
Oracle® Identity Management
Application Developer's Guide

10g (10.1.4.0.1)

B15997-01

July 2006

Oracle Identity Management Application Developer’s Guide, 10g (10.1.4.0.1)

B15997-01

Copyright © 1999, 2006, Oracle. All rights reserved.

Primary Author: Ellen Desmond

Contributors: Vasuki Ashok , Tridip Bhattacharya, Ramakrishna Bollu, Saheli Dey, Ajay Keni, Ganesh
Kirti, Ashish Kolli, Stephen Lee, Samit Roy, David Lin, Saurabh Shrivastava, Arun Theebaprakasam, Andy
Tian

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City,
CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Portions of this document are from "The C LDAP Application Program Interface," an Internet Draft of the
Internet Engineering Task Force (Copyright (C) The Internet Society (1997-1999). All Rights Reserved),
which expires on 8 April 2000. These portions are used in accordance with the following IETF directives:
"This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself may
not be modified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which
case the procedures for copyrights defined in the Internet Standards process must be followed, or as
required to translate it into languages other than English."

RSA and RC4 are trademarks of RSA Data Security. Portions of Oracle
Internet Directory have been licensed by Oracle Corporation from RSA Data
Security.

Oracle Directory Manager requires the JavaTM Runtime Environment. The JavaTM Runtime Environment,
Version JRE 1.1.6. ("The Software") is developed by Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain
View, California 94043. Copyright (c) 1997 Sun Microsystems, Inc.

This product contains SSLPlus Integration SuiteTM version 1.2, from Consensus Development Corporation.

iPlanet is a registered trademark of Sun Microsystems, Inc.

v

Contents

Preface ... xxiii

Audience... xxiii
Documentation Accessibility ... xxiii
Related Documents ... xxiv
Conventions ... xxv

What's New in the SDK? .. xxvii

New Features in the 10g (10.1.4.0.1) SDK ... xxvii
New Features in the Release 10.1.2 SDK... xxvii
New Features in the Release 9.0.4 SDK.. xxviii

Part I Programming for Oracle Identity Management

1 Developing Applications for Oracle Identity Management

Benefits of Integrating with Oracle Identity Management ... 1-1
Oracle Identity Management Services Available for Application Integration 1-2
Integrating Existing Applications with Oracle Identity Management .. 1-2
Integrating New Applications with Oracle Identity Management .. 1-3
Oracle Internet Directory Programming: An Overview ... 1-4

Programming Languages Supported by the Oracle Internet Directory SDK 1-4
Oracle Internet Directory SDK Components ... 1-4
Application Development in the Oracle Internet Directory Environment................................ 1-4

Architecture of a Directory-Enabled Application .. 1-4
Oracle Internet Directory Interactions During the Application Life Cycle 1-5
Services and APIs for Integrating Applications with Oracle Internet Directory............... 1-6
Integrating Existing Applications with Oracle Internet Directory 1-8
Integrating New Applications with Oracle Internet Directory.. 1-8

Other Components of Oracle Internet Directory... 1-9

2 Developing Applications with Standard LDAP APIs

Sample Code.. 2-1
History of LDAP ... 2-1
 LDAP Models... 2-2

Naming Model.. 2-2

vi

Information Model ... 2-3
Functional Model ... 2-3
Security Model.. 2-4

Authentication... 2-4
Access Control and Authorization ... 2-5
Data Integrity... 2-6
Data Privacy... 2-6
Password Policies.. 2-6

About the Standard LDAP APIs.. 2-7
API Usage Model ... 2-7
Getting Started with the C API .. 2-7
Getting Started with the DBMS_LDAP Package ... 2-8
Getting Started with the Java API.. 2-8

Initializing an LDAP Session .. 2-8
Initializing the Session by Using the C API ... 2-8
Initializing the Session by Using DBMS_LDAP .. 2-9
Initializing the Session by Using JNDI.. 2-9

Authenticating an LDAP Session... 2-10
Authenticating an LDAP Session by Using the C API .. 2-10
Authenticating an LDAP Session by Using DBMS_LDAP ... 2-11

Searching the Directory.. 2-11
Program Flow for Search Operations... 2-12
Search Scope... 2-13
Filters... 2-14
Searching the Directory by Using the C API... 2-15
Searching the Directory by Using DBMS_LDAP ... 2-16

Terminating the Session... 2-17
Terminating the Session by Using the C API.. 2-17
Terminating the Session by Using DBMS_LDAP... 2-17

3 Extensions to the LDAP Protocol

SASL Authentication ... 3-1
SASL Authentication by Using DIGEST-MD5 .. 3-1

Steps Involved in SASL Authentication by Using DIGEST-MD5.. 3-2
SASL Authentication by Using External Mechanism ... 3-3

Using Controls ... 3-3
Proxying on Behalf of End Users .. 3-5
Creating Dynamic Password Verifiers ... 3-6

Request Control for Dynamic Password Verifiers ... 3-7
Syntax for DynamicVerifierRequestControl .. 3-7
Parameters Required by the Hashing Algorithms .. 3-8
Configuring the Authentication APIs ... 3-8

Parameters Passed If ldap_search Is Used .. 3-8
Parameters Passed If ldap_compare Is Used .. 3-8

Response Control for Dynamic Password Verifiers ... 3-8
Obtaining Privileges for the Dynamic Verifier Framework .. 3-8

Performing Hierarchical Searches... 3-9

vii

New Features of the CONNECT_BY Control .. 3-9
Value Fields in the CONNECT_BY Control... 3-9

Sorted LDAP Search Results ... 3-10
Paged LDAP Search Results.. 3-10

4 Developing Applications With Oracle Extensions to the Standard APIs

Sample Code.. 4-1
Using Oracle Extensions to the Standard APIs .. 4-1
Creating an Application Identity in the Directory .. 4-2

Creating an Application Identity ... 4-2
Assigning Privileges to an Application Identity ... 4-2

Managing Users .. 4-3
Managing Groups .. 4-3
Managing Realms... 4-3
Discovering a Directory Server.. 4-4

Benefits of Oracle Internet Directory Discovery Interfaces.. 4-4
Usage Model for Discovery Interfaces .. 4-5
Determining Server Name and Port Number From DNS.. 4-5

Mapping the DN of the Naming Context.. 4-6
Search by Domain Component of Local Machine.. 4-6
Search by Default SRV Record in DNS.. 4-6

Environment Variables for DNS Server Discovery... 4-7
Programming Interfaces for DNS Server Discovery... 4-7

5 Using the Java API Extensions to JNDI

Sample Code.. 5-1
Installing the Java Extensions.. 5-1
Using the oracle.java.util Package to Model LDAP Objects.. 5-2
The Classes PropertySetCollection, PropertySet, and Property.. 5-2
Managing Users .. 5-3
Authenticating Users ... 5-3
Creating Users ... 5-4
Retrieving User Objects .. 5-4
Retrieving Objects from Realms ... 5-5
Example: Search for OracleAS Single Sign-On Login Name .. 5-5
Discovering a Directory Server.. 5-6
Example: Discovering a Directory Server.. 5-7
Using DIGEST-MD5 to Perform SASL Authentication ... 5-8
Example: Using SASL Digest-MD5 auth-int and auth-conf Modes... 5-8

6 Using the API Extensions in PL/SQL

Sample Code.. 6-1
Installing the PL/SQL Extensions ... 6-1
Using Handles to Access Directory Data ... 6-1
Managing Users .. 6-2
Authenticating Users ... 6-2

viii

Dependencies and Limitations of the PL/SQL LDAP API... 6-2

7 Developing Provisioning-Integrated Applications

8 Integrating with Oracle Delegated Administration Services

What Is Oracle Delegated Administration Services? .. 8-1
How Applications Benefit from Oracle Delegated Administration Services............................ 8-2

Integrating Applications with the Delegated Administration Services.. 8-2
Integration Profile .. 8-2
Integration Methodology and Considerations .. 8-2

Java APIs Used to Access URLs ... 8-4

9 Developing Applications for Single Sign-On

What Is mod_osso?... 9-1
Protecting Applications Using mod_osso: Two Methods .. 9-2

Protecting URLs Statically .. 9-2
Protecting URLs with Dynamic Directives .. 9-2

Developing Applications Using mod_osso... 9-3
Developing Statically Protected PL/SQL Applications ... 9-3
Developing Statically Protected Java Applications... 9-5
Developing Java Applications That Use Dynamic Directives ... 9-6

Java Example #1: Simple Authentication .. 9-6
Java Example #2: Single Sign-Off.. 9-7

A Word About Non-GET Authentication .. 9-8
Global Inactivity Timeout and Dynamic Directives ... 9-8

Security Issues .. 9-9
Single Sign-Off and Application Logout .. 9-9

Application Login: Code Examples.. 9-9
Application Logout: Recommended Code... 9-11

Secure Transmission of mod_osso Cookies... 9-11
Forced Authentication .. 9-11

10 Integrating J2EE Applications and Oracle Internet Directory

Standard J2EE Security APIs... 10-1
OC4J Security APIs ... 10-2
 JAAS Policy Management APIs .. 10-4

JAAS Policy Management.. 10-5
Retrieving User Policies and Permissions using Standard JAAS APIs 10-5

Part II Server Plug-ins

11 Developing Plug-ins for the Oracle Internet Directory Server

What is a Server Plug-in? ... 11-1
Supported Languages for Server Plug-ins.. 11-1
Server Plug-in Prerequisites.. 11-2

ix

Server Plug-in Benefits .. 11-2
Guidelines for Designing Plug-ins.. 11-2
What Is the Server Plug-in Framework? ... 11-2
LDAP Operations and Timings Supported by the Directory ... 11-3

Pre-Operation Server Plug-ins .. 11-3
Post-Operation Server Plug-ins... 11-4
When-Operation Server Plug-ins.. 11-4
When_Replace-Operation Server Plug-ins.. 11-4

Registering a Plug-in .. 11-4
Plug-in Configuration Entry.. 11-4
Adding a Plug-in Configuration Entry by Using Command-Line Tools 11-7

Managing Plug-ins by Using Oracle Directory Manager.. 11-8
Registering a Plug-in by Using Oracle Directory Manager .. 11-8
Editing a Plug-in by Using Oracle Directory Manager ... 11-8
Deleting a Plug-in by Using Oracle Directory Manager ... 11-8

12 PL/SQL Server Plug-ins

Designing, Creating, and Using PL/SQL Server Plug-ins... 12-1
PL/SQLPlug-in Caveats... 12-1

Types of PL/SQL Plug-in Operations... 12-2
Naming PL/SQL Plug-ins .. 12-2

Creating PL/SQLPlug-ins.. 12-2
Package Specifications for Plug-in Module Interfaces ... 12-2

Compiling PL/SQLPlug-ins .. 12-4
Dependencies ... 12-4
Recompiling Plug-ins ... 12-4

Managing PL/SQL Plug-ins .. 12-4
Modifying Plug-ins.. 12-4
Debugging Plug-ins .. 12-4

Enabling and Disabling PL/SQL Plug-ins .. 12-5
Exception Handling in a PL/SQL Plug-in... 12-5

Error Handling ... 12-5
Program Control Handling between Oracle Internet Directory and Plug-ins................ 12-5

PL/SQL Plug-in LDAP API... 12-6
PL/SQL Plug-ins and Replication .. 12-6
PL/SQL Plug-in and Database Tools ... 12-6
PL/SQL Plug-in Security ... 12-7
PL/SQL Plug-in Debugging.. 12-7
PL/SQL Plug-in LDAP API Specifications ... 12-7
Database Limitations .. 12-8

Examples of PL/SQL Plug-ins ... 12-8
Example 1: Search Query Logging ... 12-8
Example 2: Synchronizing Two DITs... 12-10

Binary Support in the PL/SQLPlug-in Framework .. 12-13
Binary Operations with ldapmodify .. 12-13
Binary Operations with ldapadd .. 12-15
Binary Operations with ldapcompare.. 12-17

x

Database Object Types Defined ... 12-20
Specifications for PL/SQL Plug-in Procedures.. 12-21

13 Java Server Plug-ins

Advantages of Java Plug-ins ... 13-1
Setting Up a Java Plug-in ... 13-1
Java Plug-in API ... 13-2

Communication Between the Server and Plug-in .. 13-3
Java Plug-in Structure... 13-3
PluginDetail ... 13-3

Server ... 13-4
LdapBaseEntry ... 13-4
LdapOperation ... 13-5
PluginFlexfield ... 13-10

PluginResult... 13-11
ServerPlugin Interface .. 13-11

ServerPlugin Methods for Ldapbind .. 13-11
ServerPlugin Methods for Ldapcompare ... 13-11
ServerPlugin Methods for Ldapadd ... 13-11
ServerPlugin Methods for Ldapmodify ... 13-12
ServerPlugin Methods for Ldapmoddn ... 13-12
ServerPlugin Methods for Ldapsearch ... 13-12
ServerPlugin Methods for Ldapdelete.. 13-12

Java Plug-in Error and Exception Handling... 13-12
Runtime Exception Example ... 13-12
Runtime Error Example ... 13-13
PluginException Example.. 13-13

Java Plug-in Debugging and Logging ... 13-13
Java Plug-in Examples ... 13-14

Example 1: Password Validation Plug-in .. 13-14
Password Validation Plug-in Configuration Entry... 13-14
Password Validation Plug-in Code Example... 13-15

Example 2: External Authentication Plug-in for Active Directory .. 13-16
External Authentication Plug-in Configuration Entry ... 13-16
External Authentication Plug-in Code.. 13-16

Part III Oracle Internet Directory Programming Reference

14 C API Reference

About the Oracle Internet Directory C API.. 14-1
Oracle Internet Directory SDK C API SSL Extensions... 14-1

SSL Interface Calls ... 14-2
Wallet Support.. 14-2

Functions in the C API ... 14-2
The Functions at a Glance .. 14-3
Initializing an LDAP Session... 14-5

xi

ldap_init and ldap_open... 14-5
LDAP Session Handle Options ... 14-6

ldap_get_option and ldap_set_option .. 14-6
Authenticating to the Directory .. 14-10

ldap_sasl_bind, ldap_sasl_bind_s, ldap_simple_bind, and ldap_simple_bind_s........ 14-10
SASL Authentication Using Oracle Extensions .. 14-12

ora_ldap_init_SASL... 14-12
ora_ldap_create_cred_hdl, ora_ldap_set_cred_props, ora_ldap_get_cred_props,
and ora_ldap_free_cred_hdl... 14-13

Working With Controls .. 14-14
Closing the Session ... 14-16

ldap_unbind, ldap_unbind_ext, and ldap_unbind_s ... 14-16
Performing LDAP Operations... 14-16

ldap_search_ext, ldap_search_ext_s, ldap_search, and ldap_search_s.......................... 14-17
Reading an Entry.. 14-19
Listing the Children of an Entry .. 14-20
ldap_compare_ext, ldap_compare_ext_s, ldap_compare, and ldap_compare_s 14-20
ldap_modify_ext, ldap_modify_ext_s, ldap_modify, and ldap_modify_s 14-21
ldap_rename and ldap_rename_s ... 14-23
ldap_add_ext, ldap_add_ext_s, ldap_add, and ldap_add_s ... 14-25
ldap_delete_ext, ldap_delete_ext_s, ldap_delete, and ldap_delete_s 14-26
ldap_extended_operation and ldap_extended_operation_s ... 14-28

Abandoning an Operation ... 14-29
ldap_abandon_ext and ldap_abandon ... 14-29

Obtaining Results and Peeking Inside LDAP Messages ... 14-30
ldap_result, ldap_msgtype, and ldap_msgid .. 14-30

Handling Errors and Parsing Results... 14-32
ldap_parse_result, ldap_parse_sasl_bind_result, ldap_parse_extended_result,
and ldap_err2string .. 14-32

Stepping Through a List of Results .. 14-34
ldap_first_message and ldap_next_message ... 14-34

Parsing Search Results.. 14-35
ldap_first_entry, ldap_next_entry, ldap_first_reference, ldap_next_reference,
ldap_count_entries, and ldap_count_references ... 14-35
ldap_first_attribute and ldap_next_attribute... 14-36
ldap_get_values, ldap_get_values_len, ldap_count_values,
ldap_count_values_len, ldap_value_free, and ldap_value_free_len 14-37
ldap_get_dn, ldap_explode_dn, ldap_explode_rdn, and ldap_dn2ufn 14-38
ldap_get_entry_controls ... 14-39
ldap_parse_reference... 14-39

Sample C API Usage ... 14-40
C API Usage with SSL .. 14-40
C API Usage Without SSL.. 14-41
C API Usage for SASL-Based DIGEST-MD5 Authentication ... 14-42

Required Header Files and Libraries for the C API ... 14-44
Dependencies and Limitations of the C API ... 14-45

xii

15 DBMS_LDAP PL/SQL Reference

Summary of Subprograms... 15-1
Exception Summary .. 15-3
Data Type Summary ... 15-5
Subprograms .. 15-5

FUNCTION init ... 15-5
FUNCTION simple_bind_s ... 15-6
FUNCTION bind_s ... 15-7
FUNCTION unbind_s .. 15-8
FUNCTION compare_s.. 15-9
FUNCTION search_s.. 15-10
FUNCTION search_st... 15-12
FUNCTION first_entry .. 15-13
FUNCTION next_entry .. 15-14
FUNCTION count_entries ... 15-15
FUNCTION first_attribute... 15-16
FUNCTION next_attribute .. 15-17
FUNCTION get_dn... 15-18
FUNCTION get_values .. 15-19
FUNCTION get_values_len... 15-20
FUNCTION delete_s... 15-21
FUNCTION modrdn2_s... 15-22
FUNCTION err2string.. 15-23
FUNCTION create_mod_array... 15-24
PROCEDURE populate_mod_array (String Version) ... 15-25
PROCEDURE populate_mod_array (Binary Version) .. 15-25
PROCEDURE populate_mod_array (Binary Version. Uses BLOB Data Type) 15-26
FUNCTION get_values_blob .. 15-27
FUNCTION count_values_blob.. 15-28
FUNCTION value_free_blob... 15-29
FUNCTION modify_s .. 15-29
FUNCTION add_s .. 15-30
PROCEDURE free_mod_array.. 15-31
FUNCTION count_values ... 15-32
FUNCTION count_values_len .. 15-32
FUNCTION rename_s .. 15-33
FUNCTION explode_dn .. 15-34
FUNCTION open_ssl.. 15-35
FUNCTION msgfree... 15-36
FUNCTION ber_free .. 15-37
FUNCTION nls_convert_to_utf8.. 15-38
FUNCTION nls_convert_to_utf8.. 15-38
FUNCTION nls_convert_from_utf8... 15-39
FUNCTION nls_convert_from_utf8... 15-40
FUNCTION nls_get_dbcharset_name ... 15-41

xiii

16 Java API Reference

17 DBMS_LDAP_UTL PL/SQL Reference

Summary of Subprograms... 17-1
Subprograms .. 17-2

User-Related Subprograms.. 17-3
Function authenticate_user .. 17-3
Function create_user_handle ... 17-5
Function set_user_handle_properties ... 17-5
Function get_user_properties... 17-6
Function set_user_properties ... 17-7
Function get_user_extended_properties .. 17-9
Function get_user_dn.. 17-10
Function check_group_membership ... 17-11
Function locate_subscriber_for_user ... 17-12
Function get_group_membership ... 17-13

Group-Related Subprograms .. 17-13
Function create_group_handle .. 17-14
Function set_group_handle_properties.. 17-15
Function get_group_properties ... 17-16
Function get_group_dn... 17-17

Subscriber-Related Subprograms ... 17-18
Function create_subscriber_handle .. 17-19
Function get_subscriber_properties ... 17-19
Function get_subscriber_dn ... 17-21
Function get_subscriber_ext_properties... 17-22

Property-Related Subprograms .. 17-23
Miscellaneous Subprograms.. 17-24

Function normalize_dn_with_case.. 17-24
Function get_property_names ... 17-24
Function get_property_values ... 17-25
Function get_property_values_len ... 17-26
Procedure free_propertyset_collection ... 17-27
Function create_mod_propertyset... 17-28
Function populate_mod_propertyset ... 17-29
Procedure free_mod_propertyset.. 17-29
Procedure free_handle .. 17-30
Function check_interface_version ... 17-30
Function get_property_values_blob ... 17-31
Procedure property_value_free_blob ... 17-32

Function Return Code Summary.. 17-32
Data Type Summary ... 17-34

18 DAS_URL Interface Reference

Directory Entries for the Service Units ... 18-1
Service Units and Corresponding URL Parameters ... 18-2

xiv

DAS URL API Parameter Descriptions... 18-5
Search-and-Select Service Units for Users or Groups .. 18-6

Invoking Search-and-Select Service Units for Users or Groups... 18-6
Receiving Data from the User or Group Search-and-Select Service Units 18-7

19 Oracle Directory Integration Platform User Provisioning Java API
Reference

Application Configuration .. 19-1
Application Registration and Provisioning Configuration... 19-2

Application Registration... 19-2
Provisioning Configuration.. 19-4

Application Configuration Classes... 19-13
User Management ... 19-13

Creating a User .. 19-14
Modifying a User... 19-14
Deleting a User .. 19-15
Looking Up a User .. 19-15

Debugging .. 19-15
Sample Code... 19-15

20 Oracle Directory Integration Platform PL/SQL API Reference

Versioning of Provisioning Files and Interfaces ... 20-1
Extensible Event Definition Configuration ... 20-1
Inbound and Outbound Events.. 20-3
PL/SQL Bidirectional Interface (Version 3.0) ... 20-4
PL/SQL Bidirectional Interface (Version 2.0) ... 20-8
Provisioning Event Interface (Version 1.1) ... 20-9

Predefined Event Types ... 20-11
Attribute Type ... 20-11
Attribute Modification Type.. 20-11
Event Dispositions Constants.. 20-11
Callbacks... 20-11

GetAppEvent() ... 20-12
PutAppEventStatus()... 20-12
PutOIDEvent().. 20-12

Part IV Appendixes

A Java Plug-ins for User Provisioning

Provisioning Plug-in Types and Their Purpose ... A-1
Provisioning Plug-in Requirements .. A-2
Data Entry Provisioning Plug-in .. A-2

Pre–Data-Entry Provisioning Plug-in .. A-4
Post–Data-Entry Provisioning Plug-in... A-5

Data Access Provisioning Plug-in ... A-5
Event Delivery Provisioning Plug-in .. A-7

xv

Provisioning Plug-in Return Status... A-10
Configuration Template for Provisioning Plug-ins.. A-10
Sample Code for a Provisioning Plug-in .. A-11

B DSML Syntax

Capabilities of DSML... B-1
Benefits of DSML.. B-1
DSML Syntax ... B-1

Top-Level Structure .. B-2
Directory Entries ... B-2
Schema Entries... B-3

Tools Enabled for DSML ... B-3

C Migrating from Netscape LDAP SDK API to Oracle LDAP SDK API

Features.. C-1
Functions ... C-1
Macros.. C-2

Glossary

Index

xvi

List of Figures

1–1 A Directory-Enabled Application... 1-5
1–2 An Application Leveraging APIs and Services .. 1-7
2–1 A Directory Information Tree ... 2-2
2–2 Attributes of the Entry for Anne Smith ... 2-3
2–3 Steps in Typical DBMS_LDAP Usage.. 2-7
2–4 Flow of Search-Related Operations... 2-13
2–5 The Three Scope Options .. 2-14
4–1 Programmatic Flow for API Extensions .. 4-2
8–1 Overview of Delegated Administration Services... 8-1
13–1 Communication Between the Server and the Java Plug-in.. 13-3
19–1 The Directory Information Tree for Provisioning Configuration Data 19-5

xvii

List of Tables

1–1 Interactions During Application Lifecycle ... 1-5
1–2 Services and APIs for Integrating with Oracle Internet Directory 1-6
1–3 Services for Modifying Existing Applications ... 1-8
1–4 Application Integration Points... 1-9
2–1 LDAP Functions ... 2-4
2–2 SSL Authentication Modes ... 2-5
2–3 Parameters for ldap_init()... 2-9
2–4 Arguments for ldap_simple_bind_s().. 2-11
2–5 Options for search_s() or search_st() Functions ... 2-13
2–6 Search Filters.. 2-14
2–7 Boolean Operators .. 2-15
2–8 Arguments for ldap_search_s()... 2-16
2–9 Arguments for DBMS_LDAP.search_s() and DBMS_LDAP.search_st() 2-16
3–1 Controls Supported by Oracle Internet Directory... 3-4
3–2 Parameters in DynamicVerifierRequestControl.. 3-7
3–3 Parameters Required by the Hashing Algorithms.. 3-8
4–1 Environment Variables for DNS Discovery... 4-7
5–1 Methods for Directory Server Discovery.. 5-6
8–1 Integration Considerations ... 8-2
8–2 URL Parameters for Oracle Delegated Administration Services .. 8-3
9–1 User Attributes Passed to Partner Applications.. 9-1
9–2 Commonly Requested Dynamic Directives ... 9-3
11–1 Plug-in Configuration Objects and Attributes.. 11-4
12–1 Plug-in Module Interface ... 12-2
12–2 Operation-Based and Attribute-Based Plug-in Procedure Signatures............................ 12-2
12–3 Valid Values for the plug-in Return Code .. 12-5
12–4 Program Control Handling when a Plug-in Exception Occurs 12-5
12–5 Program Control Handling when an LDAP Operation Fails... 12-6
13–1 The Meaning of the DN Information for Each LDAP Operation..................................... 13-4
13–2 Behavior of Operation Result Code.. 13-5
13–3 Subclasses of LdapOperation and Class-specific information. .. 13-6
13–4 Behavior of LdapEntry Information for Each Plug-in Timing ... 13-6
13–5 Behavior of the AttributeName for Each Plug-in Timing... 13-7
13–6 Behavior of the Attribute Value for Each Plug-in Timing .. 13-7
13–7 Behavior of the Delete DN for Each Plug-in Timing ... 13-7
13–8 Behavior of New Parent DN Information for Each Plug-in Timing................................ 13-8
13–9 Behavior of New Relative Dn Information for Each Plug-in Timing.............................. 13-8
13–10 Behavior of Delete Old RDN Information for Each Plug-in Timing 13-8
13–11 Behavior of LdapModification Information for Each Plug-in Timing 13-9
13–12 Behavior of the Required Attributes for Each Plug-in Timing... 13-9
13–13 Behavior of the Scope for Each Plug-in Timing.. 13-9
13–14 Behavior of the SearchResultSet for Each Plug-in Timing.. 13-10
13–15 Debug Levels for Java Plug-in Logging... 13-14
14–1 Arguments for SSL Interface Calls ... 14-2
14–2 Functions and Procedures in the C API... 14-3
14–3 Parameters for Initializing an LDAP Session.. 14-5
14–4 Parameters for LDAP Session Handle Options.. 14-7
14–5 Constants.. 14-7
14–6 Parameters for Authenticating to the Directory... 14-11
14–7 Parameters passed to ora_ldap_init_sasl() .. 14-12
14–8 Parameters for Managing SASL Credentials .. 14-14
14–9 Fields in ldapcontrol Structure ... 14-15
14–10 Parameters for Closing the Session .. 14-16

xviii

14–11 Parameters for Search Operations .. 14-18
14–12 Parameters for Compare Operations ... 14-21
14–13 Parameters for Modify Operations... 14-22
14–14 Fields in LDAPMod Structure... 14-23
14–15 Parameters for Rename Operations ... 14-25
14–16 Parameters for Add Operations.. 14-26
14–17 Parameters for Delete Operations .. 14-27
14–18 Parameters for Extended Operations... 14-29
14–19 Parameters for Abandoning an Operation.. 14-30
14–20 Parameters for Obtaining Results and Peeking Inside LDAP Messages...................... 14-31
14–21 Parameters for Handling Errors and Parsing Results ... 14-33
14–22 Parameters for Stepping Through a List of Results ... 14-34
14–23 Parameters for Retrieving Entries and Continuation References from a Search Result

Chain, and for Counting Entries Returned .. 14-35
14–24 Parameters for Stepping Through Attribute Types Returned with an Entry 14-36
14–25 Parameters for Retrieving and Counting Attribute Values .. 14-37
14–26 Parameters for Retrieving, Exploding, and Converting Entry Names 14-38
14–27 Parameters for Extracting LDAP Controls from an Entry .. 14-39
14–28 Parameters for Extracting Referrals and Controls from a SearchResultReference

