and requires very little
system knowledge. It can be run without affecting production systems, because the
data can be gathered from the production system and taken to another computer
where the SQL Access Advisor can be run.

Memory Management
Oracle Database memory management allows for dynamic resizing of system global
area (SGA) and program global area (PGA) memory components, either automatically
or manually.

Automatic Memory Management
By default, new database installations are configured to automatically tune the various
components of the SGA and PGA. You can make simple high-level adjustments to
memory allocation by changing one database parameter: MEMORY_TARGET. As you
allocate more system memory to the database with this parameter, the database
automatically adjusts various component sizes for optimal database performance.

The performance of each component is monitored by the Oracle database instance. The
instance uses internal views and statistics to determine how to optimally distribute
memory among the automatically-sized components. Thus, as the workload changes,
memory is redistributed to ensure optimal performance with the new workload. The
database arrives at optimal distribution by taking into consideration long term and
short terms trends.

You can exercise some control over the size of the auto-tuned components by
specifying minimum values for each component. This can be useful in cases where you
know that an application needs a minimum amount of memory in certain components
to function properly.

The sizes of the automatically-tuned components are remembered across shutdowns if
a server parameter file (SPFILE) is used. Thus, the system picks up where it left off
from the last shutdown.

Manual Memory Management and Memory Advisors
If you want to exercise more precise control over allocation for multiple memory
components, you can enable manual memory management. You can then take
advantage of a set of memory advisors, which graphically display current component
sizes and the estimated affect of changing these sizes.

The Shared Pool Advisor determines the optimal shared pool size by tracking its use
by the library cache. The amount of memory available for the library cache can
drastically affect the parse rate of an Oracle database instance. The shared pool advisor
statistics provide information about library cache memory, letting you predict how
changes in the size of the shared pool can affect aging out of objects in the shared pool.

The Buffer Cache Advisor determines the optimal size of the buffer cache. When
manually configuring memory for a new instance, it is difficult to know the correct
size for the buffer cache. Typically, you make a first estimate for the cache size, run a
representative workload on the instance, and then examine the relevant statistics to see

See Also: Oracle Database Performance Tuning Guide for more
information about the SQL Tuning Advisor and the SQL Access
Advisor

Space Management

Manageability 14-11

whether the cache is under- or over-configured. A number of statistics can be used to
examine buffer cache activity. These include the V$DB_CACHE_ADVICE view and the
buffer cache hit ratio.

The Java Pool Advisor provides information about library cache memory used for
Java, and predicts how changes in the size of the Java pool can affect the parse rate.

The Streams Pool Advisor determines the optimal size of the Streams pool. The view
V$STREAMS_POOL_ADVICE gives estimates of the amount of bytes spilled and
unspilled for the different values of the STREAMS_POOL_SIZE parameter. You can use
this to tune the STREAMS_POOL_SIZE parameter for Streams and for logical standby.
AWR reports on the V$STREAMS_POOL_ADVICE view and CPU usage to help you
tune Streams performance.

The Program Global Area (PGA) Advisor helps you determine an appropriate setting
for PGA_AGGREGATE_TARGET, which is the total amount of memory to allocate for all
PGAs for server and background processes.

Space Management
Oracle Database automatically manages its space consumption, sends alerts on
potential space problems, and recommends possible solutions. Oracle Database
features that help you to easily manage space include the following:

■ Automatic Undo Management

■ Oracle-Managed Files

■ Free Space Management

■ Proactive Space Management

■ Intelligent Capacity Planning

■ Space Reclamation

Automatic Undo Management
Earlier releases of Oracle Database used rollback segments to store undo. Space
management for these rollback segments was complex. Automatic undo management
eliminates the complexities of managing rollback segments by automatically managing
space in an undo tablespace. Automatic undo management also optimally tunes the
length of time that undo is retained before being overwritten. This automatic tuning of
undo retention improves the success rate of long running queries and of certain Oracle
Flashback features, which may require the presence of old undo information.

See Also:

■ Chapter 8, "Memory Architecture"

■ Oracle Database Performance Tuning Guide for more information
about memory advisors

■ Oracle Database Administrator's Guide for information about the
various initialization parameters for manual and automatic
memory management, and for information about server
parameter files

See Also: Oracle Database Storage Administrator's Guide

Space Management

14-12 Oracle Database Concepts

Although you can configure the database to use rollback segments, automatic undo
management is the default. An autoextending undo tablespace is automatically
created upon database installation.

Automatic tuning of undo retention generally achieves better results with a fixed size
undo tablespace. If you want to change the undo tablespace to fixed size for this or
other reasons, the Undo Advisor can help you determine the proper fixed size to
allocate. You provide the desired undo retention period for your long-running queries
or Oracle Flashback operations, and the Undo Advisor suggests the required undo
tablespace size. The Undo Advisor makes its recommendations based on system
activity statistics, including the longest running query and undo generation rate.
Advisor information includes the following:

■ Current undo retention

■ Current undo tablespace size

■ Longest query duration

■ Best undo retention possible

■ Undo tablespace size necessary for current undo retention

Oracle-Managed Files
With Oracle-managed files, you do not need to directly manage the files comprising an
Oracle database. Oracle Database uses standard file system interfaces to create and
delete files as needed. This automates the routine task of creation and deletion of
database files.

Free Space Management
Oracle Database allows for managing free space within a table with bitmaps, as well as
traditional dictionary based space management. The bitmapped implementation
eliminates much space-related tuning of tables, while providing improved
performance during peak loads. Additionally, Oracle Database provides automatic
extension of data files, so the files can grow automatically based on the amount of data
in the files. Database administrators do not need to manually track and reorganize the
space usage in all the database files.

Proactive Space Management
Oracle Database introduces a nonintrusive and timely check for space utilization
monitoring. It automatically monitors space utilization during normal space allocation
and de-allocation operations and alerts you if the free space availability falls below the
pre-defined thresholds. Space monitoring functionality is set up out of box, causes no
performance impact, and is uniformly available across all tablespace types. Also, the
same functionality is available both through Oracle Enterprise Manager as well as
SQL. Because the monitoring is performed at the same time as space is allocated and

See Also:

■ "Introduction to Undo Segments and Automatic Undo
Management" on page 2-16

■ Oracle Database 2 Day DBA for information about managing
undo and running the Undo Advisor

■ Oracle Database Administrator's Guide for more information
about the undo tablespace and on undo retention

Space Management

Manageability 14-13

freed up in the database, this guarantees immediate availability of space usage
information whenever you need it.

Notification is performed using server-generated alerts. The alerts are triggered when
certain space-related events occur in the database. For example, when the space usage
threshold of a tablespace is crossed or when a resumable session encounters an out of
space situation, then an alert is raised. An alert is sent instantaneously to take
corrective measures. You may choose to get paged with the alert information and add
space to the tablespace to allow the suspended operation to continue from where it left
off.

The database comes with a default set of alert thresholds. You can override the default
for a given tablespace or set a new default for the entire database through Oracle
Enterprise Manager.

Intelligent Capacity Planning
Space may get overallocated because of the difficulty to predict the space requirement
of an object or the inability to predict the growth trend of an object. On tables that are
heavily updated, the resulting segment may have a lot of internal fragmentation and
maybe even row chaining. These issues can result in a wide variety of problems from
poor performance to space wastage. Oracle Database offers several features to address
these challenges.

Oracle Database can predict the size of a given table based on its structure and
estimated number of rows. This is a powerful "what if" tool that allows estimation of
the size of an object before it is created or rebuilt. If tablespaces have different extent
management policies, then the tool will help decide the tablespace that will cause least
internal fragmentation.

The growth trend report takes you to the next step of capacity planning: planning for
growth. Most database systems grow over time. Planning for growth is an important
aspect of provisioning resources. To aid this process, Oracle Database tracks historical
space utilization in the AWR and uses this information to predict the future resource
requirements.

Space Reclamation
Oracle Database provides in-place reorganization of data for optimal space utilization
by shrinking it. Shrinking of a segment makes unused space available to other
segments in the tablespace and may improve the performance of queries and DML
operations.

The segment shrink functionality both compacts the space used in a segment and then
deallocates it from the segment. The deallocated space is returned to the tablespace
and is available to other objects in the tablespace. Sparsely populated tables may cause
a performance problem for full table scans. By performing shrink, data in the table is
compacted and the high water mark of the segment is pushed down. This makes full
table scans read less blocks run faster.

Segment shrink is an online operation – the table being shrunk is open to queries and
DML while the segment is being shrunk. Additionally, segment shrink is performed in
place. This is an advantage over online table redefinition for compaction and
reclaiming space. You can schedule segment shrink for one or all the objects in the
database as nightly jobs without requiring any additional space to be provided to the
database.

Segment shrink works on heaps, IOTs, IOT overflow segments, LOBs, LOB segments,
materialized views, and indexes with row movement enabled in tablespaces with

Automatic Storage Management

14-14 Oracle Database Concepts

automatic segment space management. When segment shrink is performed on tables
with indexes on them, the indexes are automatically maintained when rows are moved
around for compaction. User-defined triggers are not fired, however, because
compaction is a purely physical operation and does not impact the application.

To easily identify candidate segments for shrinking, Oracle Database automatically
runs the Segment Advisor to evaluate the entire database. The Segment Advisor
performs growth trend analysis on individual objects to determine if there will be any
additional space left in the object in seven days. It then uses the reclaim space target to
select candidate objects to shrink.

In addition to using the pre-computed statistics in the workload repository, the
Segment Advisor performs sampling of the objects under consideration to refine the
statistics for the objects. Although this operation is more resource intensive, it can be
used to perform a more accurate analysis.

Although segment shrink reduces row chaining, and Oracle Database recommends
online redefinition to remove chained rows, the Segment Advisor actually detects
certain chained rows that are above a threshold. For example, if a row size increases
during an update such that it no longer fits into the block, then the Segment Advisor
recommends that the segment be reorganized to improve I/O performance.

Automatic Storage Management
Automatic Storage Management (ASM) provides a vertical integration of the file
system and volume manager specifically built for Oracle database files. ASM
distributes I/O load across all available resources to optimize performance while
removing the need for manual I/O tuning; spreading out the database files avoids
hotspots. ASM helps you manage a dynamic database environment by enabling you to
increase a database's size without having to shutdown the database to adjust the
storage allocation.

ASM lets you define a pool of storage, called a disk group, and then the Oracle kernel
manages the file naming and placement of the database files on that disk group. You

Note: Segment shrink can be performed only on tables with row
movement enabled. Applications that explicitly track rowids of objects
cannot be shrunk, because the application tracks the physical location
of rows in the objects.

Note: The Segment Advisor does not evaluate undo and temporary
tablespaces.

Note: The Segment Advisor does not detect chained rows created by
inserts.

See Also:

■ "Row Chaining and Migrating" on page 2-5 for more information
about row chaining

■ Oracle Database Administrator's Guide and Oracle Database 2 Day
DBA for more information about using the Segment Advisor

Backup and Recovery

Manageability 14-15

can change the storage allocation, such as by adding or removing disks, by using SQL
statements such as CREATE DISKGROUP, ALTER DISKGROUP, and DROP
DISKGROUP. You can also manage disk groups with Oracle Enterprise Manager and
Database Configuration Assistant (DBCA).

Oracle Database provides a simplified management interface for storage resources.
ASM eliminates the need for manual I/O performance tuning. It virtualizes storage to
a set of disk groups and provides redundancy options to enable a high level of
protection. ASM facilitates nonintrusive storage configuration changes with automatic
rebalancing. It spreads database files across all available storage to optimize
performance and resource utilization. ASM reduces your storage administrative
overhead by automating manual storage and thereby increasing your ability to
manage larger databases and more of them with increased efficiency.

The following are some of the basic ASM concepts:

■ Automatic Storage Management Instances

The ASM instance is a special Oracle instance that manages the disks in disk
groups. The ASM instance must be configured and running to enable the database
instance to access ASM files. This configuration is done automatically if Database
Configuration Assistant was used for database creation. An ASM instance cannot
mount a database. The ASM instance simply coordinates data layout for database
instances. Database instances direct the I/O to disks in disk groups without going
through an ASM instance.

■ Disk Groups

A disk group is one or more ASM disks managed as a logical unit. The data
structures in a disk group are self contained and consume some of the disk space
in a disk group. ASM disks can be added or dropped from a disk group while the
database is running. ASM rebalances the data to ensure an even I/O load to all
disks in a disk group even as the disk group configuration changes.

■ Automatic Storage Management Files

When the database requests it, ASM creates files. ASM assigns each file a fully
qualified name ending in a dotted pair of numbers. You can create more
user-friendly alias names for the ASM filenames. To see alias names for ASM files,
query the V$ASM_ALIAS data dictionary view from an ASM instance. In general,
users need not be aware of file names.

■ Automatic Storage Management Disks

Storage is added and removed from disk groups in units of ASM disks. ASM disks
can be entire physical disks, Logical Unit Numbers (LUNs) from a storage array, or
pre-created files in a NAS filer. ASM disks should be independent of each other to
obtain optimal I/O performance. For instance, with a storage array, you might
specify a LUN that represents a hardware mirrored pair of physical disks to ASM
as a single ASM disk.

Backup and Recovery
Oracle Database provides several features that help you to easily manage backup and
recovery. These include the following:

■ Recovery Manager

See Also: Oracle Database Storage Administrator's Guide for
information about ASM

Backup and Recovery

14-16 Oracle Database Concepts

■ Mean Time to Recovery

■ Self Service Error Correction

Recovery Manager
Oracle Recovery Manager (RMAN) is a powerful tool that simplifies, automates, and
improves the performance of backup and recovery operations. RMAN enables one
time backup configuration, automatic management of backups and archived logs
based on a user-specified recovery window, restartable backups and restores, and test
restore/recovery.

RMAN implements a recovery window to control when backups expire. This lets you
establish a period of time during which it is possible to discover logical errors and fix
the affected objects by doing a database or tablespace point-in-time recovery. RMAN
also automatically expires backups that are no longer required to restore the database
to a point-in-time within the recovery window. Control file autobackup also allows for
restoring or recovering a database, even when a RMAN repository is not available.

DBCA can automatically schedule an on disk backup procedure. All you do is specify
the time window for the automatic backups to run. A unified storage location for all
recovery related files and activities in an Oracle database, called the flash recovery
area, can be defined with the initialization parameter DB_RECOVERY_FILE_DEST. All
files needed to completely recover a database from a media failure, such as control
files, archived log files, Flashback logs, RMAN backups, and so on, are part of the flash
recovery area.

Allocating sufficient space to the flash recovery area ensures faster, simpler, and
automatic recovery of the Oracle database. Flash recovery actually manages the files
stored in this location in an intelligent manner to maximize the space utilization and
avoid out of space situations to the extent possible. Based on the specified RMAN
retention policy, the flash recovery area automatically deletes obsolete backups and
archive logs that are no longer required based on that configuration.

Incremental backups let you back up only the changed blocks since the previous
backup. When the block change tracking feature is enabled, Oracle Database tracks the
physical location of all database changes. RMAN automatically uses the change
tracking file to determine which blocks need to be read during an incremental backup
and directly accesses that block to back it up. It reduces the amount of time needed for
daily backups, saves network bandwidth when backing up over a network, and
reduces the backup file storage.

Incremental backups can be used for updating a previously made backup. With
incrementally updated backups, you can merge the image copy of a datafile with a
RMAN incremental backup, resulting in an updated backup that contains the changes
captured by the incremental backup. This eliminates the requirement to make a whole
database backup repeatedly. You can make a full database backup once for a given
database and use incremental backups subsequently to keep the full back up updated.
A backup strategy based on incrementally updated backups can help keep the time
required for media recovery of your database to a minimum.

See Also:

■ Oracle Database Administrator's Guide

■ Oracle Database Backup and Recovery User's Guide

Configuration Management

Manageability 14-17

Mean Time to Recovery
Oracle Database allows for better control over database downtime by letting you
specify the mean time to recover (MTTR) from system failures in number of seconds. A
user-specified MTTR, coupled with dynamic initialization parameters, helps improve
database availability. After you set a time limit for how long a system failure recovery
can take, Oracle Database automatically and transparently makes sure that the system
can restart in that time frame, regardless of the application activity running on the
system at the time of the failure. This provides the fastest possible up time after a
system failure.

The smaller the online logfiles are, the more aggressively DBWRs do incremental
checkpoints, which means more physical writes. This may adversely affect the
run-time performance of the database. Furthermore, if you set
FAST_START_MTTR_TARGET, then the smallest logfile size may drive incremental
checkpointing more aggressively than needed by the MTTR.

The Logfile Size Advisor determines the optimal smallest logfile size from the current
FAST_START_MTTR_TARGET setting and the MTTR statistics. A smallest logfile size is
considered optimal if it does not drive incremental checkpointing more aggressively
than needed by FAST_START_MTTR_TARGET.

The MTTR Advisor helps you evaluate the effect of different MTTR settings on system
performance in terms of extra physical writes. When MTTR advisor is enabled, after
the system runs a typical workload, you can query V$MTTR_TARGET_ADVICE to see
the ratio of the estimated number of cache writes under other MTTR settings to the
number of cache writes under the current MTTR. For instance, a ratio of 1.2 indicates
20% more cache writes.

By looking at the different MTTR settings and their corresponding cache write ratio,
you can decide which MTTR value fits your recovery and performance needs.
V$MTTR_TARGET_ADVICE also gives the ratio on total physical writes, including
direct writes, and the ratio on total I/O, including reads.

Self Service Error Correction
Oracle Flashback technology lets you view and rewind data back and forth in time.
You can query past versions of schema objects, query historical data, perform change
analysis, or perform self-service repair to recover from logical corruptions while the
database is online.

This revolutionizes recovery by just operating on the changed data. The time it takes to
recover the error is equal to the amount of time it took to make the mistake.

Configuration Management
Oracle Enterprise Manager has several powerful configuration management facilities
that help detect configuration changes and differences and enforce best practice

See Also: Oracle Database Backup and Recovery User's Guide for
information about using the MTTR Advisor

See Also:

■ "Overview of High Availability Features" on page 1-22

■ "Oracle Flashback Technology" on page 15-9

■ "Overview of Oracle Flashback Query" on page 13-26

Workload Management

14-18 Oracle Database Concepts

configuration parameter settings. These capabilities also encompass the underlying
hosts and operating systems.

Oracle Enterprise Manager continuously monitors the configuration of all Oracle
systems for such things as best practice parameter settings, security set-up, storage
and file space conditions, and recommended feature usage. Non-conforming systems
are automatically flagged with a detailed explanation of the specific-system
configuration issue. For example, Oracle Enterprise Manager advises you to use new
functionality such as automatic undo management or locally managed tablespaces if
they are not being used. This automatic monitoring of system configurations promotes
best practices configuration management, reduces administrator workload and the
risk of availability, performance, or security compromises.

Oracle Enterprise Manager also automatically alerts you to new critical patches – such
as important security patches – and flags all systems that require that patch. In
addition, you can invoke the Oracle Enterprise Manager patch wizard to find out what
interim patches are available for that installation.

Workload Management
Oracle Database provides the following resource management features:

■ Overview of the Database Resource Manager

■ Overview of Services

Overview of the Database Resource Manager
The Database Resource Manager provides the ability to prioritize work within the
Oracle database system. High priority users get resources, so as to minimize response
time for online workers, for example, while lower priority users, such as batch jobs or
reports, could take longer. This allows for more granular control over resources and
provides features such as automatic consumer group switching, maximum active
sessions control, query execution time estimation and undo pool quotas for consumer
groups.

You can specify the maximum number of concurrently active sessions for each
consumer group. When this limit is reached, the Database Resource Manager queues
all subsequent requests and runs them only after existing active sessions complete.

The Database Resource Manager solves many resource allocation problems that an
operating system does not manage so well:

■ Excessive overhead. This results from operating system context switching between
Oracle database server processes when the number of server processes is high.

■ Inefficient scheduling. The operating system deschedules Oracle database servers
while they hold latches, which is inefficient.

■ Inappropriate allocation of resources. The operating system distributes resources
equally among all active processes and is unable to prioritize one task over
another.

■ Inability to manage database-specific resources.

With the Database Resource Manager, you can do the following:

■ Guarantee certain users a minimum amount of processing resources regardless of
the load on the system and the number of users.

See Also: Oracle Enterprise Manager Concepts

Workload Management

Manageability 14-19

■ Distribute available processing resources by allocating percentages of CPU time or
I/O requests per second to different users and applications.

For example, in a data warehouse, a higher percentage of CPU may be given to
ROLAP (relational on-line analytical processing) applications than to batch jobs. If
I/O resource management is enabled with a shared storage configuration, then
you could also the maximum number of I/O requests per second that can be
issued by this database, or the maximum megabytes of I/O per second.

■ Limit the degree of parallelism of any operation performed by members of a group
of users.

■ Create an active session pool.

This pool consists of a specified maximum number of user sessions allowed to be
concurrently active within a group of users. Additional sessions beyond the
maximum are queued for execution, but you can specify a timeout period, after
which queued jobs terminate.

■ Allow automatic switching of users from one group to another group based on
administrator-defined criteria.

If a member of a particular group of users creates a session that runs for longer
than a specified amount of time or uses a larger amount of I/O (in MB) or a higher
number of I/O requests than allocated, then this session can be automatically
switched to another group of users with different resource requirements.

■ Prevent the execution of operations that are estimated to run for a longer time than
a predefined limit.

■ Create an undo pool.

This pool consists of the amount of undo space that can be consumed in by a
group of users.

■ Configure an instance to use a particular method of allocating resources.

You can dynamically change the method, for example, from a daytime setup to a
nighttime setup, without having to shut down and restart the instance.

■ Identify sessions that would block a quiesce from completing.

It is thus possible to balance one user's resource consumption against that of other
users and to partition system resources among tasks of varying importance, to achieve
overall enterprise goals.

Database Resource Manager Concepts
Resources are allocated to users according to a resource plan specified by the database
administrator. The following terms are used in specifying a resource plan:

A resource plan specifies how the resources are to be distributed among various users
(resource consumer groups).

Note: Switching users or preventing operations could be based on
amount of I/O, as well as amount of CPU time.

See Also: Oracle Database Administrator's Guide for more information
about automatic switching

Workload Management

14-20 Oracle Database Concepts

Resource consumer groups let you group user sessions together by resource
requirements. Resource consumer groups are different from user roles; one database
user can have different sessions assigned to different resource consumer groups.

Resource allocation methods determine what policy to use when allocating for any
particular resource. Resource allocation methods are used by resource plans and
resource consumer groups.

Resource plan directives are a means of assigning consumer groups to particular
plans and partitioning resources among consumer groups by specifying parameters
for each resource allocation method.

The Database Resource Manager also allows for creation of plans within plans, called
subplans. Subplans allow further subdivision of resources among different users of an
application.

Levels provide a mechanism to specify distribution of unused resources among
available users. Up to eight levels of resource allocation can be specified.

Overview of Services
Services represent groups of applications or a subset of a large application with
common attributes, service level thresholds, and priorities. Application functions can
be divided into workloads identified by services. For example, the Oracle E*Business
suite can define a service for each module, such as general ledger, accounts receivable,
order entry, and so on. Oracle Mail can define services for IMAP processes, postman,
garbage collector, monitors, and so on. A service can span one or more instances of an
Oracle database or multiple databases in a cluster, and a single instance can support
multiple services.

The number of instances offering the service is transparent to the application. Services
provide a single system image to manage competing applications, and they allow each
workload to be managed as a single unit.

Middle tier applications and clients select a service by specifying the service name as
part of the connection in the TNS connect data. For example, data sources for the Web
server or the application server are set to route to a service. Using Net
Easy*Connection, this connection includes the service name and network address. For
example, service:IP.

Server side work, such as the Scheduler, parallel execution, and Oracle Streams
Advanced Queuing set the service name as part of the workload definition. For the
Scheduler, jobs are assigned to job classes, and job classes run within services. For
parallel execution and parallel DML, the query coordinator connects to a service, and
the parallel execution processes inherit the service for the duration of the query. For
Oracle Streams Advanced Queuing, streams queues are accessed using services. Work
running under a service inherits the thresholds and attributes for the service and is
measured as part of the service.

The Database Resource Manager binds services to consumer groups and priorities.
This lets services be managed in the database in the order of their importance. For
example, you can define separate services for high priority online users and lower
priority internal reporting applications. Likewise, you can define gold, silver, and

See Also:

■ Oracle Database Administrator's Guide for information about
using the Database Resource Manager

■ Oracle Database Performance Tuning Guide for information about
how to tune resource plans

Workload Management

Manageability 14-21

bronze services to prioritize the order in which requests are serviced for the same
application.

When planning the services for a system, include the priority of each service relative to
the other services. In this way, the Database Resource Manager can satisfy the highest
priority services first, followed by the next priority services, and so on.

This section includes the following topics:

■ Workload Management with Services

■ High Availability with Services

Workload Management with Services
AWR lets you analyze the performance of workloads using the aggregation dimension
for service. AWR automatically maintains response time and CPU consumption
metrics, performance and resource statistics wait events, threshold-based alerts, and
performance indexes for all services.

Service, module, and action tags identify operations within a service at the server.
(MODULE and ACTION are set by the application) End to end monitoring enables
aggregation and tracing at service, module, and action levels to identify high load
operations. Oracle Enterprise Manager administers the service quality thresholds for
response time and CPU consumption, monitors the top services, and provides drill
down to the top modules and top actions for each service.

With AWR, performance management by the service aggregation makes sense when
monitoring by sessions may not. For example, in systems using connection pools or
transaction processing monitors, the sessions are shared, making accountability
difficult.

The service, module, and action tags provide major and minor boundaries to
discriminate the work and the processing flow. This aggregation level lets you tune
groups of SQL that run together (at service, module, and action levels). These statistics
can be used to manage service quality, to assess resource consumption, to adjust
priorities of services relative to other services, and to point to places where tuning is
required. With Oracle Real Application Clusters (Oracle RAC), services can be
provisioned on different instances based on their current performance.

Connect time routing and run-time routing algorithms balance the workload across
the instances offering a service. The metrics for server-side connection load balancing
are extended to include service performance. Connections are shared across instances
according to the current service performance. Using service performance for load
balancing accommodates nodes of different sizes and workloads with competing
priorities. It also prevents sending work to nodes that are hung or failed.

AWR maintains metrics for service performance continuously. These metrics are
available when routing run-time requests from mid-tier servers and TP monitors to
Oracle RAC. For example, Oracle JDBC connection pools use the service data when
routing the run-time requests to instances offering a service.

High Availability with Services
Oracle RAC use services to enable uninterrupted database operations. Services are
tightly integrated with the Oracle Clusterware high availability framework that
supports Oracle RAC. When a failure occurs, the service continues uninterrupted on
the nodes and instances unaffected by the failure. Those elements of the services
affected by the failure are recovered fast by Oracle Clusterware, and the recovering
sessions are balanced across the surviving system automatically.

Oracle Scheduler

14-22 Oracle Database Concepts

For planned outages, Oracle RAC provides interfaces to relocate, disable, and enable
services. Relocate migrates the service to another instance, and, as an option, the
sessions are disconnected. To prevent the Oracle Clusterware system from responding
to an unplanned failure that happens during maintenance or repair, the service is
disabled on the node doing maintenance at the beginning of the planned outage. It is
then enabled at the end of the outage.

These service-based operations, in combination with schema pre-compilation
(DBMS_SCHEMA_COPY) on a service basis, minimize the downtime for many planned
outages. For example, application upgrades, operating system upgrades, hardware
upgrades and repairs, Oracle patches approved for rolling upgrade, and parameter
changes can be implemented by isolating one or more services at a time.

The continuous service built into Oracle RAC is extended to applications and mid-tier
servers. When the state of a service changes, (for example, up, down, or not restarting),
the new status is notified to interested subscribers through events and callouts.
Applications can use this notification to achieve very fast detection of failures,
balancing of connection pools following failures, and balancing of connection pools
again when the failed components are repaired. For example, when the service at an
instance starts, the event and callouts are used to immediately trigger work at the
service.

When the service at an instance stops, the event is used to interrupt applications using
the service at that instance. Using the notification eliminates the client waiting on TCP
timeouts. The events are integrated with Oracle JDBC connection pools, Oracle Data
Provider for .Net Connection Pools, and Oracle Call Interface, including Transparent
Application Failover (TAF).

With Oracle Data Guard, production services are offered at the production site. Other
standby sites can offer reporting services when operating in read only mode. Oracle
RAC and Data Guard Broker are integrated, so that when running failover, switchover,
and protection mode changes, the production services are torn down at the original
production site and built up at the new production site. There is a controlled change of
command between Oracle Clusterware managing the services locally and Data Guard
managing the transition. When the Data Guard transition is complete, Oracle
Clusterware resumes management of the high availability operation automatically.

Oracle Scheduler
Oracle Database includes a feature rich job scheduler. You can schedule jobs to run at a
designated date and time (such as every weeknight at 11:00pm), or upon the
occurrence of a designated event (such as when inventory drops below a certain level).
You can define custom calendars such as the last workday of every fiscal quarter.

You create and manipulate Scheduler objects such as jobs, programs, and schedules
with the DBMS_SCHEDULER package or with Oracle Enterprise Manager. Because

See Also:

■ Oracle Real Application Clusters Administration and Deployment
Guide

■ Oracle Database Advanced Application Developer's Guide

■ Oracle Database PL/SQL Packages and Types Reference

■ Oracle Database Performance Tuning Guide

■ "Oracle Scheduler" on page 14-22

■ "Overview of the Database Resource Manager" on page 14-18

Oracle Scheduler

Manageability 14-23

Scheduler objects are standard database objects, you can control access to them with
system and object privileges.

Program objects (or programs) contain metadata about the command that the Scheduler
will run, including default values for any arguments. Schedule objects (schedules)
contain information about run date and time and recurrence patterns. Job objects (jobs)
associate a program with a schedule, and are the principal object that you work with
in the Scheduler. You can create multiple jobs that refer to the same program but that
run at different schedules. A job can override the default values of program
arguments, so multiple jobs can refer to the same program but provide different
argument values.

The Scheduler provides comprehensive job logging in Oracle Enterprise Manager and
in a variety of views available from SQL*Plus. You can configure a job to raise an event
when a specified job state change occurs. Your application can process the event and
take appropriate action. For example, the Scheduler can page or send an e-mail to the
DBA if a job terminates abnormally.

The Scheduler also includes chains, which are named groups of steps that work
together to accomplish a task. Steps in the chain can be a program, subchain or an
event, and you specify rules that determine when each step runs and what the
dependencies between steps are. An example of a chain is to run programs A and B,
and only run program C if programs A and B complete successfully, otherwise run
program D.

The Scheduler is integrated with the Database Resource Manager. You can associate
Scheduler jobs with resource consumer groups, and you can create Scheduler objects
called windows that automatically activate different resource plans at different times.
Running jobs can then see a change in the resources that are allocated to them when
there is a change in resource plan. A Scheduler job can name a window as its schedule
instead of a schedule object. Such a job runs when the named window opens.
Additionally, windows can be grouped into window groups, and a job can name a
window group as its schedule. Such a job runs whenever any of the windows in the
named window group opens.

What Can the Scheduler Do?
The Scheduler provides complex enterprise scheduling functionality. You can use this
functionality to do the following:

■ Schedule Job Execution

■ Time-Based Scheduling

■ Event-Based Scheduling

■ Define Multi-Step Jobs

■ Schedule Job Processes that Model Business Requirements

■ Manage and Monitor Jobs

■ Execute and Manage Jobs in a Clustered Environment

Schedule Job Execution
The most basic capability of a job scheduler is to schedule the execution of a job. The
Scheduler supports both time-based and event-based scheduling.

See Also: Oracle Database Administrator's Guide for a detailed
overview of the Scheduler and for information about how to use and
administer the Scheduler

Oracle Scheduler

14-24 Oracle Database Concepts

Time-Based Scheduling
Time-based scheduling enables users to specify a fixed date and time (for example,
Jan. 23rd 2006 at 1:00 AM), a repeating schedule (for example, every Monday), or a
defined rule (for example the last Sunday of every other month or the fourth Thursday
in November which defines Thanksgiving).

Users can create new composite schedules with minimum effort by combining existing
schedules. For example if a HOLIDAY and WEEKDAY schedule were already defined,
a WORKDAY schedule can be easily created by excluding the HOLIDAY schedule
from the WEEKDAY schedule.

Companies often use a fiscal calendar as opposed to a regular calendar and thus have
the requirement to schedule jobs on the last workday of their fiscal quarter. The
Scheduler supports user-defined frequencies which enables users to define not only
the last workday of every month but also the last workday of every fiscal quarter.

Event-Based Scheduling
Event-based scheduling as the name implies triggers jobs based on real-time events.
Events are defined as any state changes or occurrences in the system such as the
arrival of a file. Scheduling based on events enables you to handle situations where a
precise time is not known in advance for when you would want a job to execute.

Define Multi-Step Jobs
The Scheduler has support for single or multi-step jobs. Multi-step jobs are defined
using a Chain. A Chain consists of multiple steps combined using dependency rules.
Since each step represents a task, Chains enable users to specify dependencies between
tasks, for example execute task C one hour after the successful completion of task A
and task B.

Schedule Job Processes that Model Business Requirements
The Scheduler enables job processing in a way that models your business
requirements. It enables limited computing resources to be allocated appropriately
among competing jobs, thus aligning job processing with your business needs. Jobs
that share common characteristic and behavior can be grouped into larger entities
called job classes. You can prioritize among the classes by controlling the resources
allocated to each class. This lets you ensure that critical jobs have priority and enough
resources to complete. Jobs can also be prioritized within a job class.

The Scheduler also provides the ability to change the prioritization based on a
schedule. Because the definition of a critical job can change across time, the Scheduler
lets you define different class priorities at different times.

Manage and Monitor Jobs
There are multiple states that a job undergoes from its creation to its completion. All
Scheduler activity is logged, and information, such as the status of the job and the time
to completion, can be easily tracked. This information is stored in views. It can be
queried with Oracle Enterprise Manager or a SQL query. The views provide
information about jobs and their execution that can help you schedule and manage
your jobs better. For example, you can easily track all jobs that failed for user scott.

In order to facilitate the monitoring of jobs, users can also flag the Scheduler to raise an
event if unexpected behavior occurs and indicate the actions that should be taken if
the specified event occurs. For example if a job failed an administrator should be
notified.

Oracle Scheduler

Manageability 14-25

Execute and Manage Jobs in a Clustered Environment
A cluster is a set of database instances that cooperates to perform the same task. Oracle
Real Application Clusters provides scalability and reliability without any change to
your applications. The Scheduler fully supports execution of jobs in such a clustered
environment. To balance the load on your system and for better performance, you can
also specify the service where you want a job to run.

See Also:

■ Oracle Database Administrator's Guide for more information about
transferring files with the DBMS_SCHEDULER package and also the
DBMS_FILE_TRANSFER package

■ Oracle Database SQL Language Reference for more information about
fixed user database links

Oracle Scheduler

14-26 Oracle Database Concepts

Backup and Recovery 15-1

15
Backup and Recovery

Backup and recovery procedures protect your database against data loss and
reconstruct the data, should loss occur. This chapter introduces concepts fundamental
to designing a backup and recovery strategy.

This chapter contains the following topics:

■ Introduction to Backup and Recovery

■ Database Backups

■ Problems Requiring Data Repair

■ Data Repair

Introduction to Backup and Recovery
A backup is a copy of data. This copy can include important parts of the database such
as datafiles, which contain user data, and the server parameter file and control file,
which contain configuration information.

The main purpose of a backup is as a safeguard against unexpected data loss and
application errors. For example, a disk may fail, causing the loss of datafiles. You can
restore a backup of the data and reconstruct the lost data through media recovery.
Media recovery refers to the various operations involved in restoring, rolling forward,
and rolling back a backup of database files.

You have two ways to perform backup and recovery of an Oracle database: Recovery
Manager (RMAN) and user-managed techniques. RMAN is an Oracle Database utility
that can back up, restore, and recover database files. It is a feature of Oracle Database
and does not require separate installation. You can also use operating system
commands for backups and SQL*Plus for media recovery. This technique, also called
user-managed backup and recovery, is fully supported by Oracle, although use of
RMAN is recommended because it is more robust and simplifies administration.

Oracle Flashback Technology is an alternative to traditional backup and recovery. You
can use flashback features to view past states of data, and move data back and forth in
time, without restoring data from backups. Instead, you can issue a single command to
rewind your entire database, or a single table, to a time in the past. The flashback

See Also:

■ "Overview of Database Backup and Recovery Features" on
page 1-20

■ Oracle Database Backup and Recovery User's Guide for backup and
recovery concepts and tasks

Introduction to Backup and Recovery

15-2 Oracle Database Concepts

features of Oracle Database are more efficient and less disruptive than media recovery
in most circumstances in which they are applicable.

No matter which backup and recovery tool you use, it is recommended that you
configure a flash recovery area to manage your recovery-related files.

Flash Recovery Area
The flash recovery area is an optional Oracle Database-managed directory, file system,
or Automatic Storage Management disk group that provides a centralized disk
location for backup and recovery files. You can configure the flash recovery area when
creating a database with the Database Configuration Assistant or add it later.

Oracle Database can write archived logs to the flash recovery area. RMAN can store
backups in the flash recovery are and restore them from the flash recovery area during
media recovery. The flash recovery area also acts as a disk cache for tape.

Oracle Database recovery components interact with the flash recovery area to ensure
that the database is completely recoverable by using files stored in the recovery area.
All files necessary to recover the database following a media failure are part of the
flash recovery area.

The following recovery-related files are stored in the flash recovery area:

■ Current control file

■ Online redo logs

■ Archived redo logs

■ Flashback logs

■ Control file autobackups

■ Datafile and control file copies

■ Backup pieces

Oracle Database enables you to define a disk limit, which is the amount of space that
the database can use in the flash recovery area. A disk limit enables you to use the
remaining disk space for other purposes and not to dedicate a complete disk for the
flash recovery area. It does not include any overhead that is not known to Oracle
Database. For example, the disk limit does not include the extra size of a file system
that is compressed, mirrored, or uses some other redundancy mechanism.

Oracle Database and RMAN create files in the flash recovery area until the space used
reaches the recovery area disk limit. When it must make room for new files, Oracle
Database deletes files from the flash recovery area that are obsolete, redundant, or
backed up to tertiary storage. Oracle Database prints a warning when available disk
space is less than 15%, but it continues to fill the disk to 100% of the disk limit.

The bigger the flash recovery area, the more useful it becomes. The recommended disk
limit is the sum of the database size, the size of incremental backups, and the size of all
archive logs that have not been copied to tape.

See Also:

■ Oracle Database Backup and Recovery User's Guide for the rules
that define the priority of file deletion, as well as other
information about the flash recovery area

■ Oracle Database Administrator's Guide for information about how
to set up and administer the flash recovery area

Database Backups

Backup and Recovery 15-3

Database Backups
This section describes physical backups. This section includes the following topics:

■ What Are Database Backups?

■ Whole Database and Partial Database Backups

■ Consistent and Inconsistent Backups

■ RMAN and User-Managed Backups

What Are Database Backups?
Database backups can be either physical or logical. Physical backups, which are the
primary concern in a backup and recovery strategy, are copies of physical database
files. You can make physical backups with either RMAN or operating system utilities.

In contrast, logical backups contain logical data such as tables and stored procedures.
You can extract the logical data with an Oracle Database utility such as Data Pump
Export and store it in a binary file. Logical backups can supplement physical backups.

The primary purpose of a database backup is for data protection, but you can also
create archival database backups for data preservation. For example, suppose you
have a business requirement to preserve customer transaction records for a specified
period of time. You can use RMAN to create an archival backup of the database, along
with the redo necessary to make it consistent, for offsite storage. You can control how
long this database backup is exempt from the RMAN retention policies that govern the
deletion of obsolete backups.

Whole Database and Partial Database Backups
A whole database backup is a backup of every datafile in the database, plus the
control file. Whole database backups are the most common type of backup.

As shown in Figure 15–1, a whole database backups can be taken in either
ARCHIVELOG or NOARCHIVELOG mode and is either a consistent backup or an
inconsistent backup. Whether a backup is consistent determines whether you must
apply redo logs after restoring the backup.

Figure 15–1 Whole Database Backup Options

A partial backup includes a subset of the database, that is, individual tablespaces or
datafiles. A tablespace backup is a backup of the datafiles that make up the tablespace.
Tablespace backups, whether online or offline, are valid only if the database is

Whole database backups

closedopen, inconsistent closedopen, inconsistent
(not valid)

ARCHIVELOG NOARCHIVELOG

inconsistent
(not recommended)

consistentinconsistentconsistent

Database Backups

15-4 Oracle Database Concepts

operating in ARCHIVELOG mode. The reason is that redo is required to make the
restored tablespace consistent with the other tablespaces in the database.

A datafile backup is a backup of a single datafile. Datafile backups, which are not as
common as tablespace backups, are valid in ARCHIVELOG databases.

Consistent and Inconsistent Backups
Database backups are either consistent or inconsistent. This section explains the
difference between them.

This section includes the following topics:

■ Overview of Consistent Backups

■ Overview of Inconsistent Backups

Overview of Consistent Backups
In a consistent database backup, all read/write datafiles and control files are
checkpointed with the same system change number (SCN). The files in the backup are
guaranteed to contain all changes up to the same SCN. Unlike an inconsistent backup,
a consistent whole database backup does not require recovery after it is restored.

The only way to make a consistent whole database backup is to shut down the
database with the NORMAL, IMMEDIATE, or TRANSACTIONAL options and make the
backup while the database is closed. If a database is not shut down consistently, for
example, an instance fails or you issue a SHUTDOWN ABORT statement, then the
datafiles are always inconsistent—unless the database is a read-only database.

The important point is that you can open the database after restoring a consistent
whole database backup without needing recovery because the data is already consistent:
no action is required to make the data in the restored datafiles correct. Thus, you can
restore a year-old consistent backup of your database without performing media
recovery and without the database performing instance recovery.

A consistent whole database backup is the only valid backup option for databases
operating in NOARCHIVELOG mode. Other backup options require recovery for
consistency, which is not possible without archived redo logs.

A consistent whole database backup is also a valid backup option for databases
operating in ARCHIVELOG mode. When this type of backup is restored and archived
logs are available, you have the option of either opening the database immediately and
losing transactions that were made after the backup was made, or applying the
archived logs to recover those transactions.

Overview of Inconsistent Backups
In an inconsistent database backup, read/write datafiles and control files are not
guaranteed to be checkpointed to the same SCN. The files in the backup can contain
data taken from different points in time, which means that changes can be missing.
This situation can occur when datafiles are modified while backups are being taken.

See Also: Oracle Database Backup and Recovery Reference and Oracle
Database Utilities for information about logical backups

Note: When you restore a consistent whole database backup without
applying redo, you lose all transactions that were made after the
backup was taken.

Database Backups

Backup and Recovery 15-5

If you back up the database when it is open or mounted after an inconsistent
shutdown, then the backup is inconsistent. A backup of online datafiles is called an
online backup. You must run the database in ARCHIVELOG mode for online backups.

As long as the database runs in ARCHIVELOG mode, and you back up the archived
redo logs and datafiles, inconsistent backups can be the foundation for a sound backup
and recovery strategy. Inconsistent backups offer superior availability because you do
not have to shut down the database to make backups that fully protect the database.

Oracle Database recovery makes inconsistent backups consistent by reading all
archived and online redo logs, starting with the earliest SCN in any of the datafile
headers, and applying the changes from the logs back into the datafiles. After making
an inconsistent backup, always ensure that you have the redo necessary to recover the
backup by archiving the unarchived redo logs. If you do not have all archived redo
logs produced during the backup, then you cannot recover it because you do not have
all the redo necessary to make it consistent.

RMAN and User-Managed Backups
The RMAN BACKUP command generates either image copies or backup sets. An image
copy is an exact duplicate of a datafile, control file, or archived log. You can create
image copies of physical files with operating system utilities or RMAN, and you can
restore them as-is without performing additional processing by using either operating
system utilities or RMAN.

A backup set is a backup in a proprietary format that consists of one or more physical
files called backup pieces. A backup set can contain multiple datafiles. The smallest
unit of a backup set is a binary file called a backup piece. Backup sets, which are only
created and accessed through RMAN, are the only form in which RMAN can write
backups to sequential devices such as tape drives.

This section includes the following topics:

■ Online Backups

■ Control File Backups

■ Archived Redo Log Backups

Online Backups
Because the database continues writing to the file during an online backup, it is
possible to back up inconsistent data within a block. For example, assume that either
RMAN or an operating system utility reads the block while database writer is in the
middle of updating the block. In this case, RMAN or the copy utility could read the
new data in the first half of the block and the old data in the second half of the block.
The block is fractured, meaning that the data in this block is not consistent.

During an RMAN backup, the Oracle database reads the datafiles, not an operating
system utility. The server reads each block and determines whether the block is
fractured. If the block is fractured, then the database re-reads the block until it gets a
valid block.

See Also: Oracle Database Backup and Recovery User's Guide

Note: Unlike operating system copies, RMAN validates the blocks
in the file and records the image copy in the repository.

Database Backups

15-6 Oracle Database Concepts

When you back up an online datafile with an operating system utility rather than with
RMAN, you must use a different method to handle fractured blocks. You must first
place the files in backup mode with the ALTER TABLESPACE BEGIN BACKUP
statement (to back up an individual tablespace), or the ALTER DATABASE BEGIN
BACKUP statement (to back up the entire database). After an online backup is
completed, you must run the ALTER TABLESPACE...END BACKUP or ALTER
DATABASE END BACKUP statement to take the files out of backup mode.

When updates are made to files in backup mode, additional redo data is logged. This
additional data is needed to repair fractured blocks that might be backed up by the
operating system utility.

Control File Backups
Backing up the control file is a crucial aspect of backup and recovery. Without a control
file, you cannot mount or open the database. You can instruct RMAN to automatically
backup the control file whenever you run backup jobs by executing CONFIGURE
CONTROLFILE AUTOBACKUP ON. Because the autobackup uses a default filename,
RMAN can restore this backup even if the RMAN repository is unavailable. Hence,
this feature is extremely useful in a disaster recovery scenario.

You can make manual backups of the control file by using the following methods:

■ The RMAN BACKUP CURRENT CONTROLFILE command makes a binary backup
of the control file, as either a backup set or an image copy.

■ The SQL statement ALTER DATABASE BACKUP CONTROLFILE makes a binary
backup of the control file.

■ The SQL statement ALTER DATABASE BACKUP CONTROLFILE TO TRACE
exports the control file contents to a SQL script file. You can use the script to create
a new control file. Trace file backups have one major disadvantage: they contain
no records of archived redo logs, and RMAN backups and copies. For this reason,
binary backups are preferable.

Archived Redo Log Backups
You can use archived redo logs to roll a backup forward in time. To recover a backup
through the most recent archived redo log, every log generated after the backup was
made must be available. In other words, you cannot recover from archived redo log
100 to log 200 if log 173 is missing. If log 173 is missing, then you must halt recovery
after applying log 172 and open the database with the RESETLOGS option.

Because archived redo logs are essential to recovery, you should back them up
regularly. If you use a media manager, then back up the logs regularly to tape. You can
make backups of archived logs by using the following methods:

■ The RMAN BACKUP ARCHIVELOG command

■ The RMAN BACKUP...PLUS ARCHIVELOG command

■ An operating system utility

See Also:

■ Oracle Database Backup and Recovery User's Guide

■ Oracle Database Backup and Recovery Reference

Problems Requiring Data Repair

Backup and Recovery 15-7

Problems Requiring Data Repair
The following failures may require DBA intervention, and may even crash a database
instance, but will not generally cause data loss or the need to recover from backup.

■ Instance failures

■ Network failures

■ Failure of Oracle Database background processes

■ Failure of a statement to execute due to, for example, exhaustion of some resource
such as space in a datafile

Typically, data recovery is a response to media failures or user errors.

This section includes the following topics:

■ Media Failures

■ User Errors

Media Failures
A media failure occurs when a problem external to the database prevents Oracle
Database from reading from or writing to a file during database operations. Typical
media failures include physical failures, such as head crashes, and the overwriting,
deletion or corruption of a database file. Media failures are less common than user or
application errors, but your backup and recovery strategy should prepare for them.

Database operation after a media failure of online redo log files or control files
depends on whether the files are protected by multiplexing. When an online redo log
or control file is multiplexed, the database maintains multiple copies of the file.

If a media failure damages a disk containing one copy of a multiplexed online redo
log, then the database can usually continue to operate without significant interruption.
Damage to a nonmultiplexed online redo log causes database operation to halt and
may cause permanent loss of data.

Damage to any control file, whether it is multiplexed or not, halts the database when it
attempts to read or write to the damaged control file. The database accesses the control
file frequently, for example, at every checkpoint and online redo log switch.

Media failures are either read errors or write errors. In a read error, the instance
cannot read a datafile and an operating system error is returned to the application,
along with an error indicating that the file cannot be found, cannot be opened, or
cannot be read. The database continues to run, but the error is returned each time an
unsuccessful read occurs. At the next checkpoint, a write error will occur when the
database attempts to write to the datafile header as part of the checkpoint process.

The effect of a datafile write error depends upon which tablespace the datafile is in. If
the instance cannot write to a datafile in the SYSTEM tablespace, an undo tablespace,
or a datafile with active rollback segments, then the database issues an error and shuts
down. All files in the SYSTEM tablespace and all datafiles containing undo or rollback
segments must be online in order for the database to operate properly.

See Also:

■ Oracle Database Backup and Recovery User's Guide

■ Oracle Database Backup and Recovery Reference

Data Repair

15-8 Oracle Database Concepts

If the instance cannot write to a datafile other than those in the preceding list, then the
result depends on whether the database is running in ARCHIVELOG mode. In
ARCHIVELOG mode, the database records an error in the database writer trace file and
takes the affected datafile offline. All other datafiles in the tablespace containing this
datafile remain online. You can then rectify the underlying problem and restore and
recover the affected tablespace.

In NOARCHIVELOG mode, the database writer background process fails and the
instance fails. The cause of the problem determines the required response. If the
problem is temporary, then crash recovery usually can be performed using the online
redo log files. In such situations, the instance can be restarted without resorting to
media recovery. If a datafile is damaged, however, then you must restore a consistent
backup of the entire database.

User Errors
A user or application may make unwanted changes to your database, such as
erroneous updates, deleting the contents of a table, or dropping database objects. An
adequate backup and recovery strategy uses the many features of Oracle Database to
let you return your database to the desired state, with the minimum possible impact
upon database availability, and minimal DBA effort.

Data Repair
Typically, you have more than one way to solve the problems described in "Problems
Requiring Data Repair" on page 15-7.

Data Recovery Advisor is an integrated solution that performs much of the diagnosis
and repair work for you. Data Recovery Advisor can diagnose failures, suggest both
manual and automated repair options, and in some cases automatically repair failures.

To correct problems caused by logical data corruptions or user errors, you can use
Oracle Flashback as an alternative to media recovery. Oracle Flashback features enable
you to rewind the whole database or a subset of the database to a previous time.

To correct media failures, you can use media recovery. Media recovery is the
application of redo or incremental backups to a backup to update it with lost changes.
Block media recovery is a more specialized operation that you use when just a few
blocks in one or more files have been corrupted.

This section includes the following topics:

■ Data Recovery Advisor

■ Oracle Flashback Technology

■ Media Recovery

See Also:

■ Oracle Database Backup and Recovery User's Guide to learn how to
perform point-in-time recovery for an entire database

■ Oracle Database Backup and Recovery User's Guide to learn how to
perform tablespace point-in-time recovery

■ Oracle Database Backup and Recovery User's Guide to learn how to
use the flashback features of Oracle Database

Data Repair

Backup and Recovery 15-9

Data Recovery Advisor
Oracle Database includes the Data Recovery Advisor tool, which automatically
diagnoses persistent data failures, presents appropriate repair options, and executes
them at your request. You can use Data Recovery Advisor either through the
Enterprise Manager interface or through the RMAN client.

A checker is a diagnostic operation or procedure registered with the Health Monitor to
assess the health of the database or its components. The health assessment is known as
a data integrity check and can be invoked reactively or proactively.

Failures are normally detected reactively. A database operation involving corrupted
data results in an error, which automatically invokes a data integrity check that
searches the database for failures related to the error. If failures are diagnosed, then
they are recorded in the Automatic Diagnostic Repository (ADR). You can also invoke
a data integrity check proactively through the Health Monitor or by checking for block
corruption with the VALIDATE and BACKUP commands in RMAN.

You can use Data Recovery Advisor to generate repair advice and repair failures only
after failures have been detected by the database and stored in ADR. Each failure has a
status: open or closed. Each failure also has a priority: critical, high, or low. Failures
with critical priority require immediate attention because they make the whole
database unavailable. Failures with high priority make a database partly unavailable
or unrecoverable, and usually have to be repaired in a reasonably short time.
Examples of high-priority failures include data block corruptions and non-fatal I/O
errors. Low priority failures can wait until more important failures are fixed.

Data Recovery Advisor automatically determines the best repair options and their
impact on the database. Typically, Data Recovery Advisor generates both manual and
automated repair options for each failure or group of failures. The manual options are
categorized as either mandatory or optional.

Before presenting an automated repair option, Data Recovery Advisor validates it with
respect to the specific environment, as well as availability of media components
required to complete the proposed repair. If you choose an automatic repair, then
Oracle Database executes it for you. The Data Recovery Advisor tool verifies the repair
success and closes the appropriate failures.

Oracle Flashback Technology
Oracle Database provides a group of features known as Oracle Flashback Technology
that support viewing past states of data, and winding data back and forth in time,
without requiring the restore of the database from backup. Depending on the changes
to your database, Flashback features can often reverse the unwanted changes more
quickly and with less impact on database availability than media recovery.

See Also:

■ Oracle Database Backup and Recovery User's Guide

■ Oracle Database Backup and Recovery Reference

See Also:

■ Oracle Database Backup and Recovery User's Guide to learn how to
use the Data Recovery Advisor in the RMAN command-line
interface

■ Oracle Database 2 Day DBA to learn how to use the Data Recovery
Advisor in Enterprise Manager

Data Repair

15-10 Oracle Database Concepts

This section includes the following topics:

■ Oracle Flashback Database

■ Oracle Flashback Table

■ Oracle Flashback Drop

Oracle Flashback Database
Oracle Flashback Database enables you to rewind an Oracle database to a previous
time to correct problems caused by logical data corruptions or user errors.

If a flash recovery area is configured, and if you have enabled the Flashback database
functionality, then you can use the RMAN or SQL FLASHBACK DATABASE command
to return the database to a prior time. Flashback Database is not true media recovery
because it does not involve restoring physical files. Flashback Database is preferable to
using the RESTORE and RECOVER commands in some cases because it is faster and
easier and does not require restoring the whole database.

When you use Flashback Database, Oracle Database uses past block images to back
out changes to the database. During normal database operation, Oracle Database
occasionally logs these block images in flashback logs. Flashback logs are written
sequentially and are not archived. Oracle Database automatically creates, deletes, and
resizes flashback logs in the flash recovery area. You only need to be aware of
flashback logs for monitoring performance and deciding how much disk space to
allocate to the flash recovery area for flashback logs.

The time it takes to rewind a database with FLASHBACK DATABASE is proportional to
how far back in time you must go and the amount of database activity after the target
time. The time it would take to restore and recover the whole database could be much
longer. The before images in the flashback logs are only used to restore the database to
a point in the past, and forward recovery is used to bring the database to a consistent
state at some time in the past. Oracle Database returns datafiles to the previous
point-in-time, but not auxiliary files, such as initialization parameter files.

Flashback database can also be used to compliment Data Guard, Recovery Advisor,
and for synchronizing clone databases.

Oracle Flashback Table
Oracle Flashback Table enables you to rewind tables to a specified point in time with a
single statement. You can restore table data along with associated indexes, triggers,
and constraints, while the database is online, undoing changes to only the specified

See Also: "Overview of High Availability Features" on page 1-22 for
an overview of all Oracle Flashback features, including those not
directly related to backup and recovery

See Also:

■ Oracle Database Backup and Recovery User's Guide for details
about using Oracle Flashback Database

■ Oracle Database SQL Language Reference for information about
the FLASHBACK DATABASE statement

■ Oracle Data Guard Concepts and Administration for information
on how flashback database compliments Oracle Data Guard

■ Oracle Database High Availability Overview for information on
further uses of flashback database and restore points

Data Repair

Backup and Recovery 15-11

tables. Oracle Flashback Table does not address physical corruption such as bad disks
or data segment and index inconsistencies.

Oracle Flashback Table works like a self-service repair tool. Suppose a user
accidentally deletes some important rows from a table and wants to recover the
deleted rows. You can restore the table to the time before the deletion and see the
missing rows in the table with the FLASHBACK TABLE statement.

You can restore the table and its contents to a certain wall clock time or user-specified
system change number (SCN). Use Oracle Flashback Table with Oracle Flashback
Version Query and Oracle Flashback Transaction Query to find a time to which to
restore the table.

For Oracle Flashback Table to succeed, the system must retain enough undo
information to satisfy the specified SCN or timestamp, and the integrity constraints
specified on the tables cannot be violated. Also, row movement must be enabled on
the table.

The availability of retained undo information for Oracle Flashback Table is controlled
by the automatically tuned undo retention period of the system. The undo retention
period indicates the amount of time that must pass before old undo information—that
is, undo information for committed transactions—can be overwritten. The database
collects usage statistics and tunes the undo retention period based on these statistics
and on undo tablespace size. You can request a minimum undo retention period by
setting the UNDO_RETENTION initialization parameter.

Oracle Flashback Drop
Oracle Flashback Drop reverses the effects of a DROP TABLE operation. Flashback
Drop is substantially faster than other recovery mechanisms that can be used in this
situation, such as point-in-time recovery, and does not lead to any loss of recent
transactions or downtime.

When you drop a table, the database does not immediately remove the space
associated with the table. Instead, the table is renamed and, along with any associated
objects, is placed in the recycle bin of the database. Oracle Database uses the recycle

Note: Automatic tuning of undo retention occurs only when the
database is in automatic undo management mode (the default). The
database may or may not be able to honor your request for a
minimum undo retention period. This depends on a number of
factors, including the current transaction activity on the system,
whether the undo tablespace is autoextending or fixed size, and
whether you specified RETENTION GUARANTEE for the undo
tablespace.

See Oracle Database Administrator's Guide for more information about
the automatic tuning of undo retention.

See Also:

■ "Automatic Undo Retention" on page 2-17

■ Oracle Database Backup and Recovery User's Guide for details about
using Oracle Flashback Table

■ Oracle Database SQL Language Reference for information on the
UNDO_RETENTION initialization parameter and information about
the FLASHBACK TABLE statement

Data Repair

15-12 Oracle Database Concepts

bin to manage dropped database objects until the space they occupied is needed to
store new data. The recycle bin is actually a data dictionary table that contains
information about the dropped objects.

Media Recovery
To restore a physical backup of a datafile or control file is to reconstruct it and make it
available to the Oracle database. To recover a restored datafile is to update it by
applying archived redo logs and online redo logs, that is, records of changes made to
the database after the backup was taken. If you use RMAN, then you can also recover
datafiles with incremental backups, which are backups of a datafile that contain only
blocks that changed after a previous incremental backup.

After the necessary files are restored, media recovery must be initiated by the user.
Media recovery involves various operations to restore, roll forward, and roll back a
backup of database files.

Media recovery applies archived redo logs and online redo logs to recover the
datafiles. Whenever a change is made to a datafile, the change is first recorded in the
online redo logs. Media recovery selectively applies the changes recorded in the online
and archived redo logs to the restored datafile to roll it forward.

Figure 15–2 illustrates the basic principle of backing up, restoring, and performing
media recovery on a database.

Figure 15–2 Media Recovery

See Also: Oracle Database Backup and Recovery User's Guide for details
about using Oracle Flashback Drop

Recover (redo changes)
Restored
database

Recovered
database

Media
failure

Backup
database

100 200 300
SCN

400 500

Archived
redo logs

Data Repair

Backup and Recovery 15-13

Unlike media recovery, Oracle Database performs crash recovery and instance
recovery automatically after an instance failure. Crash and instance recovery recover a
database to its transaction-consistent state just before instance failure. Crash recovery
is the recovery of a database in a single-instance configuration or an Oracle Real
Application Clusters configuration after all instances have crashed. In contrast,
instance recovery is the recovery of one or more failed instances by a live instance in
an Oracle Real Application Clusters configuration.

This section includes the following topics:

■ Datafile Media Recovery

■ Block Media Recovery

■ Complete Recovery

■ Database Point-in-Time Recovery

■ RMAN and User-Managed Recovery

Datafile Media Recovery
Datafile media recovery is used to recover from a lost or damaged current datafile or
control file. It is also used to recover changes that were lost when a tablespace went
offline without the OFFLINE NORMAL option. Both datafile media recovery and
instance recovery must repair database integrity. However, these types of recovery
differ with respect to their additional features. Media recovery has the following
characteristics:

■ Applies changes to restored backups of damaged datafiles.

■ Can use archived logs as well as online logs.

■ Requires explicit invocation by a user.

■ Does not detect media failure (that is, the need to restore a backup) automatically.
After a backup has been restored, however, detection of the need to recover it
through media recovery is automatic.

■ Has a recovery time governed solely by user policy (for example, frequency of
backups, parallel recovery parameters, number of database transactions since the
last backup) rather than by Oracle Database internal mechanisms.

The database cannot be opened if any of the online datafiles needs media recovery, nor
can a datafile that needs media recovery be brought online until media recovery is
complete. The following scenarios necessitate media recovery:

■ You restore a backup of a datafile.

■ You restore a backup control file (even if all datafiles are current).

■ A datafile is taken offline (either by you or automatically by Oracle Database)
without the OFFLINE NORMAL option.

Unless the database is not open by any instance, datafile media recovery can only
operate on offline datafiles.

Block Media Recovery
Block media recovery is a technique for restoring and recovering individual data
blocks while all database files remain online and available. If only a few blocks are
corrupt, then block media recovery may be preferable to datafile recovery.

Data Repair

15-14 Oracle Database Concepts

Complete Recovery
Complete recovery applies all of the redo changes contained in the archived and online
logs to a backup. Typically, you perform complete media recovery after a media failure
damages datafiles or the control file.You can perform complete recovery on a database,
tablespace, or datafile.

If you are performing complete recovery on the whole database, then you must:

■ Mount the database

■ Ensure that all datafiles you want to recover are online

■ Restore a backup of the whole database

■ Run the RMAN RECOVER DATABASE command, which will apply the correct
redo logs and incremental backups.

If you are performing complete recovery on a tablespace or datafile, then you must:

■ Take the tablespace or datafile to be recovered offline if the database is open

■ Restore a backup of the datafiles you want to recover

■ Apply online or archived redo logs, or a combination of the two

Database Point-in-Time Recovery
Database point-in-time recovery, which is also called incomplete recovery, results in a
noncurrent version of the database. In other words, you do not apply all of the redo
records generated after the restored backup. Typically, you perform point-in-time
recovery of the whole database in the following situations:

■ Media failure destroys some or all of the online redo logs.

■ A user error causes data loss, for example, a user inadvertently drops a table.

■ You cannot perform complete recovery because an archived redo log is missing.

■ Complete recovery is possible with a backup control file. If using RMAN it is
seamless and automatic.

To perform database point-in-time recovery, you must restore all datafiles from
backups created prior to the time to which you want to recover and then open the
database with the RESETLOGS option when recovery completes. The RESETLOGS
operation creates a new incarnation of the database—in other words, a database with a
new stream of log sequence numbers starting with log sequence 1.

Before using the OPEN RESETLOGS command to open the database in read/write
mode after an incomplete recovery, it is a good idea to first open the database in
read-only mode, and inspect the data to make sure that the database was recovered to
the correct point. If the recovery was done to the wrong point, then it is easier to re-run
the recovery if no OPEN RESETLOGS has been done. If you open the database
read-only and discover that not enough recovery was done, then just run the recovery
again to the desired time. If you discover that too much recovery was done, then you
must restore the database again and re-run the recovery.

See Also: Oracle Database Backup and Recovery User's Guide to learn
how to perform block media recovery

Note: Flashback Database is an alternative to database point-in-time
recovery.

Data Repair

Backup and Recovery 15-15

Tablespace Point-in-Time Recovery The tablespace point-in-time recovery (TSPITR)
feature lets you recover one or more tablespaces to a point in time older than the rest
of the database. TSPITR is most useful when you want to:

■ Recover from an erroneous drop or truncate table operation

■ Recover a table that has become logically corrupted

■ Recover from an incorrect batch job or other DML statement that has affected only
a subset of the database

■ Recover one independent schema to a point different from the rest of a physical
database (in cases where there are multiple independent schemas in separate
tablespaces of one physical database)

■ Recover a tablespace on a very large database (VLDB) rather than restore the
whole database from a backup and perform a complete database roll-forward

TSPITR has the following limitations:

■ You cannot use it on the SYSTEM tablespace, an UNDO tablespace, or any tablespace
that contains rollback segments.

■ Tablespaces that contain interdependent data must be recovered together. For
example, if two tables are in separate tablespaces and have a foreign key
relationship, then both tablespaces must be recovered at the same time; you cannot
recover just one of them. Oracle Database can enforce this limitation when it
detects data relationships that have been explicitly declared with database
constraints. There could be other data relationships that are not declared with
database constraints. Oracle Database cannot detect these relationships, so the
DBA must be careful to always restore a consistent set of tablespaces.

RMAN and User-Managed Recovery
You have a choice between two basic techniques for recovering physical files. You can:

■ Use the RMAN utility to restore and recover the database

■ Restore backups by means of operating system utilities, and then recover them by
running the SQL*Plus RECOVER command

Whichever method you choose, you can recover a database, tablespace, or datafile.
Before performing media recovery, you must determine which datafiles to recover.
Often you can use the fixed view V$RECOVER_FILE. This view lists all files that
require recovery and explains the error that necessitates recovery.

RMAN Restore and Recovery The basic RMAN recovery commands are RESTORE and
RECOVER. Use RESTORE to restore datafiles from backup sets or from image copies on
disk, either to their current location or to a new location. You can also restore backup
sets containing archived redo logs, but this is usually unnecessary, because RMAN
automatically restores the archived logs that are needed for recovery and deletes them

See Also: "Oracle Flashback Database" on page 15-10

See Also: Oracle Database Backup and Recovery User's Guide and
Oracle Database Backup and Recovery Reference for more information on
TSPITR

See Also: Oracle Database Backup and Recovery Reference for more
about using V$ views in a recovery scenario

Data Repair

15-16 Oracle Database Concepts

after the recovery is finished. Use the RMAN RECOVER command to perform media
recovery and apply archived logs or incremental backups.

User-Managed Restore and Recovery If you do not use RMAN, then you can restore
backups with operating system utilities and then run the SQL*Plus RECOVER
command to recover the database.

See Also: Oracle Database Backup and Recovery Reference for details
about how to restore and recover using RMAN

See Also: Oracle Database Backup and Recovery User's Guide for details
about how to restore and recover with operating system utilities and
SQL*Plus

Business Intelligence 16-1

16
Business Intelligence

This chapter describes some of the basic ideas in business intelligence.

This chapter contains the following topics:

■ Introduction to Data Warehousing and Business Intelligence

■ Overview of Extraction, Transformation, and Loading (ETL)

■ Overview of Materialized Views for Data Warehouses

■ Overview of Bitmap Indexes in Data Warehousing

■ Overview of Parallel Execution

■ Overview of Analytic SQL

■ Overview of OLAP Capabilities

■ Overview of Data Mining

Introduction to Data Warehousing and Business Intelligence
A data warehouse is a relational database that is designed for query and analysis
rather than for transaction processing. It usually contains historical data derived from
transaction data, but it can include data from other sources. It separates analysis
workload from transaction workload and enables an organization to consolidate data
from several sources.

In addition to a relational database, a data warehouse environment includes an
extraction, transportation, transformation, and loading (ETL) solution, an online
analytical processing (OLAP) engine, Oracle Warehouse Builder, client analysis tools,
and other applications that manage the process of gathering data and delivering it to
business users.

This section includes the following topics:

■ Characteristics of Data Warehousing

■ Differences Between Data Warehouse and OLTP Systems

■ Data Warehouse Architecture

Characteristics of Data Warehousing
Data warehouses all share the following basic characteristics:

■ Subject Oriented

■ Integrated

Introduction to Data Warehousing and Business Intelligence

16-2 Oracle Database Concepts

■ Nonvolatile

■ Time Variant

Subject Oriented
Data warehouses are designed to help you analyze data. For example, to learn more
about your company's sales data, you can build a warehouse that concentrates on
sales. Using this warehouse, you can answer questions like "Who was our best
customer for this item last year?" This ability to define a data warehouse by subject
matter, sales in this case, makes the data warehouse subject oriented.

Integrated
Integration is closely related to subject orientation. Data warehouses must put data
from disparate sources into a consistent format. They must resolve such problems as
naming conflicts and inconsistencies among units of measure. When they achieve this
goal, they are said to be integrated.

Nonvolatile
Nonvolatile means that, once entered into the warehouse, data should not change.
This is logical because the purpose of a warehouse is to enable you to analyze what
has occurred.

Time Variant
In order to discover trends in business, analysts need large amounts of data. This is
very much in contrast to online transaction processing (OLTP) systems, where
performance requirements demand that historical data be moved to an archive. A data
warehouse's focus on change over time is what is meant by the term time variant.

Typically, data flows from one or more online transaction processing (OLTP) databases
into a data warehouse on a monthly, weekly, or daily basis. The data is normally
processed in a staging file before being added to the data warehouse. Data
warehouses commonly range in size from tens of gigabytes to a few terabytes. Usually,
the vast majority of the data is stored in a few very large fact tables.

Differences Between Data Warehouse and OLTP Systems
Data warehouses and OLTP systems have very different requirements. Here are some
examples of differences between typical data warehouses and OLTP systems:

■ Workload

■ Data Modifications

■ Schema Design

■ Typical Operations

■ Historical Data

Workload
Data warehouses are designed to accommodate ad hoc queries. You might not know
the workload of your data warehouse in advance, so a data warehouse should be
optimized to perform well for a wide variety of possible query operations.

OLTP systems support only predefined operations. Your applications might be
specifically tuned or designed to support only these operations.

Introduction to Data Warehousing and Business Intelligence

Business Intelligence 16-3

Data Modifications
A data warehouse is updated on a regular basis by the ETL process (run nightly or
weekly) using bulk data modification techniques. The end users of a data warehouse
do not directly update the data warehouse.

In OLTP systems, end users routinely issue individual data modification statements to
the database. The OLTP database is always up to date, and reflects the current state of
each business transaction.

Schema Design
Data warehouses often use denormalized or partially denormalized schemas (such as
a star schema) to optimize query performance.

OLTP systems often use fully normalized schemas to optimize update/insert/delete
performance, and to guarantee data consistency.

Typical Operations
A typical data warehouse query scans thousands or millions of rows.For example,
"Find the total sales for all customers last month."

A typical OLTP operation accesses only a handful of records. For example, "Retrieve
the current order for this customer."

Historical Data
Data warehouses usually store many months or years of data. This is to support
historical analysis.

OLTP systems usually store data from only a few weeks or months. The OLTP system
stores only historical data as needed to successfully meet the requirements of the
current transaction.