Message ... 14-40
15–1 DBMS_LDAP API Subprograms .. 15-1
15–2 DBMS_LDAP Exception Summary .. 15-3
15–3 DBMS_LDAP Data Type Summary ... 15-5
15–4 INIT Function Parameters ... 15-5
15–5 INIT Function Return Values .. 15-6
15–6 INIT Function Exceptions .. 15-6
15–7 SIMPLE_BIND_S Function Parameters ... 15-7
15–8 SIMPLE_BIND_S Function Return Values.. 15-7
15–9 SIMPLE_BIND_S Function Exceptions.. 15-7
15–10 BIND_S Function Parameters.. 15-7
15–11 BIND_S Function Return Values .. 15-8
15–12 BIND_S Function Exceptions .. 15-8
15–13 UNBIND_S Function Parameters ... 15-8
15–14 UNBIND_S Function Return Values.. 15-9
15–15 UNBIND_S Function Exceptions.. 15-9
15–16 COMPARE_S Function Parameters ... 15-9
15–17 COMPARE_S Function Return Values.. 15-10
15–18 COMPARE_S Function Exceptions .. 15-10
15–19 SEARCH_S Function Parameters ... 15-10
15–20 SEARCH_S Function Return Value.. 15-11
15–21 SEARCH_S Function Exceptions.. 15-11
15–22 SEARCH_ST Function Parameters... 15-12
15–23 SEARCH_ST Function Return Values ... 15-13
15–24 SEARCH_ST Function Exceptions ... 15-13
15–25 FIRST_ENTRY Function Parameters ... 15-13
15–26 FIRST_ENTRY Return Values... 15-14
15–27 FIRST_ENTRY Exceptions... 15-14
15–28 NEXT_ENTRY Function Parameters ... 15-14
15–29 NEXT_ENTRY Function Return Values .. 15-15
15–30 NEXT_ENTRY Function Exceptions .. 15-15
15–31 COUNT_ENTRY Function Parameters ... 15-15
15–32 COUNT_ENTRY Function Return Values .. 15-16
15–33 COUNT_ENTRY Function Exceptions .. 15-16
15–34 FIRST_ATTRIBUTE Function Parameters... 15-16
15–35 FIRST_ATTRIBUTE Function Return Values ... 15-17

xix

15–36 FIRST_ATTRIBUTE Function Exceptions ... 15-17
15–37 NEXT_ATTRIBUTE Function Parameters .. 15-17
15–38 NEXT_ATTRIBUTE Function Return Values ... 15-18
15–39 NEXT_ATTRIBUTE Function Exceptions ... 15-18
15–40 GET_DN Function Parameters ... 15-18
15–41 GET_DN Function Return Values .. 15-19
15–42 GET_DN Function Exceptions .. 15-19
15–43 GET_VALUES Function Parameters.. 15-19
15–44 GET_VALUES Function Return Values .. 15-20
15–45 GET_VALUES Function Exceptions .. 15-20
15–46 GET_VALUES_LEN Function Parameters.. 15-20
15–47 GET_VALUES_LEN Function Return Values .. 15-21
15–48 GET_VALUES_LEN Function Exceptions .. 15-21
15–49 DELETE_S Function Parameters .. 15-21
15–50 DELETE_S Function Return Values ... 15-22
15–51 DELETE_S Function Exceptions ... 15-22
15–52 MODRDN2_S Function Parameters... 15-22
15–53 MODRDN2_S Function Return Values ... 15-23
15–54 MODRDN2_S Function Exceptions ... 15-23
15–55 ERR2STRING Function Parameters ... 15-23
15–56 ERR2STRING Function Return Values.. 15-24
15–57 CREATE_MOD_ARRAY Function Parameters.. 15-24
15–58 CREATE_MOD_ARRAY Function Return Values .. 15-24
15–59 POPULATE_MOD_ARRAY (String Version) Procedure Parameters 15-25
15–60 POPULATE_MOD_ARRAY (String Version) Procedure Exceptions 15-25
15–61 POPULATE_MOD_ARRAY (Binary Version) Procedure Parameters 15-26
15–62 POPULATE_MOD_ARRAY (Binary Version) Procedure Exceptions 15-26
15–63 POPULATE_MOD_ARRAY (Binary) Parameters ... 15-27
15–64 POPULATE_MOD_ARRAY (Binary) Exceptions .. 15-27
15–65 GET_VALUES_BLOB Parameters .. 15-27
15–66 get_values_blob Return Values... 15-28
15–67 get_values_blob Exceptions... 15-28
15–68 COUNT_VALUES_BLOB Parameters ... 15-28
15–69 COUNT_VALUES_BLOB Return Values.. 15-29
15–70 VALUE_FREE_BLOB Parameters .. 15-29
15–71 MODIFY_S Function Parameters ... 15-30
15–72 MODIFY_S Function Return Values .. 15-30
15–73 MODIFY_S Function Exceptions .. 15-30
15–74 ADD_S Function Parameters .. 15-31
15–75 ADD_S Function Return Values ... 15-31
15–76 ADD_S Function Exceptions ... 15-31
15–77 FREE_MOD_ARRAY Procedure Parameters ... 15-32
15–78 COUNT_VALUES Function Parameters... 15-32
15–79 COUNT_VALUES Function Return Values ... 15-32
15–80 COUNT_VALUES_LEN Function Parameters... 15-33
15–81 COUNT_VALUES_LEN Function Return Values ... 15-33
15–82 RENAME_S Function Parameters .. 15-33
15–83 RENAME_S Function Return Values... 15-34
15–84 RENAME_S Function Exceptions... 15-34
15–85 EXPLODE_DN Function Parameters... 15-34
15–86 EXPLODE_DN Function Return Values ... 15-35
15–87 EXPLODE_DN Function Exceptions ... 15-35
15–88 OPEN_SSL Function Parameters.. 15-35
15–89 OPEN_SSL Function Return Values .. 15-36
15–90 OPEN_SSL Function Exceptions .. 15-36

xx

15–91 MSGFREE Function Parameters ... 15-36
15–92 MSGFREE Return Values .. 15-37
15–93 BER_FREE Function Parameters .. 15-37
15–94 Parameters for nls_convert_to_utf8 ... 15-38
15–95 Return Values for nls_convert_to_utf8 .. 15-38
15–96 Parameters for nls_convert_to_utf8 ... 15-39
15–97 Return Values for nls_convert_to_utf8 .. 15-39
15–98 Parameter for nls_convert_from_utf8.. 15-39
15–99 Return Value for nls_convert_from_utf8... 15-39
15–100 Parameter for nls_convert_from_utf8.. 15-40
15–101 Return Value for nls_convert_from_utf8... 15-40
15–102 Return Value for nls_get_dbcharset_name ... 15-41
17–1 DBMS_LDAP_UTL User-Related Subprograms .. 17-1
17–2 DBMS_LDAP_UTL Group-Related Subprograms... 17-2
17–3 DBMS_LDAP_UTL Subscriber-Related Subprograms.. 17-2
17–4 DBMS_LDAP_UTL Miscellaneous Subprograms.. 17-2
17–5 authenticate_user Function Parameters .. 17-4
17–6 authenticate_user Function Return Values ... 17-4
17–7 CREATE_USER_HANDLE Function Parameters.. 17-5
17–8 CREATE_USER_HANDLE Function Return Values .. 17-5
17–9 SET_USER_HANDLE_PROPERTIES Function Parameters... 17-6
17–10 SET_USER_HANDLE_PROPERTIES Function Return Values 17-6
17–11 GET_USER_PROPERTIES Function Parameters ... 17-6
17–12 GET_USER_PROPERTIES Function Return Values .. 17-7
17–13 SET_USER_PROPERTIES Function Parameters .. 17-8
17–14 SET_USER_PROPERTIES Function Return Values ... 17-8
17–15 GET_USER_EXTENDED_PROPERTIES Function Parameters 17-9
17–16 GET_USER_EXTENDED_PROPERTIES Function Return Values 17-9
17–17 GET_USER_DN Function Parameters ... 17-10
17–18 GET_USER_DN Function Return Values.. 17-10
17–19 CHECK_GROUP_MEMBERSHIP Function Parameters .. 17-11
17–20 CHECK_GROUP_MEMBERSHIP Function Return Values ... 17-11
17–21 LOCATE_SUBSCRIBER_FOR_USER Function Parameters... 17-12
17–22 LOCATE SUBSCRIBER FOR USER Function Return Values .. 17-12
17–23 GET_GROUP_MEMBERSHIP Function Parameters... 17-13
17–24 GET_GROUP_MEMBERSHIP Function Return Values ... 17-13
17–25 CREATE_GROUP_HANDLE Function Parameters.. 17-15
17–26 CREATE_GROUP_HANDLE Function Return Values .. 17-15
17–27 SET_GROUP_HANDLE_PROPERTIES Function Parameters....................................... 17-15
17–28 SET_GROUP_HANDLE_PROPERTIES Function Return Values 17-16
17–29 GET_GROUP_PROPERTIES Function Parameters ... 17-16
17–30 GET_GROUP_PROPERTIES Function Return Values .. 17-17
17–31 GET_GROUP_DN Function Parameters ... 17-18
17–32 GET_GROUP_DN Function Return Values.. 17-18
17–33 CREATE_SUBSCRIBER_HANDLE Function Parameters .. 17-19
17–34 CREATE_SUBSCRIBER_HANDLE Function Return Values... 17-19
17–35 GET_SUBSCRIBER_PROPERTIES Function Parameters.. 17-20
17–36 GET_SUBSCRIBER_PROPERTIES Function Return Values .. 17-20
17–37 GET_SUBSCRIBER_DN Function Parameters ... 17-21
17–38 GET_SUBSCRIBER_DN Function Return Values.. 17-21
17–39 GET_SUBSCRIBER_EXT_PROPERTIES Function Parameters 17-22
17–40 GET_USER_EXTENDED_PROPERTIES Function Return Values 17-22
17–41 NORMALIZE_DN_WITH_CASE Function Parameters... 17-24
17–42 NORMALIZE_DN_WITH_CASE Function Return Values ... 17-24
17–43 GET_PROPERTY_NAMES Function Parameters .. 17-25

xxi

17–44 GET_PROPERTY_NAMES Function Return Values... 17-25
17–45 GET_PROPERTY_VALUES Function Parameters... 17-25
17–46 GET_PROPERTY_VALUES Function Return Values.. 17-26
17–47 GET_PROPERTY_VALUES_LEN Function Parameters... 17-26
17–48 GET_PROPERTY_VALUES_LEN Function Return Values ... 17-27
17–49 FREE_PROPERTYSET_COLLECTION Procedure Parameters 17-28
17–50 CREATE_MOD_PROPERTYSET Function Parameters .. 17-28
17–51 CREATE_MOD_PROPERTYSET Function Return Values... 17-28
17–52 POPULATE_MOD_PROPERTYSET Function Parameters .. 17-29
17–53 POPULATE_MOD_PROPERTYSET Function Return Values 17-29
17–54 FREE_MOD_PROPERTYSET Procedure Parameters.. 17-30
17–55 FREE_HANDLE Procedure Parameters.. 17-30
17–56 CHECK_INTERFACE_VERSION Function Parameters... 17-30
17–57 CHECK_VERSION_INTERFACE Function Return Values ... 17-31
17–58 GET_PROPERTY_VALUES_BLOB Function Parameters .. 17-31
17–59 GET_PROPERTY_VALUES_BLOB Return Values.. 17-31
17–60 PROPERTY_VALUE_FREE_BLOB Function Parameters... 17-32
17–61 Function Return Codes .. 17-32
17–62 DBMS_LDAP_UTL Data Types.. 17-34
18–1 Service Units and Corresponding Entries ... 18-1
18–2 Service Units and Corresponding URL Parameters .. 18-2
18–3 DAS URL Parameter Descriptions ... 18-5
18–4 User Search and Select.. 18-7
18–5 Group Search and Select .. 18-7
19–1 Some Useful Privilege Groups.. 19-3
19–2 Interfaces and Their Configuration .. 19-7
19–3 Information Formats Supported by the PLSQL Interface... 19-8
19–4 Properties Stored as Attributes in the Attribute Configuration Entry.......................... 19-10
19–5 Event propagation parameters.. 19-11
20–1 Predefined Event Definitions .. 20-2
20–2 Attributes of the Provisioning Subscription Profile... 20-4

xxii

xxiii

Preface

Oracle Identity Management Application Developer's Guide explains how to modify
applications to work with the Oracle Identity Management infrastructure. For the
purposes of this book, this infrastructure consists of Oracle Application Server Single
Sign-On, Oracle Internet Directory, Oracle Delegated Administration Services, and the
Directory Integration Platform.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
The following readers can benefit from this book:

■ Developers who want to integrate applications with the Oracle Identity
Management infrastructure. This process involves storing and updating
information in an Oracle Internet Directory server. It also involves modifying
applications to work with mod_osso, an authentication module on the Oracle
HTTP Server.

■ Anyone who wants to learn about the LDAP APIs and Oracle extensions to these
APIs.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

xxiv

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see these Oracle resources:

■ Oracle Identity Management Infrastructure Administrator’s Guide

■ Oracle Internet Directory Administrator’s Guide

■ Oracle Identity Management Integration Guide

■ Oracle Identity Management Guide to Delegated Administration

■ Oracle Application Server Single Sign-On Administrator’s Guide

■ PL/SQL User's Guide and Reference

■ Oracle Database Application Developer's Guide - Fundamentals

■ Oracle Security Developer Tools Reference

For additional information, see:

■ Chadwick, David. Understanding X.500—The Directory. Thomson Computer Press,
1996.

■ Howes, Tim and Mark Smith. LDAP: Programming Directory-enabled Applications
with Lightweight Directory Access Protocol. Macmillan Technical Publishing, 1997.

■ Howes, Tim, Mark Smith and Gordon Good, Understanding and Deploying LDAP
Directory Services. Macmillan Technical Publishing, 1999.

■ Internet Assigned Numbers Authority home page, http://www.iana.org, for
information about object identifiers

■ Internet Engineering Task Force (IETF) documentation available at:
http://www.ietf.org, especially:

■ The LDAPEXT charter and LDAP drafts

■ The LDUP charter and drafts

■ RFC 2254, "The String Representation of LDAP Search Filters"

■ RFC 1823, "The LDAP Application Program Interface"

■ The OpenLDAP Community, http://www.openldap.org

xxv

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xxvi

xxvii

What's New in the SDK?

This document acquaints you with new features in the Oracle Internet Directory
Software Developer's Kit—both in the present release and in previous releases. Use the
links provided to learn more about each feature.

New Features in the 10g (10.1.4.0.1) SDK
The 10g (10.1.4.0.1) SDK adds:

■ Java plug-in support.

Server plug-ins can now be written in Java as well as in PL/SQL. For more
information, please see Chapter 11, "Developing Plug-ins for the Oracle Internet
Directory Server" and Chapter 13, "Java Server Plug-ins".

■ Paging and sorting of LDAP search results.

You can now obtain paged and sorted results from LDAP searches. For more
information, please see "Sorted LDAP Search Results" and "Paged LDAP Search
Results" in Chapter 3, "Extensions to the LDAP Protocol".

■ Added functionality for hierarchical searches.

You can now traverse the hierarchy in either direction and specify the number of
levels of the hierarchy to search. For more information, please see "Performing
Hierarchical Searches"in Chapter 3, "Extensions to the LDAP Protocol".

■ Support for all three modes of SASL Digest-MD5 authentication.

Oracle Internet Directory now supports all three modes with the Java Naming and
Directory Interface (JNDI) of jdk1.4 API or with the OpenLDAP Java API. For
more information, please see "SASL Authentication" in Chapter 3, "Extensions to
the LDAP Protocol" and "Example: Using SASL Digest-MD5 auth-int and
auth-conf Modes" in Chapter 5, "Using the Java API Extensions to JNDI".

New Features in the Release 10.1.2 SDK
The release 10.1.2 SDK adds:

■ Centralized user provisioning.

This feature enables you to provision application users into the Oracle Identity
Management infrastructure. To learn more, see Chapter 19, "Oracle Directory
Integration Platform User Provisioning Java API Reference".

■ Dynamic password verifiers

xxviii

This feature addresses the needs of applications that provide parameters for
password verifiers only at runtime. To learn more, see "Creating Dynamic
Password Verifiers" in Chapter 3.

■ Binary support for ldapmodify, ldapadd, and ldapcompare plug-ins

Directory plug-ins can now access binary attributes in the directory database. To
learn more, see "Binary Support in the PL/SQLPlug-in Framework" in Chapter 12.

■ Plug-in support for the Oracle Directory Integration Platform Server

These Java hooks enable an enterprise to incorporate its own business rules and to
tailor footprint creation to its needs. To learn more, see Appendix A.

New Features in the Release 9.0.4 SDK
The following features made their debut in the release 9.0.4 SDK:

■ URL API for Oracle Delegated Administration Services

This API enables you to build administrative and self-service consoles that
delegated administrators can use to perform directory operations. To learn more,
see Chapter 8.

■ PL/SQL API Enhancements:

■ New functions in the LDAP v3 standard. Previously available only in the C
API, these functions are now available in PL/SQL.

■ Functions that enable proxied access to middle-tier applications.

■ Functions that create and manage provisioning profiles in the Oracle Directory
Integration Platform.

To learn more, see Chapter 7.

■ Plug-in support for external authentication

This feature enables administrators to use Microsoft Active Directory to store and
manage security credentials for Oracle components. To learn more, see Chapter 11.

■ Server discovery using DNS

This feature enables directory clients to discover the host name and port number
of a directory server. It reduces the cost of maintaining directory clients in large
deployments. To learn more, see "Discovering a Directory Server" in Chapter .

■ XML support for the directory SDK and directory tools

This feature enables LDAP tools to process XML as well as LDIF notation.
Directory APIs can manipulate data in a DSML 1.0 format.

■ Caching for client-side referrals

This feature enables clients to cache referral information, speeding up referral
processing. To learn more, see "LDAP Session Handle Options" in Chapter 8.

Part I
Programming for Oracle Identity

Management

Part I shows you how to modify your applications to work with the different
components of Oracle Identity Management. This section begins with an introduction
to the Oracle Internet Directory SDK and to LDAP programming concepts. You then
learn how to use the three LDAP APIs and their extensions to enable applications for
Oracle Internet Directory.

Part I contains these chapters:

■ Chapter 1, "Developing Applications for Oracle Identity Management"

■ Chapter 2, "Developing Applications with Standard LDAP APIs"

■ Chapter 3, "Extensions to the LDAP Protocol"

■ Chapter 4, "Developing Applications With Oracle Extensions to the Standard
APIs"

■ Chapter 5, "Using the Java API Extensions to JNDI"

■ Chapter 6, "Using the API Extensions in PL/SQL"

■ Chapter 7, "Developing Provisioning-Integrated Applications"

■ Chapter 8, "Integrating with Oracle Delegated Administration Services"

■ Chapter 9, "Developing Applications for Single Sign-On"

■ Chapter 10, "Integrating J2EE Applications and Oracle Internet Directory"

Developing Applications for Oracle Identity Management 1-1

1
Developing Applications for Oracle Identity

Management

Oracle Identity Management provides a shared infrastructure for all Oracle
applications. It also provides services and interfaces that facilitate third-party
enterprise application development. These interfaces are useful for application
developers who need to incorporate identity management into their applications.

This chapter discusses these interfaces and recommends application development best
practices in the Oracle Identity Management environment.

There are two types of applications that can be integrated with Oracle Identity
Management:

■ Existing applications already used in the enterprise. The enterprise might have
already invested in such applications and would benefit from their integration
with the Oracle Identity Management infrastructure.

■ New applications being developed by corporate IT departments or ISVs that are
based on the Oracle technology stack

This chapter contains the following topics:

■ Benefits of Integrating with Oracle Identity Management

■ Oracle Identity Management Services Available for Application Integration

■ Integrating Existing Applications with Oracle Identity Management

■ Integrating New Applications with Oracle Identity Management

■ Oracle Internet Directory Programming: An Overview

Benefits of Integrating with Oracle Identity Management
Enterprise applications integrating with the Oracle Identity Management
infrastructure receive the following benefits:

■ Integration facilitates faster application deployment with lower costs:
Enterprises (primarily Oracle customers) already using an existing Oracle Identity
Management infrastructure can deploy new applications using the self-service
console of Oracle Delegated Administration Services. Delegating application
administration to users reduces the deployment cost of the application.

■ Seamless integration with Oracle applications: Because all Oracle applications
rely on the Oracle Identity Management infrastructure, new enterprise
applications can use all the features Oracle Identity Management offers.

Oracle Identity Management Services Available for Application Integration

1-2 Oracle Identity Management Application Developer’s Guide

■ Seamless integration with third-party identity management solutions: Because
the Oracle Identity Management infrastructure already has built-in capabilities for
integrating with third-party identity management solutions, application
developers can take advantage of the identity management features.

Oracle Identity Management Services Available for Application Integration
Custom applications can use Oracle Identity Management through a set of
documented and supported services and APIs. For example:

■ Oracle Internet Directory provides LDAP APIs for C, Java, and PL/SQL, and is
compatible with other LDAP SDKs.

■ Oracle Delegated Administration Services provides a core self-service console that
can be customized to support third-party applications. In addition, they provide a
number of services for building customized administration interfaces that
manipulate directory data.

■ Oracle Directory Integration Services facilitate the development and deployment
of custom solutions for synchronizing Oracle Internet Directory with third-party
directories and other user repositories.

■ Oracle Provisioning Integration Services provide a mechanism for provisioning
third-party applications, as well as a means of integrating the Oracle environment
with other provisioning systems.

■ OracleAS Single Sign-On provides APIs for developing and deploying partner
applications that share a single sign-on session with other Oracle Web
applications.

■ JAZN is the Oracle implementation of the Java Authentication and Authorization
Service (JAAS) Support standard. JAZN allows applications developed for the
Web using the Oracle J2EE environment to use the identity management
infrastructure for authentication and authorization.

Integrating Existing Applications with Oracle Identity Management
An enterprise may have already deployed certain applications to perform critical
business functions. The Oracle Identity Management infrastructure provides the
following services that can be leveraged by the deployment to modify existing
applications:

■ Automated User Provisioning: The deployment can develop a custom
provisioning agent that automates the provisioning of users in the existing
application in response to provisioning events in the Oracle Identity Management
infrastructure. This agent must be developed using the interfaces of Oracle
Provisioning Integration Service.

■ User Authentication Services: If the user interface of the existing application is
based on HTTP, integrating it with Oracle HTTP Server and protecting its URL
using mod_osso will authenticate all incoming user requests using the OracleAS
Single Sign-On service.

■ Centralized User Profile Management: If the user interface of the existing
application is based on HTTP, and it is integrated with OracleAS Single Sign-On
for authentication, the application can use the self-service console of Oracle

See Also: Oracle Internet Directory Administrator’s Guide for more
information about developing automated user provisioning.

Integrating New Applications with Oracle Identity Management

Developing Applications for Oracle Identity Management 1-3

Delegated Administration Services to enable centralized user profile management.
The self-service console can be customized by the deployment to address the
specific needs of the application.

Integrating New Applications with Oracle Identity Management
Application developers can use the services provided by the Oracle Identity
Management infrastructure more extensively if they are developing a new application
or planning a new release of an existing application. Application developers should
consider the following integration points:

■ User Authentication Services: The application developer has the following
options:

– If the application is based on J2EE, it can use the services provided by the
Oracle Application Server Java Authentication and Authorization Service
(JAAS) Provider interface.

– If the application relies on Oracle Containers for J2EE (OC4J), it can use the
services provided by mod_osso to authenticate users and obtain important
information about the user in the HTTP headers.

– If the application is a standalone Web-based application, it can use OracleAS
Single Sign-On as a partner application using the OracleAS Single Sign-On
APIs.

– If the application provides an interface that is not Web-based, it can use the
Oracle Internet Directory LDAP APIs (available in C, PL/SQL and Java) to
authenticate users.

■ Centralized Profile Management: The application developer has the following
options available:

– The application developer can model application-specific profiles and user
preferences as attributes in Oracle Internet Directory.

– If the user interface of the application is based on HTTP, and it is integrated
with OracleAS Single Sign-On for authentication, the application can leverage
the self-service console of Oracle Delegated Administration Services to enable
centralized user profile management. The self-service console can be
customized by the deployment to address the specific needs of the application.

– The application can also retrieve user profiles at run time using the Oracle
Internet Directory LDAP APIs (available in C, PL/SQL and Java).

■ Automated User Provisioning: Application developers should consider the
following options:

– If the user interface of the application is based on HTTP and it is integrated
with OracleAS Single Sign-On for authentication, then the application
developer can implement automated user provisioning the first time a user
accesses the application

– The application can also be integrated with the Oracle Internet Directory
Provisioning Integration Service, which enables it to automatically provision
or de-provision user accounts in response to administrative actions, such as
adding an identity, modifying the properties of an existing identity, or deleting
an existing identity in the Oracle Identity Management infrastructure

See Also: Oracle Identity Management Integration Guide

Oracle Internet Directory Programming: An Overview

1-4 Oracle Identity Management Application Developer’s Guide

Oracle Internet Directory Programming: An Overview
This section introduces you to the Oracle Internet Directory Software Developer's Kit.
It provides an overview of how an application can use the kit to integrate with the
directory. You are also acquainted with the rest of the directory product suite.

The section contains these topics:

■ Programming Languages Supported by the Oracle Internet Directory SDK

■ Oracle Internet Directory SDK Components

■ Application Development in the Oracle Internet Directory Environment

■ Other Components of Oracle Internet Directory

Programming Languages Supported by the Oracle Internet Directory SDK
The SDK is for application developers who use C, C++, and PL/SQL. Java developers
must use the JNDI provider from Sun Microsystems to integrate with the directory.

Oracle Internet Directory SDK Components
Oracle Internet Directory Software Developer's Kit 10g (10.1.4.0.1) consists of the
following:

■ A C API compliant with LDAP Version 3

■ A PL/SQL API contained in a PL/SQL package called DBMS_LDAP

■ Sample programs

■ Oracle Identity Management Application Developer's Guide (this document)

■ Command-line tools

Application Development in the Oracle Internet Directory Environment
This section contains these topics:

■ Architecture of a Directory-Enabled Application

■ Oracle Internet Directory Interactions During the Application Life Cycle

■ Services and APIs for Integrating Applications with Oracle Internet Directory

■ Integrating Existing Applications with Oracle Internet Directory

■ Integrating New Applications with Oracle Internet Directory

Architecture of a Directory-Enabled Application
Most directory-enabled applications are backend programs that simultaneously
handle multiple requests from multiple users. Figure 1–1 shows how a directory is
used by such applications.

Oracle Internet Directory Programming: An Overview

Developing Applications for Oracle Identity Management 1-5

Figure 1–1 A Directory-Enabled Application

As Figure 1–1 shows, when a user request involves an LDAP-enabled operation, the
application processes the request using a smaller set of pre-created directory
connections.

Oracle Internet Directory Interactions During the Application Life Cycle
Table 1–1 on page 1-5 walks you through the directory operations that an application
typically performs during its lifecycle.

Table 1–1 Interactions During Application Lifecycle

Point in Application Lifecycle Logic

Application Installation 1. Create an application identity in the directory.
The application uses this identity to perform
most of its LDAP operations.

2. Give the application identity LDAP
authorizations by making it part of the correct
LDAP groups. These authorizations enable the
application to accept user credentials and
authenticate them against the directory. The
directory can also use application authorizations
to proxy for the user when LDAP operations
must be performed on the user's behalf.

Application Startup and Bootstrap The application must retrieve credentials that enable
it to authenticate itself to the directory.

If the application stores configuration metadata in
Oracle Internet Directory, it can retrieve that
metadata and initialize other parts of the application.

The application can then establish a pool of
connections to serve user requests.

Oracle
Internet

Directory

User, Group,
Subscriber and

Application Data

LDAP-Enabled
Application

User 2

User N

User 1

User 3

Few
Connections

Multiple
Connections

...

Oracle Internet Directory Programming: An Overview

1-6 Oracle Identity Management Application Developer’s Guide

Services and APIs for Integrating Applications with Oracle Internet Directory
Application developers can integrate with Oracle Internet Directory by using the
services and APIs listed and described in Table 1–2 on page 1-6.

Application Runtime For every end-user request that needs an LDAP
operation, the application can:

■ Pick a connection from the pool of LDAP
connections.

■ Switch the user to the end-user identity if the
LDAP operation needs to be performed with the
effective rights of the end-user.

■ Perform the LDAP operation by using either the
regular API or the API enhancements described
in this chapter.

■ Ensure that the effective user is now the
application identity once the LDAP operation is
complete.

■ Return the LDAP connection back to the pool of
connections.

Application Shutdown Abandon any outstanding LDAP operations and
close all LDAP connections.

Application Deinstallation Remove the application identity and the LDAP
authorizations granted to it.

Table 1–2 Services and APIs for Integrating with Oracle Internet Directory

Service/API Description More Information

Standard LDAP APIs in C, PL/SQL
and Java

These provide basic LDAP
operations. The standard LDAP API
used in Java is the JNDI API with the
LDAP service provider from Sun
Microsystems.

Chapter 2, "Developing Applications
with Standard LDAP APIs"

Oracle Extensions to Standard C,
PL/SQL and Java APIs

These APIs provide programmatic
interfaces that model various
concepts related to identity
management.

Chapter 4, "Developing Applications
With Oracle Extensions to the
Standard APIs"

Table 1–1 (Cont.) Interactions During Application Lifecycle

Point in Application Lifecycle Logic

Oracle Internet Directory Programming: An Overview

Developing Applications for Oracle Identity Management 1-7

Figure 1–2 shows an application leveraging some of the services illustrated in
Table 1–2 on page 1-6.

Figure 1–2 An Application Leveraging APIs and Services

As Figure 1–2 shows, the application integrates with Oracle Internet Directory as
follows:

■ Using PL/SQL, C, or Java APIs, it performs LDAP operations directly against the
directory.

■ In some cases, it directs users to self-service features of Oracle Delegated
Administration Services.

■ It is notified of changes to entries for users or groups in Oracle Internet Directory.
The Oracle Directory Provisioning Integration Service provides this notification.

Oracle Delegated Administration
Services

Oracle Delegated Administration
Services consists of a self-service
console and administrative
interfaces. You can modify the
administrative interfaces to support
third-party applications.

■ Chapter 8, "Integrating with
Oracle Delegated
Administration Services"

■ The chapter about the delegated
administration services
framework in Oracle Identity
Management Guide to Delegated
Administration

Oracle Directory Provisioning
Integration Service

You can use the Oracle Provisioning
Integration System to provision
third-party applications and
integrate other provisioning systems.

■ Chapter 7, "Developing
Provisioning-Integrated
Applications"

■ Oracle Identity Management
Integration Guide

Oracle Internet Directory Plug-ins You can use plug-ins to customize
directory behavior in certain
deployments.

■ Chapter 11, "Developing
Plug-ins for the Oracle Internet
Directory Server"

■ The chapter about plug-ins in
Oracle Internet Directory
Administrator’s Guide

■ Appendix A, "Java Plug-ins for
User Provisioning"

Table 1–2 (Cont.) Services and APIs for Integrating with Oracle Internet Directory

Service/API Description More Information

C, PL/SQL,
 Java APIs

DAS

Directory
Integration
Platform

Oracle
Internet

Directory

Provisoning
APIs

Application

DAS
URL
APIs

Oracle Internet Directory Programming: An Overview

1-8 Oracle Identity Management Application Developer’s Guide

Integrating Existing Applications with Oracle Internet Directory
Your enterprise may already have deployed applications that you may have wanted to
integrate with the Oracle identity management infrastructure. You can still integrate
these applications using the services presented in Table 1–3.

Integrating New Applications with Oracle Internet Directory
If you are developing a new application or planning a new release of an existing
application, you have many directory integration options at your disposal. Table 1–4
on page 1-9 lists and describes these.

Table 1–3 Services for Modifying Existing Applications

Service Description More Information

Automated User Provisioning You can develop an agent that
automatically provisions users when
provisioning events occur in the
Oracle identity management
infrastructure. You use interfaces of
the Oracle Directory Provisioning
Integration Service to develop this
agent.

Chapter 7, "Developing
Provisioning-Integrated
Applications"

User Authentication Services If your user interface is based on
HTTP, you can integrate it with the
Oracle HTTP Server. This enables
you to use mod_osso and OracleAS
Single Sign-On to protect the
application URL.

Oracle Application Server Single
Sign-On Administrator’s Guide

Centralized User Profile
Management

If your user interface is based on
HTTP and is integrated with
OracleAS Single Sign-On, you can
use the Oracle Internet Directory
Self-Service Console to manage user
profiles centrally. You can tailor the
console to the needs of your
application.

■ Chapter 8, "Integrating with
Oracle Delegated
Administration Services"

■ The chapter about the delegated
administration services
framework in Oracle Identity
Management Guide to Delegated
Administration

Oracle Internet Directory Programming: An Overview

Developing Applications for Oracle Identity Management 1-9

Other Components of Oracle Internet Directory
The SDK is just one component in the directory suite. Here are the others:

■ Oracle directory server, LDAP Version 3

■ Oracle directory replication server

■ Oracle Directory Manager, a Java-based graphical user interface

Table 1–4 Application Integration Points

Integration Point Available Options More Information

User Authentication Services If your application is based on J2EE, it can use
the JAZN interface to authenticate users. If it
relies on OC4J, it can use mod_osso for the same
purpose. The second option enables the
application to obtain information about the user
from HTTP headers.

If your application is Web based and standalone,
it can still integrate with OracleAS Single
Sign-On, then it can still leverage Oracle
Application Server Single Sign-On by becoming a
partner application using the single sign-on APIs.

Finally, if the application provides a non-Web
user interface, it can use the Oracle Internet
Directory LDAP APIs to integrate users.

■ Oracle Containers for J2EE
Developer’s Guide

■ Oracle Application Server
Single Sign-On
Administrator’s Guide

■ Part II, "Oracle Internet
Directory Programming
Reference". This section is
devoted to the various
LDAP APIs.

User Authorization Services If your application is based on J2EE, it can use
the JAZN interface to implement and enforce
user authorizations for application resources. The
application can define authorizations as groups
in Oracle Internet Directory and can then check
the authorizations of a user by checking his or
her group membership. It can use the Oracle
Internet Directory LDAP APIs for this purpose.

■ Oracle Containers for J2EE
Developer’s Guide

■ Part II, "Oracle Internet
Directory Programming
Reference". This section is
devoted to the various
LDAP APIs.

Centralized Profile
Management

You can define application-specific profiles and
user preferences as attributes in Oracle Internet
Directory.

If your user interface is based on HTTP and is
integrated with OracleAS Single Sign-On, you
can use the Oracle Internet Directory Self-Service
Console to manage user profiles centrally. You
can tailor the console to the needs of your
application.

Additionally, you can use the Oracle Internet
Directory LDAP APIs to retrieve user profiles at
runtime.

■ The chapter about
deployment considerations
in Oracle Internet Directory
Administrator’s Guide

■ Chapter 8, "Integrating with
Oracle Delegated
Administration Services"

■ Oracle Identity Management
Guide to Delegated
Administration

■ Part II of this guide, which
is devoted to the various
LDAP APIs

Automated User
Provisioning

If your user interface is based on HTTP and it is
integrated with OracleAS Single Sign-On, you
can implement automated user provisioning the
very first time a user accesses the application.

You use the Oracle Directory Provisioning
Integration Service to integrate the application
with the Oracle identity management
infrastructure. Once integrated, the application
can provision or deprovision user accounts
automatically when an administrator adds,
modifies, or deletes an identity.

Chapter 7, "Developing
Provisioning-Integrated
Applications"

Oracle Internet Directory Programming: An Overview

1-10 Oracle Identity Management Application Developer’s Guide

■ Oracle Internet Directory bulk tools

■ Oracle Internet Directory Administrator’s Guide

Developing Applications with Standard LDAP APIs 2-1

2
Developing Applications with Standard LDAP

APIs

This chapter takes a high-level look at the operations that the standard LDAP API
enables. It explains how to integrate your applications with the API. Before presenting
these topics, the chapter revisits the Lightweight Directory Access Protocol (LDAP).

This chapter contains these topics:

■ Sample Code

■ History of LDAP

■ LDAP Models

■ About the Standard LDAP APIs

■ Initializing an LDAP Session

■ Authenticating an LDAP Session

■ Searching the Directory

■ Terminating the Session

Sample Code
Sample code is available at this URL:

http://www.oracle.com/technology/sample_code/

Look for the Oracle Identity Management link under Sample Applications—Fusion
Middleware.

History of LDAP
LDAP began as a lightweight front end to the X.500 Directory Access Protocol. LDAP
simplifies the X.500 Directory Access Protocol in the following ways:

■ It uses TCP/IP connections. These are lightweight compared to the OSI
communication stack required by X.500 implementations

■ It eliminates little-used and redundant features of the X.500 Directory Access
Protocol

■ It uses simple formats to represent data elements. These formats are easier to
process than the complicated and highly structured representations in X.500.

LDAP Models

2-2 Oracle Identity Management Application Developer’s Guide

■ It uses a simplified version of the X.500 encoding rules used to transport data over
networks.

 LDAP Models
LDAP uses four basic models to define its operations:

■ Naming Model

■ Information Model

■ Functional Model

■ Security Model

Naming Model
The LDAP naming model enables directory information to be referenced and
organized. Each entry in a directory is uniquely identified by a distinguished name
(DN). The DN tells you exactly where an entry resides in the directory hierarchy. A
directory information tree (DIT) is used to represent this hierarchy.

Figure 2–1 illustrates the relationship between a distinguished name and a directory
information tree.

Figure 2–1 A Directory Information Tree

The DIT in Figure 2–1 shows entries for two employees of Acme Corporation who are
both named Anne Smith. It is structured along geographical and organizational lines.
The Anne Smith represented by the left branch works in the Sales division in the
United States. Her counterpart works in the Server Development division in the
United Kingdom.

The Anne Smith represented by the right branch has the common name (cn) Anne
Smith. She works in an organizational unit (ou) named Server Development, in the
country (c) of United Kingdom of Great Britain and Northern Ireland (uk), in the
organization (o) Acme. The DN for this Anne Smith entry looks like this:

cn=Anne Smith,ou=Server Development,c=uk,o=acme

Note that the conventional format for a distinguished name places the lowest DIT
component at the left. The next highest component follows, on up to the root.

Within a distinguished name, the lowest component is called the relative
distinguished name (RDN). In the DN just presented, the RDN is cn=Anne Smith.
The RDN for the entry immediately above Anne Smith's RDN is ou=Server
Development. And the RDN for the entry immediately above ou=Server

c=us

ou=Sales ou=Server Development

cn=Anne Smith cn=Anne Smith

c=uk

root

o=acme

LDAP Models

Developing Applications with Standard LDAP APIs 2-3

Development is c=uk, and so on. A DN is thus a sequence of RDNs separated by
commas.

To locate a particular entry within the overall DIT, a client uniquely identifies that
entry by using the full DN—not simply the RDN—of that entry. To avoid confusion
between the two Anne Smiths in the global organization depicted in Figure 2–1, you
use the full DN for each. If there are two employees with the same name in the same
organizational unit, you can use other mechanisms. You may, for example, use a
unique identification number to identify these employees.

Information Model
The LDAP information model determines the form and character of information in the
directory. This model uses the concept of entries as its defining characteristic. In a
directory, an entry is a collection of information about an object. A telephone directory,
for example, contains entries for people. A library card catalog contains entries for
books. An online directory may contain entries for employees, conference rooms,
e-commerce partners, or shared network resources such as printers.

In a typical telephone directory, a person entry contains an address and a phone
number. In an online directory, each of these pieces of information is called an
attribute. A typical employee entry contains attributes for a job title, an e-mail address,
and a phone number.

In Figure 2–2, the entry for Anne Smith in Great Britain (uk) has several attributes.
Each provides specific information about her. Those listed in the balloon to the right of
the tree are emailaddrs, printername, jpegPhoto, and app preferences. Note
that the rest of the bullets in Figure 2–2 are also entries with attributes, although these
attributes are not shown.

Figure 2–2 Attributes of the Entry for Anne Smith

Each attribute consists of an attribute type and one or more attribute values. The
attribute type is the kind of information that the attribute contains—jobTitle, for
instance. The attribute value is the actual information. The value for the jobTitle
attribute, for example, might be manager.

Functional Model
The LDAP functional model determines what operations can be performed on
directory entries. Table 2–1 on page 2-4 lists and describes the three types of functions:

LDAP Models

2-4 Oracle Identity Management Application Developer’s Guide

Security Model
The LDAP security model enables directory information to be secured. This model has
several parts:

■ Authentication

Ensuring that the identities of users, hosts, and clients are correctly validated

■ Access Control and Authorization

Ensuring that a user reads or updates only the information for which that user has
privileges

■ Data Integrity: Ensuring that data is not modified during transmission

■ Data Privacy

Ensuring that data is not disclosed during transmission

■ Password Policies

Setting rules that govern how passwords are used

Authentication
Authentication is the process by which the directory server establishes the identity of
the user connecting to the directory. Directory authentication occurs when an LDAP
bind operation establishes an LDAP session. Every session has an associated user
identity, also referred to as an authorization ID.

Oracle Internet Directory provides three authentication options: anonymous, simple,
and SSL.

Table 2–1 LDAP Functions

Function Description

Search and read The read operation retrieves the attributes of an entry whose
name is known. The list operation enumerates the children of a
given entry. The search operation selects entries from a defined
area of the tree based on some selection criteria known as a
search filter. For each matching entry, a requested set of
attributes (with or without values) is returned. The searched
entries can span a single entry, an entry's children, or an entire
subtree. Alias entries can be followed automatically during a
search, even if they cross server boundaries. An abandon
operation is also defined, allowing an operation in progress to
be canceled.

Modify This category defines four operations that modify the
directory:

■ Modify—change existing entries. You can add and delete
values.

■ Add—insert entries into the directory

■ Delete—remove entries from the directory

■ Modify RDN—change the name of an entry

Authenticate This category defines a bind operation. A bind enables a client
to initiate a session and prove its identity to the directory.
Oracle Internet Directory supports several authentication
methods, from simple clear-text passwords to public keys. The
unbind operation is used to terminate a directory session.

LDAP Models

Developing Applications with Standard LDAP APIs 2-5

Anonymous Authentication If your directory is available to everyone, users may log in
anonymously. In anonymous authentication, users leave the user name and password
fields blank when they log in. They then exercise whatever privileges are specified for
anonymous users.

Simple Authentication In simple authentication, the client uses an unencrypted DN and
password to identify itself to the server. The server verifies that the client's DN and
password match the DN and password stored in the directory.

Authentication Using Secure Sockets Layer (SSL) Secure Sockets Layer (SSL) is an
industry standard protocol for securing network connections. It uses a certificate
exchange to authenticate users. These certificates are verified by trusted certificate
authorities. A certificate ensures that an entity's identity information is correct. An
entity can be an end user, a database, an administrator, a client, or a server. A
Certificate Authority (CA) is an application that creates public key certificates that are
given a high level of trust by all parties involved.

You can use SSL in one of the three authentication modes presented in Table 2–2.

In an Oracle Internet Directory environment, SSL authentication between a client and a
directory server involves three basic steps:

1. The user initiates an LDAP connection to the directory server by using SSL on an
SSL port. The default SSL port is 636.

2. SSL performs the handshake between the client and the directory server.

3. If the handshake is successful, the directory server verifies that the user has the
appropriate authorization to access the directory.

Access Control and Authorization
The authorization process ensures that a user reads or updates only the information
for which he or she has privileges. The directory server ensures that the user—
identified by the authorization ID associated with the session—has the requisite
permissions to perform a given directory operation. Absent these permissions, the
operation is disallowed.

The mechanism that the directory server uses to ensure that the proper authorizations
are in place is called access control. And an access control item (ACI) is the directory
metadata that captures the administrative policies relating to access control.

An ACI is stored in Oracle Internet Directory as user-modifiable operational attributes.
Typically a whole list of these ACI attribute values is associated with a directory object.

Table 2–2 SSL Authentication Modes

SSL Mode Description

No authentication Neither the client nor the server authenticates itself to the other.
No certificates are sent or exchanged. In this case, only SSL
encryption and decryption are used.

One-way authentication Only the directory server authenticates itself to the client. The
directory server sends the client a certificate verifying that the
server is authentic.

Two-way authentication Both client and server authenticate themselves to each other,
exchanging certificates.

See Also: Oracle Advanced Security Administrator's Guide for more
information about SSL.

LDAP Models

2-6 Oracle Identity Management Application Developer’s Guide

This list is called an access control list (ACL). The attribute values on that list govern
the access policies for the directory object.

ACIs are stored as text strings in the directory. These strings must conform to a
well-defined format. Each valid value of an ACI attribute represents a distinct access
control policy. These individual policy components are referred to as ACI Directives or
ACIs and their format is called the ACI Directive format.

Access control policies can be prescriptive: their security directives can be set to apply
downward to all entries at lower positions in the directory information tree (DIT).
The point from which an access control policy applies is called an access control
policy point (ACP).

Data Integrity
Oracle Internet Directory uses SSL to ensure that data is not modified, deleted, or
replayed during transmission. This feature uses cryptographic checksums to generate
a secure message digest. The checksums are created using either the MD5 algorithm or
the Secure Hash Algorithm (SHA). The message digest is included in each network
packet.

Data Privacy
Oracle Internet Directory uses public key encryption over SSL to ensure that data is
not disclosed during transmission. In public-key encryption, the sender of a message
encrypts the message with the public key of the recipient. Upon delivery, the recipient
decrypts the message using his or her private key. The directory supports two levels of
encryption:

■ DES40

The DES40 algorithm, available internationally, is a DES variant in which the
secret key is preprocessed to provide forty effective key bits. It is designed for use
by customers outside the USA and Canada who want to use a DES-based
encryption algorithm.

■ RC4_40

Oracle is licensed to export the RC4 data encryption algorithm with a 40-bit key
size to virtually all destinations where Oracle products are available. This makes it
possible for international corporations to safeguard their entire operations with
fast cryptography.

Password Policies
A password policy is a set of rules that govern how passwords are used. When a user
attempts to bind to the directory, the directory server uses the password policy to
ensure that the password provided meets the various requirements set in that policy.

When you establish a password policy, you set the following types of rules, to mention
just a few:

■ The maximum length of time a given password is valid

■ The minimum number of characters a password must contain

■ The ability of users to change their passwords

About the Standard LDAP APIs

Developing Applications with Standard LDAP APIs 2-7

About the Standard LDAP APIs
The standard LDAP APIs enable you to perform the fundamental LDAP operations
described in "LDAP Models". These APIs are available in C, PL/SQL, and Java. The
first two are part of the directory SDK. The last is part of the JNDI package provided
by Sun Microsystems. All three use TCP/IP connections. They are based on LDAP
Version 3, and they support SSL connections to Oracle Internet Directory.

This section contains these topics:

■ API Usage Model

■ Getting Started with the C API

■ Getting Started with the Java API

■ Getting Started with the DBMS_LDAP Package

API Usage Model
Typically, an application uses the functions in the API in four steps:

1. Initialize the library and obtain an LDAP session handle.

2. Authenticate to the LDAP server if necessary.

3. Perform some LDAP operations and obtain results and errors, if any.

4. Close the session.

Figure 2–3 illustrates these steps.

Figure 2–3 Steps in Typical DBMS_LDAP Usage

Getting Started with the C API
When you build applications with the C API, you must include the header file
ldap.h, located at $ORACLE_HOME/ldap/public. In addition, you must
dynamically link to the library located at $ORACLE_
HOME/lib/libclntsh.so.10.1.

See Also: "Sample C API Usage" on page 14-40 to learn how to use
the SSL and non-SSL modes.

Initialize Session

Authenticate Session

Perform LDAP
Operations

Terminate Session

Initializing an LDAP Session

2-8 Oracle Identity Management Application Developer’s Guide

Getting Started with the DBMS_LDAP Package
The DBMS_LDAP package enables PL/SQL applications to access data located in
enterprise-wide LDAP servers. The names and syntax of the function calls are similar
to those of the C API. These functions comply with current recommendations of the
Internet Engineering Task Force (IETF) for the C API. Note though that the PL/SQL
API contains only a subset of the functions available in the C API. Most notably, only
synchronous calls to the LDAP server are available in the PL/SQL API.

To begin using the PL/SQL LDAP API, use this command sequence to load DBMS_
LDAP into the database:

1. Log in to the database, using SQL*Plus. Run the tool in the Oracle home in which
your database is present. Connect as SYSDBA.

SQL> CONNECT / AS SYSDBA

2. Load the API into the database, using this command:

SQL> @?/rdbms/admin/catladap.sql

Getting Started with the Java API
Java developers can use the Java Naming and Directory Interface (JNDI) from Sun
Microsystems to gain access to information in Oracle Internet Directory. The JNDI is
found at this link:

http://java.sun.com/products/jndi

Although no Java APIs are provided in this chapter, the section immediately
following, "Initializing the Session by Using JNDI", shows you how to use wrapper
methods for the Sun JNDI to establish a basic connection.

Initializing an LDAP Session
All LDAP operations based on the C API require clients to establish an LDAP session
with the LDAP server. For LDAP operations based on the PL/SQL API, a database
session must first initialize and open an LDAP session. Most Java operations require a
Java Naming and Directory Interface (JNDI) connection. The
oracle.ldap.util.jndi package, provided here, simplifies the work involved in
achieving this connection.

The section contains the following topics:

■ Initializing the Session by Using the C API

■ Initializing the Session by Using DBMS_LDAP

■ Initializing the Session by Using JNDI

Initializing the Session by Using the C API
The C function ldap_init() initializes a session with an LDAP server. The server is
not actually contacted until an operation is performed that requires it, allowing
options to be set after initialization.

ldap_init has the following syntax:

LDAP *ldap_init
(
const char *hostname,
int portno

Initializing an LDAP Session

Developing Applications with Standard LDAP APIs 2-9

);

Table 2–3 lists and defines the function parameters.

ldap_init() and ldap_open() both return a session handle, or pointer, to an
opaque structure that must be passed to subsequent calls to the session. These routines
return NULL if the session cannot be initialized. You can check the error reporting
mechanism for your operating system to determine why the call failed.

Initializing the Session by Using DBMS_LDAP
In the PL/SQL API, the function DBMS_LDAP.init() initiates an LDAP session. This
function has the following syntax:

FUNCTION init (hostname IN VARCHAR2, portnum IN PLS_INTEGER)
RETURN SESSION;

The function init requires a valid host name and port number to establish an LDAP
session. It allocates a data structure for this purpose and returns a handle of the type
DBMS_LDAP.SESSION to the caller. The handle returned from the call should be used
in all subsequent LDAP operations defined by DBMS_LDAP for the session. The API
uses these session handles to maintain state about open connections, outstanding
requests, and other information.

A single database session can obtain as many LDAP sessions as required, although the
number of simultaneous active connections is limited to 64. One database session
typically has multiple LDAP sessions when data must be obtained from multiple
servers simultaneously or when open sessions that use multiple LDAP identities are
required.

Initializing the Session by Using JNDI
The oracle.ldap.util.jndi package supports basic connections by providing
wrapper methods for the JNDI implementation from Sun Microsystems. If you want to
use the JNDI to establish a connection, see the following link:

Table 2–3 Parameters for ldap_init()

Parameter Description

hostname Contains a space-separated list of directory host names or IP addresses
represented by dotted strings. You can pair each host name with a port
number as long as you use a colon to separate the two.

The hosts are tried in the order listed until a successful connection is
made.

Note: A suitable representation for including a literal IPv6[10] address in
the host name parameter is desired, but has not yet been determined or
implemented in practice.

portno Contains the TCP port number of the directory you would like to connect
to. The default LDAP port of 389 can be obtained by supplying the
constant LDAP_PORT. If a host includes a port number, this parameter is
ignored.

Note: The handles returned from calls to DBMS_LDAP.init() are
dynamic constructs. They do not persist across multiple database
sessions. Attempting to store their values in a persistent form, and to
reuse stored values at a later stage, can yield unpredictable results.

Authenticating an LDAP Session

2-10 Oracle Identity Management Application Developer’s Guide

http://java.sun.com/products/jndi

Here is an implementation of oracle.ldap.util.jndi that establishes a non-SSL
connection:

import oracle.ldap.util.jndi
import javax.naming.*;

public static void main(String args[])
{
 try{
 InitialDirContext ctx = ConnectionUtil.getDefaultDirCtx(args[0], // host
 args[1], // port
 args[2], // DN
 args[3]; // password)
 // Do work
 }
 catch(NamingException ne)
 {
 // javax.naming.NamingException is thrown when an error occurs
 }
}

Authenticating an LDAP Session
Individuals or applications seeking to perform operations against an LDAP server
must first be authenticated. If the dn and passwd parameters of these entities are null,
the LDAP server assigns a special identity, called anonymous, to these users. Typically,
the anonymous user is the least privileged user of the directory.

Once a bind operation is complete, the directory server remembers the new identity
until another bind occurs or the LDAP session terminates (unbind_s). The LDAP
server uses the identity to enforce the security model specified by the enterprise in
which it is deployed. The identity helps the LDAP server determine whether the user
or application identified has sufficient privileges to perform search, update, or
compare operations in the directory.

Note that the password for the bind operation is sent over the network in clear text. If
your network is not secure, consider using SSL for authentication and other LDAP
operations that involve data transfer.

This section contains these topics:

■ Authenticating an LDAP Session by Using the C API

■ Authenticating an LDAP Session by Using DBMS_LDAP

Authenticating an LDAP Session by Using the C API
The C function ldap_simple_bind_s() enables users and applications to
authenticate to the directory server using a DN and password.

Note:

■ DN and password represent the bind DN and password. For
anonymous binds, set these to "".

■ You can use ConnectionUtil.getSSLDirCtx() to establish a
no-authentication SSL connection.

Searching the Directory

Developing Applications with Standard LDAP APIs 2-11

The function ldap_simple_bind_s() has this syntax:

int ldap_simple_bind_s
(
LDAP* ld,
char* dn,
char* passwd
);

Table 2–4 lists and describes the parameters for this function.

If the dn and passwd parameters for are NULL, the LDAP server assigns a special
identity, called anonymous, to the user or application.

Authenticating an LDAP Session by Using DBMS_LDAP
The PL/SQL function simple_bind_s enables users and applications to use a DN
and password to authenticate to the directory. simple_bind_s has this syntax:

FUNCTION simple_bind_s (ld IN SESSION, dn IN VARCHAR2, passwd IN VARCHAR2)
RETURN PLS_INTEGER;

Note that this function requires as its first parameter the LDAP session handle
obtained from init.

The following PL/SQL code snippet shows how the PL/SQL initialization and
authentication functions just described might be implemented.

DECLARE
retvalPLS_INTEGER;
my_sessionDBMS_LDAP.session;

BEGIN
retval:= -1;
-- Initialize the LDAP session
my_session:= DBMS_LDAP.init('yow.acme.com',389);
--Authenticate to the directory
retval:=DBMS_LDAP.simple_bind_s(my_session,'cn=orcladmin',
'welcome');

In the previous example, an LDAP session is initialized on the LDAP server
yow.acme.com. This server listens for requests at TCP/IP port number 389. The
identity cn=orcladmin, whose password is welcome, is then authenticated. Once
authentication is complete, regular LDAP operations can begin.

Searching the Directory
Searches are the most common LDAP operations. Applications can use complex search
criteria to select and retrieve entries from the directory.

This section contains these topics:

Table 2–4 Arguments for ldap_simple_bind_s()

Argument Description

ld A valid LDAP session handle

dn The identity that the application uses for authentication

passwd The password for the authentication identity

Searching the Directory

2-12 Oracle Identity Management Application Developer’s Guide

■ Program Flow for Search Operations

■ Search Scope

■ Filters

■ Searching the Directory by Using the C API

■ Searching the Directory by Using DBMS_LDAP

Program Flow for Search Operations
The programming required to initiate a typical search operation and retrieve results
can be broken down into the following steps:

1. Decide what attributes must be returned; then place them into an array.

2. Initiate the search, using the scope options and filters of your choice.

3. Obtain an entry from result set.

4. Obtain an attribute from the entry obtained in step 3.

5. Obtain the values of the attributes obtained in step 4; then copy these values into
local variables.

6. Repeat step 4 until all attributes of the entry are examined.

7. Repeat Step 3 until there are no more entries

Figure 2–4 on page 2-13 uses a flow chart to represent these steps.

Note: This release of the DBMS_LDAP API provides only
synchronous search capability. This means that the caller of the search
functions is blocked until the LDAP server returns the entire result set.

Searching the Directory

Developing Applications with Standard LDAP APIs 2-13

Figure 2–4 Flow of Search-Related Operations

Search Scope
The scope of a search determines how many entries the directory server examines
relative to the search base. You can choose one of the three options described in
Table 2–5 and illustrated in Figure 2–5 on page 2-14.

Table 2–5 Options for search_s() or search_st() Functions

Option Description

SCOPE_BASE The directory server looks only for the entry corresponding to
the search base.

SCOPE_ONELEVEL

The directory server confines its search to the entries that are
the immediate children of the search base entry.

SCOPE_SUBTREE

The directory server looks at the search base entry and the
entire subtree beneath it.

Collect Required Attributes

Issue Search

Entry Count > 0
No

No

Yes

Attribute Valid

Yes

Entry Valid

Yes

1

Get First / Next Attribute

4

Get Attribute Values End of Search
5

Get First / Next Entry

3

2

No

No

Searching the Directory

2-14 Oracle Identity Management Application Developer’s Guide

Figure 2–5 The Three Scope Options

In Figure 2–5, the search base is the shaded circle. The shaded rectangle identifies the
entries that are searched.

Filters
A search filter is an expression that enables you to confine your search to certain types
of entries. The search filter required by the search_s() and search_st() functions
follows the string format defined in RFC 1960 of the Internet Engineering Task Force
(IETF). As Table 2–6 shows, there are six kinds of search filters. These are entered in
the format attribute operator value.

You can use boolean operators and prefix notation to combine these filters to form
more complex filters. Table 2–7 on page 2-15 provides examples. In these examples, the

Table 2–6 Search Filters

Filter Type Format Example Matches

Equality (att=value) (sn=Keaton) Surnames exactly equal
to Keaton.

Approximate (att~=value) (sn~=Ketan) Surnames
approximately equal to
Ketan.

Substring (attr=[leading]*[any]*[tr
ailing]

(sn=*keaton*)

(sn=keaton*)

(sn=*keaton)

(sn=ke*at*on)

Surnames containing
the string keaton.

Surnames starting with
keaton.

Surnames ending with
keaton.

Surnames starting with
ke, containing at and
ending with on.

Greater than or
equal

attr>=value (sn>=Keaton) Surnames
lexicographically
greater than or equal to
Keaton.

Less than or
equal

(attr<=value) (sn<=Keaton) Surnames
lexicographically less
than or equal to
Keaton.

Presence (attr=*) (sn=*) All entries having the
sn attribute.

SCOPE_BASE SCOPE_ONELEVEL SCOPE_SUBTREE

Base of
Search

Searching the Directory

Developing Applications with Standard LDAP APIs 2-15

& character represents AND, the | character represents OR, and the ! character
represents NOT.

The complex filters in Table 2–7 can themselves be combined to create even more
complex, nested filters.

Searching the Directory by Using the C API
The C function ldap_search_s() performs a synchronous search of the directory.

The syntax for ldap_search_s()looks like this:

int ldap_search_s
(
LDAP* ld,
char* base,
int scope,
char* filter
int attrsonly,
LDAPMessage** res
);

ldap_search_s works with several supporting functions to refine the search. The
steps that follow show how all of these C functions fit into the program flow of a
search operation. Chapter 14, "C API Reference", examines all of these functions in
depth.

1. Decide what attributes must be returned; then place them into an array of strings.
The array must be null terminated.

2. Initiate the search, using ldap_search_s(). Refine your search with scope
options and filters.

3. Obtain an entry from the result set, using either the ldap_first_entry()
function or the ldap_next_entry() function.

4. Obtain an attribute from the entry obtained in step 3. Use either the ldap_first_
attribute() function or the ldap_next_attribute() function for this
purpose.

5. Obtain all the values for the attribute obtained in step 4; then copy these values
into local variables. Use the ldap_get_values() function or the ldap_get_
values_len() function for this purpose.

6. Repeat step 4 until all attributes of the entry are examined.

Table 2–7 Boolean Operators

Filter Type Format Example Matches

AND (&(filter1)(filter2
)). . .)

(&(sn=keaton)(objec
tclass=inetOrgPerso
n))

Entries with surname
of Keaton and object
class of
InetOrgPerson.

OR (|(filter1)(filter2
)). . .)

(|(sn~=ketan)(cn=*k
eaton))

Entries with surname
approximately equal
to ketan or common
name ending in
keaton.

NOT (!(filter)) (!(mail=*)) Entries without a mail
attribute.

Searching the Directory

2-16 Oracle Identity Management Application Developer’s Guide

7. Repeat step 3 until there are no more entries.

Searching the Directory by Using DBMS_LDAP
You use the function DBMS_LDAP.search_s()to perform directory searches if you
use the PL/SQL API.

Here is the syntax for DBMS_LDAP.search_s():

FUNCTION search_s
(
ld IN SESSION,
base IN VARCHAR2,
scope IN PLS_INTEGER,
filter IN VARCHAR2,
attrs IN STRING_COLLECTION,
attronly IN PLS_INTEGER,
res OUT MESSAGE
)
RETURN PLS_INTEGER;

The function takes the arguments listed and described in Table 2–9 on page 2-16.

search_s works with several supporting functions to refine the search. The steps that
follow show how all of these PL/SQL functions fit into the program flow of a search
operation.

1. Decide what attributes need to be returned; then place them into the DBMS_
LDAP.STRING_COLLECTION data-type.

Table 2–8 Arguments for ldap_search_s()

Argument Description

ld A valid LDAP session handle

base The DN of the search base.

scope The breadth and depth of the DIT to be searched.

filter The filter used to select entries of interest.

attrs The attributes of interest in the entries returned.

attrso If set to 1, only returns attributes.

res This argument returns the search results.

Table 2–9 Arguments for DBMS_LDAP.search_s() and DBMS_LDAP.search_st()

Argument Description

ld A valid session handle

base

The DN of the base entry in the LDAP server where search should start

scope The breadth and depth of the DIT that needs to be searched

filter The filter used to select entries of interest

attrs The attributes of interest in the entries returned

attronly If set to 1, only returns the attributes

res An OUT parameter that returns the result set for further processing

Terminating the Session

Developing Applications with Standard LDAP APIs 2-17

2. Perform the search, using either DBMS_LDAP.search_s()or DBMS_
LDAP.search_st(). Refine your search with scope options and filters.

3. Obtain an entry from the result set, using eitherDBMS_LDAP.first_entry() or
DBMS_LDAP.next_entry().

4. Obtain an attribute from the entry obtained in step 3. Use either DBMS_
LDAP.first_attribute() or DBMS_LDAP.next_attribute() for this
purpose.

5. Obtain all the values for the attribute obtained in step 4; then copy these values
into local variables. Use either DBMS_LDAP.get_values() or DBMS_LDAP.get_
values_len() for this purpose.

6. Repeat step 4 until all attributes of the entry are examined.

7. Repeat step 3 until there are no more entries.

Terminating the Session
This section contains these topics:

■ Terminating the Session by Using the C API

■ Terminating the Session by Using DBMS_LDAP

Terminating the Session by Using the C API
Once an LDAP session handle is obtained and all directory-related work is complete,
the LDAP session must be destroyed. In the C API, the ldap_unbind_s() function is
used for this purpose.

ldap_unbind_s() has this syntax:

int ldap_unbind_s
(
LDAP* ld
);

A successful call to ldap_unbind_s()closes the TCP/IP connection to the directory.
It de-allocates system resources consumed by the LDAP session. Finally it returns the
integer LDAP_SUCCESS to its callers. Once ldap_unbind_s()is invoked, no other
LDAP operations are possible. A new session must be started with ldap_init().

Terminating the Session by Using DBMS_LDAP
The DBMS_LDAP.unbind_s() function destroys an LDAP session if the PL/SQL API
is used. unbind_s has the following syntax:

FUNCTION unbind_s (ld IN SESSION) RETURN PLS_INTEGER;

unbind_s closes the TCP/IP connection to the directory. It de-allocates system
resources consumed by the LDAP session. Finally it returns the integer DBMS_
LDAP.SUCCESS to its callers. Once the unbind_s is invoked, no other LDAP
operations are possible. A new session must be initiated with the init function.

Terminating the Session

2-18 Oracle Identity Management Application Developer’s Guide

Extensions to the LDAP Protocol 3-1

3
Extensions to the LDAP Protocol

This chapter describes extensions to the LDAP protocol that are available in Oracle
Internet Directory 10g (10.1.4.0.1).

This chapter contains these topics:

■ SASL Authentication

■ Using Controls

■ Proxying on Behalf of End Users

■ Creating Dynamic Password Verifiers

■ Performing Hierarchical Searches

■ Sorted LDAP Search Results

■ Paged LDAP Search Results

SASL Authentication
Oracle Internet Directory supports two mechanisms for SASL-based authentication.
This section describes the two methods. It contains these topics:

■ SASL Authentication by Using the DIGEST-MD5 Mechanism

■ SASL Authentication by Using External Mechanism

SASL Authentication by Using DIGEST-MD5
SASL Digest-MD5 authentication is the required authentication mechanism for LDAP
Version 3 servers (RFC 2829). LDAP Version 2 does not support Digest-MD5.

To use the Digest-MD5 authentication mechanism, you can use either the Java API or
the C API to set up the authentication. The C API supports only auth mode.

See Also:

■ Java-specific information in "Using DIGEST-MD5 to Perform
SASL Authentication" on page 5-8 and "Example: Using SASL
Digest-MD5 auth-int and auth-conf Modes" on page 5-8.

■ C-specific information in "Authenticating to the Directory" on
page 14-10 and "SASL Authentication Using Oracle Extensions"
on page 14-12.

SASL Authentication

3-2 Oracle Identity Management Application Developer’s Guide

The SASL Digest-MD5 mechanism includes three modes, each representing a different
security level or "Quality of Protection." They are:

■ auth—Authentication only. Authentication is required only for the initial bind.
After that, information is passed in clear text.

■ auth-int—Authentication plus integrity. Authentication is required for the
initial bind. After that, check sums are used to guarantee the integrity of the data.

■ auth-conf—Authentication plus confidentiality. Authentication is required for
the initial bind. After that, encryption is used to protect the data. Five cipher
choices are available:

– DES

– 3DES

– RC4

– RC4-56

– RC4-40

These are all symmetric encryption algorithms.

Prior to 10g (10.1.4.0.1), Oracle Internet Directory supported only the auth mode of
the Digest-MD5 mechanism. As of 10g (10.1.4.0.1), Oracle Internet Directory supports
all three modes with the Java Naming and Directory Interface (JNDI) of jdk1.4 API or
with the OpenLDAP Java API. The Oracle LDAP SDK supports only auth mode.

Out of the box, Oracle Internet Directory SASL Digest-MD5 authentication supports
generation of static SASL Digest-MD5 verifiers based on user or password, but not
based on realm. If you want to use SASL Digest-MD5 with realms, you must enable
reversible password generation by changing the value of the
orclpasswordencryptionenable attribute to 1 in the related password policy
before provisioning new users. The LDIF file for modifying the value should look like
this:

dn: cn=default,cn=pwdPolicies,cn=Common,cn=Products,cn=OracleContext
changetype: modify
replace: orclpwdencryptionenable
orclpwdencryptionenable: 1

The Digest-MD5 mechanism is described in RFC 2831 of the Internet Engineering Task
Force. It is based on the HTTP Digest Authentication (RFC 2617).

Steps Involved in SASL Authentication by Using DIGEST-MD5
SASL Digest-MD5 authenticates a user as follows:

1. The directory server sends data that includes various authentication options that it
supports and a special token to the LDAP client.

2. The client responds by sending an encrypted response that indicates the
authentication options that it has selected. The response is encrypted in such a
way that proves that the client knows its password.

3. The directory server then decrypts and verifies the client's response.

See Also:

■ Internet Engineering Task Force Web site, at
http://www.ietf.org.

■ Open LDAP class libraries http://www.openldap.org.

Using Controls

Extensions to the LDAP Protocol 3-3

SASL Authentication by Using External Mechanism
The following is from section 7.4 of RFC 2222 of the Internet Engineering Task Force.

The mechanism name associated with external authentication is "EXTERNAL". The
client sends an initial response with the authorization identity. The server uses
information, external to SASL, to determine whether the client is authorized to
authenticate as the authorization identity. If the client is so authorized, the server
indicates successful completion of the authentication exchange; otherwise the server
indicates failure.

The system providing this external information may be, for example, IPsec or
SSL/TLS.

If the client sends the empty string as the authorization identity (thus requesting the
authorization identity be derived from the client's authentication credentials), the
authorization identity is to be derived from authentication credentials that exist in the
system which is providing the external authentication.

Oracle Internet Directory provides the SASL external mechanism over an SSL mutual
connection. The authorization identity (DN) is derived from the client certificate
during the SSL network negotiation.

Using Controls
The LDAPv3 Protocol, as defined by RFC 2251, allows extensions by means of
controls. Oracle Internet Directory supports several controls. Some are standard and
described by RFCs. Other controls, such as the CONNECT_BY control for hierarchical
searches are Oracle-specific. You can use controls with either Java or C.

Controls can be sent to a server or returned to the client with any LDAP message.
These controls are referred to as server controls. The LDAP API also supports a
client-side extension mechanism through the use of client controls. These controls
affect the behavior of the LDAP API only and are never sent to a server.

For information about using LDAP controls in C, see "Working With Controls" on
page 14-14.

For information about using LDAP controls in Java, see the documentation for the
JNDI package javax.naming.ldap at http://java.sun.com/products/jndi.