Data Warehouse Architecture
Data warehouses and their architectures vary depending upon the specifics of an
organization's situation. Three common architectures are:

■ Data Warehouse Architecture (Basic)

■ Data Warehouse Architecture (with a Staging Area)

■ Data Warehouse Architecture (with a Staging Area and Data Marts)

Data Warehouse Architecture (Basic)
Figure 16–1 shows a simple architecture for a data warehouse. End users directly
access data derived from several source systems through the data warehouse.

Introduction to Data Warehousing and Business Intelligence

16-4 Oracle Database Concepts

Figure 16–1 Architecture of a Data Warehouse

In Figure 16–1, the metadata and raw data of a traditional OLTP system is present, as
is an additional type of data, summary data. Summaries are very valuable in data
warehouses because they pre-compute long operations in advance. For example, a
typical data warehouse query is to retrieve something like August sales.

Summaries in Oracle Database are called materialized views.

Data Warehouse Architecture (with a Staging Area)
As shown in Figure 16–1, you must clean and process your operational data before
putting it into the warehouse. You can do this programmatically, although most data
warehouses use a staging area instead. A staging area simplifies building summaries
and general warehouse management. Figure 16–2 illustrates this typical architecture.

Figure 16–2 Architecture of a Data Warehouse with a Staging Area

WarehouseData Sources

Summary
Data

Raw Data

Metadata

Operational
System

Operational
System

Flat Files

Users

Analysis

Reporting

Mining

Operational
System

Data
Sources

Staging
Area Warehouse Users

Operational
System

Flat Files

Analysis

Reporting

Mining

Summary
Data

Raw Data

Metadata

Overview of Extraction, Transformation, and Loading (ETL)

Business Intelligence 16-5

Data Warehouse Architecture (with a Staging Area and Data Marts)
Although the architecture in Figure 16–2 is quite common, you might want to
customize your warehouse's architecture for different groups within your
organization.

Do this by adding data marts, which are systems designed for a particular line of
business. Figure 16–3 illustrates an example where purchasing, sales, and inventories
are separated. In this example, a financial analyst might want to analyze historical data
for purchases and sales.

Figure 16–3 Architecture of a Data Warehouse with a Staging Area and Data Marts

Overview of Extraction, Transformation, and Loading (ETL)
You must load your data warehouse regularly so that it can serve its purpose of
facilitating business analysis. To perform this operation, data from one or more
operational systems must be extracted and copied into the warehouse. The process of
extracting data from source systems and bringing it into the data warehouse is
commonly called ETL, which stands for extraction, transformation, and loading. The
acronym ETL is perhaps too simplistic, because it omits the transportation phase and
implies that each of the other phases of the process is distinct. The entire process,
including data loading, is referred to as ETL. You should understand that ETL refers to
a broad process, and not three well-defined steps.

The methodology and tasks of ETL have been well known for many years, and are not
necessarily unique to data warehouse environments: a wide variety of proprietary
applications and database systems are the IT backbone of any enterprise. Data has to
be shared between applications or systems, trying to integrate them, giving at least
two applications the same picture of the world. This data sharing was mostly
addressed by mechanisms similar to what is now called ETL.

Data warehouse environments face the same challenge with the additional burden that
they not only have to exchange but to integrate, rearrange and consolidate data over
many systems, thereby providing a new unified information base for business
intelligence. Additionally, the data volume in data warehouse environments tends to
be very large.

See Also: Oracle Database Data Warehousing Guide

Operational
System

Data
Sources

Staging
Area Warehouse

Data
Marts Users

Operational
System

Flat Files

Sales

Purchasing

Inventory

Analysis

Reporting

Mining

Summary
Data

Raw Data

Metadata

Overview of Extraction, Transformation, and Loading (ETL)

16-6 Oracle Database Concepts

What happens during the ETL process? During extraction, the desired data is
identified and extracted from many different sources, including database systems and
applications. Very often, it is not possible to identify the specific subset of interest,
therefore more data than necessary has to be extracted, so the identification of the
relevant data will be done at a later point in time. Depending on the source system's
capabilities (for example, operating system resources), some transformations may take
place during this extraction process. The size of the extracted data varies from
hundreds of kilobytes up to gigabytes, depending on the source system and the
business situation. The same is true for the time delta between two (logically) identical
extractions: the time span may vary between days/hours and minutes to near
real-time. Web server log files for example can easily become hundreds of megabytes
in a very short period of time.

After extracting data, it has to be physically transported to the target system or an
intermediate system for further processing. Depending on the chosen way of
transportation, some transformations can be done during this process, too. For
example, a SQL statement which directly accesses a remote target through a gateway
can concatenate two columns as part of the SELECT statement.

If any errors occur during loading, an error is logged and the operation can continue.

This section includes the following topics:

■ Transportable Tablespaces

■ Table Functions

■ External Tables

■ Table Compression

■ Change Data Capture

Transportable Tablespaces
Transportable tablespaces are the fastest way for moving large volumes of data
between two Oracle databases. You can transport tablespaces between different
computer architectures and operating systems.

Previously, the most scalable data transportation mechanisms relied on moving flat
files containing raw data. These mechanisms required that data be unloaded or
exported into files from the source database. Then, after transportation, these files
were loaded or imported into the target database. Transportable tablespaces entirely
bypass the unload and reload steps.

Using transportable tablespaces, Oracle Database data files (containing table data,
indexes, and almost every other Oracle database object) can be directly transported
from one database to another. Furthermore, like import and export, transportable
tablespaces provide a mechanism for transporting metadata in addition to
transporting data.

The most common applications of transportable tablespaces in data warehouses are in
moving data from a staging database to a data warehouse, or in moving data from a
data warehouse to a data mart.

Table Functions
Table functions provide the support for pipelined and parallel execution of
transformations implemented in PL/SQL, C, or Java. Scenarios as mentioned earlier
can be done without requiring the use of intermediate staging tables, which interrupt
the data flow through various transformations steps.

Overview of Extraction, Transformation, and Loading (ETL)

Business Intelligence 16-7

A table function is defined as a function that can produce a set of rows as output.
Additionally, table functions can take a set of rows as input. Table functions extend
database functionality by allowing:

■ Multiple rows to be returned from a function

■ Results of SQL subqueries (that select multiple rows) to be passed directly to
functions

■ Functions take cursors as input

■ Functions can be parallelized

■ Returning result sets incrementally for further processing as soon as they are
created. This is called incremental pipelining

Table functions can be defined in PL/SQL using a native PL/SQL interface, or in Java
or C using the Oracle Data Cartridge Interface (ODCI).

External Tables
External tables let you use external data as a virtual table that can be queried and
joined directly and in parallel without requiring the external data to be first loaded in
the database. You can then use SQL, PL/SQL, and Java to access the external data.

External tables enable the pipelining of the loading phase with the transformation
phase. The transformation process can be merged with the loading process without
any interruption of the data streaming. It is no longer necessary to stage the data
inside the database for further processing inside the database, such as comparison or
transformation. For example, the conversion functionality of a conventional load can
be used for a direct-path INSERT AS SELECT statement in conjunction with the
SELECT from an external table. Figure 16–4 illustrates a typical example of pipelining.

Figure 16–4 Pipelined Data Transformation

The main difference between external tables and regular tables is that externally
organized tables are read-only. No DML operations (UPDATE/INSERT/DELETE) are
possible and no indexes can be created on them.

External tables are a complement to SQL*Loader and are especially useful for
environments where the complete external source has to be joined with existing
database objects and transformed in a complex manner, or where the external data
volume is large and used only once. SQL*Loader, on the other hand, might still be the
better choice for loading of data where additional indexing of the staging table is
necessary. This is true for operations where the data is used in independent complex
transformations or the data is only partially used in further processing.

customers

products

Dimension Table Dimension Table

channels

sales
(amount_sold,
quantity_sold)

times

Fact Table

Overview of Materialized Views for Data Warehouses

16-8 Oracle Database Concepts

Table Compression
You can save disk space by compressing heap-organized tables. A typical type of
heap-organized table you should consider for table compression is partitioned tables.

To reduce disk use and memory use (specifically, the buffer cache), you can store tables
and partitioned tables in a compressed format inside the database. This often leads to a
better scaleup for read-only operations. Table compression can also speed up query
execution. There is, however, a slight cost in CPU overhead.

Table compression should be used with highly redundant data, such as tables with
many foreign keys. You should avoid compressing tables with much update or other
DML activity. Although compressed tables or partitions are updatable, there is some
overhead in updating these tables, and high update activity may work against
compression by causing some space to be wasted.

Change Data Capture
Change Data Capture efficiently identifies and captures data that has been added to,
updated, or removed from Oracle Database relational tables, and makes the change
data available for use by applications.

Oftentimes, data warehousing involves the extraction and transportation of relational
data from one or more source databases into the data warehouse for analysis. Change
Data Capture quickly identifies and processes only the data that has changed, not
entire tables, and makes the change data available for further use.

Change Data Capture does not depend on intermediate flat files to stage the data
outside of the relational database. It captures the change data resulting from INSERT,
UPDATE, and DELETE operations made to user tables. The change data is then stored
in a database object called a change table, and the change data is made available to
applications in a controlled way.

Overview of Materialized Views for Data Warehouses
One technique employed in data warehouses to improve performance is the creation
of summaries. Summaries are special kinds of aggregate views that improve query
execution times by precalculating expensive joins and aggregation operations prior to
execution and storing the results in a table in the database. For example, you can create
a table to contain the sums of sales by region and by product.

The summaries or aggregates that are referred to in this book and in literature on data
warehousing are created in Oracle Database using a schema object called a
materialized view. Materialized views can perform a number of roles, such as
improving query performance or providing replicated data.

Previously, organizations using summaries spent a significant amount of time and
effort creating summaries manually, identifying which summaries to create, indexing
the summaries, updating them, and advising their users on which ones to use.
Summary management eased the workload of the database administrator and meant
that the user no longer needed to be aware of the summaries that had been defined.
The database administrator creates one or more materialized views, which are the
equivalent of a summary. The end user queries the tables and views at the detail data
level.

See Also: "Table Compression" on page 5-7

See Also: Oracle Database Data Warehousing Guide

Overview of Bitmap Indexes in Data Warehousing

Business Intelligence 16-9

The query rewrite mechanism in Oracle Database automatically rewrites the SQL
query to use the summary tables. This mechanism reduces response time for returning
results from the query. Materialized views within the data warehouse are transparent
to the end user or to the database application.

Although materialized views are usually accessed through the query rewrite
mechanism, an end user or database application can construct queries that directly
access the summaries. However, serious consideration should be given to whether
users should be allowed to do this because any change to the summaries will affect the
queries that reference them.

To help you select from among the many possible materialized views in your schema,
Oracle Database provides a collection of materialized view analysis and advisor
functions and procedures in the DBMS_ADVISOR package. Collectively, these functions
are called the SQL Access Advisor, and they are callable from any PL/SQL program.
The SQL Access Advisor recommends materialized views from a hypothetical or
user-defined workload or one obtained from the SQL cache. You can run the SQL
Access Advisor from Oracle Enterprise Manager or by invoking the DBMS_ADVISOR
package.

Overview of Bitmap Indexes in Data Warehousing
Bitmap indexes are widely used in data warehousing environments. The environments
typically have large amounts of data and ad hoc queries, but a low level of concurrent
DML transactions. For such applications, bitmap indexing provides:

■ Reduced response time for large classes of ad hoc queries

■ Reduced storage requirements compared to other indexing techniques

■ Dramatic performance gains even on hardware with a relatively small number of
CPUs or a small amount of memory

■ Efficient maintenance during parallel DML and loads

Fully indexing a large table with a traditional B-tree index can be prohibitively
expensive in terms of space because the indexes can be several times larger than the
data in the table. Bitmap indexes are typically only a fraction of the size of the indexed
data in the table.

An index provides pointers to the rows in a table that contain a given key value. A
regular index stores a list of rowids for each key corresponding to the rows with that
key value. In a bitmap index, a bitmap for each key value replaces a list of rowids.

Each bit in the bitmap corresponds to a possible rowid, and if the bit is set, it means
that the row with the corresponding rowid contains the key value. A mapping
function converts the bit position to an actual rowid, so that the bitmap index provides
the same functionality as a regular index. If the number of different key values is
small, bitmap indexes save space.

Bitmap indexes are most effective for queries that contain multiple conditions in the
WHERE clause. Rows that satisfy some, but not all, conditions are filtered out before the
table itself is accessed. This improves response time, often dramatically. A good
candidate for a bitmap index would be a gender column due to the low number of
possible values.

See Also: Oracle Database Performance Tuning Guide for
information about materialized views and the SQL Access Advisor

Overview of Parallel Execution

16-10 Oracle Database Concepts

Parallel query and parallel DML work with bitmap indexes as they do with traditional
indexes. Bitmap indexing also supports parallel create indexes and concatenated
indexes.

Overview of Parallel Execution
When Oracle Database runs SQL statements in parallel, multiple processes work
together simultaneously to run a single SQL statement. By dividing the work
necessary to run a statement among multiple processes, Oracle Database can run the
statement more quickly than if only a single process ran it. This is called parallel
execution or parallel processing.

Parallel execution dramatically reduces response time for data-intensive operations on
large databases typically associated with decision support systems (DSS) and data
warehouses. Symmetric multiprocessing (SMP), clustered systems, and large-scale
cluster systems gain the largest performance benefits from parallel execution because
statement processing can be split up among many CPUs on a single Oracle Database
system. You can also implement parallel execution on certain types of online
transaction processing (OLTP) and hybrid systems.

Parallelism is the idea of breaking down a task so that, instead of one process doing all
of the work in a query, many processes do part of the work at the same time. An
example of this is when 12 processes handle 12 different months in a year instead of
one process handling all 12 months by itself. The improvement in performance can be
quite high.

Parallel execution helps systems scale in performance by making optimal use of
hardware resources. If your system's CPUs and disk controllers are already heavily
loaded, you must alleviate the system's load or increase these hardware resources
before using parallel execution to improve performance.

In Oracle RAC environments, parallel execution is controlled by the service placement
of a particular service. Specifically, parallel processes run on the nodes on which you
have configured the service. The default behavior is for Oracle Database to run the
parallel process only on the instance that offers the service that you used to connect to
the database. This does not affect other parallel operations such as parallel recovery or
the processing of GV$queries.

Some tasks are not well-suited for parallel execution. For example, many OLTP
operations are relatively fast, completing in mere seconds or fractions of seconds, and
the overhead of utilizing parallel execution would be large, relative to the overall
execution time.

How Parallel Execution Works
When parallel execution is not used, a single server process performs all necessary
processing for the sequential execution of a SQL statement. For example, to perform a
full table scan (such as SELECT * FROM emp), one process performs the entire
operation, as illustrated in Figure 16–5.

See Also: Oracle Database Data Warehousing Guide

See Also: Oracle Database Data Warehousing Guide for specific
information on tuning your parameter files and database to take full
advantage of parallel execution and the Oracle Real Application Clusters
Administration and Deployment Guide for considerations regarding
parallel execution in Oracle RAC environments

Overview of Analytic SQL

Business Intelligence 16-11

Figure 16–5 Serial Full Table Scan

Figure 16–6 illustrates several parallel execution servers performing a scan of the table
emp. The table is divided dynamically (dynamic partitioning) into load units called
granules and each granule is read by a single parallel execution server. The granules
are generated by the coordinator. Each granule is a range of physical blocks of the table
emp. The mapping of granules to execution servers is not static, but is determined at
execution time. When an execution server finishes reading the rows of the table emp
corresponding to a granule, it gets another granule from the coordinator if there are
any granules remaining. This continues until all granules are exhausted, in other
words, until the entire table emp has been read. The parallel execution servers send
results back to the parallel execution coordinator, which assembles the pieces into the
desired full table scan.

Figure 16–6 Parallel Full Table Scan

Given a query plan for a SQL query, the parallel execution coordinator breaks down
each operator in a SQL query into parallel pieces, runs them in the right order as
specified in the query, and then integrates the partial results produced by the parallel
execution servers executing the operators. The number of parallel execution servers
assigned to a single operation is the degree of parallelism (DOP) for an operation.
Multiple operations within the same SQL statement all have the same degree of
parallelism.

Overview of Analytic SQL
Oracle has introduced many SQL operations for performing analytic operations in the
database. These operations include ranking, moving averages, cumulative sums,
ratio-to-reports, and period-over-period comparisons. Although some of these
calculations were previously possible using SQL, this syntax offers much better
performance.

This section discusses:

See Also: Oracle Database Data Warehousing Guide for information on
granules as well as how Oracle Database divides work and handles
DOP in multiuser environments

SELECT *
 FROM EMP;

EMP Table

Serial Process

SELECT *
 FROM EMP;

EMP Table

Parallel Execution
Coordinator

Parallel Execution
Server

Overview of Analytic SQL

16-12 Oracle Database Concepts

■ SQL for Aggregation

■ SQL for Analysis

■ SQL for Modeling

SQL for Aggregation
Aggregation is a fundamental part of data warehousing. To improve aggregation
performance in your warehouse, Oracle Database provides extensions to the GROUP
BY clause to make querying and reporting easier and faster. Some of these extensions
enable you to:

■ Aggregate at increasing levels of aggregation, from the most detailed up to a
grand total

■ Calculate all possible combinations of aggregations with a single statement

■ Generate the information needed in cross-tabulation reports with a single query

These extension let you specify exactly the groupings of interest in the GROUP BY
clause. This allows efficient analysis across multiple dimensions without performing a
CUBE operation. Computing a full cube creates a heavy processing load, so replacing
cubes with grouping sets can significantly increase performance. CUBE, ROLLUP, and
grouping sets produce a single result set that is equivalent to a UNION ALL of
differently grouped rows.

To enhance performance, these extensions can be parallelized: multiple processes can
simultaneously run all of these statements. These capabilities make aggregate
calculations more efficient, thereby enhancing database performance, and scalability.

One of the key concepts in decision support systems is multidimensional analysis:
examining the enterprise from all necessary combinations of dimensions. The term
dimension is used to mean any category used in specifying questions. Among the
most commonly specified dimensions are time, geography, product, department, and
distribution channel, but the potential dimensions are as endless as the varieties of
enterprise activity. The events or entities associated with a particular set of dimension
values are usually referred to as facts. The facts might be sales in units or local
currency, profits, customer counts, production volumes, or anything else worth
tracking.

Here are some examples of multidimensional requests:

■ Show total sales across all products at increasing aggregation levels for a
geography dimension, from state to country to region, for 1999 and 2000.

■ Create a cross-tabular analysis of our operations showing expenses by territory in
South America for 1999 and 2000. Include all possible subtotals.

■ List the top 10 sales representatives in Asia according to 2000 sales revenue for
automotive products, and rank their commissions.

All these requests involve multiple dimensions. Many multidimensional questions
require aggregated data and comparisons of data sets, often across time, geography or
budgets.

SQL for Analysis
Oracle has advanced SQL analytical processing capabilities using a family of analytic
SQL functions. These analytic functions enable you to calculate:

See Also: Oracle Database Data Warehousing Guide

Overview of OLAP Capabilities

Business Intelligence 16-13

■ Rankings and percentiles

■ Moving window calculations

■ Lag/lead analysis

■ First/last analysis

■ Linear regression statistics

Ranking functions include cumulative distributions, percent rank, and N-tiles. Moving
window calculations allow you to find moving and cumulative aggregations, such as
sums and averages. Lag/lead analysis enables direct inter-row references so you can
calculate period-to-period changes. First/last analysis enables you to find the first or
last value in an ordered group.

Other features include the CASE expression. CASE expressions provide if-then logic
useful in many situations.

To enhance performance, analytic functions can be parallelized: multiple processes can
simultaneously run all of these statements. These capabilities make calculations easier
and more efficient, thereby enhancing database performance, scalability, and
simplicity.

SQL for Modeling
The Oracle MODEL clause brings a new level of power and flexibility to SQL
calculations. With the MODEL clause, you can create a multidimensional array from
query results and then apply formulas to this array to calculate new values. The
formulas can range from basic arithmetic to simultaneous equations using recursion.
For some applications, the MODEL clause can replace PC-based spreadsheets. Models in
SQL leverage the Oracle Database strengths in scalability, manageability, collaboration,
and security. The core query engine can work with unlimited quantities of data. By
defining and executing models within the database, users avoid transferring large
datasets to and from separate modeling environments. Models can be shared easily
across workgroups, ensuring that calculations are consistent for all applications. Just
as models can be shared, access can also be controlled precisely with the Oracle
Database security features. With its rich functionality, the MODEL clause can enhance
all types of applications.

Overview of OLAP Capabilities
Oracle online analytical processing (OLAP) adds power to your SQL applications by
providing extensive analytic content and fast query response times. A SQL query
interface enables any application to query cubes and dimensions without any
knowledge of OLAP.

The OLAP option automatically generates a set of relational views on cubes,
dimensions, and hierarchies. SQL applications query these views to display the
information-rich contents of these objects to analysts and decision makers. You can
also create custom views that comply with the structure expected by your applications,
using the system-generated views like base tables.

Analysts can choose any SQL query and analysis tool for selecting, viewing, and
analyzing the data. You can use your favorite tool or application, or use one of the

See Also: Oracle Database Data Warehousing Guide

See Also: Oracle Database Data Warehousing Guide

Overview of OLAP Capabilities

16-14 Oracle Database Concepts

tools supplied with Oracle Database, such as Oracle Application Express and Business
Intelligence Publisher.

This section includes the following topics:

■ Full Integration of Multidimensional Technology

■ Ease of Application Development

■ Ease of Administration

■ Security

■ Unmatched Performance and Scalability

■ Reduced Costs

Full Integration of Multidimensional Technology
By integrating multidimensional objects and analytics into the database, Oracle
provides the best of both worlds: the power of multidimensional analysis along with
the reliability, availability, security, and scalability of Oracle Database.

Oracle OLAP is fully integrated into Oracle Database. At a technical level, this means:

■ The OLAP engine runs within the kernel of Oracle Database

■ Dimensional objects are stored in Oracle Database in their native
multidimensional format

■ Cubes and other dimensional objects are first class data objects represented in the
Oracle data dictionary

■ Data security is administered in the standard way, by granting and revoking
privileges to Oracle Database users and roles

■ Applications can query dimensional objects using SQL

The benefits to your organization are significant. Oracle OLAP offers the power of
simplicity. One database, standard administration and security, standard interfaces
and development tools.

Ease of Application Development
Oracle OLAP makes it easy to enrich your database and your applications with
interesting analytic content. Native SQL access to Oracle multidimensional objects and
calculations greatly eases the task of developing dashboards, reports, business
intelligence, and analytical applications of any type compared to systems that offer
proprietary interfaces. Moreover, SQL access means that the power of Oracle OLAP
analytics can be used by any database application, not just by the traditional limited
collection of OLAP applications.

Ease of Administration
Because Oracle OLAP is completely embedded in Oracle Database, there is no
administration learning curve as is typically associated with standalone OLAP servers.
You can leverage your existing DBA staff, rather than invest in specialized
administration skills.

See Also: Oracle OLAP User's Guide

Overview of OLAP Capabilities

Business Intelligence 16-15

One major administrative advantage of Oracle's embedded OLAP technology is
automated cube maintenance. With standalone OLAP servers, the burden of refreshing
the cube is left entirely to the administrator. This can be a complex and potentially
error-prone job. The administrator must create procedures to extract the changed data
from the relational source, move the data from the source system to the system
running the standalone OLAP server, load and rebuild the cube. The administrator
must take responsibility for the security of the changed values during this process, as
well.

With Oracle OLAP, in contrast, cube refresh is handled entirely by Oracle Database.
The database tracks the staleness of the dimensional objects, automatically keeps track
of the deltas in the source tables, and automatically applies only the changed values
during the refresh process. The administrator simply schedules the refresh at
appropriate intervals, and Oracle Database takes care of everything else.

Security
With Oracle OLAP, standard Oracle Database security features are used to secure your
multidimensional data.

In contrast, with a standalone OLAP server, administrators must manage security
twice: once on the relational source system and again on the OLAP server system.
Additionally, they must manage the security of data in transit from the relational
system to the standalone OLAP system.

Unmatched Performance and Scalability
Business intelligence and analytical applications are dominated by actions such as
drilling up and down hierarchies and comparing aggregate values such as
period-over-period, share of parent, projections onto future time periods, and a myriad
of similar calculations. Often these actions are essentially random across the entire
space of potential hierarchical aggregations. Because Oracle OLAP pre-computes or
efficiently computes on the fly all aggregates in the defined multidimensional space, it
delivers unmatched performance for typical business intelligence applications.

Oracle OLAP queries take advantage of Oracle shared cursors, dramatically reducing
memory requirements and increasing performance.

When Oracle Database is installed with Oracle Real Application Clusters (Oracle
RAC), OLAP applications receive the same benefits in performance, scalability,
failover, and load balancing as any other application.

Reduced Costs
All these features add up to reduced costs. Administrative costs are reduced because
existing personnel skills can be leveraged. Moreover, Oracle Database can manage the
refresh of dimensional objects, a complex task left to administrators in other systems.
Standard security reduces administration costs as well. Application development costs
are reduced because the availability of a large pool of application developers who are
SQL knowledgeable, and a large collection of SQL-based development tools means
applications can be developed and deployed more quickly. Any SQL-based
development tool can take advantage of Oracle OLAP. Hardware costs are reduced by
Oracle OLAP's efficient management of aggregations, use of shared cursors, and
Oracle RAC, which enables highly scalable systems to be built from low-cost
commodity components.

Overview of Data Mining

16-16 Oracle Database Concepts

Overview of Data Mining
Oracle Data Mining embeds data mining in the Oracle Database. The data never leaves
the database — data preparation, model building, and model scoring are all performed
within the database. Since the data never leaves the database, there are significant
advantages in scalability, manageability, and user access. Thus, the Oracle Database
provides an infrastructure for application developers to integrate data mining
seamlessly with database applications. Data mining is often used in applications such
as call centers, ATMs, ERM, and business planning.

As of Oracle Database 11g, Oracle Data Mining models are implemented as data
dictionary objects in the SYS schema. A set of new data dictionary views present
mining models and their properties. New system and object privileges control access
to mining model objects.

Support of Generalized Linear Models (GLM) is new for Oracle Data Mining 11g.
Oracle Data Mining supports two forms of GLM, one for classification and one for
regression:

■ Binary Logistic Regression, used for classification, predicts the probability for each
row of scoring data. The dependent variable (target) is binary and categorical. For
example, demographic attributes might be used to predict whether customer
response to a promotion is low or high.

■ Multivariate Linear Regression, used for regression, predicts the best estimate
within a continuum for each row of scoring data. For example, demographic
attributes such as age bracket, income level, gender, and town of residence might
be used to predict sales per customer.

Oracle Data Mining GLM can handle many hundreds or thousands of input attributes,
unlike traditional implementations that typically support 30 or fewer input attributes.

Data mining activities such as model building, testing, and scoring are accomplished
through a PL/SQL API, a Java API, and SQL Data Mining functions. The Java API is
compliant with the data mining standard JSR 73. The Java API and the PL/SQL API
are fully interoperable.

Optionally, Oracle Data Mining can automatically perform all algorithm-required data
preparation, such as binning, normalization, and outlier treatment. Additionally,
user-specified data transformations can be integrated with the algorithm-specific data
preparation to simplify testing and scoring; models like this are supermodels.

The SQL Data Mining functions are SQL language operators for the deployment of
data mining models. The Data Mining functions support the scoring of classification,
regression, clustering, and feature extraction models. Within the context of standard
SQL statements, pre-created models can be applied to new data and the results
returned for further processing.

Predictive Analytics is a technology that captures data mining processes in simple
routines. Sometimes called "one-click data mining," predictive analytics simplify and
automate the data mining process. The procedure returns the results of analytic
processing. The models and other intermediate objects are not preserved. The DBMS_
PREDICTIVE_ANALYTICS PL/SQL package implements Predictive Analytics with
the following procedures:

■ EXPLAIN - Ranks attributes in order of strongest relationships with a target
attribute.

■ PREDICT - Predicts the value of a target attribute.

■ PROFILE - Creates rules that identify the records that have the same target value.

Overview of Data Mining

Business Intelligence 16-17

Oracle Data Mining supports the following algorithms (Generalized Linear Models are
new for Oracle Database 11g):

■ For classification, Naive Bayes, Decision Tree, Generalized Linear Models (Binary
Logistic Regression), and Support Vector Machine

■ For regression, Support Vector Machine and Generalized Linear Models
(Multivariate Linear Regression)

■ For associations (market basket analysis), Apriori

■ For clustering, k-Means and O-Cluster

■ For attribute importance, Minimum Description Length

■ For anomaly detection, One Class Support Vector Machine

■ For feature extraction, Non-Negative Matrix Factorization

See Also:

■ Oracle Data Mining Concepts

■ Oracle Data Mining Administrator's Guide

■ Oracle Data Mining Application Developer's Guide

■ Oracle Data Mining Java API Reference contains Javadoc
descriptions of the classes that constitute the Oracle Data
Mining Java API

■ The PL/SQL API is described in the DBMS_DATA_MINING,
DBMS_DATA_MINING_TRANSFORM, and DBMS_PREDICTIVE_
ANALYTICS chapters of Oracle Database PL/SQL Packages and
Types Reference

■ The SQL Data Mining functions are described in Oracle Database
SQL Language Reference

Overview of Data Mining

16-18 Oracle Database Concepts

High Availability 17-1

17
High Availability

This chapter discusses the concept of database availability and introduces you to
Oracle Database high availability products and features.

This chapter includes these topics:

■ Introduction to High Availability

■ Causes Of Downtime

■ Protection Against Computer Failures

■ Protection Against Data Failures

■ Avoiding Downtime During Planned Maintenance

■ Maximum Availability Architecture (MAA) Best Practices

Introduction to High Availability
Enterprises have used their information technology (IT) infrastructure to provide
competitive advantage, increase productivity, and empower users to make faster and
more informed decisions. However, with these benefits has come an increasing
dependence on that infrastructure. Revenue and customers can be lost, penalties can
be owed, and bad press can have a lasting effect on customers and a company's
reputation. Building a high availability IT infrastructure is critical to the success and
well being of all enterprises in today's fast moving economy.

Trends in computing technology are also enabling a new IT architecture, referred to as
Grid computing, to be deployed. The Grid computing architecture effectively pools
large numbers of servers and storage into a flexible, on-demand computing resource

Note: Availability is influenced by many choices you make other
than your database software: hardware, application and operating
system software, storage media, network reliability, and operational
processes are all important.

See Also:

■ Oracle Database High Availability Overview

■ Oracle Database High Availability Best Practices

These books provide complete information about best practices for
deploying a highly available environment and describes the Oracle
products and features that support high availability.

Causes Of Downtime

17-2 Oracle Database Concepts

for all enterprise computing needs. Technology innovations like low-cost blade
servers, small and inexpensive multiprocessor servers, modular storage technologies,
and open source operating systems (such as Linux) provide the raw materials for the
Grid. By harnessing these technologies and leveraging the Grid technology available
in the Oracle Database, enterprises can deliver an extremely high quality of service to
users while vastly reducing expenditures on IT. The Oracle Database enables you to
capture the cost advantages of Grid enterprise computing without sacrificing
performance, scalability, security, manageability, functionality, or system availability.

This chapter examines the causes of downtime and looks at the technology available in
the Oracle Database that avoids costly downtime and enables rapid recovery from
failures.

Causes Of Downtime
One of the challenges when designing a highly available IT Grid infrastructure is
examining and addressing all the possible causes of downtime. Figure 17–1 shows a
diagram that classifies system downtime into two primary categories: unplanned and
planned downtime. It is important to consider the causes of both unplanned and
planned downtime when designing a fault tolerant and resilient IT infrastructure.

Figure 17–1 Causes of Downtime

Unplanned downtime results from computer failures or data failures. Planned
downtime is primarily due to data changes or system changes that must be applied to
the production system. The following sections examine each of these causes of
downtime and describes the Oracle technology you can apply to avoid downtime.

Protection Against Computer Failures
A computer failure occurs when the computer system or database server unexpectedly
fails and causes a service interruption. In most cases, computer failures are due to
hardware breakdown. These types of failures are best remedied by taking advantage
of cluster technology and fast database crash recovery. The recommended solutions
include Enterprise grids with Oracle Real Application Clusters (Oracle RAC), fast start
fault recovery, Oracle Data Guard, and Oracle Streams.

This section includes the following topics:

■ Overview of Enterprise Grids with Oracle Real Application Clusters and Oracle
Clusterware

■ Fast Start Fault Recovery

■ Oracle Data Guard

System
Downtime

Planned
Downtime

Unplanned
Downtime

Computer
Failures

Data
Failures

Data
Changes

System
Changes

Protection Against Computer Failures

High Availability 17-3

■ Oracle Streams

Overview of Enterprise Grids with Oracle Real Application Clusters and Oracle
Clusterware

With Oracle RAC, the enterprise can build database servers across multiple systems
that are highly available and highly scalable. In an Oracle RAC environment, Oracle
Database runs on two or more systems in a cluster while concurrently accessing a
single shared database. This provides a single database system that spans multiple
hardware systems yet appears to the application as a single unified database system.
This extends the following availability and scalability benefits for all of your
applications:

■ Flexibility and cost effectiveness in capacity planning, so that a system can scale to
any desired capacity on demand and as business needs change.

■ Fault tolerance within the cluster, especially computer failures.

The following list describes the features of an Oracle RAC environment:

Enterprise Grids—Oracle RAC enables enterprise Grids. Enterprise Grids are built out
of large configurations of standardized, commodity-priced components: processors,
servers, network, and storage. Oracle RAC is the only technology that can harness
these components into a useful processing system for the enterprise. Oracle RAC and
the Grid dramatically reduce operational costs and provide flexibility so that systems
become more adaptive, proactive, and agile. Dynamic provisioning of nodes, storage,
CPUs, and memory allow service levels to be easily and efficiently maintained while
lowering cost still further through improved use. In addition, Oracle RAC is
completely transparent to the application accessing the Oracle RAC database, thereby
allowing existing applications to be deployed on Oracle RAC without requiring any
modifications.

Scalability—Oracle RAC gives you the flexibility to add nodes to the cluster as the
demand for capacity increases, scaling the system up incrementally to save costs and
eliminating the need to replace smaller single node systems with larger ones. Grid
pools of standard low-cost computers and modular disk arrays make this solution
even more powerful with Oracle Database. It makes the capacity upgrade process
much easier and faster because you can incrementally add one or more nodes to the
cluster, compared to replacing existing systems with new and larger nodes to upgrade
systems. The Cache Fusion technology implemented in Oracle RAC and the
InfiniBand support provided in Oracle Database enable you to scale the capacity
almost linearly, without making any changes to your application.

Fault Tolerance—Another key advantage of the Oracle RAC cluster architecture is the
inherent fault tolerance provided by multiple nodes. Because the physical nodes run
independently, the failure of one or more nodes will not affect other nodes in the
cluster. Failover can happen to any node on the Grid. In the extreme case, an Oracle
RAC system will still provide database service even when all but one node is down.
This architecture allows a group of nodes to be transparently put online or taken
offline, for maintenance, while the rest of the cluster continues to provide database
service. Oracle RAC provides built in integration with the Oracle Application Server
for failing over connection pools. With this capability, an application is immediately
notified of any failure rather than having to wait tens of minutes for a TCP timeout to
occur. The application can immediately take the appropriate recovery action. And Grid
load balancing redistributes load over time.

Oracle Clusterware—Oracle RAC also provides a complete set of clusterware to
manage the cluster. Oracle Clusterware provides all of the features required to run the

Protection Against Computer Failures

17-4 Oracle Database Concepts

cluster, including node membership, messaging services, and locking. Because Oracle
Clusterware is a fully integrated stack with common event and management APIs, it
can be centrally managed from Oracle Enterprise Manager. There is no need to
purchase additional software to support your cluster, which helps avoid the additional
efforts required to integrate and test third-party clusterware. Oracle Clusterware also
provides the same interface and operates the same way across all of the platforms on
which Oracle Database is available. While Oracle continues to support third-party
clusterware for use with Oracle RAC, there is no need or advantage to using
third-party clusterware.

You can extend the high availability capabilities of the Oracle Clusterware framework
to your applications. That is, you can use the same high availability mechanisms of
Oracle Database and Oracle RAC to make your custom applications highly available.
You can use Oracle Clusterware to monitor, relocate, and restart your applications,
thus allowing you to integrate and coordinate failover of your applications with
database failover.

Services—Oracle RAC supports an entity referred to as a service that you can define to
group database workloads and route work to the optimal instances that are assigned
to offer the service. Services represent classes of database users or applications. You
define and apply business policies to these services to perform tasks such as to allocate
nodes for times of peak processing or to automatically handle a server failure. Using
services ensures the application of system resources where and when they are needed
to achieve business goals.

Fast Start Fault Recovery
One of the most common causes of unplanned downtime is a system fault or crash.
System faults are the result of hardware failures, power failures, and operating system
or server crashes. The amount of disruption these failures cause depends on the
number of affected users and how quickly service is restored. High availability
systems are designed to quickly and automatically recover from failures, should they
occur. Users of critical systems look to the IT organization for a commitment that
recovery from a failure will be fast and take a predictable amount of time. Periods of
downtime longer than this commitment can have a direct effect on operations and lead
to lost revenue and productivity.

Oracle Database provides very fast recovery from system faults and crashes. However,
equally important to being fast is being predictable. The fast start fault recovery
technology included in Oracle Database automatically bounds database crash recovery
time and is unique to Oracle Database. The database self tunes checkpoint processing
to safeguard the desired recovery time objective. This makes recovery time fast and
predictable and improves the ability to meet service-level objectives. The Oracle fast
start fault recovery feature can reduce recovery time on a heavily loaded database
from tens of minutes to a few seconds.

Oracle Data Guard
Oracle Data Guard ensures high availability, data protection, and disaster recovery for
enterprise data. Data Guard maintains standby databases as transactionally consistent
copies of the primary (production) database. Then, if the primary database becomes
unavailable because of a planned or an unplanned outage, Data Guard can switch any

See Also: Oracle Database 2 Day + Real Application Clusters Guide

See Also: Oracle Database Performance Tuning Guide for information
on fast start fault recovery

Protection Against Data Failures

High Availability 17-5

standby database to the primary role, minimizing the downtime associated with the
outage. Automated failover using Data Guard fast-start failover and fast application
notification with integrated Oracle clients provides a high level of data protection and
data availability.

Oracle Streams
You can use Streams to configure flexible high availability environments. With Oracle
Streams, you can create a local or remote copy of a production database. In the event of
human error or a catastrophe, the copy can be used to resume processing.

Protection Against Data Failures
A data failure is the loss, damage, or corruption of critical enterprise data. The causes
of data failure are more complex and subtle than computer failure and can be caused
by a failure of the storage hardware, human error, corruption, or site failure.

Figure 17–2 focuses on the four types of data failures: storage failure, human error,
corruption, and site failure.

Figure 17–2 Downtime Due to Data Failures

It is extremely important to design a solution to protect against and recover from data
failures. A system or network fault may prevent users from accessing data, but data
failures without proper backups or recovery technology can result in either the
recovery operation taking many hours to perform, or in lost data.

Oracle Database provides many data protection capabilities. The motivation for many
of these enhancements is the new economics around data protection and recovery.
Over the last twenty years, disk capacity has grown by three orders of magnitude
while the cost per megabyte has fallen dramatically. This is a trend that shows no sign
of abating. This has made the cost of disk storage competitive with tape as a backup
media. Plus, disk storage has additional benefits of being online and able to provide
random access to the data.

These trends allowed Oracle to rethink and make its recovery strategy hierarchical to
take advantage of these economic dynamics. By making additional disk storage
available to Oracle Database, you can reduce backup and recovery time from hours to
minutes. In essence, you can trade inexpensive disk storage for expensive downtime.

See Also: Oracle Data Guard Concepts and Administration

See Also: Oracle Streams Concepts and Administration

System
Downtime

Planned
Downtime

Unplanned
Downtime

Computer
Failures

Data
Failures

Data
Changes

System
Changes

Storage Failure Human Error Corruption Site Failure

Protection Against Data Failures

17-6 Oracle Database Concepts

This section includes the following topics:

■ Protecting Against Storage Failures

■ Protecting Against Human Errors

Protecting Against Storage Failures
Provisioning storage for a single-database instance, much less for an entire enterprise,
can be complex. Historically, the process included the following steps:

1. Estimate the amount of space needed

2. Map out what you hope will be an optimal layout (where to put data files, archive
files, and so on to avoid hot spots)

3. Create logical volumes

4. Create file systems

5. Define and set up how you will protect and mirror your data

6. Define and implement your backup and recovery plan for the data

7. Install the Oracle software

8. Create the database

Then, the hard work begins—looking for hot spots that negatively affect performance;
moving datafiles around to reduce contention, and dreading the day when a disk
crash occurs or when you run out of space and must add more disks and shift all the
files around to rebalance across your updated storage configuration.

Fortunately, that scenario changed dramatically with the Automatic Storage
Management (ASM) feature of Oracle Database. ASM provides a vertically integrated
file system and volume manager directly in the Oracle kernel, resulting in much less
work to provision database storage.

ASM provides a higher level of availability, without the expense, installation, and
maintenance of specialized storage products, and provides unique capabilities for
database applications. ASM spreads its files across all available storage for optimal
performance, and it can mirror as well, providing protection against data loss. ASM
extends the concept of SAME (stripe and mirror everything) and adds more flexibility
in that it can do mirroring at the database file level instead of having to mirror at the
entire disk level.

Most importantly, ASM eliminates the complexity associated with managing data and
disks, and it simplifies the processes of setting up mirroring, adding disks, and
removing disks. Rather than managing hundreds, possibly thousands of files (as in a
large data warehouse) database administrators using ASM create and administer a
larger-grained object, the disk group, which identifies the set of disks to be managed
as a logical unit. The automation of the file naming and placement of the underlying
database files save the DBAs time and ensures that best practice standards are
followed.

Optionally, you can use the ASM native mirroring mechanism to protect against
storage failures. Mirroring is enabled by default and triple mirroring is also available.
With ASM mirroring, you can provide an additional level of data protection with the
use of failure groups. A failure group is a set of disks sharing a common resource (disk
controller or an entire disk array) whose failure can be tolerated.

Once defined, an ASM failure group intelligently places redundant copies of the data
in separate failure groups to ensure that the data will be available and transparently

Protection Against Data Failures

High Availability 17-7

protected against the failure of any component in the storage subsystem. In addition,
ASM supports the Hardware Assisted Resilient Data capability (discussed below in
the Protecting Against Data Corruptions section) to further protect your data.

Protecting Against Human Errors
Most research performed on the causes of downtime identifies human error as the
single largest cause of downtime. Human errors—such as the inadvertent deletion of
important data or when an incorrect WHERE clause in an UPDATE statement updates
many more rows than were intended—must be prevented wherever possible and must
be undone when the precautions against them fail. Oracle Database provides easy to
use yet powerful tools that help administrators quickly diagnose and recover from
these errors. It also includes features that allow end users to recover from problems
without administrator involvement, reducing the support burden on the
administrators and speeding recovery of the lost and damaged data.

The following sections describe the Oracle features that protect against human errors:

■ Guarding Against Human Errors

■ Oracle Flashback Technology

■ LogMiner SQL-Based Log Analyzer

■ Protecting Against Data Corruptions

■ Protecting Against Site Failures

Guarding Against Human Errors
The best way to prevent errors is to restrict a user's access to data and services they
truly need to conduct their business. Oracle Database provides a wide range of
security tools to control user access to application data by authenticating users and
then allowing administrators to grant users only those privileges required to perform
their duties. In addition, the security model of Oracle Database helps you restrict data
access at a row level, using the Virtual Private Database (VPD) feature. This further
isolates users from data they do not need access to.

Oracle Flashback Technology
When authorized people make mistakes, you need the tools to correct these errors.
Oracle Database provides a family of human error correction technology called
Flashback. Flashback revolutionizes data recovery. In the past, it might take minutes to
damage a database but hours to recover it. With Flashback technology, the time to
correct errors equals the time it took to make the error. It is also easy to use a single,
short command to recover the entire database instead of following some complex
procedure. Flashback is unique to Oracle Database and provides:

■ A SQL interface to quickly analyze and repair human errors.

■ Fine-grained surgical analysis and repair for localized damage, such as when the
wrong customer order is deleted.

■ Correction of more widespread damage yet does it quickly to avoid long
downtime, such as when all of this month's customer orders have been deleted.

See Also:

■ Oracle Database 2 Day DBA

■ Oracle Database Storage Administrator's Guide

Protection Against Data Failures

17-8 Oracle Database Concepts

■ Recovery at all levels including the row, transaction, table, tablespace, and
database wide.

Table 17–1 describes how Flashback technology corrects human errors.

Table 17–1 Protecting Against Human Errors with Oracle Flashback Technology

Feature Description

Flashback Query Oracle Flashback Query enables you to query any data at some point in time in the past. You can use
Flashback Query to view and reconstruct lost data that may have been deleted or changed by accident. For
example:

SELECT * FROM employee AS OF TIMESTAMP TO_TIMESTAMP('19-APR-05 02:00:00 PM') WHERE …

This statement displays rows from the employee table as of 2:00pm on the specified date. Developers can
use this feature to build self-service error correction into their applications, empowering end users to undo
and correct their errors without delay rather than burdening administrators to perform this task. Flashback
Query is simple to manage, because the database automatically keeps the necessary information to
reconstruct data for a configurable time into the past.

Flashback Versions
Query

The Flashback Versions Query provides a way to view changes made to the database at the row level. It is
an extension to SQL and enables you to retrieve all of the different versions of a row across a specified time
interval. For example:

SELECT * FROM employee VERSIONS BETWEEN TIMESTAMP TO_TIMESTAMP('19-APR-05
 02:00:00 PM') AND TIMESTAMP TO_TIMESTAMP('19-APR-05 03:00:00 PM') WHERE …

This statement displays each version of the row, with each row changed by a different transaction between
2:00 and 3:00 p.m. on 19 April. This helps you to pinpoint when and how data is changed and trace it back
to the user, application, or transaction, and tracks down the source of a logical corruption in the database
and correct it. Flashback Versions Query also helps application developers debug code.

Flashback
Transaction

Oracle Flashback Transaction backs out a transaction and its dependent transactions. The
DBMS_FLASHBACK.TRANSACTION_BACKOUT() procedure rolls back a transaction and its dependent
transactions while the database remains online. This recovery operation uses undo data to create and
execute the compensating transactions that return the affected data to its original state. You can query the
DBA_FLASHBACK_TRANSACTION_STATE view to see the current state of a transaction with respect to
whether the transaction has been backed out using dependency rules or forced out by either:

■ Backing out nonconflicting rows

■ Applying undo SQL

Oracle Flashback Transaction increases availability during logical recovery by easily and quickly backing
out a specific transaction or set of transactions and their dependent transactions, with one command while
the database remains online.

Flashback
Transaction Query

Flashback Transaction Query provides a way to view changes made to the database at the transaction level.
It is an extension to SQL that enables you to see all changes made by a transaction. For example:

SELECT * FROM FLASHBACK_TRANSACTION_QUERY WHERE XID = '000200030000002D';

This query shows all of the resultant changes made by this transaction. In addition, compensating SQL
statements are returned and can be used to undo changes made to all rows by this transaction. Using a
precision tool of this kind, the database administrator and application developer can precisely diagnose
and correct logical problems in the database or application.

Flashback Database To bring an Oracle database to a previous point in time, the traditional method is to do point-in-time
recovery. However, point-in-time recovery can take hours, or even days, because it requires the whole
database to be restored from backup and recovered to the point in time just before the error was introduced
into the database. With the size of databases constantly growing, it will take hours or even days just to
restore the whole database.

Flashback Database is a strategy for doing point in time recovery. It quickly rewinds an Oracle database to a
previous time to correct any problems caused by logical data corruption or user error. It uses flashback logs
to capture old versions of changed blocks. This is similar to a continuous backup or storage snapshot.
When you must perform recovery, the Flashback logs are quickly replayed to restore the database to a point
in time before the error and just the changed blocks are restored. Flashback Database is fast and reduces
recovery time from hours to minutes. For example, issue the following command to recover a database to
2:05 p.m.:

FLASHBACK DATABASE TO TIMESTAMP TO_TIMESTAMP('19-APR-05 02:05:00 PM');

Protection Against Data Failures

High Availability 17-9

Flashback Table Flashback Table recovers a table or a set of tables to a specified point in time in the past. In many cases,
Flashback Table alleviates the need to perform more complicated point-in-time recovery operations. For
example:

FLASHBACK TABLE orders, order_items TIMESTAMP TO_TIMESTAMP('07-APR-2005 02:33:00 PM');

This command rewinds any updates to the orders and order_items tables that were made between the
current time and the specified timestamp in the past. Flashback Table performs this operation online and in
place and it maintains any referential integrity constraints between the tables. Flashback Table is very
similar to having a rewind or undo button for a table, or a set of related tables.

Flashback Drop Dropping, or deleting, database objects by accident is a mistake users sometimes make when they think
they are connected to a test database when actually connected to the production database. Users soon
realize their mistake but by then it is too late and there is no way to easily recover the dropped tables and
its indexes, constraints, and triggers. Objects once dropped are lost forever. Indexes can be rebuilt, but for
important tables or other objects (such as partitions or clusters), you must perform a point-in-time recovery,
which may be very time consuming and lead to loss of recent transactions.

Flashback Drop provides a safety net when dropping objects in Oracle Database. When a user drops a table,
Oracle Database places it in a recycle bin. The recycle bin is a virtual container where all dropped objects
reside. Objects remain in the recycle bin until you decide to permanently remove the objects or until the
space pressure is placed on the tablespace containing the table. You can undrop the dropped table and its
dependent objects from the Recycle Bin. For example, the table employee and all of its dependent objects
would be undropped using the following command:

FLASHBACK TABLE employee TO BEFORE DROP;

Flashback Restore
Points

When an Oracle database point-in-time recovery operation is required, you must determine a time or
System Change Number (SCN or transaction time) to which the data must be rolled back. Oracle Database
uses restore points, which is a user-defined label that can be substituted for an SCN or clock time when
used in conjunction with Flashback Database, Flashback Table, and Recovery Manager (RMAN). Restore
points provides the ability to bookmark a known time when the database was in a good state, allowing
quick and easy rewind of an inappropriate action done to the database. It also provides the ability to
flashback through a previous database recovery and open resetlogs. Guaranteed restore points allow major
database changes to be quickly undone (for example, database batch job, upgrade, or patch) by ensuring
that the undo required to rewind the database is retained. Restore points provide an easy way to rewind
back to a known time.

In an Oracle Data Guard environment, this capability also allows a physical standby database that has been
opened read/write to later flash back the changes and later convert the database back to a physical standby
database that is synchronized with the production database. If a logical error is discovered after a
switchover operation, the primary and standby databases can be flashed back to an SCN or a point in time
prior to the switchover operation. In addition, to quickly synchronize the standby database with the
production database, you can apply an incremental backup of the production database to the standby
database instead of applying all the redo data generated since the two databases diverged. This can
significantly reduce the time to resynchronization the two databases.

Block recovery
using flashback
logs

Block recovery can optionally retrieve a more recent copy of a data block from the flashback logs to reduce
recovery time. Furthermore, a corrupted block encountered during instance recovery does not result in
instance recovery failing. The block is automatically marked as corrupt and added to the RMAN corruption
list in the V$DATABASE_BLOCK_CORRUPTION table. You can subsequently issue the RMAN RECOVER
BLOCK command to fix the associated block.

Flashback Data
Archive

A Flashback Data Archive provides the ability to track and store all transactional changes to a table over its
lifetime. It is no longer necessary to build this intelligence into your application. A Flashback Data Archive
is useful for compliance with record stage policies and audit reports. See or complete information.

See Also:

■ Chapter 13, "Data Concurrency and Consistency" for information
on Oracle Flashback Query

■ Chapter 15, "Backup and Recovery" for information on Oracle
Flashback Database and Oracle Flashback Table

■ Oracle Database Advanced Application Developer's Guide for more
information on Flashback Transaction

Table 17–1 (Cont.) Protecting Against Human Errors with Oracle Flashback Technology

Feature Description

Protection Against Data Failures

17-10 Oracle Database Concepts

LogMiner SQL-Based Log Analyzer
Oracle log files contain a wealth of useful information about the activities and history
of an Oracle database. Log files contain all of the data needed to perform database
recovery. They also record every change made to data and metadata in the database.
LogMiner is a relational tool that allows redo log files to be read, analyzed, and
interpreted using SQL. You can use analysis of the log files with LogMiner to track or
audit changes to data, provide supplemental information for tuning and capacity
planning, retrieve critical information for debugging complex applications, or recover
deleted data.

Protecting Against Data Corruptions
A corruption is created by a faulty component in the I/O stack. For example, the
database issues I/O operations as the result of an update transaction. The database
I/O is passed to:

1. The I/O code in the operating system

2. The file system

3. The volume manager

4. The device driver

5. The host bus adapter

6. The storage controller

7. The disk drive to which the I/O is finally written

Bugs or a hardware failure in any component in the I/O sequence could flip some bits
in the data resulting in corrupt data being written to the database. This corruption
could be due to database control information or user data either of which could be
catastrophic to the functioning and availability of the database. Similarly, a disk failure
could damage database files requiring backups be used to recover the database.

Protection against data corruptions include the following topics:

■ Oracle Hardware Assisted Resilient Data (HARD)

■ Lost Writes

■ Data Recovery Advisor

■ Flash Backup And Recovery

Oracle Hardware Assisted Resilient Data (HARD) The Oracle Hardware Assisted Resilient
Data (HARD) prevents data corruptions before they happen. Data corruptions while
rare, can have a catastrophic effect on a database, and therefore a business. By
implementing the Oracle data validation algorithms inside storage devices, Oracle
prevents corrupted data from being written to the database files on persistent storage.
This type of end-to-end high-level software to low-level hardware validation is a
unique capability provided by Oracle and its storage partners.

Oracle validates and adds protection information to the database blocks and this
protection information is further validated by the storage device. HARD detects
corruptions from being introduced into the I/O path between the database and
storage, and eliminates a large class of failures that the database industry has
previously been powerless to prevent. RAID has gained a wide following in the
storage industry by ensuring the physical protection of data, HARD takes data

See Also: "Overview of LogMiner" on page 11-4

Protection Against Data Failures

High Availability 17-11

protection to the next level by going beyond protecting physical bits, to protecting
business data.

Lost Writes A lost write is another form of data corruption, but it is much more evasive
to detect and repair quickly. A data block lost write occurs when:

■ An I/O subsystem acknowledges the completion of the block write, while in fact
the write did not occur in the persistent storage. On a subsequent block read, the
I/O subsystem returns the stale version of the data block, which might be used to
update other blocks of the database, thereby corrupting it.

■ The write I/O completed but it was written somewhere else, and a subsequent
read operation returns the stale value.

■ A read I/O from one cluster node returns stale data after a write I/O on another
node. For example, this could occur if an NFS caching policy is incompatible with
Oracle RAC.

Data block corruption prevention and detection Prior to Oracle Database 11g, block
corruptions detected by RMAN were recorded in V$DATABASE_BLOCK_CORRUPTION.
In Oracle Database 11g, several database components and utilities, including RMAN,
can now detect a corrupt block and record it in that view. Oracle Database
automatically updates this view when block corruptions are detected or repaired (for
example, using block media recovery or data file recovery). The benefit is that the time
it takes to discover block corruptions is shortened.

Data Recovery Advisor Data Recovery Advisor automatically diagnoses persistent (on
disk) data failures, presents appropriate repair options, and runs repair operations at
your request. It includes the following functionality:

■ Failure diagnosis

■ Failure impact assessment

■ Repair generation

■ Repair feasibility checks

■ Repair automation

■ Validation of data consistency and database recoverability

■ Early detection of corruption

■ Integration of data validation and repair

Note that the initial release of Data Recovery Advisor does not support Oracle RAC. In
addition, while you can use Data Recovery Advisor to manage a primary database in a
Data Guard configuration, you cannot use Data Recovery Advisor to troubleshoot a
physical standby database. Data Recovery Advisor only takes the presence of a
standby database into account when recommending repair strategies if you are using
Oracle Enterprise Manager 11g Grid Control.

Flash Backup And Recovery There is no substitute for backups of enterprise data.
Although rare, multiple failures can render even data mirrored in the storage
subsystem unusable. Fortunately, Oracle provides online tools to properly backup all

See Also:

http://www.oracle.com/technology/deploy/availability
/htdocs/HARD.html for more information about HARD

Protection Against Data Failures

17-12 Oracle Database Concepts

your data, to restore data from a previous backup, and to recover changes to that data
up to the time just before the failure occurred.

Backing up a large database system is no simple task. A large database can be
composed of hundreds of files spread over many different disks. Neglecting to backup
a critical file can render the entire database backup unusable. Often these damaged
files are not discovered until they are needed. Recovery Manager (RMAN) is a tool
that manages the backup, restore, and recovery process for Oracle Database. It creates
and maintains backup policies, and catalogs all backup and recovery activities. All
data blocks can be analyzed for corruption during backup and restore to prevent
propagation of corrupt data through to the backups. Most importantly, Recovery
Manager ensures all necessary data files are backed up, and the database is
recoverable.

Recovery Manager automatically keeps track of the files needed to restore the database
within a user-specified window. It can automatically restart interrupted operations,
handle corrupted log files, and restore an individual data block while the remainder of
the database remains online.

RMAN radically enhances database backup and recovery. RMAN can automatically
manage backing up and recover all of your data to the Flash Recovery Area. The Flash
Recovery Area is a unified disk-based storage location for all recovery related files and
activities in an Oracle database. Making backups to disk, instead of tape, enables faster
backups. But more importantly, if database media recovery is required, then datafile
backups are readily available, radically speeding database recovery time.

Recovery Manager manages the recovery files in the Flash Recovery Area. RMAN
automatically creates all backups in the Flash Recovery Area and manages the space.
The archiver writes redo data to the Flash Recovery Area and RMAN automatically
deletes, or moves to tape, obsolete backups and archived redo logs that are no longer
required. If you set the RETENTION POLICY to a recovery window of 7 days, then
RMAN retains all backups required to recover the database 7 days back. If you require
recovery to a time further than 7 days in the past, RMAN restores the data from tape.
Oracle Enterprise Manager provides a complete interface to drive Flash Backup and
Recovery, including implementing best practices.

Incremental backups have been part of RMAN since it was first released in the Oracle8
Database. Incremental backups record only the changed blocks since the previous
backup. Oracle Database delivers the ability for faster incremental backups with the
implementation of block change tracking. Oracle Database tracks the physical location
of all database changes. RMAN automatically uses this change tracking information to
determine which blocks need to be read during an incremental backup and directly
accesses the block to back it up. The incremental backups can then be merged into a
previously created image backup to minimize the time for recovery. A backup strategy
based on incrementally updated backups keeps the time required for media recovery
to a minimum. By making incremental backups with change tracking part of your
backup strategy, you can: reduce the amount of time needed for daily backups, save
network bandwidth when backing up over a network, recover unlogged changes to
database, reduce the backup file storage, and reduce the time for database recovery.

Oracle Database backup and recovery also includes many other innovative capabilities

■ Compressed backups

■ Automated failover to a previous backup when restore discovers a missing or
corrupt backup

■ Automated recovery through a previous point in time recovery, or recovery
through resetlogs

Protection Against Data Failures

High Availability 17-13

■ Automated creation of new database and temporary files during recovery

■ Automated channel failover on backup or restore

■ Automated tablespace point-in-time recovery

■ Full database BEGIN BACKUP command for faster mirror split

■ Faster recovery due to improved recovery parallelism (2 to 4 times)

■ Tablespace Rename

■ Proxy (third party) backup for archived redo logs

■ Time window based throttling of backups

■ Cross Platform Transportable Tablespaces

Protecting Against Site Failures
Data protection features provide protection from catastrophic events that cripple
processing at a site for an extended period of time. Examples include file corruptions,
natural disasters, power and communication outages, and even terrorism. Oracle
Database offers a variety of data protection solutions that provide the ability to create
and maintain a local or remote copy of a production database. In the event of a
corruption or disaster, users of the data can continue to function by accessing the
remote database.

The simplest form of data protection is off-site storage of database backups. In the
event a data center is unable to resume services in a reasonable amount of time, the
backups can be restored on a system at another site, and users can connect to the
backup system. Unfortunately, restoring backups on another system will be time
consuming, and the backup may not be completely up to date. To more quickly
recover and maintain continuous database service even in the event of a disaster,
Oracle provides Data Guard, which is described in the following topics:

■ Oracle Data Guard and standby databases

■ Zero Data Loss Redo Transport

■ Real-Time Apply and Flashback Database

■ Data Guard Broker

■ Fast-Start Failover

Oracle Data Guard and standby databases Data Guard should be the foundation of any
Oracle Database disaster recovery plan. Data Guard provides the ability to set up and
maintain a standby copy of your production database. You can locate the standby
database a half a world away from the production database or in the same data center.
Data Guard includes enhancements to automate complex tasks and provide significant
monitoring, alerting and control mechanisms. It enables your database to survive a
data center disaster. Data Guard also works transparently across Grid clusters and you
can add the servers dynamically to the standby database in the event a failover is
required.

See Also:

■ Chapter 15, "Backup and Recovery" for information on backup
and recovery solutions

■ Oracle Database Backup and Recovery User's Guide for information
on RMAN and backup and recovery solutions

Protection Against Data Failures

17-14 Oracle Database Concepts

Oracle Data Guard supports physical standby databases that use Redo Apply
technology, snapshot standby databases, and logical standby databases that use SQL
Apply technology:

■ Physical standby databases and Redo Apply

Data Guard in Redo Apply mode maintains a copy of a production database,
called a physical standby database, and keeps it synchronized with the production
database. The redo data from the primary database is shipped to the standby and
physically applied during media recovery. The standby database is physically
identical to the primary (although it may lag the primary). Additionally, you can
open the standby database in read-only mode while redo is being applied so the
database can also be used to off load reporting work from the production
database. Backup processing may also be offloaded from the production database
as backups created at the standby database can be used to perform recovery of the
production database.

Physical standby databases are good for providing protection from disasters and
data errors. In the event of an error or disaster, the physical standby can be
opened, and be used to provide data services to applications and end users.
Because the efficient media recovery mechanism is used to apply changes to the
standby database, it is supported with every application, and can easily and
efficiently keep up with even the largest transaction workloads.

■ Snapshot standby databases

A snapshot standby database is an updatable standby database that you create
from a physical standby database. A snapshot standby database receives and
archives redo data received from the primary database, but the snapshot standby
database does not apply redo data from the primary database while the standby is
open read/write. For this reason, the snapshot standby typically diverges from the
primary database over time. Moreover, local updates to the snapshot standby
database cause additional divergence.

Redo data is not applied until you convert the snapshot standby database back
into a physical standby database, and after all local updates to the snapshot
standby database are discarded. With a single command, you can revert a
snapshot standby back to a physical standby database, at which time the changes
made to the snapshot standby state are discarded, and Redo Apply automatically
resynchronizes the physical standby database with the primary database using the
redo that was archived.

■ Logical standby databases and SQL Apply

Data Guard in SQL Apply mode takes redo data received from the primary
database, transforms the redo into SQL transactions, and applies them to an open
standby database. Although a logical standby database can be physically different
from the primary database, it is logically the same as the primary and it can take
over processing if the primary database is destroyed. Because transactions are
applied using SQL to an open database, the standby can be used concurrently for
other tasks, and can have a different physical structure than the production
database. For example, the logical standby can be used for decision support, and
be optimized for reporting by using additional indexes and materialized views
that do not exist on the primary database.

SQL Apply is most importantly a data protection feature because it compares
before-change values in the log files to the before-change values in the logical
standby database providing a check against logical corruption. A logical standby
database can therefore offer protection from the widest possible range of
corruptions.

Protection Against Data Failures

High Availability 17-15

Because logical standby databases are open for read/write I/O during recovery,
you can query the standby database while SQL Apply applies changes in the redo
logs.

Zero Data Loss Redo Transport Both physical and logical standby databases use the same
transport services. Data Guard offers customers the choice of synchronous and
asynchronous transport methods. Data Guard synchronous transport services provide
zero data loss protection insuring that if a disaster should strike the primary database,
the redo data necessary to preserve all previously committed transactions is available
at the standby site.

You can also choose to transmit redo data asynchronously to the standby site. This
minimizes any potential data loss while providing optimal performance over large
distances, and provides protection from network failures.

Real-Time Apply and Flashback Database With real-time apply, Data Guard apply services
can apply redo data on the standby database as soon as it is received from the primary
database, without waiting for the current log file to be archived at the standby
database. This enables standby databases to be closely synchronized with the primary
database, enabling up to date and real-time reporting. This also enables faster
switchover and failover times, which in turn reduces planned and unplanned
downtime for the business. You may also choose to use Flashback Database on both
the primary and standby database to quickly revert the databases to an earlier point in
time to back out user errors. Alternatively, if you decide to failover to a standby
database, but those user errors were already applied to the standby database (because
real-time apply was enabled), you can flash back the standby database to a safe point
in time. The use of these two features eliminate the tradeoff sometimes necessary to
ensure the standby database stays current and delays applying redo data as way of
preventing human errors on the production database from propagating to the standby
database.

Data Guard Broker The primary and standby databases, as well as their various
interactions, may be managed by using SQL*Plus. For easier manageability, Data
Guard also offers the Data Guard Broker distributed management framework, which
automates and centralizes the creation, maintenance, and monitoring of a Data Guard
configuration. You can use either Oracle Enterprise Manager or the Broker's own
specialized command-line interface (DGMGRL) to take advantage of the Broker's
management capabilities. From the easy-to-use Oracle Enterprise Manager GUI, you
can initiate failover processing with a single mouse click from the primary to either
type of standby database. The Broker and Oracle Enterprise Manager make it easy to
manage and operate the standby database. By facilitating activities such as failover
and switchover, the possibility of errors is greatly reduced.

Fast-Start Failover Fast-start failover enables the creation of a fault-tolerant standby
database environment by providing the ability to totally automate the failover of
database processing from the production to standby database, without any human
intervention. Fast-start failover automatically, quickly, and reliably fails over to a
designated, synchronized standby database in the event of loss of the primary
database, without requiring administrators to perform complex manual steps to
invoke and implement the failover operation. This greatly reduces the length of an
outage. You set up fast-start failover using either Oracle Enterprise Manager or the
Data Guard Broker. The Observer, which monitors the Data Guard environment,
automatically triggers and completes the failover when required. After a fast-start
failover occurs, the old primary database, upon reconnection to the configuration, is
automatically reinstated as a new standby database by the Broker. This enables the
Data Guard configuration to restore disaster protection in the configuration easily and

Avoiding Downtime During Planned Maintenance

17-16 Oracle Database Concepts

quickly, improving the robustness of the Data Guard configuration. With these
capabilities, Data Guard not only helps maintain transparent business continuity, but
also reduces the management costs for the disaster-recovery configuration.

Avoiding Downtime During Planned Maintenance
Planned downtime can be just as disruptive to operations, especially in global
enterprises that support users in multiple time zones. In this case it is important to
design a system to minimize planned interruptions. Planned downtime includes
routine operations, periodic maintenance, and new deployments.

Routine operations are frequent maintenance tasks that include backups, performance
management, user and security management, and batch operations. Periodic
maintenance, such as installing a patch or reconfiguring the system, is occasionally
necessary to update the database, application, operating system, middleware, or
network. New deployments may be necessitated by major upgrades to the hardware,
operating system, database, application, middleware, or network. It is important to
consider not only the time to perform the upgrade, but also the effect the changes may
have on the overall application.

The Internet has made it easy to share data globally, but brings new challenges and
requirements for data availability. As global users access data 24 hours per day,
maintenance windows have all but evaporated. Planned downtime is becoming as
disruptive as unplanned downtime. There are no longer any windows of time during
which users are not affected. When the volume of data stored in a database becomes
very large, maintenance operations can be quite time consuming. It is important that
these operations be performed without affecting the users of the data.

This section includes the following topics:

■ Avoiding Downtime for Data Changes

■ Avoiding Downtime for System Changes

Avoiding Downtime for Data Changes
Figure 17–3 focuses on the three types of downtime due to data changes: online
schema and data reorganization, partitioned tables and indexes, and dynamic resource
provisioning.

See Also:

■ Oracle Data Guard Concepts and Administration

■ Oracle Data Guard Broker

Avoiding Downtime During Planned Maintenance

High Availability 17-17

Figure 17–3 Downtime Due to Data Changes

This section includes the following topics:

■ Online Schema and Data Reorganization

■ Partitioned Tables and Indexes

Online Schema and Data Reorganization
Oracle Database enables you to perform most maintenance operations without
disrupting database operations or data availability to users. Indexes can be added,
rebuilt, or defragmented while the database is online and while end users are reading
or updating data. Similarly, you can relocate or defragment tables online. Tables can be
redefined, changing table types, adding, dropping or renaming columns, and
changing storage parameters without interrupting end users who are viewing or
updating the underlying data. Oracle Database capabilities include:

■ Support for easy cloning of indexes, grants, constraints, and other characteristics
of the table

■ Conversion from the long to LOB datatype online

■ Allowing unique indexes instead of requiring a primary key

■ Ability to the modify the bodies of PL/SQL stored procedures and views that are
referenced through synonyms, without recompiling other PL/SQL packages that
reference them

■ Ability to perform an online segment shrink to compact the space used in a
segment online and in place, allowing space management to be performed
without impacting system or data availability.

Partitioned Tables and Indexes
As databases grow larger, they may become extremely cumbersome to manage. The
ability to partition database tables and indexes allows administrators to divide large
tables up into smaller, more manageable pieces. While most operations and schema
changes can be made online, partitioning allows maintenance tasks to be performed
one partition at a time. This allows the bulk of the data to be unaffected during
maintenance. In addition, partitions enable the use of parallel execution to perform
most operations much faster.

Another benefit of partitions is fault containment. A failure, such as a media failure or
corruption, is contained to partitions resident on the failed disk. Only that partition is

Computer
Failures

Unplanned
Downtime

System
Downtime

Planned
Downtime

Data
Changes

System
Changes

Online Schema
and Data

Reorganization

Partitioned
Tables and

Indexes

Data
Failures

Avoiding Downtime During Planned Maintenance

17-18 Oracle Database Concepts

affected and must be recovered. This not only reduces the time to recover, but allows
the other unaffected partitions to remain online while the failed partition is recovered.

Often, not all data in a large table has the same access characteristics. Pending orders
may be accessed more frequently than closed orders, or analysis of last quarter's sales
may be more common than analysis of sales from a quarter three years ago.
Partitioning allows for intelligent storage management of data. Frequently accessed
data can be stored on the fastest disks, and heavily accessed data can be striped across
many drives.

Avoiding Downtime for System Changes
Planned system changes occur when you perform routine and periodic maintenance
operations and new deployments. Planned system changes include any scheduled
changes to the operating environment that occur outside of the organizational data
structure in the database.