The following controls are supported by Oracle Internet Directory 10g (10.1.4.0.1):

Using Controls

3-4 Oracle Identity Management Application Developer’s Guide

Table 3–1 Controls Supported by Oracle Internet Directory

Object Identifier Name Description

2.16.840.1.113730.3.4.2 GSL_MANAGE_DSA_
CONTROL

Used to manage referrals, dynamic groups, and alias objects in Oracle
Internet Directory. For more information, please see RFC 3296,
"Named Subordinate References in Lightweight Directory Access
Protocol (LDAP) Directories," at http://www.ietf.org.

2.16.840.1.113894.1.8.1 OID_RESET_
PROXYCONTROL_
IDENTITY

Used to perform a proxy switch of an identity on an established LDAP
connection. For example, suppose that Application A connects to the
directory server and then wishes to switch to Application B. It can
simply do a rebind by supplying the credentials of Application B.
However, there are times when the proxy mechanism for the
application to switch identities could be used even when the
credentials are not available. With this control, Application A can
switch to Application B provided Application A has the privilege in
Oracle Internet Directory to proxy as Application B.

2.16.840.1.113894.1.8.2 OID_
APPLYUSEPASSWORD
_POLICY

Sent by applications that require Oracle Internet Directory to check for
account lockout before sending the verifiers of the user to the
application. If Oracle Internet Directory detects this control in the
verifier search request and the user account is locked, then Oracle
Internet Directory will not send the verifiers to the application. It will
send an appropriate password policy error.

2.16.840.1.113894.1.8.3 CONNECT_BY See "Performing Hierarchical Searches" on page 3-9

2.16.840.1.113894.1.8.4 OID_CLIENT_IP_
ADDRESS

Intended for a client to send the end user IP address if IP lockout is to
be enforced by Oracle Internet Directory.

2.16.840.1.113894.1.8.5 GSL_REQDATTR_
CONTROL

Used with dynamic groups. Directs the directory server to read the
specific attributes of the members rather than the membership lists.

2.16.840.1.113894.1.8.6 OID_PASSWORD_
REQUEST_CONTROL

Password policy control. Request control that the client sends to get a
response from the server.

2.16.840.1.113894.1.8.7 OID_PASSWORD_
EXPWARNING_
CONTROL

Password policy control. Response control that the server sends when
the pwdExpireWarning attribute is enabled and the client sends the
request control. The response control value contains the time in
seconds to password expiration.

2.16.840.1.113894.1.8.8 OID_PASSWORD_
GRACELOGIN_
CONTROL

Password policy control. The response control that the server sends
when grace logins are configured and the client sends a request
control. The response control value contains the remaining number of
grace logins.

2.16.840.1.113894.1.8.9 OID_PASSWORD_
MUSTCHANGE_
CONTROL

Password policy control. The response control that the server sends
when forced password reset is enabled and the client sends the request
control. The client must force the user to change the password upon
receipt of this control.

2.16.840.1.113894.1.8.14 OID_DYNAMIC_
VERIFIER_REQUEST_
CONTROL

The request control that the client sends when it wants the server to
create a dynamic password verifier. The server uses the parameters in
the request control to construct the verifier.

2.16.840.1.113894.1.8.15 OID_DYNAMIC_
VERIFIER_RESPONSE_
CONTROL

The response control that the server sends to the client when an error
occurs. The response control contains the error code.

2.16.840.1.113894.1.8.16 OID_
APPLYALLPWDPOLICI
ES_CONTROL

If this control is included in a verifier search request, all password
policies that are applicable to the user are applied to the verifier search.

Proxying on Behalf of End Users

Extensions to the LDAP Protocol 3-5

To find out what controls are available in your Oracle Internet Directory installation,
type:

ldapsearch -p port -b "" -s base "objectclass=*"

Look for entries that begin with supportedcontrol=.

Proxying on Behalf of End Users
Often applications must perform operations that require impersonating an end user.
An application may, for example, want to retrieve resource access descriptors for an
end user. (Resource access descriptors are discussed in the concepts chapter of Oracle
Internet Directory Administrator’s Guide.)

A proxy switch occurs at run time on the JNDI context. An LDAP v3 feature, proxying
can only be performed using InitialLdapContext, a subclass of
InitialDirContext. If you use the Oracle extension
oracle.ldap.util.jndi.ConnectionUtil to establish a connection (the
example following), InitialLdapContext is always returned. If you use JNDI to
establish the connection, make sure that it returns InitialLdapContext.

To perform the proxy switch to an end user, the user DN must be available. To learn
how to obtain the DN, see the sample implementation of the
oracle.ldap.util.User class at this URL:

http://www.oracle.com/technology/sample_code/

Look for the Oracle Identity Management link under Sample Applications—Fusion
Middleware, then look for "Sample Application Demonstrating Proxy Switching using
Oracle Internet Directory Java API."

This code shows how the proxy switch occurs:

import oracle.ldap.util.jndi.*;
import javax.naming.directory.*;
import javax.naming.ldap.*;
import javax.naming.*;

public static void main(String args[])
{
 try{
 InitialLdapContext appCtx=ConnectionUtil.getDefaultDirCtx(args[0], // host
 args[1], // port
 args[2], // DN
 args[3]; // pass)
 // Do work as application
 // . . .
 String userDN=null;

2.16.840.1.113894.1.8.23 GSL_CERTIFICATE_
CONTROL

Certificate search control. The request control that the client sends to
specify how to search for a user certificate.

1.2.840.113556.1.4.473 OID_SEARCH_
SORTING_REQUEST_
CONTROL

See "Sorted LDAP Search Results" on page 3-10.

1.2.840.113556.1.4.319 OID_SEARCH_
PAGING_CONTROL

See "Paged LDAP Search Results" on page 3-10.

Table 3–1 (Cont.) Controls Supported by Oracle Internet Directory

Object Identifier Name Description

Creating Dynamic Password Verifiers

3-6 Oracle Identity Management Application Developer’s Guide

 // assuming userDN has the end user DN value
 // Now switch to end user
 ctx.addToEnvironment(Context.SECURITY_PRINCIPAL, userDN);
 ctx.addToEnvironment("java.naming.security.credentials", "");
 Control ctls[] = {
 new ProxyControl()
 };
 ((LdapContext)ctx).reconnect(ctls);
 // Do work on behalf of end user
 // . . .
 }
 catch(NamingException ne)
 {
 // javax.naming.NamingException is thrown when an error occurs
 }
}

The ProxyControl class in the code immediately preceding implements a
javax.naming.ldap.Control. To learn more about LDAP controls, see the LDAP
control section of Oracle Identity Management User Reference. Here is an example of
what the ProxyControl class might look like:

import javax.naming.*;
import javax.naming.ldap.Control;
import java.lang.*;

public class ProxyControl implements Control {

 public byte[] getEncodedValue() {
 return null;
 }

 public String getID() {
 return "2.16.840.1.113894.1.8.1";
 }

 public boolean isCritical() {
 return false;
 }
}

Creating Dynamic Password Verifiers
You can modify the LDAP authentication APIs to generate application passwords
dynamically—that is, when users log in to an application. This feature has been
designed to meet the needs of applications that provide parameters for password
verifiers only at runtime.

This section contains the following topics:

■ Request Control for Dynamic Password Verifiers

■ Syntax for DynamicVerifierRequestControl

■ Parameters Required by the Hashing Algorithms

■ Configuring the Authentication APIs

■ Response Control for Dynamic Password Verifiers

■ Obtaining Privileges for the Dynamic Verifier Framework

Creating Dynamic Password Verifiers

Extensions to the LDAP Protocol 3-7

Request Control for Dynamic Password Verifiers
Creating a password verifier dynamically involves modifying the LDAP
authentication APIs ldap_search or ldap_modify to include parameters for
password verifiers. An LDAP control called DynamicVerifierRequestControl is
the mechanism for transmitting these parameters. It takes the place of the password
verifier profile used to create password verifiers statically. Nevertheless, dynamic
verifiers, like static verifiers, require that the directory attributes orclrevpwd
(synchronized case) and orclunsyncrevpwd (unsynchronized case) be present and
that these attributes be populated.

Note that the orclpwdencryptionenable attribute of the password policy entry in
the user's realm must be set to 1 if orclrevpwd is to be generated. If you fail to set
this attribute, an exception is thrown when the user tries to authenticate. To generate
orclunsyncrevpwd, you must add the crypto type 3DES to the entry
cn=defaultSharedPINProfileEntry,cn=common,cn=products,cn=oraclec
ontext.

Syntax for DynamicVerifierRequestControl
The request control looks like this:

DynamicVerifierRequestControl
controlOid: 2.16.840.1.113894.1.8.14
criticality: FALSE
controlValue: an OCTET STRING whose value is the BER encoding of the following
type:

ControlValue ::= SEQUENCE {

 version [0]
 crypto [1] CHOICE OPTIONAL {
 SASL/MD5 [0] LDAPString,
 SyncML1.0 [1] LDAPString,
 SyncML1.1 [2] LDAPString,
 CRAM-MD5 [3] LDAPString },
 username [1] OPTIONAL LDAPString,
 realm [2] OPTIONAL LDAPString,
 nonce [3] OPTIONAL LDAPString,
 }

Note that the parameters in the control structure must be passed in the order in which
they appear. Table 3–2 defines these parameters.

Table 3–2 Parameters in DynamicVerifierRequestControl

Parameter Description

controlOID The string that uniquely identifies the control structure.

crypto The hashing algorithm. Choose one of the four identified in the
control structure.

username The distinguished name (DN) of the user. This value must
always be included.

realm A randomly chosen realm. It may be the identity management
realm that the user belongs to. It may even be an application
realm. Required only by the SASL/MD5 algorithm.

nonce An arbitrary, randomly chosen value. Required by SYNCML1.0
and SYNCML1.1.

Creating Dynamic Password Verifiers

3-8 Oracle Identity Management Application Developer’s Guide

Parameters Required by the Hashing Algorithms
Table 3–3 lists the four hashing algorithms that are used to create dynamic password
verifiers. The table also lists the parameters that each algorithm uses as building
blocks. Note that, although all algorithms use the user name and password
parameters, they differ in their use of the realm and nonce parameters.

Configuring the Authentication APIs
Applications that require password verifiers to be generated dynamically must include
DynamicVerifierRequestControl in their authentication APIs. Either ldap_
search or ldap_compare must incorporate the controlOID and the control values
as parameters. They must BER-encode the control values as shown in "Syntax for
DynamicVerifierRequestControl"; then they must send both controlOID and the
control values to the directory server.

Parameters Passed If ldap_search Is Used
If you want the application to authenticate the user, use ldap_search to pass the
control structure. If ldap_search is used, the directory passes the password verifier
that it creates to the client.

ldap_search must include the DN of the user, the controlOID, and the control
values. If the user's password is a single sign-on password, the attribute passed is
authpassword. If the password is a numeric pin or another type of unsynchronized
password, the attribute passed is orclpasswordverifier;orclcommonpin.

Parameters Passed If ldap_compare Is Used
If you want Oracle Internet Directory to authenticate the user, use ldap_compare to
pass the control structure. In this case, the directory retains the verifier and
authenticates the user itself.

Like ldap_search, ldap_compare must include the DN of the user, the
controlOID, the control values, and the user's password attribute. For ldap_
compare, the password attribute is orclpasswordverifier;orclcommonpin
(unsynchronized case).

Response Control for Dynamic Password Verifiers
When it encounters an error, the directory sends the LDAP control
DynamicVerifierResponseControl to the client. This response control contains
the error code. To learn about the error codes that the response control sends, see the
troubleshooting chapter in Oracle Internet Directory Administrator’s Guide.

Obtaining Privileges for the Dynamic Verifier Framework
If you want the directory to create password verifiers dynamically, you must add your
application identity to the VerifierServices group of directory administrators. If you

Table 3–3 Parameters Required by the Hashing Algorithms

Algorithm Parameters Required

SASL/MD5 username, realm, password

SYNCML1.0 username, password, nonce

SYNCML1.1 username, password, nonce

CRAM-MD5 username, password

Performing Hierarchical Searches

Extensions to the LDAP Protocol 3-9

fail to perform this task, the directory returns an LDAP_INSUFFICIENT_ACCESS
error.

Performing Hierarchical Searches
One of the server controls you can pass to an LDAP search function is CONNECT_BY.
This is an Oracle-specific control that causes the search to traverse a hierarchy. For
example, if you search for all the users in group1, without the CONNECT_BY control,
the search function will return only users who are direct members of group1. If you
pass the CONNECT_BY control, however, the search function will traverse the hierarchy.
If group2 is a member of group1, the search will also return users in group2. If
group3 is a member of group2, the search will also return users in group3, and so
forth.

New Features of the CONNECT_BY Control
In 10g (10.1.4.0.1), the CONNECT_BY control has been enhanced in two ways:

■ You can now traverse the hierarchy in either direction. That is, you can search
through all containers in which an entry is contained, as well as through all
containers contained within an entry.

■ You can now specify the number of levels of the hierarchy to search.

Value Fields in the CONNECT_BY Control
In previous releases, the CONNECT_BY control required no values. Because of the new
functionality, you can now pass one or both of the following values to CONNECT_BY:

■ Hierarchy-establishing attribute–A string representing the attribute to be searched.
This value is necessary only when searching through all containers in which an
entry is contained. When searching through containers contained within an entry,
you need not provide this value because the search filter provides that
information.

■ Number of levels–An integer representing the number of levels to traverse. If the
value is 0, the search will traverse all levels. The default value is 0, so you need
not pass this value if you want the search to traverse all leve.s

Example 1: Find All the Groups to Which a User Belongs
Using a filter such as (member=cn=jsmith), you do not need to provide the
hierarchy-establishing attribute member because it is in the search filter. You do not
need to pass a value for the number of levels because 0 is the default.

Example 2: Find Only the Groups to Which a User Directly Belongs
Using the same filter as in Example 1, you would pass the integer control value 1. The
result would be the same as if you did not use the CONNECT_BY control at all.

Example 3: Find All Members of a Group
In this case, your search filter would specify (objectclass=*), but if you want to
find all members of group1, the attribute for traversing the hierarchy is member. For
this search, you must pass the string "member" as the hierarchy-establishing attribute.
You do not need to pass a value for the number of levels because 0 is the default.

Sorted LDAP Search Results

3-10 Oracle Identity Management Application Developer’s Guide

Example 4: Finding all Managers of a User
This is similar to Example 3, except that you want to find all managers of the user
jsmith, so manager is the attribute for traversing the hierarchy. For this search, you
would pass the string "manager". You do not need to pass a value for the number of
levels because 0 is the default.

Sorted LDAP Search Results
As of Oracle Internet Directory 10g (10.1.4.0.1), you can obtain sorted results from an
LDAP search, as described by IETF RFC 2891. You request sorted results by passing a
control of type 1.2.840.113556.1.4.473 to the search function. The server returns a
response control is of type 1.2.840.113556.1.4.474. Error processing and other details are
described in RFC 2891.

Sorting and paging may be used together.

The Oracle Internet Directory implementation of RFC 2891 has the following
limitations:

■ It supports only one attributeType in the control value.

■ It uses the default ordering rule defined in the schema for each attribute.

■ Linguistic sorting is not supported.

■ The default sorting order is ascending.

■ If a sort key is a multi-valued attribute, and an entry has multiple values for that
attriute, and there are no other controls that affect the sorting order, then the server
uses the least value, according to the ordering rule for that attribute.

■ The sort attribute must be searchable. That is, it must be a cataloged attribute in
Oracle Internet Directory.

Paged LDAP Search Results
As of Oracle Internet Directory 10g (10.1.4.0.1), you can obtain paged results from an
LDAP search, as described by IETF RFC 2696. You request sorted results by passing a
control of type 1.2.840.113556.1.4.319 to the search function. Details are described in
RFC 2696.

Sorting and paging may be used together.

The Oracle Internet Directory implementation of RFC 2696 has the following
limitations:

See Also:

■ "ldap_search_ext, ldap_search_ext_s, ldap_search, and ldap_
search_s" on page 14-17.

■ "Working With Controls" on page 14-14.

See Also: IETF RFC 2891, "LDAP Control Extension for Server Side
Sorting of Search Results," at http://www.ietf.org.

See Also: IETF RFC 2696, "LDAP Control Extension for Simple
Paged Results Manipulation," at http://www.ietf.org.

Paged LDAP Search Results

Extensions to the LDAP Protocol 3-11

■ The number of entries in a page might be less than the page size if an ACI partially
blocks some entries from the search results.

■ The paging response control does not contain the total entry count estimation. The
return value is always 0.

Paged LDAP Search Results

3-12 Oracle Identity Management Application Developer’s Guide

Developing Applications With Oracle Extensions to the Standard APIs 4-1

4
Developing Applications With Oracle

Extensions to the Standard APIs

This chapter introduces the Oracle extensions to the Java and PL/SQL LDAP APIs.
Chapter 4 explains how the Java extensions are used. Chapter 5 is about the PL/SQL
extensions. Oracle does not support extensions to the C API.

This chapter contains these topics:

■ Sample Code

■ Using Oracle Extensions to the Standard APIs

■ Creating an Application Identity in the Directory

■ Managing Users

■ Managing Groups

■ Managing Realms

■ Discovering a Directory Server

Sample Code
Sample code is available at this URL:

http://www.oracle.com/technology/sample_code/

Look for the Oracle Identity Management link under Sample Applications—Fusion
Middleware.

Using Oracle Extensions to the Standard APIs
The APIs that Oracle has added to the existing APIs fulfill these functions:

■ User management

Applications can set or retrieve various user properties

■ Group management

Applications can query group properties

■ Realm management

Applications can set or retrieve properties about identity management realms

■ Server discovery management

Applications can locate a directory server in the Domain Name System (DNS)

Creating an Application Identity in the Directory

4-2 Oracle Identity Management Application Developer’s Guide

Subsequent sections examine each of these functions in detail. Note that applications
must use the underlying APIs for such common tasks as establishing and closing
connections and looking up directory entries not searchable with the API extensions.

Figure 4–1 shows what program flow looks like when the API extensions are used.

Figure 4–1 Programmatic Flow for API Extensions

As Figure 4–1 shows, an application first establishes a connection to Oracle Internet
Directory. It can then use the standard API functions and the API extensions
interchangeably.

Creating an Application Identity in the Directory
Before an application can use the LDAP APIs and their extensions, it must establish an
LDAP connection. Once it establishes a connection, it must have permission to
perform operations. But neither task can be completed if the application lacks an
identity in the directory.

Creating an Application Identity
Creating an application identity in the directory is relatively simple. Such an entry
requires only two object classes: orclApplicationEntity and top. You can use
either Oracle Directory Manager or an LDIF file to create the entry. In LDIF notation,
the entry looks like this:

dn: orclapplicationcommonname=application_name
changetype: add
objectclass:top
objectclass: orclApplicationEntity
userpassword: password

The value provided for userpassword is the value that the application uses to bind
to the directory.

Assigning Privileges to an Application Identity
To learn about the privileges available to an application, see the chapter about
delegating privileges for an Oracle technology deployment in Oracle Internet Directory
Administrator’s Guide. After identifying the right set of privileges, add the application
entity DN to the appropriate directory groups. The reference just provided explains

Established Connection
to Oracle Internet

Directory

Close Oracle Internet
Directory Connection

Connected State

Use Regular
API Functions

Use Oracle
Extension API

Managing Realms

Developing Applications With Oracle Extensions to the Standard APIs 4-3

how to perform this task using either Oracle Directory Manager or the ldapmodify
command.

Managing Users
This section describes user management features of the LDAP APIs.

Directory-enabled applications need to perform the following operations:

■ Retrieve properties of user entries

These properties are stored as attributes of the user entry itself—in the same way,
for example, that a surname or a home address is stored.

■ Retrieve extended user preferences

These preferences apply to a user but are stored in a DIT different from the DIT
containing user entries. Extended user preferences are either user properties
common to all applications or user properties specific to an application. Those of
the first type are stored in a common location in the Oracle Context. Those of the
second type are stored in the application-specific DIT.

■ Query the group membership of a user

■ Authenticate a user given a simple name and credential

Typically an application uses a fully qualified DN, GUID, or simple user name to
identify a user. In a hosted environment, the application may use both a user name
and a realm name for identification.

Managing Groups
Groups are modeled in Oracle Internet Directory as a collection of distinguished
names. Directory-enabled applications must access Oracle Internet Directory to obtain
the properties of a group and to verify that a given user is a member of that group.

A group is typically identified by one of the following:

■ A fully qualified LDAP distinguished name

■ A global unique identifier

■ A simple group name along with a subscriber name

Managing Realms
An identity management realm is an entity or organization that subscribes to the
services offered in the Oracle product stack. Directory-enabled applications must
access Oracle Internet Directory to obtain realm properties such as user search base or
password policy.

A realm is typically identified by one of the following:

■ A fully qualified LDAP distinguished name

■ A global unique identifier

■ A simple enterprise name

Discovering a Directory Server

4-4 Oracle Identity Management Application Developer’s Guide

Discovering a Directory Server
Directory server discovery (DSD) enables automatic discovery of the Oracle directory
server by directory clients. It enables deployments to manage the directory host name
and port number information in the central DNS server. All directory clients perform a
DNS query at runtime and connect to the directory server. Directory server location
information is stored in a DNS service location record (SRV).

An SRV contains:

■ The DNS name of the server providing LDAP service

■ The port number of the corresponding port

■ Any parameters that enable the client to choose an appropriate server from
multiple servers

DSD also allows clients to discover the directory host name information from the
ldap.ora file itself.

This section contains these topics:

■ Benefits of Oracle Internet Directory Discovery Interfaces

■ Usage Model for Discovery Interfaces

■ Determining Server Name and Port Number From DNS

■ Environment Variables for DNS Server Discovery

■ Programming Interfaces for DNS Server Discovery

Benefits of Oracle Internet Directory Discovery Interfaces
Typically, the LDAP host name and port information is provided statically in a file
called ldap.ora which is located on the client in $ORACLE_HOME/network/admin.
For large deployments with many clients, this information becomes very cumbersome
to manage. For example, each time the host name or port number of a directory server
is changed, the ldap.ora file on each client must be modified.

Directory server discovery eliminates the need to manage the host name and port
number in the ldap.ora file. Because the host name information resides on one
central DNS server, the information must be updated only once. All clients can then
discover the new host name information dynamically from the DNS when they
connect to it.

DSD provides a single interface to obtain directory server information without regard
to the mechanism or standard used to obtain it. Currently, Oracle directory server
information can be obtained either from DNS or from ldap.ora using a single
interface.

See Also:

■ "Discovering LDAP Services with DNS" by Michael P. Armijo at
this URL:

http://www.ietf.org.

■ "A DNS RR for specifying the location of services (DNS SRV)",
Internet RFC 2782 at the same URL.

Discovering a Directory Server

Developing Applications With Oracle Extensions to the Standard APIs 4-5

Usage Model for Discovery Interfaces
The first step in discovering host name information is to create a discovery handle. A
discovery handle specifies the source from which host name information will be
discovered. In case of the Java API, the discovery handle is created by creating an
instance of the oracle.ldap.util.discovery.DiscoveryHelper class.

DiscoveryHelper disco = new DiscoveryHelper(DiscoveryHelper.DNS_DISCOVER);

The argument DiscoveryHelper.DNS_DISCOVER specifies the source. In this case
the source is DNS.

Each source may require some inputs to be specified for discovery of host name
information. In the case of DNS these inputs are:

■ domain name

■ discover method

■ SSL mode

Detailed explanation of these options is given in "Determining Server Name and Port
Number From DNS".

// Set the property for the DNS_DN
disco.setProperty(DiscoveryHelper.DNS_DN,"dc=us,dc=fiction,dc=com");
// Set the property for the DNS_DISCOVER_METHOD
disco.setProperty(DiscoveryHelper.DNS_DISCOVER_METHOD
 ,DiscoveryHelper.USE_INPUT_DN_METHOD);
// Set the property for the SSLMODE
disco.setProperty(DiscoveryHelper.SSLMODE,"0");

Now the information can be discovered.

// Call the discover method
disco.discover(reshdl);

The discovered information is returned in a result handle (reshdl). Now the results
can be extracted from the result handle.

ArrayList result =
(ArrayList)reshdl.get(DiscoveryHelper.DIR_SERVERS);
if (result != null)
{
 if (result.size() == 0) return;
 System.out.println("The hostnames are :-");
 for (int i = 0; i< result.size();i++)
 {
 String host = (String)result.get(i);
 System.out.println((i+1)+".'"+host+"'");
 }
}

Determining Server Name and Port Number From DNS
Determining a host name and port number from a DNS lookup involves obtaining a
domain and then searching for SRV resource records based on that domain. If there is
more than one SRV resource record, they are sorted by weight and priority. The SRV
resource records contain host names and port numbers required for connection. This
information is retrieved from the resourcerecords and returned to the user.

There are three approaches for determining the domain name required for lookup:

Discovering a Directory Server

4-6 Oracle Identity Management Application Developer’s Guide

■ Mapping the distinguished name (DN) of the naming context

■ Using the domain component of local machine

■ Looking up the default SRV record in the DNS

Mapping the DN of the Naming Context
The first approach is to map the distinguished name (DN) of naming context into
domain name using the algorithm given here.

The output domain name is initially empty. The DN is processed sequentially from
right to left. An RDN is able to be converted if it meets the following conditions:

■ It consists of a single attribute type and value

■ The attribute type is dc

■ The attribute value is non-null

If the RDN can be converted, then the attribute value is used as a domain name
component (label).

The first such value becomes the rightmost, and the most significant, domain name
component. Successive converted RDN values extend to the left. If an RDN cannot be
converted, then processing stops. If the output domain name is empty when
processing stops, then the DN cannot be converted into a domain name.

For the DN cn=John Doe,ou=accounting,dc=example,dc=net, the client
converts the dc components into the DNS name example.net.

Search by Domain Component of Local Machine
Sometimes a DN cannot be mapped to a domain name. For example, the DN
o=Oracle IDC,Bangalore cannot be mapped to a domain name. In this case, the
second approach uses the domain component of the local machine on which the client
is running. For example, if the client machine domain name is mc1.acme.com, the
domain name for the lookup is acme.com.

Search by Default SRV Record in DNS
The third approach looks for a default SRV record in the DNS. This record points to the
default server in the deployment. The domain component for this default record is _
default.

Once the domain name has been determined, it is used to send a query to DNS. The
DNS is queried for SRV records specified in Oracle Internet Directory-specific format.
For example, if the domain name obtained is example.net, the query for non-SSL
LDAP servers is for SRV resource records having the owner name _ldap._tcp._
oid.example.net.

It is possible that no SRV resource records are returned from the DNS. In such a case
the DNS lookup is performed for the SRV resource records specified in standard
format. For example, the owner name would be _ldap._tcp.example.net.

The result of the query is a set of SRV records. These records are then sorted and the
host information is extracted from them. This information is then returned to the user.

See Also: The chapter about directory administration in Oracle
Internet Directory Administrator’s Guide.

Discovering a Directory Server

Developing Applications With Oracle Extensions to the Standard APIs 4-7

Environment Variables for DNS Server Discovery
The following environment variables override default behavior for discovering a DNS
server.

Programming Interfaces for DNS Server Discovery
The programming interface provided is a single interface to discover directory server
information without regard to the mechanism or standard used to obtain it.
Information can be discovered from various sources. Each source can use its own
mechanism to discover the information. For example, the LDAP host and port
information can be discovered from the DNS acting as the source. Here DSD is used to
discover host name information from the DNS.

Note: The approaches mentioned here can also be tried in
succession, stopping when the query lookup of DNS is successful. Try
the approaches in the order as described in this section. DNS is
queried only for SRV records in Oracle Internet Directory-specific
format. If none of the approaches is successful, then all the approaches
are tried again, but this time DNS is queried for SRV records in
standard format.

Table 4–1 Environment Variables for DNS Discovery

Environment Variable Description

ORA_LDAP_DNS IP address of the DNS server containing the SRV records. If the
variable is not defined, then the DNS server address is obtained
from the host machine.

ORA_LDAP_DNSPORT Port number on which the DNS server listens for queries. If the
variable is not defined, then the DNS server is assumed to be
listening at standard port number 53.

ORA_LDAP_DOMAIN Domain of the host machine. If the variable is not defined, then
the domain is obtained from the host machine itself.

See Also: For detailed reference information and class descriptions,
refer to the Javadoc located on the product CD.

Discovering a Directory Server

4-8 Oracle Identity Management Application Developer’s Guide

Using the Java API Extensions to JNDI 5-1

5
Using the Java API Extensions to JNDI

This chapter explains how to use Java extensions to the standard directory APIs to
perform many of the operations introduced in Chapter 3. The chapter presents use
cases. The Oracle extensions to the standard APIs are documented in full in Oracle
Internet Directory API Reference.

The chapter contains the following topics:

■ Sample Code

■ Installing the Java Extensions

■ Using the oracle.java.util Package to Model LDAP Objects

■ The Classes PropertySetCollection, PropertySet, and Property

■ Managing Users

■ Authenticating Users

■ Creating Users

■ Retrieving User Objects

■ Retrieving Objects from Realms

■ Example: Search for OracleAS Single Sign-On Login Name

■ Discovering a Directory Server

■ Example: Discovering a Directory Server

■ Using DIGEST-MD5 to Perform SASL Authentication

■ Example: Using SASL Digest-MD5 auth-int and auth-conf Modes

Sample Code
Sample code is available at this URL:

http://www.oracle.com/technology/sample_code/

Look for the Oracle Identity Management link under Sample Applications–Oracle
Application Server.

Installing the Java Extensions
The Java extensions are installed along with the standard Java APIs when the LDAP
client is installed. The APIs and their extensions are found at $ORACLE_
HOME/jlib/ldapjclnt10.jar.

Using the oracle.java.util Package to Model LDAP Objects

5-2 Oracle Identity Management Application Developer’s Guide

Using the oracle.java.util Package to Model LDAP Objects
In Java, LDAP entities—users, groups, realms, and applications—are modeled as Java
objects instead of as handles. This modeling is done in the oracle.java.util
package. All other utility functionality is modeled either as individual objects—as, for
example, GUID—or as static member functions of a utility class.

For example, to authenticate a user, an application must follow these steps:

1. Create oracle.ldap.util.User object, given the user DN.

2. Create a DirContext JNDI object with all of the required properties, or get one
from a pool of DirContext objects.

3. Invoke the User.authenticateUser method, passing in a reference to the
DirContext object and the user credentials.

4. If the DirContext object was retrieved from a pool of existing DirContext
objects, return it to that pool.

Unlike their C and PL/SQL counterparts, Java programmers do not have to explicitly
free objects. The Java garbage collection mechanism performs this task.

The Classes PropertySetCollection, PropertySet, and Property
Many of the methods in the user, subscriber, and group classes return a
PropertySetCollection object. The object represents a collection of one or more
LDAP entries. Each of these entries is represented by a PropertySet object,
identified by a DN. A property set can contain attributes, each represented as a
property. A property is a collection of one or more values for the particular attribute it
represents. An example of the use of these classes follows:

PropertySetCollection psc = Util.getGroupMembership(ctx,
 myuser,
 null,
 true);
 // for loop to go through each PropertySet
 for (int i = 0; i < psc.size(); i++) {

 PropertySet ps = psc.getPropertySet(i);

 // Print the DN of each PropertySet
 System.out.println("dn: " + ps .getDN());

 // Get the values for the "objectclass" Property
 Property objectclass = ps.getProperty("objectclass");

 // for loop to go through each value of Property "objectclass"
 for (int j = 0; j< objectclass.size(); j++) {

 // Print each "objectclass" value
 System.out.println("objectclass: " + objectclass.getValue(j));
 }
}

The entity myuser is a user object. The psc object contains all the nested groups that
myuser belongs to. The code loops through the resulting entries and prints out all the
object class values of each entry.

Authenticating Users

Using the Java API Extensions to JNDI 5-3

Managing Users
All user-related functionality is abstracted in a Java class called
oracle.ldap.util.User. The process works like this:

1. Construct a oracle.ldap.util.User object based on a DN, GUID, or simple
name.

2. Invoke User.authenticateUser(DirContext, int, Object) to
authenticate the user if necessary.

3. Invoke User.getProperties(DirContext) to get the attributes of the user
entry.

4. Invoke User.getExtendedProperties(DirContext, int, String[]) to
get the extended properties of the user. int is either shared or application-specific.
String[] is the object that represents the type of property desired. If String[]
is null, all properties in a given category are retrieved.

5. Invoke PropertySetCollection.getProperties(int) to get the metadata
required to parse the properties returned in step 4.

6. Parse the extended properties and continue with application-specific logic. This
parsing is also performed by application-specific logic.

Authenticating Users
User authentication is a common LDAP operation that compares the credentials that a
user provides at login with the user's credentials in the directory. Oracle Internet
Directory supports the following:

■ Arbitrary attributes can be used during authentication

■ Appropriate password policy exceptions are returned by the authentication
method. Note, however, that the password policy applies only to the
userpassword attribute.

The following code fragment shows how the API is used to authenticate a user:

 // User user1 - is a valid User Object
 try
 {
 user1.authenticateUser(ctx,
 User.CREDTYPE_PASSWD, "welcome");

 // or
 // user1.authenticateUser(ctx, <any
attribute>, <attribute value>);
 }
 catch (UtilException ue)
 {
 // Handle the password policy error
accordingly
 if (ue instanceof PasswordExpiredException)
 // do something
 else if (ue instanceof GraceLoginException)
 // do something
 }

Creating Users

5-4 Oracle Identity Management Application Developer’s Guide

Creating Users
The subscriber class uses the createUser() method to programmatically create
users. The object classes required by a user entry are configurable through Oracle
Delegated Administration Services. The createUser() method assumes that the
client understands the requirement and supplies the values for the mandatory
attributes during user creation. If the programmer does not supply the required
information the server will return an error.

The following snippet of sample code demonstrates the usage.

// Subscriber sub is a valid Subscriber object
// DirContext ctx is a valid DirContext

// Create ModPropertySet object to define all the attributes and their values.
ModPropertySet mps = new ModPropertySet();
mps.addProperty(LDIF.ATTRIBUTE_CHANGE_TYPE_ADD,"cn", "Anika");
mps.addProperty(LDIF.ATTRIBUTE_CHANGE_TYPE_ADD,"sn", "Anika");
mps.addProperty(LDIF.ATTRIBUTE_CHANGE_TYPE_ADD,"mail",
"Anika@oracle.com");

// Create user by specifying the nickname and the ModPropertySet just defined
User newUser = sub.createUser(ctx, mps);

// Print the newly created user DN
System.out.println(newUser.getDN(ctx));

// Perform other operations with this new user

Retrieving User Objects
The subscriber class offers the getUser() method to replace the public constructors
of the User class. A user object is returned based on the specified information.

The following is a piece of sample code demonstrating the usage:

// DirContext ctx is contains a valid directory connection with
sufficient privilege to perform the operations

// Creating RootOracleContext object
RootOracleContext roc = new RootOracleContext(ctx);

// Obtain a Subscriber object representing the default
subscriber
Subscriber sub = roc.getSubscriber(ctx,
Util.IDTYPE_DEFAULT, null, null);

// Obtain a User object representing the user whose
nickname is "Anika"
User user1 = sub.getUser(ctx, Util.IDTYPE_SIMPLE, "Anika",
null);
// Do work with this user

The getUser() method can retrieve users based on DN, GUID
and simple name. A getUsers() method is also available to
perform a filtered search to return more than one user at a
time. The returned object is an array of User objects.
For example,

// Obtain an array of User object where the user's nickname
starts with "Ani"

Example: Search for OracleAS Single Sign-On Login Name

Using the Java API Extensions to JNDI 5-5

User[] userArr = sub.getUsers(ctx, Util.IDTYPE_SIMPLE,
"Ani", null);
// Do work with the User array

Retrieving Objects from Realms
This section describes how the Java API can be used to retrieve objects in identity
management realms.

The RootOracleContext class represents the root Oracle Context. Much of the
information needed for identity management realm creation is stored within the root
Oracle Context. The RootOracleContext class offers the getSubscriber()
method. It replaces the public constructors of the subscriber class and returns an
identity management realm object based on the specified information.

The following is a piece of sample code demonstrating the usage:

// DirContext ctx contains a valid directory
// connection with sufficient privilege to perform the
// operations

// Creating RootOracleContext object
RootOracleContext roc = new RootOracleContext(ctx);

// Obtain a Subscriber object representing the
// Subscriber with simple name "Oracle"
Subscriber sub = roc.getSubscriber(ctx,
Util.IDTYPE_SIMPLE, "Oracle", null);

// Do work with the Subscriber object

Example: Search for OracleAS Single Sign-On Login Name
The following example shows how to find a user’s login name when you have the
simple name, GUID, or DN. The Oracle Application Server Single Sign-On login name
is also referred to as nickname.

There are two parts to this example:

1. Determine which attribute is used to store the nickname in this realm.

2. Retrieve the User object and determine the value of the nickname attribute.

import javax.naming.*;
import javax.naming.directory.*;
import javax.naming.ldap.*;
import oracle.ldap.util.jndi.*;
import oracle.ldap.util.*;
import java.io.*;

public class NickNameSearch {

 public static void main(String[] args)
 throws Exception
 {
 InitialLdapContext ctx = ConnectionUtil.getDefaultDirCtx(args[0],
 args[1], args[2],args[3]);

 RootOracleContext roc=new RootOracleContext(ctx);
 Subscriber sub = null;
 sub = roc.getSubscriber(ctx, Util.IDTYPE_DEFAULT, null, null) ;

Discovering a Directory Server

5-6 Oracle Identity Management Application Developer’s Guide

 PropertySetCollection psc = sub.getProperties(ctx,
 Subscriber.USER_NAMING_PROPERTIES, null);

 String nickNameAttribute = null;
 try
 {
 nickNameAttribute = (String)
psc.getPropertySet(0).getProperty(Subscriber.USER_NAMING_ATTR_SIMPLE).getValue(0);
 }
 catch (Exception e)
 {
 // unable to retrieve the attribute name
 System.exit(0);
 }
 System.out.println("Nickname attribute: " + nickNameAttribute);

 // Retrieve user using simple name, guid or DN
 User user = sub.getUser(ctx, Util.IDTYPE_SIMPLE,"orcladmin", null);
 System.out.println("user DN: " + user.getDN(ctx));

 // Retrieve nickname value using User object
 psc = user.getProperties(ctx, new String[]{ nickNameAttribute });

 String nickName = null;
 try
 {
 nickName = (String)
psc.getPropertySet(0).getProperty(nickNameAttribute).getValue(0);
 }
 catch (Exception e)
 {
 // unable to retrieve the attribute value
 System.exit(0);
 }
 System.out.println("Nickname : " + nickName);
 }
}

Discovering a Directory Server
A new Java class, the public class, has been introduced:

public class oracle.ldap.util.discovery.DiscoveryHelper

This class provides a method for discovering specific information from the specified
source.

Two new methods are added to the existing Java class
oracle.ldap.util.jndi.ConnectionUtil:

Table 5–1 Methods for Directory Server Discovery

Method Description

discover Discovers the specific information from a given source

setProperty Sets the properties required for discovery

getProperty Accesses the value of properties

Example: Discovering a Directory Server

Using the Java API Extensions to JNDI 5-7

■ getDefaultDirCtx: This overloaded function determines the host name and
port information of non-SSL ldap servers by making an internal call to
oracle.ldap.util.discovery.DiscoveryHelper.discover().

■ getSSLDirCtx: This overloaded function determines the host name and port
information of SSL ldap servers by making an internal call to
oracle.ldap.util.discovery.DiscoveryHelper.discover().

Example: Discovering a Directory Server
The following is a sample Java program for directory server discovery:

import java.util.*;
import java.lang.*;
import oracle.ldap.util.discovery.*;
import oracle.ldap.util.jndi.*;

public class dsdtest
{
 public static void main(String s[]) throws Exception
 {
 HashMap reshdl = new HashMap();
 String result = new String();
 Object resultObj = new Object();
 DiscoveryHelper disco = new
DiscoveryHelper(DiscoveryHelper.DNS_DISCOVER);

// Set the property for the DNS_DN
disco.setProperty(DiscoveryHelper.DNS_DN,"dc=us,dc=fiction,dc=com")
;

// Set the property for the DNS_DISCOVER_METHOD
disco.setProperty(DiscoveryHelper.DNS_DISCOVER_METHOD,
 DiscoveryHelper.USE_INPUT_DN_METHOD);

// Set the property for the SSLMODE
disco.setProperty(DiscoveryHelper.SSLMODE,"0");

// Call the discover method
int res=disco.discover(reshdl);
if (res!=0)
 System.out.println("Error Code returned by the discover method is :"+res) ;

// Print the results
printReshdl(reshdl);
}

public static void printReshdl(HashMap reshdl)
{
 ArrayList result = (ArrayList)reshdl.get(DiscoveryHelper.DIR_SERVERS);

if (result != null)
{
 if (result.size() == 0) return;
 System.out.println("The hostnames are :-");
 for (int i = 0; i< result.size();i++)
 {
 String host = (String)result.get(i);
 System.out.println((i+1)+".
'"+host+"'");

Using DIGEST-MD5 to Perform SASL Authentication

5-8 Oracle Identity Management Application Developer’s Guide

 }
 }
 }
}

Using DIGEST-MD5 to Perform SASL Authentication
When using JNDI to create a SASL connection, you must set these
javax.naming.Context properties:

■ Context.SECURITY_AUTHENTICATION = "DIGEST-MD5"

■ Context.SECURITY_PRINCIPAL

The latter sets the principal name. This name is a server-specific format. It can be either
of the following:

■ The DN—that is, dn:—followed by the fully qualified DN of the entity being
authenticated

■ The string u: followed by the user identifier.

The Oracle directory server accepts just a fully qualified DN such as
cn=user,ou=my department,o=my company.

Example: Using SASL Digest-MD5 auth-int and auth-conf Modes
The following code provides an example of Java LDAP/JNDI using SASL
Digest-MD5.

/* $Header: LdapSasl.java 27-oct-2005.11:26:59 qdinh Exp $ */

/* Copyright (c) 2003, 2005, Oracle. All rights reserved. */

/*
 DESCRIPTION
 <short description of component this file declares/defines>

 PRIVATE CLASSES
 <list of private classes defined - with one-line descriptions>

 NOTES
 <other useful comments, qualifications, and so on.>

 MODIFIED (MM/DD/YY)
 qdinh 04/23/03 - Creation
*/

/**
* @version $Header: LdapSasl.java 27-oct-2005.11:26:59 qdinh Exp $
* @author qdinh * @since release specific (what release of product did this
appear in)
*/

package oracle.ldap.util.jndi;

Note: The SASL DN must be normalized before it is passed to the
API that calls the SASL bind. To generate SASL verifiers, Oracle
Internet Directory supports only normalized DNs.

Example: Using SASL Digest-MD5 auth-int and auth-conf Modes

Using the Java API Extensions to JNDI 5-9

import javax.naming.*;
import javax.naming.directory.*;
import javax.naming.ldap.*;
import oracle.ldap.util.jndi.*;
import oracle.ldap.util.*;
import java.lang.*;
import java.util.*;
public class LdapSasl
{
 public static void main(String[] args)
 throws Exception
 {

 int numofargs;

 numofargs = args.length;

 Hashtable hashtable = new Hashtable();

 // Look through System Properties for Context Factory if it is available
 // then set the CONTEXT factory only if it has not been set
 // in the environment -
 // set default to com.sun.jndi.ldap.LdapCtxFactory

 hashtable.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
 // possible valid arguments
 // args[0] - hostname
 // args[1] - port number
 // args[2] - Entry DN
 // args[3] - Entry Password
 // args[4] - QoP [auth | auth-int | auth-conf]
 // args[5] - SASL Realm
 // args[6] - Cipher Choice
 // If QoP == "auth-conf" then args[6] cipher choice can be
 // - des
 // - 3des
 // - rc4
 // - rc4-56
 // - rc4-40

 hashtable.put(Context.PROVIDER_URL, "ldap://"+args[0]+":"+args[1]);
 hashtable.put(Context.SECURITY_AUTHENTICATION, "DIGEST-MD5");
 System.out.println("hash put security dn: " + args[2]);
 hashtable.put(Context.SECURITY_PRINCIPAL, args[2]);
 hashtable.put(Context.SECURITY_CREDENTIALS, args[3]);

 // For Quality of Protection modes
 // 1. Authentication and Data Integrity Mode - "auth-int"
 // 2. Authentication and Data Confidentiality Mode "auth-conf"

 //
 // hashtable.put("javax.security.sasl.qop",args[4]);
 hashtable.put("javax.naming.security.sasl.realm", args[5]);

 // Setup Quality of Protection
 //
 // System.out.println("hash sasl.qop: " + args[4]);

 hashtable.put("javax.security.sasl.qop",args[4]);

Example: Using SASL Digest-MD5 auth-int and auth-conf Modes

5-10 Oracle Identity Management Application Developer’s Guide

 if (numofargs > 4)
 {
 if (args[4].equalsIgnoreCase("AUTH-CONF"))
 {

 // Setup a cipher choice only if QoP == "auth-conf"
 String strength = "high";
 String cipher = new String(args[6]);
 if (cipher.compareToIgnoreCase("rc4-40") == 0)
 strength = "low";
 else if (cipher.compareToIgnoreCase("rc4-56") == 0 ||
 cipher.compareToIgnoreCase("des")== 0)
 strength = "medium";
 else if (cipher.compareToIgnoreCase("3des") == 0 ||
 cipher.compareToIgnoreCase("rc4") == 0)
 strength = "high";

 // setup cipher choice
 System.out.println("hash sasl.strength:"+strength);
 hashtable.put("javax.security.sasl.strength",strength);
 }

 // set maxbuffer length if necessary
 if (numofargs > 7 && !"".equals(args[6]))
 hashtable.put("javax.security.sasl.maxbuf", args[5].toString());
 }

 // Enable Debug --
 // hashtable.put("com.sun.jndi.ldap.trace.ber", System.err);

 LdapContext ctx = new InitialLdapContext(hashtable,null);

 // At this stage - SASL Digest -MD5 has been successfully

 System.out.println("sasl bind successful");

 // Ldap Search Scope Options
 //
 // - Search base - OBJECT_SCOPE
 // - One Level - ONELEVEL_SCOPE
 // - Sub Tree - SUBTREE_SCOPE
 //
 // Doing an LDAP Search
 PropertySetCollection psc =
Util.ldapSearch(ctx,"o=oracle,dc=com","objectclass=*",SearchControls.OBJECT_SCOPE,
 new String[] {"*"});
 // Print out the serach result
 Util.printResults(psc);

 System.exit(0);

 } }

Using the API Extensions in PL/SQL 6-1

6
Using the API Extensions in PL/SQL

This chapter explains how to use PL/SQL extensions to the standard directory APIs to
manage and authenticate users. Note that the Oracle extensions do not include
PL/SQL APIs that create users. The Oracle extensions to the standard APIs are
documented in full in Chapter 17.

This chapter contains these topics:

■ Sample Code

■ Installing the PL/SQL Extensions

■ Using Handles to Access Directory Data

■ Managing Users

■ Authenticating Users

■ Dependencies and Limitations of the PL/SQL LDAP API

Sample Code
Sample code is available at this URL:

http://www.oracle.com/technology/sample_code/

Look for the Oracle Identity Management link under Sample Applications–Oracle
Application Server.

Installing the PL/SQL Extensions
The PL/SQL extensions are installed with the DBMS_LDAP package when the Oracle
database is installed. You must run the script $ORACLE_
HOME/rdbms/admin/catldap.sql.

Using Handles to Access Directory Data
Most of the extensions described in this chapter are helper functions. They access data
about specific LDAP entities such as users, groups, realms, and applications. In many
cases, these functions must pass a reference to one of these entities to the standard API
functions. To do this, the API extensions use opaque data structures called handles.
The steps that follow show an extension creating a user handle:

1. Establish an LDAP connection or get one from a pool of connections.

2. Create a user handle from user input. This could be a DN, a GUID, or a single
sign-on user ID.

Managing Users

6-2 Oracle Identity Management Application Developer’s Guide

3. Authenticate the user with the LDAP connection handle, user handle, or
credentials.

4. Free the user handle.

5. Close the LDAP connection, or return the connection back to the connection pool.

Managing Users
The steps that follow show how the DBMS_LDAP_UTL package is used to create and
use a handle that retrieves user properties from the directory.

1. Invoke DBMS_LDAP_UTL.create_user_handle(user_hd, user_type,
user_id) to create a user handle from user input. The input can be a DN, a
GUID, or a single sign-on user ID.

2. Invoke DBMS_LDAP_UTL.set_user_handle_properties(user_hd,
property_type, property) to associate a realm with the user handle.

3. Invoke DBMS_LDAP_UTL.get_user_properties(ld, user_handle,
attrs, ptype, ret_pset_coll) to place the attributes of a user entry into a
result handle.

4. Invoke DBMS_LDAP_UTL.get_property_names(pset, property_names)
and DBMS_LDAP_UTL.get_property_values(pset, property_name,
property_values) to extract user attributes from the result handle that you
obtained in step 3.

Authenticating Users
Use DBMS_LDAP_UTL.authenticate_user(session, user_handle, auth_
type, cred, binary_cred) to authenticate a user to the directory. This function
compares the password provided by the user with the password attribute in the user's
directory entry.

Dependencies and Limitations of the PL/SQL LDAP API
The PL/SQL LDAP API for this release has the following limitations:

■ The LDAP session handles obtained from the API are valid only for the duration
of the database session. The LDAP session handles cannot be written to a table and
reused in other database sessions.

■ Only synchronous versions of LDAP API functions are supported in this release.

The PL/SQL LDAP API requires a database connection to work. It cannot be used
in client-side PL/SQL engines (like Oracle Forms) without a valid database
connection.

Developing Provisioning-Integrated Applications 7-1

7
Developing Provisioning-Integrated

Applications

As of 10g (10.1.4.0.1), new APIs are available for developing provisioning-integrated
applications. Please refer to:

■ The Oracle Provisioning Service Concepts chapter in Oracle Identity Management
Integration Guide

■ The Deploying Provisioning-Integrated Applications chapter in Oracle Identity
Management Integration Guide

7-2 Oracle Identity Management Application Developer’s Guide

Integrating with Oracle Delegated Administration Services 8-1

8
Integrating with Oracle Delegated

Administration Services

This chapter explains how to integrate applications with Oracle Delegated
Administration Services. This Web tool enables you to more easily develop tools for
administering application data in the directory.

It contains the following sections:

■ What Is Oracle Delegated Administration Services?

■ Integrating Applications with the Delegated Administration Services

■ Java APIs Used to Access URLs

What Is Oracle Delegated Administration Services?
Oracle Delegated Administration Services consists of a set of pre-defined, Web-based
service units for performing directory operations on behalf of users. These units enable
directory users to update their own information.

The delegated administration services provide most of the functionality that
directory-enabled applications require. You can use the service units to create user and
group entries, search for entries, and change user passwords.

You can embed delegated administration service units in your applications. If, for
example, you are building a Web portal, you can add service units that enable users to
change application passwords stored in the directory. Each service unit has a
corresponding URL stored in the directory. At runtime, an application can find the
URL by querying the directory.

Figure 8–1 Overview of Delegated Administration Services

DAS-Integrated
Application

DAS Services
Units

Single
Sign-on

Oracle
Internet

Directory

User

Url
Redirection

Authentication

Authentication

User / Group
Information

Integrating Applications with the Delegated Administration Services

8-2 Oracle Identity Management Application Developer’s Guide

How Applications Benefit from Oracle Delegated Administration Services
An application based on Oracle Delegated Administration Services is more advanced
than one based on earlier types of APIs. First, an application developed using the
service units is language independent because the units are Web based. This means
that the application can handle input and requests from any type of user or
application, eliminating the need for a costly custom solution or configuration. Second,
Oracle Delegated Administration Services comes with the Oracle Internet Directory
Self-Service Console, a GUI development tool that automates many of the
directory-oriented application requirements (such as Create, Edit, and Delete). Third,
Oracle Delegated Administration Services is integrated with Oracle Application Server
Single Sign-On. The application is automatically authenticated by the single sign-on
server. This means that the application can query the directory on a user's behalf.

Integrating Applications with the Delegated Administration Services
This section contains these topics:

■ Integration Profile

■ Integration Methodology and Considerations

Integration Profile
An application integrated with Oracle Delegated Administration Services has the
following characteristics:

■ It is a Web-based GUI.

■ It is integrated with Oracle Application Server Single Sign-On through mod_osso.

■ It has operations that it must perform by way of a signed-on user. It can perform
these operations using Oracle Delegated Administration Services.

■ It has users or groups stored in Oracle Internet Directory and can use Oracle
Delegated Administration Services for user and group management.

■ It runs on the Oracle Application Server infrastructure or middle-tier. The
discovery mechanism for the service URLs is inaccessible otherwise.

Integration Methodology and Considerations
Table 8–1 on page 8-2 identifies the tasks that are required to integrate an application
with Oracle Delegated Administration Services.

Table 8–1 Integration Considerations

Point in Application
Lifecycle Considerations

Application design time Examine the various services that Oracle Delegated
Administration Services provides. Identify integration points
within the application GUI.

Make code changes to pass parameters to the Oracle Delegated
Administration Services self-service units and to process return
parameters from Oracle Delegated Administration Services.

 Introduce code in the bootstrap and installation logic to
dynamically discover the location of Oracle Delegated
Administration Services units from configuration information
in Oracle Internet Directory. To do this, use Oracle Internet
Directory Service Discovery APIs.

Integrating Applications with the Delegated Administration Services

Integrating with Oracle Delegated Administration Services 8-3

Use Case 1: Create User
This use case shows how to integrate the Create User unit with a custom application.
In the custom application page, Create User is shown as a link.

1. Identify the base URL for Oracle Delegated Administration Services by using this
Java API string:

baseUrl = Util.getDASUrl(ctx,DASURL_BASE)

This API returns the base URL in this form: http://host_name:port/

2. Get the URL for the Create Userunit by using this string:

relUrl = Util.getDASUrl (ctx , DASURL_CREATE_USER)

The return value is the relative URL to access the Create User unit.

The specific URL is the information needed to generate the link dynamically for
the application.

You can customize the parameters in Table 8–2 on page 8-3 for this unit.

Application installation
time

Determine the location of Oracle Delegated Administration
Services units and store them in local repository.

Application runtime Display Oracle Delegated Administration Services URLs in
application GUI shown to users.

Pass the appropriate parameters to the Oracle Delegated
Administration Services by using URL encoding.

Process return codes from Oracle Delegated Administration
Services through the URL return.

Ongoing administrative
activities

Provide the capability to refresh the location of Oracle
Delegated Administration Services and its URLs in the
administrator screens. Do this in case the deployment moves
the location of Oracle Delegated Administration Services after
the application has been installed.

Table 8–2 URL Parameters for Oracle Delegated Administration Services

Parameter Description

homeURL The URL that is linked to the global button Home in the Oracle Delegated
Administration Services unit. When the calling application specifies this value, you
can click Home to redirect the Oracle Delegated Administration Services unit to the
URL specified by this parameter.

doneURL This URL is used by Oracle Delegated Administration Services to redirect the
Oracle Delegated Administration Services page at the end of each operation. In the
case of Create User, once the user is created, clicking OK redirects the URL to this
location.

cancelURL This URL is linked with all the Cancel buttons shown in Oracle Delegated
Administration Services units. Any time the user clicks Cancel, the page is
redirected to the URL specified by this parameter.

enablePA This parameter takes a Boolean value of true or false. This will enable the Assign
Privileges section in a User or Group operation. If enablePA is passed with value
of true in the Create User page, then the Assign Privileges to User section will also
appear on the Create User Page.

Table 8–1 (Cont.) Integration Considerations

Point in Application
Lifecycle Considerations

Java APIs Used to Access URLs

8-4 Oracle Identity Management Application Developer’s Guide

3. Build the link with the parameters set to the following values:

baseUrl = http://acme.mydomain.com:7777/
relUrl = oiddas/ui/oracle/ldap/das/admin/AppCreateUserInfoAdmin
homeURL = http://acme.mydomain.com/myapp
cancelURL = http://acme.mydomain.com/myapp
doneURL = http://acme.mydomain.com/myapp
enablePA = true

The complete URL looks like this:

http://acme.mydomain.com:7777/oiddas/ui/oracle/ldap/das/admin/
AppCreateUserInfoAdmin?homeURL=http://acme.mydomain.com/myapp&
cancelURL=http://acme.mydomain.com/myapp&
doneURL=http://acme.mydomain.com/myapp&
enablePA=true

4. You can now embed this URL in the application.

Use Case 2: User LOV
List of Values (LOV) is implemented using JavaScript to invoke and pass values
between the LOV calling window and the LOV page. The application invoking the
LOV needs to open a popup window using JavaScript. Because Java scripts have
security restrictions, no data may cross domains. Due to this limitation, only pages in
the same domain can access the LOV units.

Base and relative URLs can be invoked the same way as they are for Create User.
Sample files are located at:

$ORACLE_HOME/ldap/das/samples/lov

The samples illustrate how the LOV can be invoked and data can be passed between
the calling application and the Oracle Delegated Administration Services unit. A
Complete illustration of the LOV invocation is beyond the scope of this chapter.

Java APIs Used to Access URLs
Java APIs can be used to discover URLs for Oracle Delegated Administration Services.
More details about these APIs are provided in Chapter 4, "Developing Applications
With Oracle Extensions to the Standard APIs" and in Chapter 18, "DAS_URL Interface
Reference". The API functions that address URL discovery are
getDASUrl(DirContext ctx, String urlTypeDN) and
getAllDASUrl(DirContext ctx).

Developing Applications for Single Sign-On 9-1

9
Developing Applications for Single Sign-On

This chapter explains how to develop applications to work with mod_osso. The
chapter contains the following topics:

■ What Is mod_osso?

■ Protecting Applications Using mod_osso: Two Methods

■ Developing Applications Using mod_osso

■ Security Issues

■ Forced Authentication

What Is mod_osso?
In OracleAS release 10.1.2, you use mod_osso, an authentication module on the Oracle
HTTP Server, to enable applications for single sign-on. mod_osso is a simple
alternative to the single sign-on SDK, used in earlier releases to integrate partner
applications. mod_osso simplifies the authentication process by serving as the sole
partner application to the single sign-on server. By doing so, it renders authentication
transparent for OracleAS applications.

After authenticating users, mod_osso transmits the simple header values that
applications need to validate them. These include the following:

■ User name

■ User GUID

■ Language and territory

Table 9–1 lists all of the user attributes that mod_osso passes to applications. The table
also recommends attributes to use as keys, or handles, to retrieve additional user
attributes from Oracle Internet Directory.

Table 9–1 User Attributes Passed to Partner Applications

HTTP Header Name Description Source Use as Key or Handle?

Osso-User-Guid Single sign-on user's
globally unique user ID
(GUID).

Single sign-on user's
globally unique user ID
(GUID).

Recommended.

Osso-Subscriber-Guid Realm GUID. Realm entry in Oracle
Internet Directory.

Recommended.

Protecting Applications Using mod_osso: Two Methods

9-2 Oracle Identity Management Application Developer’s Guide

mod_osso interoperates only with the Oracle HTTP listener. You can use OracleAS
SSO Plug-in to protect applications that work with third-party listeners such as Sun
One and IIS. To learn how to use OracleAS SSO Plug-in, see the appendix about this
tool in Oracle HTTP Server Administrator’s Guide.

Protecting Applications Using mod_osso: Two Methods
mod_osso redirects the user to the single sign-on server only if the URL you request is
configured to be protected. You can secure URLs in one of two ways: statically or
dynamically. Static directives simply protect the application, ceding control over user
interaction to mod_osso. Dynamic directives not only protect the application, they also
enable it to regulate user access.

This section contains the following topics:

■ Protecting URLs Statically

■ Protecting URLs with Dynamic Directives

Protecting URLs Statically
You can statically protect URLs with mod_osso by applying directives to the mod_
osso.conf file. This file is found at $ORACLE_HOME/Apache/Apache/conf. In the
example that follows, a directory named /private, located just below the Oracle
HTTP Server document root, is protected by this directive:

<IfModule mod_osso.c>

 <Location /private>
 AuthType Basic
 require valid-user
 </Location>

</IfModule>

After making the entry, restart the Oracle HTTP Server:

$ORACLE_HOME/opmn/bin/opmnctl restartproc type=ohs

Finally, populate the directory with pages and then test them. For example:

http://host:port/private/helloworld.html

Protecting URLs with Dynamic Directives
Dynamic directives are HTTP response headers that have special error codes that
enable an application to request granular functionality from the single sign-on system

Remote-User User nickname as entered
by user on the login page.

Single sign-on login page. Recommended for
pre-9.0.4 applications only.

Osso-Subscriber User-friendly name for a
realm.

Realm entry in Oracle
Internet Directory.

Not recommended. Use
GUID headers to perform
user searches in Oracle
Internet Directory.

Accept-Language Language and territory in
ISO format.

Single sign-on server. Not applicable.

Table 9–1 (Cont.) User Attributes Passed to Partner Applications

HTTP Header Name Description Source Use as Key or Handle?

Developing Applications Using mod_osso

Developing Applications for Single Sign-On 9-3

without having to implement the intricacies of the single sign-on protocol. Upon
receiving a directive as part of a simple HTTP response from the application, mod_
osso creates the appropriate single sign-on protocol message and communicates it to
the single sign-on server.

OracleAS supports dynamic directives for Java servlets and JSPs. The product does not
currently support dynamic directives for PL/SQL applications.

Table 9–2 lists commonly requested dynamic directives.

Developing Applications Using mod_osso
This section explains how to write and enable applications using mod_osso. The
section contains the following topics:

■ Developing Statically Protected PL/SQL Applications

■ Developing Statically Protected Java Applications

■ Developing Java Applications That Use Dynamic Directives

■ A Word About Non-GET Authentication

Developing Statically Protected PL/SQL Applications
What follows is an example of a simple mod_osso-protected application. This
application logs the user in to the single sign-on server, displays user information, and
then logs the user out of both the application and the single sign-on server.

Use the following steps to write and enable a PL/SQL application using mod_osso.

1. Create the schema where application procedure will be loaded.

sqlplus sys/sys_password as sysdba
create user schema_name identified by schema_password;
grant connect, resource to schema_name;

2. Load the following procedure into the schema and grant the public access to the
procedure:

create or replace procedure show_user_info
 is
 begin
 begin
 htp.init;
 exception
 when others then null;
 end;
 htp.htmlOpen;
 htp.bodyOpen;
 htp.print('<h2>Welcome to Oracle Single Sign-On</h2>');

Table 9–2 Commonly Requested Dynamic Directives

Directive Status Code Headers

Request Authentication 401, 499 -

Request Forced
Authentication

499 Osso-Paranoid: true

Single Sign-Off 470 Osso-Return-URL

This is the URL to return to after single
sign-off is complete

Developing Applications Using mod_osso

9-4 Oracle Identity Management Application Developer’s Guide

 htp.print('<pre>');
 htp.print('Remote user:'
 || owa_util.get_cgi_env('REMOTE_USER'));
 htp.print('User DN:'
 || owa_util.get_cgi_env('Osso-User-Dn'));
 htp.print('User Guid:'
 || owa_util.get_cgi_env('Osso-User-Guid'));
 htp.print('Subscriber:'
 || owa_util.get_cgi_env('Osso-Subscriber'));
 htp.print('Subscriber DN:'
 || owa_util.get_cgi_env('Osso-Subscriber-Dn'));
 htp.print('Subscriber Guid:'
 || owa_util.get_cgi_env('Osso-Subscriber-Guid'));
 htp.print('</pre>');
 htp.print('<a href=/osso_logout?'
 ||'p_done_url=http://my.oracle.com>Logout');

 htp.bodyClose;
 htp.htmlClose;
end show_user_info;
/
show errors;

grant execute on show_user_info to public;

3. Create a database access descriptor (DAD) for the application in the dads.conf
file, located at $ORACLE_HOME/Apache/modplsql/conf:

<Location /pls/DAD_name>
 SetHandler pls_handler
 Order deny,allow
 AllowOverride None
 PlsqlDatabaseConnectString hostname:port:SID
 PlsqlDatabasePassword schema_password
 PlsqlDatabaseUsername schema_name
 PlsqlDefaultPage schema_name.show_user_info
 PlsqlDocumentTablename schema_name.wwdoc_document
 PlsqlDocumentPath docs
 PlsqlDocumentProcedure schema_name.wwdoc_process.process_
 download
 PlsqlAuthenticationMode Basic
 PlsqlPathAlias url
 PlsqlPathAliasProcedure schema_name.wwpth_api_alias.process_
 download
 PlsqlSessionCookieName schema_name
 PlsqlCGIEnvironmentList OSSO-USER-DN
 PlsqlCGIEnvironmentList OSSO-USER-GUID
 PlsqlCGIEnvironmentList OSSO-SUBSCRIBER
 PlsqlCGIEnvironmentList OSSO-SUBSCRIBER-DN
 PlsqlCGIEnvironmentList OSSO-SUBSCRIBER-GUID
</Location>

4. Protect the application DAD by entering the following lines in the mod_
osso.conf file:

<Location /pls/DAD_name>
 require valid-user
 authType Basic
</Location>

Developing Applications Using mod_osso

Developing Applications for Single Sign-On 9-5

5. Restart the Oracle HTTP Server:

http://host:port/private/helloworld.html

6. To test whether the newly created functions and procedures are protected by mod_
osso, try to access them from a browser:

http://host:port/pls/DAD/schema_name.show_user_info

Selecting the URL should invoke the single sign-on login page if mod_osso.conf
has been configured properly and mod_osso is registered with the single sign-on
server.