The service level impact of planned system changes varies significantly depending on:

■ The nature and scope of the planned outage

■ The testing and validation efforts made prior to implementing the change

■ The technologies and features in place to minimize the impact

This section includes the following topics:

■ Rolling Patch Updates

■ Rolling Release Upgrade

■ Dynamic Resource Provisioning

Rolling Patch Updates
Oracle Database supports the application of patches to the nodes of an Oracle RAC
system in a rolling fashion. To perform a rolling upgrade involves performing the
following high-level steps:

1. Copy the patch software to the primary upgrade node

2. Shut down Oracle RAC instances on the upgrade nodes

3. Stop all Oracle processes on the upgrade nodes

4. Start OUI and complete the upgrade process on the upgrade nodes

An Oracle RAC system runs with all nodes actively processing transactions on the
behalf of database clients. Step 1 of the patch application procedure is to quiesce the
first instance to which the patch is to be applied. In step 2, you use an Oracle patch
tool (Opatch) to apply the patch to the quiesced instance (for example, the Oracle
Home for instance 1 is updated). In step 3, you reactivate the patched instance which
then rejoins the cluster. The Oracle RAC system is now running with one instance at a
higher maintenance level than the other nodes in the cluster.

An Oracle RAC system can run in this mixed mode for an arbitrary period to ensure
the patch corrects the original problem, and has not introduced some other problem.
This procedure is then repeated for the remaining nodes in the cluster. When all nodes
in the cluster have been patched, the rolling patch update is complete and all nodes are
running the same version of the Oracle Database software. In addition, Opatch has the
ability to rollback the application of a patch. If you observe some aberrant behavior on
the updated instance, you can either uninstall the offending patch or roll it back,
without forcing a clusterwide outage. The rollback procedure is the same as the patch

Avoiding Downtime During Planned Maintenance

High Availability 17-19

apply procedure, but in this case the Opatch utility removes a previously applied
patch.

Rolling Release Upgrade
Oracle Database supports the installation of database software upgrades, and the
application of patch sets, in a rolling fashion—with near zero database downtime—by
using Data Guard SQL Apply and logical standby databases.

Oracle Clusterware also supports upgrades in a rolling fashion for software upgrades
and application of patch sets. Additionally, once on Oracle Database 11g, ASM
supports rolling release upgrades.

Physical standby database users can elect to add a logical standby database to the
configuration for the duration of a rolling upgrade, or they can use a transient logical
standby database to avoid creating a second standby database. A transient logical
standby is a new feature for Data Guard in Oracle Database 11g that enables you to
temporarily convert a physical standby database to a logical standby database for the
purpose of executing a rolling database upgrade. Then, once the upgrade is complete,
you can convert it back into a physical standby database. Using a transient logical
standby database avoids the need to create a separate logical standby database to
perform upgrades.

By supporting rolling upgrades and rolling patch updates, Oracle has eliminated a
large portion of the maintenance windows database administrators reserve for
administrative tasks, and enables 24x7 operation of their enterprise.

Dynamic Resource Provisioning
Oracle Database continues to broaden support for dynamic reconfiguration enabling it
to adapt to changes in demand and hardware with no disruption of service. Oracle
Database dynamically accommodates changes to hardware configurations such as:

■ Add and remove processors from an SMP server

Oracle Database monitors the operating system to detect changes in the number of
CPUs. If the CPU_COUNT initialization parameter is set to the default, then the
database workload can dynamically take advantage of newly added processors.

■ Dynamically grow and shrink its shared memory allocation and automatically
tune memory online

Using automatic memory management, Oracle Database can automatically move
memory among the SGA, PGA, and their subcomponents to ensure optimal
performance. You can also add to and remove memory from an active instance by
dynamically changing the initialization parameters SGA_TARGET,
PGA_AGREEGATE_TARGET, and SERVER_MEMORY_TARGET.

■ Add and remove nodes in an Oracle RAC cluster

■ Add and remove ASM disks without disturbing database activities

■ Automatically rebalance I/O load across the database storage

■ Move datafiles online

See Also: Oracle Data Guard Concepts and Administration for
step-by-step instructions about performing a rolling upgrade with a
transient logical standby database

Maximum Availability Architecture (MAA) Best Practices

17-20 Oracle Database Concepts

The preceding capabilities eliminate the impact of system changes and provide true
capacity on demand provisioning that is a fundamental requirement of enterprise Grid
computing.

Maximum Availability Architecture (MAA) Best Practices
Operational best practices are the key to a successful implementation of IT
infrastructure. Technology alone is not enough. Oracle's Maximum Availability
Architecture (MAA) is a fully integrated and proven blueprint for building highly
available systems. The MAA blueprint details the combined use of key Oracle
Database features for high availability including Oracle RAC and Oracle Clusterware,
Data Guard, Recovery Manager, Flashback Technologies, Streams, and Enterprise
Manager.

Conceptualized with the philosophy that designing an HA system involving Oracle
technologies should not be complex, and should not involve guesswork, the MAA
design and configuration recommendations have been extensively reviewed and
tested to ensure optimum system availability and reliability. MAA also addresses the
configuration and integration of other critical components of highly available systems
including servers, storage, networking, and the application server. Enterprises that
base their system architecture on MAA can more quickly and efficiently achieve
business requirements for high availability and data protection.

You can find more information on MAA at
http://www.oracle.com/technology/deploy/availability/htdocs/maa.
htm

See Also: Oracle Database Administrator's Guide to learn more about
Oracle's memory management functionality

Very Large Databases (VLDB) 18-1

18
Very Large Databases (VLDB)

This chapter contains an overview of VLDB topics, with emphasis on partitioning as a
key component of the VLDB strategy. It covers the following topics:

■ Introduction to Partitioning

■ Overview of Partitioned Indexes

■ Partitioning to Improve Performance

Introduction to Partitioning
Partitioning addresses key issues in supporting very large tables and indexes by
letting you decompose them into smaller and more manageable pieces called
partitions. SQL queries and DML statements do not need to be modified in order to
access partitioned tables. However, after partitions are defined, DDL statements can
access and manipulate individuals partitions rather than entire tables or indexes. This
is how partitioning can simplify the manageability of large database objects. Also,
partitioning is entirely transparent to applications.

Each partition of a table or index must have the same logical attributes, such as
column names, datatypes, and constraints, but each partition can have separate
physical attributes such as pctfree, pctused, and tablespaces.

Partitioning is useful for many different types of applications, particularly applications
that manage large volumes of data. OLTP systems often benefit from improvements in
manageability and availability, while data warehousing systems benefit from
performance and manageability.

Partitioning offers these advantages:

■ Partitioning enables data management operations such data loads, index creation
and rebuilding, and backup/recovery at the partition level, rather than on the
entire table. This results in significantly reduced times for these operations.

■ Partitioning improves query performance. In many cases, the results of a query
can be achieved by accessing a subset of partitions, rather than the entire table. For
some queries, this technique (called partition pruning) can provide
order-of-magnitude gains in performance.

See Also: Oracle Database VLDB and Partitioning Guide for more
information about VLDB topics such as partitioning

Note: This functionality is available only if you purchase the
Partitioning option.

Introduction to Partitioning

18-2 Oracle Database Concepts

■ Partitioning can significantly reduce the impact of scheduled downtime for
maintenance operations.

Partition independence for partition maintenance operations lets you perform
concurrent maintenance operations on different partitions of the same table or
index. You can also run concurrent SELECT and DML operations against partitions
that are unaffected by maintenance operations.

■ Partitioning increases the availability of mission-critical databases if critical tables
and indexes are divided into partitions to reduce the maintenance windows,
recovery times, and impact of failures.

■ Partitioning can be implemented without requiring any modifications to your
applications. For example, you could convert a nonpartitioned table to a
partitioned table without needing to modify any of the SELECT statements or
DML statements which access that table. You do not need to rewrite your
application code to take advantage of partitioning.

This section includes the following topics:

■ Partition Key

■ Partitioned Tables

■ Partitioned Index-Organized Tables

■ Partitioning Methods

Partition Key
Each row in a partitioned table is unambiguously assigned to a single partition. The
partition key is a set of one or more columns that determines the partition for each
row. Oracle Database automatically directs insert, update, and delete operations to the
appropriate partition through the use of the partition key. A partition key:

■ Consists of an ordered list of 1 to 16 columns

■ Cannot contain a LEVEL, ROWID, or MLSLABEL pseudocolumn or a column of type
ROWID

■ Can contain columns that are NULLable

Partitioned Tables
Tables can be partitioned into up to 1024K-1 separate partitions. Any table can be
partitioned except those tables containing columns with LONG or LONG RAW
datatypes. You can, however, use tables containing columns with CLOB or BLOB
datatypes.

Note: To reduce disk use and memory use (specifically, the buffer
cache), you can store tables and partitioned tables in a compressed
format inside the database. This often leads to a better scaleup for
read-only operations. Table compression can also speed up query
execution. There is, however, a slight cost in CPU overhead.

See Also: "Table Compression" on page 16-8

Introduction to Partitioning

Very Large Databases (VLDB) 18-3

Partitioned Index-Organized Tables
You can partition index-organized tables by range, list, or hash. Partitioned
index-organized tables are very useful for providing improved manageability,
availability, and performance for index-organized tables. In addition, data cartridges
that use index-organized tables can take advantage of the ability to partition their
stored data.

For partitioning an index-organized table:

■ Partition columns must be a subset of primary key columns

■ Secondary indexes can be partitioned—locally and globally

■ OVERFLOW data segments are always equipartitioned with the table partitions

Partitioning Methods
Oracle provides the following partitioning methods:

■ Range partitioning maps data to partitions based on ranges of partition key values
that you establish for each partition.

■ Interval partitioning is an extension of range partitioning which instructs the
database to automatically create partitions of a specified interval when data
inserted into the table exceeds all of the range partitions.

■ Hash partitioning maps data to partitions based on a hashing algorithm that
evenly distributes rows among partitions, giving partitions approximately the
same size.

■ List partitioning enables you to explicitly control how rows map to partitions by
specifying a list of discrete values in the description for each partition.

■ Reference partitioning enables you to partition a table based on the partitioning
scheme of the table referenced in its referential constraint.

■ Composite partitioning is a combination of two partitioning methods to further
divide the data into subpartitions:

– Composite range-range partitioning partitions data using the range method,
and within each partition, subpartitions it using the range method.

– Composite range-hash partitioning partitions data using the range method,
and within each partition, subpartitions it using the hash method.

– Composite range-list partitioning partitions data using the range method, and
within each partition, subpartitions it using the list method.

– Composite list-range partitioning partitions data using the list method, and
within each partition, subpartitions it using the range method.

– Composite list-hash partitioning partitions data using the list method, and
within each partition, subpartitions it using the hash method.

– Composite list-list partitioning partitions data using the list method, and
within each partition, subpartitions it using the list method.

■ System partitioning enables application-controlled partitioning for arbitrary
tables.

Overview of Partitioned Indexes

18-4 Oracle Database Concepts

Overview of Partitioned Indexes
Just like partitioned tables, partitioned indexes improve manageability, availability,
performance, and scalability. They can either be partitioned independently (global
indexes) or automatically linked to a table's partitioning method (local indexes). In
general, you should use global indexes for OLTP applications and local indexes for
data warehousing or DSS applications. Also, whenever possible, you should try to use
local indexes because they are easier to manage. When deciding what kind of
partitioned index to use, you should consider the following guidelines in order:

1. If the table partitioning column is a subset of the index keys, use a local index. If
this is the case, you are finished. If this is not the case, continue to guideline 2.

2. If the index is unique, use a global index. If this is the case, you are finished. If this
is not the case, continue to guideline 3.

3. If your priority is manageability, use a local index. If this is the case, you are
finished. If this is not the case, continue to guideline 4.

4. If the application is an OLTP one and users need quick response times, use a
global index. If the application is a DSS one and users are more interested in
throughput, use a local index.

This section includes the following topics:

■ Local Partitioned Indexes

■ Global Partitioned Indexes

■ Global Nonpartitioned Indexes

■ Miscellaneous Information about Creating Indexes on Partitioned Tables

■ Using Partitioned Indexes in OLTP Applications

■ Using Partitioned Indexes in Data Warehousing and DSS Applications

■ Partitioned Indexes on Composite Partitions

Local Partitioned Indexes
Local partitioned indexes are easier to manage than other types of partitioned indexes.
They also offer greater availability and are common in DSS environments. The reason
for this is equipartitioning: each partition of a local index is associated with exactly one
partition of the table. This enables Oracle Database to automatically keep the index
partitions synchronized with with the table partitions, and makes each table-index
pair independent. Any actions that make one partition's data invalid or unavailable
only affect a single partition.

Local partitioned indexes support more availability when there are partition or
subpartition maintenance operations on the table. A type of index called a local
nonprefixed index is very useful for historical databases. In this type of index, the
partitioning is not on the left prefix of the index columns.

See Also: Oracle Database VLDB and Partitioning Guide and Oracle
Database Administrator's Guide for more information about partitioned
indexes and how to decide which type to use

See Also: Oracle Database VLDB and Partitioning Guide more
information about prefixed indexes

Overview of Partitioned Indexes

Very Large Databases (VLDB) 18-5

You cannot explicitly add a partition to a local index. Instead, new partitions are added
to local indexes only when you add a partition to the underlying table. Likewise, you
cannot explicitly drop a partition from a local index. Instead, local index partitions are
dropped only when you drop a partition from the underlying table.

A local index can be unique. However, in order for a local index to be unique, the
partitioning key of the table must be part of the index's key columns. Unique local
indexes are useful for OLTP environments.

Global Partitioned Indexes
Oracle Database offers two types of global partitioned index: range partitioned and
hash partitioned.

This section includes the following topics:

■ Global Range Partitioned Indexes

■ Global Hash Partitioned Indexes

■ Maintenance of Global Partitioned Indexes

Global Range Partitioned Indexes
Global range partitioned indexes are flexible in that the degree of partitioning and the
partitioning key are independent from the table's partitioning method. They are
commonly used for OLTP environments and offer efficient access to any individual
record.

The highest partition of a global index must have a partition bound, all of whose
values are MAXVALUE. This ensures that all rows in the underlying table can be
represented in the index. Global prefixed indexes can be unique or nonunique.

You cannot add a partition to a global index because the highest partition always has a
partition bound of MAXVALUE. If you want to add a new highest partition, use the
ALTER INDEX SPLIT PARTITION statement. If a global index partition is empty,
you can explicitly drop it by issuing the ALTER INDEX DROP PARTITION statement.
If a global index partition contains data, dropping the partition causes the next highest
partition to be marked unusable. You cannot drop the highest partition in a global
index.

Global Hash Partitioned Indexes
Global hash partitioned indexes improve performance by spreading out contention
when the index is monotonically growing. In other words, most of the index insertions
occur only on the right edge of an index.

Maintenance of Global Partitioned Indexes
By default, the following operations on partitions on a heap-organized table mark all
global indexes as unusable:

ADD (HASH)
COALESCE (HASH)
DROP
EXCHANGE
MERGE
MOVE
SPLIT
TRUNCATE

Overview of Partitioned Indexes

18-6 Oracle Database Concepts

These indexes can be maintained by appending the clause UPDATE INDEXES to the
SQL statements for the operation. The two advantages to maintaining global indexes:

■ The index remains available and online throughout the operation. Hence no other
applications are affected by this operation.

■ The index doesn't have to be rebuilt after the operation.

Example:

ALTER TABLE DROP PARTITION P1 UPDATE INDEXES;

Global Nonpartitioned Indexes
Global nonpartitioned indexes behave just like a nonpartitioned index. They are
commonly used in OLTP environments and offer efficient access to any individual
record.

Miscellaneous Information about Creating Indexes on Partitioned Tables
You can create bitmap indexes on partitioned tables, with the restriction that the
bitmap indexes must be local to the partitioned table. They cannot be global indexes.

Global indexes can be unique. Local indexes can only be unique if the partitioning key
is a part of the index key.

Using Partitioned Indexes in OLTP Applications
Here are a few guidelines for OLTP applications:

■ Global indexes and unique, local indexes provide better performance than
nonunique local indexes because they minimize the number of index partition
probes.

■ Local indexes offer better availability when there are partition or subpartition
maintenance operations on the table.

■ Hash-partitioned global indexes offer better performance by spreading out
contention when the index is monotonically growing. In other words, most of the
index insertions occur only on the right edge of an index.

Using Partitioned Indexes in Data Warehousing and DSS Applications
Here are a few guidelines for data warehousing and DSS applications:

■ Local indexes are preferable because they are easier to manage during data loads
and during partition-maintenance operations.

■ Local indexes can improve performance because many index partitions can be
scanned in parallel by range queries on the index key.

Note: This feature is supported only for heap-organized tables.

See Also: Oracle Database SQL Language Reference for more
information about the UPDATE INDEXES clause

Partitioning to Improve Performance

Very Large Databases (VLDB) 18-7

Partitioned Indexes on Composite Partitions
Here are a few points to remember when using partitioned indexes on composite
partitions:

■ Subpartitioned indexes are always local and stored with the table subpartition by
default.

■ Tablespaces can be specified at either index or index subpartition levels.

Partitioning to Improve Performance
Partitioning can help you improve performance and manageability. Some topics to
keep in mind when using partitioning for these reasons are:

■ Partition Pruning

■ Partition-wise Joins

Partition Pruning
Oracle Database explicitly recognizes partitions and subpartitions. It then optimizes
SQL statements to mark the partitions or subpartitions that need to be accessed and
eliminates (prunes) unnecessary partitions or subpartitions from access by those SQL
statements. In other words, partition pruning is the skipping of unnecessary index and
data partitions or subpartitions in a query.

For each SQL statement, depending on the selection criteria specified, unneeded
partitions or subpartitions can be eliminated. For example, if a query only involves
March sales data, then there is no need to retrieve data for the remaining eleven
months. Such intelligent pruning can dramatically reduce the data volume, resulting
in substantial improvements in query performance.

The SQL Access Advisor can automatically analyze the schema design for a given
workload and recommend indexes, function-based indexes, partitions, and
materialized views to create, retain, or drop as appropriate for the workload.

If the optimizer determines that the selection criteria used for pruning are satisfied by
all the rows in the accessed partition or subpartition, it removes those criteria from the
predicate list (WHERE clause) during evaluation in order to improve performance.
However, the optimizer cannot prune partitions if the SQL statement applies a
function to the partitioning column (with the exception of the TO_DATE function).
Similarly, the optimizer cannot use an index if the SQL statement applies a function to
the indexed column, unless it is a function-based index.

Pruning can eliminate index partitions even when the underlying table's partitions
cannot be eliminated, but only when the index and table are partitioned on different
columns. You can often improve the performance of operations on large tables by
creating partitioned indexes that reduce the amount of data that your SQL statements
need to access or modify.

Equality, range, LIKE, and IN-list predicates are considered for partition pruning with
range or list partitioning, and equality and IN-list predicates are considered for
partition pruning with hash partitioning.

See Also: Oracle Database Performance Tuning Guide for more
information about the SQL Access Advisor

Partitioning to Improve Performance

18-8 Oracle Database Concepts

Partition Pruning Example
There is a partitioned table called cust_orders. The partition key for cust_orders
is order_date. Assume that cust_orders has six months of data, January to June,
with a partition for each month of data. If the following query is run:

SELECT SUM(value)
FROM cust_orders
WHERE order_date BETWEEN '28-MAR-98' AND '23-APR-98';

Partition pruning is achieved by:

■ First, partition elimination of January, February, May, and June data partitions.
Then either:

■ An index scan of the March and April data partition due to high index
selectivity

or

■ A full scan of the March and April data partition due to low index selectivity

Partition-wise Joins
A partition-wise join is a join optimization for joining two tables that are both
partitioned along the join column(s). With partition-wise joins, the join operation is
broken into smaller joins that are performed sequentially or in parallel. Another way
of looking at partition-wise joins is that they minimize the amount of data exchanged
among parallel slaves during the execution of parallel joins by taking into account data
distribution.

See Also: Oracle Database VLDB and Partitioning Guide for more
information about partitioning methods and partition-wise joins

Content Management 19-1

19
Content Management

This chapter provides an overview of Oracle's content management features.

This chapter contains the following topics:

■ Introduction to Content Management

■ Overview of XML in Oracle Database

■ Overview of LOBs

■ Overview of Oracle Text

■ Overview of Oracle Ultra Search

■ Overview of Oracle Multimedia

■ Overview of Oracle Spatial

Introduction to Content Management
Oracle Database includes datatypes to handle all the types of rich Internet content
such as relational data, object-relational data, XML, text, audio, video, image, and
spatial. These datatypes appear as native types in the database. They can all be queried
using SQL. A single SQL statement can include data belonging to any or all of these
datatypes.

As applications evolve to encompass increasingly richer semantics, they encounter the
need to deal with the following kinds of data:

■ Simple structured data

■ Complex structured data

■ Semi-structured data

■ Unstructured data

Traditionally, the relational model has been very successful at dealing with simple
structured data—the kind which can fit into simple tables. Oracle added
object-relational features so that applications can deal with complex structured
data—collections, references, user-defined types, and so on. Queuing technologies,
such as Oracle Streams Advanced Queuing, deal with messages and other
semi-structured data. This chapter discusses Oracle's technologies to support
unstructured data.

Unstructured data cannot be decomposed into standard components. Data about an
employee can be "structured" into a name (probably a character string), an
identification (likely a number), a salary, and so on. But if you are given a photo, you
find that the data really consists of a long stream of 0s and 1s. These 0s and 1s are used

Overview of XML in Oracle Database

19-2 Oracle Database Concepts

to switch pixels on or off, so that you see the photo on a display, but it cannot be
broken down into any finer structure in terms of database storage.

Unstructured data such as text, graphic images, still video clips, full motion video, and
sound waveforms tend to be large -- a typical employee record may be a few hundred
bytes, but even small amounts of multimedia data can be thousands of times larger.
Some multimedia data may reside on operating system files, and it is desirable to
access them from the database.

Overview of XML in Oracle Database
Extensible Markup Language (XML) is a tag-based markup language that lets
developers create their own tags to describe data that's exchanged between
applications and systems. XML is widely adopted as the common language of
information exchange between companies. It is human-readable; that is, it is plain text.
Because it is plain text, XML documents and XML-based messages can be sent easily
using common protocols, such as HTTP or FTP.

Oracle XML DB treats XML as a native datatype in the database. Oracle XML DB is not
a separate server. The XML data model encompasses both unstructured content and
structured data. Applications can use standard SQL and XML operators to generate
complex XML documents from SQL queries and to store XML documents.

Oracle XML DB provides capabilities for both content-oriented and data-oriented
access. For developers who see XML as documents (news stories, articles, and so on),
Oracle XML DB provides an XML repository accessible from standard protocols and
SQL.

For others, the structured-data aspect of XML (invoices, addresses, and so on) is more
important. For these users, Oracle XML DB provides a native XMLType, support for
XML Schema, XPath, XSLT, DOM, and so on. The data-oriented access is typically
more query-intensive.

The Oracle XML developer's kits (XDK) contain the basic building blocks for reading,
manipulating, transforming, and viewing XML documents, whether on a file system
or stored in a database. They are available for Java, C, and C++. Unlike many
shareware and trial XML components, the production Oracle XDKs are fully
supported and come with a commercial redistribution license. Oracle XDKs consist of
the following components:

■ XML Parsers: supporting Java, C, and C++, the components create and parse XML
using industry standard DOM and SAX interfaces.

■ XSLT Processor: transforms or renders XML into other text-based formats, such as
HTML.

■ XML Schema Processor: supporting Java, C, and C++, allows use of XML simple
and complex datatypes.

■ XML Class Generator: automatically generates Java and C++ classes from XSL
schemas to send XML data from Web forms or applications.

■ XML Java Beans: visually view and transform XML documents and data with Java
components.

■ XML SQL Utility: supporting Java, generates XML documents, DTDs, and
schemas from SQL queries.

■ XSQL Servlet: combines XML, SQL, and XSLT in the server to deliver dynamic
Web content.

Overview of Oracle Text

Content Management 19-3

Overview of LOBs
The large object (LOB) datatypes BLOB, CLOB, NCLOB, and BFILE enable you to store
and manipulate large blocks of unstructured data (such as text, graphic images, video
clips, and sound waveforms) in binary or character format. They provide efficient,
random, piece-wise access to the data.

With the growth of the internet and content-rich applications, it has become
imperative that databases support a datatype that fulfills the following:

■ Can store unstructured data with compression, encryption, or deduplication.

■ Is optimized for large amounts of such data: up to 128 terabytes.

■ Provides a uniform way of accessing large unstructured data within the database
or outside in operating system files which are read-only.

For the LOBs with STORE AS SECUREFILE option (introduced in release 11.1) you
can specify the SQL parameter DEDUPLICATE in CREATE TABLE and ALTER TABLE
statements. This enables you to specify that LOB data that are identical in two or more
rows in a LOB column will all share the same data blocks, thus saving disk space.
KEEP_DUPLICATES turns off this capability. The following options are also used with
SECUREFILE:

The parameter COMPRESS turns on LOB compression. NOCOMPRESS turns LOB
compression off.

The parameter ENCRYPT turns on LOB encryption and optionally selects an
encryption algorithm. NOENCRYPT turns off LOB encryption.

The pre-release 11.1 LOBs paradigm is the default. It is also now explicitly set by the
option STORE AS BASICFILE.

The following SQL and PL/SQL statements, and OCI functions are used with the
SECUREFILE features:

Overview of Oracle Text
Oracle Text indexes any document or textual content to add fast, accurate retrieval of
information to internet content management applications, e-Business catalogs, news

See Also:

■ Oracle XML DB Developer's Guide

■ Oracle XML Developer's Kit Programmer's Guide

■ Oracle XML Developer's Kit API Reference

■ Oracle Database XML Java API Reference

See Also: "Overview of LOB Datatypes" on page 26-11

See Also:

■ Oracle Database SecureFiles and Large Objects Developer's Guide,
for complete details of relevant SQL functions and
cross-references to PL/SQL packages.

■ Oracle Call Interface Programmer's Guide, functions
OCILobGetDuplicateRegions(), OCILobSetOptions(),
and OCILobGetOptions()

Overview of Oracle Text

19-4 Oracle Database Concepts

services, job postings, and so on. It can index content stored in file systems, databases,
or on the Web.

Oracle Text allows text searches to be combined with regular database searches in a
single SQL statement. It can find documents based on their textual content, metadata,
or attributes. The Oracle Text SQL API makes it simple and intuitive to create and
maintain Text indexes and run Text searches.

Oracle Text is completely integrated with Oracle Database, making it inherently fast
and scalable. The Text index is in the database, and Text queries are run in the Oracle
Database process. The Oracle Database optimizer can choose the best execution plan
for any query, giving the best performance for ad hoc queries involving Text and
structured criteria. Additional advantages include the following:

■ Oracle Text supports multilingual querying and indexing.

■ You can index and define sections for searching in XML documents. Section
searching lets you narrow down queries to blocks of text within documents.
Oracle Text can automatically create XML sections for you.

■ A Text index can span many Text columns, giving the best performance for Text
queries across more than one column.

■ Oracle Text has enhanced performance for operations that are common in Text
searching, like count hits.

■ Oracle Text leverages scalability features, such as replication.

■ Oracle Text supports local partitioned index.

This section includes the following topics:

■ Oracle Text Index Types

■ Oracle Text Document Services

■ Oracle Text Query Package

■ Oracle Text Advanced Features

Oracle Text Index Types
There are three Oracle Text index types to cover all text search needs.

■ Standard index type for traditional full-text retrieval over documents and Web
pages. The context index type provides a rich set of text search capabilities for
finding the content you need, without returning pages of spurious results.

■ Catalog index type, designed specifically for e-Business catalogs. This catalog
index provides flexible searching and sorting at Web-speed.

■ Classification index type for building classification or routing applications. This
index is created on a table of queries, where the queries define the classification or
routing criteria.

Oracle Text also provides substring and prefix indexes. Substring indexing improves
performance for left-truncated or double-truncated wildcard queries. Prefix indexing
improves performance for right truncated wildcard queries.

Oracle Text Document Services
Oracle Text provides a number of utilities to view text, no matter how that text is
stored.

Overview of Oracle Ultra Search

Content Management 19-5

■ Oracle Text supports over 150 document formats through its Inso filtering
technology, including all common document formats like XML, PDF, and MS
Office. You can also create your own custom filter.

■ You can view the HTML version of any text, including formatted documents such
as PDF, MS Office, and so on.

■ You can view the HTML version of any text, with search terms highlighted and
with navigation to next/previous term in the text.

■ Oracle Text provides markup information; for example, the offset and length of
each search term in the text, to be used for example by a third party viewer.

Oracle Text Query Package
The CTX_QUERY PL/SQL package can be used to generate query feedback, count hits,
and create stored query expressions.

Oracle Text Advanced Features
With Oracle Text, you can find, classify, and cluster documents based on their text,
metadata, or attributes.

Document classification performs an action based on document content. Actions can
be assigned category IDs to a document for future lookup or for sending a document
to a user. The result is a set, or stream, of categorized documents. For example, assume
that there is an incoming stream of news articles. You can define a rule to represent the
category of Finance. The rule is essentially one or more queries that select documents
about the subject of finance. The rule might have the form "stocks or bonds or
earnings." When a document arrives that satisfies the rules for this category, the
application takes an action, such as tagging the document as Finance or e-mailing one
or more users.

Clustering is the unsupervised division of patterns into groups. The interface lets users
select the appropriate clustering algorithm. Each cluster contains a subset of
documents of the collection. A document within a cluster is believed to be more
similar with documents inside the cluster than with outside documents. Clusters can
be used to build features like presenting similar documents in the collection.

Overview of Oracle Ultra Search
Oracle Ultra Search is built on Oracle Database and Oracle Text technology that
provides uniform search-and-locate capabilities over multiple repositories: Oracle
Databases, other ODBC compliant databases, IMAP mail servers, HTML documents
served up by a Web server, files on disk, and more.

Oracle Ultra Search uses a crawler to index documents; the documents stay in their
own repositories, and the crawled information is used to build an index that stays
within your firewall in a designated Oracle database. Oracle Ultra Search also provides
APIs for building content management solutions.

Oracle Ultra Search offers the following:

■ A complete text query language for text search inside the database

■ Full integration with Oracle Database and the SQL query language

See Also: Oracle Text Reference for information about this package

See Also: Oracle Text Application Developer's Guide

Overview of Oracle Multimedia

19-6 Oracle Database Concepts

■ Advanced features like concept searching and theme analysis

■ Indexing of all common file formats (150+)

■ Full globalization, including support for Chinese, Japanese and Korean (CJK), and
Unicode

Overview of Oracle Multimedia
Oracle Multimedia (formerly known as Oracle interMedia) is a feature that enables
Oracle Database to store, manage, and retrieve images, Digital Imaging and
Communications in Medicine (DICOM), audio, and video data in an integrated
fashion with other enterprise information. Oracle Multimedia extends Oracle Database
reliability, availability, and data management to media content and medical image
content in traditional, medical, Internet, electronic commerce, and media-rich
applications.

Oracle Multimedia manages media content by providing the following:

■ Storage and retrieval of media data in the database to synchronize the media data
with the associated business data

■ Support for popular image, audio, and video formats

■ Extraction of format and application metadata into XML documents

■ Full object and relational interfaces to Oracle Multimedia services

■ Access through traditional and Web interfaces

■ Querying using associated relational data and extracted metadata

■ Image processing, such as thumbnail generation

■ Delivery through RealNetworks and Windows Media Streaming Servers

Oracle Multimedia manages DICOM content by providing the following:

■ Storage and retrieval of medical imaging data in the database to synchronize the
DICOM data with the associated business data

■ Full object and relational interfaces to Oracle Multimedia DICOM services

■ Extraction of DICOM metadata into user-specifiable XML documents

■ Querying using associated relational data and extracted metadata

■ Image processing, such as thumbnail generation

■ Creation of new DICOM objects

■ Conformance validation based on a set of user-specified conformance rules

■ Making DICOM objects anonymous based on user-defined rules that specify the
set of attributes to be made anonymous and how to make those attributes
anonymous

■ The ability to update run-time behaviors, such as the version of the DICOM
standard supported, without installing a new release of Oracle Database

See Also: Oracle Ultra Search Administrator's Guide

Overview of Oracle Spatial

Content Management 19-7

Overview of Oracle Spatial
Oracle Spatial is designed to make spatial data management easier and more natural
to users of location-enabled applications and geographic information system (GIS)
applications. When spatial data is stored in Oracle Database, it can be easily
manipulated, retrieved, and related to all other data stored in the database.

A common example of spatial data can be seen in a road map. A road map is a
two-dimensional object that contains points, lines, and polygons that can represent
cities, roads, and political boundaries such as states or provinces. A road map is a
visualization of geographic information. The location of cities, roads, and political
boundaries that exist on the surface of the Earth are projected onto a two-dimensional
display or piece of paper, preserving the relative positions and relative distances of the
rendered objects.

The data that indicates the Earth location (such as longitude and latitude) of these
rendered objects is the spatial data. When the map is rendered, this spatial data is used
to project the locations of the objects on a two-dimensional piece of paper. A GIS is
often used to store, retrieve, and render this Earth-relative spatial data.

Types of spatial data (other than GIS data) that can be stored using Spatial include data
from computer-aided design (CAD) and computer-aided manufacturing (CAM)
systems. Instead of operating on objects on a geographic scale, CAD/CAM systems
work on a smaller scale, such as for an automobile engine or printed circuit boards.

The differences among these systems are in the size and precision of the data, not the
data's complexity. The systems might all involve the same number of data points. On a
geographic scale, the location of a bridge can vary by a few tenths of an inch without
causing any noticeable problems to the road builders, whereas if the diameter of an
engine's pistons is off by a few tenths of an inch, the engine will not run.

In addition, the complexity of data is independent of the absolute scale of the area
being represented. For example, a printed circuit board is likely to have many
thousands of objects etched on its surface, containing in its small area information that
may be more complex than the details shown on a road builder's blueprints.

These applications all store, retrieve, update, or query some collection of features that
have both nonspatial and spatial attributes. Examples of nonspatial attributes are
name, soil_type, landuse_classification, and part_number. The spatial attribute is a
coordinate geometry, or vector-based representation of the shape of the feature.

Oracle Spatial provides a SQL schema and functions that facilitate the storage,
retrieval, update, and query of collections of spatial features in Oracle Database.
Spatial consists of the following:

■ A schema (MDSYS) that prescribes the storage, syntax, and semantics of
supported geometric datatypes

See Also:

■ Oracle Multimedia User's Guide

■ Oracle Multimedia Reference

■ Oracle Multimedia DICOM Developer's Guide

■ Oracle Multimedia Java API Reference

■ Oracle Multimedia Servlets and JSP Java API Reference

■ Oracle Multimedia DICOM Java API Reference

Overview of Oracle Spatial

19-8 Oracle Database Concepts

■ A spatial indexing mechanism

■ Operators, functions, and procedures for performing area-of-interest queries,
spatial join queries, and other spatial analysis operations

■ Functions and procedures for utility and tuning operations

■ Topology data model for working with data about nodes, edges, and faces in a
topology.

■ Network data model for representing capabilities or objects that are modeled as
nodes and links in a network.

■ GeoRaster, a feature that lets you store, index, query, analyze, and deliver
GeoRaster data, that is, raster image and gridded data and its associated metadata.

See Also: Oracle Spatial GeoRaster Developer's Guide and Oracle Spatial
Topology and Network Data Models Developer's Guide

Database Security 20-1

20
Database Security

This chapter provides an overview of Oracle Database database security.

This chapter contains the following topics:

■ Introduction to Database Security

■ Overview of Transparent Data Encryption

■ Overview of Authentication Methods

■ Overview of Authorization

■ Overview of Access Restrictions on Tables, Views, Synonyms, or Rows

■ Overview of Security Policies

■ Overview of Database Auditing

Introduction to Database Security
Database security entails allowing or disallowing user actions on the database and the
objects within it. Oracle Database uses schemas and security domains to control access
to data and to restrict the use of various database resources.

Oracle Database provides comprehensive discretionary access control. Discretionary
access control regulates all user access to named objects through privileges. A
privilege is permission to access a named object in a prescribed manner; for example,
permission to query a table. Privileges are granted to users at the discretion of other
users.

This section includes the following topics:

■ Database Users and Schemas

■ Privileges

■ Roles

■ Storage Settings and Quotas

Database Users and Schemas
Each Oracle database has a list of user names. To access a database, a user must use a
database application and attempt a connection with a valid user name of the database.
Each user name has an associated password to prevent unauthorized use.

See Also: Oracle Database Security Guide for more detailed
information on everything in this chapter

Introduction to Database Security

20-2 Oracle Database Concepts

Security Domain
Each user has a security domain—a set of properties that determine such things as:

■ The actions (privileges and roles) available to the user

■ The tablespace quotas (available disk space) for the user

■ The system resource limits (for example, CPU processing time) for the user

Each property that contributes to a user's security domain is discussed in the following
sections.

Privileges
A privilege is a right to run a particular type of SQL statement. Some examples of
privileges include the right to:

■ Connect to the database (create a session)

■ Create a table in your schema

■ Select rows from someone else's table

■ Run someone else's stored procedure

Roles
Oracle Database provides for easy and controlled privilege management through roles.
Roles are named groups of related privileges that you grant to users or other roles.

Storage Settings and Quotas
You can direct and limit the use of disk space allocated to the database for each user,
including default and temporary tablespaces and tablespace quotas.

This section includes the following topics:

■ Default Tablespace

■ Temporary Tablespace

■ Tablespace Quotas

■ Profiles and Resource Limits

Default Tablespace
Each user is associated with a default tablespace. When a user creates a table, index,
or cluster and no tablespace is specified to physically contain the schema object, the
user's default tablespace is used if the user has the privilege to create the schema object
and a quota in the specified default tablespace. The default tablespace provides Oracle
Database with information to direct space use in situations where schema object's
location is not specified.

See Also:

■ Oracle Database Security Guide for more information on privileges

■ "Introduction to Privileges" on page 20-12

See Also: "Introduction to Roles" on page 20-13 information
about role properties

Overview of Transparent Data Encryption

Database Security 20-3

Temporary Tablespace
Each user has a temporary tablespace. When a user runs a SQL statement that requires
the creation of temporary segments (such as the creation of an index), the user's
temporary tablespace is used. By directing all users' temporary segments to a separate
tablespace, the temporary tablespace can reduce I/O contention among temporary
segments and other types of segments.

Tablespace Quotas
Oracle Database can limit the collective amount of disk space available to the objects in
a schema. Quotas (space limits) can be set for each tablespace available to a user. This
permits selective control over the amount of disk space that can be consumed by the
objects of specific schemas.

Profiles and Resource Limits
Each user is assigned a profile that specifies limitations on several system resources
available to the user, including the following:

■ Number of concurrent sessions the user can establish

■ CPU processing time available for the user's session and a single call to Oracle
Database made by a SQL statement

■ Amount of logical I/O available for the user's session and a single call to Oracle
Database made by a SQL statement

■ Amount of idle time available for the user's session

■ Amount of connect time available for the user's session

■ Password restrictions:

– Account locking after multiple unsuccessful login attempts

– Password expiration and grace period

– Password reuse and complexity restrictions

Overview of Transparent Data Encryption
Oracle Database provides security in the form of authentication, authorization, and
auditing. Authentication ensures that only legitimate users gain access to the system.
Authorization ensures that those users only have access to resources they are
permitted to access. Auditing ensures accountability when users access protected
resources. Although these security mechanisms effectively protect data in the
database, they do not prevent access to the operating system files where the data is
stored.

Transparent data encryption enables encryption of sensitive data in database columns
as it is stored in the operating system files. In addition, it provides for secure storage
and management of encryption keys in a security module external to the database.

Using an external security module separates ordinary program functions from those
that pertain to security, such as encryption. Consequently, it is possible to divide

See Also:

■ Oracle Database Security Guide for more information on profiles
and resource limits

■ "Profiles" on page 20-11

Overview of Authentication Methods

20-4 Oracle Database Concepts

administration duties between DBAs and security administrators, a strategy that
enhances security because no administrator is granted comprehensive access to data.
External security modules generate encryption keys, perform encryption and
decryption, and securely store keys outside of the database.

Transparent data encryption is a key-based access control system that enforces
authorization by encrypting data with a key that is kept secret. There can be only one
key for each database table that contains encrypted columns regardless of the number
of encrypted columns in a given table. Each table's column encryption key is, in turn,
encrypted with the database server's master key. No keys are stored in the database.
Instead, they are stored in an Oracle wallet, which is part of the external security
module.

Before you can encrypt any database columns, you must generate or set a master key.
This master key is used to encrypt the column encryption key which is generated
automatically when you issue a SQL command with the ENCRYPT clause on a
database column.

Tablespace Encryption
Tablespace encryption is a new feature introduced in this release. Tablespace
encryption enables you to encrypt an entire tablespace. This secures all data stored in
the tablespace. When an authorized user accesses data in the tablespace, the data is
transparently decrypted for him.

Tablespace encryption eliminates the need for granular analysis of applications to
determine which columns to encrypt. You can use tablespace encryption to encrypt
entire tables that might contain sensitive data.

Transparent encryption/decryption takes place during disk I/O and not for every
logical access to the data. This leads to improved performance.

Overview of Authentication Methods
Authentication means verifying the identity of someone (a user, device, or other
entity) who wants to use data, resources, or applications. Validating that identity
establishes a trust relationship for further interactions. Authentication also enables
accountability by making it possible to link access and actions to specific identities.
After authentication, authorization processes can allow or limit the levels of access and
action permitted to that entity.

For simplicity, the same authentication method is generally used for all database users,
but Oracle Database allows a single database instance to use any or all methods.
Oracle Database requires special authentication procedures for database
administrators, because they perform special database operations. Oracle Database
also encrypts passwords during transmission to ensure the security of network
authentication.

To validate the identity of database users and prevent unauthorized use of a database
user name, you can authenticate using any combination of the methods described in
the following sections:

■ Authentication by the Operating System

See Also: Oracle Database Advanced Security Administrator's Guide for
details about using transparent data encryption

See Also: Oracle Database Advanced Security Administrator's Guide for
details about using tablespace encryption

Overview of Authentication Methods

Database Security 20-5

■ Authentication by the Network

■ Authentication by Oracle Database

■ Multitier Authentication and Authorization

■ Authentication by the Secure Socket Layer Protocol

■ Authentication of Database Administrators

Authentication by the Operating System
Some operating systems let Oracle Database use information they maintain to
authenticate users, with the following benefits:

■ Once authenticated by the operating system, users can connect to Oracle Database
more conveniently, without specifying a user name or password. For example, an
operating-system-authenticated user can invoke SQL*Plus and skip the user name
and password prompts by entering the following:

SQLPLUS /

■ With control over user authentication centralized in the operating system, Oracle
Database need not store or manage user passwords, though it still maintains user
names in the database.

■ Audit trails in the database and operating system use the same user names.

When an operating system is used to authenticate database users, managing
distributed database environments and database links requires special care.

Authentication by the Network
Oracle Database supports the following methods of authentication by the network:

■ Third Party-Based Authentication Technologies

■ Public-Key-Infrastructure-Based Authentication

■ Remote Authentication

Third Party-Based Authentication Technologies
If network authentication services are available to you (such as DCE, Kerberos, or
SESAME), Oracle Database can accept authentication from the network service. If you
use a network authentication service, then some special considerations arise for
network roles and database links.

Public-Key-Infrastructure-Based Authentication
Authentication systems based on public key cryptography issue digital certificates to
user clients, which use them to authenticate directly to servers in the enterprise
without directly involving an authentication server. Oracle Database provides a public
key infrastructure (PKI) for using public keys and certificates, consisting of the
following components:

See Also: Oracle Database Security Guide for more information about
authentication methods

Note: These methods require Oracle Database Enterprise Edition
with the Oracle Advanced Security option.

Overview of Authentication Methods

20-6 Oracle Database Concepts

■ Authentication and secure session key management using Secure Sockets Layer
(SSL).

■ Oracle Call Interface (OCI) and PL/SQL functions to sign user-specified data
using a private key and certificate, and verify the signature on data using a trusted
certificate.

■ Trusted certificates, identifying third-party entities that are trusted as signers of
user certificates when an identity is being validated as the entity it claims to be.

■ Oracle wallets, which are data structures that contain a user private key, a user
certificate, and the user's set of trust points (trusted certificate authorities).

■ Oracle Wallet Manager, a standalone Java application used to manage and edit the
security credentials in Oracle wallets.

■ X.509v3 certificates obtained from (and signed by) a trusted entity, a certificate
authority outside of Oracle Database.

■ Oracle Internet Directory to manage security attributes and privileges for users,
including users authenticated by X.509 certificates. It enforces attribute-level
access control and enables read, write, or update privileges on specific attributes to
be restricted to specific named users, such as administrators.

■ Oracle Enterprise Security Manager, provides centralized privilege management to
make administration easier and increase your level of security. This lets you store
and retrieve roles from Oracle Internet Directory.

■ Oracle Enterprise Login Assistant, a Java-based tool to open and close a user
wallet to enable or disable secure SSL-based communications for an application.

Remote Authentication
Oracle Database supports remote authentication of users through Remote Dial-In User
Service (RADIUS), a standard lightweight protocol used for user authentication,
authorization, and accounting.

Authentication by Oracle Database
Oracle Database can authenticate users attempting to connect to a database by using
information stored in that database.

To set up Oracle Database to use database authentication, create each user with an
associated password that must be supplied when the user attempts to establish a
connection. This prevents unauthorized use of the database, since the connection will
be denied if the user provides an incorrect password. Oracle Database stores a user's
password in the data dictionary in an encrypted format to prevent unauthorized
alteration, but a user can change the password at any time.

Database authentication includes the following facilities:

■ Password Encryption

■ Account Locking

■ Password Lifetime and Expiration

■ Password Complexity Verification

Password Encryption
To protect password confidentiality, Oracle Database never sends cleartext passwords
over the network. If transmission of passwords over the network is required, then

Overview of Authentication Methods

Database Security 20-7

Oracle Database encrypts the password using the AES (Advanced Encryption
Standard) algorithm approved by the NIST (National Institute of Standards and
Technology).

Account Locking
Oracle Database can lock a user's account after a specified number of consecutive
failed log-in attempts. You can configure the account to unlock automatically after a
specified time interval or to require database administrator intervention to be
unlocked. The database administrator can also lock accounts manually, so that they
must be unlocked explicitly by the database administrator.

Password Lifetime and Expiration
The database administrator can specify a lifetime for passwords, after which they
expire and must be changed before account login is again permitted. A grace period
can be established, during which each attempt to login to the database account
receives a warning message to change the password. If it is not changed by the end of
that period, then the account is locked. No further logins to that account are allowed
without assistance by the database administrator.

The database administrator can also set the password state to expired, causing the
user's account status to change to expired. The user or the database administrator
must then change the password before the user can log in to the database.

The password history option checks each newly specified password to ensure that a
password is not reused for a specified amount of time or for a specified number of
password changes.

Password Complexity Verification
Complexity verification checks that each password is complex enough to provide
reasonable protection against intruders who try to break into the system by guessing
passwords.

The Oracle Database default password complexity verification routine checks that
each password meet the following requirements:

■ Be at least eight characters and no more than 30 characters in length

■ Not equal to the user name, the user name spelled backward, nor the user name
appended with numbers

■ Is not the same as the server name, nor the server name with the numbers 1-100
appended

■ The password is not to simple, such as welcome1, oracle1, user1234,
alphabetically sequential letters with numbers, or change_on_install

■ Include at least one alphabet character and one numeric character

■ Differ from the previous password by at least three characters

Multitier Authentication and Authorization
In a multitier environment, Oracle Database controls the security of middle-tier
applications by limiting their privileges, preserving client identities through all tiers,
and auditing actions taken on behalf of clients. In applications that use a heavy middle

See Also: Oracle Database Security Guide for more information about
how Oracle Database verifies password complexity

Overview of Authentication Methods

20-8 Oracle Database Concepts

tier, such as a transaction processing monitor, the identity of the client connecting to
the middle tier must be preserved. Yet one advantage of a middle tier is connection
pooling, which allows multiple users to access a data server without each of them
needing a separate connection. In such environments, you must be able to set up and
break down connections very quickly.

For these environments, Oracle database administrators can use the Oracle Call
Interface (OCI) to create lightweight sessions, allowing database password
authentication for each user. This preserves the identity of the real user through the
middle tier without the overhead of a separate database connection for each user.

You can create lightweight sessions with or without passwords. However, if a middle
tier is outside or on a firewall, then security is better when each lightweight session
has its own password. For an internal application server, lightweight sessions without
passwords might be appropriate.

Oracle Database 11g enables you to implement server-side connection pooling. This
allows different applications and application processes to share database connections.
Server-side connection pooling supports only password based authentication.
Advanced Security Option (ASO) and enterprise users are currently not supported.

Authentication by the Secure Socket Layer Protocol
The Secure Socket Layer (SSL) protocol is an application layer protocol. Users
identified either externally or globally (external or global users) can authenticate to a
database through SSL.

Authentication of Database Administrators
Database administrators perform special operations (such as shutting down or starting
up a database) that should not be performed by normal database users. Oracle
Database provides a more secure authentication scheme for database administrator
user names.

You can choose between strong authentication, operating system authentication, or
password files to authenticate database administrators. Different choices apply to
administering your database locally (on the computer where the database resides) and
to administering many different database computers from a single remote client.

Strong authentication lets you centrally control SYSDBA and SYSOPER access to
multiple databases. Consider this type of authentication for database administration
when password file security is a concern, if the site has very strict security
requirements, or you want to separate the identity management from your database.

Operating system authentication for a database administrator typically involves
placing his operating system user name in a special group or giving it a special process
right. (On UNIX systems, the group is the dba group.)

The database uses password files to keep track of database user names that have been
granted the SYSDBA and SYSOPER privileges, enabling the following operations:

■ SYSOPER lets database administrators perform STARTUP, SHUTDOWN, ALTER
DATABASE OPEN/MOUNT, ALTER DATABASE BACKUP, ARCHIVE LOG, and
RECOVER, and includes the RESTRICTED SESSION privilege.

See Also: Oracle Database Administrator's Guide and Oracle Call
Interface Programmer's Guide for more details on server-side connection
pooling

Overview of Authorization

Database Security 20-9

■ SYSDBA contains all system privileges with ADMIN OPTION, and the SYSOPER
system privilege. Permits CREATE DATABASE and time-based recovery.

Overview of Authorization
Authorization primarily includes two processes:

■ Permitting only certain users to access, process, or alter data

■ Applying varying limitations on users' access or actions. The limitations placed on
(or removed from) users can apply to objects, such as schemas, tables, or rows; or
to resources, such as time (CPU, connect, or idle times).

This section introduces the basic concepts and mechanisms for placing or removing
such limitations on users, individually or in groups.

This section includes the following topics:

■ User Resource Limits and Profiles

■ Introduction to Privileges

■ Introduction to Roles

■ Secure Application Roles

User Resource Limits and Profiles
You can set limits on the amount of various system resources available to each user as
part of a user's security domain. By doing so, you can prevent the uncontrolled
consumption of valuable system resources such as CPU time.

This is very useful in large, multiuser systems, where system resources are expensive.
Excessive consumption of resources by one or more users can detrimentally affect the
other users of the database.

Manage a user's resource limits and password management preferences with his or her
profile—a named set of resource limits that you can assign to that user. Each database
can have an unlimited number of profiles. The security administrator can enable or
disable the enforcement of profile resource limits universally.

If you set resource limits, then a slight degradation in performance occurs when users
create sessions. This is because Oracle Database loads all resource limit data for the
user when a user connects to a database.

See Also:

■ Oracle Database Administrator's Guide for information on
authentication and distributed database concepts

■ Oracle Database Advanced Security Administrator's Guide for
information about the Oracle Advanced Security option

■ Oracle Database Security Guide for more information about
authenticating database administrators

■ Your Oracle Database operating system-specific documentation
for information about authenticating

Overview of Authorization

20-10 Oracle Database Concepts

Resource limits and profiles are discussed in the following sections:

■ Types of System Resources and Limits

■ Profiles

Types of System Resources and Limits
Oracle Database can limit the use of several types of system resources, including CPU
time and logical reads. In general, you can control each of these resources at the
session level, the call level, or both.

This section includes the following topics:

■ Session Level

■ Call Level

■ CPU Time

■ Logical Reads

■ Other Resources

Session Level Each time a user connects to a database, a session is created. Each session
consumes CPU time and memory on the computer that runs Oracle Database. You can
set several resource limits at the session level.

If a user exceeds a session-level resource limit, Oracle Database terminates (rolls back)
the current statement and returns a message indicating that the session limit has been
reached. At this point, all previous statements in the current transaction are intact, and
the only operations the user can perform are COMMIT, ROLLBACK, or disconnect (in
this case, the current transaction is committed). All other operations produce an error.
Even after the transaction is committed or rolled back, the user can accomplish no
more work during the current session.

Call Level Each time a SQL statement is run, several steps are taken to process the
statement. During this processing, several calls are made to the database as part of the
different execution phases. To prevent any one call from using the system excessively,
Oracle Database lets you set several resource limits at the call level.

If a user exceeds a call-level resource limit, Oracle Database halts the processing of the
statement, rolls back the statement, and returns an error. However, all previous
statements of the current transaction remain intact, and the user's session remains
connected.

CPU Time When SQL statements and other types of calls are made to Oracle Database,
an amount of CPU time is necessary to process the call. Average calls require a small
amount of CPU time. However, a SQL statement involving a large amount of data or a
runaway query can potentially consume a large amount of CPU time, reducing CPU
time available for other processing.

To prevent uncontrolled use of CPU time, limit the CPU time for each call and the total
amount of CPU time used for Oracle Database calls during a session. Limits are set

See Also:

■ Oracle Database Administrator's Guide for information about
security administrators

■ Oracle Database Security Guide for more information about
authenticating database administrators

Overview of Authorization

Database Security 20-11

and measured in CPU one-hundredth seconds (0.01 seconds) used by a call or a
session.

Logical Reads Input/output (I/O) is one of the most expensive operations in a
database system. SQL statements that are I/O intensive can monopolize memory and
disk use and cause other database operations to compete for these resources.

To prevent single sources of excessive I/O, Oracle Database lets you limit the logical
data block reads for each call and for each session. Logical data block reads include
data block reads from both memory and disk. The limits are set and measured in
number of block reads performed by a call or during a session.

Other Resources Oracle Database also provides for the limitation of several other
resources at the session level:

■ You can limit the number of concurrent sessions for each user. Each user can
create only up to a predefined number of concurrent sessions.

■ You can limit the idle time for a session. If the time between Oracle Database calls
for a session reaches the idle time limit, then the current transaction is rolled back,
the session is aborted, and the resources of the session are returned to the system.
The next call receives an error that indicates the user is no longer connected to the
instance. This limit is set as a number of elapsed minutes.

Shortly after a session is aborted because it has exceeded an idle time limit, the
process monitor (PMON) background process cleans up after the aborted session.
Until PMON completes this process, the aborted session is still counted in any
session/user resource limit.

■ You can limit the elapsed connect time for each session. If a session's duration
exceeds the elapsed time limit, then the current transaction is rolled back, the
session is dropped, and the resources of the session are returned to the system.
This limit is set as a number of elapsed minutes.

Oracle Database does not constantly monitor the elapsed idle time or elapsed
connection time. Doing so would reduce system performance. Instead, it checks
every few minutes. Therefore, a session can exceed this limit slightly (for example,
by five minutes) before Oracle Database enforces the limit and aborts the session.

■ You can limit the amount of private SGA space (used for private SQL areas) for a
session. This limit is only important in systems that use the shared server
configuration. Otherwise, private SQL areas are located in the PGA. This limit is
set as a number of bytes of memory in an instance's SGA. Use the characters K or
M to specify kilobytes or megabytes.

Profiles
In the context of system resources, a profile is a named set of specified resource limits
that can be assigned to a valid user name in Oracle Database. Profiles provide for easy
management of resource limits. Profiles are also the way in which you administer
password policy.

Different profiles can be created and assigned individually to each user of the
database. A default profile is present for all users not explicitly assigned a profile. The
resource limit feature prevents excessive consumption of global database system
resources.

See Also: Oracle Database Administrator's Guide for instructions about
enabling and disabling resource limits

Overview of Authorization

20-12 Oracle Database Concepts

This section includes the following topics:

■ When to Use Profiles

■ Determine Values for Resource Limits of a Profile

When to Use Profiles You must create and manage user profiles only if resource limits
are a requirement of your database security policy. To use profiles, first categorize the
related types of users in a database. Just as roles are used to manage the privileges of
related users, profiles are used to manage the resource limits of related users.
Determine how many profiles are needed to encompass all types of users in a database
and then determine appropriate resource limits for each profile.

Determine Values for Resource Limits of a Profile Before creating profiles and setting the
resource limits associated with them, determine appropriate values for each resource
limit. You can base these values on the type of operations a typical user performs.
Usually, the best way to determine the appropriate resource limit values for a given
user profile is to gather historical information about each type of resource usage.

You can gather statistics for other limits using the Monitor feature of Oracle Enterprise
Manager (or SQL*Plus), specifically the Statistics monitor.

Introduction to Privileges
A privilege is a right to run a particular type of SQL statement or to access another
user's object.

Grant privileges to users so that they can accomplish tasks required for their job. Grant
privileges only to users who absolutely require them. Excessive granting of
unnecessary privileges can compromise security. A user can receive a privilege in two
different ways:

■ You can grant privileges to users explicitly. For example, you can explicitly grant
the privilege to insert records into the employees table to the user SCOTT.

■ You can grant privileges to a role (a named group of privileges), and then grant the
role to one or more users. For example, you can grant the privileges to select,
insert, update, and delete records from the employees table to the role named
clerk, which in turn you can grant to the users scott and brian.

Because roles allow for easier and better management of privileges, you should
generally grant privileges to roles and not to specific users.

There are two distinct categories of privileges:

■ System Privileges

■ Schema Object Privileges

System Privileges
A system privilege is the right to perform a particular action, or to perform an action
on any schema objects of a particular type. For example, the privileges to create
tablespaces and to delete the rows of any table in a database are system privileges.
There are over 100 distinct system privileges.

See Also: Oracle Database Administrator's Guide for a list of all system
and schema object privileges, as well as instructions for privilege
management

Overview of Authorization

Database Security 20-13

Schema Object Privileges
A schema object privilege is a privilege or right to perform a particular action on a
specific schema object:

Different object privileges are available for different types of schema objects. For
example, the privilege to delete rows from the departments table is an object
privilege.

Some schema objects, such as clusters, indexes, triggers, and database links, do not
have associated object privileges. Their use is controlled with system privileges. For
example, to alter a cluster, a user must own the cluster or have the ALTER ANY
CLUSTER system privilege.

A schema object and its synonym are equivalent with respect to privileges. That is, the
object privileges granted for a table, view, sequence, procedure, function, or package
apply whether referencing the base object by name or using a synonym.

Granting object privileges on a table, view, sequence, procedure, function, or package
to a synonym for the object has the same effect as if no synonym were used. When a
synonym is dropped, all grants for the underlying schema object remain in effect, even
if the privileges were granted by specifying the dropped synonym.

Introduction to Roles
Managing and controlling privileges is made easier by using roles, which are named
groups of related privileges that you grant, as a group, to users or other roles. Within a
database, each role name must be unique, different from all user names and all other
role names. Unlike schema objects, roles are not contained in any schema. Therefore, a
user who creates a role can be dropped with no effect on the role.

Roles ease the administration of end-user system and schema object privileges.
However, roles are not meant to be used by application developers, because the
privileges to access schema objects within stored programmatic constructs must be
granted directly.

Table 20–1 lists properties of roles that enable easier privilege management within a
database.

See Also: Oracle Database Security Guide for more information
about schema object privileges

Table 20–1 Properties of Roles

Property Description

Reduced privilege
administration

Rather than granting the same set of privileges explicitly to
several users, you can grant the privileges for a group of related
users to a role, and then only the role must be granted to each
member of the group.

Dynamic privilege
management

If the privileges of a group must change, then only the privileges
of the role need to be modified. The security domains of all users
granted the group's role automatically reflect the changes made
to the role.

Selective availability of
privileges

You can selectively enable or disable the roles granted to a user.
This allows specific control of a user's privileges in any given
situation.

Application awareness The data dictionary records which roles exist, so you can design
applications to query the dictionary and automatically enable (or
disable) selective roles when a user attempts to run the
application by way of a given user name.

Overview of Authorization

20-14 Oracle Database Concepts

Database administrators often create roles for a database application. The DBA grants
a secure application role all privileges necessary to run the application. The DBA then
grants the secure application role to other roles or users. An application can have
several different roles, each granted a different set of privileges that allow for more or
less data access while using the application.

The DBA can create a role with a password to prevent unauthorized use of the
privileges granted to the role. Typically, an application is designed so that when it
starts, it enables the proper role. As a result, an application user does not need to know
the password for an application's role.

This section includes the following topics:

■ Common Uses for Roles

■ Role Mechanisms

■ The Operating System and Roles

Common Uses for Roles
In general, you create a role to serve one of two purposes:

■ To manage the privileges for a database application

■ To manage the privileges for a user group

Figure 20–1 and the sections that follow describe the two uses of roles.

Figure 20–1 Common Uses for Roles

This section includes the following topics:

Application-specific security You can protect role use with a password. Applications can be
created specifically to enable a role when supplied the correct
password. Users cannot enable the role if they do not know the
password.

See Also: Oracle Database Advanced Application Developer's Guide for
instructions for enabling roles from an application

Table 20–1 (Cont.) Properties of Roles

Property Description

PAY_CLERK Role MANAGER Role REC_CLERK Role

ACCTS_PAY Role ACCTS_REC Role

User Roles

Application Roles

Application Privileges
Privileges to
execute the
ACCTS_PAY
application

Privileges to
execute the
ACCTS_REC
application

Users

Overview of Authorization

Database Security 20-15

■ Application Roles

■ User Roles

Application Roles You grant an application role all privileges necessary to run a given
database application. Then, you grant the secure application role to other roles or to
specific users. An application can have several different roles, with each role assigned
a different set of privileges that allow for more or less data access while using the
application.

User Roles You create a user role for a group of database users with common privilege
requirements. You manage user privileges by granting secure application roles and
privileges to the user role and then granting the user role to appropriate users.

Role Mechanisms
Database roles have the following functionality:

■ A role can be granted system or schema object privileges.

■ A role can be granted to other roles. However, a role cannot be granted to itself
and cannot be granted circularly. For example, role A cannot be granted to role B if
role B has previously been granted to role A.

■ Any role can be granted to any database user.

■ Each role granted to a user is, at a given time, either enabled or disabled. A user's
security domain includes the privileges of all roles currently enabled for the user
and excludes the privileges of any roles currently disabled for the user. Oracle
Database allows database applications and users to enable and disable roles to
provide selective availability of privileges.

■ An indirectly granted role is a role granted to a role. It can be explicitly enabled or
disabled for a user. However, by enabling a role that contains other roles, you
implicitly enable all indirectly granted roles of the directly granted role.

The Operating System and Roles
In some environments, you can administer database security using the operating
system. The operating system can be used to manage the granting (and revoking) of
database roles and to manage their password authentication. This capability is not
available on all operating systems.

Secure Application Roles
Oracle Database provides secure application roles, which are roles that can only be
enabled by authorized PL/SQL packages. This mechanism restricts the enabling of
such roles to the invoking application.

Security is strengthened when passwords are not embedded in application source code
or stored in a table. Instead, a secure application role can be created, specifying which
PL/SQL package is authorized to enable the role. Package identity is used to
determine whether privileges are sufficient to enable the roles. Before enabling the
role, the application can perform authentication and customized authorization, such as
checking whether the user has connected through a proxy.

Because of the restriction that users cannot change security domain inside definer's
right procedures, secure application roles can only be enabled inside invoker's right
procedures.

Overview of Access Restrictions on Tables, Views, Synonyms, or Rows

20-16 Oracle Database Concepts

Overview of Access Restrictions on Tables, Views, Synonyms, or Rows
This section describes restrictions associated not with users, but with objects. The
restrictions provide protection regardless of the entity who seeks to access or alter
them.

You provide this protection by designing and using policies to restrict access to specific
tables, views, synonyms, or rows. These policies invoke functions that you design to
specify dynamic predicates establishing the restrictions. You can also group
established policies, applying a policy group to a particular application.

Having established such protections, you must be notified when they are threatened or
breached. Given notification, you can strengthen your defenses or deal with the
consequences of inappropriate actions and the entities who caused them.

This section includes the following topics:

■ Fine-Grained Access Control

■ Application Context

■ Fine-Grained Auditing

Fine-Grained Access Control
Fine-grained access control lets you use functions to implement security policies and
to associate those security policies with tables, views, or synonyms. The database
server automatically enforces your security policies, no matter how the data is
accessed (for example, by ad hoc queries).

You can:

■ Use different policies for SELECT, INSERT, UPDATE, and DELETE (and INDEX, for
row level security policies).

■ Use security policies only where you need them (for example, on salary
information).

■ Use more than one policy for each table, including building on top of base policies
in packaged applications.

■ Distinguish policies between different applications, by using policy groups. Each
policy group is a set of policies that belong to an application. The database
administrator designates an application context, called a driving context, to
indicate the policy group in effect. When tables, views, or synonyms are accessed,
the fine-grained access control engine looks up the driving context to determine
the policy group in effect and enforces all the associated policies that belong to
that policy group.

The PL/SQL package DBMS_RLS let you administer your security policies. Using this
package, you can add, drop, enable, disable, and refresh the policies (or policy groups)
you create.

See Also:

■ Oracle Database Security Guide for more information about
default roles

■ Oracle Database 2 Day + Security Guide for more information
about secure application roles

■ Oracle Database Advanced Application Developer's Guide

Overview of Access Restrictions on Tables, Views, Synonyms, or Rows

Database Security 20-17

Dynamic Predicates
Dynamic predicates are acquired at statement parse time, when the base table or view
is referenced in a DML statement, rather than having the security rules embedded in
views.

The function or package that implements the security policy you create returns a
predicate (a WHERE condition). This predicate controls access according to the policy
specifications. Rewritten queries are fully optimized and sharable.

A dynamic predicate for a table, view, or synonym is generated by a PL/SQL function,
which is associated with a security policy through a PL/SQL interface.

Application Context
Application context helps you apply fine-grained access control because you can
associate your function-based security policies with applications.

Each application has its own application-specific context, which users cannot
arbitrarily change (for example, through SQL*Plus). Context attributes are accessible to
the functions implementing your security policies. For example, context attributes for
a human resources application could include "position," "organizational unit," and
"country," whereas attributes for an order-entry control might be "customer number"
and "sales region".

Application contexts thus permit flexible, parameter-based access control using
attributes of interest to an application.

You can:

■ Base predicates on context values

■ Use context values within predicates, as bind variables

■ Set user attributes

■ Access user attributes

Dynamic Contexts
Your policies can identify run-time efficiencies by specifying whether a policy is static,
shared, context-sensitive, or dynamic.

If it is static, producing the same predicate string for anyone accessing the object, then
it is run once and cached in SGA. Policies for statements accessing the same object do
not re-run the policy function, but use the cached predicate instead.

This is also true for shared-static policies, for which the server first looks for a cached
predicate generated by the same policy function of the same policy type. Shared-static

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for
information about package implementation

■ Oracle Database Security Guide for more information about
fine-grained access control

See Also:

■ Oracle Database PL/SQL Language Reference

■ Oracle Database Advanced Application Developer's Guide

Overview of Security Policies

20-18 Oracle Database Concepts

policies are ideal for data partitions on hosting because almost all objects share the
same function and the policy is static.

If you label your policy context-sensitive, then the server always runs the policy
function on statement parsing; it does not cache the value returned. The policy
function is not re-evaluated at statement execution time unless the server detects
context changes since the last use of the cursor. (For session pooling where multiple
clients share a database session, the middle tier must reset context during client
switches.)

When a context-sensitive policy is shared, the server first looks for a cached predicate
generated by the same policy function of the same policy type within the same
database session. If the predicate is found in the session memory, then the policy
function is not re-run and the cached value is valid until session private application
context changes occur.

For dynamic policies, the server assumes the predicate may be affected by any system
or session environment at any time, and so always re-runs the policy function on each
statement parsing or execution.

Fine-Grained Auditing
Fine-grained auditing allows the monitoring of data access based on content. It
provides granular auditing of queries, as well as INSERT, UPDATE, and DELETE
operations. For example, a central tax authority must track access to tax returns to
guard against employee snooping, with enough detail to determine what data was
accessed. It is not enough to know that SELECT privilege was used by a specific user
on a particular table. Fine-grained auditing provides this deeper functionality.

In general, fine-grained auditing policy is based on simple user-defined SQL
predicates on table objects as conditions for selective auditing. During fetching,
whenever policy conditions are met for a returning row, the query is audited. Later,
Oracle Database runs user-defined audit event handlers using autonomous
transactions to process the event.

Fine-grained auditing can be implemented in user applications using the DBMS_FGA
package or by using database triggers.

Overview of Security Policies
This section contains the following topics:

■ System Security Policy

■ Data Security Policy

■ User Security Policy

■ Password Management Policy

■ Auditing Policy

System Security Policy
Each database has one or more administrators responsible for maintaining all aspects
of the security policy: the security administrators. If the database system is small, then
the database administrator might have the responsibilities of the security

See Also : Oracle Database Security Guide for more information on
fine-grained auditing

Overview of Security Policies

Database Security 20-19

administrator. However, if the database system is large, then a special person or group
of people might have responsibilities limited to those of a security administrator.

A security policy must be developed for every database. A security policy should
include several sub-policies, as explained in the following sections.

This section includes the following topics:

■ Database User Management

■ User Authentication

■ Operating System Security

Database User Management
Depending on the size of a database system and the amount of work required to
manage database users, the security administrator might be the only user with the
privileges required to create, alter, or drop database users. Or, there may be several
administrators with privileges to manage database users. Regardless, only trusted
individuals should have the powerful privileges to administer database users.

User Authentication
Database users can be authenticated (verified as the correct person) by Oracle
Database using database passwords, the host operating system, network services, or
by Secure Sockets Layer (SSL).

Operating System Security
If applicable, the following security issues must also be considered for the operating
system environment executing Oracle Database and any database applications:

■ Database administrators must have the operating system privileges to create and
delete files.

■ Typical database users should not have the operating system privileges to create or
delete files related to the database.

■ If the operating system identifies database roles for users, then the security
administrators must have the operating system privileges to modify the security
domain of operating system accounts.

Data Security Policy
Data security includes mechanisms that control access to and use of the database at
the object level. Your data security policy determines which users have access to a
specific schema object, and the specific types of actions allowed for each user on the
object. For example, user scott can issue SELECT and INSERT statements but not
DELETE statements using the employees table. Your data security policy should also
define the actions, if any, that are audited for each schema object.

Your data security policy is determined primarily by the level of security you want for
the data in your database. For example, it might be acceptable to have little data
security in a database when you want to allow any user to create any schema object, or
grant access privileges for their objects to any other user of the system. Alternatively, it
might be necessary for data security to be very controlled when you want to make a
database or security administrator the only person with the privileges to create objects
and grant access privileges for objects to roles and users.

See Also: "Overview of Authentication Methods" on page 20-4

Overview of Security Policies

20-20 Oracle Database Concepts

Overall data security should be based on the sensitivity of data. If information is not
sensitive, then the data security policy can be more lax. However, if data is sensitive,
then a security policy should be developed to maintain tight control over access to
objects.

Some means of implementing data security include system and object privileges, and
through roles. A role is a set of privileges grouped together that can be granted to
users. Views can also implement data security because their definition can restrict
access to table data. They can exclude columns containing sensitive data.

Another means of implementing data security is through fine-grained access control
and use of an associated application context. Fine-grained access control lets you
implement security policies with functions and associate those security policies with
tables or views. In effect, the security policy function generates a WHERE condition that
is appended to a SQL statement, thereby restricting the users access to rows of data in
the table or view. An application context is a secure data cache for storing information
used to make access control decisions.

User Security Policy
This section describes aspects of user security policy, and contains the following topics:

■ General User Security

■ End-User Security

■ Administrator Security

■ Application Developer Security

■ Application Administrator Security

General User Security
For all types of database users, consider password security and privilege management.

If user authentication is managed by the database, then security administrators should
develop a password security policy to maintain database access security. For example,
database users must change their passwords at regular intervals. By forcing a user to
modify passwords, unauthorized database access can be reduced.

Also consider issues related to privilege management for all types of users. For
example, a database with many users, applications, or objects, would benefit from
using roles to manage the privileges available to users. Alternatively, in a database
with a handful of user names, it might be easier to grant privileges explicitly to users
and avoid the use of roles.

End-User Security
Security administrators must define a policy for end-user security. If a database has
many users, then the security administrator can decide which groups of users can be
categorized into user groups, and then create user roles for these groups. The security
administrator can grant the necessary privileges or application roles to each user role,

See Also:

■ Oracle Database Administrator's Guide for more about views

■ Oracle Database Advanced Application Developer's Guide for more
about fine-grained access control and application context

■ Oracle Database PL/SQL Packages and Types Reference

Overview of Security Policies

Database Security 20-21

and assign the user roles to the users. To account for exceptions, the security
administrator must also decide what privileges must be explicitly granted to
individual users.

Roles are the easiest way to grant and manage the common privileges needed by
different groups of database users. You can also manage users and their authorizations
centrally, in a directory service, through the enterprise user and enterprise role features
of Oracle Advanced Security.

Administrator Security
Security administrators should have a policy addressing database administrator
security. For example, when the database is large and there are several types of
database administrators, the security administrator might decide to group related
administrative privileges into several administrative roles. The administrative roles
can then be granted to appropriate administrator users. Alternatively, when the
database is small and has only a few administrators, it might be more convenient to
create one administrative role and grant it to all administrators.

Protection for Connections as SYS and SYSTEM After database creation, and if you used
the default passwords for SYS and SYSTEM, immediately change the passwords for the
SYS and SYSTEM administrative user names. Connecting as SYS or SYSTEM gives a
user powerful privileges to modify a database.

If you have installed options that have caused other administrative user names to be
created, then such user name accounts are initially created locked.

Protection for Administrator Connections Only database administrators should have the
capability to connect to a database with administrative privileges. For example:

CONNECT SYS/AS SYSOPER|SYSDBA
Enter password: enter the password

Connecting as SYSOPER gives a user the ability to perform basic operational tasks
(such as STARTUP, SHUTDOWN, and recovery operations). Connecting as SYSDBA gives
the user these abilities plus unrestricted privileges to do anything to a database or the
objects within a database (including, CREATE, DROP, and DELETE). SYSDBA puts a
user in the SYS schema, where they can alter data dictionary tables.

Application Developer Security
Security administrators must define a special security policy for the application
developers using a database. A security administrator could grant the privileges to
create necessary objects to application developers. Or, alternatively, the privileges to
create objects could be granted only to a database administrator, who then receives
requests for object creation from developers.

Application Developers and Their Privileges Database application developers are unique
database users who require special groups of privileges to accomplish their jobs.
Unlike end users, developers need system privileges, such as CREATE TABLE,
CREATE PROCEDURE, and so on. However, only specific system privileges should be
granted to developers to restrict their overall capabilities in the database.

In many cases, application development is restricted to test databases and is not
allowed on production databases. This restriction ensures that application developers

See Also: Oracle Database Security Guide for more information for
application developers

Overview of Security Policies

20-22 Oracle Database Concepts

do not compete with end users for database resources, and that they cannot
detrimentally affect a production database. After an application has been thoroughly
developed and tested, it is permitted access to the production database and made
available to the appropriate end users of the production database.

Security administrators can create roles to manage the privileges required by the
typical application developer.

While application developers are typically given the privileges to create objects as part
of the development process, security administrators must maintain limits on what and
how much database space can be used by each application developer. For example, the
security administrator should specifically set or restrict the following limits for each
application developer:

■ The tablespaces in which the developer can create tables or indexes

■ The quota for each tablespace accessible to the developer

Both limitations can be set by altering a developer's security domain.

Application Administrator Security
In large database systems with many database applications, consider assigning
application administrators responsible for the following types of tasks:

■ Creating roles for an application and managing the privileges of each application
role

■ Creating and managing the objects used by a database application

■ Maintaining and updating the application code and Oracle Database procedures
and packages, as necessary

Often, an application administrator is also the application developer who designed an
application. However, an application administrator could be any individual familiar
with the database application.

Password Management Policy
Database security systems dependent on passwords require that passwords be kept
secret at all times. But, passwords are vulnerable to theft, forgery, and misuse. To allow
for greater control over database security, the Oracle Database password management
policy is controlled by DBAs and security officers through user profiles.

Auditing Policy
Security administrators should define a policy for the auditing procedures of each
database. You may decide to have database auditing disabled unless questionable
activities are suspected. When auditing is required, decide what level of detail to audit
the database; usually, general system auditing is followed by more specific types of
auditing after the origins of suspicious activity are determined. Auditing is discussed
in the following section.

See Also:

■ "Authentication by Oracle Database" on page 20-6

■ Oracle Database Security Guide for more information on
password protection

Overview of Database Auditing

Database Security 20-23

Overview of Database Auditing
Auditing is the monitoring and recording of selected user database actions. It can be
based on individual actions, such as the type of SQL statement run, or on
combinations of factors that can include name, application, time, and so on. Security
policies can cause auditing when specified elements in Oracle Database are accessed or
altered, including content.

Auditing is generally used to:

■ Enable future accountability for current actions taken in a particular schema, table,
or row, or affecting specific content

■ Investigate suspicious activity. For example, if an unauthorized user is deleting
data from tables, then the security administrator could audit all connections to the
database and all successful and unsuccessful deletions of rows from all tables in
the database.

■ Monitor and gather data about specific database activities. For example, the
database administrator can gather statistics about which tables are being updated,
how many logical I/Os are performed, or how many concurrent users connect at
peak times.

You can use Enterprise Manager to view and configure audit-related initialization
parameters and administer audited objects for statement auditing and schema object
auditing. For example, Enterprise Manager shows the properties for current audited
statements, privileges, and objects. You can view the properties of each object, and you
can search audited objects by their properties. You can also turn on and turn off
auditing on objects, statements, and privileges.

Types and Records of Auditing
Oracle Database allows audit options to be focused or broad. You can audit:

■ Successful statement executions, unsuccessful statement executions, or both

■ Statement executions once in each user session or once every time the statement is
run

■ Activities of all users or of a specific user

Oracle Database auditing enables the use of several different mechanisms, with the
features listed in Table 20–2.

Table 20–2 Types of Auditing

Type of Auditing Meaning/Description

Statement auditing Audits SQL statements by type of statement, not by the specific
schema objects on which they operate. Typically broad, statement
auditing audits the use of several types of related actions for each
option. For example, AUDIT TABLE tracks several DDL
statements regardless of the table on which they are issued. You
can also set statement auditing to audit selected users or every
user in the database.

Privilege auditing Audits the use of powerful system privileges enabling
corresponding actions, such as AUDIT CREATE TABLE. Privilege
auditing is more focused than statement auditing because it
audits only the use of the target privilege. You can set privilege
auditing to audit a selected user or every user in the database.

Overview of Database Auditing

20-24 Oracle Database Concepts

Audit Records and the Audit Trails
Audit records include information such as the operation that was audited, the user
performing the operation, and the date and time of the operation. Audit records can be
stored in either a data dictionary table, called the database audit trail, or in operating
system files, called an operating system audit trail.

This section includes the following topics:

■ Database Audit Trail

■ Auditing in a Distributed Database

■ Operating System Audit Trail

■ Operating System Audit Records

■ Records Always in the Operating System Audit Trail

■ When Are Audit Records Created?

Database Audit Trail The database audit trail is a single table named SYS.AUD$ in the
SYS schema of each Oracle database's data dictionary. Several predefined views are
provided to help you use the information in this table.

Audit trail records can contain different types of information, depending on the events
audited and the auditing options set. The following information is always included in
each audit trail record, if the information is meaningful to the particular audit action:

User name
Instance number
Process identifier
Session identifier
Terminal identifier
Name of the schema object accessed
Operation performed or attempted
Completion code of the operation
Date and time stamp
System privileges used

Auditing in a Distributed Database Auditing is site autonomous. An instance audits only
the statements issued by directly connected users. A local Oracle Database node
cannot audit actions that take place in a remote database. Because remote connections
are established through the user account of a database link, statements issued through
the database link's connection are audited by the remote Oracle Database node.

Schema object auditing Audits specific statements on a particular schema object, such as
AUDIT SELECT ON employees. Schema object auditing is very
focused, auditing only a specific statement on a specific schema
object. Schema object auditing always applies to all users of the
database.

Fine-grained auditing Audits data access and actions based on content. Using DBMS_
FGA, the security administrator creates an audit policy on the
target table. If any rows returned from a DML statement block
match the audit condition, then an audit event entry is inserted
into the audit trail.

Table 20–2 (Cont.) Types of Auditing

Type of Auditing Meaning/Description

Overview of Database Auditing

Database Security 20-25

Operating System Audit Trail Oracle Database allows audit trail records to be directed to
an operating system audit trail if the operating system makes such an audit trail
available to Oracle Database. If not, then audit records are written to a file outside the
database, with a format similar to other Oracle Database trace files.

Oracle Database allows certain actions that are always audited to continue, even when
the operating system audit trail (or the operating system file containing audit records)
is unable to record the audit record. The usual cause of this is that the operating
system audit trail or the file system is full and unable to accept new records.

System administrators configuring operating system auditing should ensure that the
audit trail or the file system does not fill completely. Most operating systems provide
administrators with sufficient information and warning to ensure this does not occur.
Note, however, that configuring auditing to use the database audit trail removes this
vulnerability, because Oracle Database prevents audited events from occurring if the
audit trail is unable to accept the database audit record for the statement.

Operating System Audit Records The operating system audit trail is encoded, but it is
decoded in data dictionary files and error messages.

■ Action code describes the operation performed or attempted. The AUDIT_
ACTIONS data dictionary table describes these codes.

■ Privileges used describes any system privileges used to perform the operation.
The SYSTEM_PRIVILEGE_MAP table describes all of these codes.

■ Completion code describes the result of the attempted operation. Successful
operations return a value of zero, and unsuccessful operations return the Oracle
Database error code describing why the operation was unsuccessful.

Records Always in the Operating System Audit Trail Some database-related actions are
always recorded into the operating system audit trail regardless of whether database
auditing is enabled:

■ At instance startup, an audit record is generated that details the operating system
user starting the instance, the user's terminal identifier, the date and time stamp,
and whether database auditing was enabled or disabled. This information is
recorded into the operating system audit trail, because the database audit trail is
not available until after startup has successfully completed. Recording the state of
database auditing at startup also acts as an auditing flag, inhibiting an
administrator from performing unaudited actions by restarting a database with
database auditing disabled.

■ At instance shutdown, an audit record is generated that details the operating
system user shutting down the instance, the user's terminal identifier, the date and
time stamp.

■ During connections with administrator privileges, an audit record is generated
that details the operating system user connecting to Oracle Database with
administrator privileges. This record provides accountability regarding users
connected with administrator privileges.

See Also:

■ Oracle Database Administrator's Guide for instructions for creating
and using predefined views

■ Oracle Database Security Guide for more information on auditing

■ Oracle Database Error Messages for a list of completion codes

Overview of Database Auditing

20-26 Oracle Database Concepts

On operating systems that do not make an audit trail accessible to Oracle Database,
these audit trail records are placed in an Oracle Database audit trail file in the same
directory as background process trace files.

When Are Audit Records Created? Any authorized database user can set his own audit
options at any time, but the recording of audit information is enabled or disabled by
the security administrator.

When auditing is enabled in the database, an audit record is generated during the
execute phase of statement execution.

SQL statements inside PL/SQL program units are individually audited, as necessary,
when the program unit is run.

The generation and insertion of an audit trail record is independent of a user's
transaction being committed. That is, even if a user's transaction is rolled back, the
audit trail record remains committed.

Statement and privilege audit options in effect at the time a database user connects to
the database remain in effect for the duration of the session. Setting or changing
statement or privilege audit options in a session does not cause effects in that session.
The modified statement or privilege audit options take effect only when the current
session is ended and a new session is created. In contrast, changes to schema object
audit options become effective for current sessions immediately.

Operations by the SYS user and by users connected through SYSDBA or SYSOPER can
be fully audited with the AUDIT_SYS_OPERATIONS initialization parameter.
Successful SQL statements from SYS are audited indiscriminately. The audit records
for sessions established by the user SYS or connections with administrative privileges
are sent to an operating system location. Sending them to a location separate from the
usual database audit trail in the SYS schema provides for greater auditing security.

See Also:

■ Oracle Database Security Guide for instructions on enabling and
disabling auditing

■ Chapter 24, "SQL" for information about the different phases of
SQL statement processing and shared SQL

Data Integrity 21-1

21
Data Integrity

This chapter explains how to use integrity constraints to enforce the business rules
associated with your database and prevent the entry of invalid information into tables.

This chapter contains the following topics:

■ Introduction to Data Integrity

■ Overview of Integrity Constraints

■ Types of Integrity Constraints

■ The Mechanisms of Constraint Checking

■ Deferred Constraint Checking

Introduction to Data Integrity
It is important that column data adhere to a predefined set of rules, as determined by
the database administrator or application developer.

For example, some columns in a database table can have specific rules that constrain
the data contained within them. These constraints can affect how data columns in one
table relate to those in another table.

This section includes the following topics:

■ Data Integrity Rules

■ How Oracle Database Enforces Data Integrity

■ Constraint States

Data Integrity Rules
This section describes the rules that can be applied to table columns to enforce
different types of data integrity.

Null rule: A null rule is a rule defined on a single column that allows or disallows
inserts or updates of rows containing a null (the absence of a value) in that column.

Unique column values: A unique value rule defined on a column (or set of columns)
allows the insert or update of a row only if it contains a unique value in that column
(or set of columns).

Primary key values: A primary key value rule defined on a key (a column or set of
columns) specifies that each row in the table can be uniquely identified by the values
in the key.

Introduction to Data Integrity

21-2 Oracle Database Concepts

Referential integrity rules: A referential integrity rule is a rule defined on a key (a
column or set of columns) in one table that guarantees that the values in that key
match the values in a key in a related table (the referenced value).

Referential integrity also includes the rules that dictate what types of data
manipulation are allowed on referenced values and how these actions affect
dependent values. The rules associated with referential integrity are:

■ Restrict: Disallows the update or deletion of referenced data.

■ Set to null: When referenced data is updated or deleted, all associated dependent
data is set to NULL.

■ Set to default: When referenced data is updated or deleted, all associated
dependent data is set to a default value.

■ Cascade: When referenced data is updated, all associated dependent data is
correspondingly updated. When a referenced row is deleted, all associated
dependent rows are deleted.

■ No action: Disallows the update or deletion of referenced data. This differs from
RESTRICT in that it is checked at the end of the statement, or at the end of the
transaction if the constraint is deferred. (Oracle Database uses No Action as its
default action.)

Complex integrity checking: A user-defined rule for a column (or set of columns) that
allows or disallows inserts, updates, or deletes of a row based on the value it contains
for the column (or set of columns).

How Oracle Database Enforces Data Integrity
Oracle Database enables you to define and enforce each type of data integrity rule
defined in the previous section. Most of these rules are easily defined using either
integrity constraints or database triggers (stored database procedures automatically
invoked on insert, update, or delete operations).

You cannot enforce referential integrity using declarative integrity constraints if child
and parent tables are on different nodes of a distributed database. However, you can
enforce referential integrity in a distributed database using database triggers.

Constraint States
■ ENABLE ensures that all incoming data conforms to the constraint

■ DISABLE allows incoming data, regardless of whether it conforms to the
constraint

■ VALIDATE ensures that existing data conforms to the constraint

■ NOVALIDATE means that some existing data may not conform to the constraint

In addition:

■ ENABLE VALIDATE is the same as ENABLE. The constraint is checked and is
guaranteed to hold for all rows.

■ ENABLE NOVALIDATE means that the constraint is checked, but it does not have
to be true for all rows. This allows existing rows to violate the constraint, while
ensuring that all new or modified rows are valid.

See Also: Chapter 22, "Triggers" for examples of triggers used to
enforce data integrity

Overview of Integrity Constraints

Data Integrity 21-3

In an ALTER TABLE statement, ENABLE NOVALIDATE resumes constraint
checking on disabled constraints without first validating all data in the table.

■ DISABLE NOVALIDATE is the same as DISABLE. The constraint is not checked
and is not necessarily true.

■ DISABLE VALIDATE disables the constraint, drops the index on the constraint,
and disallows any modification of the constrained columns.

For a UNIQUE constraint, the DISABLE VALIDATE state enables you to load data
efficiently from a nonpartitioned table into a partitioned table using the EXCHANGE
PARTITION clause of the ALTER TABLE statement.

Transitions between these states are governed by the following rules:

■ ENABLE implies VALIDATE, unless NOVALIDATE is specified.

■ DISABLE implies NOVALIDATE, unless VALIDATE is specified.

■ VALIDATE and NOVALIDATE do not have any default implications for the ENABLE
and DISABLE states.

■ When a unique or primary key moves from the DISABLE state to the ENABLE
state, if there is no existing index, a unique index is automatically created.
Similarly, when a unique or primary key moves from ENABLE to DISABLE and it
is enabled with a unique index, the unique index is dropped.

■ When any constraint is moved from the NOVALIDATE state to the VALIDATE state,
all data must be checked (this can be very slow). However, moving from
VALIDATE to NOVALIDATE simply forgets that the data was ever checked.

■ Moving a single constraint from the ENABLE NOVALIDATE state to the ENABLE
VALIDATE state does not block reads, writes, or other DDL statements. It can be
done in parallel.

Overview of Integrity Constraints
Oracle Database uses integrity constraints to prevent invalid data entry into the base
tables of the database. You can define integrity constraints to enforce the business rules
you want to associate with the information in a database. If any of the results of a
DML statement execution violate an integrity constraint, Oracle Database rolls back
the statement and returns an error.

For example, assume that you define an integrity constraint for the salary column of
the employees table that enforces a rule that no row in this table can contain a
numeric value greater than 10,000 in this column. If an INSERT or UPDATE statement
attempts to violate this integrity constraint, Oracle Database rolls back the statement
and returns an information error message.

See Also:

■ Oracle Database SQL Language Reference for general information
about constraints

■ Oracle Database Administrator's Guide for information about
managing constraints

Note: Operations on views (and synonyms for tables) are subject
to the integrity constraints defined on the underlying base tables.

Overview of Integrity Constraints

21-4 Oracle Database Concepts

This section includes the following topics:

■ Advantages of Integrity Constraints

■ The Performance Cost of Integrity Constraints

Advantages of Integrity Constraints
This section describes some of the advantages that integrity constraints associated
with database tables have over other alternatives. These advantages are:

■ Enforcing business rules in the code of a database application

■ Using stored procedures to completely control access to data

■ Enforcing business rules with triggered stored database procedures

This section includes the following topics:

■ Declarative Ease

■ Centralized Rules

■ Maximum Application Development Productivity

■ Immediate User Feedback

■ Flexibility for Data Loads and Identification of Integrity Violations

Declarative Ease
Declarative integrity constraints are preferable to application code and database
triggers. Because you define integrity constraints using SQL statements, no additional
programming is required when you define or alter a table. The SQL statements are
easy to write and eliminate programming errors. Oracle Database controls their
functionality.

The declarative approach is also better than using stored procedures, because the
stored procedure solution to data integrity controls data access, but integrity
constraints do not eliminate the flexibility of random data access.

The semantics of integrity constraint declarations are clearly defined, and performance
optimizations are implemented for each specific declarative rule. The Oracle Database
optimizer can use declarations to learn more about data to improve overall query
performance. (Also, taking integrity rules out of application code and database
triggers guarantees that checks are only made when necessary.)

Centralized Rules
Integrity constraints are defined for tables (not applications) and are stored in the data
dictionary. Therefore, any data entered by any application must adhere to the same
integrity constraints associated with the table. By keeping business rules in application
code centralized integrity constraints rather than in application code, the tables of a
database are guaranteed to contain valid data, no matter which database application
manipulates the information.

Maximum Application Development Productivity
If a business rule enforced by an integrity constraint changes, then the administrator
need only change that integrity constraint and all applications automatically adhere to
the modified constraint. In contrast, if the business rule were enforced by the code of

See Also: Chapter 22, "Triggers"

Types of Integrity Constraints

Data Integrity 21-5

each database application, developers would have to modify all application source
code and recompile, debug, and test the modified applications.

Immediate User Feedback
Oracle Database stores specific information about each integrity constraint in the data
dictionary. You can design database applications to use this information to provide
immediate user feedback about integrity constraint violations, even before Oracle
Database runs and checks the SQL statement. For example, an Oracle Forms
application can use integrity constraint definitions stored in the data dictionary to
check for violations as values are entered into the fields of a form, even before the
application issues a statement.

Flexibility for Data Loads and Identification of Integrity Violations
You can disable integrity constraints temporarily so that large amounts of data can be
loaded without the overhead of constraint checking. When the data load is complete,
you can easily enable the integrity constraints, and you can automatically report any
new rows that violate integrity constraints to a separate exceptions table.

The Performance Cost of Integrity Constraints
The advantages of enforcing data integrity rules come with some loss in performance.
In general, the cost of including an integrity constraint is, at most, the same as
executing a SQL statement that evaluates the constraint.

Types of Integrity Constraints
You can use integrity constraints to impose restrictions on the input of values in both
normal and virtual columns. You can use the following constraints:

■ NOT NULL Integrity Constraints

■ UNIQUE Key Integrity Constraints

■ PRIMARY KEY Integrity Constraints

■ Referential Integrity Constraints

■ CHECK Integrity Constraints

NOT NULL Integrity Constraints
By default, all columns in a table allow nulls. Null means the absence of a value. A
NOT NULL constraint requires a column of a table contain no null values.

For certain types of tables and column datatypes, when adding a column that has both
a NOT NULL constraint and a default value, the database can optimize the operation
and reduce the amount of time that the table is locked for DML. The database stores
metadata in the table that describes the default value in the added column. As a result,
the database does not need to populate every row with the default value when you
add the column, thereby minimizing the time that the table is locked.

You can only add a column with a NOT NULL constraint if the table does not contain
any rows or if you specify a default value.

See Also: "Overview of Tables" on page 5-3 for a conceptual
description of virtual columns, and Oracle Database SQL Language
Reference for reference information about virtual columns

Types of Integrity Constraints

21-6 Oracle Database Concepts

UNIQUE Key Integrity Constraints
A UNIQUE key integrity constraint requires that every value in a column or set of
columns (key) be unique—that is, no two rows of a table have duplicate values in a
specified column or set of columns.

This section includes the following topics:

■ Unique Keys

■ Combining UNIQUE Key and NOT NULL Integrity Constraints

Unique Keys
The columns included in the definition of the UNIQUE key constraint are called the
unique key. If the unique key consists of more than one column, then that group of
columns is called a composite unique key.

Unique key is often incorrectly used as a synonym for the term UNIQUE key constraint
or UNIQUE index. However, key refers only to the column or set of columns used in the
definition of the integrity constraint.

For example, the UNIQUE key constraint might let you enter an area code and
telephone number any number of times, but the combination of a given area code and
given telephone number cannot be duplicated in the table. This eliminates
unintentional duplication of a telephone number.

Combining UNIQUE Key and NOT NULL Integrity Constraints
Columns with both unique keys and NOT NULL integrity constraints are common.
This combination forces the user to enter values in the unique key and also eliminates
the possibility that any new row's data will ever conflict with an existing row's data.

PRIMARY KEY Integrity Constraints
Each table in the database can have at most one PRIMARY KEY constraint. The values
in the group of one or more columns subject to this constraint constitute the unique
identifier of the row. In effect, each row is named by its primary key values.

The Oracle Database implementation of the PRIMARY KEY integrity constraint
guarantees that both of the following are true:

■ No two rows of a table have duplicate values in the specified column or set of
columns.

■ The primary key columns do not allow nulls. That is, a value must exist for the
primary key columns in each row.

This section includes the following topics:

See Also:

■ Oracle Database Administrator's Guide to learn how to add columns
to a table

■ Oracle Database SQL Language Reference to learn about the ALTER
TABLE statement

Note: Because of the search mechanism for UNIQUE constraints on
more than one column, you cannot have identical values in the
non-null columns of a partially null composite UNIQUE key constraint.

Types of Integrity Constraints

Data Integrity 21-7

■ Primary Keys

■ PRIMARY KEY Constraints and Indexes

Primary Keys
The columns included in the definition of a table's PRIMARY KEY integrity constraint
are called the primary key. Although it is not required, every table should have a
primary key so that:

■ Each row in the table can be uniquely identified

■ No duplicate rows exist in the table

PRIMARY KEY Constraints and Indexes
Oracle Database enforces all PRIMARY KEY constraints using indexes. The primary
key constraint created for a column is enforced by the implicit creation of:

■ A unique index on that column

■ A NOT NULL constraint for that column

Composite primary key constraints are limited to 32 columns, which is the same
limitation imposed on composite indexes. The name of the index is the same as the
name of the constraint. Also, you can specify the storage options for the index by
including the ENABLE clause in the CREATE TABLE or ALTER TABLE statement used
to create the constraint. If a usable index exists when a primary key constraint is
created, then the primary key constraint uses that index rather than implicitly creating
a new one.

Referential Integrity Constraints
Different tables in a relational database can be related by common columns, and the
rules that govern the relationship of the columns must be maintained. Referential
integrity rules guarantee that these relationships are preserved.

Table 21–1 lists terms associated with referential integrity constraints.

A referential integrity constraint requires that for each row of a table, the value in the
foreign key matches a value in a parent key.

Figure 21–1 shows a foreign key defined on the deptno column of the emp table. It
guarantees that every value in this column must match a value in the primary key of
the dept table (also the deptno column). Therefore, no erroneous department
numbers can exist in the deptno column of the emp table.

Table 21–1 Referential Integrity Constraint Terms

Term Definition

Foreign key The column or set of columns included in the definition of the
referential integrity constraint that reference a referenced key.

Referenced key The unique key or primary key of the same or different table that
is referenced by a foreign key.

Dependent or child table The table that includes the foreign key. Therefore, it is the table
that is dependent on the values present in the referenced unique
or primary key.

Referenced or parent table The table that is referenced by the child table's foreign key. It is
this table's referenced key that determines whether specific
inserts or updates are allowed in the child table.

Types of Integrity Constraints

21-8 Oracle Database Concepts

Foreign keys can be defined as multiple columns. However, a composite foreign key
must reference a composite primary or unique key with the same number of columns
and the same datatypes. Because composite primary and unique keys are limited to 32
columns, a composite foreign key is also limited to 32 columns.

Figure 21–1 Referential Integrity Constraints

This section includes the following topics:

■ Self-Referential Integrity Constraints

■ Nulls and Foreign Keys

■ Actions Defined by Referential Integrity Constraints

■ Concurrency Control, Indexes, and Foreign Keys

7571

7571

FORD

FORD

MANAGER

MANAGER

7499

7499

23–FEB–90

23–FEB–90

5,000.00

5,000.00

200.00

200.00

40

INSERT
INTO

Table DEPT
DEPTNO DNAME LOC

Parent Key
Primary key of
referenced table

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Table EMP

Referenced or

Dependent or Child Table

Parent Table

Foreign Key
(values in dependent
table must match a
value in unique key
or primary key of
referenced table)

This row violates the referential
constraint because "40" is not
present in the referenced table's
primary key; therefore, the row
is not allowed in the table.

This row is allowed in the table
because a null value is entered
in the DEPTNO column;
however, if a not null constraint
is also defined for this column,
this row is not allowed.

20
30

RESEARCH
SALES

DALLAS
CHICAGO

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP–SALES
MANAGER
SALESMAN

7329
7499
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90

9,000.00
300.00
500.00

100.00
200.00
400.00

20
30
30
20

Types of Integrity Constraints

Data Integrity 21-9

Self-Referential Integrity Constraints
Another type of referential integrity constraint, shown in Figure 21–2, is called a
self-referential integrity constraint. This type of foreign key references a parent key in
the same table.

In Figure 21–2, the referential integrity constraint ensures that every value in the mgr
column of the emp table corresponds to a value that currently exists in the empno
column of the same table, but not necessarily in the same row, because every manager
must also be an employee. This integrity constraint eliminates the possibility of
erroneous employee numbers in the mgr column.

Figure 21–2 Single Table Referential Constraints

Nulls and Foreign Keys
The relational model permits the value of foreign keys to match either the referenced
primary or unique key value, or be null. If any column of a composite foreign key is
null, then the non-null portions of the key do not have to match any corresponding
portion of a parent key.

Actions Defined by Referential Integrity Constraints
Referential integrity constraints can specify particular actions to be performed on the
dependent rows in a child table if a referenced parent key value is modified. The
referential actions supported by the FOREIGN KEY integrity constraints of Oracle
Database are UPDATE and DELETE NO ACTION, and DELETE CASCADE.

This section includes the following topics:

Note: Other referential actions not supported by FOREIGN KEY
integrity constraints of Oracle Database can be enforced using
database triggers.

See Chapter 22, "Triggers" for more information.

INSERT
INTO

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Table EMP

Dependent or
Child TableReferenced or

Parent Table

This row violates the referential
constraint, because "7331" is
not present in the referenced
table's primary key; therefore,
it is not allowed in the table.

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP–SALES
MANAGER
SALESMAN

7329
7329
7499
7521

9,000.00
7,500.00
5,000.00
2,975.00

100.00
200.00
400.00

20
30
30
30

Primary Key
of referenced table

Foreign Key
(values in dependent table must match a value in
unique key or primary key of referenced table)

7571 FORD MANAGER 7331 23–FEB–90 5,000.00 200.00 30

Types of Integrity Constraints

21-10 Oracle Database Concepts

■ DELETE NO ACTION

DELETE CASCADE

DELETE SET NULL

■ DML Restrictions with Respect to Referential Actions

DELETE NO ACTION The No Action (default) option specifies that referenced key values
cannot be updated or deleted if the resulting data would violate a referential integrity
constraint. For example, if a primary key value is referenced by a value in the foreign
key, then the referenced primary key value cannot be deleted because of the dependent
data.

DELETE CASCADE A delete cascades when rows containing referenced key values are
deleted, causing all rows in child tables with dependent foreign key values to also be
deleted. For example, if a row in a parent table is deleted, and this row's primary key
value is referenced by one or more foreign key values in a child table, then the rows in
the child table that reference the primary key value are also deleted from the child
table.

DELETE SET NULL A delete sets null when rows containing referenced key values are
deleted, causing all rows in child tables with dependent foreign key values to set those
values to null. For example, if employee_id references manager_id in the TMP table,
then deleting a manager causes the rows for all employees working for that manager
to have their manager_id value set to null.

DML Restrictions with Respect to Referential Actions Table 21–2 outlines the DML
statements allowed by the different referential actions on the primary/unique key
values in the parent table, and the foreign key values in the child table.

Concurrency Control, Indexes, and Foreign Keys
Oracle Database maximizes the concurrency control of parent keys in relation to
dependent foreign keys. Locking behavior depends on whether foreign key columns
are indexed. If foreign keys are not indexed, then the child table will probably be
locked more frequently, deadlocks will occur, and concurrency will be decreased. For
this reason foreign keys should almost always be indexed. The only exception is when
the matching unique or primary key is never updated or deleted

This section includes the following topics:

■ No Index on the Foreign Key

Table 21–2 DML Statements Allowed by Update and Delete No Action

DML Statement Issued Against Parent Table Issued Against Child Table

INSERT Always OK if the parent key value is
unique.

OK only if the foreign key
value exists in the parent key
or is partially or all null.

UPDATE NO ACTION Allowed if the statement does not leave
any rows in the child table without a
referenced parent key value.

Allowed if the new foreign
key value still references a
referenced key value.

DELETE NO ACTION Allowed if no rows in the child table
reference the parent key value.

Always OK.

DELETE CASCADE Always OK. Always OK.

DELETE SET NULL Always OK. Always OK.

Types of Integrity Constraints

Data Integrity 21-11

■ Index on the Foreign Key

No Index on the Foreign Key In the following circumstances, the database acquires a
table lock on the child table:

■ No index exists on the foreign key column of the child table.

For example, assume that hr.departments table is a parent of hr.employees,
which contains the unindexed foreign key department_id.

■ A session modifies a primary key in the parent table (for example, deletes a row or
modifies primary key attributes) or merges data into the parent table. Inserts into
the parent table do not acquire table locks on the child table.

For example, a database session deletes row 3 from the departments table, as
shown in Figure 21–3.

Figure 21–3 Locking Mechanisms with Unindexed Foreign Key

In Figure 21–3, an unindexed foreign key column in the child table causes the deletion
of row 3 in the parent to acquire a share table lock on the child table. This lock enables
other transactions to query but not update the table. For example, phone numbers in
employees cannot be updated while the departments row is being deleted. The
table lock releases immediately after the DML on the departments table completes.
If multiple rows are affected, then the lock is obtained and released once for each row.

Note: DML on a child table does not acquire a table lock on the
parent table.

Row 1 Key 1

Table Parent

Row 2 Key 2

Row 4 Key 4

Row 1 Key 1

Table Child

Row 2 Key 1

Row 3 Key 2

Row 4 Key 2

Key 1

Index

Key 2

Key 4

Exclusive row lock (TX) acquired

Row being deleted

Row 5 Key 2

Key 3Row 3 Key 3

Table lock aquired

Types of Integrity Constraints

21-12 Oracle Database Concepts

Index on the Foreign Key If a foreign key column in the child table is indexed, then DML
on the parent table acquires a table lock on the parent table. This lock prevents
transactions from acquiring exclusive table locks, but does not prevent DML on the
parent or the child table while the DML on the parent table occurs. This situation is
preferable if updates or deletions occur on the parent table while updates occur on the
child table.

Figure 21–4 shows a scenario in which the foreign key column in the child table is
indexed. The parent table is departments and the child table is employees. A
session updates row 3 in departments. The DML on departments does not prevent
updates to employees, although updates and deletions of rows in departments
must wait for row-level locks on the indexes of employees to clear.

Figure 21–4 Locking Mechanisms with Indexed Foreign Key

If the child table specifies ON DELETE CASCADE, then deletions from the parent table
can result in deletions from the child table. For example, a deletion of a record from
departments can cause the deletion of records from employees for employees in
the deleted department. In this case, waiting and locking rules are the same as if you
deleted rows from the child table after deleting rows from the parent table.

CHECK Integrity Constraints
A CHECK integrity constraint on a column or set of columns requires that a specified
condition be true or unknown for every table row. If a DML statement results in the
condition of the CHECK constraint evaluating to false, then the statement is rolled back.

This section includes the following topics:

Row 1 Key 1

Table Parent

Row 2 Key 2

Row 4 Key 4

Row 1 Key 1

Table Child

Row 2 Key 1

Row 3 Key 2

Row 4 Key 2

Key 1

Index

Key 2

Key 4

Exclusive row lock (TX) acquired

Row being updated

Row 5 Key 2

Key 3Row 3 Key 3

Table lock aquired

Key 1

Index

Key 1

Key 2

Key 2

Key 2

The Mechanisms of Constraint Checking

Data Integrity 21-13

■ The Check Condition

■ Multiple CHECK Constraints

The Check Condition
CHECK constraints let you enforce very specific integrity rules by specifying a check
condition. The condition of a CHECK constraint has some limitations:

■ It must be a Boolean expression evaluated using the values in the row being
inserted or updated, and

■ It cannot contain subqueries; sequences; the SQL functions SYSDATE, UID, USER,
or USERENV; or the pseudocolumns LEVEL or ROWNUM.

In evaluating CHECK constraints that contain string literals or SQL functions with
globalization support parameters as arguments (such as TO_CHAR, TO_DATE, and
TO_NUMBER), Oracle Database uses the database globalization support settings by
default. You can override the defaults by specifying globalization support parameters
explicitly in such functions within the CHECK constraint definition.

Multiple CHECK Constraints
A single column can have multiple CHECK constraints that reference the column in its
definition. There is no limit to the number of CHECK constraints that you can define on
a column.

If you create multiple CHECK constraints for a column, design them carefully so their
purposes do not conflict. Do not assume any particular order of evaluation of the
conditions. Oracle Database does not verify that CHECK conditions are not mutually
exclusive.

The Mechanisms of Constraint Checking
To know what types of actions are permitted when constraints are present, it is useful
to understand when Oracle Database actually performs the checking of constraints.
Assume the following:

■ The emp table has been defined as in Figure 21–2 on page 21-9.

■ The self-referential constraint makes the entries in the mgr column dependent on
the values of the empno column. For simplicity, the rest of this discussion
addresses only the empno and mgr columns of the emp table.

Consider the insertion of the first row into the emp table. No rows currently exist, so
how can a row be entered if the value in the mgr column cannot reference any existing
value in the empno column? Three possibilities for doing this are:

■ A null can be entered for the mgr column of the first row, assuming that the mgr
column does not have a NOT NULL constraint defined on it. Because nulls are
allowed in foreign keys, this row is inserted successfully into the table.

■ The same value can be entered in both the empno and mgr columns. This case
reveals that Oracle Database performs its constraint checking after the statement
has been completely run. To allow a row to be entered with the same values in the
parent key and the foreign key, Oracle Database must first run the statement (that
is, insert the new row) and then check to see if any row in the table has an empno
that corresponds to the new row's mgr.

See Also: Oracle Database Globalization Support Guide for more
information on globalization support features

The Mechanisms of Constraint Checking

21-14 Oracle Database Concepts

■ A multiple row INSERT statement, such as an INSERT statement with nested
SELECT statement, can insert rows that reference one another. For example, the
first row might have empno as 200 and mgr as 300, while the second row might
have empno as 300 and mgr as 200.

This case also shows that constraint checking is deferred until the complete
execution of the statement. All rows are inserted first, then all rows are checked for
constraint violations. You can also defer the checking of constraints until the end
of the transaction.

Consider the same self-referential integrity constraint in this scenario. The company
has been sold. Because of this sale, all employee numbers must be updated to be the
current value plus 5000 to coordinate with the new company's employee numbers.
Because manager numbers are really employee numbers, these values must also
increase by 5000 (see Figure 21–5).

Figure 21–5 The EMP Table Before Updates

UPDATE employees
 SET employee_id = employee_id + 5000,
 manager_id = manager_id + 5000;

Even though a constraint is defined to verify that each mgr value matches an empno
value, this statement is legal because Oracle Database effectively performs its
constraint checking after the statement completes. Figure 21–6 shows that Oracle
Database performs the actions of the entire SQL statement before any constraints are
checked.

Figure 21–6 Constraint Checking

The examples in this section illustrate the constraint checking mechanism during
INSERT and UPDATE statements. The same mechanism is used for all types of DML
statements, including UPDATE, INSERT, and DELETE statements.

The examples also used self-referential integrity constraints to illustrate the checking
mechanism. The same mechanism is used for all types of constraints, including the
following:

■ NOT NULL

■ UNIQUE key

■ PRIMARY KEY

EMPNO MGR

210
211
212

210
211

Update to
second row

Update to
second row

Update to
third row

Constraints
checked

EMPNO MGR EMPNO MGR EMPNO MGR

5210
211
212

210
211

5210
5211
5212

5210
52115210

211

5210
5211
212

Deferred Constraint Checking

Data Integrity 21-15

■ All types of FOREIGN KEY constraints

■ CHECK constraints

Default Column Values and Integrity Constraint Checking
Default values are included as part of an INSERT statement before the statement is
parsed. Therefore, default column values are subject to all integrity constraint
checking.

Deferred Constraint Checking
You can defer checking constraints for validity until the end of the transaction.

■ A constraint is deferred if the system checks that it is satisfied only on commit. If a
deferred constraint is violated, then commit causes the transaction to undo.

■ If a constraint is immediate (not deferred), then it is checked at the end of each
statement. If it is violated, the statement is rolled back immediately.

If a constraint causes an action (for example, delete cascade), that action is always
taken as part of the statement that caused it, whether the constraint is deferred or
immediate.

This section includes the following topics:

■ Constraint Attributes

■ SET CONSTRAINTS Mode

■ Unique Constraints and Indexes

Constraint Attributes
You can define constraints as either deferrable or not deferrable, and either initially
deferred or initially immediate. These attributes can be different for each constraint.
You specify them with keywords in the CONSTRAINT clause:

■ DEFERRABLE or NOT DEFERRABLE

■ INITIALLY DEFERRED or INITIALLY IMMEDIATE

Constraints can be added, dropped, enabled, disabled, or validated. You can also
modify a constraint's attributes.

SET CONSTRAINTS Mode
The SET CONSTRAINTS statement makes constraints either DEFERRED or IMMEDIATE
for a particular transaction (following the ANSI SQL92 standards in both syntax and
semantics). You can use this statement to set the mode for a list of constraint names or
for ALL constraints.

The SET CONSTRAINTS mode lasts for the duration of the transaction or until another
SET CONSTRAINTS\ statement resets the mode.

SET CONSTRAINTS ... IMMEDIATE causes the specified constraints to be checked
immediately on execution of each constrained statement. Oracle Database first checks

See Also: "Deferred Constraint Checking" on page 21-15

See Also: Oracle Database SQL Language Reference for information
about constraint attributes and their default values

Deferred Constraint Checking

21-16 Oracle Database Concepts

any constraints that were deferred earlier in the transaction and then continues
immediately checking constraints of any further statements in that transaction, as long
as all the checked constraints are consistent and no other SET CONSTRAINTS
statement is issued. If any constraint fails the check, an error is signaled. At that point,
a COMMIT causes the whole transaction to undo.

The ALTER SESSION statement also has clauses to SET CONSTRAINTS IMMEDIATE
or DEFERRED. These clauses imply setting ALL deferrable constraints (that is, you
cannot specify a list of constraint names). They are equivalent to making a SET
CONSTRAINTS statement at the start of each transaction in the current session.

Making constraints immediate at the end of a transaction is a way of checking
whether COMMIT can succeed. You can avoid unexpected rollbacks by setting
constraints to IMMEDIATE as the last statement in a transaction. If any constraint fails
the check, you can then correct the error before committing the transaction.

The SET CONSTRAINTS statement is disallowed inside of triggers.

SET CONSTRAINTS can be a distributed statement. Existing database links that have
transactions in process are told when a SET CONSTRAINTS ALL statement occurs,
and new links learn that it occurred as soon as they start a transaction.

Unique Constraints and Indexes
A user sees inconsistent constraints, including duplicates in unique indexes, when that
user's transaction produces these inconsistencies. You can place deferred unique and
foreign key constraints on materialized views, allowing fast and complete refresh to
complete successfully.

Deferrable unique constraints always use nonunique indexes. When you remove a
deferrable constraint, its index remains. This is convenient because the storage
information remains available after you disable a constraint. Not-deferrable unique
constraints and primary keys also use a nonunique index if the nonunique index is
placed on the key columns before the constraint is enforced.

Triggers 22-1

22
Triggers

This chapter discusses triggers, which are procedures stored in PL/SQL or Java that
run (fire) implicitly whenever a table or view is modified or when some user actions or
database system actions occur.

This chapter contains the following topics:

■ Introduction to Triggers

■ Components of a Trigger

■ Types of Triggers

■ Trigger Execution

Introduction to Triggers
You can write triggers that fire whenever one of the following operations occurs:

1. DML statements (INSERT, UPDATE, DELETE) on a particular table or view, issued
by any user

2. DDL statements (CREATE or ALTER primarily) issued either by a particular
schema/user or by any schema/user in the database

3. Database events, such as logon/logoff, errors, or startup/shutdown, also issued
either by a particular schema/user or by any schema/user in the database

Triggers are similar to stored procedures. A trigger stored in the database can include
SQL and PL/SQL or Java statements to run as a unit and can invoke stored
procedures. However, procedures and triggers differ in the way that they are invoked.
A procedure is explicitly run by a user, application, or trigger. Triggers are implicitly
fired by Oracle Database when a triggering event occurs, no matter which user is
connected or which application is being used.

Figure 22–1 shows a database application with some SQL statements that implicitly
fire several triggers stored in the database. Notice that the database stores triggers
separately from their associated tables.

Introduction to Triggers

22-2 Oracle Database Concepts

Figure 22–1 Triggers

A trigger can also invoke a C procedure, which is useful for computationally intensive
operations.

This section includes the following topics:

■ How Triggers Are Used

■ The Triggering Event or Statement

How Triggers Are Used
Triggers supplement the standard capabilities of Oracle Database to provide a highly
customized database management system. For example, a trigger can restrict DML
operations against a table to those issued during regular business hours. You can also
use triggers to:

■ Automatically generate derived column values

■ Prevent invalid transactions

■ Enforce complex security authorizations

■ Enforce referential integrity across nodes in a distributed database

■ Enforce complex business rules

■ Provide transparent event logging

■ Provide auditing

■ Maintain synchronous table replicates

■ Gather statistics on table access

See Also:

■ Chapter 24, "SQL" for information on the similarities of triggers to
stored procedures

■ "The Triggering Event or Statement" on page 22-4

Applications

Database

Update Trigger

BEGIN
. . .

Insert Trigger

BEGIN
. . .

Delete Trigger

BEGIN
. . .

Table t

UPDATE t SET . . . ;

INSERT INTO t . . . ;

DELETE FROM t . . . ;

Components of a Trigger

Triggers 22-3

■ Modify table data when DML statements are issued against views

■ Publish information about database events, user events, and SQL statements to
subscribing applications

This section includes the following topics:

■ Some Cautionary Notes about Triggers

■ Triggers Compared with Declarative Integrity Constraints

Some Cautionary Notes about Triggers
Although triggers are useful for customizing a database, use them only when
necessary. Excessive use of triggers can result in complex interdependencies, which
can be difficult to maintain in a large application. For example, when a trigger fires, a
SQL statement within its trigger action potentially can fire other triggers, resulting in
cascading triggers. This can produce unintended effects.

Triggers Compared with Declarative Integrity Constraints
You can use both triggers and integrity constraints to define and enforce any type of
integrity rule. However, Oracle strongly recommends that you use triggers to
constrain data input only in the following situations:

■ To enforce referential integrity when child and parent tables are on different nodes
of a distributed database

■ To enforce complex business rules not definable using integrity constraints

■ When a required referential integrity rule cannot be enforced using the following
integrity constraints:

– NOT NULL, UNIQUE

– PRIMARY KEY

– FOREIGN KEY

– CHECK

– DELETE CASCADE

– DELETE SET NULL

Components of a Trigger
A trigger has three basic components, each explained in this section:

■ The Triggering Event or Statement

■ Trigger Restriction

■ Trigger Action

Figure 22–2 represents each of these trigger components and is not meant to show
exact syntax. The sections that follow explain each trigger component in greater detail.

See Also: Oracle Database PL/SQL Language Reference for more
information about triggers

See Also: "How Oracle Database Enforces Data Integrity" on
page 21-2 for more information about integrity constraints

Components of a Trigger

22-4 Oracle Database Concepts

Figure 22–2 The REORDER Trigger

The Triggering Event or Statement
A triggering event or statement is the SQL statement, database event, or user event
that causes a trigger to fire. A triggering event can be one or more of the following:

■ An INSERT, UPDATE, or DELETE statement on a specific table (or view, in some
cases)

■ A CREATE, ALTER, or DROP statement on any schema object

■ A database startup or instance shutdown

■ A specific error message or any error message

■ A user logon or logoff

For example, in Figure 22–2 on page 22-4, the triggering statement is:

... UPDATE OF parts_on_hand ON inventory ...

This statement means that when the parts_on_hand column of a row in the
inventory table is updated, fire the trigger. When the triggering event is an UPDATE
statement, you can include a column list to identify which columns must be updated
to fire the trigger. You cannot specify a column list for INSERT and DELETE
statements, because they affect entire rows of information.

A triggering event can specify multiple SQL statements:

... INSERT OR UPDATE OR DELETE OF inventory ...

This part means that when an INSERT, UPDATE, or DELETE statement is issued
against the inventory table, fire the trigger. When multiple types of SQL statements
can fire a trigger, you can use conditional predicates to detect the type of triggering
statement. In this way, you can create a single trigger that runs different code based on
the type of statement that fires the trigger.

REORDER Trigger

Triggering Statement

Trigger Restriction

AFTER UPDATE OF parts_on_hand ON inventory

WHEN (new.parts_on_hand < new.reorder_point)

FOR EACH ROW
DECLARE
 NUMBER X;
BEGIN
 SELECT COUNT(*) INTO X
 FROM pending_orders
 WHERE part_no=:new.part_no;

IF x = 0
THEN
 INSERT INTO pending_orders
 VALUES (new.part_no, new.reorder_quantity, sysdate);
 END IF;
END;

/* a dummy variable for counting */

/* query to find out if part has already been */
/* reordered–if yes, x=1, if no, x=0 */

/* part has not been reordered yet, so reorder */

/* part has already been reordered */

Triggered Action

Types of Triggers

Triggers 22-5

Trigger Restriction
A trigger restriction specifies a Boolean expression that must be true for the trigger to
fire. The trigger action is not run if the trigger restriction evaluates to false or
unknown. In the example, the trigger restriction is:

new.parts_on_hand < new.reorder_point

Consequently, the trigger does not fire unless the number of available parts is less than
a present reorder amount.

Trigger Action
A trigger action is the procedure (PL/SQL block, Java program, or C callout) that
contains the SQL statements and code to be run when the following events occur:

■ A triggering statement is issued.

■ The trigger restriction evaluates to true.

Like stored procedures, a trigger action can:

■ Contain SQL, PL/SQL, or Java statements

■ Define PL/SQL language constructs such as variables, constants, cursors,
exceptions

■ Define Java language constructs

■ Invoke stored procedures

If the triggers are row triggers, the statements in a trigger action have access to column
values of the row being processed by the trigger. Correlation names provide access to
the old and new values for each column.

Types of Triggers
This section describes the different types of triggers:

■ Row Triggers and Statement Triggers

■ BEFORE and AFTER Triggers

■ Compound Triggers

■ INSTEAD OF Triggers

■ Triggers on System Events and User Events

Row Triggers and Statement Triggers
When you define a trigger, you can specify the number of times the trigger action is to
be run:

■ Once for every row affected by the triggering statement, such as a trigger fired by
an UPDATE statement that updates many rows

■ Once for the triggering statement, no matter how many rows it affects

This section includes the following topics:

■ Row Triggers

■ Statement Triggers

Types of Triggers

22-6 Oracle Database Concepts

Row Triggers
A row trigger is fired each time the table is affected by the triggering statement. For
example, if an UPDATE statement updates multiple rows of a table, a row trigger is
fired once for each row affected by the UPDATE statement. If a triggering statement
affects no rows, a row trigger is not run.

Row triggers are useful if the code in the trigger action depends on data provided by
the triggering statement or rows that are affected. For example, Figure 22–2 on
page 22-4 illustrates a row trigger that uses the values of each row affected by the
triggering statement.

Statement Triggers
A statement trigger is fired once on behalf of the triggering statement, regardless of
the number of rows in the table that the triggering statement affects, even if no rows
are affected. For example, if a DELETE statement deletes several rows from a table, a
statement-level DELETE trigger is fired only once.

Statement triggers are useful if the code in the trigger action does not depend on the
data provided by the triggering statement or the rows affected. For example, use a
statement trigger to:

■ Make a complex security check on the current time or user

■ Generate a single audit record

BEFORE and AFTER Triggers
When defining a trigger, you can specify the trigger timing—whether the trigger
action is to be run before or after the triggering statement. BEFORE and AFTER apply
to both statement and row triggers.

BEFORE and AFTER triggers fired by DML statements can be defined only on tables,
not on views. However, triggers on the base tables of a view are fired if an INSERT,
UPDATE, or DELETE statement is issued against the view. BEFORE and AFTER triggers
fired by DDL statements can be defined only on the database or a schema, not on
particular tables.

This section includes the following topics:

■ BEFORE Triggers

■ AFTER Triggers

■ Trigger Type Combinations

BEFORE Triggers
BEFORE triggers run the trigger action before the triggering statement is run. This type
of trigger is commonly used in the following situations:

■ When the trigger action determines whether the triggering statement should be
allowed to complete. Using a BEFORE trigger for this purpose, you can eliminate

See Also:

■ "INSTEAD OF Triggers" on page 22-8

■ "Triggers on System Events and User Events" on page 22-9 for
information about how BEFORE and AFTER triggers can be
used to publish information about DML and DDL statements

Types of Triggers

Triggers 22-7

unnecessary processing of the triggering statement and its eventual rollback in
cases where an exception is raised in the trigger action.

■ To derive specific column values before completing a triggering INSERT or
UPDATE statement.

AFTER Triggers
AFTER triggers run the trigger action after the triggering statement is run.

Trigger Type Combinations
Using the options listed previously, you can create four types of row and statement
triggers:

■ BEFORE statement trigger

Before executing the triggering statement, the trigger action is run.

■ BEFORE row trigger

Before modifying each row affected by the triggering statement and before
checking appropriate integrity constraints, the trigger action is run, if the trigger
restriction was not violated.

■ AFTER statement trigger

After executing the triggering statement and applying any deferred integrity
constraints, the trigger action is run.

■ AFTER row trigger

After modifying each row affected by the triggering statement and possibly
applying appropriate integrity constraints, the trigger action is run for the current
row provided the trigger restriction was not violated. Unlike BEFORE row triggers,
AFTER row triggers lock rows.

You can have multiple triggers of the same type for the same statement for any given
table. For example, you can have two BEFORE statement triggers for UPDATE
statements on the employees table. Multiple triggers of the same type permit
modular installation of applications that have triggers on the same tables. Also, Oracle
Database materialized view logs use AFTER row triggers, so you can design your own
AFTER row trigger in addition to the Oracle-defined AFTER row trigger.

You can create as many triggers of the preceding different types as you need for each
type of DML statement, (INSERT, UPDATE, or DELETE).

Compound Triggers
A compound trigger is a single trigger on a table that enables you to specify actions for
each of four timing points:

■ Before the firing statement

■ Before each row that the firing statement affects

■ After each row that the firing statement affects

■ After the firing statement

See Also: Oracle Database PL/SQL Language Reference for more
information about trigger types

Types of Triggers

22-8 Oracle Database Concepts

The compound trigger body supports a common PL/SQL state that the code for each
timing point can access. The common state is automatically destroyed when the firing
statement completes, even when the firing statement causes an error.

The effect of the compound trigger is similar to what you could achieve with a simple
trigger for each of the timing points for which you needed to code action, with an
ancillary package to hold the state that these simple triggers would share. The obvious
advantage of the compound trigger is that the required code is managed in a single
compilation unit, but the more important advantage is that the lifetime of the
compound trigger's state is automatically limited to the duration of the firing
statement.

The compound trigger is useful when you want to accumulate facts that characterize
the "for each row" changes and then act on them as a body at "after statement" time.
Sometimes you are forced to use this approach (to avoid the mutating table error).
Sometimes this approach gives better performance; for example, when maintaining a
denormalized aggregate value in a master table in response to changes in a detail
table, or when maintaining an audit table.

INSTEAD OF Triggers
INSTEAD OF triggers provide a transparent way of modifying views that cannot be
modified directly through DML statements (INSERT, UPDATE, and DELETE). These
triggers are invoked INSTEAD OF triggers because, unlike other types of triggers,
Oracle Database fires the trigger instead of executing the triggering statement.

You can write normal INSERT, UPDATE, and DELETE statements against the view and
the INSTEAD OF trigger is fired to update the underlying tables appropriately.
INSTEAD OF triggers are activated for each row of the view that gets modified.

This section includes the following topics:

■ Modify Views

■ Views That Are Not Modifiable

■ INSTEAD OF Triggers on Nested Tables

Modify Views
Modifying views can have ambiguous results:

■ Deleting a row in a view could either mean deleting it from the base table or
updating some values so that it is no longer selected by the view.

■ Inserting a row in a view could either mean inserting a new row into the base table
or updating an existing row so that it is projected by the view.

■ Updating a column in a view that involves joins might change the semantics of
other columns that are not projected by the view.

Object views present additional problems. For example, a key use of object views is to
represent master/detail relationships. This operation inevitably involves joins, but
modifying joins is inherently ambiguous.

As a result of these ambiguities, there are many restrictions on which views are
modifiable. An INSTEAD OF trigger can be used on object views as well as relational
views that are not otherwise modifiable.

A view is inherently modifiable if data can be inserted, updated, or deleted without
using INSTEAD OF triggers and if it conforms to the restrictions listed as follows. Even

See Also: Oracle Database PL/SQL Language Reference

Types of Triggers

Triggers 22-9

if the view is inherently modifiable, you might want to perform validations on the
values being inserted, updated or deleted. INSTEAD OF triggers can also be used in
this case. Here the trigger code performs the validation on the rows being modified
and if valid, propagate the changes to the underlying tables.

INSTEAD OF triggers also enable you to modify object view instances on the client-side
through OCI. To modify an object materialized by an object view in the client-side
object cache and flush it back to the persistent store, you must specify INSTEAD OF
triggers, unless the object view is inherently modifiable. However, it is not necessary to
define these triggers for just pinning and reading the view object in the object cache.

Views That Are Not Modifiable
If the view query contains any of the following constructs, the view is not inherently
modifiable and therefore, you cannot perform inserts, updates, or deletes on the view:

■ Set operators

■ Aggregate functions

■ GROUP BY, CONNECT BY, or START WITH clauses

■ The DISTINCT operator

■ Joins (however, some join views are updatable)

If a view contains pseudocolumns or expressions, you can only update the view with
an UPDATE statement that does not refer to any of the pseudocolumns or expressions.

INSTEAD OF Triggers on Nested Tables
You cannot modify the elements of a nested table column in a view directly with the
TABLE clause. However, you can do so by defining an INSTEAD OF trigger on the
nested table column of the view. The triggers on the nested tables fire if a nested table
element is updated, inserted, or deleted and handle the actual modifications to the
underlying tables.

Triggers on System Events and User Events
You can use triggers to publish information about database events to subscribers.
Applications can subscribe to database events just as they subscribe to messages from
other applications. These database events can include:

■ System events

See Also:

■ Oracle Database Object-Relational Developer's Guide

■ Oracle Call Interface Programmer's Guide

■ Oracle Database PL/SQL Language Reference for more information
about INSTEAD OF triggers

See Also: "Updatable Join Views" on page 5-17

See Also:

■ Oracle Database PL/SQL Language Reference for more information
about triggers on nested tables

■ Oracle Database PL/SQL Language Reference for information on
the CREATE TRIGGER statement

Types of Triggers

22-10 Oracle Database Concepts

– Database startup and shutdown

– Data Guard role transitions

– Server error message events

■ User events

– User logon and logoff

– DDL statements (CREATE, ALTER, and DROP)

– DML statements (INSERT, DELETE, and UPDATE)

Triggers on system events can be defined at the database level or schema level. The
DBMS_AQ package is one example of using database triggers to perform certain
actions. For example, a database shutdown trigger is defined at the database level:

CREATE TRIGGER register_shutdown
 ON DATABASE
 SHUTDOWN
 BEGIN
 ...
 DBMS_AQ.ENQUEUE(...);
 ...
 END;

Triggers on DDL statements or logon/logoff events can also be defined at the database
level or schema level. Triggers on DML statements can be defined on a table or view. A
trigger defined at the database level fires for all users, and a trigger defined at the
schema or table level fires only when the triggering event involves that schema or
table.

This section includes the following topics:

■ Event Publication

■ Event Attributes

■ System Events

■ User Events

Event Publication
Event publication uses the publish-subscribe mechanism of Oracle Streams Advanced
Queuing. A queue serves as a message repository for subjects of interest to various
subscribers. Triggers use the DBMS_AQ package to enqueue a message when specific
system or user events occur.

Event Attributes
Each event allows the use of attributes within the trigger text. For example, the
database startup and shutdown triggers have attributes for the instance number and
the database name, and the logon and logoff triggers have attributes for the user name.
You can specify a function with the same name as an attribute when you create a

See Also:

■ Oracle Streams Advanced Queuing User's Guide for information
about the Oracle Streams Advanced Queuing implementation
of Publish/Subscribe

■ Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_AQ package

Types of Triggers

Triggers 22-11

trigger if you want to publish that attribute when the event occurs. The attribute's
value is then passed to the function or payload when the trigger fires. For triggers on
DML statements, the :OLD column values pass the attribute's value to the :NEW
column value.

System Events
System events that can fire triggers are related to instance startup and shutdown and
error messages. Triggers created on startup and shutdown events have to be associated
with the database. Triggers created on error events can be associated with the database
or with a schema.

■ STARTUP triggers fire when the database is opened by an instance. Their attributes
include the system event, instance number, and database name.

■ SHUTDOWN triggers fire just before the server starts shutting down an instance. You
can use these triggers to make subscribing applications shut down completely
when the database shuts down. For abnormal instance shutdown, these triggers
cannot be fired. The attributes of SHUTDOWN triggers include the system event,
instance number, and database name.

■ SERVERERROR triggers fire when a specified error occurs, or when any error
occurs if no error number is specified. Their attributes include the system event
and error number.

■ DB_ROLE_CHANGE triggers fire when a role transition (failover or switchover)
occurs in a Data Guard configuration. The trigger notifies users when a role
transition occurs, so that client connections can be processed on the new primary
database and applications can continue to run.

User Events
User events that can fire triggers are related to user logon and logoff, DDL statements,
and DML statements.

Triggers on LOGON and LOGOFF Events LOGON and LOGOFF triggers can be associated
with the database or with a schema. Their attributes include the system event and user
name, and they can specify simple conditions on USERID and USERNAME.

■ LOGON triggers fire after a successful logon of a user.

■ LOGOFF triggers fire at the start of a user logoff.

Triggers on DDL Statements DDL triggers can be associated with the database or with a
schema. Their attributes include the system event, the type of schema object, and its
name. They can specify simple conditions on the type and name of the schema object,
as well as functions like USERID and USERNAME.

Triggers on DML Statements DML triggers for event publication are associated with a
table. They can be either BEFORE or AFTER triggers that fire for each row on which the
specified DML operation occurs. You cannot use INSTEAD OF triggers on views to
publish events related to DML statements—instead, you can publish events using
BEFORE or AFTER triggers for the DML operations on a view's underlying tables that
are caused by INSTEAD OF triggers.

Trigger Execution

22-12 Oracle Database Concepts

Trigger Execution
A trigger is either enabled or disabled.

For enabled triggers, Oracle Database automatically performs the following actions:

■ Oracle Database runs triggers of each type in a planned firing sequence when
more than one trigger is fired by a single SQL statement. First, statement level
triggers are fired, and then row level triggers are fired.

■ Oracle Database performs integrity constraint checking at a set point in time with
respect to the different types of triggers and guarantees that triggers cannot
compromise integrity constraints.

■ Oracle Database provides read-consistent views for queries and constraints.

■ Oracle Database manages the dependencies among triggers and schema objects
referenced in the code of the trigger action

■ Oracle Database uses two-phase commit if a trigger updates remote tables in a
distributed database.

■ Oracle Database fires multiple triggers in an unspecified, random order, if more
than one trigger of the same type exists for a given statement; that is, triggers of
the same type for the same statement are not guaranteed to fire in any specific
order.

This section includes the following topics:

■ The Execution Model for Triggers and Integrity Constraint Checking

■ Data Access for Triggers

■ Storage of PL/SQL Triggers

■ Execution of Triggers

■ Dependency Maintenance for Triggers

See Also:

■ "Row Triggers" on page 22-6

■ "BEFORE and AFTER Triggers" on page 22-6

■ Oracle Database PL/SQL Language Reference for more information
about event publication using triggers on system events and user
events

Table 22–1 Trigger Modes

Trigger Mode Definition

Enabled An enabled trigger runs its trigger action if a triggering
statement is issued and the trigger restriction (if any) evaluates
to true.

Disabled A disabled trigger does not run its trigger action, even if a
triggering statement is issued and the trigger restriction (if any)
would evaluate to true.

Trigger Execution

Triggers 22-13

The Execution Model for Triggers and Integrity Constraint Checking
When a statement in a trigger body causes another trigger to fire, the triggers are said
to be cascading. Oracle Database allows up to 32 triggers to cascade at simultaneously.

A relational database does not guarantee the order of rows processed by a SQL
statement. Therefore, do not create triggers that depend on the order in which rows are
processed.

Data Access for Triggers
When a trigger is fired, the tables referenced in the trigger action might be currently
undergoing changes by SQL statements in other users' transactions. In all cases, the
SQL statements running within triggers follow the common rules used for standalone
SQL statements. In particular, if an uncommitted transaction has modified values that
a trigger being fired either must read (query) or write (update), then the SQL
statements in the body of the trigger being fired use the following guidelines:

■ Queries see the current read-consistent materialized view of referenced tables and
any data changed within the same transaction.

■ Updates wait for existing data locks to be released before proceeding.

Storage of PL/SQL Triggers
Oracle Database stores PL/SQL triggers in compiled form, just like stored procedures.
When a CREATE TRIGGER statement commits, the compiled PL/SQL code is stored in
the database and the source code of the trigger is flushed from the shared pool.

Execution of Triggers
Oracle Database runs a trigger internally using the same steps used for subprogram
execution. The only subtle difference is that a user has the right to fire a trigger if he or
she has the privilege to run the triggering statement. Other than this difference,
triggers are validated and run the same way as stored subprograms.

Dependency Maintenance for Triggers
Like procedures, triggers depend on referenced objects. Oracle Database automatically
manages the dependencies of a trigger on the schema objects referenced in its trigger
action. The dependency issues for triggers are the same as those for stored procedures.
Triggers are treated like stored procedures. They are inserted into the data dictionary.

See Also: Oracle Database PL/SQL Language Reference for more
information about creating triggers and the order in which they fire

See Also: Oracle Database PL/SQL Language Reference for more
information about compiling and storing triggers

See Also: Oracle Database PL/SQL Language Reference for more
information about stored subprograms

See Also: Chapter 6, "Schema Object Dependencies"

Trigger Execution

22-14 Oracle Database Concepts

Information Integration 23-1

23
Information Integration

This chapter includes the following topics:

■ Introduction to Oracle Information Integration

■ Federated Access

■ Information Sharing

■ Data Comparison and Convergence at Oracle Databases

■ Integrating Non-Oracle Systems

Introduction to Oracle Information Integration
As a company evolves, it becomes increasingly important for it to be able to share
information among multiple databases and applications. Companies need to share
OLTP updates, database events, and application messages, as customers place orders
online, through the sales force, or even with a partner. This information must be
routed to a variety of destinations, including heterogeneous replicated databases,
message queuing systems, data warehouse staging areas, operational data stores, other
applications, and a standby database.

There are three basic approaches to sharing information. You can consolidate the
information into a single database, which eliminates the need for further integration.
You can leave information distributed, and provide tools to federate that information,
making it appear to be in a single virtual database. Or, you can share information,
which lets you maintain the information in multiple data stores and applications. This
chapter focuses on federating and sharing information.

Oracle provides distributed SQL for federating distributed information. Distributed
SQL synchronously accesses and updates data distributed among multiple databases,
while maintaining location transparency and data integrity.

Oracle Streams is the asynchronous information sharing infrastructure in Oracle
Database. Oracle Streams can mine the Oracle Database redo logs to capture data
manipulation language (DML) and data definition language (DDL) changes to data,
and it makes that changed data available to other applications and databases. Thus,
Oracle Streams can provide an extremely flexible asynchronous replication solution, as
well as an event notification framework. Because Streams supports applications that

See Also: Oracle Database 2 Day + Data Replication and Integration
Guide

See Also: Chapter 16, "Business Intelligence" for more information
on features to consolidate information

Federated Access

23-2 Oracle Database Concepts

explicitly enqueue and dequeue messages, it also provides a complete asynchronous
messaging solution. That solution, Oracle Streams Advanced Queuing, can be used to
exchange information with customers, partners, and suppliers, and to coordinate
business processes.

Both Streams and distributed SQL can access and update data in non-Oracle systems
using Oracle Database Gateways, Generic Connectivity, and the Messaging Gateway.
Oracle Database can work with non-Oracle data sources, non-Oracle message queuing
systems, and non-SQL applications, ensuring interoperability with other vendor's
products and technologies. Each of the solutions are described in detail in the
following sections.

A distributed environment is a network of disparate systems that seamlessly
communicate with each other. Each system in the distributed environment is called a
node. The system to which a user is directly connected is called the local system. Any
additional systems accessed by this user are called remote systems. A distributed
environment allows applications to access and exchange data from the local and
remote systems. All the data can be simultaneously accessed and modified.

While a distributed environment enables increased access to a large amount of data
across a network, it must also hide the location of the data and the complexity of
accessing it across the network.

In order for a company to operate successfully in a distributed environment, it might
need to do the following:

■ Exchange data between Oracle Databases

■ Communicate between applications

■ Exchange information with customers, partners, and suppliers

■ Replicate data between databases

■ Communicate with non-Oracle databases

Federated Access
A homogeneous distributed database system is a network of two or more Oracle
Databases that reside on one or more computers.

This section includes the following topics:

■ Distributed SQL

■ Location Transparency

■ SQL and COMMIT Transparency

■ Distributed Query Optimization

Distributed SQL
Distributed SQL enables applications and users to simultaneously access or modify the
data in several databases as easily as they access or modify a single database.

An Oracle distributed database system can be transparent to users, making it appear
as though it is a single Oracle Database. Companies can use this distributed SQL
feature to make all its Oracle Databases look like one and thus reduce some of the
complexity of the distributed system.

Federated Access

Information Integration 23-3

Oracle Database uses database links to enable users on one database to access objects
in a remote database. A local user can access a link to a remote database without being
a user on the remote database.

Location Transparency
An Oracle distributed database system lets application developers and administrators
hide the physical location of database objects from applications and users. Location
transparency exists when a user can universally refer to a database object, such as a
table, regardless of the node to which an application connects. Location transparency
has several benefits, including the following:

■ Access to remote data is simple, because database users do not need to know the
physical location of database objects.

■ Administrators can move database objects with no impact on users or existing
database applications. Typically, administrators and developers use synonyms to
establish location transparency for the tables and supporting objects in an
application schema.

In addition to synonyms, developers can use views and stored procedures to establish
location transparency for applications that work in a distributed database system.

SQL and COMMIT Transparency
The Oracle distributed database architecture also provides query, update, and
transaction transparency. For example, standard SQL statements such as SELECT,
INSERT, UPDATE, and DELETE work just as they do in a non-distributed database
environment. Additionally, applications control transactions using the standard SQL
statements COMMIT, SAVEPOINT, and ROLLBACK.