Developing Statically Protected Java Applications
Use the following steps to write and enable a servlet or JSP application using mod_
osso:

1. Write the JSP or servlet. Like the PL/SQL application example immediately
preceding, the simple servlet that follows logs the user in, displays user
information, and then logs the user out.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
 * Example servlet showing how to get the SSO User information
 */

public class SSOProtected extends HttpServlet
{

 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 response.setContentType("text/html");

 // Show authenticated user informationsingle sign-on
 PrintWriter out = response.getWriter();
 out.println("<h2>Welcome to Oracle Single Sign-On</h2>");
 out.println("<pre>");
 out.println("Remote user: "
 + request.getRemoteUser());
 out.println("Osso-User-Dn: "
 + request.getHeader("Osso-User-Dn"));
 out.println("Osso-User-Guid: "
 + request.getHeader("Osso-User-Guid"));
 out.println("Osso-Subscriber: "
 + request.getHeader("Osso-Subscriber"));
 out.println("Osso-User-Dn: "
 + request.getHeader("Osso-User-Dn"));
 out.println("Osso-Subscriber-Dn: "
 + request.getHeader("Osso-Subscriber-Dn"));
 out.println("Osso-Subscriber-Guid: "

Note: The assumption here is that mod_osso is already configured
for single sign-on. This step is performed when OracleAS is installed.

Developing Applications Using mod_osso

9-6 Oracle Identity Management Application Developer’s Guide

 + request.getHeader("Osso-Subscriber-Guid"));
 out.println("Lang/Territory: "
 + request.getHeader("Accept-Language"));
 out.println("</pre>");
 out.println("<a href=/osso_logout?"
 +"p_done_url=http://my.oracle.com>Logout");

2. Protect the servlet by entering the following lines in the mod_osso.conf file:

<Location /servlet>
 require valid-user
 authType Basic
</Location>

3. Deploy the servlet. If you need help, see the overview chapter in Oracle Containers
for J2EE Servlet Developer’s Guide. This chapter provides an example of a servlet
and shows how to deploy it.

4. Restart the Oracle HTTP Server and OC4J:

$ORACLE_HOME/opmn/bin/opmnctl restartproc type=ohs
$ORACLE_HOME/opmn/bin/opmnctl stopproc type=oc4j
$ORACLE_HOME/opmn/bin/opmnctl startproc type=oc4j

5. Test the servlet by trying to access it from the browser. Selecting the URL should
invoke the login page.

The process is this: when you try to access the servlet from the browser, you are
redirected to the single sign-on server for authentication. Next you are redirected
back to the servlet, which displays user information. You may then select the
logout link to log out of the application as well as the single sign-on server.

Developing Java Applications That Use Dynamic Directives
Applications that use dynamic directives require no entry in mod_osso.conf because
mod_osso protection is written directly into the application as one or more dynamic
directives. The servlets that follow show how such directives are incorporated. Like
their "static" counterparts, these sample "dynamic" applications generate user
information.

This section covers the following topics:

■ Java Example #1: Simple Authentication

■ Java Example #2: Single Sign-Off

Java Example #1: Simple Authentication
This servlet uses the request.getRemoteUser()method to check the mod_osso
cookie for the user name. If the user name is absent, the servlet issues dynamic
directive 499, a request for simple authentication. The key lines are in boldface.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
 * Example servlet showing how to use
 * Dynamic Directive for login
 */

public class SSODynLogin extends HttpServlet

Developing Applications Using mod_osso

Developing Applications for Single Sign-On 9-7

{

 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 String l_user = null;

 // Try to get the authenticate user name
 try
 {
 l_user = request.getRemoteUser();
 }
 catch(Exception e)
 {
 l_user = null;
 }

 // If user is not authenticated then generate
 // dynamic directive for authentication
 if((l_user == null) || (l_user.length() <= 0))
 {
 response.sendError(499, "Oracle SSO");
 }
 else
 {
 // Show authenticated user information
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<h2>Welcome to Oracle Single Sign-On</h2>");
 out.println("<pre>");
 out.println("Remote user: "
 + request.getRemoteUser());
 out.println("Osso-User-Dn: "
 + request.getHeader("Osso-User-Dn"));
 out.println("Osso-User-Guid: "
 + request.getHeader("Osso-User-Guid"));
 out.println("Osso-Subscriber: "
 + request.getHeader("Osso-Subscriber"));
 out.println("Osso-User-Dn: "
 + request.getHeader("Osso-User-Dn"));
 out.println("Osso-Subscriber-Dn: "
 + request.getHeader("Osso-Subscriber-Dn"));
 out.println("Osso-Subscriber-Guid: "
 + request.getHeader("Osso-Subscriber-Guid"));
 out.println("Lang/Territory: "
 + request.getHeader("Accept-Language"));
 out.println("</pre>");
 }
 }

Java Example #2: Single Sign-Off
This servlet is invoked when users select the login link within an application. The
application sets the URL to return to when sign-off is complete; then it issues a
directive that sends users to the single sign-off page. The key lines are in boldface.

Note: If Oracle JAAS Provider is used, the directive code 401 may be
substituted for 499.

Developing Applications Using mod_osso

9-8 Oracle Identity Management Application Developer’s Guide

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
 * Example servlet showing how to use
 * Dynamic Directive for logout
 */

public class SSODynLogout extends HttpServlet
{
 public void service (HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 // Set the return URL
 response.setHeader("Osso-Return-Url",
 "http://my.oracle.com");
 // Send Dynamic Directive for logout
 response.sendError(470, "Oracle SSO");
 }
}

A Word About Non-GET Authentication
The first page of a mod_osso-protected application must be a URL that uses the GET
authentication method. If the POST method is used, the data that the user provides
when logging in is lost during redirection to the single sign-on server. When deciding
whether to enable the global user inactivity timeout, please note that users are
redirected after timing out and logging in again.

Global Inactivity Timeout and Dynamic Directives
If you are using Global Inactivity Timeout and Dynamic Directive for enabling Single
Sign-On for your applications, then you can use the
Osso-Idle-Timeout-Exceeded HTTP header in your application to determine the
timeout status. This header value is set to true if timeout has occurred, otherwise it is
set to false.

The following example shows how you can use the
Osso-Idle-Timeout-Exceeded HTTP header:

// Get the timeout status
String timeoutStatus = request.getHeader("Osso-Idle-Timeout-Exceeded")
// Check if user has timedout
if ((timeoutStatus != null) && timeoutStatus.equalsIgnoreCase("true"))
{
 response.setHeader("Osso-Paranoid", "true");
 response.sendError(499, "Oracle SSO");
}
else
{
 // Display page content here
}

Note: Alternatively, you can redirect to the osso_logout URL on
that computer.

Security Issues

Developing Applications for Single Sign-On 9-9

Security Issues
This section describes security considerations when developing applications for
OracleAS Single Sign-On. It contains these topics:

■ Single Sign-Off and Application Logout

■ Secure Transmission of mod_osso Cookies

Single Sign-Off and Application Logout
If you build custom applications using OracleAS, note the following: when global
logout, or single sign-off, is invoked, only the single sign-on and mod_osso cookies are
cleared. This means that an OracleAS application must be coded to store single sign-on
user and realm names in either the OC4J session or in the application session. The
application must then compare these values to those passed by mod_osso. If a match
occurs, the application must show personalized content. If no match occurs, which
means that the mod_osso cookie is absent, the application must clear the application
session and force the user to log in.

This section covers the following topics:

■ Application Login: Code Examples

■ Application Logout: Recommended Code

Application Login: Code Examples
The first two code examples in this section do not incorporate the logic prescribed in
the section immediately preceding. The third example does incorporate this logic.
Although these are Java examples, they could be examples written in other languages
such as Perl, PL/SQL, and CGI.

Bad Code Example #1
// Get user name from application session. This session was
// established by the application cookie or OC4J session cookie
String username = request.getSession().getAttribute('USER_NAME');

// Get subscriber name from application session. This session was
// established by the application cookie or OC4J session cookie.
String subscriber = request.getSession().getAttribute('SUBSCRIBER_NAME');

// Get user security information from application session. This session was
established by the application cookie or OC4J session cookie
String user_sec_info = request.getSession().getAttribute('USER_APP_SEC');

if((username != null) && (subscriber!= null))
{
// Show personalized user content
show_personalized_page(username, subscriber, user_sec_info);

}
else
{
// Send Dynamic Directive for login
response.sendError(499, "Oracle SSO");

Bad Code Example #2
// Get SSO username from http header
String username = request.getRemoteUser();

Security Issues

9-10 Oracle Identity Management Application Developer’s Guide

// Get subscriber name from SSO http header
String subscriber = request.getHeader('OSSO-SUBSCRIBER');

// Get user security information from application session.
// This session was established by the application or OC4J session.
String user_sec_info =request.getSession().getAttribute('USER_APP_SEC');

if((ssousername != null)&&(subscriber!= null))
{
// Show personalized user content

show_personalized_page(username, subscriber, user_sec_info);
}
else
{
// Send Dynamic Directive for login

response.sendError(499, "Oracle SSO");
}

Recommended Code
// Get user name from application session. This session was
// established by the application or OC4J session
String username = request.getSession().getAttribute('USER_NAME');

// Get subscriber name from application session. This session was
// established by the application or OC4J session
String subscriber = request.getSession().getAttribute('SUBSCRIBER_NAME');

// Get user security information from application session.
 // This session was established by the application or OC4J session.
String user_sec_info = request.getSession().getAttribute('USER_APP_SEC');

// Get username and subscriber name from JAZN API */
JAZNUserAdaptor jaznuser = (JAZNUserAdaptor)requset.getUserPrincipal();
 String ssousername = jaznuser.getName();
 String ssosubscriber = jaznuser.getRealm().getName();

// If you are not using JAZN api then you can also get the username and
// subscriber name from mod_osso headers
String ssousername = request.getRemoteUser();
String ssosubscriber = request.getHeader('OSSO-SUBSCRIBER');

// Check for application session. Create it if necessary.
if((username == null) || (subscriber == null))
 {
 ...Code to create application session. Get the user information from
 JAZN api (or mod_osso headers if you are not using JAZN api) and populate the
 application session with user, subscriber, and user security info.
 }

if((username != null)&&(subscriber != null)
&&(ssousername != null)&&(ssosubscriber != null)
&&(username.equalsIgnoreCase(ssousername) == 0)
&&(subscriber.equalsIgnoreCase(ssosubscriber) == 0))

{
// Show personalized user content

show_personalized_page(username, subscriber, user_sec_info);
}
else
{

 ...Code to Wipe-out application session, followed by...

Forced Authentication

Developing Applications for Single Sign-On 9-11

// Send Dynamic Directive for login
// If you are using JAZN then you should use following code
// response.sendError(401);

// If you are not using JAZN api then you should use following code
// response.sendError(499, "Oracle SSO");
}

Application Logout: Recommended Code
Most applications that authenticate users have a logout link. In a
single-sign-on-enabled application, the user invokes the dynamic directive for logout
in addition to other code in the logout handler of the application. Invoking the logout
directive initiates single sign-off, or global logout. The example that follows shows
what single sign-off code should look like in Java:

// Clear application session, if any
String l_return_url := return url to your application
response.setHeader("Osso-Return-Url", l_return_url);
response.sendError(470, "Oracle SSO");

Secure Transmission of mod_osso Cookies
You can add the OssoSecureCookies directive to set the Secure flag on all cookies
created by mod_osso. This tells the browser to only transmit those cookies on
connections secured by HTTPS.

An example of this directive, in the mod_osso configuration file located in $ORACLE_
HOME/Apache/Apache/conf/mod_osso.conf, is as follows:

<IfModule mod_osso.c>
 OssoIpCheck off
 OssoIdleTimeout off
 OssoSecureCookies on
 OssoConfigFile osso/osso.conf

 <Location /j2ee/webapp>
 require valid-user
 AuthType Basic
 </Location>

</IfModule>

Forced Authentication
Applications protected by Oracle Application Server Single Sign-On have the option to
force a user to re-authenticate during application runtime. The Forced Authentication
process requires the user to log in to Oracle Single Sign-On, even if the user already
has a valid Single Sign-On session. This can be desirable in situations requiring a high
level of security, such as transferring money online. Forced Authentication requires
Oracle HTTP Server version 10.1.3.1.0 or later and Oracle Application Server Single
Sign-On version 9.0.4 or later.

To use this feature, protected applications must keep some user session states in order
to verify that the forced authentication process was successful. These applications
must record the Osso-Cookie-Timestamp request header value (time1) as well as
the current time (time2) just before forcing the user to authenticate. After

Forced Authentication

9-12 Oracle Identity Management Application Developer’s Guide

re-authentication, the user accesses the application again. At this time, the application
compares the current Osso-Cookie-Timestamp request header value (time3) to
time1 and time2. The application must ensure that time3 is later than both time1 and
time2. If this is not the case, the application must reject the user session and prevent
the user from performing any security-sensitive operations.

The value of Osso-Cookie-Timestamp is a string which represents the hexadecimal
encoding of the calendar time when an OracleAS Single Sign-On session starts. This
time value represents the number of seconds elapsed since 00:00:00 on January 1, 1970
(also known as "the Epoch"). The following steps outline the process:

1. Obtain the Osso-Cookie-Timestamp value from a valid existing OracleAS
Single Sign-On session. Record this as time1.

2. Obtain the current time. Record this as time2.

3. Trigger the forced authentication by setting the Osso-Paranoid request header
to true and then return HTTP status 499 to Oracle HTTP Server.

4. Oracle HTTP Server redirects the user to the OracleAS Single Sign-On server and
requires the user to re-authenticate.

5. When the user accesses the protected application, obtain the new
Osso-Cookie-Timestamp value. This is time3.

6. Application verifies that time3 is later than time1 and time2. The application
rejects the user login session if this is not the case.

The following is a code sample of Forced Authentication:

//About to execute sensitive security operation.
//user should have already been forced to login.
//verify timestamps
if(!checkForcedAuthSuccess(l_session))
{
 //forced authentication was unsuccessful
 destroyUserSession();
}
else
{
 //successful forced authentication
}
public boolean checkForcedAuthSuccess(HttpSession session
{
 try
 {
 SessionStateObject state = session.getAttribute("SESSION_STATE")

 //get the current cookie timestamp (time3)
 l_currTimestampStr = (String) request.getHeader("Osso-Cookie-Timestamp");

 //convert hex to decimal & get date
 l_decValue = convertHexToDecimal(l_currTimestampStr);
 l_decValue *= 1000;
 l_currTimestampDate = new Date(decValue);

 //time when user was forced to authenticate (time2)
 l_forcedCheckDate = state.getForcedCheckTime();
 //previous mod_osso cookie timestamp (time1)
 l_previousAuthDate = state.getPreviousAuthTimestamp();
 // current auth timestamp needs to be AFTER prevAuthDate
 // current auth timestamp needs to be AFTER forcedCheckDate

Forced Authentication

Developing Applications for Single Sign-On 9-13

 if((l_currTimestampDate.after(l_previousAuthDate)) &&
 (l_currTimestampDate.after(l_forcedCheckDate)))
 {
 l_ret = true;
 }
 else
 {
 l_ret = false;
 }
}
catch(Exception ex)
 {
 throw new RuntimeException("Unable to check forcedAuth status.", ex);
 }
return l_ret;
}

See Also: Oracle Application Server Single Sign-On Administrator’s
Guide

Forced Authentication

9-14 Oracle Identity Management Application Developer’s Guide

Integrating J2EE Applications and Oracle Internet Directory 10-1

10
Integrating J2EE Applications and Oracle

Internet Directory

This chapter is designed to provide a short overview of APIs you can use in J2EE
applications to get information about user permissions, groups, and policies from
Oracle Internet Directory.

Oracle Containers for J2EE (OC4J) is a J2EE certified server implementation. OC4J
supports the standard J2EE security APIs.

In addition to the standard security APIs, OC4J provides a set of security features
collectively known as JAZN. JAZN includes the Oracle Application Server Java
Authentication and Authorization Service (JAAS) Provider, the JAZN User Manager,
the JAAS Policy Management API, and the Realm API. OC4J is fully integrated with
Oracle Application Server Single Sign-On and Oracle Internet Directory. JAZN
security APIs provide features not found in standard J2EE security APIs.

The OracleAS JAAS Provider is an implementation of Java Authentication and
Authorization Services (JAAS) that stores security policies in either XML files or in
Oracle Internet Directory. OC4J applications can use JAAS Policy Management APIs
for fine-grained authorization.

This document discusses the following topics:

■ Standard J2EE Security APIs

■ OC4J Security APIs

■ JAAS Policy Management APIs

Standard J2EE Security APIs
The J2EE standard implementation includes security APIs that can be used by Java
Servlets and Enterprise JavaBeans (EJBs) to get information about users and roles.
These APIs work independently from Oracle Internet Directory. They retrieve
information about users who have already been authenticated, regardless of whether
the application is integrated with Oracle Identity Management.

The javax.servlet.http package, which is part of the Java Servlet specification,
includes the following methods for obtaining information about users:

■ javax.servlet.http.HttpServletRequest.getUserPrincipal()

■ javax.servlet.http.HttpServletRequest.isUserInRole()

■ javax.servlet.http.HttpServletRequest.getRemoteUser()

To learn more about the javax.servlet.http package, see:

OC4J Security APIs

10-2 Oracle Identity Management Application Developer’s Guide

http://java.sun.com/products/servlet/2.2/javadoc/index.html

Similarly, the javax.ejb package, which is part of the Enterprise JavaBeans
specification, includes the following methods for obtaining information about users:

■ javax.ejb.EJBContext.getCallerPrincipal()

■ javax.ejb.EJBContext.isCallerInRole()

To learn more about the javax.ejb package, see:

http://java.sun.com/j2ee/1.4/docs/api/javax/ejb/package-tree.html

OC4J Security APIs
JAZN security APIs are based on the package com.evermind.security. This class
specifies a user manager to authenticate and authorize users and groups that attempt
to access a J2EE application. The default JAZN user manager is JAZNUserManager,
which supports LDAP-based providers and is integrated with Oracle Application
Server Single Sign-On and Oracle Internet Directory.

To access Oracle Internet Directory information using JAZNUserManager, you must
configure JAZN to use the LDAP-based provider, jazn-ldap, as described in the
Oracle Containers for J2EE Security Guide.

JAZN supports the following com.evermind.security.User methods to retrieve
user attributes from Oracle Internet Directory:

■ getDescription() returns a short description of this user or null if no
description is present.

■ getGroups() returns the groups that this user belongs to, if known and
supported.

■ getName() returns the username of this user.

■ hasPermission() checks whether this user has the named permission.

■ isMemberOf() checks whether this user is a member of the specified group.

See JAAS Provider API Reference for more information.

Applications that need additional user attributes, such as email address or Oracle
Internet Directory-specific attributes, must use the Oracle Internet Directory APIs.
These are found in Oracle Internet Directory API Reference and discussed in Chapter 2
and Chapter 5.

JAZN APIs do not support user creation. Use either the Oracle Internet Directory APIs
or Oracle Delegated Administration Services to create users.

Sample Code
The sample code that follows shows both standard J2EE and JAZN APIs being used to
retrieve user information after authentication has occurred.

package oracle.security.jazn.samples.http;

import java.io.IOException;
import java.util.Date;
import java.util.Properties;
import javax.naming.*;
import javax.servlet.*;
import javax.servlet.http.*;

OC4J Security APIs

Integrating J2EE Applications and Oracle Internet Directory 10-3

/**
 * A simple demo that exercises the Servlet security APIs.
 *
 */
public class CallerInfo extends HttpServlet {

 public CallerInfo()
 {
 super();
 }

 public void init(ServletConfig config)
 throws ServletException
 {
 super.init(config);
 }

 public void doGet(HttpServletRequest request, HttpServletResponse
 response)
 throws ServletException, IOException
 {
 ServletOutputStream out = response.getOutputStream();

 response.setContentType("text/html");
 out.println("<HTML><BODY bgcolor='#FFFFFF'>");

 //Standard J2EE APIs
 out.println("request.getRemoteUser = " +
 request.getRemoteUser() + "
");
 out.println("request.isUserInRole('FOO') = " +
 request.isUserInRole("FOO") + "
");
 out.println("request.isUserInRole('ar_manager') = " +
 request.isUserInRole("ar_manager") + "
");
 out.println("request.isUserInRole('ar_developer') = " +
 request.isUserInRole("ar_developer") + "
");
 out.println("request.getUserPrincipal = " +
 request.getUserPrincipal() + "
");

 //JAZN-LDAP APIs
 //Get the User principal from request
 com.evermind.security.User user =
 (com.evermind.security.User)request.getUserPrincipal();
 //getDescription API Test
 try {
 java.lang.String s = user.getDescription();
 out.println("getDescription API Result: ["
 +s+ "]
");
 }catch(Throwable e) {
 out.println("getDescription API FAILED: " +
 e.toString() + "
");
 }

 //getGroups API Test
 try {
 java.util.Set s = user.getGroups();
 out.println("getGroups API Result: [" +s+

JAAS Policy Management APIs

10-4 Oracle Identity Management Application Developer’s Guide

 "]
");
 }catch(Throwable e) {
 out.println("getGroups API FAILED: " +
 e.toString() + "
");
 }

 //getName API Test
 try {
 java.lang.String s = user.getName();
 out.println("getName API Result: [" +s+
 "]
");
 }catch(Throwable e) {
 out.println("getName API FAILED: " +
 e.toString() + "
");
 }

 //hasPermission API Test
 try {
 com.evermind.server.rmi.RMIPermission p = new
 com.evermind.server.rmi.RMIPermission("login");
 boolean b = user.hasPermission(p);
 out.println("hasPermission API Result: [" + b
 + "]
");
 }catch(Throwable e) {
 out.println("hasPermission API FAILED: " +
 e.toString() + "
");
 }

 //isMemberOf API Test
 try {
 java.util.Set s = user.getGroups();
 java.util.Iterator itr = s.iterator();
 boolean b = false;
 if(itr.hasNext())
 {
 b =
 user.isMemberOf((com.evermind.security.Group)itr.next());
 }
 out.println("isMemberOf API Result: [" +b+
 "]
");
 }catch(Throwable e) {
 out.println("isMemberOf API FAILED: " +
 e.toString() + "
");
 }

 out.println("</BODY>");
 out.println("</HTML>");
 }
}

 JAAS Policy Management APIs
 OC4J includes a highly scalable Java Authentication and Authorization Service (JAAS)
provider, OracleAS JAAS Provider. J2EE applications integrated with Oracle Internet
Directory can take advantage of the JAAS provider for enforcing fine-grained access
control over protected resources.

JAAS Policy Management APIs

Integrating J2EE Applications and Oracle Internet Directory 10-5

OracleAS JAAS Provider supports using Oracle Internet Directory as the JAAS
permissions and policies repository. OracleAS JAAS Provider is integrated with Oracle
Internet Directory and OracleAS Single Sign-On to enhance application security.

This section includes the following topics

■ JAAS Policy Management

■ Retrieving User Policies and Permissions using Standard JAAS APIs

JAAS Policy Management
Permissions may be granted or revoked either by using the JAZN Admintool from the
command line or programmatically, by using JAZN APIs.

The Admintool jazn.jar is found in the infrastructure installation under $ORACLE_
HOME/j2ee/home. Set the ORACLE_HOME and J2EE_HOME environment variables
before using it.

The following command line grants user scott permissions to read the file foo.txt.
The realm name scottsRealm is defined in Oracle Internet Directory and the user
name scott exists in Oracle Internet Directory:

java -jar jazn.jar -grantperm scottsRealm -user scott java.io.FilePermission
foo.txt, read

For more details on using the Admintool for User Management, see Oracle Containers
for J2EE Security Guide Appendix B, "Using the JAZN Admintool".

To programmatically grant users permissions, you can use the JAZN's API as follows:

//get JAZNConfiguration related info
JAZNConfig jc = JAZNConfig.getJAZNConfig();

//create a Grantee for "scott"
RealmManager realmmgr = jc.getRealmManager();
Realm realm = realmMgr.getRealm("scottsRealm");
UserManager userMgr = realm.getUserManager();
final RealmUser user = userMgr.getUser("scott");

//grant scott file permission
JAZNPolicy policy = jc.getPolicy();

if (policy != null) {
 Grantee gtee = new Grantee((Principal) user);
 java.io.FilePermission fileperm = new java.io.FilePermission("foo.txt",
"read");
 policy.grant(gtee, fileperm);
}

For further details, see the JAAS Provider API Reference and the Oracle Containers for
J2EE Security Guide.

Retrieving User Policies and Permissions using Standard JAAS APIs
Servlets may be run in either doasprivileged or runasmode. This causes them to
be run in Subject.doAsPrivileged or Subject.doAs blocks, respectively. When
servlets are run in either of these modes, you can check permissions by using either of
two standard APIs: Policy APIs or AccessController. To retrieve policies, configure
your servlet to use doasprivileged mode. For more information on how to

JAAS Policy Management APIs

10-6 Oracle Identity Management Application Developer’s Guide

configure doasprivileged or runas mode, see "Configuring J2EE Authorization" in
Oracle Containers for J2EE Security Guide.

The following code snippets show how to check permissions if user scott has
permission to read foo.txt.

Checking or Listing Permissions Using javax.security.auth.Policy.
This approach allows you not only to check permissions, but also to list all the
permissions granted to a user or group. If you only need to check the permissions
granted to the user or group, and not code-based permissions, this approach is faster.

//create Permission
FilePermission perm = new FilePermission("/home/scott/foo.txt","read");
{
javax.security.auth.Policy currPolicy =
 javax.security.auth.Policy.getPolicy();
// Query policy now
System.out.println("Policy permissions for this subject are " +
 currPolicy.getPermissions(Subject.getSubject(acc),null));

//Check Permissions
System.out.println("Policy.impiles permission: "+ perm +" ? " +
 currPolicy.getPermissions(Subject.getSubject(acc),null).implies(perm));
}

Checking Permissions Using AccessController
Irrespective of whether the Security Manager is turned on or off, this code will check
to see whether the subject or user executing this has permissions.

 //create Permission
 FilePermission perm = new FilePermission("/home/scott/foo.txt","read");
 {
 //get current AccessControlContext
 AccessControlContext acc = AccessController.getContext();
 AccessController.checkPermission(perm);
 }

For information about policy APIs provided by the OracleAS JAAS Provider, please
see Oracle Containers for J2EE Security Guide Appendix A, "OracleAS JAAS Provider
and Sample" and Oracle Containers for J2EE Security Guide Appendix B, "Using the
JAZN Admintool"

For information about the Oracle Internet Directory Java APIs, see Oracle Internet
Directory API Reference and Chapter 5, "Using the Java API Extensions to JNDI".

Note: If this snippet is executed in a servlet configured for
runas mode, the code base also might require permission.

Part II
Server Plug-ins

Part II discusses Oracle Internet Directory server plug-ins and the plug-in framework.
It contains these chapters:

■ Chapter 11, "Developing Plug-ins for the Oracle Internet Directory Server"

■ Chapter 12, "PL/SQL Server Plug-ins"

■ Chapter 13, "Java Server Plug-ins"

Developing Plug-ins for the Oracle Internet Directory Server 11-1

11
Developing Plug-ins for the Oracle Internet

Directory Server

This chapter introduces Oracle Internet Directory server plug-ins and presents an
overview of the plug-in framework for Oracle Internet Directory.

This chapter contains these topics:

■ What is a Server Plug-in?

■ Supported Languages for Server Plug-ins

■ Server Plug-in Prerequisites

■ Server Plug-in Benefits

■ Guidelines for Designing Plug-ins

■ What Is the Server Plug-in Framework?

■ LDAP Operations and Timings Supported by the Directory

■ Registering a Plug-in

■ Managing Plug-ins by Using Oracle Directory Manager

What is a Server Plug-in?
A server plug-in is a customized program that can be used to extend the capabilities of
the Oracle Internet Directory server. A server plug-in can be a PL/SQL package, Java
program or package, shared object or library, or a dynamic link library on Windows.
Each plug-in has a configuration entry in the Oracle Internet Directory Server. The
configuration entry specifies the conditions for invoking the plug-in. The conditions
for invoking a plugin include:

■ An LDAP operation, such as ldapbind or ldapmodify

■ A timing, relative to the LDAP operation, such as pre_bind or post_modify

Supported Languages for Server Plug-ins
As of 10g (10.1.4.0.1), Oracle Internet Directory supports plug-ins in Java as well as in
PL/SQL. This chapter provides information common to Java and PL/SQL plug-ins.
Chapter 12 provides information specific to PL/SQL plug-ins and Chapter 13 provides
information specific to Java plug-ins.

Server Plug-in Prerequisites

11-2 Oracle Identity Management Application Developer’s Guide

Server Plug-in Prerequisites
To develop Oracle Internet Directory plug-ins, you should be familiar with the
following topics:

■ Generic LDAP concepts

■ Oracle Internet Directory

■ Oracle Internet Directory integration with Oracle Application Server

You should have programming skills in one of the following areas:

■ SQL, PL/SQL, and database RPCs

■ Java

Server Plug-in Benefits
Some of the ways you can extend LDAP operations by using plug-ins include the
following:

■ You can validate data before the server performs an LDAP operation on the data.

■ You can perform actions that you define after the server successfully completes an
LDAP operation.

■ You can define extended operations.

■ You can authenticate users through external credential stores.

■ You can replace an existing server module with your own server module

On startup, the directory server loads your plug-in configuration and library. It calls
your plug-in functions while processing various LDAP requests.

Guidelines for Designing Plug-ins
Use the following guidelines when designing plug-ins:

■ Use plug-ins to guarantee that when a specific LDAP operation is performed,
related actions are also performed.

■ Use plug-ins only for centralized, global operations that should be invoked for the
program body statement, regardless of which user or LDAP application issues the
statement.

■ Do not create recursive plug-ins. For example, creating a pre_ldap_bind plug-in
that itself issues an ldapbind statement would cause the plug-in to execute
recursively until it has run out of resources.

Use plug-ins judiciously. They are executed every time the associated LDAP
operation occurs.

What Is the Server Plug-in Framework?
The plug-in framework is the environment in which you develop, configure, and
apply the plug-ins. Each individual plug-in instance is called a plug-in module.

See Also: The chapter about the password policy plug-in in Oracle
Internet Directory Administrator’s Guide. The chapter contains an
example of how to implement your own password value checking
and place it into the Oracle Internet Directory server.

LDAP Operations and Timings Supported by the Directory

Developing Plug-ins for the Oracle Internet Directory Server 11-3

The plug-in framework includes the following:

■ Plug-in configuration tools

■ Plug-in module interface

■ Plug-in LDAP APIs:

– PL/SQL package ODS.LDAP_PLUGIN

– Java package oracle.ldap.ospf

For both languages, you follow these general steps to use the server plug-in
framework:

1. Write a user-defined plug-in procedure in PL/SQL or Java.

2. Compile the plug-in module.

3. Register the plug-in module through the configuration entry interface by using
either the command line or Oracle Directory Manager.

LDAP Operations and Timings Supported by the Directory
The Oracle Internet Directory server supports plug-ins for the following LDAP
operations:

■ ldapadd

■ ldapbind

■ ldapcompare

■ ldapdelete

■ ldapmoddn (Java only)

■ ldapmodify

■ ldapsearch

Oracle Internet Directory supports four operation timings for plug-ins:

■ pre

■ post

■ when

■ when_replace

These are explained in the next four sections.

Pre-Operation Server Plug-ins
The server calls pre-operation plug-in modules before performing the LDAP
operation. The main purpose of this type of plug-in is to validate data before the data
is used in the LDAP operation.

When an exception occurs in the pre-operation plug-in, one of the following occurs:

■ When the return error code indicates warning status, the associated LDAP request
proceeds.

■ When the return code indicates failure status, the request does not proceed.

If the associated LDAP request fails later on, the directory does not roll back the
committed code in the plug-in modules.

Registering a Plug-in

11-4 Oracle Identity Management Application Developer’s Guide

Post-Operation Server Plug-ins
The Oracle Internet Directory server calls post-operation plug-in modules after
performing an LDAP operation. The main purpose of this type of plug-in is to invoke
a function after a particular LDAP operation is executed. For example, logging and
notification are post-operation plug-in functions.

When an exception occurs in the post-operation plug-in, the associated LDAP
operation is not rolled back.

If the associated LDAP request fails, the post plug-in is still executed.