Unlike a transaction on a local database, a distributed transaction involves altering
data on multiple databases. Consequently, distributed transaction processing is more
complicated, because Oracle Database must coordinate the committing or undo of the
changes in a transaction as a self-contained unit. In other words, the entire transaction
commits, or the entire transaction rolls back.

Oracle Database ensures the integrity of data in a distributed transaction using the
two-phase commit mechanism. In the prepare phase, the initiating node in the
transaction tasks the other participating nodes to promise to commit or undo the
transaction. During the commit phase, the initiating node asks all participating nodes
to commit the transaction. If this outcome is not possible, then all nodes undo. The
two-phase commit mechanism is completely transparent, requiring no complex
programming or other special operations to provide distributed transaction control.

See Also: Oracle Database Administrator's Guide for more information
on database links

See Also:

■ Chapter 5, "Schema Objects" for more information on synonyms
and views

■ Chapter 24, "SQL" for more information on stored procedures

See Also: "The Two-Phase Commit Mechanism" on page 4-8

Information Sharing

23-4 Oracle Database Concepts

Distributed Query Optimization
Distributed query optimization reduces the amount of data transfer required between
sites when a transaction retrieves data from remote tables referenced in a distributed
SQL statement. Distributed query optimization uses the Oracle Database optimizer to
find or generate SQL expressions that extract only the necessary data from remote
tables, process that data at a remote site (or sometimes at the local site), and send the
results to the local site for final processing.

This operation reduces the amount of required data transfer when compared to the
time it takes to transfer all the table data to the local site for processing. Using various
optimizer hints, such as DRIVING_SITE, NO_MERGE, and INDEX, you can control
where Oracle Database processes the data and how it accesses the data.

Information Sharing
At the heart of any integration is the sharing of data among various applications in the
enterprise. Replication is the maintenance of database objects in two or more
databases. It provides a solution to the scalability, availability, and performance issues
facing many companies. For example, replication can improve the performance of a
company's Web site. By locally replicating remote tables that are frequently queried by
local users, such as the inventory table, the amount of data sent across the network is
greatly reduced. By having local users access the local copies instead of one central
copy, the distributed database does not need to send information across a network
repeatedly, thus helping to maximize the performance of the database application.
Oracle Streams provides powerful replication features that can be used to keep
multiple copies of distributed objects synchronized.

Many companies have developed a variety of autonomous and distributed
applications to automate business processes and manage business tasks. However,
these applications need to communicate with each other, coordinating business
processes and tasks in a consistent manner. They also need to exchange information
efficiently with customers, partners, and suppliers over low-cost channels such as the
Internet, while preserving a traceable history of events—a requirement previously
satisfied through now obsolete paper forms.

For loose application coupling, Oracle offers Oracle Streams Advanced Queuing,
which is built on top of the flexible Oracle Streams infrastructure. Oracle Streams
Advanced Queuing provides a unified framework for processing events.

Events generated in applications, in workflow, or implicitly captured from redo logs or
in database triggers can be captured and staged in a queue. These events can be
consumed in a variety of ways. They can be applied automatically with a user-defined
function or database table operation, or they can be dequeued explicitly. Also,
notifications can be sent to the consuming application. These events can be
transformed at any stage. If the consuming application is on a different database, then
the events can be propagated to the appropriate database automatically. Operations on
these events can be automatically audited, and the history can be retained for the
user-specified duration.

This section includes the following topics:

■ Oracle Streams

■ Materialized Views

See Also: Oracle Database Performance Tuning Guide for more
information on the optimizer and hints

Information Sharing

Information Integration 23-5

Oracle Streams
Oracle Streams enables the propagation and management of data, transactions, and
events in a data stream either within a database, or from one database to another. The
stream routes published information to subscribed destinations. As users' needs
change, they can implement a new capability of Oracle Streams, without sacrificing
existing capabilities.

Oracle Streams provides components that allow users to control what information is
put into a stream, how the stream flows or is routed from node to node, what happens
to messages in the stream as they flow into each node, and how the stream terminates.
By specifying the configuration of the elements acting on the stream, a user can
address specific requirements, such as message queuing or data replication.

Oracle Streams satisfies the information sharing requirements for a variety of usage
scenarios. Oracle Streams Advanced Queuing provides the database-integrated
message queuing and event management capabilities. In addition, Oracle includes
tools to help users build event notification, replication, and data warehouse loading
solutions using Oracle Streams.

Using the full power of Oracle Streams, you can create configurations that span
multiple use cases, enabling new classes of applications. Most deployments and their
associated metadata are compatible. For example, a system configured to load a data
warehouse easily can be extended to enable bi-directional replication. A complete
reconfiguration is not required.

This section includes the following topics:

■ Oracle Streams Architecture

■ Replication with Oracle Streams

■ Oracle Streams Advanced Queuing

■ Database Change Notification

■ Change Data Capture

■ Heterogeneous Environments

■ Oracle Streams Use Cases

Oracle Streams Architecture
The architecture of Oracle Streams is very flexible. As shown in Figure 23–1, Streams
contains three basic elements.

■ Capture

■ Staging

■ Consumption

Figure 23–1 Streams Information Flow

Capture Oracle Streams can capture database changes implicitly and explicitly and
place these changes in a staging area. Database changes, such as DML and DDL

See Also: Oracle Streams Concepts and Administration

ConsumptionStagingCapture

Information Sharing

23-6 Oracle Database Concepts

changes, can be implicitly captured. Rules determine which changes are captured.
Information representing a captured change is formatted as a logical change record
(LCR) and placed in the staging area.

Oracle Streams provides two components for implicit capture: capture processes and
synchronous captures. Capture processes mine the redo logs to find database changes.
Capture processes support mining the online redo log, as well as mining archived log
files. In the case of online redo log mining, redo information is mined for change data
at the same time it is written, reducing the latency of capture. Synchronous captures
use an internal mechanism to capture DML changes as they are made to specified
database objects.

Typically, capture processes are used to capture changes to a large number of database
objects and to capture both DML and DDL changes. Synchronous captures are used to
capture DML changes to a small number of database objects.

Oracle Streams also supports explicit capture. User applications can explicitly enqueue
messages representing events into the staging area. These messages can be formatted
as LCRs, which will allow them to be consumed by the apply process, or they can be
formatted for consumption by another user application using an explicit dequeue.

Staging Once captured, messages are placed in a staging area. The staging area is a
queue that stores and manages captured messages. LCRs and other types of messages
are stored in a staging area until subscribers consume them. LCR staging provides a
holding area with security, as well as auditing and tracking of LCR data.

Subscribers examine the contents of the staging area and determine whether they have
an interest in the message representing a particular event. A subscriber can either be a
user application, a propagation to another staging area, usually on another system, or
an apply process. The subscriber optionally can evaluate a set of rules to determine
whether the message meets the criteria set forth in the subscription. If so, then the
message will be consumed by the subscriber.

If the subscriber is a user application, then the application dequeues the message from
the staging area in order to consume the message. If the subscriber is a propagation to
another staging area, then the message will be propagated to that staging area. If the
subscriber is an apply process, then it will be dequeued and consumed by the apply
process.

Messages in the staging area optionally may be propagated to other staging areas in
the same database, or to staging areas in remote databases. To simplify network
routing and reduce network traffic, messages need not be sent to all databases and
applications. Rather, they can be directed through staging areas on one or more
systems until they reach the subscribing system. Not all systems need subscribe to the
messages, providing flexibility regarding what messages are applied at a particular
system. A single staging area can stage messages from multiple databases, simplifying
setup and configuration.

As messages enter the staging area, are propagated, or exit the staging area, they can
be transformed. A transformation is a change in the form of an object participating in
capture and apply or a change in the data it holds. Transformations can include
changing the datatype representation of a particular column in a table at a particular
database, adding a column to a table at one database only, or including a subset of the
data in a table at a particular database.

Consumption Messages in a staging area can be consumed implicitly or explicitly. An
apply process implicitly applies database changes encapsulated in messages to a
database. An Oracle Streams apply process is flexible. It enables standard or custom
apply of messages. A custom apply can manipulate the data or perform other actions

Information Sharing

Information Integration 23-7

during apply. Support for explicit dequeue allows application developers to use Oracle
Streams to reliably exchange messages. They can also notify applications of changes to
data, by leveraging the change capture and propagation features of Oracle Streams.

Replication with Oracle Streams
Oracle Streams is an information sharing technology that automatically determines
what information is relevant and shares that information with those who need it. This
active sharing of information includes capturing and managing messages in the
database, including messages that encapsulate DML and DDL changes, and
propagating those messages to other databases and applications. Data changes can be
applied directly to the replica database or can call a user-defined subprogram to
perform alternative work at the destination database. For example, such a subprogram
can populate a staging table used to load a data warehouse.

This section includes the following topics:

■ Capturing DML and DDL Changes

■ Propagating Changes Over a Directed Network

■ Resolving Conflicts and Applying Changes

Capturing DML and DDL Changes Configuring Streams for replication begins with
specifying an object or set of objects to be replicated. Using the one or both of the
implicit capture mechanisms of Oracle Streams, changes made to these objects can be
captured efficiently and replicated to one or more remote systems with little impact to
the originating system. When a capture process is used, the capture process can extract
both data changes (DML) and structure changes (DDL) from the redo log. When a
synchronous capture is used, the synchronous capture uses an internal mechanism to
capture DML changes when they occur. The captured changes are published to a
staging area.

Log-based capture with a capture process leverages the fact that changes made to
tables are logged in the redo log to guarantee recoverability in the event of a
malfunction or media failure. Capturing changes directly from the redo log minimizes
the overhead on the system. Oracle Database can read, analyze, and interpret redo
information, which contains information about the history of activity on a database.
Oracle Streams can mine the information and deliver change data to the capture
process.

Capturing changes with a synchronous capture is best suited for environments that
replicate DML changes to a relatively small number of database objects. Synchronous
capture uses an internal mechanism to ensure that DML changes are captured when
they happen.

Replicated databases utilizing Oracle Streams technology need not be identical.
Participating databases can maintain different data structures, using Streams to
transform the data into the appropriate format. Streams provides the ability to
transform the stream at multiple points: during change capture, while propagating to
another database, or during apply at the destination site. These transformations are
user-defined functions registered within the Oracle Streams framework. For example,
the transformation can be used to change the datatype representation of a particular
column in a table, to change the name of a column in a table, or to change a table
name.

The data at each site can be subsetted based on content as well. For example, the
replica can use a rule which specifies that only the employees for a particular division

See Also: Oracle Streams Replication Administrator's Guide

Information Sharing

23-8 Oracle Database Concepts

based on the department identifier column be contained within the table. Oracle
Streams automatically manages the changes to ensure that the data within the replica
matches the subset rule criteria.

Propagating Changes Over a Directed Network Messages in a staging area can be sent to
staging areas in other databases. The directed network capability of Streams allows
changes to be directed through intermediate databases as a pass-through. Changes at
any database can be published and propagated to or through other databases
anywhere on the network. By using the rules-based publish and subscribe capabilities
of the staging area queues, database administrators can choose which changes are
propagated to each destination database and can specify the route messages traverse
on their way to a destination.

Thus, for example, a company could configure replication to capture all changes to a
particular schema, propagate only changes to European customers to their European
headquarters in London, apply only those changes relevant to the London office, and
forward site-specific information to be applied at each field office.

This directed network approach is also friendly to Wide Area Networks (WAN),
enabling changes to subsequent destinations to traverse the network once to a single
site for later fan-out to other destinations, rather than sending to each destination
directly.

Resolving Conflicts and Applying Changes Messages in a staging area can be consumed by
an apply process, where the changes they represent are applied to database objects, or
they can be consumed by an application. User-defined apply procedures enable total
control over the messages to be applied.

Using custom apply, separate procedures can be defined for handling each type of
DML operation (inserts, updates, or deletes) on a table. For example, using this custom
apply capability, a user could write a procedure to skip the apply of all deletes for the
employees table for employees with a salary greater than $100,000, based on a value
for the employee in the salary table. Inserts and updates to the employees table
would continue to be applied using the default apply engine, as would deletes for
employees with salaries less than $100,000.

Custom apply could also be used to perform custom transformations of data. For
example, changes to one table at the originating site might need to be applied to three
different tables at the remote location.

The remote databases in a replication environment can be fully open for read/write,
and need not be identical copies of the source database. Because the remote database
can be updated by other means, an apply process detects conflicts before changes are
applied. These conflicts also can be automatically resolved using built-in or custom
resolution mechanisms.

Oracle Streams Advanced Queuing
Beyond database integration, Oracle Streams Advanced Queuing provides many
features that make it the most robust and feature rich message queuing system. These
features improve developer productivity and reduce the operational burden on
administrators, which reduces the cost of building and maintaining Oracle-based
distributed applications. These features are described in the following sections.

This section includes the following topics:

■ Asynchronous Application Integration

■ Extensible Integration Architecture

Information Sharing

Information Integration 23-9

■ Heterogeneous Application Integration

■ Legacy Application Integration

■ Standard-Based API Support

Asynchronous Application Integration Oracle Streams Advanced Queuing provides
asynchronous integration of distributed applications. It offers several ways to enqueue
messages. A capture process or synchronous capture can capture the messages
implicitly, or applications and users can capture messages explicitly.

Messages can be enqueued with delay and expiration. Delay allows an enqueued
message to be visible at a later date. Advanced Queuing also supports several ways to
order messages before consumption. It supports first-in first-out ordering and
priority-based ordering of messages.

Advanced Queuing also offers multiple ways to consume a message. Automatic apply
lets users invoke a user-specified action for the message. Consuming applications can
dequeue a message explicitly. Both blocking and nonblocking dequeue is supported.
The consuming applications can choose to receive notifications either procedurally
using PL/SQL, OCI, or Java callback functions. Alternatively, they can get notifications
in an e-mail or by HTTP post. Consuming applications can also choose to perform
automatic apply.

Extensible Integration Architecture Oracle Streams Advanced Queuing offers an
extensible framework for developing and integrating distributed applications. Many
applications are integrated with a distributed hub and spoke model with Oracle
Database as the hub.

The distributed applications on an Oracle database communicate with queues in the
same Oracle database server hub. The Oracle Database extensible framework lets
multiple applications share the same queue, eliminating the need to add additional
queues to support additional applications.

Also, Advanced Queuing supports multiconsumer queues, where a single message
can be consumed by multiple applications. As additional applications are added, these
applications can coordinate business transactions using the same queues and even the
same messages in the Oracle database server hub. It offers the benefits of extensibility
without losing guaranteed once and only once delivery of a message.

Advanced Queuing supports a content-based publish and subscribe model, where
applications publish messages and consumers subscribe to the messages without
knowledge of the publishing application. With such a model, it is possible to add
consuming applications to a hub with no change required to existing applications.

If the distributed applications are running on different Oracle Databases, business
communications can be automatically propagated to the appropriate Oracle Database.
The propagation is managed automatically by the Oracle Streams Advanced Queuing
system and is transparent to the application.

Heterogeneous Application Integration Traditionally, different applications had to use a
common data model for communication. This data model was further restricted by the
limited datatype support of the message-oriented middleware. Oracle Streams
Advanced Queuing supports ANYDATA queues that can store messages of multiple
datatypes.

Advanced Queuing provides applications with the full power of the Oracle type
system. It includes support for scalar datatypes such as NUMBER, DATE, VARCHAR, and

See Also: Oracle Streams Advanced Queuing User's Guide

Information Sharing

23-10 Oracle Database Concepts

so on, Oracle Database object types with inheritance, XMLType with additional
operators for XML data, and ANYDATA support. In particular, with XMLType type
support, application developers can make use of the full power of XML for
extensibility and flexibility in business communications.

Oracle Streams Advanced Queuing also offers transformation capabilities.
Applications with different data models can transform the messages while dequeuing
or enqueuing the messages to or from their own data model. These transformation
mappings are defined as SQL expressions, which can involve PL/SQL functions, Java
functions, or external C callouts.

Legacy Application Integration The Oracle Messaging Gateway integrates Oracle
Database applications with other message queuing systems, such as Websphere MQ
(formerly called MQ Series) and Tibco. Because many legacy applications on
mainframes communicate with Websphere MQ, there is a need for integrating these
applications into an Oracle Database environment. The message gateway makes
non-Oracle message queues appear as if they were Oracle Streams queues, and
automatically propagates messages between Oracle Streams queues and Websphere
MQ or Tibco queues.

Distributed applications spanning multiple partners can coordinate using the Internet
access features of Oracle Streams Advanced Queuing. Using these features, a business
partner or application can securely place an order into an Advanced Queuing queue
over the Internet. Only authorized and authenticated business partners can perform
these operations.

Advanced Queuing Internet operations utilize an XML-based protocol over Internet
transports, such as HTTP(S), allowing messages to flow through firewalls without
compromising security. Supporting the Internet for communications drastically
reduces the cost of communications, and thus the cost of the entire solution.

Standard-Based API Support Oracle Streams Advanced Queuing supports
industry-standard APIs: SQL, JMS, and SOAP. Database changes made using SQL are
captured automatically as messages.

Similarly, the distributed messages and database changes can be applied to database
tables, which can be seen using SQL. The messages can be enqueued and dequeued
using industry-standard JMS. Advanced Queuing also has a SOAP-based XML API
and supports OCI and OCCI to enqueue and dequeue messages.

Database Change Notification
Client applications can receive notifications when the result set of a registered query
changes. For example, if the client registers a query of the hr.employees table, and if
a user adds an employee, then the application can receive a database change
notification when a new row is added to the table. A new query of hr.employees
returns the changed result set. Database Change Notification is relevant in many
development contexts, but is particularly useful to mid-tier applications that rely on
cached data.

Change Data Capture
Change Data Capture, a feature built on the Oracle Streams infrastructure, efficiently
identifies and captures data that has been added to, updated, or removed from Oracle
Database relational tables, and it makes the change data available for use by ETL tools

See Also: Oracle Database Advanced Application Developer's Guide for
more information on using Database Change Notification

Information Sharing

Information Integration 23-11

and applications. Using the Change Data Capture capabilities of Oracle Streams, it
quickly identifies and processes only the data that has changed, not entire tables.

Heterogeneous Environments
Oracle Streams is an open information sharing solution, supporting heterogeneous
replication between Oracle and non-Oracle systems. Using an Oracle Database
Gateway, DML changes initiated at Oracle Databases can be applied to non-Oracle
databases.

To implement capture and apply of DML changes from an Oracle Database source to a
non-Oracle destination, an Oracle Database system functions as a proxy and runs the
apply process that would normally be running at an Oracle Database destination site.
The Oracle Database system then communicates with the non-Oracle system with an
Oracle Database Gateway.

The changes are dequeued in Oracle Database itself and the local apply process
applies the changes to a non-Oracle system across a network connection through an
Oracle Database Gateway.

Users who want to propagate changes from a non-Oracle database to Oracle Database
write an application to capture the changes made to the non-Oracle database. The
application can capture the changes by reading from transaction logs or by using
triggers. The application is then responsible for assembling and ordering these
changes into transactions, converting them into the logical change record (LCR)
format, and publishing them into the target Oracle Database staging area. These
changes can be applied with a Streams apply process.

Oracle Streams Use Cases
Use Oracle Streams to create configurations that enable new classes of applications. In
addition, all deployments and their associated metadata are compatible. For example,
a replication installation easily can be extended to load a data warehouse or enable
bi-directional replication—a complete reconfiguration is not required.

Suppose that a company uses Oracle Streams to maintain multiple copies of a
corporate Web site for improved availability, scalability, and performance. Additional
requirements could include a reporting database containing the most current
information for analysts in a company headquarters office in New York to perform
ad-hoc querying, as well as a disaster recovery database separately maintained from
their New York office. Additionally, updatable materialized views can be used to
support the field sales staff. A final requirement is to share data with existing
applications that are hosted on a Sybase database.

Figure 23–2 illustrates this Streams configuration.

See Also: Oracle Database Data Warehousing Guide

See Also:

■ "Oracle Database Gateways" on page 23-14

■ Oracle Streams Replication Administrator's Guide

Information Sharing

23-12 Oracle Database Concepts

Figure 23–2 Streams Configuration

Oracle Streams is used to replicate data in an N-way configuration consisting of three
regional sites: New York, London, and Tokyo. At each of these sites, Streams implicit
capture collects any changes that occur for subscribed tables in each local region, and
stages them locally in the queue. All changes captured in each region are then
forwarded to each of the other region's databases. The goal is that all changes made at
each database be reflected at every other database, providing complete data for the
subscribed objects throughout the world.

Because the updates are applied automatically when received at each regional
database, an Oracle Streams apply process is used to apply the changes. As changes
are applied, Oracle Streams checks for and resolves any conflicts that are detected.
Streams can also be used to exchange data for particular tables with non-Oracle
databases. Utilizing the Oracle Database Gateway for Sybase, a Streams apply process
applies the changes to a Sybase database using the same mechanisms as it does for
Oracle Databases.

The databases for reporting and disaster recovery are hosted from the New York
database site. The reporting database is a fully functional Oracle Database that has a
read-only copy of the relevant application tables. The reporting site is not configured
to capture changes on these application tables. Streams imposes no restrictions on the
configuration or usage of this reporting database.

The London site also serves as the master site for several updatable materialized view
sites. Each salesperson receives an updatable copy of just the portion of the data that
he requires. These sites typically only connect once a day to upload their orders and
download any changes since their last refresh.

Materialized Views
Oracle Streams is fully inter-operational with materialized views, or snapshots, which
can be used to maintain updatable or read-only, point-in-time copies of data. They can
be defined to contain a full copy of a table or a subset of the rows in the master table
that satisfy a value-based selection criterion. There can be multitier materialized views
as well, where one materialized view is based on another materialized view.

Tokyo

London

NY

DR Report

Gateway

Sybase

Clients

Integrating Non-Oracle Systems

Information Integration 23-13

Materialized views are periodically updated, or refreshed, from their associated
master tables through transactionally consistent batch updates.

Read-only materialized views can be used to periodically propagate the updated
product catalog to the various sales offices, because the product catalog is only
updated at the headquarters location.

Because materialized views do not require a dedicated connection, they are ideal for
disconnected computing. For example, a company might choose to use updatable
materialized views for the members of their sales force. A salesperson could enter
orders into his or her laptop throughout the day, then simply connect to the regional
sales office at the end of the day to upload these changes and download any updates.

Data Comparison and Convergence at Oracle Databases
Database objects can be shared at two or more Oracle Databases. One way to share
database objects is to configure a replication environment that uses the features of
Oracle Streams or materialized views. Typically, replication environments share
database objects that contain data, such as tables, as well as other types of databases
objects, such as indexes. When a change is made to a shared database object at one
database, the change is transferred to and made at each of the other databases that
share the database object. In this way, the replication environment keeps the shared
database object synchronized at each database.

Sometimes, the data in these shared database objects can diverge at the databases that
share the database object. Various factors can cause divergence, including network
problems, computer system problems, and replication configuration errors.

The DBMS_COMPARISON package enables you to compare database objects at different
databases and identify differences in them. This package also enables you converge the
database objects so that they are consistent at different databases.

The DBMS_COMPARISON package can compare and converge the following types of
database objects:

■ Tables

■ Single-table views

■ Materialized views

■ Synonyms for tables, single-table views, and materialized views

The results of comparisons are stored in several data dictionary views, including DBA_
COMPARISON, DBA_COMPARISION_SCAN, DBA_COMPARISON_COLUMNS, and DBA_
COMPARISON_ROW_DIF.

Integrating Non-Oracle Systems
Oracle provides two solutions for integrating Oracle Database with non-Oracle
databases--Generic Connectivity and Oracle Database Gateways. These solutions

See Also: Oracle Database Advanced Replication for information about
using materialized views for replication

See Also:

■ Oracle Database 2 Day + Data Replication and Integration Guide

■ Oracle Database PL/SQL Packages and Types Reference

■ Oracle Database Reference

Integrating Non-Oracle Systems

23-14 Oracle Database Concepts

enable Oracle Database clients to access non-Oracle data stores. They translate third
party SQL dialects, data dictionaries, and datatypes into Oracle formats, thus making
the non-Oracle data store appear to be a remote Oracle Database. These technologies
enable companies to integrate seamlessly the different systems and provide a
consolidated view of the company as a whole.

Generic Connectivity and Oracle Database Gateways can be used for synchronous
access, using distributed SQL. In addition, Oracle Database Gateways can be used for
asynchronous access, using Oracle Streams. Introducing an Oracle Database Gateway
into an Oracle Streams environment enables replication of data from Oracle Database
to a non-Oracle database.

Both Generic Connectivity and Oracle Database Gateways transparently access data in
non-Oracle systems from an Oracle Database environment. As with an Oracle
distributed database environment, location transparency can be extended to objects
residing in non-Oracle systems as well. Therefore, users can create synonyms for the
objects in the non-Oracle database and refer to them without having to specify its
physical location. This transparency eliminates the need for application developers to
customize their applications to access data from different non-Oracle systems, thus
decreasing development efforts and increasing the mobility of the application. Instead
of requiring applications to interoperate with non-Oracle systems using their native
interfaces (which can result in intensive application-side processing), applications can
be built upon a consistent Oracle Database interface for both Oracle Database and
non-Oracle database systems.

This section includes the following topics:

■ Generic Connectivity

■ Oracle Database Gateways

Generic Connectivity
Generic Connectivity is a generic solution that uses an ODBC or OLEDB driver to
access any ODBC or OLEDB compliant non-Oracle system. It provides data access to
many data stores for which Oracle does not have a gateway solution. This enables
transparent connectivity using industry standards, such as ODBC and OLEDB.
Generic connectivity makes it possible to access low-end data stores, such as Foxpro,
Access, dBase, and non-relational targets like Excel.

Oracle Database Gateways
In contrast to Generic Connectivity, which is a generic solution, Oracle Database
Gateways are tailored solutions, specifically coded for the non-Oracle system. They
provide an optimized solution, with more functionality and better performance than
Generic Connectivity.

Generic Connectivity relies on industry standards, whereas Oracle Database Gateways
access the non-Oracle systems using their native interface. Oracle Database Gateways
are also end-to-end certified. Oracle Database has Oracle Database Gateways to many
sources, including Sybase, DB2, Informix, and Microsoft SQL Server.

See Also: Oracle Database Heterogeneous Connectivity Administrator's
Guide

Part IV
Oracle Database Application Development

Part IV describes the languages and datatypes included with Oracle that can be used
in application development. It contains the following chapters:

■ Chapter 24, "SQL"

■ Chapter 25, "Supported Application Development Languages"

■ Chapter 26, "Oracle Data Types"

SQL 24-1

24
SQL

This chapter provides an overview of SQL.

This chapter includes the following topics:

■ Introduction to SQL

■ SQL Statements

■ Cursors

■ Shared SQL Areas

■ Parsing

■ Query Processing

■ SQL Processing

■ Overview of the Optimizer

Introduction to SQL
SQL is nonprocedural language that provides database access. It is nonprocedural in
that users describe in SQL what they want done, and the SQL language compiler
automatically generates a procedure to navigate the database and perform the desired
task.

Oracle SQL includes many extensions to the ANSI/ISO standard SQL language, and
Oracle tools and applications provide additional statements. The Oracle tools
SQL*Plus and Oracle Enterprise Manager let you run any ANSI/ISO standard SQL
statement against an Oracle database, as well as additional statements or functions
that are available for those tools.

Although some Oracle tools and applications simplify or mask SQL use, all database
operations are performed using SQL. Any other data access method circumvents the
security built into Oracle Database and potentially compromises data security and
integrity.

See Also: Oracle Database SQL Language Reference

See Also:

■ Oracle Database SQL Language Reference for detailed information
about SQL statements and other parts of SQL (such as operators,
functions, and format models)

■ SQL*Plus User's Guide and Reference for SQL*Plus statements,
including their distinction from SQL statements

SQL Statements

24-2 Oracle Database Concepts

SQL Statements
All operations performed on the information in Oracle Database are run using SQL
statements. A statement consists of identifiers, parameters, variables, names,
datatypes, and SQL reserved words. SQL reserved words have special meaning in
SQL and cannot be used for any other purpose. For example, SELECT and UPDATE are
reserved words and cannot be used as table names.

A SQL statement is a computer program or instruction. The statement must be the
equivalent of a complete SQL sentence, such as:

SELECT last_name, department_id FROM employees;

Only complete SQL statements can be run. A fragment such as the following generates
an error indicating that more text is required before a SQL statement can run:

SELECT last_name

Oracle Database SQL statements are divided into the following categories:

■ Data Manipulation Language Statements

■ Data Definition Language Statements

■ Transaction Control Statements

■ Session Control Statements

■ System Control Statements

■ Embedded SQL Statements

Data Manipulation Language Statements
Data manipulation language (DML) statements query or manipulate data in existing
schema objects. They enable you to:

■ Retrieve or fetch data from one or more tables or views (SELECT); fetches can be
scrollable (see "Scrollable Cursors" on page 24-5).

■ Add new rows of data into a table or view (INSERT).

■ Change column values in existing rows of a table or view (UPDATE).

■ Update or insert rows conditionally into a table or view (MERGE).

■ Remove rows from tables or views (DELETE).

■ View the execution plan for a SQL statement (EXPLAIN PLAN).

■ Lock a table or view, temporarily limiting other users' access (LOCK TABLE).

DML statements are the most frequently used SQL statements. Some examples of
DML statements are:

SELECT last_name, manager_id, commission_pct + salary FROM employees;

INSERT INTO employees VALUES
 (1234, 'DAVIS', 'SALESMAN', 7698, '14-FEB-1988', 1600, 500, 30);

DELETE FROM employees WHERE last_name IN ('WARD','JONES');

See Also: Chapter 22, "Triggers" for more information about using
SQL statements in PL/SQL program units

SQL Statements

SQL 24-3

DML Error Logging
When a DML statement encounters an error, the statement can continue processing
while the error code and the associated error message text is logged to an error logging
table. This is particularly helpful to long-running, bulk DML statements. After the
DML operation completes, you can check the error logging table to correct rows with
errors.

New syntax is added to the DML statements to provide the name of the error logging
table, a statement tag, and a reject limit. The reject limit determines whether the
statement should be aborted. For parallel DML operations, the reject limit is applied
for each slave. The only values for the reject limit that are precisely enforced on
parallel operations are zero and unlimited.

With data conversion errors, Oracle Database tries to provide a meaningful value to
log for the column. For example, it could log the value of the first operand to the
conversion operator that failed. If a value cannot be derived, then NULL is logged for
the column.

Data Definition Language Statements
Data definition language (DDL) statements define, alter the structure of, and drop
schema objects. DDL statements enable you to:

■ Create, alter, and drop schema objects and other database structures, including the
database itself and database users (CREATE, ALTER, DROP).

■ Change the names of schema objects (RENAME).

■ Delete all the data in schema objects without removing the objects' structure
(TRUNCATE).

■ Grant and revoke privileges and roles (GRANT, REVOKE).

■ Turn auditing options on and off (AUDIT, NOAUDIT).

■ Add a comment to the data dictionary (COMMENT).

DDL statements implicitly commit the preceding commands and start new
transactions. Some examples of DDL statements are:

CREATE TABLE plants
 (COMMON_NAME VARCHAR2 (15), LATIN_NAME VARCHAR2 (40));

DROP TABLE plants;

GRANT SELECT ON employees TO scott;

REVOKE DELETE ON employees FROM scott;

See Also:

■ "Description of SQL Statement Processing" on page 24-8

■ Oracle Database Administrator's Guide for more information on
DML error logging

■ Oracle Database Data Warehousing Guide for examples using DML
error logging

■ Oracle Database SQL Language Reference for the syntax for DML
error logging

SQL Statements

24-4 Oracle Database Concepts

Transaction Control Statements
Transaction control statements manage the changes made by DML statements and
group DML statements into transactions. They enable you to:

■ Make changes to a transaction permanent (COMMIT).

■ Undo the changes in a transaction, since the transaction started or since a
savepoint (ROLLBACK).

■ Set a point to which you can roll back (SAVEPOINT).

■ Establish properties for a transaction (SET TRANSACTION).

Session Control Statements
Session control statements manage the properties of a particular user's session. For
example, they enable you to:

■ Alter the current session by performing a specialized function, such as enabling
and disabling the SQL trace facility (ALTER SESSION).

■ Enable and disable roles (groups of privileges) for the current session (SET ROLE).

System Control Statements
System control statements change the properties of the Oracle database instance. The
only system control statement is ALTER SYSTEM. It enables you to change settings
(such as the minimum number of shared servers), terminate a session, and perform
other tasks.

Embedded SQL Statements
Embedded SQL statements incorporate DDL, DML, and transaction control statements
within a procedural language program. They are used with the Oracle precompilers.
Embedded SQL statements enable you to:

■ Define, allocate, and release cursors (DECLARE CURSOR, OPEN, CLOSE).

■ Specify a database and connect to Oracle Database (DECLARE DATABASE,
CONNECT).

■ Assign variable names (DECLARE STATEMENT).

■ Initialize descriptors (DESCRIBE).

■ Specify how error and warning conditions are handled (WHENEVER).

■ Parse and run SQL statements (PREPARE, EXECUTE, EXECUTE IMMEDIATE).

■ Retrieve data from the database (FETCH).

See Also:

■ "DDL Statement Processing" on page 24-11

■ Chapter 20, "Database Security"

See Also: "Transaction Control Processing" on page 24-11

Shared SQL Areas

SQL 24-5

Cursors
A cursor is a handle or name for a private SQL area—an area in memory that holds a
parsed statement and other information for processing.

Although most Oracle Database users rely on the automatic cursor handling of the
Oracle Database utilities, the programmatic interfaces offer application designers more
control over cursors. In application development, a cursor is a named resource
available to a program and can be used specifically to parse SQL statements embedded
within the application.

Each user session can open multiple cursors up to the limit set by the initialization
parameter OPEN_CURSORS. However, applications should close unneeded cursors to
conserve system memory. If a cursor cannot be opened due to a limit on the number of
cursors, then the database administrator can alter the OPEN_CURSORS initialization
parameter.

Some statements (primarily DDL statements) require Oracle Database to implicitly
issue recursive SQL statements, which also require recursive cursors. For example, a
CREATE TABLE statement causes many updates to various data dictionary tables to
record the new table and columns. Recursive calls are made for those recursive
cursors; one cursor can run several recursive calls. These recursive cursors also use
shared SQL areas.

Scrollable Cursors
Execution of a cursor puts the results of the query into a set of rows called the result
set, which can be fetched sequentially or nonsequentially. Scrollable cursors are
cursors in which fetches and DML operations do not need to be forward sequential
only. Interfaces exist to fetch previously fetched rows, to fetch the nth row in the result
set, and to fetch the nth row from the current position in the result set.

Shared SQL Areas
Oracle Database automatically notices when applications send similar SQL statements
to the database. The SQL area used to process the first occurrence of the statement is
shared—that is, used for processing subsequent occurrences of that same statement.
Therefore, only one shared SQL area exists for a unique statement. Because shared
SQL areas are shared memory areas, any Oracle Database process can use a shared
SQL area. The sharing of SQL areas reduces memory use on the database server,
thereby increasing system throughput.

In evaluating whether statements are similar or identical, Oracle Database considers
SQL statements issued directly by users and applications as well as recursive SQL
statements issued internally by a DDL statement.

See Also: Oracle Call Interface Programmer's Guide for more
information about using scrollable cursors in OCI

See Also: Oracle Database Advanced Application Developer's Guide
and Oracle Database Performance Tuning Guide for more information
about shared SQL

Parsing

24-6 Oracle Database Concepts

Parsing
Parsing is one stage in the processing of a SQL statement. When an application issues a
SQL statement, the application makes a parse call to Oracle Database. During the
parse call, Oracle Database:

■ Checks the statement for syntactic and semantic validity.

■ Determines whether the process issuing the statement has privileges to run it.

■ Allocates a private SQL area for the statement.

Oracle Database also determines whether or not there is an existing shared SQL area
containing the parsed representation of the statement in the library cache. If so, the
user process uses this parsed representation and runs the statement immediately. If
not, Oracle Database generates the parsed representation of the statement, and the
user process allocates a shared SQL area for the statement in the library cache and
stores its parsed representation there.

Note the difference between an application making a parse call for a SQL statement
and Oracle Database actually parsing the statement.

■ A parse call by the application associates a SQL statement with a private SQL
area. After a statement has been associated with a private SQL area, it can be run
repeatedly without your application making a parse call.

■ A parse operation by Oracle Database allocates a shared SQL area for a SQL
statement. Once a shared SQL area has been allocated for a statement, it can be run
repeatedly without being reparsed.

Both parse calls and parsing can be expensive relative to execution, so perform them
as seldom as possible.

Although parsing a SQL statement validates that statement, parsing only identifies
errors that can be found before statement execution. Thus, some errors cannot be caught
by parsing. For example, errors in data conversion or errors in data (such as an
attempt to enter duplicate values in a primary key) and deadlocks are all errors or
situations that can be encountered and reported only during the execution stage.

Query Processing
Queries are different from other types of SQL statements because, if successful, they
return data as results. Whereas other statements simply return success or failure, a
query can return one row or thousands of rows. The results of a query are always in
tabular format, and the rows of the result are fetched (retrieved), either a row at a time
or in groups.

Several issues relate only to query processing. Queries include not only explicit
SELECT statements but also the implicit queries (subqueries) in other SQL statements.
For example, each of the following statements requires a query as a part of its
execution:

INSERT INTO table SELECT...

UPDATE table SET x = y WHERE...

DELETE FROM table WHERE...

CREATE table AS SELECT...

See Also: "Overview of PL/SQL" on page 1-36

SQL Processing

SQL 24-7

In particular, queries:

■ Require read consistency

■ Can use temporary segments for intermediate processing

■ Can require the describe, define, and fetch stages of SQL statement processing.

SQL Processing
This section introduces the basics of SQL processing. It starts with a flowchart of
typical SQL statement execution which generally covers most types of SQL statements.
followed by a general description of the stages of SQL statement processing, and then
a section indicating how the flowchart and description may differ for different types of
SQL statements.

Topics include:

■ flowchart of SQL Statement Execution

■ Description of SQL Statement Processing

■ Processing Other Types of SQL Statements

flowchart of SQL Statement Execution
Figure 24–1 outlines the stages commonly used to process and run a SQL statement. In
some cases, Oracle Database can run these stages in a slightly different order. For
example, the DEFINE stage could occur just before the FETCH stage, depending on
how you wrote your code.

For many Oracle tools, several of the stages are performed automatically. Most users
need not be concerned with or aware of this level of detail. However, this information
could be useful when writing Oracle applications.

SQL Processing

24-8 Oracle Database Concepts

Figure 24–1 The Stages in Processing a SQL Statement

Description of SQL Statement Processing
This section provides an example of what happens during the execution of a SQL
statement in each stage of processing. While this example specifically processes a DML
statement, you can generalize it for other types of SQL statements. The subsequent
section provides information on how execution of other types of SQL statements may
differ from this description. See "Processing Other Types of SQL Statements" on
page 24-11.

Assume that you are using a Pro*C program to increase the salary for all employees in
a department. The program you are using has connected to Oracle Database and you
are connected to the proper schema to update the employees table. You can embed
the following SQL statement in your program:

yes

yes

bind?reparse? no

OPEN

PARSE

query?

EXECUTE

PARALLELIZE

query?

execute
others?

CLOSE

yes

no

no

no

no

yes yes

no
no yes

describe?

DEFINE

more?

more?

BIND

more?

FETCH

more?no yes

no yes

yes

yes

no

DESCRIBE

SQL Processing

SQL 24-9

EXEC SQL UPDATE employees SET salary = 1.10 * salary
 WHERE department_id = :department_id;

Department_id is a program variable containing a value for department number.
When the SQL statement is run, the value of department_id is used, as provided by
the application program.

The following lists the stages necessary for each type of statement processing, noting
that Stage 7 is optional and Stages 4, 5, and 9 apply only to queries as indicated in
Figure 24–1:

■ Stage 1: Open or Create a Cursor

■ Stage 2: Parse the Statement

■ Stage 3: Determine if there is a Query

■ Stage 4: Describe Results of a Query (Queries Only)

■ Stage 5: Define Output of a Query (Queries Only)

■ Stage 6: Bind Any Variables

■ Stage 7: Parallelize the Statement (Optional)

■ Stage 8: Run the Statement

■ Stage 9: Fetch Rows of a Query (Queries Only)

■ Stage 10: Close the Cursor

Stage 1: Open or Create a Cursor
A program interface call opens or creates a cursor. The cursor is created independent
of any SQL statement: it is created in expectation of a SQL statement. In most
applications, cursor creation is automatic. However, in precompiler programs, cursor
creation can either occur implicitly or be explicitly declared.

Stage 2: Parse the Statement
During parsing, the SQL statement is passed from the user process to Oracle Database,
and a parsed representation of the SQL statement is loaded into a shared SQL area.
Many errors can be caught during this stage of statement processing.

Stage 3: Determine if there is a Query
This stage determines if the SQL statement starts with a query.

Stage 4: Describe Results of a Query (Queries Only)
The describe stage is necessary only if the characteristics of a query's result are not
known; for example, when a query is entered interactively by a user. In this case, the
describe stage determines the characteristics (datatypes, lengths, and names) of a
query's result.

See Also:

■ "Parsing" on page 24-6

■ "Shared SQL Areas" on page 24-5

See Also: "Parsing" on page 24-6

SQL Processing

24-10 Oracle Database Concepts

Stage 5: Define Output of a Query (Queries Only)
In the define stage for queries, you specify the location, size, and datatype of variables
defined to receive each fetched value. These variables are called define variables.
Oracle Database performs datatype conversion if necessary. (See DEFINE on
Figure 24–1, "The Stages in Processing a SQL Statement".)

Stage 6: Bind Any Variables
At this point, Oracle Database knows the meaning of the SQL statement but still does
not have enough information to run the statement. Oracle Database needs values for
any variables listed in the statement; in the example, Oracle Database needs a value for
department_id. The process of obtaining these values is called binding variables.

A program must specify the location (memory address) where the value can be found.
End users of applications may be unaware that they are specifying bind variables,
because the Oracle Database utility can simply prompt them for a new value.

Because you specify the location (binding by reference), you need not rebind the
variable before reexecution. You can change its value and Oracle Database looks up
the value on each execution, using the memory address.

You must also specify a datatype and length for each value (unless they are implied or
defaulted) if Oracle Database must perform datatype conversion.

Stage 7: Parallelize the Statement (Optional)
Oracle Database can parallelize queries (such as SELECT, INSERT, UPDATE, MERGE,
DELETE), and some DDL operations such as index creation, creating a table with a
subquery, and operations on partitions. Parallelization causes multiple server
processes to perform the work of the SQL statement so it can complete faster.

Stage 8: Run the Statement
At this point, Oracle Database has all necessary information and resources, so the
statement is run. If the statement is a query or an INSERT statement, no rows need to
be locked because no data is being changed. If the statement is an UPDATE or DELETE
statement, however, all rows that the statement affects are locked until the next
COMMIT, ROLLBACK, or SAVEPOINT for the transaction. This ensures data integrity.

For some statements you can specify a number of executions to be performed. This is
called array processing. Given n number of executions, the bind and define locations
are assumed to be the beginning of an array of size n.

Stage 9: Fetch Rows of a Query (Queries Only)
In the fetch stage, rows are selected and ordered (if requested by the query), and each
successive fetch retrieves another row of the result until the last row has been fetched.

See Also:

■ Oracle Call Interface Programmer's Guide

■ Pro*C/C++ Programmer's Guide (see Dynamic SQL Method 4)

for more information about specifying a datatype and length for a
value

See Also: Chapter 16, "Business Intelligence"

Overview of the Optimizer

SQL 24-11

Stage 10: Close the Cursor
The final stage of processing a SQL statement is closing the cursor.

Processing Other Types of SQL Statements
The following sections discuss how DDL, Transaction Control, and other SQL
statements can differ from the process just described in "Description of SQL Statement
Processing" on page 24-8.

This section includes the following topics:

■ DDL Statement Processing

■ Transaction Control Processing

■ Other Processing Types

DDL Statement Processing
The execution of DDL statements differs from the execution of DML statements and
queries, because the success of a DDL statement requires write access to the data
dictionary. For these statements, parsing (Stage 2) actually includes parsing, data
dictionary lookup, and execution.

Transaction Control Processing
In general, only application designers using the programming interfaces to Oracle
Database are concerned with the types of actions that are grouped together as one
transaction. Transactions must be defined so that work is accomplished in logical units
and data is kept consistent. A transaction consists of all of the necessary parts for one
logical unit of work, no more and no less.

■ Data in all referenced tables should be in a consistent state before the transaction
begins and after it ends.

■ Transactions should consist of only the SQL statements that make one consistent
change to the data.

For example, a transfer of funds between two accounts (the transaction or logical unit
of work) should include the debit to one account (one SQL statement) and the credit to
another account (one SQL statement). Both actions should either fail or succeed
together as a unit of work; the credit should not be committed without the debit. Other
unrelated actions, such as a new deposit to one account, should not be included in the
transfer of funds transaction.

Other Processing Types
Transaction management, session management, and system management SQL
statements are processed using the parse and run stages. To rerun them, simply
perform another execute.

Overview of the Optimizer
All SQL statements use the optimizer, a part of Oracle Database that determines the
most efficient means of accessing the specified data. Oracle also provides techniques
that you can use to make the optimizer perform its job better.

There are often many different ways to process a SQL DML (SELECT, INSERT,
UPDATE, MERGE, or DELETE) statement; for example, by varying the order in which
tables or indexes are accessed. The procedure Oracle Database uses to run a statement

Overview of the Optimizer

24-12 Oracle Database Concepts

can greatly affect how quickly the statement runs. The optimizer considers many
factors among alternative access paths.

You can influence the optimizer's choices by setting the optimizer approach and goal.
Objects with stale or no statistics are automatically analyzed. You can also gather
statistics for the optimizer using the PL/SQL package DBMS_STATS.

Oracle Database 11g introduces new extended statistics including the following:

■ multi-column statistics

■ statistics for a functions on a column

■ statistics on views

Also, you can now gather statistics without having them published. You can test the
newly gathered statistics (pending statistics) before they are published.

Sometimes the application designer, who has more information about a particular
application's data than is available to the optimizer, can choose a more effective way to
run a SQL statement. The application designer can use hints in SQL statements to
specify how the statement should be run.

This section includes the following topics:

■ SQL Plan Management (SPM)

■ Execution Plans

SQL Plan Management (SPM)
With Oracle Database 11g, the optimizer automatically manages plans and ensures that
only verified plans are used. SQL Plan Management (SPM) allows controlled plan
evolution by only using a new plan after it has been verified to be perform better than
the current plan.

Execution Plans
To run a DML statement, Oracle Database might need to perform many steps. Each of
these steps either retrieves rows of data physically from the database or prepares them
in some way for the user issuing the statement. The combination of the steps Oracle
Database uses to run a statement is called an execution plan. An execution plan
includes an access method for each table that the statement accesses and an ordering
of the tables (the join order). The steps of the execution plan are not performed in the
order in which they are numbered.

This section includes the following topics:

Note: The optimizer might not make the same decisions from one
version of Oracle Database to the next. In recent versions, the
optimizer might make decisions based on better information available
to it.

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for
information about using DBMS_STATS

■ Oracle Database Performance Tuning Guide for more information
about the optimizer

Overview of the Optimizer

SQL 24-13

■ Stored Outlines

■ Editing Stored Outlines

Stored Outlines
Stored outlines are abstractions of an execution plan generated by the optimizer at the
time the execution plan is created and are represented primarily as a set of hints. When
the outline is subsequently used, these hints are applied at various stages of
compilation. Outline data is stored in the OUTLN schema. You can tune execution plans
by editing stored outlines.

Editing Stored Outlines
The outline is cloned into the user's schema at the onset of the outline editing session.
All subsequent editing operations are performed on that clone until the user is
satisfied with the edits and chooses to publicize them. In this way, any editing done by
the user does not impact the rest of the user community, which would continue to use
the public version of the outline until the edits are explicitly saved.

Note: Stored outlines are deprecated in Oracle Database 11g. Oracle
highly recommends the use of SQL plan baselines instead of the
stored outlines.

See Oracle Database Performance Tuning Guide for details about
execution plans and SQL plan baselines

Overview of the Optimizer

24-14 Oracle Database Concepts

Supported Application Development Languages 25-1

25
Supported Application Development

Languages

This chapter presents brief overviews of Oracle application development systems.

This chapter includes the following topics:

■ Introduction to Oracle Application Development Languages

■ Overview of C/C++ Programming Languages

■ Overview of PL/SQL

■ Overview of Java

■ Overview of Microsoft Programming Languages

■ Overview of Legacy Languages

Introduction to Oracle Application Development Languages
Oracle Database developers have a choice of languages for developing
applications—C, C++, Java, COBOL, PL/SQL, Visual Basic, and C#. All
language-specific standards are supported. Developers can choose the languages in
which they are most proficient or one that is most suitable for a specific task. For
example an application might use Java on the server side to create dynamic Web
pages, PL/SQL to implement stored procedures in the database, and C++ to
implement computationally intensive logic in the middle tier.

Oracle also provides the Pro* series of precompilers, which allow you to embed SQL
and PL/SQL in your C, C++, COBOL, or FORTRAN application programs.

Overview of C/C++ Programming Languages
This section includes the following topics:

■ Overview of Oracle Call Interface (OCI)

See Also: Chapter 24, "SQL"

See Also:

■ Oracle Database Advanced Application Developer's Guide for
information on how to choose a programming environment

■ Oracle Database Globalization Support Guide

■ Chapter 26, "Oracle Data Types"

Overview of C/C++ Programming Languages

25-2 Oracle Database Concepts

■ Overview of Oracle C++ Call Interface (OCCI)

■ Overview of the Oracle Type Translator

■ Overview of Pro*C/C++ Precompiler

Overview of Oracle Call Interface (OCI)
Oracle Call Interface (OCI) is an application programming interface (API) that lets you
create applications that use the native function calls of the C language to access an
Oracle database and control all phases of SQL statement execution. OCI supports the
data types, calling conventions, syntax, and semantics of C. OCI can directly access
data in Oracle Database tables or can enqueue and dequeue data into or out of Oracle
Streams.

OCI provides the following:

■ Instant client, a way to deploy applications in a much reduced disk space.

■ Thread management, connection pooling, globalization functions, and direct path
loading of data (SQL*Loader Utility) from a C application.

■ N-tiered authentication.

■ Comprehensive support for application development using Oracle Database
objects.

■ Access to external databases.

■ Applications that can service an increasing number of users and requests without
additional hardware investments.

OCI lets you manipulate data and schemas in an Oracle database using the C host
programming language. It provides a library of standard database access and retrieval
functions in the form of a dynamic run-time library (OCI library) that can be linked in
an application at run time.

Query results can be cached in memory in the OCI client result cache. The OCI client
can then use cached results for future executions of these queries. Because retrieving
results from the result cache is faster than making a database call and rerunning the
query, frequently run queries experience a significant performance improvement when
their results are cached. The result cache on the OCI client is per process and shared
between the different sessions.

OCI supports object-relational features of Oracle Database. One important component
is a set of calls that allows application programs to use a workspace called the object
cache. The object cache is a memory block on the client side that allows programs to
store entire objects and to navigate among them without round-trips to the server.

The object cache is completely under the control and management of the application
programs using it. Oracle Database has no access to it. The application programs using
it must maintain data coherency with the server and protect the workspace against
simultaneous conflicting access.

Query results can be cached in memory in the OCI client result cache. The OCI client
can then use cached results for future executions of these queries. Because retrieving
results from the result cache is faster than making a database call and rerunning the
query, frequently run queries experience a significant performance improvement when

See Also: Oracle Call Interface Programmer's Guide for more
information about the OCI client result cache

Overview of C/C++ Programming Languages

Supported Application Development Languages 25-3

their results are cached. The result cache on the OCI client is per process and shared
between the different sessions.

OCI provides functions to:

■ Access objects on the server using SQL

■ Access, manipulate and manage objects in the object cache by traversing pointers
or REFs

■ Convert Oracle Database dates, strings, and numbers to C data types

■ Manage the size of the object cache's memory

■ Create transient type descriptions. Transient type descriptions are not stored
persistently in the database.

OCI improves concurrency by allowing individual objects to be locked. It improves
performance by supporting complex object retrieval.

OCI developers can use the object type translator to generate the C structure data
types corresponding to Oracle Database object types.

Overview of Oracle C++ Call Interface (OCCI)
The Oracle C++ Call Interface (OCCI) is a C++ API that lets you use the
object-oriented features, native classes, and methods of the C++ programing language
to access Oracle Database. OCCI is built on top of OCI and combines its power and
performance with the significantly more accessible interface of an object-oriented
paradigm.

This section includes the following topics:

■ OCCI Associative Relational and Object Interfaces

■ OCCI Navigational Interface

OCCI Associative Relational and Object Interfaces
The associative relational API and object classes provide SQL access to the database.
Through these interfaces, SQL is run on the server to create, manipulate, and fetch
object or relational data. Applications can access any dataype on the server, including:
large objects, objects and structured types, arrays, and references.

OCCI Navigational Interface
The navigational interface is a C++ interface that lets you seamlessly access and
modify object-relational data in the form of C++ objects without using SQL. The C++
objects are transparently accessed and stored in the database as needed.

With the OCCI navigational interface, you can retrieve an object and navigate through
references from that object to other objects. Server objects are materialized as C++ class
instances in the application cache. An application can use OCCI object navigational
calls to perform the following functions on the server's objects:

■ Create, access, lock, delete, and flush objects

■ Get references to the objects and navigate through them

See Also: Oracle Call Interface Programmer's Guide for more
information about the OCI client result cache

See Also: Oracle Call Interface Programmer's Guide

Overview of C/C++ Programming Languages

25-4 Oracle Database Concepts

Overview of the Oracle Type Translator
The Oracle type translator (OTT) is a program that automatically generates C language
structure declarations corresponding to object types. It generates C++ class definitions
for Oracle Database object types that can be used by OCCI applications for a native
C++ object interface. OTT uses the Pro*C/C++ precompiler and the OCI server access
package.

Overview of Pro*C/C++ Precompiler
An Oracle precompiler is a programming tool that lets you embed SQL statements in a
high-level source program. The precompiler accepts the host program as input,
translates the embedded SQL statements into standard Oracle Database run-time
library calls, and generates a source program that you can compile, link, and run in the
usual way. Oracle precompilers are available (but not on all systems) for C, C++,
COBOL, and FORTRAN.

The Oracle Pro*C/C++ Precompiler lets you embed SQL statements in a C or C++
source file. Pro*C/C++ reads the source file as input and outputs a C or C++ source
file that replaces the embedded SQL statements with Oracle Database run-time library
calls, and is then compiled by the C or C++ compiler.

Pro*C/C++ lets you create highly customized applications. For example, you can
create user interfaces that incorporate the latest windowing and mouse technology.
You can also create applications that run in the background without the need for user
interaction.

Furthermore, Pro*C/C++ helps you fine-tune your applications. It allows close
monitoring of resource use, SQL statement execution, and various run-time indicators.
With this information, you can change program parameters for maximum
performance.

Although precompiling adds a step to the application development process, it saves
time. The precompiler, not you, translates each embedded SQL statement into calls to
the Oracle Database run-time library (SQLLIB). The Pro*C/C++ precompiler also
analyzes host variables, defines mappings of structures into columns, and, with
SQLCHECK=FULL, performs semantic analysis of the embedded SQL statements.

The Oracle Pro*C/C++ precompiler also allows programmers to use object data types
in C and C++ programs. Pro*C/C++ developers can use the Object Type Translator to
map Oracle Database object types and collections into C data types to be used in the
Pro*C/C++ application.

Pro*C/C++ developers can also call OCI functions from their programs.

Pro*C/C++ provides compile time type checking of object types and collections and
automatic type conversion from database types to C data types. Pro*C/C++ includes
an EXEC SQL syntax to create and destroy objects and offers two ways to access objects
in the server:

See Also: Oracle C++ Call Interface Programmer's Guide

See Also:

■ Oracle Call Interface Programmer's Guide

■ Oracle C++ Call Interface Programmer's Guide

■ Pro*C/C++ Programmer's Guide

Overview of PL/SQL

Supported Application Development Languages 25-5

■ SQL statements and PL/SQL functions or procedures embedded in Pro*C/C++
programs

■ A simple interface to the object cache, where objects can be accessed by traversing
pointers, then modified and updated on the server

Dynamic Creation and Access of Type Descriptions
Oracle provides a C API to enable dynamic creation and access of type descriptions.
Additionally, you can create transient type descriptions, type descriptions that are not
stored persistently in the database.

The C API enables creation and access of OCIAnyData and OCIAnyDataSet.

■ The OCIAnyData type models a self descriptive (with regard to type) data
instance of a given type.

■ The OCIAnyDataSet type models a set of data instances of a given type.

Oracle also provides SQL data types (in Oracle's Open Type System) that correspond
to these data types.

■ SYS.ANYTYPE corresponds to OCIType

■ SYS.ANYDATA corresponds to OCIAnyData

■ SYS.ANYDATASET corresponds to OCIAnyDataSet

You can create database table columns and SQL queries on such data.

The C API uses the following terms:

■ Transient types - Type descriptions (type metadata) that are not stored persistently
in the database.

■ Persistent types - SQL types created using the CREATE TYPE SQL statement. Their
type descriptions are stored persistently in the database.

■ Self-descriptive data - Data encapsulating type information along with the actual
contents. The ANYDATA type (OCIAnyData) models such data. A data value of any
SQL type can be converted to an ANYDATA, which can be converted back to the old
data value. An incorrect conversion attempt results in an error.

■ Self-descriptive MultiSet - Encapsulation of a set of data instances (all of the same
type), along with their type description.

Overview of PL/SQL
PL/SQL is the Oracle procedural language extension to SQL. It provides a server-side,
stored procedural language that is easy-to-use, seamless with SQL, robust, portable,
and secure. The PL/SQL compiler and interpreter are embedded in Oracle Developer,
providing developers with a consistent and leveraged development model on both the

See Also:

■ "Overview of Microsoft Programming Languages" on page 25-30

■ Pro*C/C++ Programmer's Guide for a complete description of the
Pro*C/C++ precompiler

See Also:

■ Oracle Database Object-Relational Developer's Guide

■ Oracle Call Interface Programmer's Guide

Overview of PL/SQL

25-6 Oracle Database Concepts

client and the server side. In addition, PL/SQL stored procedures can be called from a
number of Oracle Database clients, such as Pro*C or Oracle Call Interface, and from
Oracle Reports and Oracle Forms.

PL/SQL enables you to mix SQL statements with procedural constructs. With
PL/SQL, you can define and run PL/SQL program units such as procedures,
functions, and packages. PL/SQL program units generally are categorized as
anonymous blocks and stored procedures.

An anonymous block is a PL/SQL block that appears in your application and is not
named or stored in the database. In many applications, PL/SQL blocks can appear
wherever SQL statements can appear.

A stored procedure is a PL/SQL block that Oracle Database stores in the database and
can be called by name from an application. When you create a stored procedure,
Oracle Database parses the procedure and stores its parsed representation in the
database. Oracle Database also lets you create and store functions (which are similar to
procedures) and packages (which are groups of procedures and functions).

This section includes the following topics:

■ How PL/SQL Runs

■ Language Constructs for PL/SQL

■ PL/SQL Program Units

■ Stored Procedures and Functions

■ PL/SQL Packages

■ PL/SQL Collections and Records

■ PL/SQL Server Pages

How PL/SQL Runs
PL/SQL can run with either of the following:

■ Interpreted Execution

■ Native Execution

Interpreted Execution
In versions earlier than Oracle9i, PL/SQL source code was always compiled into a
so-called bytecode representation, which is run by a portable virtual computer
implemented as part of Oracle Database, and also in products such as Oracle Forms.
Starting with Oracle9i, you can choose between native execution and interpreted
execution

Native Execution
For best performance on computationally intensive program units, compile the source
code of PL/SQL program units stored in the database directly to object code for the
given platform. (This object code is linked into Oracle Database.)

See Also:

"Overview of Java" on page 25-17

Chapter 22, "Triggers"

Overview of PL/SQL

Supported Application Development Languages 25-7

The PL/SQL engine is the tool you use to define, compile, and run PL/SQL program
units. This engine is a special component of many Oracle products, including Oracle
Database.

While many Oracle products have PL/SQL components, this section specifically
covers the program units that can be stored in Oracle Database and processed using
Oracle Database PL/SQL engine. The PL/SQL capabilities of each Oracle tool are
described in the appropriate tool's documentation.

Figure 25–1 illustrates the PL/SQL engine contained in Oracle Database.

Figure 25–1 The PL/SQL Engine and Oracle Database

The program unit is stored in a database. When an application calls a procedure stored
in the database, Oracle Database loads the compiled program unit into the shared pool
in the system global area (SGA). The PL/SQL and SQL statement executors work
together to process the statements within the procedure.

The following Oracle products contain a PL/SQL engine:

■ Oracle Database

■ Oracle Forms (version 3 and later)

■ SQL*Menu (version 5 and later)

■ Oracle Reports (version 2 and later)

■ Oracle Graphics (version 2 and later)

You can call a stored procedure from another PL/SQL block, which can be either an
anonymous block or another stored procedure. For example, you can call a stored
procedure from Oracle Forms (version 3 or later).

See Also: Oracle Database PL/SQL Language Reference

SQL Statement
Executor

Database
Application

Oracle Server

SGA PL/SQL Engine

SQL

Procedural
Statement
Executor

Program code

Program code

Prodedure call

Program code

Program code

Database

Procedure

Begin
 Procedural
 Procedural
 SQL
 Prodedural
SQL
END;

Overview of PL/SQL

25-8 Oracle Database Concepts

Also, you can pass anonymous blocks to Oracle Database from applications developed
with these tools:

■ Oracle precompilers (including user exits)

■ Oracle Call Interfaces (OCIs)

■ SQL*Plus

■ Oracle Enterprise Manager

Language Constructs for PL/SQL
PL/SQL blocks can include the following PL/SQL language constructs:

■ Variables and constants

■ Cursors

■ Exceptions

This section includes the following topics:

■ Variables and Constants

■ Cursors

■ Exceptions

■ Dynamic SQL in PL/SQL

Variables and Constants
Variables and constants can be declared within a procedure, function, or package. A
variable or constant can be used in a SQL or PL/SQL statement to capture or provide a
value when one is needed.

Some interactive tools, such as SQL*Plus, let you define variables in your current
session. You can use such variables just as you would variables declared within
procedures or packages.

Cursors
Cursors can be declared explicitly within a procedure, function, or package to facilitate
record-oriented processing of Oracle Database data. Cursors also can be declared
implicitly (to support other data manipulation actions) by the PL/SQL engine.

Exceptions
PL/SQL lets you explicitly handle internal and user-defined error conditions, called
exceptions, that arise during processing of PL/SQL code. Internal exceptions are
caused by illegal operations, such as division by zero, or Oracle Database errors
returned to the PL/SQL code. User-defined exceptions are explicitly defined and
signaled within the PL/SQL block to control processing of errors specific to the
application (for example, debiting an account and leaving a negative balance).

When an exception is raised, the execution of the PL/SQL code stops, and a routine
called an exception handler is invoked. Specific exception handlers can be written for
any internal or user-defined exception.

See Also: Oracle Database PL/SQL Language Reference

See Also: "Scrollable Cursors" on page 24-5

Overview of PL/SQL

Supported Application Development Languages 25-9

Dynamic SQL in PL/SQL
PL/SQL can run dynamic SQL statements whose complete text is not known until run
time. Dynamic SQL statements are stored in character strings that are entered into, or
built by, the program at run time. This enables you to create general purpose
procedures. For example, dynamic SQL lets you create a procedure that operates on a
table whose name is not known until run time.

You can write stored procedures and anonymous PL/SQL blocks that include dynamic
SQL in two ways:

■ By embedding dynamic SQL statements in the PL/SQL block

■ By using the DBMS_SQL package

Additionally, you can issue DML or DDL statements using dynamic SQL. This helps
solve the problem of not being able to statically embed DDL statements in PL/SQL.
For example, you can choose to issue a DROP TABLE statement from within a stored
procedure by using the EXECUTE IMMEDIATE statement or the PARSE procedure
supplied with the DBMS_SQL package.

PL/SQL Program Units
Oracle Database lets you access and manipulate database information using
procedural schema objects called PL/SQL program units. Procedures, functions, and
packages are all examples of PL/SQL program units.

Stored Procedures and Functions
A procedure or function is a schema object that consists of a set of SQL statements and
other PL/SQL constructs, grouped together, stored in the database, and run as a unit
to solve a specific problem or perform a set of related tasks. Procedures and functions
permit the caller to provide parameters that can be input only, output only, or input
and output values. Procedures and functions let you combine the ease and flexibility
of SQL with the procedural functionality of a structured programming language.

Procedures and functions are identical except that functions always return a single
value to the caller, while procedures do not. For simplicity, procedure as used in the
remainder of this chapter means procedure or function.

You can run a procedure or function interactively by:

■ Using an Oracle tool, such as SQL*Plus

■ Calling it explicitly in the code of a database application, such as an Oracle Forms
or precompiler application

■ Calling it explicitly in the code of another procedure or trigger

See Also:

■ Oracle Database Advanced Application Developer's Guide for a
comparison of the two approaches to dynamic SQL

■ Oracle Database PL/SQL Language Reference for details about
dynamic SQL

■ Oracle Database PL/SQL Packages and Types Reference

Overview of PL/SQL

25-10 Oracle Database Concepts

Figure 25–2 illustrates a simple procedure that is stored in the database and called by
several different database applications.

Figure 25–2 Stored Procedure

The following stored procedure example inserts an employee record into the
employees table:

Procedure hire_employees (last_name VARCHAR2, job_id VARCHAR2, manager_id NUMBER,
hire_date DATE, salary NUMBER, commission_pct NUMBER, department_id NUMBER)

BEGIN
.
.
INSERT INTO employees VALUES (emp_sequence.NEXTVAL, last_name, job_id, manager_id,
hire_date, salary, commission_pct, department_id);
.
.
END

See Also:

■ Pro*C/C++ Programmer's Guide for information about how to call
stored C or C++ procedures

■ Pro*COBOL Programmer's Guide for information about how to call
stored COBOL procedures

■ Other programmer's guides for information about how to call
stored procedures of specific kinds of application

Database
Applications

Program code
.
.
Program code
.
hire_employees(...);
.
Program code

Program
.
.
Program code
.
hire_employees(...);
.
Program code

code

Program code
.
.
Program code
.
hire_employees(...);
.
Program code

hire_employees(...)

BEGIN
.
.
END;

Database

Stored
Procedure

Overview of PL/SQL

Supported Application Development Languages 25-11

All of the database applications in this example call the hire_employees procedure.
Alternatively, a privileged user can use Oracle Enterprise Manager or SQL*Plus to run
the hire_employees procedure using a statement such as the following:

EXECUTE hire_employees ('TSMITH', 'CLERK', 1037, SYSDATE, 500, NULL, 20);

This statement places a new employee record for TSMITH in the employees table.

This section includes the following topics:

■ Benefits of Procedures

■ Procedure Guidelines

■ Anonymous PL/SQL Blocks Compared with Stored Procedures

■ Standalone Procedures

■ Dependency Tracking for Stored Procedures

■ External Procedures

■ Table Functions

Benefits of Procedures
Stored procedures provide advantages in the following areas:

■ Security with definer's rights procedures

Stored procedures can help enforce data security. You can restrict the database
operations that users can perform by allowing them to access data only through
procedures and functions that run with the definer's privileges.

For example, you can grant users access to a procedure that updates a table but
not grant them access to the table itself. When a user invokes the procedure, the
procedure runs with the privileges of the procedure's owner. Users who have only
the privilege to run the procedure (but not the privileges to query, update, or
delete from the underlying tables) can invoke the procedure, but they cannot
manipulate table data in any other way.

■ Inherited privileges and schema context with invoker's rights procedures

An invoker's rights procedure inherits privileges and schema context from the
procedure that calls it. In other words, an invoker's rights procedure is not tied to a
particular user or schema, and each invocation of an invoker's rights procedure
operates in the current user's schema with the current user's privileges. Invoker's
rights procedures make it easy for application developers to centralize application
logic, even when the underlying data is divided among user schemas.

For example, a user who runs an update procedure on the employees table as a
manager can update salary, whereas a user who runs the same procedure as a
clerk can be restricted to updating address data.

■ Improved performance

– The amount of information that must be sent over a network is small
compared with issuing individual SQL statements or sending the text of an

See Also: Oracle Database PL/SQL Language Reference

See Also: "Dependency Tracking for Stored Procedures" on
page 25-13

Overview of PL/SQL

25-12 Oracle Database Concepts

entire PL/SQL block to Oracle Database, because the information is sent only
once and thereafter invoked when it is used.

– A procedure's compiled form is readily available in the database, so no
compilation is required at execution time.

– If the procedure is already present in the shared pool of the system global area
(SGA), then retrieval from disk is not required, and execution can begin
immediately.

■ Memory allocation

Because stored procedures take advantage of the shared memory capabilities of
Oracle Database, only a single copy of the procedure must be loaded into memory
for execution by multiple users. Sharing the same code among many users results
in a substantial reduction in Oracle Database memory requirements for
applications.

■ Improved productivity

Stored procedures increase development productivity. By designing applications
around a common set of procedures, you can avoid redundant coding and increase
your productivity.

For example, procedures can be written to insert, update, or delete employee
records from the employees table. These procedures can then be called by any
application without rewriting the SQL statements necessary to accomplish these
tasks. If the methods of data management change, only the procedures need to be
modified, not all of the applications that use the procedures.

■ Integrity

Stored procedures improve the integrity and consistency of your applications. By
developing all of your applications around a common group of procedures, you
can reduce the likelihood of committing coding errors.

For example, you can test a procedure or function to guarantee that it returns an
accurate result and, once it is verified, reuse it in any number of applications
without testing it again. If the data structures referenced by the procedure are
altered in any way, then only the procedure must be recompiled. Applications that
call the procedure do not necessarily require any modifications.

Procedure Guidelines
Use the following guidelines when designing stored procedures:

■ Define procedures to complete a single, focused task. Do not define long
procedures with several distinct subtasks, because subtasks common to many
procedures can be duplicated unnecessarily in the code of several procedures.

■ Do not define procedures that duplicate the functionality already provided by
other features of Oracle Database. For example, do not define procedures to
enforce simple data integrity rules that you could easily enforce using declarative
integrity constraints.

Anonymous PL/SQL Blocks Compared with Stored Procedures
A stored procedure is created and stored in the database as a schema object. Once
created and compiled, it is a named object that can be run without recompiling.
Additionally, dependency information is stored in the data dictionary to guarantee the
validity of each stored procedure.

Overview of PL/SQL

Supported Application Development Languages 25-13

As an alternative to a stored procedure, you can create an anonymous PL/SQL block
by sending an unnamed PL/SQL block to Oracle Database from an Oracle tool or an
application. Oracle Database compiles the PL/SQL block and places the compiled
version in the shared pool of the SGA, but it does not store the source code or
compiled version in the database for reuse beyond the current instance. Shared SQL
allows anonymous PL/SQL blocks in the shared pool to be reused and shared until
they are flushed out of the shared pool.