When-Operation Server Plug-ins
The directory calls when-operation plug-in modules while performing standard LDAP
operations. A when-operation plug-in executes immediately before the server’s own
code for the operation. The main purpose of this type of plug-in is to augment existing
operations within the same LDAP transaction. If the when-operation plug-in fails, the
standard LDAP operation does not execute. If the when-operation plug-in completes
successfully, but the standard LDAP operation fails, then the changes made in the
plug-in are not rolled back.

You can, for example, use a when-operation plug-in with the ldapcompare operation.
The directory executes its server compare code and executes the plug-in module
defined by the plug-in developer.

PL/SQL when-operation plug-ins are supported in ldapadd, ldapdelete, and
ldapmodify. Java when_operation plug-ins are supported in ldapadd,
ldapdelete, ldapmoddn, ldapmodify, and ldapsearch.

When_Replace-Operation Server Plug-ins
A when_replace-operation plug-in executes instead of the server’s code for the
operation. You can, for example, use a when_replace plug-in with the ldapcompare
operation. The directory does not execute its compare code. Instead it relies on the
plug-in module to perform the comparison.

PL/SQL when_replace-operation plug-ins are supported only in ldapadd,
ldapcompare, ldapdelete, ldapmodify, and ldapbind.

Java when_replace-operation plug-ins are supported in ldapadd, ldapbind,
ldapcompare, ldapdelete, ldapmoddn, ldapmodify and ldapsearch.

Registering a Plug-in
To enable the directory server to call a plug-in at the right time, you must register the
plug-in with the directory server. You do this by creating an entry for the plug-in in the
directory schema under cn=plugin,cn=subconfigsubentry.

Plug-in Configuration Entry
Table 11–1 lists and describes the object classes and attributes you can specify in a
plug-in configuration.

Table 11–1 Plug-in Configuration Objects and Attributes

Name Value Mandatory?

objectclass orclPluginConfig Yes

Registering a Plug-in

Developing Plug-ins for the Oracle Internet Directory Server 11-5

objectclass top No

dn Plug-in entry DN Yes

cn Plug-in entry name Yes

orclPluginAttributeList A semicolon-separated list of attribute names
that controls whether the plug-in takes effect. If
the target attribute is included in the list, then
the plug-in is invoked. Only for ldapcompare
and ldapmodify plug-ins.

No

orclPluginEnable 0 = disable (default)

1 = enable

No

orclPluginEntryProperti
es

An ldapsearch filter type value. For example,
if we specify
orclPluginEntryProperties:
(&(objectclass=inetorgperson)(sn=Ce
zanne)), the plug-in is not invoked if the
target entry has objectclass equal to
inetorgperson and sn equal to Cezanne.

No

orclPluginIsReplace 0 = disable (default)

1 = enable

For when_replace timing, enable this and set
orclPluginTiming to when.

No

orclPluginKind PL/SQL or Java (Default is PL/SQL) No

orclPluginLDAPOperation One of the following values:

ldapcompare

ldapmodify

ldapbind

ldapadd

ldapdelete

ldapsearch

ldapmoddn (Java Only)

Yes

orclPluginName Plug-in name Yes

orclPluginFlexfield Custom text information (Java only). To indicate
a subtype, specify
orclPluginFlexfield;subtypename, for
example,
orclPluginFlexfield;minPwdLength: 8

No

orclPluginBinaryFlexfie
ld

Custom binary information (Java only). No

Table 11–1 (Cont.) Plug-in Configuration Objects and Attributes

Name Value Mandatory?

Registering a Plug-in

11-6 Oracle Identity Management Application Developer’s Guide

orclPluginSecuredFlexfi
eld

Custom text information that must never be
displayed in clear text (Java only). To indicate a
subtype, specify
orclPluginSecuredFlexfield;subtypen
ame, for example
orclPluginSecuredFlexfield;telephon
enumber1: 650.123.456. The value is
stored and displayed in encrypted form. In a
search result, it might appear as something like
this:
orclPluginSecuredFlexfield;telephon
enumber1: 1291zjs8134.

Be sure that Oracle Internet Directory has
privacy mode enabled to ensure that users
cannot retrieve this attribute in clear text. See
"Privacy of Retrieved Sensitive Attributes" in
Oracle Internet Directory Administrator’s Guide.

No

orclPluginRequestGroup A semicolon-separated group list that controls if
the plug-in takes effect. You can use this group
to specify who can actually invoke the plug-in.

For example, if you specify
orclpluginrequestgroup:cn=security,
cn=groups,dc=oracle,dc=com when you
register the plug-in, the plug-in will not be
invoked unless the ldap request comes from the
person who belongs to the group
cn=security,cn=groups,dc=oracle,dc=
com.

No

orclPluginRequestNegGro
up

A semicolon-separated group list that controls if
the plug-in takes effect. You can use this group
to specify who cannot invoke the plug-in. For
example, if you specify
orclpluginrequestgroup:
cn=security,cn=groups,dc=oracle,dc=
com, when you register the plug-in, the plug-in
is not invoked if the LDAP request comes from
the person who belongs to the group
cn=security,cn=groups,dc=oracle,
dc=com.

No

orclPluginResultCode An integer value to specify the ldap result code.
If this value is specified, then plug-in will be
invoked only if the LDAP operation is in that
result code scenario.

This is only for the post plug-in type.

No

orclPluginShareLibLocat
ion

File location of the dynamic linking library. If
this value is not present, then Oracle Internet
Directory server assumes the plug-in language
is PL/SQL.

No

orclPluginSubscriberDNL
ist

A semicolon separated DN list that controls if
the plug-in takes effect. If the target DN of an
LDAP operation is included in the list, then the
plug-in is invoked.

No

Table 11–1 (Cont.) Plug-in Configuration Objects and Attributes

Name Value Mandatory?

Registering a Plug-in

Developing Plug-ins for the Oracle Internet Directory Server 11-7

Adding a Plug-in Configuration Entry by Using Command-Line Tools
To add a plug-in configuration entry from the command line, create an LDIF file
containing the plug-in configuration. Specify a DN under
cn=plugin,cn=subconfigsubentry.

The following two-part LDIF file, my_ldif_file.ldif, creates an entry for an
operation-based plug-in called my_plugin1:

dn: cn=when_comp,cn=plugin,cn=subconfigsubentry
objectclass: orclPluginConfig
objectclass: top
orclPluginName: my_plugin1
orclPluginType: operational
orclPluginTiming: when
orclPluginLDAPOperation: ldapcompare
orclPluginEnable: 1
orclPluginVersion: 1.0.1
orclPluginIsReplace: 1
cn: when_comp
orclPluginKind: PLSQL
orclPluginSubscriberDNList: dc=COM,c=us;dc=us,dc=oracle,dc=com;dc=org,dc=us;
 o=IMC,c=US
orclPluginAttributeList: userpassword

dn: cn=post_mod_plugin, cn=plugin,cn=subconfigsubentry
objectclass: orclPluginConfig
objectclass: top
orclPluginName: my_plugin1
orclPluginType: operational
orclPluginTiming: post
orclPluginLDAPOperation: ldapmodify

orclPluginTiming One of the following values:

pre

when

post

For when_replace timing, specify when and
enable orclPluginIsReplace.

No

orclPluginType One of the following values:

operational

attribute

password_policy

syntax

matchingrule

See Also: "LDAP Operations and Timings
Supported by the Directory" on page 11-3.

Yes

orclPluginVersion Supported plug-in version number No

orclPluginClassReloadEn
abled

If this value is 1, the server reloads the plug-in
class every time it invokes the plug-in. If the
value is 0, the server loads the class only the
first time it invokes the plug-in.

Table 11–1 (Cont.) Plug-in Configuration Objects and Attributes

Name Value Mandatory?

Managing Plug-ins by Using Oracle Directory Manager

11-8 Oracle Identity Management Application Developer’s Guide

orclPluginEnable: 1
orclPluginVersion: 1.0.1
cn: post_mod_plugin
orclPluginKind: PLSQL

Add this file to the directory with a command similar to this:

ldapadd -p 389 -h myhost -D binddn -w password -f my_ldif_file.ldif

Managing Plug-ins by Using Oracle Directory Manager
You can register, edit, and delete plug-ins by using Oracle Directory Manager.

Registering a Plug-in by Using Oracle Directory Manager
To register a plug-in:

1. In the navigator pane, expand Oracle Internet Directory Servers > directory server
instance, then select Plug-in Management. The Plug-in Management window
appears in the right pane.

2. Choose Create. The New Plug-in dialog box appears.

3. Enter values in the New Plug-in dialog box.

4. When you have finished entering the values, choose OK. This returns you to the
Plug-in Management window. The plug-in you just created is listed in the Plug-in
Entry Name column.

5. Choose Apply.

Editing a Plug-in by Using Oracle Directory Manager
To edit a plug-in entry:

1. In the navigator pane, expand Oracle Internet Directory Servers > directory server
instance, then select Plug-in Management. The Plug-in Management window
appears in the right pane.

2. In the right pane, select the name of the plug-in entry you want to edit, then
choose Edit. The Plug-in dialog box appears.

3. In the Plug-in dialog box, modify the values in the appropriate fields.

4. Choose OK.

Deleting a Plug-in by Using Oracle Directory Manager
To delete a plug-in:

1. In the navigator pane, expand Oracle Internet Directory Servers > directory server
instance, then select Plug-in Management. The Plug-in Management window
appears in the right pane.

2. In the right pane, select the name of the plug-in you want to delete, then choose
Edit. The Plug-in: dialog box appears.

Note: The plug-in configuration entry is not replicated. Replicating it
would create an inconsistent state.

Managing Plug-ins by Using Oracle Directory Manager

Developing Plug-ins for the Oracle Internet Directory Server 11-9

3. In the Plug-in dialog box, choose Delete, and, when prompted, confirm your
deletion. This returns you to the Plug-in Management window. The plug-in entry
you deleted no longer appears in the list.

Managing Plug-ins by Using Oracle Directory Manager

11-10 Oracle Identity Management Application Developer’s Guide

PL/SQL Server Plug-ins 12-1

12
PL/SQL Server Plug-ins

This chapter explains how to use the plug-in framework in PL/SQL.

This chapter contains these topics:

■ Designing, Creating, and Using PL/SQL Server Plug-ins

■ Examples of PL/SQL Plug-ins

■ Binary Support in the PL/SQLPlug-in Framework

■ Database Object Types Defined

■ Specifications for PL/SQL Plug-in Procedures

Designing, Creating, and Using PL/SQL Server Plug-ins
This section contains these topics:

■ PL/SQLPlug-in Caveats

■ Creating PL/SQLPlug-ins

■ Compiling PL/SQLPlug-ins

■ Managing PL/SQL Plug-ins

■ Enabling and Disabling PL/SQL Plug-ins

■ Exception Handling in a PL/SQL Plug-in

■ PL/SQL Plug-in LDAP API

■ PL/SQL Plug-ins and Replication

■ PL/SQL Plug-in and Database Tools

■ PL/SQL Plug-in Security

■ PL/SQL Plug-in Debugging

■ PL/SQL Plug-in LDAP API Specifications

■ Database Limitations

PL/SQLPlug-in Caveats
The following caveats apply to PL/SQL plug-ins:

Designing, Creating, and Using PL/SQL Server Plug-ins

12-2 Oracle Identity Management Application Developer’s Guide

Types of PL/SQL Plug-in Operations
A PL/SQL plug-in can only be associated with ldapbind, ldapadd, ldapmodify,
ldapcompare, ldapsearch, and ldapdelete operations. You cannot associate a
PL/SQL plug-in with moddn. If you need to associate a plug-in with moddn, you must
use a Java plug-in.

Naming PL/SQL Plug-ins
Plug-in names (PL/SQL package names) must be unique if they share the same
database schema with other plug-ins or stored procedures. But plug-ins can share
names with other database schema objects such as tables and views. This kind of
sharing is not, however, recommended.

Creating PL/SQLPlug-ins
Creating a PL/SQL plug-in module is like creating a PL/SQL package. Both have a
specification part and a body part. The directory, not the plug-in, defines the plug-in
specification because the specification serves as the interface between Oracle Internet
Directory and the custom plug-in.

For security reasons and for the integrity of the LDAP server, you can compile
PL/SQL plug-ins only in the ODS database schema. You must compile them in the
database that serves as the back end database of Oracle Internet Directory.

Package Specifications for Plug-in Module Interfaces
Different plug-ins have different package specifications. As Table 12–1 shows, you can
name the plug-in package. You must, however, follow the signatures defined for each
type of plug-in procedure. See "Specifications for PL/SQL Plug-in Procedures" for
details.

Table 12–2 names the different plug-in procedures. In addition, it lists and describes
the parameters that these procedures use.

Table 12–1 Plug-in Module Interface

Plug-in Item User Defined
Oracle Internet
Directory-Defined

Plug-in Package Name X

Plug-in Procedure Name X

Plug-in Procedure Signature X

Table 12–2 Operation-Based and Attribute-Based Plug-in Procedure Signatures

Invocation Context Procedure Name IN Parameters OUT Parameters

Before ldapbind PRE_BIND ldapcontext, Bind DN,
Password

return code, error
message

With ldapbind but
replacing the default
server behavior

WHEN_BIND_REPLACE ldapcontext, bind
result, DN,
userpassword

bind result,
return code, error
message

After ldapbind POST_BIND ldapcontext, Bind
result, Bind DN,
Password

return code, error
message

Before ldapmodify PRE_MODIFY ldapcontext, DN, Mod
structure

return code, error
message

Designing, Creating, and Using PL/SQL Server Plug-ins

PL/SQL Server Plug-ins 12-3

With ldapmodify WHEN_MODIFY ldapcontext, DN, Mod
structure

return code, error
message

With ldapmodify but
replacing the default
server behavior

WHEN_MODIFY_REPLACE ldapcontext, DN, Mod
structure

return code, error
message

After ldapmodify POST_MODIFY ldapcontext, Modify
result, DN, Mod
structure

return code, error
message

Before ldapcompare PRE_COMPARE ldapcontext, DN,
attribute, value

return code, error
message

With ldapcompare
but replacing the
default server behavior

WHEN_COMPARE_
REPLACE

ldapcontext, Compare
result, DN, attribute,
value

compare result,
return code, error
message

After ldapcompare POST_COMPARE ldapcontext, Compare
result, DN, attribute,
value

return code, error
message

Before ldapadd PRE_ADD ldapcontext, DN,
Entry

return code, error
message

With ldapadd WHEN_ADD ldapcontext, DN,
Entry

return code, error
message

With ldapadd but
replacing the default
server behavior

WHEN_ADD_REPLACE ldapcontext, DN,
Entry

return code, error
message

After ldapadd POST_ADD ldapcontext, Add
result, DN, Entry

return code, error
message

Before ldapdelete PRE_DELETE ldapcontext, DN return code, error
message

With ldapdelete WHEN_DELETE ldapcontext, DN return code, error
message

With ldapdelete but
replacing the default
server behavior

WHEN_DELETE ldapcontext, DN return code, error
message

After ldapdelete POST_DELETE ldapcontext, Delete
result, DN

return code, error
message

Before ldapsearch PRE_SEARCH ldapcontext, Base DN,
scope, filter

return code, error
message

After ldapsearch POST_SEARCH Ldap context, Search
result, Base DN,
scope, filter

return code, error
message

See Also:

■ "Error Handling" on page 12-5 for valid values for the return code
and error message.

■ "Specifications for PL/SQL Plug-in Procedures" on page 12-21 for
complete supported procedure signatures.

Table 12–2 (Cont.) Operation-Based and Attribute-Based Plug-in Procedure Signatures

Invocation Context Procedure Name IN Parameters OUT Parameters

Designing, Creating, and Using PL/SQL Server Plug-ins

12-4 Oracle Identity Management Application Developer’s Guide

Compiling PL/SQLPlug-ins
You must compile the plug-in module against the same database that serves as the
Oracle Internet Directory back end database. Plug-ins are exactly the same as PL/SQL
stored procedures. A PL/SQL anonymous block is compiled each time it is loaded into
memory. Compilation consists of these stages:

1. Syntax checking: PL/SQL syntax is checked, and a parse tree is generated.

2. Semantic checking: Type checking and further processing on the parse tree.

3. Code generation: The pcode is generated.

If errors occur during the compilation of a plug-in, the plug-in is not created. You can
use the SHOW ERRORS statement in SQL*Plus or Enterprise Manager to see any
compilation errors when you create a plug-in, or you can SELECT the errors from the
USER_ERRORS view.

All plug-in modules must be compiled in the ODS database schema.

Dependencies
Compiled plug-ins have dependencies. They become invalid if an object depended
upon, such as a stored procedure or function called from the plug-in body, is modified.
Plug-ins that are invalidated for dependency reasons must be recompiled before the
next invocation.

Recompiling Plug-ins
Use the ALTER PACKAGE statement to manually recompile a plug-in. For example, the
following statement recompiles the my_plugin plug-in:

ALTER PACKAGE my_plugin COMPILE PACKAGE;

Managing PL/SQL Plug-ins
This section explains how to modify and debug plug-ins.

Modifying Plug-ins
Like a stored procedure, a plug-in cannot be explicitly altered. It must be replaced with
a new definition.

When replacing a plug-in, you must include the OR REPLACE option in the CREATE
PACKAGE statement. The OR REPLACE option enables a new version of an existing
plug-in to replace an older version without having an effect on grants made for the
original version of the plug-in.

Alternatively, the plug-in can be dropped using the DROP PACKAGE statement, and
you can rerun the CREATE PACKAGE statement.

If the plug-in name (the package name) is changed, you must register the new plug-in
again.

Debugging Plug-ins
You can debug a plug-in using the same facilities available for PL/SQL stored
procedures.

Designing, Creating, and Using PL/SQL Server Plug-ins

PL/SQL Server Plug-ins 12-5

Enabling and Disabling PL/SQL Plug-ins
To turn the plug-in on or off, modify the value of orclPluginEnable in the plug-in
configuration object. For example, modify the value of orclPluginEnable in
cn=post_mod_plugin,cn=plugins,cn=subconfigsubentry to be 1 or 0.

Exception Handling in a PL/SQL Plug-in
Each of the procedures in a PL/SQL plug-in must have an exception handling block
that handles errors intelligently and, if possible, recovers from them.

Error Handling
Oracle Internet Directory requires that the return code (rc) and error message
(errmsg) be set correctly in the plug-in procedures.

Table 12–3 provides the values that are valid for the return code.

The errmsg parameter is a string value that can pass a user's custom error message
back to Oracle Internet Directory server. The size limit for errmsg is 1024 bytes. Each
time Oracle Internet Directory runs the plug-in program, it examines the return code
to determine if it must display the error message.

If, for example, the value for the return code is 0, the error message value is ignored. If
the value of the return code is -1 or greater than zero, the following message is either
logged in the log file or displayed in standard output if the request came from LDAP
command-line tools:

ldap addition info: customized error

Program Control Handling between Oracle Internet Directory and Plug-ins
Table 12–4 shows where plug-in exceptions occur and how the directory handles them.

Table 12–3 Valid Values for the plug-in Return Code

Error Code Description

0 Success

Any number greater
than zero

Failure

-1 Warning

Table 12–4 Program Control Handling when a Plug-in Exception Occurs

Plug-in Exception
Occurred in Oracle Internet Directory Server Handling

PRE_BIND, PRE_MODIFY,
PRE_ADD, PRE_SEARCH,
PRE_COMPARE, PRE_
DELETE

Depends on return code. If the return code is:

■ Greater than zero (error), then no LDAP operation is
performed

■ -1 (warning), then proceed with the LDAP operation

POST_BIND, POST_
MODIFY, POST_ADD,
POST_SEARCH, WHEN_
DELETE

LDAP operation is completed. There is no rollback.

WHEN_MODIFY, WHEN_
ADD, WHEN_DELETE

Rollback the LDAP operation

Designing, Creating, and Using PL/SQL Server Plug-ins

12-6 Oracle Identity Management Application Developer’s Guide

Table 12–5 shows how the directory responds when an LDAP operation fails.

PL/SQL Plug-in LDAP API
There are different methods for providing API access:

■ Enable a user to utilize the standard LDAP PL/SQL APIs. Note though that, if
program logic is not carefully planned, an infinite loop in plug-in execution can
result.

■ Oracle Internet Directory provides the Plug-in LDAP API. This plug-in does not
cause a series of plug-in actions in the directory server if there are plug-ins
configured and associated with the LDAP request.

In the Plug-in LDAP API, the directory provides APIs for connecting back to the
directory server designated in the plug-in module. You must use this API if you want
to connect to the server that is executing the plug-in. If you want to connect to an
external server, you can use the DBMS_LDAP API.

Within each plug-in module, an ldapcontext is passed from the Oracle directory
server. When the Plug-in LDAP API is called, ldapcontext is passed for security and
binding purposes. When binding with this ldapcontext, Oracle Internet Directory
recognizes that the LDAP request is coming from a plug-in module. For this type of
plug-in bind, the directory does not trigger any subsequent plug-ins. It handles the
plug-in bind as a super-user bind. Use this plug-in bind with discretion.

PL/SQL Plug-ins and Replication
These cases can cause an inconsistent state in a replication environment:

■ Plug-in metadata replicated to other nodes

■ Changes to directory entries by plug-in programs or other LDAP operations

■ Plug-in installation on only some of the participating nodes

■ Implementation in the plug-in of extra checking that depends on the directory
data

PL/SQL Plug-in and Database Tools
Bulk tools do not support server plug-ins.

Table 12–5 Program Control Handling when an LDAP Operation Fails

LDAP Operation Fails in Oracle Internet Directory Server Handling

PRE_BIND, PRE_MODIFY,
PRE_ADD, PRE_SEARCH,
WHEN_DELETE

Pre-operation plug-in is completed. There is no rollback.

POST_BIND, POST_
MODIFY, POST_ADD,
POST_SEARCH, WHEN_
DELETE

Proceed with post-operation plug-in. The LDAP operation
result is one of the IN parameters.

WHEN_MODIFY, WHEN_
ADD, WHEN_DELETE

When types of plug-in changes are rolled back.

WHEN Changes made in the plug-in program body are rolled back.

See Also: "PL/SQL Plug-in LDAP API Specifications" on page 12-7.

Designing, Creating, and Using PL/SQL Server Plug-ins

PL/SQL Server Plug-ins 12-7

PL/SQL Plug-in Security
Some Oracle Internet Directory server plug-ins require that you supply the code that
preserves tight security. For example, if you replace the directory's ldapcompare or
ldapbind operation with your own plug-in module, you must ensure that your
implementation of this operation does not omit any functionality on which security
relies.

To ensure tight security, the following must be done:

■ Create the plug-in packages

■ Only the LDAP administrator can restrict the database user

■ Use the access control list (ACL) to set the plug-in configuration entries to be
accessed only by the LDAP administrator

■ Be aware of the program relationship between different plug-ins

PL/SQL Plug-in Debugging
Use the plug-in debugging mechanism for Oracle Internet Directory to examine the
process and content of plug-ins.The following commands control the operation of the
server debugging process.

■ To set up plug-in debugging, run this command:

% sqlplus ods/password @$ORACLE/ldap/admin/oidspdsu.pls

■ To enable plug-in debugging, run this command:

% sqlplus ods/password @$ORACLE/ldap/admin/oidspdon.pls

■ After enabling plug-in debugging, you can use this command in the plug-in
module code:

plg_debug('debuggingmessage');

The resulting debug message is stored in the plug-in debugging table.

■ To disable debugging, run this command:

% sqlplus ods/password @$ORACLE/ldap/admin/oidspdof.pls

■ To display the debug messages that you put in the plug-in module, run this
command:

% sqlplus ods/password @$ORACLE/ldap/admin/oidspdsh.pls

■ To delete all of the debug messages from the debug table, run this command:

% sqlplus ods/password @$ORACLE/ldap/admin/oidspdde.pls

PL/SQL Plug-in LDAP API Specifications
Here is the package specification that Oracle Internet Directory provides for the
PL/SQL Plug-in LDAP API:

CREATE OR REPLACE PACKAGE LDAP_PLUGIN AS
 SUBTYPE SESSION IS RAW(32);

 -- Initializes the LDAP library and return a session handler
 -- for use in subsequent calls.
 FUNCTION init (ldappluginctx IN ODS.plugincontext)

Examples of PL/SQL Plug-ins

12-8 Oracle Identity Management Application Developer’s Guide

 RETURN SESSION;

 -- Synchronously authenticates to the directory server using
 -- a Distinguished Name and password.
 FUNCTION simple_bind_s (ldappluginctx IN ODS.plugincontext,
 ld IN SESSION)
 RETURN PLS_INTEGER;

 -- Get requester info from the plug-in context
 FUNCTION get_requester (ldappluginctx IN ODS.plugincontext)
 RETURN VARCHAR2;
END LDAP_PLUGIN;

Database Limitations
Oracle Internet Directory 10g (10.1.4.0.1) can use several different versions of the
Oracle Database for storing directory data. These include Oracle9i Database Server
Release 2, v9.2.0.6 or later and Oracle Database 10g, v10.1.0.4 or later.

In Oracle Application Server 10g (10.1.4.0.1), the following plug-in features are not
supported in the directory server running against Oracle9i Database Server Release 2:

■ Windows Domain external authentication plug-in.

■ The simple_bind_s() function of the LDAP_PLUGIN package provided as the
Oracle Internet Directory PL/SQL PLUGIN API for connecting back to the
directory server as part of plug-in definitions.

Examples of PL/SQL Plug-ins
This section presents two sample plug-ins. One logs all ldapsearch commands. The
other synchronizes two directory information trees (DITs).

Example 1: Search Query Logging
Situation: A user wants to know if it is possible to log all of the ldapsearch
commands.

Solution: Yes. The user can use the post ldapsearch operational plug-in for this
purpose. They can either log all of the requests or only those that occur under the DNs
being searched.

To log all the ldapsearch commands:

1. Log all of the ldapsearch results into a database table. This log table has these
columns:

■ timestamp

■ baseDN

■ search scope

■ search filter

■ required attribute

■ search result

Use this SQL script to create the table:

drop table search_log;
create table search_log

Examples of PL/SQL Plug-ins

PL/SQL Server Plug-ins 12-9

(timestamp varchar2(50),
basedn varchar2(256),
searchscope number(1);
searchfilter varchar2(256);
searchresult number(1));
drop table simple_tab;
create table simple_tab (id NUMBER(7), dump varchar2(256));
DROP sequence seq;
CREATE sequence seq START WITH 10000;
commit;

2. Create the plug-in package specification.

CREATE OR REPLACE PACKAGE LDAP_PLUGIN_EXAMPLE1 AS
PROCEDURE post_search
(ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
baseDN IN VARCHAR2,
scope IN INTEGER,
filterStr IN VARCHAR2,
requiredAttr IN ODS.strCollection,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);
END LDAP_PLUGIN_EXAMPLE1;
/

3. Create the plug-in package body.

CREATE OR REPLACE PACKAGE BODY LDAP_PLUGIN_EXAMPLE1 AS
PROCEDURE post_search
(ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
baseDN IN VARCHAR2,
scope IN INTEGER,
filterStr IN VARCHAR2,
requiredAttr IN ODS.strCollection,
rc OUT INTEGER,
errormsg OUT VARCHAR2
)
 IS
BEGIN
 INSERT INTO simple_tab VALUES
(to_char(sysdate, 'Month DD, YYYY HH24:MI:SS'), baseDN, scope, filterStr,
result);
 -- The following code segment demonstrate how to iterate
 -- the ODS.strCollection
 FOR l_counter1 IN 1..requiredAttr.COUNT LOOP
 INSERT INTO simple_tab
 values (seq.NEXTVAL, 'req attr ' || l_counter1 || ' = ' ||
 requiredAttr(l_counter1));
 END LOOP;
 rc := 0;
 errormsg := 'no post_search plug-in error msg';
 COMMIT;
EXCEPTION
 WHEN others THEN
 rc := 1;
 errormsg := 'exception: post_search plug-in';
END;
END LDAP_PLUGIN_EXAMPLE1;

Examples of PL/SQL Plug-ins

12-10 Oracle Identity Management Application Developer’s Guide

/

4. Register the plug-in entry in Oracle Internet Directory.

dn: cn=post_search,cn=plugin,cn=subconfigsubentry
objectclass: orclPluginConfig
objectclass: top
orclPluginName: ldap_plugin_example1
orclPluginType: operational
orclPluginTiming: post
orclPluginLDAPOperation: ldapsearch
orclPluginEnable: 1
orclPluginVersion: 1.0.1
cn: post_search
orclPluginKind: PLSQL

Using the ldapadd command-line tool to add this entry:

% ldapadd –p port_number –h host_name –D bind_dn –w passwd –v \
 –f register_post_search.ldif

Example 2: Synchronizing Two DITs
Situation: There are two interdependent products under cn=Products,
cn=oraclecontext. This interdependency extends down to the users in these
products' containers. If a user in the first DIT (product 1) is deleted, the corresponding
user in the other DIT (product 2) must be deleted.

Is it possible to set a trigger that, when the user in the first DIT is deleted, calls or
passes a trigger to delete the user in the second DIT?

Solution: Yes, we can use the post ldapdelete operation plug-in to handle the
second deletion occurring in the second DIT.

If the first DIT has the naming context of
cn=DIT1,cn=products,cn=oraclecontext and the second DIT has the naming
context of cn=DIT2,cn=products,cn=oraclecontext, the two users share the
same ID attribute. Inside of the post ldapdelete plug-in module, we can use LDAP_
PLUGIN and DBMS_LDAP APIs to delete the user in the second DIT.

We must set orclPluginSubscriberDNList to
cn=DIT1,cn=products,cn=oraclecontext, so that whenever we delete entries
under cn=DIT1,cn=products,cn=oraclecontext, the plug-in module is
invoked.

Examples of PL/SQL Plug-ins

PL/SQL Server Plug-ins 12-11

1. Assume that the entries under both DITs have been added to the directory. For
example, the entry id=12345,cn=DIT1,cn=products,cn=oraclecontext is
in DIT1, and id=12345,cn=DIT2,cn=products,cn=oraclecontext is in
DIT2.

2. Create the plug-in package specification.

CREATE OR REPLACE PACKAGE LDAP_PLUGIN_EXAMPLE2 AS
PROCEDURE post_delete
(ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);
END LDAP_PLUGIN_EXAMPLE2;
/

3. Create the plug-in package body.

CREATE OR REPLACE PACKAGE BODY LDAP_PLUGIN_EXAMPLE2 AS
PROCEDURE post_delete
(ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
)
 IS
 retval PLS_INTEGER;
 my_session DBMS_LDAP.session;
 newDN VARCHAR2(256);
BEGIN
 retval := -1;
 my_session := LDAP_PLUGIN.init(ldapplugincontext);
 -- bind to the directory
 retval := LDAP_PLUGIN.simple_bind_s(ldapplugincontext, my_session);
 -- if retval is not 0, then raise exception
 newDN := REPLACE(dn,'DIT1','DIT2');

Note: When you use a post ldapmodify plug-in to synchronize
changes between two Oracle Internet Directory nodes, you cannot
push all the attributes from one node to the other. This is because the
changes (mod structure) captured in the plug-in module include
operational attributes. These operational attributes are generated on
each node and cannot be modified by using the standard LDAP
methods.

When writing your plug-in program, exclude the following
operational attributes from synchronization: authPassword,
creatorsname, createtimestamp, modifiersname,
modifytimestamp, pwdchangedtime, pwdfailuretime,
pwdaccountlockedtime, pwdexpirationwarned, pwdreset,
pwdhistory, pwdgraceusetime.

The following attributes are used the most in the deployment
environment and should be excluded from synchronization first:
pwdchangedtime, pwdfailuretime, authpassword,
pwdaccountlockedtime.

Examples of PL/SQL Plug-ins

12-12 Oracle Identity Management Application Developer’s Guide

 retval := DBMS_LDAP.delete_s(my_session, newDN);
 -- if retval is not 0, then raise exception
 rc := 0;
 errormsg := 'no post_delete plug-in error msg';
EXCEPTION
 WHEN others THEN
 rc := 1;
 errormsg := 'exception: post_delete plug-in';
END;
END LDAP_PLUGIN_EXAMPLE2;
/
(ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
)
 IS
 retval PLS_INTEGER;
 my_session DBMS_LDAP.session;
 newDN VARCHAR2(256);
BEGIN
 retval := -1;
 my_session := LDAP_PLUGIN.init(ldapplugincontext);
 -- bind to the directory
 retval := LDAP_PLUGIN.simple_bind_s(ldapplugincontext, my_session);
 -- if retval is not 0, then raise exception
 newDN := REPLACE(dn,'DIT1','DIT2');
 retval := DBMS_LDAP.delete_s(my_session, newDN);
 -- if retval is not 0, then raise exception
 rc := 0;
 errormsg := 'no post_delete plug-in error msg';
EXCEPTION
 WHEN others THEN
 rc := 1;
 errormsg := 'exception: post_delete plug-in';
END;
END LDAP_PLUGIN_EXAMPLE2;
/

4. Register the plug-in entry with Oracle Internet Directory.

Construct the LDIF file register_post_delete.ldif:

dn: cn=post_delete,cn=plugin,cn=subconfigsubentry
objectclass: orclPluginConfig
objectclass: top
orclPluginName: ldap_plugin_example2
orclPluginType: operational
orclPluginTiming: post
orclPluginLDAPOperation: ldapdelete
orclPluginEnable: 1
orclPluginSubscriberDNList: cn=DIT1,cn=oraclecontext,cn=products
orclPluginVersion: 1.0.1
cn: post_delete
orclPluginKind: PLSQL

Use the ldapadd command-line tool to add this entry:

% ldapadd –p port_number –h host_name –D bind_dn –w passwd –v –f register_
post_delete.ldif

Binary Support in the PL/SQLPlug-in Framework

PL/SQL Server Plug-ins 12-13

Binary Support in the PL/SQLPlug-in Framework
Starting with release 10.1.2, object definitions in the Plug-in LDAP API enable
ldapmodify, ldapadd, and ldapcompare plug-ins to access binary attributes in the
directory database. Formerly, only attributes of type VARCHAR2 could be accessed.
These object definitions do not invalidate plug-in code that precedes release 10.1.2. No
change to this code is required. The new definitions appear in the section "Database
Object Types Defined".