In either case, by moving PL/SQL blocks out of a database application and into
database procedures stored either in the database or in memory, you avoid
unnecessary procedure recompilations by Oracle Database at run time, improving the
overall performance of the application and Oracle Database.

Standalone Procedures
Stored procedures not defined within the context of a package are called standalone
procedures. Procedures defined within a package are considered a part of the package.

Dependency Tracking for Stored Procedures
A stored procedure depends on the objects referenced in its body. Oracle Database
automatically tracks and manages such dependencies. For example, if you alter the
definition of a table referenced by a procedure, then the procedure must be recompiled
to validate that it will still work as designed. Usually, Oracle Database automatically
administers such dependency management.

External Procedures
A PL/SQL procedure executing on Oracle Database can call an external procedure or
function that is written in the C programming language and stored in a shared library.
The C routine runs in a separate address space from that of Oracle Database.

Table Functions
Table functions are functions that can produce a set of rows as output. In other words,
table functions return a collection type instance (nested table and VARRAY datatypes).
You can use a table function in place of a regular table in the FROM clause of a SQL
statement.

Oracle Database allows table functions to pipeline results (act like an Oracle Database
rowsource) out of the functions. This can be achieved by either providing an
implementation of the ODCITable interface, or using native PL/SQL instructions.

Pipelining helps to improve the performance of a number of applications, such as
Oracle Warehouse Builder (OWB) and cartridges groups.

The ETL (Extraction-Transformation-Load) process in data warehouse building
extracts data from an OLTP system. The extracted data passes through a sequence of
transformations (written in procedural languages, such as PL/SQL) before it is loaded
into a data warehouse.

See Also: "PL/SQL Packages" on page 25-14 for information
about the advantages of packages

See Also: Chapter 6, "Schema Object Dependencies" for more
information about dependency tracking

See Also: Oracle Database Advanced Application Developer's Guide
for more information about external procedures

Overview of PL/SQL

25-14 Oracle Database Concepts

Oracle Database also allows parallel execution of table and non-table functions.
Parallel execution provides the following extensions:

■ Functions can directly accept a set of rows corresponding to a subquery operand.

■ A set of input rows can be partitioned among multiple instances of a parallel
function. The function developer specifies how the input rows should be
partitioned between parallel instances of the function.

Thus, table functions are similar to views. However, instead of defining the transform
declaratively in SQL, you define it procedurally in PL/SQL. This is especially valuable
for the arbitrarily complex transformations typically required in ETL.

PL/SQL Packages
A package is a group of related procedures and functions, along with the cursors and
variables they use, stored together in the database for continued use as a unit. Similar
to standalone procedures and functions, packaged procedures and functions can be
called explicitly by applications or users.

Oracle Database supplies many PL/SQL packages to extend database functionality
and provide PL/SQL access to SQL features. For example, the ULT_HTTP supplied
package enables HTTP callouts from PL/SQL and SQL to access data on the Internet
or to call Oracle Web Server Cartridges. You can use the supplied packages when
creating your applications or for ideas on creating your own stored procedures.

You create a package in two parts: the specification and the body. The package
specification declares all public constructs of the package, and the body defines all
constructs (public and private) of the package. The package body must be created in
the same schema as the package. This separation of the two parts provides the
following advantages:

■ You have more flexibility in the development cycle. You can create specifications
and reference public procedures without actually creating the package body.

■ You can alter procedure bodies contained within the package body separately
from their publicly declared specifications in the package specification. As long as
the procedure specification does not change, objects that reference the altered
procedures of the package are never marked invalid. That is, they are never
marked as needing recompilation.

Figure 25–3 illustrates a package that encapsulates a number of procedures used to
manage an employee database.

See Also:

■ "Overview of Extraction, Transformation, and Loading (ETL)"
on page 16-5

■ Oracle Database Data Cartridge Developer's Guide

■ Oracle Database PL/SQL Language Reference

Note: The package body and package specification always must be
in the same schema.

Overview of PL/SQL

Supported Application Development Languages 25-15

Figure 25–3 A Stored Package

Database applications explicitly call packaged procedures as necessary. After being
granted the privileges for the employees_management package, a user can explicitly
run any of the procedures contained in it. For example, Oracle Enterprise Manager or
SQL*Plus can issue the following statement to run the hire_employees package
procedure:

EXECUTE employees_management.hire_employees ('TSMITH', 'CLERK', 1037, SYSDATE,
500, NULL, 20);

Benefits of Packages
Packages provide advantages in the following areas:

See Also:

■ Oracle Database PL/SQL Language Reference

■ Oracle Database PL/SQL Packages and Types Reference

Database Applications employees_management

fire_employees(...)

BEGIN
.
.
END;

hire_employees(...)

BEGIN
.
.
END;

salary_raise(...)

BEGIN
.
.
END;

Program code
.
employees_management.fire_employees(...);

Program code
.
Program code
.
employees_management.hire_employees(...);
.
Program code

Program code
.
employees_management.hire_employees(...);

Program code
.
Program code
.
employees_management.salary_raise(...);
.
Program code

Database

Overview of PL/SQL

25-16 Oracle Database Concepts

■ Encapsulation of related procedures and variables

Stored packages allow you to encapsulate or group stored procedures, variables,
datatypes, and so on in a single named, stored unit in the database. This provides
better organization during the development process. Encapsulation of procedural
constructs also makes privilege management easier. Granting the privilege to use a
package makes all constructs of the package accessible to the grantee.

■ Declaration of public and private procedures, variables, constants, and cursors

The methods of package definition allow you to specify which variables, cursors,
and procedures are public and private. Public means that it is directly accessible to
the user of a package. Private means that it is hidden from the user of a package.

For example, a package can contain 10 procedures. You can define the package so
that only three procedures are public and therefore available for execution by a
user of the package. The remainder of the procedures are private and can only be
accessed by the procedures within the package. Do not confuse public and private
package variables with grants to PUBLIC.

■ Better performance

An entire package is loaded into memory when a procedure within the package is
called for the first time. This load is completed in one operation, as opposed to the
separate loads required for standalone procedures. Therefore, when calls to related
packaged procedures occur, no disk I/O is necessary to run the compiled code
already in memory.

A package body can be replaced and recompiled without affecting the
specification. As a result, schema objects that reference a package's constructs
(always through the specification) need not be recompiled unless the package
specification is also replaced. By using packages, unnecessary recompilations can
be minimized, resulting in less impact on overall database performance.

PL/SQL Collections and Records
Many programming techniques use collection types such as arrays, bags, lists, nested
tables, sets, and trees. To support these techniques in database applications, PL/SQL
provides the datatypes TABLE and VARRAY, which allow you to declare index-by
tables, nested tables, and variable-size arrays.

This section includes the following topics:

■ Collections

■ Records

Collections
A collection is an ordered group of elements, all of the same type. Each element has a
unique subscript that determines its position in the collection.

Collections work like the arrays found in most third-generation programming
languages. Also, collections can be passed as parameters. So, you can use them to
move columns of data into and out of database tables or between client-side
applications and stored subprograms.

See Also: Chapter 20, "Database Security" for more information
about grants to PUBLIC

Overview of Java

Supported Application Development Languages 25-17

Records
You can use the %ROWTYPE attribute to declare a record that represents a row in a table
or a row fetched from a cursor. But, with a user-defined record, you can declare fields
of your own.

Records contain uniquely named fields, which can have different datatypes. Suppose
you have various data about an employee such as name, salary, and hire date. These
items are dissimilar in type but logically related. A record containing a field for each
item lets you treat the data as a logical unit.

PL/SQL Server Pages
PL/SQL Server Pages (PSP) are server-side Web pages (in HTML or XML) with
embedded PL/SQL scripts marked with special tags. To produce dynamic Web pages,
developers have usually written CGI programs in C or Perl that fetch data and
produce the entire Web page within the same program. The development and
maintenance of such dynamic pages is costly and time-consuming.

Scripting fulfills the demand for rapid development of dynamic Web pages. Small
scripts can be embedded in HTML pages without changing their basic HTML identity.
The scripts contain the logic to produce the dynamic portions of HTML pages and are
run when the pages are requested by the users.

The separation of HTML content from application logic makes script pages easier to
develop, debug, and maintain. The simpler development model, along the fact that
scripting languages usually demand less programming skill, enables Web page writers
to develop dynamic Web pages.

There are two kinds of embedded scripts in HTML pages: client-side scripts and
server-side scripts. Client-side scripts are returned as part of the HTML page and are
run in the browser. They are mainly used for client-side navigation of HTML pages or
data validation. Server-side scripts, while also embedded in the HTML pages, are run
on the server side. They fetch and manipulate data and produce HTML content that is
returned as part of the page. PSP scripts are server-side scripts.

A PL/SQL gateway receives HTTP requests from an HTTP client, invokes a PL/SQL
stored procedure as specified in the URL, and returns the HTTP output to the client. A
PL/SQL Server Page is processed by a PSP compiler, which compiles the page into a
PL/SQL stored procedure. When the procedure is run by the gateway, it generates the
Web page with dynamic content. PSP is built on one of two existing PL/SQL
gateways:

■ PL/SQL cartridge of Oracle Application Server

■ WebDB

Overview of Java
Java is an object-oriented programming language efficient for application-level
programs. It includes the following features:

■ A Java Virtual Machine (JVM), which provides the fundamental basis for platform
independence

See Also: Oracle Database PL/SQL Language Reference for detailed
information on using collections and records

See Also: Oracle Database Advanced Application Developer's Guide for
more information about PL/SQL Server Pages

Overview of Java

25-18 Oracle Database Concepts

■ Automatic storage management techniques, such as gathering scattered memory
into contiguous memory space

■ Language syntax that borrows from C and enforces strong typing

This section contains the following topics:

■ Java and Object-Oriented Programming Terminology

■ Class Hierarchy

■ Interfaces

■ Polymorphism

■ Overview of the Java Virtual Machine (JVM)

■ Why Use Java in Oracle Database?

■ Oracle's Java Application Strategy

Java and Object-Oriented Programming Terminology
This section covers some basic terminology of Java application development in the
Oracle Database environment.

This section includes the following topics:

■ Classes

■ Attributes

■ Methods

Classes
All object-oriented programming languages support the concept of a class. As with a
table definition, a class provides a template for objects that share common
characteristics. Each class can contain the following:

■ Attributes—static or instance variables that each object of a particular class has

■ Methods—you can invoke methods defined by the class or inherited by any
classes extended from the class

When you create an object from a class, you are creating an instance of that class. The
instance contains the fields of an object, which are known as its data, or state.

Figure 25–4 shows an example of an Employee class defined with two attributes: last
name (lastName) and employee identifier (ID).

Overview of Java

Supported Application Development Languages 25-19

Figure 25–4 Classes and Instances

When you create an instance, the attributes store individual and private information
relevant only to the employee. That is, the information contained within an employee
instance is known only for that single employee. The example in Figure 25–4 shows
two instances of employee—Smith and Jones. Each instance contains information
relevant to the individual employee.

Attributes
Attributes within an instance are known as fields. Instance fields are analogous to the
fields of a relational table row. The class defines the fields, as well as the type of each
field. You can declare fields in Java to be static, public, private, protected, or default
access.

■ Public, private, protected, or default access fields are created within each instance.

■ Static fields are like global variables in that the information is available to all
instances of the employee class.

The language specification defines the rules of visibility of data for all fields. Rules of
visibility define under what circumstances you can access the data in these fields.

Methods
The class also defines the methods you can invoke on an instance of that class.
Methods are written in Java and define the behavior of an object. This bundling of
state and behavior is the essence of encapsulation, which is a feature of all
object-oriented programming languages. If you define an Employee class, declaring
that each employee's id is a private field, other objects can access that private field
only if a method returns the field. In this example, an object could retrieve the
employee's identifier by invoking the Employee.getId method.

In addition, with encapsulation, you can declare that the Employee.getId method is
private, or you can decide not to write an Employee.getId method. Encapsulation
helps you write programs that are reusable and not misused. Encapsulation makes
public only those features of an object that are declared public; all other fields and
methods are private. Private fields and methods can be used for internal object
processing.

Employee
id = 372 74 3215
last name = Jones

Employee
id = 215 63 2179
last name = Smith

fields
private String id
public String lastName
...

methods
private getId ()
public setId (String anId)
...

public class Employee

new Employee()

new Employee()

Each instance of Employee
holds its own state. You can
access that state only if the
creator of the class defines
it in a way that provides
access to you.

Employee class defines the
fields that instances hold
(state) and methods you
can invoke on instances
of Employee (behavior).

Overview of Java

25-20 Oracle Database Concepts

Class Hierarchy
Java defines classes within a large hierarchy of classes. At the top of the hierarchy is
the Object class. All classes in Java inherit from the Object class at some level, as you
walk up through the inheritance chain of superclasses. When it is said that Class B
inherits from Class A, each instance of Class B contains all the fields defined in class B,
as well as all the fields defined in Class A. For example, in Figure 25–5, the
FullTimeEmployee class contains the id and lastName fields defined in the
Employee class, because it inherits from the Employee class. In addition, the
FullTimeEmployee class adds another field, bonus, which is contained only within
FullTimeEmployee.

You can invoke any method on an instance of Class B that was defined in either Class
A or B. In our employee example, the FullTimeEmployee instance can invoke
methods defined only within its own class, or methods defined within the Employee
class.

Figure 25–5 Using Inheritance to Localize Behavior and State

Instances of Class B are substitutable for instances of Class A, which makes inheritance
another powerful construct of object-oriented languages for improving code reuse.
You can create new classes that define behavior and state where it makes sense in the
hierarchy, yet make use of pre-existing functionality in class libraries.

Interfaces
Java supports only single inheritance; that is, each class has one and only one class
from which it inherits. If you must inherit from more than one source, Java provides
the equivalent of multiple inheritance, without the complications and confusion that
usually accompany it, through interfaces. Interfaces are similar to classes; however,
interfaces define method signatures, not implementations. The methods are
implemented in classes declared to implement an interface. Multiple inheritance
occurs when a single class simultaneously supports many interfaces.

class Employee
id
last name

class PartTime Employee
schedule

class FullTime Employee
bonus

class ExemptEmployee
salaryToDate()

class NonExemptEmployee
salaryToDate()

Each FullTimeEmployee is
considered "exempt" if he
works for a monthly salary,
or "non-exempt" if he
works at an hourly rate.
Each one computes
salaryToDate differently.

PartTimeEmployees have
to track their schedules,
while Full-TimeEmployees
are eligible for bonuses.

Employee class has two subclasses, PartTimeEmployee
and FullTimeEmployee, rather than using attributes of
Employee to differentiate between different Employee types.
Note: We could have made Employee an interface.

Overview of Java

Supported Application Development Languages 25-21

Polymorphism
Assume in our Employee example that the different types of employees must be able
to respond with their compensation to date. Compensation is computed differently for
different kinds of employees.

■ FullTimeEmployees are eligible for a bonus

■ NonExemptEmployees get overtime pay

In traditional procedural languages, you would write a long switch statement, with
the different possible cases defined.

switch (employee.type) {
case: Employee
return employee.salaryToDate;
case: FullTimeEmployee
return employee.salaryToDate + employee.bonusToDate;
...

If you add a new kind of employee, then you must update your switch statement. If
you modify your data structure, then you must modify all switch statements that use
it.

In an object-oriented language such as Java, you implement a method,
compensationToDate, for each subclass of Employee class that requires any special
treatment beyond what is already defined in Employee class. For example, you could
implement the compensationToDate method of NonExemptEmployee, as follows:

private float compensationToDate() {
return super.compensationToDate() + this.overtimeToDate();
}

Implement FullTimeEmployee's method as follows:

private float compensationToDate() {
return super.compensationToDate() + this.bonusToDate();
}

The common usage of the method name compensationToDate lets you invoke the
identical method on different classes and receive different results, without knowing
the type of employee you are using. You do not have to write a special method to
handle FullTimeEmployees and PartTimeEmployees. This ability for the
different objects to respond to the identical message in different ways is known as
polymorphism.

In addition, you could create an entirely new class that does not inherit from
Employee at all—Contractor—and implement a compensationToDate method
in it. A program that calculates total payroll to date would iterate over all people on
payroll, regardless of whether they were full-time, part-time, or contractors, and add
up the values returned from invoking the compensationToDate method on each.
You can safely make changes to the individual compensationToDate methods with
the knowledge that callers of the methods will work correctly. For example, you can
safely add new fields to existing classes.

Overview of the Java Virtual Machine (JVM)
As with other high-level computer languages, Java source compiles to low-level
instructions. In Java, these instructions are known as bytecodes (because their size is
uniformly one byte of storage). Most other languages—such as C—compile to
computer-specific instructions, such as instructions specific to an Intel or HP processor.

Overview of Java

25-22 Oracle Database Concepts

Java source compiles to a standard, platform-independent set of bytecodes, which
interacts with a Java Virtual Machine (JVM). The JVM is a separate program that is
optimized for the specific platform on which you run your Java code.

Figure 25–6 illustrates how Java can maintain platform independence. Java source is
compiled into bytecodes, which are platform independent. Each platform has installed
a JVM that is specific to its operating system. The Java bytecodes from your source get
interpreted through the JVM into appropriate platform dependent actions.

Figure 25–6 Java Component Structure

When you develop a Java program, you use predefined core class libraries written in
the Java language. The Java core class libraries are logically divided into packages that
provide commonly-used functionality, such as basic language support (java.lang),
I/O (java.io), and network access (java.net). Together, the JVM and core class
libraries provide a platform on which Java programmers can develop with the
confidence that any hardware and operating system that supports Java will execute
their program. This concept is what drives the "write once, run anywhere" idea of Java.

Figure 25–7 illustrates how Oracle's Java applications sit on top of the Java core class
libraries, which in turn sit on top of the JVM. Because Oracle's Java support system is
located within the database, the JVM interacts with Oracle Database libraries, instead
of directly with the operating system.

Java Applications

Java Virtual Machine

Operating System

Overview of Java

Supported Application Development Languages 25-23

Figure 25–7 Java Component Structure

Sun Microsystems furnishes publicly available specifications for both the Java
language and the JVM. The Java Language Specification (JLS) defines things such as
syntax and semantics; the JVM specification defines the necessary low-level behavior
for the computer that runs the bytecodes. In addition, Sun Microsystems provides a
compatibility test suite for JVM implementors to determine if they have complied with
the specifications. This test suite is known as the Java Compatibility Kit (JCK). Oracle's
JVM implementation complies fully with JCK. Part of the overall Java strategy is that
an openly specified standard, together with a simple way to verify compliance with
that standard, allows vendors to offer uniform support for Java across all platforms.

Why Use Java in Oracle Database?
You can write and load Java applications within the database, because it is a safe
language. Java prevents anyone from tampering with the operating system that the
Java code resides in. Some languages, such as C, can introduce security problems
within the database; Java, because of its design, is a safe language to allow within the
database.

Although Java presents many advantages to developers, providing an implementation
of a JVM that supports Java server applications in a scalable manner is a challenge.
This section discusses some of these challenges.

■ Multithreading

■ Automated Storage Management

■ Footprint

■ Performance

■ Dynamic Class Loading

Data / Persistence Logic

Oracle Database JVM

JDBC

Java Core Class Libraries

Oracle Database Libraries

Operating System

Overview of Java

25-24 Oracle Database Concepts

Multithreading
Multithreading support is often cited as one of the key scalability features of Java.
Certainly, the Java language and class libraries make it simpler to write shared server
applications in Java than many other languages, but it is still a daunting task in any
language to write reliable, scalable shared server code.

As a database server, Oracle Database efficiently schedules work for thousands of
users. The Oracle JVM uses the facilities of the RDBMS server to concurrently schedule
Java execution for thousands of users. Although Oracle Database supports Java
language level threads required by the JLS and JCK, using threads within the scope of
the database does not increase scalability. Using the embedded scalability of the
database eliminates the need for writing shared server Java servers. You should use
the database's facilities for scheduling users by writing single-threaded Java
applications. The database takes care of the scheduling between each application; thus,
you achieve scalability without having to manage threads. You can still write shared
server Java applications, but multiple Java threads does not increase your server's
performance.

One difficulty multithreading imposes on Java is the interaction of threads and
automated storage management, or garbage collection. The garbage collector
executing in a generic JVM has no knowledge of which Java language threads are
executing or how the underlying operating system schedules them.

■ Non-Oracle model—A single user maps to a single Java language level thread; the
same single garbage collector manages all garbage from all users. Different
techniques typically deal with allocation and collection of objects of varying
lifetimes and sizes. The result in a heavily shared server application is, at best,
dependent upon operating system support for native threads, which can be
unreliable and limited in scalability. High levels of scalability for such
implementations have not been convincingly demonstrated.

■ Oracle JVM model—Even when thousands of users connect to the server and run
the same Java code, each user experiences it as if he is executing his own Java code
on his own Java Virtual Machine. The responsibility of the Oracle JVM is to make
use of operating system processes and threads, using the scalable approach of the
Oracle RDBMS. As a result of this approach, the JVM's garbage collector is more
reliable and efficient because it never collects garbage from more than one user at
any time.

Automated Storage Management
Garbage collection is a major feature of Java's automated storage management,
eliminating the need for Java developers to allocate and free memory explicitly.
Consequently, this eliminates a large source of memory leaks that commonly plague C
and C++ programs. There is a price for such a benefit: garbage collection contributes to
the overhead of program execution speed and footprint. Although many papers have
been written qualifying and quantifying the trade-off, the overall cost is reasonable,
considering the alternatives.

Garbage collection imposes a challenge to the JVM developer seeking to supply a
highly scalable and fast Java platform. The Oracle JVM meets these challenges in the
following ways:

■ The Oracle JVM uses the Oracle Database scheduling facilities, which can manage
multiple users efficiently.

■ Garbage collection is performs consistently for multiple users because garbage
collection is focused on a single user within a single session. The Oracle JVM
enjoys a huge advantage because the burden and complexity of the memory

Overview of Java

Supported Application Development Languages 25-25

manager's job does not increase as the number of users increases. The memory
manager performs the allocation and collection of objects within a single
session—which typically translates to the activity of a single user.

■ The Oracle JVM uses different garbage collection techniques depending on the
type of memory used. These techniques provide high efficiency and low overhead.

Footprint
The footprint of an executing Java program is affected by many factors:

■ Size of the program itself—how many classes and methods and how much code
they contain.

■ Complexity of the program—the amount of core class libraries that the Oracle JVM
uses as the program runs, as opposed to the program itself.

■ Amount of state the JVM uses—how many objects the JVM allocates, how large
they are, and how many must be retained across calls.

■ Ability of the garbage collector and memory manager to deal with the demands of
the executing program, which is often non-deterministic. The speed with which
objects are allocated and the way they are held on to by other objects influences
the importance of this factor.

From a scalability perspective, the key to supporting many concurrent clients is a
minimum user session footprint. The Oracle JVM keeps the user session footprint to a
minimum by placing all read-only data for users, such as Java bytecodes, in shared
memory. Appropriate garbage collection algorithms are applied against call and
session memories to maintain a small footprint for the user's session. The Oracle JVM
uses three types of garbage collection algorithms to maintain the user's session
memory:

■ Generational scavenging for short-lived objects

■ Mark and lazy sweep collection for objects that exist for the life of a single call

■ Copying collector for long-lived objects—objects that live across calls within a
session

Performance
Oracle JVM performance is enhanced by implementing a native compiler. Java runs
platform-independent bytecodes on top of a JVM, which in turn interacts with the
specific hardware platform. Any time you add levels within software, your
performance is degraded. Because Java requires going through an intermediary to
interpret platform-independent bytecodes, a degree of inefficiency exists for Java
applications that does not exists within a platform-dependent language, such as C. To
address this issue, several JVM suppliers create native compilers. Native compilers
translate Java bytecodes into platform-dependent native code, which eliminates the
interpreter step and improves performance.

Table 25–1 describes two methods for native compilation.

Overview of Java

25-26 Oracle Database Concepts

Oracle Database uses static compilation to deliver its core Java class libraries: the ORB
and JDBC code in natively compiled form. It is applicable across all the platforms
Oracle supports, whereas a JIT approach requires low-level, processor-dependent code
to be written and maintained for each platform. You can use this native compilation
technology with your own Java code.

Dynamic Class Loading
Another strong feature of Java is dynamic class loading. The class loader loads classes
from the disk (and places them in the JVM-specific memory structures necessary for
interpretation) only as they are used during program execution. The class loader
locates the classes in the CLASSPATH and loads them during program execution. This
approach, which works well for applets, poses the problems listed in Table 25–2 in a
server environment.

Table 25–1 Native Compilation Methods

Method Description

Just-In-Time (JIT)
Compilation

JIT compilers quickly compile Java bytecodes to native
(platform-specific) computer code during run time. This does
not produce an executable to be run on the platform; instead, it
provides platform-dependent code from Java bytecodes that is
run directly after it is translated. This should be used for Java
code that is run frequently, which will be run at speeds closer to
languages such as C.

Static Compilation Static compilation translates Java bytecodes to
platform-independent C code before run time. Then a standard
C compiler compiles the C code into an executable for the target
platform. This approach is more suitable for Java applications
that are modified infrequently. This approach takes advantage of
the mature and efficient platform-specific compilation
technology found in modern C compilers.

Table 25–2 Problems Associated with Dynamic Class Loading

Problem Description Solution

Predictability The class loading operation places
a severe penalty on first-time
execution. A simple program can
cause the Oracle JVM to load many
core classes to support its needs. A
programmer cannot easily predict
or determine the number of classes
loaded.

The Oracle JVM loads classes
dynamically, just as with any other
Java Virtual Machine. The same
one-time class loading speed hit is
encountered. However, because the
classes are loaded into shared
memory, no other users of those
classes will cause the classes to load
again—they will simply use the same
pre-loaded classes.

Overview of Java

Supported Application Development Languages 25-27

Oracle's Java Application Strategy
One appeal of Java is its ubiquity and the growing number of programmers capable of
developing applications using it. Oracle furnishes enterprise application developers
with an end-to-end Java solution for creating, deploying, and managing Java
applications. The total solution consists of client-side and server-side programmatic
interfaces, tools to support Java development, and a Java Virtual Machine integrated
with Oracle Database. All these products are compatible with Java standards.

In addition to the Oracle JVM, the Java programming environment consists of the
following:

■ Java stored procedures as the Java equivalent and companion for PL/SQL. Java
stored procedures are tightly integrated with PL/SQL. You can call a Java stored
procedure from a PL/SQL package; you can call PL/SQL procedures from a Java
stored procedure.

■ SQL data can be accessed through the JDBC programming interface.

■ Tools and scripts used in assisting in development, class loading, and class
management.

This section includes the following topics:

■ Java Stored Procedures

■ PL/SQL Integration and Oracle Database Functionality

■ JDBC

■ JPublisher

■ Java Messaging Service

Java Stored Procedures
A Java stored procedure is a program you write in Java to run in the server, exactly as
a PL/SQL stored procedure. You invoke it directly with products like SQL*Plus, or
indirectly with a trigger. You can access it from any Oracle Net client—OCI,
precompiler, or JDBC.

In addition, you can use Java to develop powerful programs independently of
PL/SQL. Oracle Database provides a fully-compliant implementation of the Java
programming language and JVM.

Reliability A benefit of dynamic class loading
is that it supports program
updating. For example, you would
update classes on a server, and
clients who download the program
and load it dynamically see the
update whenever they next use the
program. Server programs tend to
emphasize reliability. As a
developer, you must know that
every client runs a specific program
configuration. You do not want
clients to inadvertently load some
classes that you did not intend
them to load.

Oracle Database separates the upload
and resolve operation from the class
loading operation at run time. You
upload Java code you developed to
the server using the loadjava
utility. Instead of using CLASSPATH,
you specify a resolver at installation
time. The resolver is analogous to
CLASSPATH, but lets you specify the
schemas in which the classes reside.
This separation of resolution from
class loading means you always
know what program users run.

Table 25–2 (Cont.) Problems Associated with Dynamic Class Loading

Problem Description Solution

Overview of Java

25-28 Oracle Database Concepts

PL/SQL Integration and Oracle Database Functionality
You can invoke existing PL/SQL programs from Java and invoke Java programs from
PL/SQL. This solution protects and leverages your existing investment while opening
up the advantages and opportunities of Java-based Internet computing.

JDBC
Java database connectivity (JDBC) is an application programming interface (API) for
Java developers to access SQL data. It is available on client and server, so you can
deploy the same code in either place.

Oracle's JDBC allows access to objects and collection types defined in the database
from Java programs through dynamic SQL. Dynamic SQL means that the embedded
SQL statement to be run is not known before the application is run, and requires input
to build the statement. It provides for translation of types defined in the database into
Java classes through default or customizable mappings, and it also enables you to
monitor, trace, and correlate resource consumption of Java and J2EE applications
down to the database operation level.

Core Java class libraries provide only one JDBC API. JDBC is designed, however, to
allow vendors to supply drivers that offer the necessary specialization for a particular
database. Oracle delivers the following three distinct JDBC drivers.

See Also: Oracle Database Java Developer's Guide explains how to
write stored procedures in Java, how to access them from PL/SQL,
and how to access PL/SQL functionality from Java.

Table 25–3 JDBC Drivers

Driver Description

JDBC Thin Driver You can use the JDBC Thin driver to write 100% pure Java
applications and applets that access Oracle SQL data. The JDBC
Thin driver is especially well-suited to Web browser-based
applications and applets, because you can dynamically
download it from a Web page just like any other Java applet.

JDBC Oracle Call Interface
Driver

The JDBC Oracle Call Interface (OCI) driver accesses
Oracle-specific native code (that is, non-Java) libraries on the
client or middle tier, providing a richer set of functionality and
some performance boost compared to the JDBC Thin driver, at
the cost of significantly larger size and client-side installation.

JDBC Server-side Internal
Driver

Oracle Database uses the server-side internal driver when Java
code runs on the server. It allows Java applications running in
the server's JVM to access locally defined data (that is, on the
same computer and in the same process) with JDBC. It provides
a further performance boost because of its ability to use
underlying Oracle RDBMS libraries directly, without the
overhead of an intervening network connection between your
Java code and SQL data. By supporting the same Java-SQL
interface on the server, Oracle Database does not require you to
rework code when deploying it.

See Also:

■ Oracle Database JDBC Developer's Guide and Reference

■ Oracle Database Advanced Application Developer's Guide for
examples of JDBC programs

Overview of Java

Supported Application Development Languages 25-29

SQLJ
SQLJ allows developers to use object datatypes in Java programs. Developers can use
JPublisher to map Oracle object and collection types into Java classes to be used in the
application.

SQLJ provides access to server objects using SQL statements embedded in the Java
code. SQLJ provides compile-time type checking of object types and collections in the
SQL statements. The syntax is based on an ANSI standard (SQLJ Consortium).

You can specify Java classes as SQL user-defined object types. You can define columns
or rows of this SQLJ type. You can also query and manipulate the objects of this type
as if they were SQL primitive types. Additionally, you can do the following:

■ Make the static fields of a class visible in SQL

■ Allow the user to call a Java constructor

■ Maintain the dependency between the Java class and its corresponding type

JPublisher
Java Publisher (JPublisher) is a utility, written entirely in Java, that generates Java
classes to represent the following user-defined database entities in your Java program:

■ SQL object types

■ Object reference types ("REF types")

■ SQL collection types (VARRAY types or nested table types)

■ PL/SQL packages

JPublisher lets you to specify and customize the mapping of these entities to Java
classes in a strongly typed paradigm.

Java Messaging Service
Java Messaging Service (JMS) is a messaging standard developed by Sun
Microsystems along with Oracle, IBM, and other vendors. It defines a set of interfaces
for JMS applications and specifies the behavior implemented by JMS providers. JMS
provides a standard-based API to enable asynchronous exchange of business events
within the enterprise, as well as with customers and partners. JMS facilitates reliable
communication between loosely coupled components in a distributed environment,
significantly simplifying the effort required for enterprise integration. The
combination of Java technology with enterprise messaging enables development of
portable applications.

Oracle Java Messaging Service is a Java API for Oracle Streams, based on the JMS
standard. Multiple client applications can send and receive messages of any type
through a central JMS provider (Oracle Streams). The JMS client consists of the Java
application as well as a messaging client run-time library that implements the JMS
interface and communicates with Oracle Streams.

Java Messaging Oracle JMS supports the standard JMS interfaces and has extensions to
support other Streams features that are not a part of the standard. It can be used to
enqueue and dequeue messages in the queue available with Oracle Streams. Oracle
JMS includes the standard JMS features:

■ Point-to-point communication using queues

■ Publish-subscribe communication using topics

See Also: Oracle Database JPublisher User's Guide

Overview of Microsoft Programming Languages

25-30 Oracle Database Concepts

■ Synchronous and asynchronous message exchange

■ Subject-based routing

Oracle Streams also provides extensions to the standard JMS features:

■ Point-to-multipoint communication using a recipient list for specifying the
applications to receive the messages

■ Administrative API to create the queue tables, queues and subjects

■ Automatic propagation of messages between queues on different databases,
enabling the application to define remote subscribers

■ Transacted session support, allowing both JMS and SQL operations in one
transaction

■ Message retention after message is consumed

■ Exception handling

■ Delay specification before a message is visible

Overview of Microsoft Programming Languages
Oracle offers a variety of data access methods from COM-based programming
languages, such as Visual Basic and Active Server Pages. These include Oracle Objects
for OLE (OO40) and the Oracle Provider for OLE DB. The latter can be used with
Microsoft's ActiveX Data Objects (ADO). Server-side programming to COM
Automation servers, such as Microsoft Office, is available through the COM
Automation Feature. More traditional ODBC access is available through Oracle's
ODBC Driver. C/C++ applications can also use the Oracle Call Interface (OCI). These
data access drivers have been engineered to provide superior performance with Oracle
Database and expose the database's advanced features which may not be available in
third-party drivers.

Oracle also provides optimum .NET data access support through the Oracle Data
Provider for .NET, allowing .NET to access advanced Oracle features. Oracle also
supports OLE DB .NET and ODBC .NET.

This section includes the following topics:

■ Open Database Connectivity

■ Overview of Oracle Objects for OLE

■ Oracle Data Provider for .NET

Open Database Connectivity
Open database connectivity (ODBC), is a database access protocol that lets you
connect to a database and then prepare and run SQL statements against the database.
In conjunction with an ODBC driver, an application can access any data source
including data stored in spreadsheets, like Excel. Because ODBC is a widely accepted
standard API, applications can be written to comply to the ODBC standard. The ODBC
driver performs all mappings between the ODBC standard and the particular database
the application is accessing. Using a data source-specific driver, an ODBC compliant
program can access any data source without any more development effort.

Oracle provides the ODBC interface so that applications of any type that are ODBC
compliant can access Oracle Database using the ODBC driver provided by Oracle. For

Overview of Microsoft Programming Languages

Supported Application Development Languages 25-31

example, an application written in Visual Basic can use ODBC to access Oracle
Database.

Overview of Oracle Objects for OLE
Oracle Objects for OLE (OO4O) allows easy access to data stored in Oracle Databases
with any programming or scripting language that supports the Microsoft COM
Automation and ActiveX technology. This includes Visual Basic, Visual C++, Visual
Basic For Applications (VBA), IIS Active Server Pages (VBScript and JavaScript), and
others.

OO4O consists of the following software layers:

■ OO4O Automation Server

■ Oracle Data Control

■ The Oracle Objects for OLE C++ Class Library

OO4O Automation Server
The OO4O Automation Server is a set of COM Automation objects for connecting to
Oracle Database servers, executing SQL statements and PL/SQL blocks, and accessing
the results.

OO4O provides key features for accessing Oracle Databases in environments ranging
from the typical two-tier client/server applications, such as those developed in Visual
Basic or Excel, to application servers deployed in multitiered application server
environments, such as Web server applications in Microsoft Internet Information
Server (IIS) or Microsoft Transaction Server.

Oracle Data Control
The Oracle Data Control (ODC) is an ActiveX Control designed to simplify the
exchange of data between Oracle Database and visual controls, such edit, text, list, and
grid controls in Visual Basic and other development tools that support custom
controls.

ODC acts an agent to handle the flow of information from Oracle Database and a
visual data-aware control, such as a grid control, that is bound to it. The data control
manages various user interface (UI) tasks such as displaying and editing data. It also
runs and manages the results of database queries.

The Oracle Objects for OLE C++ Class Library
The Oracle Objects for OLE C++ Class Library is a collection of C++ classes that
provide programmatic access to the Oracle Object Server. Although the class library is
implemented using OLE Automation, neither the OLE development kit nor any OLE
development knowledge is necessary to use it. This library helps C++ developers
avoid writing COM client code for accessing the OO4O interfaces.

Oracle Data Provider for .NET
Oracle Data Provider for .NET (ODP.NET) is an implementation of a data provider for
Oracle Database. ODP.NET uses Oracle native APIs for fast and reliable access to

See Also: Oracle Objects for OLE Developer's Guide

See Also: Oracle Objects for OLE C++ Class Library help from the
Start menu

Overview of Legacy Languages

25-32 Oracle Database Concepts

Oracle Database data and features from any .NET application. ODP.NET also uses and
inherits classes and interfaces available in the Microsoft .NET Framework Class
Library.

Following the .NET Framework, ODP.NET uses the ADO.NET model, which allows
native providers to expose provider-specific features and data types.

Using ODP.NET, developers can write programs in Visual Basic .NET, C#, and other
.NET languages.

Overview of Legacy Languages
This section contains the following topics:

■ Overview of Pro*COBOL Precompiler

■ Overview of Pro*FORTRAN Precompiler

Overview of Pro*COBOL Precompiler
The Pro*COBOL Precompiler is a programming tool that lets you embed SQL
statements in a host COBOL program. Pro*COBOL reads the source file as input and
outputs a COBOL source file that replaces the embedded SQL statements with Oracle
run-time library calls, and is then compiled by the COBOL compiler.

Like the Pro*C/C++ Precompiler, Pro*COBOL lets you create highly customized
applications. For example, you can create user interfaces that incorporate the latest
windowing and mouse technology. You can also create applications that run in the
background without the need for user interaction.

Furthermore, with Pro*COBOL you can fine-tune your applications. It enables close
monitoring of resource usage, SQL statement execution, and various run-time
indicators. With this information, you can adjust program parameters for maximum
performance.

Overview of Pro*FORTRAN Precompiler
The Oracle Pro*FORTRAN Precompiler lets you embed SQL in a host FORTRAN
program.

Pro*FORTRAN is not supported on Windows.

See Also: Oracle Data Provider for .NET Developer's Guide

See Also: Pro*COBOL Programmer's Guide

See Also: Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Oracle Data Types 26-1

26
Oracle Data Types

This chapter discusses the Oracle built-in datatypes, their properties, and how they
map to non-Oracle datatypes.

This chapter includes the following topics:

■ Introduction to Oracle Datatypes

■ Overview of Character Datatypes

■ Overview of Numeric Datatypes

■ Overview of DATE Datatype

■ Overview of LOB Datatypes

■ Overview of RAW and LONG RAW Datatypes

■ Overview of ROWID and UROWID Datatypes

■ Overview of ANSI, DB2, and SQL/DS Datatypes

■ Overview of XML Datatypes

■ Overview of URI Datatypes

■ Overview of Object Datatypes and Object Views

■ Data Conversion

Introduction to Oracle Datatypes
Each column value and constant in a SQL statement has a datatype, which is
associated with a specific storage format, constraints, and a valid range of values.
When you create a table, you must specify a datatype for each of its columns.

Oracle provides the following categories of built-in datatypes:

■ Overview of Character Datatypes

■ Overview of Numeric Datatypes

■ Overview of DATE Datatype

■ Overview of LOB Datatypes

■ Overview of RAW and LONG RAW Datatypes

■ Overview of ROWID and UROWID Datatypes

Overview of Character Datatypes

26-2 Oracle Database Concepts

The following sections that describe each of the built-in datatypes in more detail.

Overview of Character Datatypes
The character datatypes store character (alphanumeric) data in strings, with byte
values corresponding to the character encoding scheme, generally called a character
set or code page.

The database's character set is established when you create the database. Examples of
character sets are 7-bit ASCII (American Standard Code for Information Interchange),
EBCDIC (Extended Binary Coded Decimal Interchange Code), Code Page 500, Japan
Extended UNIX, and Unicode UTF-8. Oracle supports both single-byte and multibyte
encoding schemes.

This section includes the following topics:

■ CHAR Datatype

■ VARCHAR2 and VARCHAR Datatypes

■ Length Semantics for Character Datatypes

■ NCHAR and NVARCHAR2 Datatypes

■ Use of Unicode Data in Oracle Database

■ LOB Character Datatypes

■ LONG Datatype

CHAR Datatype
The CHAR datatype stores fixed-length character strings. When you create a table with
a CHAR column, you must specify a string length (in bytes or characters) between 1
and 2000 bytes for the CHAR column width. The default is 1 byte. Oracle then
guarantees that:

■ When you insert or update a row in the table, the value for the CHAR column has
the fixed length.

Note: PL/SQL has additional datatypes for constants and variables,
which include BOOLEAN, reference types, composite types (collections
and records), and user-defined subtypes.

See Also:

■ Oracle Database PL/SQL Language Reference for more information
about PL/SQL datatypes

■ Oracle Database Advanced Application Developer's Guide for
information about how to use the built-in datatypes

See Also:

■ Oracle Database Advanced Application Developer's Guide for
information about how to select a character datatype

■ Oracle Database Globalization Support Guide for more information
about converting character data

Overview of Character Datatypes

Oracle Data Types 26-3

■ If you give a shorter value, then the value is blank-padded to the fixed length.

■ If a value is too large, Oracle Database returns an error.

Oracle Database compares CHAR values using blank-padded comparison semantics.

VARCHAR2 and VARCHAR Datatypes
The VARCHAR2 datatype stores variable-length character strings. When you create a
table with a VARCHAR2 column, you specify a maximum string length (in bytes or
characters) between 1 and 4000 bytes for the VARCHAR2 column. For each row, Oracle
Database stores each value in the column as a variable-length field unless a value
exceeds the column's maximum length, in which case Oracle Database returns an
error. Using VARCHAR2 and VARCHAR saves on space used by the table.

For example, assume you declare a column VARCHAR2 with a maximum size of 50
characters. In a single-byte character set, if only 10 characters are given for the
VARCHAR2 column value in a particular row, the column in the row's row piece stores
only the 10 characters (10 bytes), not 50.

Oracle Database compares VARCHAR2 values using nonpadded comparison semantics.

VARCHAR Datatype
The VARCHAR datatype is synonymous with the VARCHAR2 datatype. To avoid
possible changes in behavior, always use the VARCHAR2 datatype to store
variable-length character strings.

Length Semantics for Character Datatypes
Globalization support allows the use of various character sets for the character
datatypes. Globalization support lets you process single-byte and multibyte character
data and convert between character sets. Client sessions can use client character sets
that are different from the database character set.

Consider the size of characters when you specify the column length for character
datatypes. You must consider this issue when estimating space for tables with columns
that contain character data.

The length semantics of character datatypes can be measured in bytes or characters.

■ Byte semantics treat strings as a sequence of bytes. This is the default for character
datatypes.

■ Character semantics treat strings as a sequence of characters. A character is
technically a codepoint of the database character set.

For single byte character sets, columns defined in character semantics are basically the
same as those defined in byte semantics. Character semantics are useful for defining
varying-width multibyte strings; it reduces the complexity when defining the actual
length requirements for data storage. For example, in a Unicode database (UTF8), you
must define a VARCHAR2 column that can store up to five Chinese characters together
with five English characters. In byte semantics, this would require (5*3 bytes) + (1*5
bytes) = 20 bytes; in character semantics, the column would require 10 characters.

See Also: Oracle Database SQL Language Reference for details about
blank-padded comparison semantics

See Also: Oracle Database SQL Language Reference for details
about nonpadded comparison semantics

Overview of Character Datatypes

26-4 Oracle Database Concepts

VARCHAR2(20 BYTE) and SUBSTRB(<string>, 1, 20) use byte semantics.
VARCHAR2(10 CHAR) and SUBSTR(<string>, 1, 10) use character semantics.

The parameter NLS_LENGTH_SEMANTICS decides whether a new column of character
datatype uses byte or character semantics. The default length semantic is byte. If all
character datatype columns in a database use byte semantics (or all use character
semantics) then users do not have to worry about which columns use which
semantics. The BYTE and CHAR qualifiers shown earlier should be avoided when
possible, because they lead to mixed-semantics databases. Instead, the NLS_LENGTH_
SEMANTICS initialization parameter should be set appropriately in the server
parameter file (SPFILE) or initialization parameter file, and columns should use the
default semantics.

NCHAR and NVARCHAR2 Datatypes
NCHAR and NVARCHAR2 are Unicode datatypes that store Unicode character data. The
character set of NCHAR and NVARCHAR2 datatypes can only be either AL16UTF16 or
UTF8 and is specified at database creation time as the national character set.
AL16UTF16 and UTF8 are both Unicode encoding.

■ The NCHAR datatype stores fixed-length character strings that correspond to the
national character set.

■ The NVARCHAR2 datatype stores variable length character strings.

When you create a table with an NCHAR or NVARCHAR2 column, the maximum size
specified is always in character length semantics. Character length semantics is the
default and only length semantics for NCHAR or NVARCHAR2.

For example, if national character set is UTF8, then the following statement defines the
maximum byte length of 90 bytes:

CREATE TABLE tab1 (col1 NCHAR(30));

This statement creates a column with maximum character length of 30. The maximum
byte length is the multiple of the maximum character length and the maximum
number of bytes in each character.

This section includes the following topics:

■ NCHAR

■ NVARCHAR2

NCHAR
The maximum length of an NCHAR column is 2000 bytes. It can hold up to 2000
characters. The actual data is subject to the maximum byte limit of 2000. The two size
constraints must be satisfied simultaneously at run time.

See Also:

■ "Use of Unicode Data in Oracle Database" on page 26-5

■ Oracle Database Globalization Support Guide for information about
Oracle's globalization support feature

■ Oracle Database Advanced Application Developer's Guide for
information about setting length semantics and choosing the
appropriate Unicode character set.

■ Oracle Database Upgrade Guide for information about migrating
existing columns to character semantics

Overview of Character Datatypes

Oracle Data Types 26-5

NVARCHAR2
The maximum length of an NVARCHAR2 column is 4000 bytes. It can hold up to 4000
characters. The actual data is subject to the maximum byte limit of 4000. The two size
constraints must be satisfied simultaneously at run time.

Use of Unicode Data in Oracle Database
Unicode is an effort to have a unified encoding of every character in every language
known to man. It also provides a way to represent privately-defined characters. A
database column that stores Unicode can store text written in any language.

Oracle Database users deploying globalized applications have a strong need to store
Unicode data in Oracle Databases. They need a datatype which is guaranteed to be
Unicode regardless of the database character set.

Oracle Database supports a reliable Unicode datatype through NCHAR, NVARCHAR2,
and NCLOB. These datatypes are guaranteed to be Unicode encoding and always use
character length semantics. The character sets used by NCHAR/NVARCHAR2 can be
either UTF8 or AL16UTF16, depending on the setting of the national character set
when the database is created. These datatypes allow character data in Unicode to be
stored in a database that may or may not use Unicode as database character set.

Implicit Type Conversion
In addition to all the implicit conversions for CHAR/VARCHAR2, Oracle Database also
supports implicit conversion for NCHAR/NVARCHAR2. Implicit conversion between
CHAR/VARCHAR2 and NCHAR/NVARCHAR2 is also supported.

LOB Character Datatypes
The LOB datatypes for character data are CLOB and NCLOB. They can store up to 8
terabytes of character data (CLOB) or national character set data (NCLOB).

LONG Datatype

Columns defined as LONG can store variable-length character data containing up to 2
gigabytes of information. LONG data is text data that is to be appropriately converted
when moving among different systems.

See Also: Oracle Database Globalization Support Guide for more
information about the NCHAR and NVARCHAR2 datatypes

See Also: "Overview of LOB Datatypes" on page 26-11

Note: Do not create tables with LONG columns. Use LOB columns
(CLOB, NCLOB) instead. LONG columns are supported only for
backward compatibility.

Oracle also recommends that you convert existing LONG columns to
LOB columns. LOB columns are subject to far fewer restrictions than
LONG columns. Further, LOB functionality is enhanced in every
release, whereas LONG functionality has been static for several
releases.

Overview of Numeric Datatypes

26-6 Oracle Database Concepts

LONG datatype columns are used in the data dictionary to store the text of view
definitions. You can use LONG columns in SELECT lists, SET clauses of UPDATE
statements, and VALUES clauses of INSERT statements.

Overview of Numeric Datatypes
The numeric datatypes store positive and negative fixed and floating-point numbers,
zero, infinity, and values that are the undefined result of an operation (that is, is "not a
number" or NAN).

This section includes the following topics:

■ NUMBER Datatype

■ Floating-Point Numbers

NUMBER Datatype
The NUMBER datatype stores fixed and floating-point numbers. Numbers of virtually
any magnitude can be stored and are guaranteed portable among different systems
operating Oracle Database, up to 38 digits of precision.

The following numbers can be stored in a NUMBER column:

■ Positive numbers in the range 1 x 10-130 to 9.99...9 x 10125 with up to 38 significant
digits

■ Negative numbers from -1 x 10-130 to 9.99...99 x 10125 with up to 38 significant
digits

■ Zero

■ Positive and negative infinity (generated only by importing from an Oracle
Database, Version 5)

For numeric columns, you can specify the column as:

column_name NUMBER

Optionally, you can also specify a precision (total number of digits) and scale (number
of digits to the right of the decimal point):

column_name NUMBER (precision, scale)

If a precision is not specified, the column stores values as given. If no scale is specified,
the scale is zero.

Oracle guarantees portability of numbers with a precision equal to or less than 38
digits. You can specify a scale and no precision:

column_name NUMBER (*, scale)

In this case, the precision is 38, and the specified scale is maintained.

When you specify numeric fields, it is a good idea to specify the precision and scale.
This provides extra integrity checking on input.

See Also:

■ Oracle Database Advanced Application Developer's Guide for
information about the restrictions on the LONG datatype

■ "Overview of RAW and LONG RAW Datatypes" on page 26-13
for information about the LONG RAW datatype

Overview of Numeric Datatypes

Oracle Data Types 26-7

Table 26–1 shows examples of how data would be stored using different scale factors.

If you specify a negative scale, Oracle Database rounds the actual data to the specified
number of places to the left of the decimal point. For example, specifying (7,-2) means
Oracle Database rounds to the nearest hundredths, as shown in Table 26–1.

For input and output of numbers, the standard Oracle Database default decimal
character is a period, as in the number 1234.56. The decimal is the character that
separates the integer and decimal parts of a number. You can change the default
decimal character with the initialization parameter NLS_NUMERIC_CHARACTERS. You
can also change it for the duration of a session with the ALTER SESSION statement.
To enter numbers that do not use the current default decimal character, use the TO_
NUMBER function.

Internal Numeric Format
Oracle Database stores numeric data in variable-length format. Each value is stored in
scientific notation, with 1 byte used to store the exponent and up to 20 bytes to store
the mantissa. The resulting value is limited to 38 digits of precision. Oracle Database
does not store leading and trailing zeros. For example, the number 412 is stored in a
format similar to 4.12 x 102, with 1 byte used to store the exponent(2) and 2 bytes used
to store the three significant digits of the mantissa(4,1,2). Negative numbers include
the sign in their length.

Taking this into account, the column size in bytes for a particular numeric data value
NUMBER(p), where p is the precision of a given value, can be calculated using the
following formula:

ROUND((length(p)+s)/2))+1

where s equals zero if the number is positive, and s equals 1 if the number is negative.

Zero and positive and negative infinity (only generated on import from Oracle
Database, Version 5) are stored using unique representations. Zero and negative
infinity each require 1 byte; positive infinity requires 2 bytes.

Floating-Point Numbers
Oracle Database provides two numeric datatypes exclusively for floating-point
numbers: BINARY_FLOAT and BINARY_DOUBLE. They support all of the basic
functionality provided by the NUMBER datatype. However, while NUMBER uses decimal
precision, BINARY_FLOAT and BINARY_DOUBLE use binary precision. This enables
faster arithmetic calculations and usually reduces storage requirements.

Table 26–1 How Scale Factors Affect Numeric Data Storage

Input Data Specified As Stored As

7,456,123.89 NUMBER 74561 23.89

7,456,123.89 NUMBER(*,1) 74561 23.9

7,456,123.89 NUMBER(9) 74561 24

7,456,123.89 NUMBER(9,2) 74561 23.89

7,456,123.89 NUMBER(9,1) 74561 23.9

7,456,123.89 NUMBER(6) (not accepted, exceeds precision)

7,456,123.89 NUMBER(7,-2) 74561 00

Overview of DATE Datatype

26-8 Oracle Database Concepts

BINARY_FLOAT and BINARY_DOUBLE are approximate numeric datatypes. They store
approximate representations of decimal values, rather than exact representations. For
example, the value 0.1 cannot be exactly represented by either BINARY_DOUBLE or
BINARY_FLOAT. They are frequently used for scientific computations. Their behavior
is similar to the datatypes FLOAT and DOUBLE in Java and XMLSchema.

This section includes the following topics:

■ BINARY_FLOAT Datatype

■ BINARY_DOUBLE Datatype

BINARY_FLOAT Datatype
BINARY_FLOAT is a 32-bit, single-precision floating-point number datatype. Each
BINARY_FLOAT value requires 5 bytes, including a length byte.

BINARY_DOUBLE Datatype
BINARY_DOUBLE is a 64-bit, double-precision floating-point number datatype. Each
BINARY_DOUBLE value requires 9 bytes, including a length byte.

Overview of DATE Datatype
The DATE datatype stores point-in-time values (dates and times) in a table. The DATE
datatype stores the year (including the century), the month, the day, the hours, the
minutes, and the seconds (after midnight).

Oracle Database can store dates in the Julian era, ranging from January 1, 4712 BCE
through December 31, 9999 CE (Common Era, or 'AD'). Unless BCE ('BC' in the format
mask) is specifically used, CE date entries are the default.

Oracle Database uses its own internal format to store dates. Date data is stored in
fixed-length fields of seven bytes each, corresponding to century, year, month, day,
hour, minute, and second.

For input and output of dates, the standard Oracle date format is DD-MON-YY, as
follows:

'13-NOV-92'

You can change this default date format for an instance with the parameter NLS_
DATE_FORMAT. You can also change it during a user session with the ALTER
SESSION statement. To enter dates that are not in standard Oracle date format, use the
TO_DATE function with a format mask:

TO_DATE ('November 13, 1992', 'MONTH DD, YYYY')

Oracle Database stores time in 24-hour format—HH:MI:SS. By default, the time in a
date field is 00:00:00 A.M. (midnight) if no time portion is entered. In a time-only
entry, the date portion defaults to the first day of the current month. To enter the time

Note: BINARY_DOUBLE and BINARY_FLOAT implement most of the
Institute of Electrical and Electronics Engineers (IEEE) Standard for
Binary Floating-Point Arithmetic, IEEE Standard 754-1985 (IEEE754).
For a full description of the Oracle Database implementation of
floating-point numbers and its differences from IEEE754, see the
Oracle Database SQL Language Reference

Overview of DATE Datatype

Oracle Data Types 26-9

portion of a date, use the TO_DATE function with a format mask indicating the time
portion, as in:

INSERT INTO birthdays (bname, bday) VALUES
 ('ANDY',TO_DATE('13-AUG-66 12:56 A.M.','DD-MON-YY HH:MI A.M.'));

This section includes the following topics:

■ Use of Julian Dates

■ Date Arithmetic

■ Centuries and the Year 2000

■ Daylight Savings Support

■ Time Zones

Use of Julian Dates
Julian dates allow continuous dating by the number of days from a common reference.
(The reference is 01-01-4712 years BCE, so current dates are somewhere in the 2.4
million range.) A Julian date is nominally a noninteger, the fractional part being a
portion of a day. Oracle Database uses a simplified approach that results in integer
values. Julian dates can be calculated and interpreted differently. The calculation
method used by Oracle Database results in a seven-digit number (for dates most often
used), such as 2449086 for 08-APR-93.

The format mask 'J' can be used with date functions (TO_DATE or TO_CHAR) to
convert date data into Julian dates. For example, the following query returns all dates
in Julian date format:

SELECT TO_CHAR (hire_date, 'J') FROM employees;

You must use the TO_NUMBER function if you want to use Julian dates in calculations.
You can use the TO_DATE function to enter Julian dates:

INSERT INTO employees (hire_date) VALUES (TO_DATE(2448921, 'J'));

Date Arithmetic
Oracle date arithmetic takes into account the anomalies of the calendars used
throughout history. For example, the switch from the Julian to the Gregorian calendar,
15-10-1582, eliminated the previous 10 days (05-10-1582 through 14-10-1582). The year
0 does not exist.

You can enter missing dates into the database, but they are ignored in date arithmetic
and treated as the next "real" date. For example, the next day after 04-10-1582 is
15-10-1582, and the day following 05-10-1582 is also 15-10-1582.

Note: Oracle Julian dates might not be compatible with Julian
dates generated by other date algorithms.

Note: This discussion of date arithmetic might not apply to all
countries' date standards (such as those in Asia).

Overview of DATE Datatype

26-10 Oracle Database Concepts

Centuries and the Year 2000
Oracle Database stores year data with the century information. For example, Oracle
Database stores 1996 or 2001, and not simply 96 or 01. The DATE datatype always
stores a four-digit year internally, and all other dates stored internally in the database
have four digit years. Oracle Database utilities such as import, export, and recovery
also deal with four-digit years.

Daylight Savings Support
Oracle Database provides daylight savings support for DATETIME datatypes in the
server. You can insert and query DATETIME values based on local time in a specific
region. The DATETIME datatypes TIMESTAMP WITH TIME ZONE and TIMESTAMP
WITH LOCAL TIME ZONE are time-zone aware.

Time Zones
You can include the time zone in your date/time data and provides support for
fractional seconds. Three new datatypes are added to DATE, with the differences listed
in Table 26–2.

TIMESTAMP WITH LOCAL TIME ZONE is stored in the database time zone. When a
user selects the data, the value is adjusted to the user's session time zone.

For example, a San Francisco database has system time zone = -8:00. When a New York
client (session time zone = -5:00) inserts into or selects from the San Francisco
database, TIMESTAMP WITH LOCAL TIME ZONE data is adjusted as follows:

■ The New York client inserts TIMESTAMP'1998-1-23 6:00:00-5:00' into a
TIMESTAMP WITH LOCAL TIME ZONE column in the San Francisco database.
The inserted data is stored in San Francisco as binary value 1998-1-23
3:00:00.

■ When the New York client selects that inserted data from the San Francisco
database, the value displayed in New York is '1998-1-23 6:00:00'.

■ A San Francisco client, selecting the same data, see the value '1998-1-23
3:00:00'.

See Also:

■ Oracle Database Advanced Application Developer's Guide for more
information about centuries and date format masks

■ Oracle Database SQL Language Reference for information about date
format codes

Table 26–2 Time Zone Datatypes

Datatype Time Zone Fractional Seconds

DATE No No

TIMESTAMP No Yes

TIMESTAMP
WITH TIME ZONE

Explicit Yes

TIMESTAMP
WITH LOCAL TIME ZONE

Relative Yes

Overview of LOB Datatypes

Oracle Data Types 26-11

Overview of LOB Datatypes
The LOB datatypes BLOB, CLOB, NCLOB, and BFILE enable you to store and
manipulate large blocks of unstructured data (such as text, graphic images, video clips,
and sound waveforms) in binary or character format. They provide efficient, random,
piece-wise access to the data. Oracle recommends that you always use LOB datatypes
over LONG datatypes. You can perform parallel queries (but not parallel DML or DDL)
on LOB columns.

LOB datatypes differ from LONG and LONG RAW datatypes in several ways. For
example:

■ A table can contain multiple LOB columns but only one LONG column.

■ A table containing one or more LOB columns can be partitioned, but a table
containing a LONG column cannot be partitioned.

■ The maximum size of a LOB is 128 terabytes depending on database block size,
and the maximum size of a LONG is only 2 gigabytes.

■ LOBs support random access to data, but LONGs support only sequential access.

■ LOB datatypes (except NCLOB) can be attributes of a user-defined object type but
LONG datatypes cannot.

■ Temporary LOBs that act like local variables can be used to perform
transformations on LOB data. Temporary internal LOBs (BLOBs, CLOBs, and
NCLOBs) are created in a temporary tablespace and are independent of tables. For
LONG datatypes, however, no temporary structures are available.

■ Tables with LOB columns can be replicated, but tables with LONG columns cannot.

SQL statements define LOB columns in a table and LOB attributes in a user-defined
object type. When defining LOBs in a table, you can explicitly specify the tablespace
and storage characteristics for each LOB.

LOB datatypes can be stored inline (within a table), out-of-line (within a tablespace,
using a LOB locator), or in an external file (BFILE datatypes). With compatibility set to
Oracle9i or higher, you can use LOBs with SQL VARCHAR operators and functions.

Note: To avoid unexpected results in your DML operations on
datatime data, you can verify the database and session time zones by
querying the built-in SQL functions DBTIMEZONE and
SESSIONTIMEZONE. If the database time zone or the session time
zone has not been set manually, Oracle Database uses the operating
system time zone by default. If the operating system time zone is not a
valid Oracle time zone, Oracle Database uses UTC as the default
value.

See Also: Oracle Database SQL Language Reference for details about
the syntax of creating and entering data in time stamp columns

Overview of LOB Datatypes

26-12 Oracle Database Concepts

This section includes the following topics:

■ BLOB Datatype

■ CLOB and NCLOB Datatypes

■ BFILE Datatype

BLOB Datatype
The BLOB datatype stores unstructured binary data in the database. BLOBs can store
up to 128 terabytes of binary data.

BLOBs participate fully in transactions. Changes made to a BLOB value by the DBMS_
LOB package, PL/SQL, or the OCI can be committed or rolled back. However, BLOB
locators cannot span transactions or sessions.

CLOB and NCLOB Datatypes
The CLOB and NCLOB datatypes store up to 128 terabytes of character data in the
database. CLOBs store database character set data, and NCLOBs store Unicode national
character set data. Storing varying-width LOB data in a fixed-width Unicode character
set internally enables Oracle Database to provide efficient character-based random
access on CLOBs and NCLOBs.

CLOBs and NCLOBs participate fully in transactions. Changes made to a CLOB or
NCLOB value by the DBMS_LOB package, PL/SQL, or the OCI can be committed or
rolled back. However, CLOB and NCLOB locators cannot span transactions or sessions.
You cannot create an object type with NCLOB attributes, but you can specify NCLOB
parameters in a method for an object type.

BFILE Datatype
The BFILE datatype stores unstructured binary data in operating-system files outside
the database. A BFILE column or attribute stores a file locator that points to an
external file containing the data. The amount of BFILE data that can be stored is
limited by the operating system.

BFILEs are read only; you cannot modify them. They support only random (not
sequential) reads, and they do not participate in transactions. The underlying
operating system must maintain the file integrity, security, and durability for BFILEs.
The database administrator must ensure that the file exists and that Oracle Database
processes have operating-system read permissions on the file.

See Also:

■ Oracle Database SQL Language Reference for a list of differences
between the LOB datatypes and the LONG and LONG RAW
datatypes

■ Oracle Database SecureFiles and Large Objects Developer's Guide
for more information about LOB storage and LOB locators

See Also: Oracle Database Globalization Support Guide for more
information about national character set data and Unicode

Overview of ROWID and UROWID Datatypes

Oracle Data Types 26-13

Overview of RAW and LONG RAW Datatypes

The RAW and LONG RAW datatypes are used for data that is not to be interpreted (not
converted when moving data between different systems) by Oracle Database. These
datatypes are intended for binary data or byte strings. For example, LONG RAW can be
used to store graphics, sound, documents, or arrays of binary data. The interpretation
depends on the use.

RAW is a variable-length datatype like the VARCHAR2 character datatype, except Oracle
Net Services (which connects user sessions to the instance) and the Import and Export
utilities do not perform character conversion when transmitting RAW or LONG RAW
data. In contrast, Oracle Net Services and Import/Export automatically convert CHAR,
VARCHAR2, and LONG data between the database character set and the user session
character set, if the two character sets are different.

When Oracle Database automatically converts RAW or LONG RAW data to and from
CHAR data, the binary data is represented in hexadecimal form with one hexadecimal
character representing every four bits of RAW data. For example, one byte of RAW data
with bits 11001011 is displayed and entered as 'CB'.

LONG RAW data cannot be indexed, but RAW data can be indexed.

Overview of ROWID and UROWID Datatypes
Oracle Database uses a ROWID datatype to store the address (rowid) of every row in
the database.

■ Physical rowids store the addresses of rows in ordinary tables (excluding
index-organized tables), clustered tables, table partitions and subpartitions,
indexes, and index partitions and subpartitions.

■ Logical rowids store the addresses of rows in index-organized tables.

A single datatype called the universal rowid, or UROWID, supports both logical and
physical rowids, as well as rowids of foreign tables such as non-Oracle tables accessed
through a gateway.

A column of the UROWID datatype can store all kinds of rowids. The value of the
COMPATIBLE initialization parameter (for file format compatibility) must be set to 8.1
or higher to use UROWID columns.

This section includes the following topics:

Note: The LONG RAW datatype is provided for backward
compatibility with existing applications. For new applications, use the
BLOB and BFILE datatypes for large amounts of binary data.

Oracle also recommends that you convert existing LONG RAW columns
to LOB columns. LOB columns are subject to far fewer restrictions
than LONG columns. Further, LOB functionality is enhanced in every
release, whereas LONG RAW functionality has been static for several
releases.

See Also: Oracle Database Advanced Application Developer's Guide for
information about other restrictions on the LONG RAW datatype

See Also: "Rowids in Non-Oracle Databases" on page 26-19

Overview of ROWID and UROWID Datatypes

26-14 Oracle Database Concepts

■ The ROWID Pseudocolumn

■ Physical Rowids

■ Logical Rowids

■ Rowids in Non-Oracle Databases

The ROWID Pseudocolumn
Each table in an Oracle database internally has a pseudocolumn named ROWID. This
pseudocolumn is not evident when listing the structure of a table by executing a
SELECT * FROM ... statement, or a DESCRIBE ... statement using SQL*Plus, nor does
the pseudocolumn take up space in the table. However, each row's address can be
retrieved with a SQL query using the reserved word ROWID as a column name, for
example:

SELECT ROWID, last_name FROM employees;

You cannot set the value of the pseudocolumn ROWID in INSERT or UPDATE
statements, and you cannot delete a ROWID value. Oracle Database uses the ROWID
values in the pseudocolumn ROWID internally for the construction of indexes.

You can reference rowids in the pseudocolumn ROWID like other table columns (used
in SELECT lists and WHERE clauses), but rowids are not stored in the database, nor are
they database data. However, you can create tables that contain columns having the
ROWID datatype, although Oracle does not guarantee that the values of such columns
are valid rowids. The user must ensure that the data stored in the ROWID column truly
is a valid ROWID.

Physical Rowids
Physical rowids provide the fastest possible access to a row of a given table. They
contain the physical address of a row (down to the specific block) and allow you to
retrieve the row in a single block access.

Every row in a nonclustered table is assigned a unique rowid that corresponds to the
physical address of a row's row piece (or the initial row piece if the row is chained
among multiple row pieces). In the case of clustered tables, rows in different tables
that are in the same data block can have the same rowid.

After a rowid is assigned to a row piece, the rowid can change in special
circumstances. For example, if row movement is enabled, then the rowid can change
because of partition key updates, Flashback Table operations, shrink table operations,
and so on. If row movement is disabled, then a rowid can change if the row is exported
and imported using Oracle Database utilities.

A physical rowid datatype has one of two formats:

■ The extended rowid format supports tablespace-relative data block addresses and
efficiently identifies rows in partitioned tables and indexes as well as
nonpartitioned tables and indexes. Tables and indexes created by an Oracle8i (or
higher) server always have extended rowids.

■ A restricted rowid format is also available for backward compatibility with
applications developed with Oracle Database Version 7 or earlier releases.

This section includes the following topics:

■ Extended Rowids

See Also: "How Rowids Are Used" on page 26-17

Overview of ROWID and UROWID Datatypes

Oracle Data Types 26-15

■ Restricted Rowids

■ Examples of Rowid Use

■ How Rowids Are Used

Extended Rowids
Extended rowids use a base 64 encoding of the physical address for each row selected.
The encoding characters are A-Z, a-z, 0-9, +, and /. For example, the
following query:

SELECT ROWID, last_name FROM employees WHERE department_id = 20;

can return the following row information:

ROWID LAST_NAME
------------------ ----------
AAAAaoAATAAABrXAAA BORTINS
AAAAaoAATAAABrXAAE RUGGLES
AAAAaoAATAAABrXAAG CHEN
AAAAaoAATAAABrXAAN BLUMBERG

An extended rowid has a four-piece format, OOOOOOFFFBBBBBBRRR:

■ OOOOOO: The data object number that identifies the database segment (AAAAao
in the example). Schema objects in the same segment, such as a cluster of tables,
have the same data object number.

■ FFF: The tablespace-relative datafile number of the datafile that contains the
row (file AAT in the example).

■ BBBBBB: The data block that contains the row (block AAABrX in the example).
Block numbers are relative to their datafile, not tablespace. Therefore, two rows
with identical block numbers could reside in two different datafiles of the same
tablespace.

■ RRR: The row in the block.

You can retrieve the data object number from data dictionary views USER_OBJECTS,
DBA_OBJECTS, and ALL_OBJECTS. For example, the following query returns the data
object number for the employees table in the SCOTT schema:

SELECT DATA_OBJECT_ID FROM DBA_OBJECTS
 WHERE OWNER = 'SCOTT' AND OBJECT_NAME = 'EMPLOYEES';

You can also use the DBMS_ROWID package to extract information from an extended
rowid or to convert a rowid from extended format to restricted format (or vice versa).

Restricted Rowids
Restricted rowids use a binary representation of the physical address for each row
selected. When queried using SQL*Plus, the binary representation is converted to a
VARCHAR2/hexadecimal representation. The following query:

SELECT ROWID, last_name FROM employees
 WHERE department_id = 30;

can return the following row information:

ROWID ENAME

See Also: Oracle Database Advanced Application Developer's Guide
for information about the DBMS_ROWID package

Overview of ROWID and UROWID Datatypes

26-16 Oracle Database Concepts

------------------ ----------
00000DD5.0000.0001 KRISHNAN
00000DD5.0001.0001 ARBUCKLE
00000DD5.0002.0001 NGUYEN

As shown, a restricted rowid's VARCHAR2/hexadecimal representation is in a
three-piece format, block.row.file:

■ The data block that contains the row (block DD5 in the example). Block numbers
are relative to their datafile, not tablespace. Two rows with identical block
numbers could reside in two different datafiles of the same tablespace.

■ The row in the block that contains the row (rows 0, 1, 2 in the example). Row
numbers of a given block always start with 0.

■ The datafile that contains the row (file 1 in the example). The first datafile of every
database is always 1, and file numbers are unique within a database.

Examples of Rowid Use
You can use the function SUBSTR to break the data in a rowid into its components. For
example, you can use SUBSTR to break an extended rowid into its four components
(database object, file, block, and row):

SELECT ROWID,
 SUBSTR(ROWID,1,6) "OBJECT",
 SUBSTR(ROWID,7,3) "FIL",
 SUBSTR(ROWID,10,6) "BLOCK",
 SUBSTR(ROWID,16,3) "ROW"
 FROM products;

ROWID OBJECT FIL BLOCK ROW
------------------ ------ --- ------ ----
AAAA8mAALAAAAQkAAA AAAA8m AAL AAAAQk AAA
AAAA8mAALAAAAQkAAF AAAA8m AAL AAAAQk AAF
AAAA8mAALAAAAQkAAI AAAA8m AAL AAAAQk AAI

Or you can use SUBSTR to break a restricted rowid into its three components (block,
row, and file):

SELECT ROWID, SUBSTR(ROWID,15,4) "FILE",
 SUBSTR(ROWID,1,8) "BLOCK",
 SUBSTR(ROWID,10,4) "ROW"
 FROM products;

ROWID FILE BLOCK ROW
------------------ ---- -------- ----
00000DD5.0000.0001 0001 00000DD5 0000
00000DD5.0001.0001 0001 00000DD5 0001
00000DD5.0002.0001 0001 00000DD5 0002

Rowids can be useful for revealing information about the physical storage of a table's
data. For example, if you are interested in the physical location of a table's rows (such
as for table striping), the following query of an extended rowid tells how many
datafiles contain rows of a given table:

SELECT COUNT(DISTINCT(SUBSTR(ROWID,7,3))) "FILES" FROM tablename;

FILES

2

Overview of ROWID and UROWID Datatypes

Oracle Data Types 26-17

How Rowids Are Used
Oracle Database uses rowids internally for the construction of indexes. Each key in an
index is associated with a rowid that points to the associated row's address for fast
access. End users and application developers can also use rowids for several important
functions:

■ Rowids are the fastest means of accessing particular rows.

■ Rowids can be used to see how a table is organized.

■ Rowids are unique identifiers for rows in a given table.

Before you use rowids in DML statements, they should be verified and guaranteed not
to change. The intended rows should be locked so they cannot be deleted. Under some
circumstances, requesting data with an invalid rowid could cause a statement to fail.

You can also create tables with columns defined using the ROWID datatype. For
example, you can define an exception table with a column of datatype ROWID to store
the rowids of rows in the database that violate integrity constraints. Columns defined
using the ROWID datatype behave like other table columns: values can be updated, and
so on. Each value in a column defined as datatype ROWID requires six bytes to store
pertinent column data.

Logical Rowids
Rows in index-organized tables do not have permanent physical addresses—they are
stored in the index leaves and can move within the block or to a different block as a
result of insertions. Therefore their row identifiers cannot be based on physical
addresses. Instead, Oracle provides index-organized tables with logical row identifiers,
called logical rowids, that are based on the table's primary key. Oracle Database uses
these logical rowids for the construction of secondary indexes on index-organized
tables.

Each logical rowid used in a secondary index includes a physical guess, which
identifies the block location of the row in the index-organized table at the time the
guess was made; that is, when the secondary index was created or rebuilt.

Oracle Database can use guesses to probe into the leaf block directly, bypassing the full
key search. This ensures that rowid access of nonvolatile index-organized tables gives
comparable performance to the physical rowid access of ordinary tables. In a volatile
table, however, if the guess becomes stale the probe can fail, in which case a primary
key search must be performed.

The values of two logical rowids are considered equal if they have the same primary
key values but different guesses.

This section includes the following topics:

■ Comparison of Logical Rowids with Physical Rowids

■ Guesses in Logical Rowids

See Also:

■ Oracle Database SQL Language Reference

■ Oracle Database PL/SQL Language Reference

■ Oracle Database Performance Tuning Guide

for more examples using rowids

Overview of ROWID and UROWID Datatypes

26-18 Oracle Database Concepts

Comparison of Logical Rowids with Physical Rowids
Logical rowids are similar to the physical rowids in the following ways:

■ Logical rowids are accessible through the ROWID pseudocolumn.

You can use the ROWID pseudocolumn to select logical rowids from an
index-organized table. The SELECT ROWID statement returns an opaque structure,
which internally consists of the table's primary key and the physical guess (if any)
for the row, along with some control information.

You can access a row using predicates of the form WHERE ROWID = value, where
value is the opaque structure returned by SELECT ROWID.

■ Access through the logical rowid is the fastest way to get to a specific row,
although it can require more than one block access.

■ A row's logical rowid does not change as long as the primary key value does not
change. This is less stable than the physical rowid, which stays immutable through
all updates to the row.

■ Logical rowids can be stored in a column of the UROWID datatype

One difference between physical and logical rowids is that logical rowids cannot be
used to see how a table is organized.

Guesses in Logical Rowids
When a row's physical location changes, the logical rowid remains valid even if it
contains a guess, although the guess could become stale and slow down access to the
row. Guess information cannot be updated dynamically. For secondary indexes on
index-organized tables, however, you can rebuild the index to obtain fresh guesses.
Note that rebuilding a secondary index on an index-organized table involves reading
the base table, unlike rebuilding an index on an ordinary table.

Collect index statistics with the DBMS_STATS package or ANALYZE statement to keep
track of the staleness of guesses, so Oracle Database does not use them unnecessarily.
This is particularly important for applications that store rowids with guesses
persistently in a UROWID column, then retrieve the rowids later and use them to fetch
rows.

When you collect index statistics with the DBMS_STATS package or ANALYZE
statement, Oracle Database checks whether the existing guesses are still valid and
records the percentage of stale/valid guesses in the data dictionary. After you rebuild
a secondary index (recomputing the guesses), collect index statistics again.

In general, logical rowids without guesses provide the fastest possible access for a
highly volatile table. If a table is static or if the time between getting a rowid and using
it is sufficiently short to make row movement unlikely, logical rowids with guesses
provide the fastest access.

Note: An opaque type is one whose internal structure is not
known to the database. The database provides storage for the type.
The type designer can provide access to the contents of the type by
implementing functions, typically 3GL routines.

See Also: "Overview of ROWID and UROWID Datatypes" on
page 26-13

Overview of XML Datatypes

Oracle Data Types 26-19

Rowids in Non-Oracle Databases
Oracle Database applications can be run against non-Oracle database servers using
SQL*Connect. The format of rowids varies according to the characteristics of the
non-Oracle system. Furthermore, no standard translation to VARCHAR2/hexadecimal
format is available. Programs can still use the ROWID datatype. However, they must
use a nonstandard translation to hexadecimal format of length up to 256 bytes.

Rowids of a non-Oracle database can be stored in a column of the UROWID datatype.

Overview of ANSI, DB2, and SQL/DS Datatypes
SQL statements that create tables and clusters can also use ANSI datatypes and
datatypes from IBM's products SQL/DS and DB2. Oracle Database recognizes the
ANSI or IBM datatype name that differs from the Oracle datatype name, records it as
the name of the datatype of the column, and then stores the column's data in an Oracle
datatype based on the conversions.

Overview of XML Datatypes
Oracle provides the XMLType datatype to handle XML data.

XMLType Datatype
XMLType can be used like any other user-defined type. XMLType can be used as the
datatype of columns in tables and views. Variables of XMLType can be used in
PL/SQL stored procedures as parameters, return values, and so on. You can also use
XMLType in PL/SQL, SQL and Java, and through JDBC and OCI.

A number of useful functions that operate on XML content have been provided. Many
of these are provided both as SQL functions and as member functions of XMLType. For
example, function extract extracts a specific node(s) from an XMLType instance. You
can use XMLType in SQL queries in the same way as any other user-defined datatypes
in the system.

See Also: Oracle Database Performance Tuning Guide for more
information about collecting statistics

See Also:

■ Oracle Call Interface Programmer's Guide for details on handling
rowids with non-Oracle systems

■ "Overview of ROWID and UROWID Datatypes" on page 26-13

See Also: Oracle Database SQL Language Reference for more
information about the conversions

See Also:

■ Oracle XML Developer's Kit Programmer's Guide

■ Oracle XML DB Developer's Guide

■ Oracle Streams Advanced Queuing User's Guide for information
about using XMLType with Advanced Queuing

■ Chapter 1, "Introduction to Oracle Database"

Overview of URI Datatypes

26-20 Oracle Database Concepts

Overview of URI Datatypes
A URI, or uniform resource identifier, is a generalized kind of URL. Like a URL, it can
reference any document, and can reference a specific part of a document. It is more
general than a URL because it has a powerful mechanism for specifying the relevant
part of the document. By using UriType, you can do the following:

■ Create table columns that point to data inside or outside the database.

■ Query the database columns using functions provided by UriType.

Overview of Object Datatypes and Object Views
Object types and other user-defined datatypes let you define datatypes that model the
structure and behavior of the data in their applications. An object view is a virtual
object table.

Data Conversion
In some cases, Oracle Database supplies data of one datatype where it expects data of
a different datatype. This is allowed when Oracle Database can automatically convert
the data to the expected datatype.

See Also: Oracle XML DB Developer's Guide

See Also: Oracle Database Object-Relational Developer's Guide

See Also: Oracle Database SQL Language Reference for the rules for
implicit datatype conversions

Glossary-1

Glossary

ADDM

See Automatic Database Diagnostic Monitor (ADDM)

ADR

See Automatic Diagnostic Repository

ADRCI

A command-line tool that is part of the fault diagnosability infrastructure introduced
in Oracle Database 11g.

AFTER trigger

When defining a trigger, you can specify the trigger timing—whether the trigger
action is to be executed before or after the triggering statement.

AFTER triggers execute the trigger action after the triggering statement is run.

BEFORE and AFTER apply to both statement and row triggers.

See also: trigger

architecture

See Oracle architecture

ARCHIVELOG mode

The mode of the database in which Oracle Database copies filled online redo logs to
disk. Specify the mode at database creation or by using the ALTER DATABASE
statement. You can enable automatic archiving either dynamically using the ALTER
SYSTEM statement or by setting the initialization parameter LOG_ARCHIVE_START to
TRUE.

Running the database in ARCHIVELOG mode has several advantages over
NOARCHIVELOG mode. You can:

■ Back up the database while it is open and being accessed by users.

■ Recover the database to any desired point in time.

To protect the ARCHIVELOG mode database in case of failure, back up the archived
logs.

ASM

See Automatic Storage Management (ASM)

Automatic Database Diagnostic Monitor (ADDM)

Glossary-2

Automatic Database Diagnostic Monitor (ADDM)

This lets Oracle Database diagnose its own performance and determine how identified
problems could be resolved. It runs automatically after each AWR statistics capture,
making the performance diagnostic data readily available.

Automatic Diagnostic Repository

The Automatic Diagnostic Repository (ADR) is a systemwide tracing and logging
central repository. The repository is a file-based hierarchical datastore for depositing
diagnostic information, including network tracing and logging information.

Automatic Storage Management (ASM)

A vertical integration of both the file system and the volume manager built specifically
for Oracle Database files. It extends the concept of stripe and mirror everything to
optimize performance, while removing the need for manual I/O tuning.

Automatic Storage Management disk

Storage is added and removed from Automatic Storage Management disk groups in
units of Automatic Storage Management disks.

Automatic Storage Management file

Oracle Database file stored in an Automatic Storage Management disk group. When a
file is created, certain file attributes are permanently set. Among these are its
redundancy level (MIRROR, HIGH, or UNPROTECTED) and its striping policy.
Automatic Storage Management files are not visible from the operating system or its
utilities, but they are visible to database instances, RMAN, and other Oracle-supplied
tools such as ASMCMD.

Automatic Storage Management instance

An Oracle database instance that mounts Automatic Storage Management disk groups
and performs management functions necessary to make Automatic Storage
Management files available to database instances. Automatic Storage Management
instances do not mount databases.

See also: instance

Automatic Storage Management template

Collections of attributes used by Automatic Storage Management during file creation.
Templates simplify file creation by mapping complex file attribute specifications into a
single name. A default template exists for each Oracle Database file type. Users can
modify the attributes of the default templates or create new templates.

automatic undo management mode

A mode of the database in which it automatically manages undo space in a dedicated
undo tablespace. In this mode, the database also automatically tunes the undo
retention period. This is the default mode for new database installations for Oracle
Database 11g and later.

See also: manual undo management mode

Automatic Workload Repository (AWR)

A built-in repository in every Oracle Database. At regular intervals, the Oracle
Database makes a snapshot of all its vital statistics and workload information and
stores them here.

checkpoint

Glossary-3

AWR

See Automatic Workload Repository (AWR)

background process

Background processes consolidate functions that would otherwise be handled by
multiple Oracle programs running for each user process. The background processes
asynchronously perform I/O and monitor other Oracle processes to provide increased
parallelism for better performance and reliability.

Oracle Database creates a set of background processes for each instance.

See also: instance, process, Oracle process, user process

BEFORE trigger

When defining a trigger, you can specify the trigger timing—whether the trigger
action is to be executed before or after the triggering statement.

BEFORE triggers execute the trigger action before the triggering statement is run.

BEFORE and AFTER apply to both statement and row triggers.

See also: trigger

buffer cache

The portion of the SGA that holds copies of Oracle Database data blocks. All user
processes concurrently connected to the instance share access to the buffer cache.

The buffers in the cache are organized in two lists: the dirty list and the least recently
used (LRU) list. The dirty list holds dirty buffers, which contain data that has been
modified but has not yet been written to disk. The least recently used (LRU) list holds
free buffers (unmodified and available), pinned buffers (currently being accessed), and
dirty buffers that have not yet been moved to the dirty list.

See also: system global area (SGA)

byte semantics

The length of string is measured in bytes.

cache recovery

The part of instance recovery where Oracle Database applies all committed and
uncommitted changes in the redo log files to the affected data blocks. Also known as
the rolling forward phase of instance recovery.

character semantics

The length of string is measured in characters.

CHECK constraint

A CHECK integrity constraint on a column or set of columns requires that a specified
condition be true or unknown for every row of the table. If a DML statement results in
the condition of the CHECK constraint evaluating to false, then the statement is rolled
back.

checkpoint

A data structure that defines an SCN in the redo thread of a database. Checkpoints are
recorded in the control file and each datafile header, and are a crucial element of
recovery.

client

Glossary-4

client

In client/server architecture, the front-end database application, which interacts with a
user through the keyboard, display, and pointing device such as a mouse. The client
portion has no data access responsibilities. It concentrates on requesting, processing,
and presenting data managed by the server portion.

See also: client/server architecture, server

client/server architecture

Software architecture based on a separation of processing between two CPUs, one
acting as the client in the transaction, requesting and receiving services, and the other
as the server that provides services in a transaction.

cluster

Optional structure for storing table data. Clusters are groups of one or more tables
physically stored together because they share common columns and are often used
together. Because related rows are physically stored together, disk access time
improves.

column

Vertical space in a database table that represents a particular domain of data. A
column has a column name and a specific datatype. For example, in a table of
employee information, all of the employees' dates of hire would constitute one
column.

See also: row, table

commit

Make permanent changes to data (inserts, updates, deletes) in the database. Before
changes are committed, both the old and new data exist so that changes can be stored
or the data can be restored to its prior state.

See also: rolling back

concurrency

Simultaneous access of the same data by many users. A multiuser database
management system must provide adequate concurrency controls, so that data cannot
be updated or changed improperly, compromising data integrity.

See also: data consistency

connection

Communication pathway between a user process and an Oracle database instance.

See also: session, user process

consistent backup

A whole database backup that you can open with the RESETLOGS option without
performing media recovery. In other words, you do not need to apply redo to datafiles
in this backup for it to be consistent. All datafiles in a consistent backup must:

■ Have the same checkpoint system change number (SCN) in their headers, unless
they are datafiles in tablespaces that are read only or offline normal (in which case
they will have a clean SCN that is earlier than the checkpoint SCN)

■ Contain no changes past the checkpoint SCN, that is, are not fuzzy

■ Match the datafile checkpoint information stored in the control file

datafile copy

Glossary-5

You can only take consistent backups after you have made a clean shutdown of the
database. The database must not be opened until the backup has completed.

See also: inconsistent backup

control file

A file that records the physical structure of a database and contains the database name,
the names and locations of associated databases and redo log files, the time stamp of
the database creation, the current log sequence number, and checkpoint information.

See also: physical structures, redo log

Data Recovery Advisor

An Oracle Database infrastructure that automatically diagnoses persistent data
failures, presents repair options to the user, and executes repairs at the user's request.
The purpose of Data Recovery Advisor is to reduce the mean time to recover (MTTR)
and improve manageability and reliability of Oracle Database by providing a
centralized tool for automated data repair.

database

Collection of data that is treated as a unit. The purpose of a database is to store and
retrieve related information. Each Oracle database instance accesses only one database.

database buffer

One of several types of memory structures that stores information within the system
global area. Database buffers store the most recently used blocks of data.

See also: system global area (SGA)

database buffer cache

Memory structure in the system global area that stores the most recently used blocks
of data.

See also: system global area (SGA)

database link

A named schema object that describes a path from one database to another. Database
links are implicitly used when a reference is made to a global object name in a
distributed database.

database writer process (DBWn)

An Oracle background process that writes the contents of buffers to datafiles. The
DBWn processes are responsible for writing modified (dirty) buffers in the database
buffer cache to disk.

See also: buffer cache

datafile

An Oracle-created physical file on disk that contains data structures such as tables and
indexes. The datafiles contain the database data. A datafile can belong to only one
database, and is located either in an operating system file system or in an Automatic
Storage Management disk group.

See also: index, physical structures

datafile copy

A copy of a datafile on disk produced by either:

data block

Glossary-6

■ The Recovery Manager COPY command

■ An operating system utility

data block

Smallest logical unit of data storage in Oracle Database. Also called logical blocks,
Oracle blocks, or pages. One data block corresponds to a specific number of bytes of
physical database space on disk.

See also: extent, segment

data consistency

In a multiuser environment, where many users can access data at the same time
(concurrency), data consistency means that each user sees a consistent view of the
data, including visible changes made by the user's own transactions and transactions
of other users.

See also: concurrency

data dictionary

The central set of tables and views that are used as a read-only reference about a
particular database. A data dictionary stores such information as:

■ The logical and physical structure of the database

■ Valid users of the database

■ Information about integrity constraints

■ How much space is allocated for a schema object and how much of it is in use

A data dictionary is created when a database is created and is automatically updated
when the structure of the database is updated.

data integrity

Business rules that dictate the standards for acceptable data. These rules are applied to
a database by using integrity constraints and triggers to prevent the entry of invalid
information into tables.

See also: integrity constraint, trigger

data segment

Each nonclustered table has a data segment. All of the table's data is stored in the
extents of its data segment. For a partitioned table, each partition has a data segment.

Each cluster has a data segment. The data of every table in the cluster is stored in the
cluster's data segment.

See also: cluster, extent, segment

dedicated server

A database server configuration in which a server process handles requests for a single
user process.

See also: shared server

define variables

Variables defined (location, size, and datatype) to receive each fetched value.

flash recovery area

Glossary-7

disk group

One or more Automatic Storage Management disks managed as a logical unit.
Automatic Storage Management disks can be added or dropped from a disk group
while preserving the contents of the files in the group, and with only a minimal
amount of automatically initiated I/O required to redistribute the data evenly. All I/O
to a disk group is automatically spread across all the disks in the group.

dispatcher processes (Dnnn)

Optional background processes, present only when a shared server configuration is
used. At least one dispatcher process is created for every communication protocol in
use (D000, . . ., Dnnn). Each dispatcher process is responsible for routing requests from
connected user processes to available shared server processes and returning the
responses back to the appropriate user processes.

See also: shared server

distributed processing

Software architecture that uses more than one computer to divide the processing for a
set of related jobs. Distributed processing reduces the processing load on a single
computer.

DDL

Data definition language. Includes statements like CREATE/ALTER TABLE/INDEX,
which define or change data structure.

DML

Data manipulation language. Includes statements like INSERT, UPDATE, and DELETE,
which change data in tables.

DOP

The degree of parallelism of an operation.

extent

Second level of logical database storage. An extent is a specific number of contiguous
data blocks allocated for storing a specific type of information.

See also: data block, segment

failure group

A subset of disks within an Automatic Storage Management (ASM) disk group that
share a common resource whose failure must be tolerated. Failure groups are used to
determine which ASM disks to use for storing redundant copies of data. For example,
if, in a particular disk group, disks 1 through 4 are on disk controller A and disks 5
through 8 are on disk controller B, disks 1 through 4 can be assigned to failure group
A, and disks 4 through 8 can be assigned to failure group B. For file extents on disks in
failure group A, ASM always stores redundant copies of the extents on disks in failure
group B. This way, if disk controller A fails, there is always at least one copy of every
file extent available. It is up to the storage administrator to define failure groups based
on current storage hardware configuration. If no specific failure group assignments are
made, each disk in a disk group is automatically placed in its own failure group.

flash recovery area

An optional disk location that you can use to store recovery-related files such as
control file and online redo log copies, archived logs, flashback logs, and RMAN

foreign key

Glossary-8

backups. Oracle Database manages the files in the flash recovery area automatically.
You can specify the disk quota, which is the maximum size of the flash recovery area.

foreign key

Integrity constraint that requires each value in a column or set of columns to match a
value in a related table's UNIQUE or PRIMARY KEY.

FOREIGN KEY integrity constraints also define referential integrity actions that dictate
what Oracle Database should do with dependent data if the data it references is
altered.

See also: integrity constraint, primary key

inconsistent backup

A backup in which some of the files in the backup contain changes that were made
after the files were checkpointed. This type of backup needs recovery before it can be
made consistent. Inconsistent backups are usually created by taking online database
backups; that is, the database is open while the files are being backed up. You can also
make an inconsistent backup by backing up datafiles while a database is closed, either:

■ Immediately after an Oracle database instance failed (or all instances in an Oracle
Real Application Clusters configuration)

■ After shutting down the database using SHUTDOWN ABORT

Note that inconsistent backups are only useful if the database is in ARCHIVELOG
mode.

See also: consistent backup, online backup, system change number (SCN), whole
database backup

index

Optional structure associated with tables and clusters. You can create indexes on one
or more columns of a table to speed access to data on that table.

See also: cluster

indextype

An object that registers a new indexing scheme by specifying the set of supported
operators and routines that manage a domain index.

index segment

Each index has an index segment that stores all of its data. For a partitioned index,
each partition has an index segment.

See also: index, segment

initialization parameter file

A text file that contains initialization parameter settings. In contrast to the server
parameter file, this parameter file is not binary and does not need to be located on the
database host. The text-based initialization parameter file can be read by the database
server, but it is not written to by the server. You can use a text editor to alter the file.

instance

A system global area (SGA) and the Oracle Database background processes constitute
an Oracle database instance. Every time a database is started, a system global area is
allocated and Oracle Database background processes are started. The SGA is
deallocated when the instance shuts down.

log writer process (LGWR)

Glossary-9

See also: background process, system global area (SGA), Automatic Storage
Management instance

integrity

See data integrity

integrity constraint

Declarative method of defining a rule for a column of a table. Integrity constraints
enforce the business rules associated with a database and prevent the entry of invalid
information into tables.

key

Column or set of columns included in the definition of certain types of integrity
constraints. Keys describe the relationships between the different tables and columns
of a relational database.

See also: integrity constraint, foreign key, primary key

large pool

Optional area in the system global area that provides large memory allocations for
Oracle Database backup and restore operations, I/O server processes, and session
memory for the shared server and Oracle XA.

See also: system global area (SGA), process, shared server, Oracle XA

logical backups

Backups in which an Oracle export utility uses SQL to read database data and export it
into a binary file at the operating system level. You can then import the data back into
a database using Oracle utilities. Backups taken with Oracle export utilities differ in
the following ways from RMAN backups:

■ Database logical objects are exported independently of the files that contain those
objects.

■ Logical backups can be imported into a different database, even on a different
platform. RMAN backups are not portable between databases or platforms.

See also: physical backups

logical structures

Logical structures of Oracle Database include tablespaces, schema objects, data blocks,
extents, and segments. Because the physical and logical structures are separate, the
physical storage of data can be managed without affecting the access to logical storage
structures.

See also: physical structures

LogMiner

A utility that lets administrators use SQL to read, analyze, and interpret log files. It can
view any redo log file, online or archived. The Oracle Enterprise Manager application
Oracle LogMiner Viewer adds a GUI-based interface.

log writer process (LGWR)

The log writer process (LGWR) is responsible for redo log buffer
management—writing the redo log buffer to a redo log file on disk. LGWR writes all
redo entries that have been copied into the buffer since the last time it wrote.

manual undo management mode

Glossary-10

See also: redo log

manual undo management mode

A mode of the database in which undo blocks are stored in user-managed rollback
segments. In automatic undo management mode, undo blocks are stored in a
system-managed, dedicated undo tablespaces.

See also: automatic undo management mode

materialized view

A materialized view provides access to table data by storing the results of a query in a
separate schema object.

See also: view

mean time to recover (MTTR)

The desired time required to perform instance or media recovery on the database. For
example, you may set 10 minutes as the goal for media recovery from a disk failure. A
variety of factors influence MTTR for media recovery, including the speed of detection,
the type of method used to perform media recovery, and the size of the database.

mounted database

An instance that is started and has the control file associated with the database open.
You can mount a database without opening it; typically, you put the database in this
state for maintenance or for restore and recovery operations.

NOT NULL constraint

Data integrity constraint that requires a column of a table contain no null values.

See also: NULL value

NULL value

Absence of a value in a column of a row. Nulls indicate missing, unknown, or
inapplicable data. A null should not be used to imply any other value, such as zero.

object type

An object type consists of two parts: a spec and a body. The type body always depends
on its type spec.

online backup

A backup of one or more datafiles taken while a database is open and the datafiles are
online. When you make a user-managed backup while the database is open, you must
put the tablespaces in backup mode by issuing an ALTER TABLESPACE BEGIN
BACKUP command. When you make an RMAN backup while the database is open,
however, you do not need to put the tablespaces in backup mode.

online redo log

The online redo log is a set of two or more files that record all changes made to Oracle
Database datafiles and control files. Whenever a change is made to the database,
Oracle Database generates a redo record in the redo buffer. The LGWR process flushes
the contents of the redo buffer into the redo log.

See also: redo log

physical backups

Glossary-11

operator

In memory management, the term operator refers to a data flow operator, such as a
sort, hash join, or bitmap merge.

Oracle architecture

Memory and process structures used by Oracle Database to manage a database.

See also: database, process, server

Oracle Clusterware

 A portable cluster management solution that is integrated with Oracle Real
Application Clusters 10g to monitor and restart Oracle components. Oracle
Clusterware can be programmed to manage and monitor any application running in
the cluster. Within a cluster managed by Oracle Clusterware, you can run both single
instance and Oracle Real Application Clusters databases.

Oracle Enterprise Manager

An Oracle system management tool that provides an integrated solution for centrally
managing your heterogeneous environment. It combines a graphical console, Oracle
Management Servers, Oracle Intelligent Agents, common services, and administrative
tools for managing Oracle products.

Oracle process

Oracle processes run Oracle Database code. They include server processes and
background processes.

See also: process, server process, background process, user process

Oracle RAC

See also: Oracle Real Application Clusters

Oracle Real Application Clusters

Option that allows multiple concurrent instances to share a single physical database.

See also: instance

Oracle XA

The Oracle XA library is an external interface that allows global transactions to be
coordinated by a transaction manager other than Oracle Database.

partition

A smaller and more manageable piece of a table or index. Tables are partitioned based
on a partitioning key. For example, a sales history table may be partitioned by sales
date, and there could be one partition for every calendar quarter. For large tables,
partitions improve query performance and make table administration easier.

physical backups

Physical database files that have been copied from one place to another. The files can
be datafiles, archived redo logs, or control files. You can make physical backups using
Recovery Manager or with operating system commands such as the UNIX cp.

See also: logical backups

physical structures

Glossary-12

physical structures

Physical database structures of Oracle Database include datafiles, redo log files, and
control files.

See also: logical structures

PL/SQL

Oracle's procedural language extension to SQL. PL/SQL enables you to mix SQL
statements with procedural constructs. With PL/SQL, you can define and execute
PL/SQL program units such as procedures, functions, and packages.

See also: SQL

primary key

The column or set of columns included in the definition of a table's PRIMARY KEY
constraint. A primary key's values uniquely identify the rows in a table. Only one
primary key can be defined for each table.

See also: PRIMARY KEY constraint

PRIMARY KEY constraint

Integrity constraint that disallows duplicate values and nulls in a column or set of
columns.

See also: integrity constraint, key

priority inversion

Priority inversion occurs when a high priority job is run with lower amount of
resources than a low priority job. Thus the expected priority is "inverted."

process

Each process in an Oracle database instance performs a specific job. By dividing the
work of Oracle Database and database applications into several processes, multiple
users and applications can connect to a single database instance simultaneously.

See also: Oracle process, user process

program global area (PGA)

A memory buffer that contains data and control information for a server process. A
PGA is created by Oracle Database when a server process is started. The information
in a PGA depends on the Oracle Database configuration.

query block

A self-contained DML against a table. A query block can be a top-level DML or a
subquery.

See also: DML

read consistency

In a multiuser environment, the Oracle Database read consistency ensures that

■ The set of data seen by a statement remains constant throughout statement
execution (statement-level read consistency).

■ Readers and writers of database data do not wait for other writers or other readers
of the same data. Writers of database data wait only for other writers who are
updating identical rows in concurrent transactions.

referential integrity

Glossary-13

See also: concurrency, data consistency

read-only database

A database opened with the ALTER DATABASE OPEN READ ONLY command. As
their name suggests, read-only databases are for queries only and cannot be modified.
Oracle Database allows a standby database to be run in read-only mode, which means
that it can be queried while still serving as an up-to-date emergency replacement for
the primary database.

Recovery Manager (RMAN)

A utility that backs up, restores, and recovers Oracle Databases. You can use it with or
without the central information repository called a recovery catalog. If you do not use
a recovery catalog, RMAN uses the database's control file to store information
necessary for backup and recovery operations. You can use RMAN in conjunction with
a media manager to back up files to tertiary storage.

recovery point objective (RPO)

The maximum amount of data an IT-based organization is willing to lose as a result of
a system failure. RPO is a balance point between the costs of more complete recovery
and the harm done to the organization by loss of data. It indicates the data-loss
tolerance of a business process or an organization in general. It is often measured in
terms of time, such as five hours or two days worth of data loss.

recovery time objective (RTO)

The maximum amount of time that an IT-based organization is willing to be down
after a system failure. RTO is the balance point between the costs of faster recovery
and the costs of downtime to the organization. RTO indicates the downtime tolerance
of a business process or an organization in general.

redo log

A set of files that protect altered database data in memory that has not been written to
the datafiles. The redo log can consist of two parts: the online redo log and the
archived redo log.

See also: online redo log

redo log buffer

Memory structure in the system global area that stores redo entries—a log of changes
made to the database. The redo entries stored in the redo log buffers are written to an
online redo log file, which is used if database recovery is necessary.

See also: system global area (SGA)

redo thread

The redo generated by an instance. If the database runs in a single instance
configuration, then the database has only one thread of redo. If you run in an Oracle
Real Application Clusters configuration, then you have multiple redo threads, one for
each instance.

referential integrity

A rule defined on a key (a column or set of columns) in one table that guarantees that
the values in that key match the values in a key in a related table (the referenced
value). Referential integrity includes the rules that dictate what types of data
manipulation are allowed on referenced values and how these actions affect
dependent values.

RMAN

Glossary-14

See also: key

RMAN

See also: Recovery Manager (RMAN)

rollback segment

Logical database structure created by the database administrator to temporarily store
undo information. Rollback segments store old data changed by SQL statements in a
transaction until it is committed. Oracle has now deprecated this method of storing
undo.

See also: commit, logical structures, segment, automatic undo management mode

rolling back

The use of rollback segments to undo uncommitted transactions applied to the
database during the rolling forward stage of recovery.

See also: commit, rolling forward

rolling forward

The application of redo records or incremental backups to datafiles and control files in
order to recover changes to those files.

See also: rolling back

row

Set of attributes or values pertaining to one entity or record in a table. A row is a
collection of column information corresponding to a single record.

See also: column, table

ROWID

A globally unique identifier for a row in a database. It is created at the time the row is
inserted into a table, and destroyed when it is removed from a table.

schema

Collection of database objects, including logical structures such as tables, views,
sequences, stored procedures, synonyms, indexes, clusters, and database links. A
schema has the name of the user who controls it.

See also: logical structures

segment

Third level of logical database storage. A segment is a set of extents, each of which has
been allocated for a specific data structure, and all of which are stored in the same
tablespace.

See also: extent, data block

sequence

A sequence generates a serial list of unique numbers for numeric columns of a
database's tables.

server

In a client/server architecture, the computer that runs Oracle software and handles the
functions required for concurrent, shared data access. The server receives and
processes the SQL and PL/SQL statements that originate from client applications.

SQL*Plus

Glossary-15

See also: client, client/server architecture

server parameter file

A binary file containing initialization parameter settings that is maintained on the
Oracle Database host. You cannot manually edit this file with a text editor. A server
parameter file is initially built from a text initialization parameter file by means of the
CREATE SPFILE statement or created directly with the Database Configuration
Assistant.

server process

Server processes handle requests from connected user processes. A server process is in
charge of communicating with the user process and interacting with Oracle Database
to carry out requests of the associated user process.

See also: process, user process

service level agreement (SLA)

An agreement between a service provider and a service consumer, usually specifying
what service is provided, maximum allowable interruptions in service, who will
measure service delivery, and what happens if the provider fails to meet the terms of
the agreement.

session

Specific connection of a user to an Oracle database instance through a user process. A
session lasts from the time the user connects until the time the user disconnects or exits
the database application.

See also: connection, instance, user process

shared pool

Portion of the system global area that contains shared memory constructs such as
shared SQL areas. A shared SQL area is required to process every unique SQL
statement submitted to a database.

See also: system global area (SGA), SQL

shared server

A database server configuration that allows many user processes to share a small
number of server processes, minimizing the number of server processes and
maximizing the use of available system resources.

See also: dedicated server

SQL

Structured Query Language, a nonprocedural language to access data. Users describe
in SQL what they want done, and the SQL language compiler automatically generates
a procedure to navigate the database and perform the task. Oracle SQL includes many
extensions to the ANSI/ISO standard SQL language.

See also: SQL*Plus, PL/SQL

SQL*Plus

Oracle tool used to run SQL statements against Oracle Database.

See also: SQL, PL/SQL

standby database

Glossary-16

standby database

A copy of a production database that you can use for disaster protection. You can
update the standby database with archived redo logs from the production database in
order to keep it current. If a disaster destroys the production database, you can
activate the standby database and make it the new production database.

subtype

In the hierarchy of user-defined datatypes, a subtype is always a dependent on its
supertype.

supertype

See: subtype

synonym

An alias for a table, view, materialized view, sequence, procedure, function, package,
type, Java class schema object, user-defined object type, or another synonym.

system change number (SCN)

A stamp that defines a committed version of a database at a point in time. Oracle
Database assigns every committed transaction a unique SCN.

system global area (SGA)

A group of shared memory structures that contain data and control information for
one Oracle database instance. If multiple users are concurrently connected to the same
instance, then the data in the instance's SGA is shared among the users. Consequently,
the SGA is sometimes referred to as the shared global area.

See also: instance

table

Basic unit of data storage in Oracle Database. Table data is stored in rows and
columns.

See also: column, row

tablespace

A database storage unit that groups related logical structures together.

See also: logical structures

tempfile

A file that belongs to a temporary tablespace, and is created with the TEMPFILE
option. Temporary tablespaces cannot contain permanent database objects such as
tables, and are typically used for sorting.

temporary segment

Temporary segments are created by Oracle Database when a SQL statement needs a
temporary database area to complete execution. When the statement finishes
execution, the temporary segment's extents are returned to the system for future use.

See also: extent, segment

transaction

Logical unit of work that contains one or more SQL statements. All statements in a
transaction are committed or rolled back together.

whole database backup

Glossary-17

See also: commit, rolling back

transaction recovery

Transaction recovery involves rolling back all uncommitted transactions of a failed
instance. These are "in-progress" transactions that did not commit and that Oracle
Database must undo. It is possible for uncommitted transactions to get saved to disk.
In this case, Oracle Database uses undo data to reverse the effects of any changes that
were written to the datafiles but not yet committed.

trigger

Stored database procedure automatically invoked whenever a table or view is
modified, for example by INSERT, UPDATE, or DELETE operations.

Unicode

A way of representing all the characters in all the languages in the world. Characters
are defined as a sequence of codepoints, a base codepoint followed by any number of
surrogates. There are 64K codepoints.

Unicode column

A column of type NCHAR, NVARCHAR2, or NCLOB guaranteed to hold Unicode.

UNIQUE KEY constraint

A data integrity constraint requiring that every value in a column or set of columns
(key) be unique—that is, no two rows of a table have duplicate values in a specified
column or set of columns.

See also: integrity constraint, key

user name

The name by which a user is known to Oracle Database and to other users. Every user
name is associated with a password, and both must be entered to connect to Oracle
Database.

user process

User processes execute the application or Oracle tool code.

See also: process, Oracle process

UTC

Coordinated Universal Time, previously called Greenwich Mean Time, or GMT.

view

A view is a custom-tailored presentation of the data in one or more tables. A view can
also be thought of as a "stored query." Views do not actually contain or store data; they
derive their data from the tables on which they are based.

Like tables, views can be queried, updated, inserted into, and deleted from, with some
restrictions. All operations performed on a view affect it's base tables.

whole database backup

A backup of the control file and all datafiles that belong to a database.

whole database backup

Glossary-18

Index-1

Index

A
ABORT option

SHUTDOWN statement, 15-4
access control, 20-12

discretionary, definition, 1-30
fine-grained access control, 20-16
password encryption, 20-6
privileges, 20-12
roles, definition, 20-2

ACMS processes, 9-10
administrator privileges, 12-2
ADR

See Automatic Diagnostic Repository
Advanced Queuing, 9-9

event publication, 22-10
publish-subscribe support, 22-10
queue monitor process, 9-9

advisor framework, 14-7
advisors

Buffer Cache Advisor, 14-10
Java Pool Advisor, 14-11
Logfile Size Advisor, 14-17
memory, 14-10
MTTR Advisor, 14-17
Segment Advisor, 14-7, 14-14
Shared Pool Advisor, 14-10
SQL Access Advisor, 14-7, 14-9, 16-9, 18-7
SQL Tuning Advisor, 14-7, 14-9
Streams Pool Advisor, 14-11
Undo Advisor, 14-7

AFTER triggers, 22-7
defined, 22-7

alert log, 9-12
definition, 1-5
redo logs, 9-8

alias
qualifying subqueries (inline views), 5-17

ALL_ views, 7-4
ALL_UPDATABLE_COLUMNS view, 5-17
ALTER SESSION statement, 24-4

SET CONSTRAINTS DEFERRED clause, 21-16
transaction isolation level, 13-6

ALTER statement, 24-3
ALTER SYSTEM statement, 24-4

ARCHIVE ALL option

using to archive online redo logs, 15-5
dynamic parameters

LOG_ARCHIVE_MAX_PROCESSES, 9-6
ALTER TABLE statement

CACHE clause, 8-4
DEALLOCATE UNUSED clause, 2-12
disable or enable constraints, 21-2
triggers, 22-4
validate or novalidate constraints, 21-2

ALTER USER statement
temporary segments, 2-15

American National Standards Institute (ANSI)
datatypes

conversion to Oracle datatypes, 26-19
ANALYZE statement

shared pool, 8-6
anonymous PL/SQL blocks, 25-6, 25-12

applications, 25-8
contrasted with stored procedures, 25-12
dynamic SQL, 25-9
performance, 25-13

ANSI SQL standard
datatypes of, 26-19

ANSI/ISO SQL standard
data concurrency, 13-2
isolation levels, 13-8

application administrators, 20-22
application context, 20-20
application developers

privileges for, 20-21
roles for, 20-22

applications
context, 20-17
data dictionary references, 7-3
data warehousing, 5-33
database access through, 9-1
dependencies of, 6-11, 6-12
enhancing security with, 20-14
online transaction processing (OLTP)

reverse key indexes, 5-32
processes, 9-3
program interface and, 9-21
roles and, 20-15
security

application context, 20-17
sharing code, 8-14

Index-2

transaction termination and, 4-4
ARBn process, 9-11
archived redo log files

definition, 1-5
archived redo logs

ALTER SYSTEM ARCHIVE ALL statement, 15-5
backups, 15-6

ARCHIVELOG mode
archiver process (ARCn) and, 9-6

archiver process (ARCn)
described, 9-5
multiple processes, 9-6

archiving
after inconsistent closed backups, 15-5
after online backups, 15-5
ALTER SYSTEM ARCHIVE ALL statement, 15-5

ARCn background process, 9-5
array processing, 24-10
ASM

See Automatic Storage management
atomic control file to memory service process 0

See ACMS
AUDIT statement, 24-3

locks, 13-23
auditing

audit options, 20-23
audit records, 20-24
audit trails, 20-24

database, 20-24
operating system, 20-25

database and operating-system user names, 20-5
described, 20-23
distributed databases and, 20-24
fine-grained, 20-18
policies for, 20-22
privilege use, 20-23
range of focus, 20-23
schema object, 20-24
security and, 20-25
statement, 20-23
transaction independence, 20-26
when options take effect, 20-26

authenticating database administrators
operating system authentication, 20-8
password file authentication, 20-8
strong authentication, 20-8

authentication
database administrators, 20-8
described, 20-4
multitier, 20-7
network, 20-5
operating system, 20-5
Oracle, 20-6
password policy, 20-20
public key infrastructure, 20-5
remote, 20-6
users, 20-19

Automatic Database Diagnostic Monitor, 1-19, 14-8
Automatic Diagnostic repository, 14-6
automatic maintenance tasks, 1-17, 14-4

automatic memory management, 1-18, 8-12
automatic segment space management, 2-5
automatic shared memory management, 8-12
Automatic SQL Tuning Advisor, 14-9
Automatic Storage Management, 14-14

disk groups, 14-15
Automatic Storage Management (ASM)

failure groups, 17-6
high availability against storage failures, 17-6

automatic undo management, 2-16, 14-11
Automatic Workload Repository

about, 14-4
baselines, 14-4
snapshot, 14-4

AutoTask, 14-4
availability

definition, 17-1

B
back-end of client/server architecture, 10-1
background processes, 9-4

described, 9-4
diagrammed, 9-4
MMON, 9-11
trace files for, 9-12

backing out a transaction, 17-8
backup mode, 15-5
backups

archived redo log, 15-6
control files, 15-6
datafile, 15-4
inconsistent

whole database, 15-4
online datafiles, 15-5
online tablespaces, 15-5
overview, 1-20
whole database, 15-3

base tables
definition, 1-8

BEFORE triggers, 22-6
defined, 22-6

BFILE datatype, 26-12
bigfile tablespaces, 1-7, 3-5

benefits, 3-5
considerations, 3-6

binary data
BFILEs, 26-12
BLOBs, 26-12
RAW and LONG RAW, 26-13

BINARY_DOUBLE datatype, 26-8
BINARY_FLOAT datatype, 26-8
bitmap indexes, 1-24, 5-32, 16-9

cardinality, 5-33
nulls and, 5-8, 5-35
parallel query and DML, 5-33, 16-10

bitmap tablespace management, 3-9
bitmaps

to manage free space, 2-5
BLOBs (binary large objects), 26-12

Index-3

block recovery
using Flashback logs

Flashback technologies
block recovery using Flashback

logs, 17-9
block recovery using Flashback logs, 17-9
blocking transactions, 13-8
block-level recovery, 13-17
blocks

anonymous, 25-6, 25-12
database, 2-3

BOOLEAN datatype, 26-2
branch blocks, 5-29
B-tree indexes, 5-28

compared with bitmap indexes, 5-32, 5-34
index-organized tables, 5-36

buff, 9-6
Buffer Cache Advisor, 14-10
buffer caches, 8-3

database, 8-3, 9-6
buffers

database buffer cache
incremental checkpoint, 9-7

redo log, 8-4
business rules

enforcing in application code, 21-4
enforcing using stored procedures, 21-4
enforcing with constraints

advantages of, 21-4
byte semantics, 26-3

C
CACHE clause, 8-4
Cache Fusion, 13-5
cache, query result, 1-16
caches, 1-16

buffer, 8-3
cache hit, 8-3
cache miss, 8-3
data dictionary, 7-3, 8-7

location of, 8-4
library cache, 8-4, 8-5, 8-7
object cache, 25-2, 25-5
private SQL area, 8-5
shared SQL area, 8-4, 8-5

calls
Oracle call interface, 9-21

cannot serialize access, 13-8
cardinality, 5-33
CASCADE actions

DELETE statements and, 21-10
cascading invalidation, 6-5
century, 26-10
certificate authority, 20-6
chaining of rows, 2-5, 5-5
Change Data Capture, 16-8, 23-10
CHAR datatype, 26-2

blank-padded comparison semantics, 26-3
character semantics, 26-3

character sets
CLOB and NCLOB datatypes, 26-12
column lengths, 26-3
NCHAR and NVARCHAR2, 26-5

check constraints, 21-12
checking mechanism, 21-14
defined, 21-12
multiple constraints on a column, 21-13
subqueries prohibited in, 21-13

checkpoint process (CKPT), 9-6
checkpoints

checkpoint process (CKPT), 9-6
control files and, 3-18
DBWn process, 9-6, 9-7
incremental, 9-7
statistics on, 9-6

CKPT background process, 9-6
client result cache, 8-7
clients

in client/server architecture, definition, 1-2
client/server architectures, 10-1

definition, 1-2
diagrammed, 10-1
distributed processing in, 10-1
overview of, 10-1
program interface, 9-21

CLOB datatype, 26-12
clone databases

mounting, 12-6
cluster keys, 5-42
CLUSTER_DATABASE parameter, 12-5
clustered computer systems

Oracle Real Application Clusters, 12-2
clusters

cannot be partitioned, 18-1
definition, 1-9
dictionary locks and, 13-24
hash, 5-42

contrasted with index, 5-42
index

contrasted with hash, 5-42
indexes on, 5-23

cannot be partitioned, 18-1
keys, 5-42

affect indexing of nulls, 5-8
overview of, 5-41
scans of, 8-4
storage parameters of, 5-5

coalescing extents, 2-12
coalescing free space

extents
SMON process, 9-10

within data blocks, 2-5
collections

index-organized tables, 5-38
key compression, 5-32

columns
cardinality, 5-33
default values for, 5-9
described, 5-3

Index-4

integrity constraints, 5-3, 5-9, 21-5
maximum in concatenated indexes, 5-25
maximum in view or table, 5-14
nested tables, 5-10
order of, 5-7
prohibiting nulls in, 21-5
pseudocolumns

ROWID, 26-14
COMMENT statement, 24-3
COMMIT comment

deprecation of, 4-7
COMMIT statement, 24-4

ending a transaction, 4-1
fast commit, 9-8
implied by DDL, 4-1
two-phase commit, 4-8

committing transactions
defined, 4-1
fast commit, 9-8
group commits, 9-9
implementation, 9-8

compiled PL/SQL
advantages of, 25-12
procedures, 25-12
pseudocode, 22-13
shared pool, 25-7
triggers, 22-13

complete recovery, 15-14
definition, 15-14

composite indexes, 5-24
COMPRESS, 19-3
compression, index key, 5-30
concatenated indexes, 5-24
concurrency

data, definition, 1-15
described, 13-1
limits on

for each user, 20-11
transactions and, 13-13

configuration of a database
process structure, 9-2

configuring
parameter file, 12-3
process structure, 9-1

connection pooling, 20-8
connections

defined, 9-3
embedded SQL, 24-4
listener process and, 9-15, 10-6
restricting, 12-5
sessions contrasted with, 9-3
with administrator privileges, 12-2

consistency
read consistency, definition, 1-15

constants
in stored procedures, 25-8

constraints
CHECK, 21-12
default values and, 21-15
defined, 5-3

DELETE CASCADE, 21-10
enforced with indexes, 5-25

PRIMARY KEY, 21-7
FOREIGN KEY, 21-7
integrity

types listed, 1-31
integrity, definition, 1-31
mechanisms of enforcement, 21-13
NOT NULL, 21-5
on views, 5-19
PRIMARY KEY, 21-6
referential

effect of updates, 21-9
self-referencing, 21-9

triggers cannot violate, 22-12
triggers contrasted with, 22-3
UNIQUE key, 21-6

partially null, 21-6
what happens when violated, 21-3
when evaluated, 5-9

contention
for data

deadlocks, 13-15
lock escalation does not occur, 13-14

control files, 3-17
backups, 15-6
changes recorded, 3-17
checkpoints and, 3-18
contents, 3-17
definition, 1-4
how specified, 12-3
multiplexed, 3-18
overview, 3-17
used in mounting database, 12-5

converting data
program interface, 9-21

correlation names
inline views, 5-17

CPU time limit, 20-10
crash recovery

overview, 12-7
crash recovery time

bounding database, 17-4
CREATE CLUSTER statement

storage parameters, 2-14
CREATE INDEX statement

storage parameters, 2-14
temporary segments, 2-15

CREATE PACKAGE statement
locks, 13-23

CREATE PROCEDURE statement
locks, 13-23

CREATE statement, 24-3
CREATE SYNONYM statement

locks, 13-23
CREATE TABLE statement

CACHE clause, 8-4
enable or disable constraints, 21-2
locks, 13-23
storage parameters, 2-14

Index-5

triggers, 22-4
CREATE TEMPORARY TABLE statement, 5-10
CREATE TRIGGER statement

compiled and stored, 22-13
locks, 13-23

CREATE USER statement
temporary segments, 2-15

CREATE VIEW statement
locks, 13-23

cursors
and SQL areas, 8-10
creating, 24-9
defined, 24-5
embedded SQL, 24-4
maximum number of, 24-5
object dependencies and, 6-20
opening, 24-5
private SQL areas and, 8-10, 24-5
recursive, 24-5
recursive SQL and, 24-5
scrollable, 24-5
stored procedures and, 25-8

D
data

access to
concurrent, 13-1
fine-grained access control, 20-16

concurrency, definition, 1-15
consistency of

locks, 13-2
manual locking, 13-25
read consistency, definition, 1-15
repeatable reads, 13-5
transaction level, 13-5
underlying principles, 13-13

how stored in tables, 5-4
integrity of, 5-3

CHECK constraints, 21-12
locks on, 13-16
security of, 20-19

data block corruption
prevention and detection, 17-11

data blocks, 2-1
cached in memory, 9-6
coalescing free space in blocks, 2-5
controlling free space in, 2-6
definition, 1-6
format, 2-3
free lists and, 2-9
overview, 2-2
row directory, 5-6
shared in clusters, 5-41
shown in rowids, 26-15, 26-16
space available for inserted rows, 2-9
stored in the buffer cache, 8-3
writing to disk, 9-6

data conversion
program interface, 9-21

data corruption
lost writes, 17-11

data definition language
definition, 1-35
described, 24-3
embedding in PL/SQL, 25-9
locks, 13-22
parsing with DBMS_SQL, 25-9
processing statements, 24-11

data dictionary
access to, 7-2
ALL prefixed views, 7-4
cache, 8-7

location of, 8-4
content of, 7-1, 8-7
datafiles, 3-6
DBA prefixed views, 7-5
defined, 7-1
dictionary managed tablespaces, 3-10
DUAL table, 7-5
dynamic performance tables, 7-5
locks, 13-22
owner of, 7-2
prefixes to views of, 7-4
public synonyms for, 7-3
row cache and, 8-7
structure of, 7-2
SYSTEM tablespace, 3-6, 7-1, 7-3
USER prefixed views, 7-4
uses of, 7-2

data failures
overview of storage failures, 17-6
protecting against human errors, 17-7
protection against, 17-5

data integrity, 21-1
complex integrity checking, 21-2
enforcing, 21-2, 21-4
null rule, 21-1
primary keys, 21-1
referential integrity rules, 21-2

cascade, 21-2
no action, 21-2
restrict, 21-2
set to default, 21-2
set to null, 21-2

unique column values, 21-1
data loading

with external tables, 5-12
data locks

conversion, 13-14
duration of, 13-13
escalation, 13-14

data manipulation language
definition, 1-35
described, 24-2
locks acquired by, 13-21
processing statements, 24-8
serializable isolation for subqueries, 13-11
triggers and, 1-32, 22-2, 22-13

data mining, 16-16

Index-6

algorithms, 16-17
APIs, 16-16
documentation, 16-17
models, 16-16
new features, 16-16
predictive analytics, 16-16
SQL functions, 16-16
supermodel, 16-16

data object number
extended rowid, 26-15

Data Pump Export, 11-2
dump file set, 11-2

Data Pump Import, 11-2
Data Recovery Advisor, 15-9

diagnosing data corruption, 17-11
data security

definition, 1-30
data segments, 2-14, 5-4
data warehouse, 16-2
data warehousing

architecture, 16-3
bitmap indexes, 5-33
dimension schema objects, 5-20
ETL, 1-24
hierarchies, 5-20
materialized views, 1-24, 5-18
OLAP, 1-24
summaries, 5-18

database
bounding database crash recovery time, 17-4
staging, 16-2

database administrators
application administrator versus, 20-22
roles

for security, 20-21
security for, 20-21
security officer versus, 20-18

database administrators (DBAs)
authentication, 20-8
data dictionary views, 7-5
password files, 20-8

database buffers
after committing transactions, 4-5
buffer cache, 8-3
clean, 9-6
committing transactions, 9-8
defined, 8-3
dirty, 9-6
free, 8-3
pinned, 8-3
writing of, 9-6

Database Change Notification, 23-10
Database Creation Assistant, 14-2
database object metadata, 7-5
database objects

comparing, 23-13
Database Replay, 1-13
database resident connection pooling

described, 9-18
Database Resource Manager

introduction, 14-18
terminology, 14-19

database resource manager
See also DBRM

database structures
control files, 3-17
data blocks, 2-1, 2-3
data dictionary, 7-1
datafiles, 3-1, 3-15
extents, 2-1, 2-10
memory, 8-1
processes, 9-1
revealing with rowids, 26-16
schema objects, 5-2
segments, 2-1, 2-13
tablespaces, 3-1, 3-4

database triggers, 22-1
Database Upgrade Assistant, 14-2
database writer process (DBWn), 9-6

checkpoints, 9-7
defined, 9-6
least recently used algorithm (LRU), 9-6
media failure, 15-8
multiple DBWn processes, 9-6
when active, 9-6
write-ahead, 9-8
writing to disk at checkpoints, 9-6

databases
access control

password encryption, 20-6
clone database, 12-6
closing, 12-11

terminating the instance, 12-11
distributed

changing global database name, 8-6
incarnations, 15-14
limitations on usage, 20-9
mounting, 12-5
name stored in control files, 3-17
open and closed, 12-2
opening, 12-6
opening read-only, 12-9
production, 20-21, 20-22
scalability, 10-3, 16-10
shutting down, 12-10
starting up, 12-1

forced, 12-11
structures

control files, 3-17
data blocks, 2-1, 2-3
data dictionary, 7-1
datafiles, 3-1, 3-15
extents, 2-1, 2-10
logical, 2-1
memory, 8-1
processes, 9-1
revealing with rowids, 26-16
schema objects, 5-2
segments, 2-1, 2-13
tablespaces, 3-1, 3-4

Index-7

test, 20-21
datafiles

backing up, 15-4
contents of, 3-15
data dictionary, 3-6
datafile 1, 3-6

SYSTEM tablespace, 3-6
definition, 1-4
in online or offline tablespaces, 3-16
named in control files, 3-17
online backups, 15-5
overview of, 3-15
read-only, 3-12
relationship to tablespaces, 3-1
shown in rowids, 26-15, 26-16
SYSTEM tablespace, 3-6
taking offline, 3-16
temporary, 3-16

datatypes, 1-38, 26-1
ANSI, 26-19
BOOLEAN, 26-2
CHAR, 26-2
character, 26-2, 26-12
classes of, 6-16
conversions of

by program interface, 9-21
non-Oracle types, 26-19
Oracle to another Oracle type, 26-20

DATE, 26-8
DB2, 26-19
how they relate to tables, 5-3
in PL/SQL, 26-2
list of available, 1-38, 26-1
LOB datatypes, 1-27, 26-11

BFILE, 26-12
BLOB, 26-12
CLOB and NCLOB, 26-12

LONG, 26-5
storage of, 5-7

NCHAR and NVARCHAR2, 26-5
nested tables, 5-10
NUMBER, 26-6
RAW and LONG RAW, 26-13
ROWID, 26-13, 26-14
SQL/DS, 26-19
TIMESTAMP, 26-10
TIMESTAMP WITH LOCAL TIME ZONE, 26-10
TIMESTAMP WITH TIME ZONE, 26-10
URI, 26-20
VARCHAR, 26-3
VARCHAR2, 26-3
XML, 26-19

DATE datatype, 26-8
arithmetic with, 26-9
changing default format of, 26-8
Julian dates, 26-9
midnight, 26-8

DATETIME datatypes, 26-10
daylight savings support, 26-10
DB_BLOCK_SIZE initialization parameter, 3-11

DB_NAME parameter, 3-17
DBA_ views, 7-5
DBA_FLASHBACK_TRANSACTION_STATE

view, 17-8
DBA_UPDATABLE_COLUMNS view, 5-17
DBMS_COMPARISON package, 23-13
DBMS_FLASHBACK.TRANSACTION_BACKOUT()

procedure, 17-8
DBMS_LOCK package, 13-26
DBMS_RLS package

security policies, 20-16
DBMS_SQL package, 25-9

parsing DDL statements, 25-9
DBRM processes, 9-10
DBWn background process, 9-6
DDL. See data definition language (DDL)
deadlocks

avoiding, 13-16
defined, 13-15
detection of, 13-15
distributed transactions and, 13-15

deallocating extents, 2-11
decision support systems (DSS)

materialized views, 5-18
dedicated servers, 9-16

compared with shared servers, 9-12
DEDUPLICATE, 19-3
default access driver

for external tables, 5-12
default tablespace

definition, 20-2
default temporary tablespaces, 3-8

specifying, 3-8
default values, 5-9

constraints effect on, 21-15
deferred constraints

deferrable or nondeferrable, 21-15
initially deferred or immediate, 21-15

define phase of query processing, 24-10
define variables, 24-10
degree of parallelism

parallel SQL, 16-11
DELETE CASCADE constraint, 21-10
DELETE statement, 24-2

foreign key references, 21-10
freeing space in data blocks, 2-5
triggers, 22-4

denormalized tables, 5-20
dependencies, 6-1

between schema objects, 6-1
function-based indexes, 5-27
on nonexistence of other objects, 6-11
privileges and, 6-8
shared pool and, 6-20
timestamp model, 6-13

describe phase of query processing, 24-9
DETERMINISTIC functions

function-based indexes, 5-27
developers, application, 20-21
development languages, 25-1

Index-8

development tools
SQL Developer, 1-18
SQL*Plus, 1-18

DIA0 processes, 9-10
DIAG processes, 9-10
diagnosability process

See DIAG
diagnosability process 0

See DIA0
diagnosis

problem, 1-20
dictionary cache locks, 13-25
dictionary managed tablespaces, 3-10
different-row writers block writers, 13-8
dimensions, 5-20

attributes, 5-20
hierarchies, 5-20

join key, 5-20
normalized or denormalized tables, 5-20

directory service
See also enterprise directory service.

dirty buffer
incremental checkpoint, 9-7

dirty read, 13-2, 13-8
dirty write, 13-8
DISABLED indexes, 5-27
discretionary access control, 20-1

definition, 1-30
disk affinities

disabling with large-scale clusters, 18-8
disk failures, 15-7
disk space

controlling allocation for tables, 5-4
datafiles used to allocate, 3-15

dispatcher processes
described, 9-15

dispatcher processes (Dnnn)
limiting SGA space for each session, 20-11
listener process and, 9-15
network protocols and, 9-15
prevent startup and shutdown, 9-16
response queue and, 9-13
user processes connect through Oracle Net

Services, 9-13, 9-15
distributed databases

auditing and, 20-24
client/server architectures and, 10-1
deadlocks and, 13-15
job queue processes, 9-7
recoverer process (RECO) and, 9-9
remote dependencies, 6-11, 6-12
server can also be client in, 10-1

distributed processing environment
client/server architecture in, 10-1
data manipulation statements, 24-8
definition, 1-2
described, 10-1
materialized views (snapshots), 5-18

distributed SQL, 23-1, 23-2
distributed transactions

naming, 4-7
two-phase commit and, 4-8

DML. See data manipulation language (DML)
downtime

avoiding during planned maintenance, 17-16
avoiding during unplanned maintenance, 17-2
causes, 17-2

drivers, 9-21
DROP statement, 24-3
DROP TABLE statement

triggers, 22-4
DUAL table, 7-5
dynamic partitioning, 16-11
dynamic performance tables (V$ tables), 7-5
dynamic predicates

in security policies, 20-17
dynamic SQL

DBMS_SQL package, 25-9
embedded, 25-9

E
editing stored outlines, 24-13
embedded SQL, 24-4

dynamic SQL in PL/SQL, 25-9
EMNC processes, 9-10
ENCRYPT, 19-3
enterprise directory service, 20-21
Enterprise Grids

with Oracle Real Application Clusters, 17-3
Enterprise Manager

alert log, 9-12
checkpoint statistics, 9-6
executing a package, 25-15
executing a procedure, 25-11
lock and latch monitors, 13-24
PL/SQL, 25-8
shutdown, 12-11
SQL statements, 24-1
startup, 1-12, 12-4
statistics monitor, 20-12

enterprise roles, 20-21
enterprise users, 20-21
errors

in embedded SQL, 24-4
tracked in trace files, 9-12

ETL. See extraction, transformation, and loading
(ETL), 1-24, 16-5

event monitor coordinator process
See EMNC

exceptions
raising, 25-8
stored procedures and, 25-8

exclusive locks
row locks (TX), 13-17
RX locks, 13-19
table locks (TM), 13-17

execution plans, 24-12
EXPLAIN PLAN, 24-2
location of, 8-5

Index-9

EXPLAIN PLAN statement, 24-2
explicit locking, 13-25
extended rowid format, 26-15
extents

allocating, 2-11
as collections of data blocks, 2-10
coalescing, 2-12
deallocation

when performed, 2-11
defined, 2-2
definition, 1-6
dictionary managed, 3-10
incremental, 2-10
locally managed, 3-9
materialized views, 2-13
overview of, 2-10

external procedures, 25-13
external tables

parallel access, 5-13
extraction, transformation, and loading (ETL), 1-24,

16-5
overview, 1-24, 16-5

F
failure groups

ASM, 17-6
failures

database buffers and, 12-7
instance

recovery from, 12-7, 12-11
internal errors

tracked in trace files, 9-12
media, 15-7
statement and process, 9-9

fast commit, 9-8
fast refresh, 5-19
fast-start

rollback on demand, 12-9
FBDA process, 9-11
features

new, 1-25
fetching rows in a query, 24-10

embedded SQL, 24-4
file management locks, 13-25
files

ALERT and trace files, 9-12
alert log, 9-8
initialization parameter, 1-12, 12-3, 12-4
password, 20-8

administrator privileges, 12-2
server parameter, 1-12, 12-3, 12-4
trace files, 9-8

filtering data
using Data Pump import, 11-2

fine-grained access control, 20-16, 20-20
fine-grained auditing, 20-18
fixed views, 7-5
flash recovery area, 15-2

description, 1-23

Flashback Data Archive, 17-9
flashback data archiver process

See FBDA
Flashback Query, 13-26

overview, 13-26
uses, 13-28

Flashback row history, 13-27
Flashback technology

block recovery using Flashback logs, 17-9
Flashback Transaction

description, 17-8
Flashback transaction history, 13-27
floating-point numbers

datatypes, 26-7
foreign key constraints

changes in parent key values, 21-9
constraint checking, 21-14
deleting parent table rows and, 21-10
maximum number of columns in, 21-8
nulls and, 21-9
updating parent key tables, 21-9
updating tables, 21-10, 21-11

fractional seconds, 26-10
free lists, 2-9
free space

automatic segment space management, 2-5
coalescing extents

SMON process, 9-10
coalescing within data blocks, 2-5
free lists, 2-9
managing, 2-5
section of data blocks, 2-4

free space management, 14-12
in-segment, 2-5

front-ends, 10-1
full table scans

LRU algorithm and, 8-4
parallel exe, 16-11

function-based indexes, 5-26
dependencies, 5-27
DISABLED, 5-27
privileges, 5-27
UNUSABLE, 5-27

functions
function-based indexes, 5-26
PL/SQL, 25-9

contrasted with procedures, 25-9
DETERMINISTIC, 5-27

SQL
COUNT, 5-35
in CHECK constraints, 21-13
in views, 5-16
NVL, 5-8

G
Generic Connectivity, 23-2, 23-14
global database names

shared pool and, 8-6
global partitioned indexes

Index-10

maintenance, 18-5
global transaction processes

See GTX0-j
Globalization Development Kit, 1-39
globalization support

character sets for, 26-3
CHECK constraints and, 21-13
NCHAR and NVARCHAR2 datatypes, 26-5
NCLOB datatype, 26-12
views and, 5-16

GRANT statement, 24-3
locks, 13-23

Grid computing
architecture, 17-1

GROUP BY clause
temporary tablespaces, 3-13

group commits, 9-9
GTX0-j processes, 9-11
guesses in logical rowids, 26-17

staleness, 26-18
statistics for, 26-18

H
handles for SQL statements, 8-10
hash clusters, 5-42

contrasted with index, 5-42
headers

of data blocks, 2-4
of row pieces, 5-5

Health Monitor, 15-9
hierarchies, 5-20

join key, 5-20
levels, 5-20

high availability solution
characteristics, 17-1

high water mark
definition, 2-2

hot backups
inconsistent whole database backups, 15-4

human errors
guarding against human errors, 17-7
protecting against, 17-7

I
immediate constraints, 21-15
incarnations

of databases, 15-14
incident packaging service, 14-6
incomplete media recovery

definition, 15-14
incomplete recovery, 15-14
inconsistent backups

whole database
definition, 15-4

incremental checkpoint, 9-7
incremental refresh, 5-19
index segments, 2-14
indexes, 5-23

bitmap indexes, 5-32, 5-35
nulls and, 5-8
parallel query and DML, 5-33

branch blocks, 5-29
B-tree structure of, 5-28
building

using an existing index, 5-23
cardinality, 5-33
cluster

cannot be partitioned, 18-1
composite, 5-24
concatenated, 5-24
described, 5-23
domain, 5-40
enforcing integrity constraints, 21-7
extensible, 5-40
function-based, 5-26

dependencies, 5-27
DETERMINISTIC functions, 5-27
DISABLED, 5-27
optimization with, 5-27
privileges, 5-27

index-organized tables, 5-36
logical rowids, 26-17
secondary indexes, 5-38

internal structure of, 5-28
invisible, 5-24
key compression, 5-30
keys and, 5-25

primary key constraints, 21-7
leaf blocks, 5-29
location of, 5-28
LONG RAW datatypes prohibit, 26-13
nonunique, 5-24
nulls and, 5-8, 5-25, 5-35
on complex datatypes, 5-40
overview of, 5-23
partitioned tables, 5-35
partitions, 1-25, 18-1
performance and, 5-23
reverse key indexes, 5-32
rowids and, 5-29
storage format of, 5-28
unique, 5-24
visible, 5-24
when used with views, 5-16

index-organized tables, 5-36, 5-39
benefits, 5-37
key compression in, 5-32, 5-38
logical rowids, 26-17
secondary indexes on, 5-38

in-doubt transactions, 12-9
initialization parameter file, 1-12, 12-3, 12-4

startup, 1-12, 12-4
initialization parameters

basic, 14-3
CLUSTER_DATABASE, 12-5
DB_NAME, 3-17
LOG_ARCHIVE_MAX_PROCESSES, 9-6
MAX_SHARED_SERVERS, 9-15

Index-11

NLS_NUMERIC_CHARACTERS, 26-7
OPEN_CURSORS, 8-10, 24-5
REMOTE_DEPENDENCIES_MODE, 6-11, 6-18
SERVICE_NAMES, 10-7
SHARED_SERVERS, 9-15
SKIP_UNUSABLE_INDEXES, 5-28
SORT_AREA_SIZE, 2-15

initially deferred constraints, 21-15
initially immediate constraints, 21-15
INIT.ORA. See initialization parameter file.
inline views, 5-17

example, 5-17
INSERT statement, 24-2

free lists, 2-9
triggers, 22-4

BEFORE triggers, 22-7
instance PGA

definition, 8-2
instance recovery

overview, 12-7
SMON process, 9-10

instances
associating with databases, 12-2, 12-5
definition, 1-9
described, 12-1
diagrammed, 9-4
memory structures of, 8-1
multiple-process, 9-1, 9-2
process structure, 9-1
recovery of, 12-11

opening a database, 12-7
SMON process, 9-10

restricted mode, 12-5
service names, 10-6
shutting down, 12-10, 12-11
starting, 1-12, 12-4
terminating, 12-11

Instant Client, 14-2
INSTEAD OF triggers, 22-8
integrity constraints, 21-1

advantages of, 21-4
CHECK, 21-12
default column values and, 5-9
definition, 1-31
types listed, 1-31

INTERNAL
security for, 20-21

internal errors tracked in trace files, 9-12
invalidating dependent objects, 6-4
invisible indexes, 5-24
IPS

See incident packaging service
IS NULL predicate, 5-8
ISO SQL standard, 26-19
isolation levels

choosing, 13-9
read committed, 13-6
setting, 13-6, 13-25

J
Java

attributes, 25-19
class hierarchy, 25-20
classes, 25-18
interfaces, 25-20
methods, 25-19
overview, 25-17
polymorphism, 25-21
triggers, 22-1, 22-5

Java Messaging Service, 25-29
Java Pool Advisor, 14-11
Java stored procedures, 25-27
Java virtual machine, 25-21
JDBC

overview, 25-28
job queue processes, 9-7
jobs, 9-1
join views, 5-17
joins

encapsulated in views, 5-15
views, 5-17

K
KEEP_DUPLICATES, 19-3
key compression, 5-30
keys

cluster, 5-42
defined, 21-6
foreign, 21-7
indexes and, 5-25

compression, 5-30
PRIMARY KEY constraints, 21-7
reverse key, 5-32

maximum storage for values, 5-25
parent, 21-7, 21-9
primary, 21-6
referenced, 21-7
reverse key indexes, 5-32
unique, 21-6

composite, 21-6

L
large pool, 8-8
large-scale clusters

disk affinity, 18-8
multiple Oracle instances, 12-2

latches
described, 13-24

leaf blocks, 5-29
least recently used (LRU) algorithm

database buffers and, 8-3
dictionary cache, 7-3
full table scans and, 8-4
latches, 9-6
shared SQL pool, 8-5

LGWR background process, 9-8
library cache, 8-4, 8-5, 8-7

Index-12

listener process, 10-6
service names, 10-6

listeners, 9-15, 10-6
service names, 10-6

loader access driver, 5-12
LOB datatypes, 1-27, 26-11

BFILE, 26-12
BLOBs, 26-12
CLOBs and NCLOBs, 26-12

local indexes, 16-10
bitmap indexes

on partitioned tables, 5-35
parallel query and DML, 5-33

locally managed tablespaces, 3-9
LOCK TABLE statement, 24-2
locking

unindexed foreign keys and, 21-10, 21-11
locks, 13-2

after committing transactions, 4-5
automatic, 13-13, 13-16
conversion, 13-14
data, 13-16

duration of, 13-13
deadlocks, 13-15

avoiding, 13-16
dictionary, 13-22

clusters and, 13-24
duration of, 13-24

dictionary cache, 13-25
DML acquired, 13-22

diagrammed, 13-21
escalation does not occur, 13-14
exclusive table locks (X), 13-21
file management locks, 13-25
how Oracle uses, 13-13
internal, 13-24
latches and, 13-24
log management locks, 13-25
manual, 13-25
object level locking, 25-3
Oracle Lock Management Services, 13-26
overview of, 13-2
parse, 13-23
rollback segments, 13-25
row (TX), 13-17
row exclusive locks (RX), 13-19
row share table locks (RS), 13-19
share row exclusive locks (SRX), 13-20
share table locks (S), 13-20
share-subexclusive locks (SSX), 13-20
subexclusive table locks (SX), 13-19
subshare table locks (SS), 13-19
table (TM), 13-17
table lock modes, 13-18
tablespace, 13-25
types of, 13-16
uses for, 1-16

log entries, 1-5, 12-8
See also redo log files, 1-5

log management locks, 13-25

log switch
archiver process, 9-5

log writer process (LGWR), 9-8
group commits, 9-9
redo log buffers and, 8-4
system change numbers, 4-5
write-ahead, 9-8

LOG_ARCHIVE_MAX_PROCESSES parameter, 9-6
Logfile Size Advisor, 14-17
logical blocks, 2-2
logical database structures

definition, 1-6
tablespaces, 3-4

logical reads limit, 20-11
logical rowids, 26-17

index on index-organized table, 5-39
physical guesses, 5-39, 26-17
staleness of guesses, 26-18
statistics for guesses, 26-18

logical standby databases, 17-14
LONG datatype

automatically the last column, 5-7
defined, 26-5
storage of, 5-7

LONG RAW datatype, 26-13
indexing prohibited on, 26-13
similarity to LONG datatype, 26-13

lost writes
form of data corruption, 17-11

LRU, 8-3, 8-4, 9-6
dictionary cache, 7-3
shared SQL pool, 8-5

M
maintenance tasks

automatic, 1-17
maintenance tasks, automatic, 14-4
maintenance window, 14-4
manual locking, 13-25
materialized view logs, 5-20
materialized views, 5-18

advisor for, 1-19
deallocating extents, 2-13
materialized view logs, 5-20
partitioned, 5-18, 18-1
refresh

job queue processes, 9-7
refreshing, 5-19
uses for, 16-8

MAX_SHARED_SERVERS parameter, 9-15
media failures

overview, 15-7
media recovery

complete, 15-14
incomplete, 15-14

definition, 15-14
methods, 15-15
overview, 15-12, 15-13
using Recovery Manager, 15-15

Index-13

using SQL*Plus, 15-16
memory

allocation for SQL statements, 8-6
content of, 8-1
processes use of, 9-1
shared SQL areas, 8-5
software code areas, 8-14
stored procedures, 25-12
system global area (SGA)

allocation in, 8-2
memory advisors, 14-10
memory management

about, 8-12
automatic, 8-12
automatic shared, 8-12
modes, 8-13

MERGE statement, 24-2
message queuing

publish-subscribe support
event publication, 22-10

queue monitor process, 9-9
Messaging Gateway, 23-2
metadata

viewing, 7-5
MMAN process, 9-11
MMNL process, 9-11
MMON process, 9-11
mobile computing environment

materialized views, 5-18
modes

table lock, 13-18
monitoring user actions, 20-23
MTTR, 14-17
MTTR Advisor, 14-17
multiblock writes, 9-7
multiple-process systems (multiuser systems), 9-1
multiplexing

control files, 3-18
recovery and, 15-7

multiuser environments, 9-1
multiversion concurrency control, 13-4

N
NCHAR datatype, 26-5
NCLOB datatype, 26-12
nested tables, 5-10

index-organized tables, 5-38
key compression, 5-32

network listener process
connection requests, 9-13, 9-15

networks
client/server architecture use of, 10-1
communication protocols, 9-21, 9-22
dispatcher processes and, 9-13, 9-15
drivers, 9-21
listener processes of, 10-6
network authentication service, 20-5
Oracle Net Services, 10-5

NLS_DATE_FORMAT parameter, 26-8

NLS_NUMERIC_CHARACTERS parameter, 26-7
NOAUDIT statement, 24-3

locks, 13-23
NOCOMPRESS, 19-3
NOENCRYPT, 19-3
nonprefixed indexes, 18-4
nonrepeatable reads, 13-8
nonunique indexes, 5-24
nonvolatile data, 16-2
NOREVERSE clause for indexes, 5-32
normalized tables, 5-20
NOT NULL

constraint, 21-5
NOT NULL constraints

constraint checking, 21-14
implied by PRIMARY KEY, 21-7

NOVALIDATE con, 21-2
NOWAIT parameter

with savepoints, 4-6
nulls

as default values, 5-9
column order and, 5-7
converting to values, 5-8
defined, 5-8
foreign keys and, 21-9
how stored, 5-8
indexes and, 5-8, 5-25, 5-35
non-null values for, 5-8
prohibited in primary keys, 21-6
prohibiting, 21-5
unknown in comparisons, 5-8

NUMBER datatype, 26-6
internal format of, 26-7
rounding, 26-7

NVARCHAR2 datatype, 26-5
NVL function, 5-8

O
object cache

OCI, 25-2
Pro*C, 25-5

object dependencies, 6-1
object identifiers

c, 5-32
collections

key compression, 5-38
object privileges, 20-13
Object Type Translator (OTT)

overview, 25-4
object types

locking in cache, 25-3
object views, 5-17
Oracle Type Translator, 25-4

object views, 5-17
modifiability, 22-8

OCBC, 25-30
OCCI

associative relational API, 25-3
navigational interface, 25-3

Index-14

overview, 25-3
OCI, 9-21

anonymous blocks, 25-8
bind variables, 24-10
client result cache, 25-2
overview, 25-2

ODP.NET, 25-31
OLAP

capabilities, 16-13 to 16-15
introduction, 1-25

online analytical processing
See OLAP

online redo logs
checkpoints, 3-18
media failure, 15-7
multiplexed, 15-7
overview, 1-5

online transaction processing (OLTP)
reverse key indexes, 5-32

OO4O, 25-31
OO4O Automation Server, 25-31
Open database connectivity, 25-30
OPEN_CURSORS parameter, 24-5

managing private SQL areas, 8-10
operating system authentication, 20-8
operating systems

authentication by, 20-5
block size, 2-3
communications software, 9-22
privileges for administrator, 12-2
roles and, 20-15
security in, 20-19

optimization
function-based indexes, 5-27
index build, 5-23
query rewrite

in security policies, 20-17
optimization of free space in data blocks, 2-5
optimizer, 24-11

statistics gathering, 14-4
Oracle

client/server architecture of, 10-1
configurations of, 9-1, 9-2

multiple-process Oracle, 9-1, 9-2
instances, 12-1
processes of, 9-3
scalability of, 10-3
SQL processing, 24-7

Oracle Application Express, 1-37
Oracle blocks, 2-2
Oracle Call Interface See OCI
Oracle Certificate Authority, 20-6
Oracle code, 9-1, 9-21
Oracle Data Guard

overview, 17-13
oracle data mining, 16-16
Oracle Data Provider for .NET, 25-31
Oracle Data Pump API, 11-2
Oracle Database

alert log, 9-12

background processes, 9-4
ACMS, 9-10
ARBn, 9-11
DBRM, 9-10
DIA0, 9-10
DIAG, 9-10
EMNC, 9-10
FBDA, 9-11
GTX0-j, 9-11
MMAN, 9-11
MMNL, 9-11
MMON, 9-11
PSP0, 9-11
RBAL, 9-11
SMCO, 9-11
VKTM, 9-11

server processes, 9-4
trace files, 9-12

Oracle Database Gateways, 23-2, 23-14
Oracle Enterprise Login Assistant, 20-6
Oracle Enterprise Manager Database Console, 14-1
Oracle Enterprise Manager. See Enterprise Manager
Oracle Enterprise Security Manager, 20-6
Oracle Flashback Database, 15-10
Oracle Flashback Query, 17-8
Oracle Flashback Table, 15-10
Oracle Flashback Technology, 15-9
Oracle Forms

PL/SQL, 25-7
Oracle interMedia

See Oracle Multimedia
Oracle Internet Directory, 10-7, 20-6
Oracle Multimedia, 1-29, 19-6
Oracle Net Services, 10-5

client/server systems use of, 10-5
overview, 10-5
shared server requirement, 9-13, 9-15

Oracle Objects for OLE, 25-31
Oracle program interface (OPI), 9-21
Oracle Real Application Clusters

databases and instances, 12-2
Enterprise Grids, 17-3
isolation levels, 13-9
mounting a database using, 12-5
read consistency, 13-5
reverse key indexes, 5-32
temporary tablespaces, 3-13

Oracle Real Application Testing, 1-13
Oracle Streams, 23-1, 23-5
Oracle Streams Advanced Queuing, 23-2
Oracle Text, 19-3

advanced features, 19-5
document services, 19-4
index types, 19-4
query package, 19-5

Oracle Ultra Search, 19-5
Oracle Wallet Manager, 20-6
Oracle wallets, 20-6
Oracle XA

session memory in the large pool, 8-8

Index-15

Oracle XML DB, 19-2
Oracle-managed files, 14-12
OTT. See Object Type Translator (OTT)

P
packages, 25-14

advantages of, 25-15
as program units, definition, 1-36
dynamic SQL, 25-9
executing, 25-7
for locking, 13-26
private, 25-16
public, 25-16
session state and, 6-8
shared SQL areas and, 8-5

pages, 2-2
parallel access

to external tables, 5-13
parallel DML

bitmap indexes, 5-33, 16-10
parallel execution, 1-25, 16-10

coordinator, 16-11
of table functions, 25-14
process classification, 18-8
server, 16-11
servers, 16-11
tuning, 1-25, 16-10

parallel execution processing, 10
parallel query

bitmap indexes, 5-33, 16-10
parallel SQL, 1-25, 16-10

coordinator process, 16-11
server processes, 16-11

parameter
server, 12-3

parameter files
definition, 1-5

parameters
initialization, 12-3

locking behavior, 13-16
storage, 2-6, 2-10

parse trees
construction of, 24-6
in shared SQL area, 8-5

parsing, 24-9
DBMS_SQL package, 25-9
embedded SQL, 24-4
parse calls, 24-6
parse locks, 13-23
performed, 24-6
SQL statements, 24-9, 25-9

partitioning
advisor for, 1-19

partitions, 1-25, 18-1
bitmap indexes, 5-35
dynamic partitioning, 16-11
materialized views, 5-18, 18-1
nonprefixed indexes, 18-4
segments, 2-14

password file authentication, 20-8
passwords

account locking, 20-7
administrator privileges, 12-2
complexity verification, 20-7
connecting with, 9-3
connecting without, 20-5
database user authentication, 20-6
encryption, 20-6
password files, 20-8
password reuse, 20-7
security policy for users, 20-20
used in roles, 20-14

PCTFREE storage parameter
how it works, 2-6
PCTUSED and, 2-8

PCTUSED storage parameter
how it works, 2-7
PCTFREE and, 2-8

performance
dynamic performance tables (V$), 7-5
group commits, 9-9
index build, 5-23
packages, 25-16
resource limits and, 20-9
sort operations, 3-13

PGA, instance
definition, 8-2

phantom reads, 13-8
PHP, 1-38
physical database structures

control files, 3-17
datafiles, 3-15

physical guesses in logical rowids, 26-17
staleness, 26-18
statistics for, 26-18

physical standby databases, 17-14
pipelined table functions, 25-13
PKI, 20-5
plan

SQL execution, 24-2
planned downtime

avoiding downtime during, 17-16
causes, 17-2

PL/SQL, 25-5
anonymous blocks, 25-6, 25-13
auditing of statements within, 20-26
database triggers, 22-1
datatypes, 26-2
dynamic SQL, 25-9
exception handling, 25-8
executing, 25-7
external procedures, 25-13
gateway, 25-17
language constructs, 25-8
native execution, 25-6
overview of, 25-5
packages, 25-14
parse locks, 13-23
parsing DDL statements, 25-9

Index-16

PL/SQL engine, 25-7
products containing, 25-7

program units, 8-5, 25-5, 25-9
compiled, 25-7, 25-12
shared SQL areas and, 8-5

stored procedures, 25-6, 25-9
user locks, 13-26

PL/SQL Server Pages, 25-17
PMON background process, 9-9, 10-7
point-in-time recovery

clone database, 12-6
precompilers

anonymous blocks, 25-8
bind variables, 24-10
cursors, 24-9
embedded SQL, 24-4

predicates
dynamic

in security policies, 20-17
predictive analytics, 16-16
prefixes of data dictionary views, 7-4
primary key

defined, 21-1
PRIMARY KEY constraints, 21-6

constraint checking, 21-14
described, 21-6
indexes used to enforce, 21-7

name of, 21-7
maximum number of columns, 21-7
NOT NULL constraints implied by, 21-7

primary keys, 21-7
advantages of, 21-7

private SQL areas
described, 8-5
how managed, 8-10

privileges
administrator, 12-2
application developers and, 20-21
definition, 20-2
function-based indexes, 5-27
overview of, 20-12
policies for managing, 20-20
revoked

object dependencies and, 6-8
roles, 20-13
schema object, 20-13
system, 20-12
to start up or shut down a database, 12-2

Pro*C Precompiler
overview, 25-4

Pro*C++ Precompiler
overview, 25-4

Pro*C/C++
processing SQL statements, 24-8

Pro*COBOL Precompiler, 25-32
Pro*FORTRAN Precompiler, 25-32
problem prevention, diagnosis, and resolution, 1-20
procedures, 25-6, 25-9

advantages of, 25-11
contrasted with anonymous blocks, 25-12

contrasted with functions, 25-9
cursors and, 25-8
executing, 25-7
external procedures, 25-13
security enhanced by, 25-11
shared SQL areas and, 8-5
stored procedures, 25-6, 25-7, 25-9

process monitor process (PMON)
cleans up timed-out sessions, 20-11
described, 9-9

process spawner
See PSP0

processes, 9-1
archiver (ARCn), 9-5
background, 9-4

diagrammed, 9-4
checkpoint (CKPT), 9-6
checkpoints and, 9-7
classes of parallel execution, 18-8
dedicated server, 9-15
distributed transaction resolution, 9-9
job queue, 9-7
listener, 9-15, 10-6

shared servers and, 9-13
log writer (LGWR), 9-8
multiple-process Oracle, 9-1
Oracle, 9-3
parallel execution coordinator, 16-11
parallel execution servers, 16-11
process monitor (PMON), 9-9
queue monitor (QMNn), 9-9
recoverer (RECO), 9-9
server, 9-4

dedicated, 9-16
shared, 9-15

shadow, 9-16
shared server, 9-12

client requests and, 9-13
structure, 9-1
system monitor (SMON), 9-10
trace files for, 9-12
user, 9-3

recovery from failure of, 9-9
sharing server processes, 9-15

processing
DDL statements, 24-11
DML statements, 24-8
overview, 24-7
parallel SQL, 1-25, 16-10
queries, 24-6

profiles
user, definition, 20-3
when to use, 20-12

program global area (PGA), 1-11, 8-2, 8-9
shared server, 9-15
shared servers, 9-15

program interface, 9-21
Oracle side (OPI), 9-21
structure of, 9-21
user side (UPI), 9-21

Index-17

program units, 25-5, 25-9
shared pool and, 8-5

pseudocode
triggers, 22-13

pseudocolumns
CHECK constraints prohibit

LEVEL and ROWNUM, 21-13
modifying views, 22-9
ROWID, 26-14

PSP. See PL/SQL Server Pages
PSP0 processes, 9-11
public key infrastructure, 20-5
publication

DDL statements, 22-11
DML statements, 22-11
logon/logoff events, 22-11
system events

server errors, 22-11
startup/shutdown, 22-11

using triggers, 22-9
publish-subscribe support

event publication, 22-10
triggers, 22-9

Q
queries, 24-9

composite indexes, 5-24
default locking of, 13-21
define phase, 24-10
describe phase, 24-9
fetching rows, 24-6
in DML, 24-2
inline views, 5-17
merged with view queries, 5-15
parallel processing, 1-25, 16-10
phases of, 13-4
processing, 24-6
read consistency of, 13-4
stored as views, 5-13
temporary segments and, 2-15, 24-7
triggers use of, 22-13

query result cache, 1-16
query rewrite

dynamic predicates in security policies, 20-17
queue monitor, 9-9
queue monitor process, 9-9
queuing

publish-subscribe support
event publication, 22-10

queue monitor process, 9-9
quiesce database, 13-11
quotas

tablespace, definition, 20-3

R
RADIUS, 20-6
RAW datatype, 26-13
RBAL process, 9-11

read committed isolation, 13-6
read consistency, 13-2, 13-3

Cache Fusion, 13-5
definition, 1-15
dirty read, 13-2, 13-8
multiversion consistency model, 13-3
nonrepeatable read, 13-8
Oracle Real Application Clusters, 13-5
phantom read, 13-8
queries, 13-3, 24-7
statement level, 13-4
subqueries in DML, 13-11
transactions, 13-3, 13-5
triggers and, 22-12, 22-13

read snapshot time, 13-8
read uncommitted, 13-2
readers block writers, 13-8
read-only

databases
opening, 12-9

tablespaces, 3-12
transactions, definition, 1-16

read-only databases
limitations, 12-10

reads
data block

limits on, 20-11
dirty, 13-2
repeatable, 13-5

Real Application Clusters
system change numbers, 9-8
system monitor process and, 9-10

recoverer process (RECO), 9-9
in-doubt transactions, 4-8, 12-9

recovery
basic steps, 12-8
block-level recovery, 13-17
complete, 15-14
crash, 12-7
database buffers and, 12-7
distributed processing in, 9-9
general overview, 1-20
incomplete, 15-14
instance, 12-7
instance failure, 12-11
instance recovery

SMON process, 9-10
media, 15-13
media recovery

dispatcher processes, 9-16
methods, 15-15
of distributed transactions, 12-9
opening a database, 12-7
overview of, 12-7
point-in-time

clone database, 12-6
process recovery, 9-9
required after terminating instance, 12-11
rolling back transactions, 12-8
rolling forward, 12-8

Index-18

SMON process, 9-10
tablespace

point-in-time, 15-15
using Recovery Manager, 15-15
using SQL*Plus, 15-16

Recovery Manager, 14-16
recursive SQL

cursors and, 24-5
Redo Apply, 17-14
redo logs, 12-8

archiver process (ARCn), 9-5
buffer management, 9-8
buffers, 8-4
circular buffer, 9-8
committed data, 12-7, 12-8
committing a transaction, 9-8
entries, 12-8
files named in control files, 3-17
log sequence numbers

recorded in control files, 3-17
log switch

archiver process, 9-5
log writer process, 8-4, 9-8
multiplexed, definition, 1-5
rolling forward, 12-7, 12-8
rolling forward and, 12-8
uncommitted data, 12-8
when temporary segments in, 2-16
writing buffers, 9-8
written before transaction commit, 9-8

redo records
how Oracle applies, 15-12

referenced
keys, 21-7
objects

dependencies, 6-1
referential integrity, 13-9, 21-7, 21-8

examples of, 21-13
PRIMARY KEY constraints, 21-6
self-referential constraints, 21-9, 21-13

refresh
incremental, 5-19
job queue processes, 9-7
materialized views, 5-19

remote dependencies, 6-11, 6-12
specifying timestamps or signatures, 6-18

REMOTE_DEPENDENCIES_MODE
parameter, 6-11, 6-18

RENAME statement, 24-3
repeatable reads, 13-2
replication

materialized views (snapshots), 5-18
reserved words, 24-2
resource allocation, 1-20

methods, 14-20
resource consumer groups

definition, 14-20
resource limits

call level, 20-10
connect time for each session, 20-11

CPU time limit, 20-10
determining values for, 20-12
idle time in each session, 20-11
logical reads limit, 20-11
number of sessions for each user, 20-11
private SGA space for each session, 20-11

resource plan directives
definition, 14-20

resource plans
definition, 14-19

response queues, 9-13
restricted mode

starting instances in, 12-5
restricted rowid format, 26-15
result cache, 8-7
RESULT_CACHE clause, 8-7
resumable space allocation

overview, 4-3
REVERSE clause for indexes, 5-32
reverse key indexes, 5-32
REVOKE statement, 24-3

locks, 13-23
rewrite

predicates in security policies, 20-17
RMAN, 14-16
roles, 20-13

application, 20-15
application developers and, 20-22
definition, 20-2
enabled or disabled, 20-15
functionality, 20-12
in applications, 20-14
managing through operating system, 20-15
naming, 20-13
schemas do not contain, 20-13
security and, 20-21
use of passwords with, 20-14
user, 20-15
uses of, 20-14

rollback, 4-5
described, 4-5
ending a transaction, 4-1, 4-5
statement-level, 4-3
to a savepoint, 4-6
transactions, 17-8

rollback segments
locks on, 13-25
parallel recovery, 12-9
read consistency and, 13-3
use of in recovery, 12-8

ROLLBACK statement, 24-4
rolling back, 4-1, 4-5
rolling forward during recovery, 12-8
rolling patch upgrades

using Oracle Real Application Clusters, 17-18
rolling upgrades

using a transient logical standby database, 17-19
row cache, 8-7
row data (section of data block), 2-4
row directories, 2-4

Index-19

row locking, 13-8, 13-17
block-level recovery, 13-17
serializable transactions and, 13-6

row pieces
headers, 5-6
how identified, 5-7

row triggers, 22-5, 22-6
ROWID datatype, 26-13, 26-14

extended rowid format, 26-15
restricted rowid format, 26-15

rowids, 5-7
accessing, 26-14
changes in, 26-14
in non-Oracle databases, 26-19
internal use of, 26-14, 26-17
logical, 26-13
logical rowids, 26-17

index on index-organized table, 5-39
physical guesses, 5-39, 26-17
staleness of guesses, 26-18
statistics for guesses, 26-18

physical, 26-13
row migration, 2-6, 5-5
sorting indexes by, 5-29
universal, 26-13

row-level locking, 13-8, 13-17
rows, 5-3

addresses of, 5-7
chaining across blocks, 2-5, 5-5
clustered, 5-6
described, 5-3
fetched, 24-6
format of in data blocks, 2-4
headers, 5-5
locking, 13-8, 13-17
locks on, 13-17, 13-19
logical rowids, 5-39, 26-17
migrating to new block, 2-5, 5-5
pieces of, 5-5
row-level security, 20-16
shown in rowids, 26-15, 26-16
triggers on, 22-6
when rowid changes, 26-14

S
same-row writers block writers, 13-8
SAVEPOINT statement, 24-4
savepoints, 4-6

described, 4-6
implicit, 4-3
rolling back to, 4-6

scalability
client/server architecture, 10-3
parallel SQL execution, 16-10

scans
full table

LRU algorithm, 8-4
table scan and CACHE clause, 8-4

schema object dependencies, 6-1

schema object privileges, 20-13
schema objects, 5-1

definition, 1-8
dependencies of, 6-1

and views, 5-16
on nonexistence of other objects, 6-11
triggers manage, 22-12

dependent on lost privileges, 6-8
dimensions, 5-20
information in data dictionary, 7-1
list of, 5-1
materialized views, 5-18
privileges on, 20-13
relationship to datafiles, 3-15, 5-2
trigger dependencies on, 22-13

schemas
contents of, 5-2
contrasted with tablespaces, 5-2
definition of, 5-1

SCN
See system change numbers

Secure Sockets Layer, 20-19
SecureFiles, 1-27 to 1-29

compression, 1-27
deduplication, 1-27
encryption, 1-28
file system-like logging, 1-28

security, 20-1
accessing a database, 20-19
administrator of, 20-19
administrator privileges, 12-2
application developers and, 20-21
application enforcement of, 20-14
auditing, 20-23, 20-25
auditing policies, 20-22
authentication of users, 20-19
data, 20-19
data, definition, 1-30
database security, 20-19
database users and, 20-19
discretionary access control, 20-1
discretionary access control, definition, 1-30
domains, definition, 20-2
dynamic predicates, 20-17
enforcement mechanisms listed, 1-30
fine-grained access control, 20-16
general users, 20-20
level of, 20-19
operating-system security and the

database, 20-19
passwords, 20-6
policies

implementing, 20-17
policies for database administrators, 20-21
privilege management policies, 20-20
privileges, 20-19
program interface enforcement of, 9-21
roles to force security, 20-21
security policies, 20-16
system, 7-2

Index-20

system, definition, 1-30
test databases, 20-21
views and, 5-15

security domains
definition, 20-2
enabled roles and, 20-15

Segment Advisor, 14-7, 14-14
segment advisor, 14-4
segment shrink, 14-13
segment space management, automatic, 2-5
segments, 2-13

data, 2-14
deallocating extents from, 2-11
defined, 2-2
definition, 1-7
header block, 2-10
index, 2-14
overview of, 2-13
temporary, 2-14, 5-11

allocating, 2-14
cleaned up by SMON, 9-10
dropping, 2-13
operations that require, 2-15
tablespace containing, 2-15

SELECT statement
composite indexes, 5-24

SELECT statements, 24-2
subqueries, 24-6

sequences, 5-21
CHECK constraints prohibit, 21-13
independence from tables, 5-21
length of numbers, 5-21
number generation, 5-21

server parameter file, 12-3
startup, 1-12, 12-4

server processes, 9-4
listener process and, 10-6

server-generated alerts, 14-7
servers

client/server architecture, 10-1
dedicated, 9-16

shared servers contrasted with, 9-12
in client/server architecture, definition, 1-2
shared

architecture, 9-2, 9-12
dedicated servers contrasted with, 9-12
processes of, 9-12, 9-15

server-side scripts, 25-17
service names, 10-6
service oriented architecture, 1-3, 10-5
SERVICE_NAMES parameter, 10-7
session control statements, 24-4
sessions

connections contrasted with, 9-3
defined, 9-3
limits for each user, 20-11
memory allocation in the large pool, 8-8
package state and, 6-8
time limits on, 20-11
when auditing options take effect, 20-26

SET CONSTRAINTS statement
DEFERRABLE or IMMEDIATE, 21-15

SET ROLE statement, 24-4
SET TRANSACTION statement, 24-4

ISOLATION LEVEL, 13-6, 13-25
shadow processes, 9-16
share locks

share table locks (S), 13-20
shared pool, 8-4

allocation of, 8-5
ANALYZE statement, 8-6
dependency management and, 8-6
described, 8-4
flushing, 8-6
object dependencies and, 6-20
row cache and, 8-7

Shared Pool Advisor, 14-10
shared server, 9-12

dedicated server contrasted with, 9-12
described, 9-2, 9-12
dispatcher processes, 9-15
limiting private SQL areas, 20-11
Oracle Net Services or SQL*Net V2

requirement, 9-13, 9-15
private SQL areas, 8-10
processes, 9-15
processes needed for, 9-12
restricted operations in, 9-16
session memory in the large pool, 8-8

shared server processes (Snnn), 9-15
described, 9-15

shared SQL areas, 8-5, 24-5
ANALYZE statement, 8-6
dependency management and, 8-6
described, 8-5
overview of, 24-5
parse locks and, 13-23
procedures, packages, triggers and, 8-5
size of, 8-5

SHARED_SERVERS parameter, 9-15
shutdown, 12-10, 12-11

abnormal, 12-5, 12-11
deallocation of the SGA, 8-2
prohibited by dispatcher processes, 9-16
steps, 12-10

SHUTDOWN ABORT statement, 12-11
consistent whole database backups, 15-4

signature checking, 6-11
SKIP_UNUSABLE_INDEXES parameter, 5-28
SMCO processes, 9-11
SMON background process, 9-10
SMON process, 9-10
snapshot standby databases, 17-14
SOA, 1-3, 10-5
software code areas, 8-14

shared by programs and utilities, 8-14
sort operations, 3-13
sort segments, 3-13
SORT_AREA_SIZE parameter, 2-15
space management

Index-21

extents, 2-10
optimization of free space in blocks, 2-5
PCTFREE, 2-6
PCTUSED, 2-7
row chaining, 2-5, 5-5
segments, 2-13

space management coordinator process
See SMCO

SQL, 24-1
cursors used in, 24-5
data definition language (DDL), 24-3
data manipulation language (DML), 24-2
dynamic SQL, 25-9
embedded, 24-4

user-defined datatypes, 25-5
functions, 24-1

COUNT, 5-35
in CHECK constraints, 21-13
NVL, 5-8

memory allocation for, 8-6
overview of, 24-1
parallel execution, 1-25, 16-10
parsing of, 24-6
PL/SQL and, 25-5
recursive

cursors and, 24-5
reserved words, 24-2
session control statements, 24-4
shared SQL, 24-5
statement-level rollback, 4-3
system control statements, 24-4
transaction control statements, 24-4
transactions and, 4-1, 4-4
types of statements in, 24-2
user-defined datatypes

embedded SQL, 25-5
OCI, 25-3

SQL Access Advisor, 1-19, 14-7, 14-9, 16-9, 18-7
SQL Apply, 17-14
SQL areas

private, 8-5
shared, 8-5, 24-5

SQL Developer, 1-18
SQL Performance Analyzer, 1-14
SQL statements, 24-2, 24-7

array processing, 24-10
auditing

when records generated, 20-26
creating cursors, 24-9
dictionary cache locks and, 13-25
embedded, 24-4
execution, 24-7, 24-10
parallel execution, 1-25, 16-10
parse locks, 13-23
parsing, 24-9
privileges required for, 20-13
resource limits and, 20-10
successful execution, 4-2
transactions, 24-11
triggers on, 22-6

triggering events, 22-4
types of, 24-2

SQL Tuning Advisor, 14-7, 14-9
SQL tuning advisor, 14-4
SQL*Menu

PL/SQL, 25-7
SQL*Plus, 1-18

alert log, 9-12
anonymous blocks, 25-8
connecting with, 20-5
executing a package, 25-15
executing a procedure, 25-11
lock and latch monitors, 13-24
session variables, 25-8
SQL statements, 24-1
statistics monitor, 20-12

SQL92, 13-2
SQLJ, 25-29

object types, 25-29
SQLLIB, 25-4
SSL. See Secure Sockets Layer.
staging

databases, 16-2
files, 16-2

standards
ANSI/ISO

isolation levels, 13-2, 13-8
standby database

creating, 14-2
standby databases, 17-13
startup, 1-12, 12-1, 12-4

allocation of the SGA, 8-2
forcing, 12-5
prohibited by dispatcher processes, 9-16
restricted mode, 12-5
steps, 1-12, 12-4

statement triggers, 22-5
described, 22-6
row evaluation order, 22-13

statement-level read consistency, 13-4
statistics

checkpoint, 9-6
gathering for optimizer, 14-4

storage
datafiles, 3-15
indexes, 5-28
logical structures, 3-4, 5-2
nulls, 5-8
triggers, 22-1, 22-13
view definitions, 5-15

STORAGE clause
using, 2-10

storage failures
protecting against, 17-6

storage parameters
setting, 2-10

stored functions, 25-9
stored outlines, 24-13

editing, 24-13
stored procedures, 25-6, 25-9

Index-22

calling, 25-9
contrasted with anonymous blocks, 25-12
triggers contrasted with, 22-1
variables and constants, 25-8

Streams Pool Advisor, 14-11
strong authentication, 20-8
Structured Query Language (SQL), 24-1
structures

data blocks
shown in rowids, 26-16

data dictionary, 7-1
datafiles

shown in rowids, 26-16
locking, 13-22
logical, 2-1

data blocks, 2-1, 2-3
extents, 2-1, 2-10
schema objects, 5-2
segments, 2-1, 2-13
tablespaces, 3-1, 3-4

memory, 8-1
physical

control files, 3-17
datafiles, 3-1, 3-15

processes, 9-1
subqueries, 24-6

CHECK constraints prohibit, 21-13
in DML statements

serializable isolation, 13-11
inline views, 5-17
query processing, 24-6

summaries, 5-18
synonyms

constraints indirectly affect, 21-3
described, 1-9, 5-22
for data dictionary views, 7-3
inherit privileges from object, 20-13
private, 5-22
public, 5-22
uses of, 5-22

SYS account
policies for protecting, 20-21

SYS user name
data dictionary tables owned by, 7-2

SYS username
V$ views, 7-5

SYSDBA privilege, 12-2
SYSOPER privilege, 12-2
SYSTEM account

policies for protecting, 20-21
system change numbers (SCN)

committed transactions, 4-5
defined, 4-5
read consistency and, 13-4
redo logs, 9-8
when determined, 13-4

system control statements, 24-4
system fault

crash recovery time, 17-4
system global area (SGA)

allocating, 1-12, 12-4
contents of, 8-3
data dictionary cache, 7-3, 8-7
database buffer cache, 8-3
diagram, 12-1
fixed, 8-2
large pool, 8-8
limiting private SQL areas, 20-11
redo log buffer, 4-4, 8-4
rollback segments and, 4-4
shared and writable, 8-2
shared pool, 8-4
size of

variable parameters, 12-3
when allocated, 8-2

system monitor process (SMON), 9-10
defined, 9-10
Real Application Clusters and, 9-10
rolling back transactions, 12-9
temporary segment cleanup, 9-10

system privileges, 20-12
described, 20-12

system security
definition, 1-30

SYSTEM tablespace, 3-6
data dictionary stored in, 3-6, 7-1, 7-3
locally managed, 1-7, 3-6
online requirement of, 3-11
procedures stored in, 3-6

T
table compression, 16-8

partitioning, 16-8
table functions, 25-13

parallel execution, 25-14
pipelined, 25-13

tables
base

relationship to views, 5-14
clustered, 5-41
clustered, definition, 1-9
controlling space allocation for, 5-4
directories, 2-4
DUAL, 7-5
dynamic partitioning, 16-11
enable or disable constraints, 21-2
external, 5-12, 11-4
full table scan and buffer cache, 8-4
how data is stored in, 5-4
indexes and, 5-23
index-organized

key compression in, 5-32, 5-38
index-organized tables, 5-36

logical rowid, 5-39
logical rowids, 26-17

integrity constraints, 21-1, 21-3
locks on, 13-17, 13-19, 13-20
maximum number of columns in, 5-14
nested tables, 5-10

Index-23

normalized or denormalized, 5-20
overview of, 5-3
partitions, 1-25, 18-1
presented in views, 5-13
temporary, 5-10

segments in, 2-15
validate or novalidate constraints, 21-2
virtual or viewed, 1-8
See also external tables

tablespace point-in-time recovery, 15-15
clone database, 12-6

tablespace repository, 3-14
tablespaces, 3-4

contrasted with schemas, 5-2
default for object creation, definition, 20-2
definition, 1-7
described, 3-4
dictionary managed, 3-10
locally managed, 3-9
locks on, 13-25
moving or copying to another database, 3-14
offline, 3-11, 3-16

remain offline on remount, 3-11
online, 3-11, 3-16
online and offline distinguished, 1-7
online backups, 15-5
overview of, 3-4
quotas, definition, 20-3
read-only, 3-12
recovery, 15-15
relationship to datafiles, 3-1
size of, 3-2
space allocation, 3-9
temporary, 3-12
temporary, definition, 20-3
used for temporary segments, 2-15

tasks, 9-1
tempfiles, 3-16
temporary segments, 2-15, 5-11

allocating, 2-15
allocation for queries, 2-15
deallocating extents from, 2-13
dropping, 2-13
operations that require, 2-15
tablespace containing, 2-15
when not in redo log, 2-16

temporary tables, 5-10
temporary tablespaces, 3-12

default, 3-8
definition, 20-3

threads
shared server, 9-12

three-valued logic (true, false, unknown)
produced by nulls, 5-8

time stamp checking, 6-11
time zones

in date/time columns, 26-10
TIMESTAMP datatype, 26-10
TIMESTAMP WITH LOCAL TIME ZONE

datatype, 26-10

TIMESTAMP WITH TIME ZONE datatype, 26-10
TO_CHAR function

globalization support default in CHECK
constraints, 21-13

globalization support default in views, 5-16
Julian dates, 26-9

TO_DATE function, 26-8
globalization support default in CHECK

constraints, 21-13
globalization support default in views, 5-16
Julian dates, 26-9

TO_NUMBER function, 26-7
glob, 5-16
globalization support default in CHECK

constraints, 21-13
Julian dates, 26-9

trace files, 9-12
definition, 1-5
LGWR trace file, 9-8

transaction control statements, 24-4
in autonomous PL/SQL blocks, 4-9

transaction set consistency, 13-8
transaction tables

reset at recovery, 9-9
transactions, 4-1

assigning system change numbers, 4-5
autonomous, 4-8

within a PL/SQL block, 4-9
backing out with Flashback Transaction, 17-8
block-level recovery, 13-17
committing, 4-2, 4-4, 9-8

group commits, 9-9
concurrency and, 13-13
controlling transactions, 24-11
deadlocks and, 4-3, 13-15
defining and controlling, 24-11
definition, 1-37
described, 4-1
distributed

deadlocks and, 13-15
resolving automatically, 9-9
two-phase commit, 4-8

end of, 4-4
consistent data, 24-11

in-doubt
resolving automatically, 4-8, 12-9

naming, 4-7
read consistency of, 13-5
read consistency, definition, 1-15
read-only, definition, 1-16
redo log files written before commit, 9-8
rolling back, 4-5

partially, 4-6
savepoints in, 4-6
serializable, 13-5
space used in data blocks for, 2-4
start of, 4-4
statement level rollback and, 4-3
system change numbers, 9-8
terminating the application and, 4-4

Index-24

transaction control statements, 24-4
triggers and, 22-13

transient logical standby databases
for rolling upgrades, 17-19

transient type descriptions, 25-5
triggers, 1-32, 22-1

action, 22-5
timing of, 22-6

AFTER triggers, 22-7
BEFORE triggers, 22-6
cascading, 22-3
components of, 22-3
constraints apply to, 22-12
constraints contrasted with, 22-3
data access and, 22-13
dependency management of, 22-13

enabled triggers, 22-12
enabled or disabled, 22-12
enforcing data integrity with, 21-2
events, 22-4
firing (executing), 22-1, 22-13

privileges required, 22-13
steps involved, 22-12

INSTEAD OF, 22-8
Java, 22-5
procedures contrasted with, 22-1
publish-subscribe support, 22-9
restrictions, 22-5
row, 22-6
row evaluation order, 22-13
schema object dependencies, 22-12, 22-13
shared SQL areas and, 8-5
statement, 22-6
storage of, 22-13
types of, 22-5
UNKNOWN does not fire, 22-5
uses of, 22-2

TRUNCATE statement, 24-3
two-phase commit

transaction management, 4-8
triggers, 22-12

type descriptions
dynamic creation and access, 25-5
transient, 25-5

U
Undo Advisor, 14-7, 14-11
undo management, automatic, 2-16, 14-11
undo retention, 14-11, 15-11
undo tablespaces, 3-7
Unicode, 26-2, 26-3, 26-4, 26-5, 26-12
unique indexes, 5-24
UNIQUE key

constraint, 21-6
UNIQUE key constraints

composite keys, 21-6
constraint checking, 21-14
NOT NULL constraints and, 21-6

unique keys, 21-6

composite, 21-6
unplanned downtime

avoiding downtime during, 17-2
causes, 17-2
system faults, 17-4

UNUSABLE indexes
function-based, 5-27

update no action constraint, 21-9
UPDATE statement, 24-2

foreign key references, 21-10
freeing space in data blocks, 2-5
triggers, 22-4

BEFORE triggers, 22-7
updates

updatability of views, 5-17, 22-8
updatable join views, 5-17
update intensive environments, 13-7

updating tables
with parent keys, 21-10, 21-11

UROWID datatype, 26-13
user errors, 15-8
user processes

connections and, 9-3
dedicated server processes and, 9-16
sessions and, 9-3
shared server processes and, 9-15

user profiles
definition, 20-3

user program interface (UPI), 9-21
USER_ views, 7-4
USER_UPDATABLE_COLUMNS view, 5-17
users

authentication
about, 20-19

authentication of, 20-4
dedicated servers and, 9-16
end-user security policies, 20-20
listed in data dictionary, 7-1
locks, 13-26
multiuser environments, 9-1
password encryption, 20-6
password security, 20-20
policies for managing privileges, 20-20
processes of, 9-3
profiles of, 20-11
roles and, 20-13

for types of users, 20-15
security and, 20-19
security for general users, 20-20
temporary tablespaces of, 2-15
user names

sessions and connections, 9-3

V
V$RECOVER_FILE view, 15-15
V_$ and V$ views, 7-5
VARCHAR datatype, 26-3
VARCHAR2 datatype, 26-3

non-padded comparison semantics, 26-3

Index-25

similarity to RAW datatype, 26-13
variables

embedded SQL, 24-4
in stored procedures, 25-8

varrays
index-organized tables, 5-38

key compression, 5-32
views, 5-13

constraints indirectly affect, 21-3
containing expressions, 22-9
data dictionary

updatable columns, 5-17
fixed views, 7-5
globalization support parameters in, 5-16
how stored, 5-14
indexes and, 5-16
inherently modifiable, 22-8
inline views, 5-17
INSTEAD OF triggers, 22-8
materialized views, 5-18
maximum number of columns in, 5-14
modifiable, 22-8
modifying, 22-8
object views, 5-17
overview of, 5-13
pseudocolumns, 22-9
schema object dependencies, 5-16
SQL functions in, 5-16
updatability, 5-17, 22-8
uses of, 5-15

virtual keeper of time process
See VKTM

Virtual Private Database (VPD)
guarding against human errors, 17-7

visible indexes, 5-24
VKTM processes, 9-11

W
waits for blocking transaction, 13-8
Wallet Manager, 20-6
wallets, 20-6
warehouse

materialized views, 5-18
Web page scripting, 25-17
Web services

Oracle Database as provider of, 1-3, 10-5
whole database backups

consistent
using SHUTDOWN ABORT statement, 15-4

definition, 15-3
inconsistent, 15-4

write-ahead, 9-8
writers block readers, 13-8

X
X.509 certificates, 20-6
XA

session memory in the large pool, 8-8

XML datatypes, 26-19
XMLType datatype, 19-2, 26-19

Y
year 2000, 26-10

Z
Zend Core for Oracle, 1-38

PHP, 1-38

Index-26

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	Part I What Is Oracle?
	1 Introduction to Oracle Database
	Oracle Database Architecture
	Overview of Grid Architecture
	Overview of Application Architecture
	Client/Server Architecture
	Multitier Architecture: Application Servers
	Multitier Architecture: Service-Oriented Architecture

	Overview of Physical Database Structures
	Datafiles
	Control Files
	Online Redo Log Files
	Archived Redo Log Files
	Parameter Files
	Alert and Trace Log Files
	Backup Files

	Overview of Logical Database Structures
	Oracle Database Data Blocks
	Extents
	Segments
	Tablespaces

	Overview of Schemas and Common Schema Objects
	Tables
	Indexes
	Views
	Clusters
	Synonyms

	Overview of the Oracle Database Data Dictionary
	Overview of the Oracle Database Instance
	Oracle Database Background Processes
	Instance Memory Structures

	Overview of Accessing the Database
	Network Connections
	Starting Up the Database
	How Oracle Database Works

	Overview of Oracle Database Utilities

	Oracle Database Features
	Overview of Oracle Real Application Testing
	Database Replay
	SQL Performance Analyzer

	Overview of Concurrency Features
	Concurrency
	Read Consistency
	Caching Mechanisms
	Locking Mechanisms

	Overview of Manageability Features
	Self-Managing Database
	Automatic Maintenance Tasks
	Oracle Enterprise Manager
	SQL Developer and SQL*Plus
	Automatic Memory Management
	Automatic Storage Management
	Automatic Database Diagnostic Monitor
	SQL Tuning Advisor
	SQL Access Advisor
	Streams Tuning Advisor
	The Scheduler
	Database Resource Manager

	Overview of Diagnosability Features
	Overview of Database Backup and Recovery Features
	Overview of High Availability Features
	Overview of Business Intelligence Features
	Data Warehousing
	Materialized Views
	Table Compression
	Parallel Execution
	Analytic SQL
	OLAP Capabilities
	Data Mining
	Very Large Databases (VLDB)

	Overview of Content Management Features
	XML in Oracle Database
	LOBs
	SecureFiles
	Oracle Text
	Oracle Ultra Search
	Oracle Multimedia
	Oracle Spatial

	Overview of Security Features
	Security Mechanisms

	Overview of Data Integrity and Triggers
	Integrity Constraints
	Triggers

	Overview of Information Integration Features
	Distributed SQL
	Oracle Streams
	Oracle Database Gateways and Generic Connectivity

	Oracle Database Application Development
	Overview of Oracle SQL
	SQL Statements

	Overview of PL/SQL
	Overview of Java
	Overview of Application Programming Languages (APIs)
	Overview of Application Development Environments
	Overview of Datatypes
	Overview of Globalization

	Part II Oracle Database Architecture
	2 Data Blocks, Extents, and Segments
	Introduction to Data Blocks, Extents, and Segments
	Overview of Data Blocks
	Data Block Format
	Header (Common and Variable)
	Table Directory
	Row Directory
	Overhead
	Row Data
	Free Space

	Free Space Management
	Availability and Optimization of Free Space in a Data Block
	Row Chaining and Migrating

	PCTFREE, PCTUSED, and Row Chaining
	The PCTFREE Parameter
	The PCTUSED Parameter
	How PCTFREE and PCTUSED Work Together

	Overview of Extents
	When Extents Are Allocated
	Determine the Number and Size of Extents
	How Extents Are Allocated
	When Extents Are Deallocated
	Extents in Nonclustered Tables
	Extents in Clustered Tables
	Extents in Materialized Views and Their Logs
	Extents in Indexes
	Extents in Temporary Segments
	Extents in Rollback Segments

	Overview of Segments
	Introduction to Data Segments
	Introduction to Index Segments
	Introduction to Temporary Segments
	Operations that Require Temporary Segments
	Segments in Temporary Tables and Their Indexes
	How Temporary Segments Are Allocated

	Introduction to Undo Segments and Automatic Undo Management
	Manual Undo Management
	Undo Quota
	Automatic Undo Retention

	3 Tablespaces, Datafiles, and Control Files
	Introduction to Tablespaces, Datafiles, and Control Files
	Oracle-Managed Files
	Allocate More Space for a Database

	Overview of Tablespaces
	Bigfile Tablespaces
	Benefits of Bigfile Tablespaces
	Considerations with Bigfile Tablespaces

	The SYSTEM Tablespace
	The Data Dictionary
	PL/SQL Program Units Description

	The SYSAUX Tablespace
	Undo Tablespaces
	Creation of Undo Tablespaces

	Default Temporary Tablespace
	How to Specify a Default Temporary Tablespace

	Using Multiple Tablespaces
	Managing Space in Tablespaces
	Locally Managed Tablespaces
	Segment Space Management in Locally Managed Tablespaces
	Dictionary Managed Tablespaces

	Multiple Block Sizes
	Online and Offline Tablespaces
	Bringing Tablespaces Offline

	Read-Only Tablespaces
	Temporary Tablespaces
	Sort Segments
	Creation of Temporary Tablespaces

	Transport of Tablespaces Between Databases
	Tablespace Repository
	How to Move or Copy a Tablespace to Another Database

	Overview of Datafiles
	Datafile Contents
	Size of Datafiles
	Offline Datafiles
	Temporary Datafiles

	Overview of Control Files
	Control File Contents
	Multiplexed Control Files

	4 Transaction Management
	Introduction to Transactions
	Statement Execution and Transaction Control
	Statement-Level Rollback
	Resumable Space Allocation

	Overview of Transaction Management
	Commit Transactions
	Rollback of Transactions
	Savepoints In Transactions
	Transaction Naming
	How Transactions Are Named
	Commit Comment

	The Two-Phase Commit Mechanism

	Overview of Autonomous Transactions
	Autonomous PL/SQL Blocks
	Transaction Control Statements in Autonomous Blocks

	5 Schema Objects
	Introduction to Schema Objects
	Overview of Tables
	How Table Data Is Stored
	Row Format and Size
	Rowids of Row Pieces
	Column Order

	Table Compression
	Using Table Compression

	Nulls Indicate Absence of Value
	Default Values for Columns
	Partitioned Tables
	Nested Tables
	Temporary Tables
	Segment Allocation
	Parent and Child Transactions

	External Tables
	The Access Driver
	Data Loading with External Tables
	Parallel Access to External Tables

	Overview of Views
	How Views are Stored
	How Views Are Used
	Mechanics of Views
	Globalization Support Parameters in Views
	Use of Indexes Against Views

	Dependencies and Views
	Updatable Join Views
	Object Views
	Inline Views

	Overview of Materialized Views
	Define Constraints on Views
	Refresh Materialized Views
	Materialized View Logs

	Overview of Dimensions
	Overview of the Sequence Generator
	Overview of Synonyms
	Overview of Indexes
	Unique and Nonunique Indexes
	Visible and Invisible Indexes
	Composite Indexes
	Indexes and Keys
	Indexes and Nulls
	Function-Based Indexes
	Uses of Function-Based Indexes
	Optimization with Function-Based Indexes
	Dependencies of Function-Based Indexes

	How Indexes Are Stored
	Format of Index Blocks
	The Internal Structure of Indexes
	Index Properties
	Advantages of B-tree Structure

	Index Unique Scan
	Index Range Scan
	Key Compression
	Prefix and Suffix Entries
	Performance and Storage Considerations
	Uses of Key Compression

	Reverse Key Indexes
	Bitmap Indexes
	Benefits for Data Warehousing Applications
	Cardinality
	Bitmap Index Example
	Bitmap Indexes and Nulls
	Bitmap Indexes on Partitioned Tables

	Bitmap Join Indexes

	Overview of Index-Organized Tables
	Benefits of Index-Organized Tables
	Index-Organized Tables with Row Overflow Area
	Secondary Indexes on Index-Organized Tables
	Bitmap Indexes on Index-Organized Tables
	Mapping Table

	Partitioned Index-Organized Tables
	B-tree Indexes on UROWID Columns for Heap- and Index-Organized Tables
	Index-Organized Table Applications

	Overview of Application Domain Indexes
	Overview of Clusters
	Overview of Hash Clusters

	6 Schema Object Dependencies
	Overview of Schema Object Dependencies
	Querying Object Dependencies
	Object Status
	Invalidation of Dependent Objects
	Session State and Referenced Packages
	Security Authorization

	Guidelines for Reducing Invalidation
	Add New Items to End of Package
	Reference Each Table Through a View

	Object Revalidation
	Name Resolution in Schema Scope
	Local Dependency Management
	Remote Dependency Management
	Dependencies Among Local and Remote Database Procedures
	Dependencies Among Other Remote Objects
	Dependencies of Applications

	Remote Procedure Call (RPC) Dependency Management
	Time-Stamp Checking
	Signature Checking
	Controlling Remote Dependencies

	Shared SQL Dependency Management

	7 The Data Dictionary
	Introduction to the Data Dictionary
	Structure of the Data Dictionary
	SYS, Owner of the Data Dictionary

	How the Data Dictionary Is Used
	How Oracle Database Uses the Data Dictionary
	Public Synonyms for Data Dictionary Views
	Cache the Data Dictionary for Fast Access
	Other Programs and the Data Dictionary

	How to Use the Data Dictionary
	Views with the Prefix USER
	Views with the Prefix ALL
	Views with the Prefix DBA
	The DUAL Table

	Dynamic Performance Tables
	Database Object Metadata

	8 Memory Architecture
	Introduction to Oracle Database Memory Structures
	Basic Memory Structures

	Overview of the System Global Area
	Database Buffer Cache
	Organization of the Database Buffer Cache
	The LRU Algorithm and Full Table Scans

	Redo Log Buffer
	Shared Pool
	Library Cache
	Dictionary Cache
	Result Cache

	Large Pool
	Java Pool
	Streams Pool

	Overview of the Program Global Area
	Content of the PGA
	Session Memory
	Private SQL Area

	PGA Memory Use in Dedicated and Shared Server Modes

	Overview of Memory Management Methods
	About Software Code Areas

	9 Process Architecture
	Introduction to Processes
	Multiple-Process Oracle Systems
	Types of Processes

	Overview of User Processes
	Connections and Sessions

	Overview of Oracle Database Processes
	Oracle Database Server Processes
	Oracle Database Background Processes
	Archiver Processes (ARCn)
	Checkpoint Process (CKPT)
	Database Writer Process (DBWn)
	Job Queue Processes
	Log Writer Process (LGWR)
	Process Monitor Process (PMON)
	Queue Monitor Processes (QMNn)
	Recoverer Process (RECO)
	System Monitor Process (SMON)
	Other Oracle Database Background Processes

	Oracle Database Trace Files and the Alert Log

	Shared Server Architecture
	Dispatcher Request and Response Queues
	Dispatcher Processes (Dnnn)
	Shared Server Processes (Snnn)

	Restricted Operations of the Shared Server

	Dedicated Server Configuration
	Database Resident Connection Pooling
	Using Database Resident Connection Pooling
	Connection Classes
	Session Purity

	The Program Interface
	Program Interface Structure
	Program Interface Drivers
	Communications Software for the Operating System

	10 Application Architecture
	Introduction to Client/Server Architecture
	Overview of Multitier Architecture
	Clients
	Application Servers
	Database Servers
	Oracle Database as a Web Service Provider

	Overview of Oracle Net Services
	How Oracle Net Services Works
	The Listener
	Service Information Registration

	11 Oracle Database Utilities
	Introduction to Oracle Database Utilities
	Overview of Data Pump Export and Import
	Data Pump Export
	Data Pump Import

	Overview of the Data Pump API
	Overview of the Metadata API
	Overview of SQL*Loader
	Overview of External Tables
	Overview of LogMiner
	Overview of DBVERIFY Utility
	Overview of DBNEWID Utility
	ADRCI: ADR Command Interpreter

	12 Database and Instance Startup and Shutdown
	Introduction to an Oracle Instance
	The Instance and the Database
	Connection with Administrator Privileges
	Initialization Parameter Files and Server Parameter Files
	Server Parameter Files and Hardware Assisted Resilient Data
	How Parameter Values Are Changed

	Overview of Instance and Database Startup
	How an Instance Is Started
	Restricted Mode of Instance Startup
	Forced Startup in Abnormal Situations

	How a Database Is Mounted
	How a Database Is Mounted with Oracle Real Application Clusters
	How a Clone Database Is Mounted

	What Happens When You Open a Database
	Crash and Instance Recovery
	Undo Space Acquisition and Management
	Resolution of In-Doubt Distributed Transaction
	Open a Database in Read-Only Mode

	Overview of Database and Instance Shutdown
	Close a Database
	Close the Database by Terminating the Instance

	Unmount a Database
	Shut Down an Instance
	Abnormal Instance Shutdown

	Part III Oracle Database Features
	13 Data Concurrency and Consistency
	Introduction to Data Concurrency and Consistency in a Multiuser Environment
	Preventable Phenomena and Transaction Isolation Levels
	Overview of Locking Mechanisms

	How Oracle Database Manages Data Concurrency and Consistency
	Multiversion Concurrency Control
	Statement-Level Read Consistency
	Transaction-Level Read Consistency
	Read Consistency with Oracle Real Application Clusters
	Oracle Database Isolation Levels
	Set the Isolation Level
	Read Committed Isolation
	Serializable Isolation

	Comparison of Read Committed and Serializable Isolation
	Transaction Set Consistency
	Row-Level Locking
	Referential Integrity
	Distributed Transactions

	Choice of Isolation Level
	Read Committed Isolation
	Serializable Isolation
	Quiesce Database

	How Oracle Database Locks Data
	Transactions and Data Concurrency
	Modes of Locking
	Lock Duration
	Data Lock Conversion Versus Lock Escalation

	Deadlocks
	Deadlock Detection
	Avoid Deadlocks

	Types of Locks
	DML Locks
	Row Locks (TX)
	Table Locks (TM)
	DML Locks Automatically Acquired for DML Statements

	DDL Locks
	Exclusive DDL Locks
	Share DDL Locks
	Breakable Parse Locks
	Duration of DDL Locks
	DDL Locks and Clusters

	Latches and Internal Locks
	Latches
	Internal Locks

	Explicit (Manual) Data Locking
	Oracle Database Lock Management Services

	Overview of Oracle Flashback Query
	Flashback Query Benefits
	Some Uses of Flashback Query

	14 Manageability
	Installing Oracle Database 11g and Getting Started
	Simplified Database Creation
	Instant Client
	Automated Upgrades
	Basic Initialization Parameters
	Data Loading, Transfer, and Archiving

	Intelligent Infrastructure
	Automatic Workload Repository
	Automatic Maintenance Tasks
	Fault Diagnosability Infrastructure
	Automatic Diagnostic Repository
	Incident Packaging Service

	Server-Generated Alerts
	Advisor Framework
	Hang Manager

	Performance Diagnostics and Troubleshooting
	Application and SQL Tuning
	Memory Management
	Space Management
	Automatic Undo Management
	Oracle-Managed Files
	Free Space Management
	Proactive Space Management
	Intelligent Capacity Planning
	Space Reclamation

	Automatic Storage Management
	Backup and Recovery
	Recovery Manager
	Mean Time to Recovery
	Self Service Error Correction

	Configuration Management
	Workload Management
	Overview of the Database Resource Manager
	Database Resource Manager Concepts

	Overview of Services
	Workload Management with Services
	High Availability with Services

	Oracle Scheduler
	What Can the Scheduler Do?
	Schedule Job Execution
	Time-Based Scheduling
	Event-Based Scheduling
	Define Multi-Step Jobs
	Schedule Job Processes that Model Business Requirements
	Manage and Monitor Jobs
	Execute and Manage Jobs in a Clustered Environment

	15 Backup and Recovery
	Introduction to Backup and Recovery
	Flash Recovery Area

	Database Backups
	What Are Database Backups?
	Whole Database and Partial Database Backups
	Consistent and Inconsistent Backups
	Overview of Consistent Backups
	Overview of Inconsistent Backups

	RMAN and User-Managed Backups
	Online Backups
	Control File Backups
	Archived Redo Log Backups

	Problems Requiring Data Repair
	Media Failures
	User Errors

	Data Repair
	Data Recovery Advisor
	Oracle Flashback Technology
	Oracle Flashback Database
	Oracle Flashback Table
	Oracle Flashback Drop

	Media Recovery
	Datafile Media Recovery
	Block Media Recovery
	Complete Recovery
	Database Point-in-Time Recovery
	RMAN and User-Managed Recovery

	16 Business Intelligence
	Introduction to Data Warehousing and Business Intelligence
	Characteristics of Data Warehousing
	Subject Oriented
	Integrated
	Nonvolatile
	Time Variant

	Differences Between Data Warehouse and OLTP Systems
	Workload
	Data Modifications
	Schema Design
	Typical Operations
	Historical Data

	Data Warehouse Architecture
	Data Warehouse Architecture (Basic)
	Data Warehouse Architecture (with a Staging Area)
	Data Warehouse Architecture (with a Staging Area and Data Marts)

	Overview of Extraction, Transformation, and Loading (ETL)
	Transportable Tablespaces
	Table Functions
	External Tables
	Table Compression
	Change Data Capture

	Overview of Materialized Views for Data Warehouses
	Overview of Bitmap Indexes in Data Warehousing
	Overview of Parallel Execution
	How Parallel Execution Works

	Overview of Analytic SQL
	SQL for Aggregation
	SQL for Analysis
	SQL for Modeling

	Overview of OLAP Capabilities
	Full Integration of Multidimensional Technology
	Ease of Application Development
	Ease of Administration
	Security
	Unmatched Performance and Scalability
	Reduced Costs

	Overview of Data Mining

	17 High Availability
	Introduction to High Availability
	Causes Of Downtime
	Protection Against Computer Failures
	Overview of Enterprise Grids with Oracle Real Application Clusters and Oracle Clusterware
	Fast Start Fault Recovery
	Oracle Data Guard
	Oracle Streams

	Protection Against Data Failures
	Protecting Against Storage Failures
	Protecting Against Human Errors
	Guarding Against Human Errors
	Oracle Flashback Technology
	LogMiner SQL-Based Log Analyzer
	Protecting Against Data Corruptions
	Protecting Against Site Failures

	Avoiding Downtime During Planned Maintenance
	Avoiding Downtime for Data Changes
	Online Schema and Data Reorganization
	Partitioned Tables and Indexes

	Avoiding Downtime for System Changes
	Rolling Patch Updates
	Rolling Release Upgrade
	Dynamic Resource Provisioning

	Maximum Availability Architecture (MAA) Best Practices

	18 Very Large Databases (VLDB)
	Introduction to Partitioning
	Partition Key
	Partitioned Tables
	Partitioned Index-Organized Tables
	Partitioning Methods

	Overview of Partitioned Indexes
	Local Partitioned Indexes
	Global Partitioned Indexes
	Global Range Partitioned Indexes
	Global Hash Partitioned Indexes
	Maintenance of Global Partitioned Indexes

	Global Nonpartitioned Indexes
	Miscellaneous Information about Creating Indexes on Partitioned Tables
	Using Partitioned Indexes in OLTP Applications
	Using Partitioned Indexes in Data Warehousing and DSS Applications
	Partitioned Indexes on Composite Partitions

	Partitioning to Improve Performance
	Partition Pruning
	Partition Pruning Example

	Partition-wise Joins

	19 Content Management
	Introduction to Content Management
	Overview of XML in Oracle Database
	Overview of LOBs
	Overview of Oracle Text
	Oracle Text Index Types
	Oracle Text Document Services
	Oracle Text Query Package
	Oracle Text Advanced Features

	Overview of Oracle Ultra Search
	Overview of Oracle Multimedia
	Overview of Oracle Spatial

	20 Database Security
	Introduction to Database Security
	Database Users and Schemas
	Security Domain

	Privileges
	Roles
	Storage Settings and Quotas
	Default Tablespace
	Temporary Tablespace
	Tablespace Quotas
	Profiles and Resource Limits

	Overview of Transparent Data Encryption
	Tablespace Encryption

	Overview of Authentication Methods
	Authentication by the Operating System
	Authentication by the Network
	Third Party-Based Authentication Technologies
	Public-Key-Infrastructure-Based Authentication
	Remote Authentication

	Authentication by Oracle Database
	Password Encryption
	Account Locking
	Password Lifetime and Expiration
	Password Complexity Verification

	Multitier Authentication and Authorization
	Authentication by the Secure Socket Layer Protocol
	Authentication of Database Administrators

	Overview of Authorization
	User Resource Limits and Profiles
	Types of System Resources and Limits
	Profiles

	Introduction to Privileges
	System Privileges
	Schema Object Privileges

	Introduction to Roles
	Common Uses for Roles
	Role Mechanisms
	The Operating System and Roles

	Secure Application Roles

	Overview of Access Restrictions on Tables, Views, Synonyms, or Rows
	Fine-Grained Access Control
	Dynamic Predicates

	Application Context
	Dynamic Contexts

	Fine-Grained Auditing

	Overview of Security Policies
	System Security Policy
	Database User Management
	User Authentication
	Operating System Security

	Data Security Policy
	User Security Policy
	General User Security
	End-User Security
	Administrator Security
	Application Developer Security
	Application Administrator Security

	Password Management Policy
	Auditing Policy

	Overview of Database Auditing
	Types and Records of Auditing
	Audit Records and the Audit Trails

	21 Data Integrity
	Introduction to Data Integrity
	Data Integrity Rules
	How Oracle Database Enforces Data Integrity
	Constraint States

	Overview of Integrity Constraints
	Advantages of Integrity Constraints
	Declarative Ease
	Centralized Rules
	Maximum Application Development Productivity
	Immediate User Feedback
	Flexibility for Data Loads and Identification of Integrity Violations

	The Performance Cost of Integrity Constraints

	Types of Integrity Constraints
	NOT NULL Integrity Constraints
	UNIQUE Key Integrity Constraints
	Unique Keys
	Combining UNIQUE Key and NOT NULL Integrity Constraints

	PRIMARY KEY Integrity Constraints
	Primary Keys
	PRIMARY KEY Constraints and Indexes

	Referential Integrity Constraints
	Self-Referential Integrity Constraints
	Nulls and Foreign Keys
	Actions Defined by Referential Integrity Constraints
	Concurrency Control, Indexes, and Foreign Keys

	CHECK Integrity Constraints
	The Check Condition
	Multiple CHECK Constraints

	The Mechanisms of Constraint Checking
	Default Column Values and Integrity Constraint Checking

	Deferred Constraint Checking
	Constraint Attributes
	SET CONSTRAINTS Mode
	Unique Constraints and Indexes

	22 Triggers
	Introduction to Triggers
	How Triggers Are Used
	Some Cautionary Notes about Triggers
	Triggers Compared with Declarative Integrity Constraints

	Components of a Trigger
	The Triggering Event or Statement
	Trigger Restriction
	Trigger Action

	Types of Triggers
	Row Triggers and Statement Triggers
	Row Triggers
	Statement Triggers

	BEFORE and AFTER Triggers
	BEFORE Triggers
	AFTER Triggers
	Trigger Type Combinations

	Compound Triggers
	INSTEAD OF Triggers
	Modify Views
	Views That Are Not Modifiable
	INSTEAD OF Triggers on Nested Tables

	Triggers on System Events and User Events
	Event Publication
	Event Attributes
	System Events
	User Events

	Trigger Execution
	The Execution Model for Triggers and Integrity Constraint Checking
	Data Access for Triggers
	Storage of PL/SQL Triggers
	Execution of Triggers
	Dependency Maintenance for Triggers

	23 Information Integration
	Introduction to Oracle Information Integration
	Federated Access
	Distributed SQL
	Location Transparency
	SQL and COMMIT Transparency
	Distributed Query Optimization

	Information Sharing
	Oracle Streams
	Oracle Streams Architecture
	Replication with Oracle Streams
	Oracle Streams Advanced Queuing
	Database Change Notification
	Change Data Capture
	Heterogeneous Environments
	Oracle Streams Use Cases

	Materialized Views

	Data Comparison and Convergence at Oracle Databases
	Integrating Non-Oracle Systems
	Generic Connectivity
	Oracle Database Gateways

	Part IV Oracle Database Application Development
	24 SQL
	Introduction to SQL
	SQL Statements
	Data Manipulation Language Statements
	DML Error Logging

	Data Definition Language Statements
	Transaction Control Statements
	Session Control Statements
	System Control Statements
	Embedded SQL Statements

	Cursors
	Scrollable Cursors

	Shared SQL Areas
	Parsing
	Query Processing
	SQL Processing
	flowchart of SQL Statement Execution
	Description of SQL Statement Processing
	Stage 1: Open or Create a Cursor
	Stage 2: Parse the Statement
	Stage 3: Determine if there is a Query
	Stage 4: Describe Results of a Query (Queries Only)
	Stage 5: Define Output of a Query (Queries Only)
	Stage 6: Bind Any Variables
	Stage 7: Parallelize the Statement (Optional)
	Stage 8: Run the Statement
	Stage 9: Fetch Rows of a Query (Queries Only)
	Stage 10: Close the Cursor

	Processing Other Types of SQL Statements
	DDL Statement Processing
	Transaction Control Processing
	Other Processing Types

	Overview of the Optimizer
	SQL Plan Management (SPM)
	Execution Plans
	Stored Outlines
	Editing Stored Outlines

	25 Supported Application Development Languages
	Introduction to Oracle Application Development Languages
	Overview of C/C++ Programming Languages
	Overview of Oracle Call Interface (OCI)
	Overview of Oracle C++ Call Interface (OCCI)
	OCCI Associative Relational and Object Interfaces
	OCCI Navigational Interface

	Overview of the Oracle Type Translator
	Overview of Pro*C/C++ Precompiler
	Dynamic Creation and Access of Type Descriptions

	Overview of PL/SQL
	How PL/SQL Runs
	Interpreted Execution
	Native Execution

	Language Constructs for PL/SQL
	Variables and Constants
	Cursors
	Exceptions
	Dynamic SQL in PL/SQL

	PL/SQL Program Units
	Stored Procedures and Functions
	Benefits of Procedures
	Procedure Guidelines
	Anonymous PL/SQL Blocks Compared with Stored Procedures
	Standalone Procedures
	Dependency Tracking for Stored Procedures
	External Procedures
	Table Functions

	PL/SQL Packages
	Benefits of Packages

	PL/SQL Collections and Records
	Collections
	Records

	PL/SQL Server Pages

	Overview of Java
	Java and Object-Oriented Programming Terminology
	Classes
	Attributes
	Methods

	Class Hierarchy
	Interfaces
	Polymorphism
	Overview of the Java Virtual Machine (JVM)
	Why Use Java in Oracle Database?
	Multithreading
	Automated Storage Management
	Footprint
	Performance
	Dynamic Class Loading

	Oracle's Java Application Strategy
	Java Stored Procedures
	PL/SQL Integration and Oracle Database Functionality
	JDBC
	SQLJ
	JPublisher
	Java Messaging Service

	Overview of Microsoft Programming Languages
	Open Database Connectivity
	Overview of Oracle Objects for OLE
	OO4O Automation Server
	Oracle Data Control
	The Oracle Objects for OLE C++ Class Library

	Oracle Data Provider for .NET

	Overview of Legacy Languages
	Overview of Pro*COBOL Precompiler
	Overview of Pro*FORTRAN Precompiler

	26 Oracle Data Types
	Introduction to Oracle Datatypes
	Overview of Character Datatypes
	CHAR Datatype
	VARCHAR2 and VARCHAR Datatypes
	VARCHAR Datatype

	Length Semantics for Character Datatypes
	NCHAR and NVARCHAR2 Datatypes
	NCHAR
	NVARCHAR2

	Use of Unicode Data in Oracle Database
	Implicit Type Conversion

	LOB Character Datatypes
	LONG Datatype

	Overview of Numeric Datatypes
	NUMBER Datatype
	Internal Numeric Format

	Floating-Point Numbers
	BINARY_FLOAT Datatype
	BINARY_DOUBLE Datatype

	Overview of DATE Datatype
	Use of Julian Dates
	Date Arithmetic
	Centuries and the Year 2000
	Daylight Savings Support
	Time Zones

	Overview of LOB Datatypes
	BLOB Datatype
	CLOB and NCLOB Datatypes
	BFILE Datatype

	Overview of RAW and LONG RAW Datatypes
	Overview of ROWID and UROWID Datatypes
	The ROWID Pseudocolumn
	Physical Rowids
	Extended Rowids
	Restricted Rowids
	Examples of Rowid Use
	How Rowids Are Used

	Logical Rowids
	Comparison of Logical Rowids with Physical Rowids
	Guesses in Logical Rowids

	Rowids in Non-Oracle Databases

	Overview of ANSI, DB2, and SQL/DS Datatypes
	Overview of XML Datatypes
	XMLType Datatype

	Overview of URI Datatypes
	Overview of Object Datatypes and Object Views
	Data Conversion

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create PDF suitable for publishing as Oracle documentation.)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