The section that you are reading now examines binary operations involving the three
types of plug-ins. It includes examples of these plug-ins. The new object definitions
apply to pre, post, and when versions of all three.

Note that the three examples use RAW functions and variables in place of LOBs.

Binary Operations with ldapmodify
The modobj object that the plug-in framework passes to an ldapmodify plug-in now
holds the values of binary attributes as binvals. This variable is a table of
binvalobj objects.

The plug-in determines whether a binary operation is being performed by examining
the operation field of modobj. It checks whether any of the values DBMS_
LDAP.MOD_ADD, DBMS_LDAP.MOD_DELETE, and DBMS_LDAP.MOD_REPLACE are
paired with DBMS_LDAP.MOD_BVALUES. The pairing DBMS_LDAP.MOD_ADD+DBMS_
LDAP.MOD_BVALUES, for example, signifies a binary add in the modify operation.

The example that follows shows a post ldapmodify plug-in modifying an entry in
another directory. The plug-in is invoked after ldapmodify applies the same change
to the same entry in the plug-in directory. The entry in the other directory appears
under the DIT cn=users,dc=us,dc=acme,dc=com.

create or replace package moduser as
 procedure post_modify(ldapplugincontext IN ODS.plugincontext,
 result IN integer,
 dn IN varchar2,
 mods IN ODS.modlist,
 rc OUT integer,
 errormsg OUT varchar2);
end moduser;
/
show error

CREATE OR REPLACE PACKAGE BODY moduser AS
 procedure post_modify(ldapplugincontext IN ODS.plugincontext,
 result IN integer,
 dn IN varchar2,
 mods IN ODS.modlist,
 rc OUT integer,
 errormsg OUT varchar2)
 is
 counter1 pls_integer;
 counter2 pls_integer;
 retval pls_integer := -1;
 user_session DBMS_LDAP.session;
 user_dn varchar(256);
 user_array DBMS_LDAP.mod_array;
 user_vals DBMS_LDAP.string_collection;
 user_binvals DBMS_LDAP.blob_collection;
 ldap_host varchar(256);

Binary Support in the PL/SQLPlug-in Framework

12-14 Oracle Identity Management Application Developer’s Guide

 ldap_port varchar(256);
 ldap_user varchar(256);
 ldap_passwd varchar(256);
 begin
 ldap_host :='backup.us.oracle.com';
 ldap_port :='4000';
 ldap_user :='cn=orcladmin';
 ldap_passwd :='welcome';

 plg_debug('START MODIFYING THE ENTRY');

 -- Get a session
 user_session := dbms_ldap.init(ldap_host, ldap_port);

 -- Bind to the directory
 retval := dbms_ldap.simple_bind_s(user_session, ldap_user,
 ldap_passwd);

 -- Create a mod_array
 user_array := dbms_ldap.create_mod_array(mods.count);

 -- Create a user_dn
 user_dn := substr(dn,1,instr(dn,',',1,1))||'cn=users,dc=us,dc=acme,
 dc=com';

 plg_debug('THE CREATED DN IS'||user_dn);

 -- Iterate through the modlist
 for counter1 in 1..mods.count loop

 -- Log the attribute name and operation
 if (mods(counter1).operation > DBMS_LDAP.MOD_BVALUES) then
 plg_debug('THE NAME OF THE BINARY ATTR. IS'||mods(counter1).type);
 else
 plg_debug('THE NAME OF THE NORMAL ATTR. IS'||mods(counter1).type);
 end if;
 plg_debug('THE OPERATION IS'||mods(counter1).operation);

 -- Add the attribute values to the collection
 for counter2 in 1..mods(counter1).vals.count loop
 user_vals(counter2) := mods(counter1).vals(counter2).val;
 end loop;

 -- Add the attribute values to the collection
 for counter2 in 1..mods(counter1).binvals.count loop
 plg_debug('THE NO. OF BYTES OF THE BINARY ATTR. VALUE IS'
 ||mods(counter1).binvals(counter2).length);
 user_binvals(counter2) := mods(counter1).binvals(counter2).binval;
 end loop;

 -- Populate the mod_array accordingly with binary/normal attributes
 if (mods(counter1).operation >= DBMS_LDAP.MOD_BVALUES) then
 dbms_ldap.populate_mod_array(user_array,mods(counter1).operation -
 DBMS_LDAP.MOD_BVALUES,mods(counter1).type,user_binvals);
 user_binvals.delete;
 else
 dbms_ldap.populate_mod_array(user_array,mods(counter1).operation,
 mods(counter1).type,user_vals);
 user_vals.delete;
 end if;

Binary Support in the PL/SQLPlug-in Framework

PL/SQL Server Plug-ins 12-15

 end loop;

 -- Modify the entry
 retval := dbms_ldap.modify_s(user_session,user_dn,user_array);
 if retval = 0 then
 rc := 0;
 errormsg:='No error occured while modifying the entry';
 else
 rc := retval;
 errormsg :='Error code'||rc||' while modifying the entry';
 end if;

 -- Free the mod_array
 dbms_ldap.free_mod_array(user_array);

 plg_debug('FINISHED MODIFYING THE ENTRY');

 exception
 WHEN others THEN
 plg_debug (SQLERRM);
 end;
end moduser;
/
show error

exit;

Binary Operations with ldapadd
The entryobj object that the plug-in framework passes to an ldapadd plug-in now
holds binary attributes as binattr. This variable is a table of binattrobj objects.
The example that follows shows a post-add plug-in propagating a change (an added
user) in the plug-in directory to another directory. In the latter directory, the entry
appears under the DIT cn=users,dc=us,dc=acme,dc=com.

create or replace package adduser as
 procedure post_add(ldapplugincontext IN ODS.plugincontext,
 result IN integer,
 dn IN varchar2,
 entry IN ODS.entryobj,
 rc OUT integer,
 errormsg OUT varchar2);
end adduser;
/
show error

CREATE OR REPLACE PACKAGE BODY adduser AS
 procedure post_add(ldapplugincontext IN ODS.plugincontext,
 result IN integer,
 dn IN varchar2,
 entry IN ODS.entryobj,
 rc OUT integer,
 errormsg OUT varchar2)
 is
 counter1 pls_integer;
 counter2 pls_integer;
 retval pls_integer := -1;
 s integer;
 user_session DBMS_LDAP.session;

Binary Support in the PL/SQLPlug-in Framework

12-16 Oracle Identity Management Application Developer’s Guide

 user_dn varchar(256);
 user_array DBMS_LDAP.mod_array;
 user_vals DBMS_LDAP.string_collection;
 user_binvals DBMS_LDAP.blob_collection;
 ldap_host varchar(256);
 ldap_port varchar(256);
 ldap_user varchar(256);
 ldap_passwd varchar(256);
 begin
 ldap_host :='backup.us.oracle.com';
 ldap_port :='4000';
 ldap_user :='cn=orcladmin';
 ldap_passwd :='welcome';

 plg_debug('START ADDING THE ENTRY');

 -- Get a session
 user_session := dbms_ldap.init(ldap_host, ldap_port);

 -- Bind to the directory
 retval := dbms_ldap.simple_bind_s(user_session, ldap_user, ldap_passwd);

 -- Create a mod_array
 user_array := dbms_ldap.create_mod_array(entry.binattr.count +
 entry.attr.count);

 -- Create a user_dn
 user_dn := substr(dn,1,instr(dn,',',1,1))||'cn=users,dc=us,dc=acme,
 dc=com';
 plg_debug('THE CREATED DN IS'||user_dn);

 -- Populate the mod_array with binary attributes
 for counter1 in 1..entry.binattr.count loop
 for counter2 in 1..entry.binattr(counter1).binattrval.count loop
 plg_debug('THE NAME OF THE BINARY ATTR. IS'||
 entry.binattr(counter1).binattrname);
 s := dbms_lob.getlength(entry.binattr(counter1).
 binattrval(counter2));
 plg_debug('THE NO. OF BYTES OF THE BINARY ATTR. VALUE IS'||s);
 user_binvals(counter2) := entry.binattr(counter1).
 binattrval(counter2);
 end loop;
 dbms_ldap.populate_mod_array(user_array,DBMS_LDAP.MOD_ADD,
 entry.binattr(counter1).binattrname,user_binvals);
 user_binvals.delete;
 end loop;

 -- Populate the mod_array with attributes
 for counter1 in 1..entry.attr.count loop
 for counter2 in 1..entry.attr(counter1).attrval.count loop
 plg_debug('THE NORMAL ATTRIBUTE'||entry.attr(counter1).attrname||'
 HAS THE VALUE'||entry.attr(counter1).attrval(counter2));
 user_vals(counter2) := entry.attr(counter1).attrval(counter2);
 end loop;
 dbms_ldap.populate_mod_array(user_array,DBMS_LDAP.MOD_ADD,
 entry.attr(counter1).attrname,user_vals);
 user_vals.delete;
 end loop;

 -- Add the entry

Binary Support in the PL/SQLPlug-in Framework

PL/SQL Server Plug-ins 12-17

 retval := dbms_ldap.add_s(user_session,user_dn,user_array);
 plg_debug('THE RETURN VALUE IS'||retval);
 if retval = 0 then
 rc := 0;
 errormsg:='No error occured while adding the entry';
 else
 rc := retval;
 errormsg :='Error code'||rc||' while adding the entry';
 end if;

 -- Free the mod_array
 dbms_ldap.free_mod_array(user_array);
 retval := dbms_ldap.unbind_s(user_session);

 plg_debug('FINISHED ADDING THE ENTRY');

 exception
 WHEN others THEN
 plg_debug (SQLERRM);
 end;
end adduser;
/
show error

exit;

Binary Operations with ldapcompare
The ldapcompare plug-in can use three new overloaded module interfaces to
compare binary attributes. If you want to use these interfaces to develop a plug-in
package that handles both binary and nonbinary attributes, you must include two
separate procedures in the package. The package name for both procedures is the same
because only one orclPluginName can be registered in the plug-in entry.

After updating an existing plug-in package to include a procedure that compares
binary attributes, reinstall the package. Recompile packages that depend on the
plug-in package.

The three new interfaces look like this:

PROCEDURE pre_compare (ldapplugincontext IN ODS.plugincontext,
 dn IN VARCHAR2,
 attrname IN VARCHAR2,
 attrval IN BLOB,
 rc OUT INTEGER,
 errormsg OUT VARCHAR2);

PROCEDURE when_compare_replace (ldapplugincontext IN ODS.plugincontext,
 result OUT INTEGER,
 dn IN VARCHAR2,
 attrname IN VARCHAR2,
 attrval IN BLOB,
 rc OUT INTEGER,
 errormsg OUT VARCHAR2);

PROCEDURE post_compare (ldapplugincontext IN ODS.plugincontext,
 result IN INTEGER,
 dn IN VARCHAR2,
 attrname IN VARCHAR2,
 attrval IN BLOB,
 rc OUT INTEGER,

Binary Support in the PL/SQLPlug-in Framework

12-18 Oracle Identity Management Application Developer’s Guide

 errormsg OUT VARCHAR2);

The example that follows compares a binary attribute of an entry in the plug-in
directory with a binary attribute of an entry in another directory. This package replaces
the compare code of the server with the compare code of the plug-in. The package
handles both binary and nonbinary attributes. As such it contains two separate
procedures.

create or replace package compareattr as
 procedure when_compare_replace(ldapplugincontext IN ODS.plugincontext,
 result OUT integer,
 dn IN varchar2,
 attrname IN VARCHAR2,
 attrval IN BLOB,
 rc OUT integer,
 errormsg OUT varchar2);
 procedure when_compare_replace(ldapplugincontext IN ODS.plugincontext,
 result OUT integer,
 dn IN varchar2,
 attrname IN VARCHAR2,
 attrval IN varchar2,
 rc OUT integer,
 errormsg OUT varchar2);
end compareattr;
/
show error

CREATE OR REPLACE PACKAGE BODY compareattr AS
 procedure when_compare_replace(ldapplugincontext IN ODS.plugincontext,
 result OUT integer,
 dn IN varchar2,
 attrname IN VARCHAR2,
 attrval IN varchar2,
 rc OUT integer,
 errormsg OUT varchar2)
 is
 pos INTEGER := 2147483647;
 begin
 plg_debug('START');
 plg_debug('THE ATTRNAME IS'||attrname||' AND THE VALUE IS'||attrval);
 plg_debug('END');
 rc := 0;
 errormsg :='No error!!!';
 exception
 WHEN others THEN
 plg_debug ('Unknown UTL_FILE Error');
 end;

 procedure when_compare_replace(ldapplugincontext IN ODS.plugincontext,
 result OUT integer,
 dn IN varchar2,
 attrname IN VARCHAR2,
 attrval IN BLOB,
 rc OUT integer,
 errormsg OUT varchar2)
 is
 counter pls_integer;
 retval pls_integer := -1;
 cmp_result integer;
 s integer;

Binary Support in the PL/SQLPlug-in Framework

PL/SQL Server Plug-ins 12-19

 user_session DBMS_LDAP.session;
 user_entry DBMS_LDAP.message;
 user_message DBMS_LDAP.message;
 user_dn varchar(256);
 user_attrs DBMS_LDAP.string_collection;
 user_attr_name VARCHAR2(256);
 user_ber_elmt DBMS_LDAP.ber_element;
 user_vals DBMS_LDAP.blob_collection;
 ldap_host varchar(256);
 ldap_port varchar(256);
 ldap_user varchar(256);
 ldap_passwd varchar(256);
 ldap_base varchar(256);
 begin
 ldap_host :='backup.us.oracle.com';
 ldap_port :='4000';
 ldap_user :='cn=orcladmin';
 ldap_passwd :='welcome';
 ldap_base := dn;

 plg_debug('STARTING COMPARISON IN WHEN REPLACE PLUG-IN');

 s := dbms_lob.getlength(attrval);
 plg_debug('THE NUMBER OF BYTES OF ATTRVAL'||s);

 -- Get a session
 user_session := dbms_ldap.init(ldap_host, ldap_port);

 -- Bind to the directory
 retval := dbms_ldap.simple_bind_s(user_session, ldap_user, ldap_passwd);

 -- issue the search
 user_attrs(1) := attrname;
 retval := DBMS_LDAP.search_s(user_session, ldap_base,
 DBMS_LDAP.SCOPE_BASE,
 'objectclass=*',
 user_attrs,
 0,
 user_message);

 -- Get the entry in the other OID server
 user_entry := DBMS_LDAP.first_entry(user_session, user_message);

 -- Log the DN and the Attribute name
 user_dn := DBMS_LDAP.get_dn(user_session, user_entry);
 plg_debug('THE DN IS'||user_dn);
 user_attr_name := DBMS_LDAP.first_attribute(user_session,user_entry,
 user_ber_elmt);

 -- Get the values of the attribute
 user_vals := DBMS_LDAP.get_values_blob(user_session, user_entry,
 user_attr_name);

 -- Start the binary comparison between the ATTRVAL and the attribute
 -- values
 if user_vals.count > 0 then
 for counter in user_vals.first..user_vals.last loop
 cmp_result := dbms_lob.compare(user_vals(counter),attrval,
 dbms_lob.getlength(user_vals(counter)),1,1);
 if cmp_result = 0 then

Database Object Types Defined

12-20 Oracle Identity Management Application Developer’s Guide

 rc := 0;
 -- Return LDAP_COMPARE_TRUE
 result := 6;
 plg_debug('THE LENGTH OF THE ATTR.'||user_attr_name||' IN THE
 ENTRY IS'||dbms_lob.getlength(user_vals(counter)));
 errormsg :='NO ERROR. THE COMPARISON HAS SUCCEEDED.';
 plg_debug(errormsg);
 plg_debug('FINISHED COMPARISON');
 return;
 end if;
 end loop;
 end if;

 rc := 1;
 -- Return LDAP_COMPARE_FALSE
 result := 5;
 errormsg :='ERROR. THE COMPARISON HAS FAILED.';
 plg_debug('THE LENGTH OF THE ATTR.'||user_attr_name||' IN THE ENTRY IS'
 ||dbms_lob.getlength(user_vals(user_vals.last)));
 plg_debug(errormsg);
 plg_debug('FINISHED COMPARISON');

 -- Free user_vals
 dbms_ldap.value_free_blob(user_vals);
 exception
 WHEN others THEN
 plg_debug (SQLERRM);
 end;
 end compareattr;
 /
 show error

 exit;

Database Object Types Defined
This section defines the object types introduced in the Plug-in LDAP API. All of these
definitions are in Oracle Directory Server database schema. Note that the API includes
object types that enable plug-ins to extract binary data from the database.

create or replace type strCollection as TABLE of VARCHAR2(512);
/
create or replace type pluginContext as TABLE of VARCHAR2(512);
/
create or replace type attrvalType as TABLE OF VARCHAR2(4000);
/
create or replace type attrobj as object (
attrname varchar2(2000),
attrval attrvalType
);
/
create or replace type attrlist as table of attrobj;
/
create or replace type binattrvalType as TABLE OF BLOB;
/
create or replace type binattrobj as object (
binattrname varchar2(2000),
binattrval binattrvalType
);
/

Specifications for PL/SQL Plug-in Procedures

PL/SQL Server Plug-ins 12-21

create or replace type binattrlist as table of binattrobj;
/
create or replace type entryobj as object (
entryname varchar2(2000),
attr attrlist,
binattr binattrlist
);
/
create or replace type entrylist as table of entryobj;
/

create or replace type bvalobj as object (
length integer,
val varchar2(4000)
);
/
create or replace type bvallist as table of bvalobj;
/
create or replace type binvalobj as object (
length integer,
binval blob
);
/
create or replace type binvallist as table of binvalobj;
/
create or replace type modobj as object (
operation integer,
type varchar2(256),
vals bvallist,
binvals binvallist
);
/
create or replace type modlist as table of modobj;

Specifications for PL/SQL Plug-in Procedures
When you use the plug-ins, you must adhere to the signature defined for each of them.
Each signature is provided here.

PROCEDURE pre_add (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
entry IN ODS.entryobj,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE when_add (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
entry IN ODS.entryobj,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE when_add_replace (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
entry IN ODS.entryobj,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

Specifications for PL/SQL Plug-in Procedures

12-22 Oracle Identity Management Application Developer’s Guide

PROCEDURE post_add (ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
entry IN ODS.entryobj,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE pre_modify (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
mods IN ODS.modlist,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE when_modify (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
mods IN ODS.modlist,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE when_modify_replace (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
mods IN ODS.modlist,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE post_modify (ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
mods IN ODS.modlist,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE pre_compare (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
attrname IN VARCHAR2,
attrval IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

PROCEDURE pre_compare (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
attrname IN VARCHAR2,
attrval IN BLOB,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE when_compare_replace (ldapplugincontext IN ODS.plugincontext,
result OUT INTEGER,
dn IN VARCHAR2,
attrname IN VARCHAR2,
attrval IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

Specifications for PL/SQL Plug-in Procedures

PL/SQL Server Plug-ins 12-23

PROCEDURE when_compare_replace (ldapplugincontext IN ODS.plugincontext,
result OUT INTEGER,
dn IN VARCHAR2,
attrname IN VARCHAR2,
attrval IN BLOB,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE post_compare (ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
attrname IN VARCHAR2,
attrval IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

PROCEDURE post_compare (ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
attrname IN VARCHAR2,
attrval IN BLOB,
rc OUT INTEGER,
errormsg OUT VARCHAR2);

PROCEDURE pre_delete (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

PROCEDURE when_delete (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);
PROCEDURE when_delete_replace (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

PROCEDURE post_delete (ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

PROCEDURE pre_search (ldapplugincontext IN ODS.plugincontext,
baseDN IN VARCHAR2,
scope IN INTEGER,
filterStr IN VARCHAR2,
requiredAttr IN ODS.strCollection,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

PROCEDURE post_search (ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,

Specifications for PL/SQL Plug-in Procedures

12-24 Oracle Identity Management Application Developer’s Guide

baseDN IN VARCHAR2,
scope IN INTEGER,
filterStr IN VARCHAR2,
requiredAttr IN ODS.strCollection,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

PROCEDURE pre_bind (ldapplugincontext IN ODS.plugincontext,
dn IN VARCHAR2,
passwd IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

PROCEDURE when_bind_replace (ldapplugincontext IN ODS.plugincontext,
result OUT INTEGER,
dn IN VARCHAR2,
passwd IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

PROCEDURE post_bind (ldapplugincontext IN ODS.plugincontext,
result IN INTEGER,
dn IN VARCHAR2,
passwd IN VARCHAR2,
rc OUT INTEGER,
errormsg OUT VARCHAR2
);

Java Server Plug-ins 13-1

13
Java Server Plug-ins

In response to both customer and internal requests, Oracle has added a Java API to the
server plug-in framework for Oracle Internet Directory 10g (10.1.4.0.1). Some of the
new Oracle Internet Directory features, such as server chaining, were developed using
the Java plug-in API.

This chapter contains the following sections:

■ Advantages of Java Plug-ins

■ Setting Up a Java Plug-in

■ Java Plug-in API

■ Java Plug-in Error and Exception Handling

■ Java Plug-in Debugging and Logging

■ Java Plug-in Examples

Advantages of Java Plug-ins
In addition to the advantages of the Java language itself, Java server plug-ins offer the
following advantages over PL/SQL plug-ins:

■ Bidirectional communication between the server and the plug-in

■ The ability of the plug-in to return a search result

■ Support for the moddn operation

■ Better performance

■ No knowledge of database required

■ Enhanced security

■ Enhanced debugging capability

Setting Up a Java Plug-in
Set up a Java plug-in as follows:

1. Create the standalone Java program using the pre-defined class definition and
methods. You can implement the plug-in as a jar file or as a package.

2. Compile the plug-in file or package. Before compiling, ensure that your
CLASSPATH is set to $ORACLE_HOME/ldap/jlib/ospf.jar. Make sure the
compilation completes without error.

Java Plug-in API

13-2 Oracle Identity Management Application Developer’s Guide

3. Place the class file, jar, or package in the pre-defined class location $ORACLE_
HOME/ldap/server/plugin.

4. Register the Java plug-in by adding the plug-in configuration entry.

You can add the entry by using the command line or by using Oracle Directory
Manager. For details, see "Registering a Plug-in" on page 11-4.

The jar file can have any name. The manifest file must contain the attribute
Main-Class, followed by the name of the Java plug-in. For example:

Main-Class: myjavaplugin

The value of the orclPluginName attribute in the plug-in configuration entry must
correspond with one of the following:

■ The name of a class in a class file

■ The fully-qualified name of a class in a package

■ A jar file name.

If you specify the name as myjavaplugin, the server will expect to find the
corresponding class $ORACLE_
HOME/ldap/server/plugin/myjavaplugin.class. If you specify the name as
myjavaplugin.jar the server will expect to find the corresponding jar file
$ORACLE_HOME/ldap/server/plugin/myjavaplugin.jar. If you specify the
name my.package.myjavaplugin, the server will expect the path of the class to be
$ORACLE_HOME/ldap/server/plugin/my/package/myjavaplugin.

Once you perform these steps, the server will invoke the plug-in whenever the
invocation criteria are met.

The classes included in the jar file must not occur in the environment. If they do,
unexpected errors might occur. To correct this problem, remove the classes from the
environment and restart the Oracle Internet Directory server. If the JAR or class file
depends on other JAR files or class files, then append the dependent JAR files or paths
of the class files to the CLASSPATH and restart the Oracle Internet Directory server.

You can control whether the server reloads the Java plug-in class every time the
plug-in executes. If the value of the attribute orclPluginClassReloadEnabled is
1, the server reloads the plug-in class every time. If it is 0, the server loads the class
only the first time the plug-in executes.

The path of the Oracle Internet Directory Server Plug-in Framework jar file is
$ORACLE_HOME/ldap/jlib/ospf.jar.

Java Plug-in API
This section presents a high-level overview of the API and explains the role of the
main classes and interfaces. For detailed information about all the Java server plug-in
classes and interfaces, please see the Javadoc Oracle Internet Directory API Reference.

This sections contains the following topics:

■ Communication Between the Server and Plug-in

■ Java Plug-in Structure

■ PluginDetail

■ PluginResult

■ ServerPlugin Interface

Java Plug-in API

Java Server Plug-ins 13-3

Communication Between the Server and Plug-in
All Java plug-ins use the ServerPlugin interface for communication between the
plug-in and the Oracle Internet Directory server. When the server invokes a Java
plug-in, it constructs a PluginDetail object and passes information to the plug-in in
that object. The plug-in constructs a PluginResult object. After it completes its task,
the plug-in passes the PluginResult object back to the server. In some cases, the
plug-in changes or adds to the information it received in the PluginDetail and
passes the information back to the server in the PluginResult object. Figure 13–1
shows the communication between the Oracle Internet Directory server and the Java
Plug-ins.

Figure 13–1 Communication Between the Server and the Java Plug-in

The Java plug-in can also use a ServerLog class to log messages in a log file for
auditing purposes.

Java Plug-in Structure
The general structure for a Java plug-in is:

public class Java_Plug-in_Class_Name {extends
ServerPluginAdapter} {
 public PluginResult
Name_of_ServerPlugin_Method(PluginDetail plgObj)
throws Exception {
 // Plug-in Code
 }
}

or

public class Java_Plug-in_Class_Name {implements
ServerPlugin} {
 public PluginResult
Name_of_ServerPlugin_Method(PluginDetail plgObj)
throws Exception {
 // Plug-in Code
 }
}

PluginDetail
The PluginDetail contains the following information:

■ Server

Note: Do not use System.exit() in a Java plug-in. Doing so might lead
to unpredictable behavior by the Oracle directory server.

Plug-in
Framework

Java
Plug-in

OID
Server

PluginDetail

PluginResult

Java Plug-in API

13-4 Oracle Identity Management Application Developer’s Guide

■ LdapBaseEntry

■ LdapOperation

■ PluginFlexfield

Server
This object contains metadata information about the Oracle Internet Directory Server
where the plug-in is being executed. It contains the following information:

■ Hostname

■ Port

■ LdapContext

The Hostname and the Port indicate the host and port on which the server is running.

The LdapContext object allows the plug-in to connect back to the server and inform
it that the connection is being acquired from the plug-in. This is necessary, for
example, in an ldapbind plug-in that performs an ldapbind itself. By connecting back
to the server using this LdapContext object, the plug-in prevents the server from
invoking the same plug-in, resulting in an infinite loop.

The following code fragment shows how the plug-in retrieves the Server object from
the PluginDetail and connects back to the server:

// An LDAP Bind Plug-in
public class MyBindPlugin extends ServerPluginAdapter
{
 …..
 // Retrieve the Server Object from the PluginDetail
 Server srvObj = plgObj.getServer();
 ……
 // This bind will not result in the LDAP Bind Plug-in being called
 // in an infinite loop
 InitialLdapContext myConn =

(InitialLdapContext)srvObj.getLdapContextFromServerPlugin();
 myConn.bind(…);
 ….
}

See the Javadoc Oracle Internet Directory API Reference for information about the
methods used in the example.

LdapBaseEntry
The LdapBaseEntry contains the following information:

■ DN

■ Attributes

The server must send DN information for all of the operations, with the exception of
ldapadd. The meaning of the DN for each operation is shown in Table 13–1.

Table 13–1 The Meaning of the DN Information for Each LDAP Operation

Operation Meaning of DN

ldapadd No DN sent

ldapbind The entry to which the directory server is attempting to bind

Java Plug-in API

Java Server Plug-ins 13-5

The Attributes are JNDI attributes.

The LdapBaseEntry has methods for accessing the DN and Attributes. For
performance reasons, if the LdapBaseEntry is a group entry, and the entry cache
capability is disabled, the attributes uniquemember and member are not accessible.

LdapOperation
Every plug-in is associated with one of the seven basic LDAP operations: add, bind,
compare, delete, moddn, modify, or search. The LdapOperation object contains the
following information, which is passed to all seven operations:

■ Bind DN

■ Server Controls

■ Operation Result Code

The Bind DN is the DN of the identity that is requesting the LDAP operation. Server
Controls is a vector that contains control information. If any server controls are passed
to the server during an operation, then the control information is passed to the Java
plug-in in the Server Controls. The meaning of the Operation Result Code depends on
the timing of the operation, as shown in Table 13–1. Note that in the case of a when_
replace operation, the plug-in can change the information in the Operation Result
Code and pass it to the server in the PluginResult.

LdapOperation also has methods for retrieving and modifying its contents.

Seven different classes representing the seven LDAP operations extend the
LdapOperation class. Each of the subclasses includes class-specific information, in
addition to the LdapOperation information. The classes and class-specific

ldapcompare The base entry on which to perform the compare

ldapdelete For Pre and When timings, the entry which is to be deleted

For Post timing, no DN sent

ldapmoddn The base entry to be moved

ldapmodify For Pre and When timings, the entry on which the modification
is being performed

For Post timing, the modified entry

ldapsearch The base entry for the search

See Also: The Tuning chapter in Oracle Internet Directory
Administrator’s Guide for information about performance tuning.

Table 13–2 Behavior of Operation Result Code

Plug-in Timing Meaning and Behavior of Operation Result Code

Pre

When

Not used

When_replace Error status of the LDAP operation performed by the plug-in.
Output from the plug-in to the server.

Post Error status of LDAP operation performed by the server. Input
to the plug-in from the server.

Table 13–1 (Cont.) The Meaning of the DN Information for Each LDAP Operation

Operation Meaning of DN

Java Plug-in API

13-6 Oracle Identity Management Application Developer’s Guide

information are shown in Table 13–3. Each class name in Table 13–3 is a link to the
section describing the details of that class:

Each class has methods for creating, modifying, and retrieving its information. The
class-specific information represents either input to the plug-in, output from the
plug-in to the server, or both.

The rest of this section discusses the operation-specific classes in detail.

AddLdapOperation When invoking an ldapadd plug-in, the server constructs an
AddLdapOperation object containing a LdapEntry object to pass information about
the entry that is being added. The LdapEntry Object contains the following
information:

■ DN

■ Attributes

The DN represents the DN of the entry to be added. The Attributes are the entry’s
JNDI Attributes. As Table 13–4 shows, for all operations except the post-operation, the
plug-in can modify the information in the LdapEntry and return it to the server.

BindLdapOperation The server passes the following information to an ldapbind plug-in:

■ Bind Password

Table 13–3 Subclasses of LdapOperation and Class-specific information.

Class Class-Specific information

AddLdapOperation LdapEntry

BindLdapOperation Bind Password

CompareLdapOperation Attribute Name

Attribute Value

DeleteLdapOperation Delete DN

ModdnLdapOperation New Parent DN

New Relative DN

Delete Old RDN

New DN

ModifyLdapOperation LdapModification

SearchLdapOperation Filter

Required Attributes

Scope

SearchResultSet (Not sent by server; created by plug-in to
return data)

Table 13–4 Behavior of LdapEntry Information for Each Plug-in Timing

Plug-in Timing Behavior of LdapEntry Information

Pre

When

When_replace

Both input and output. The plug-in can modify the information
and return it to the server.

Post Input only.

Java Plug-in API

Java Server Plug-ins 13-7

■ Proxy Requester DN

Bind Password is the password for the bind. Proxy Requester DN is the DN of the
identity requesting a Proxy Switch.

CompareLdapOperation The server passes the following information to an ldapcompare
plug-in:

■ Attribute Name

■ Attribute Value

The Attribute Name is the name to be compared during the ldapcompare operation.
As Table 13–5 shows, for all operations except the post-operation, the plug-in can
modify the information in the Attribute Name and return it to the server.

The Attribute Value is the value to be compared during the ldapcompare operation. As
Table 13–6 shows, for all operations except the post-operation, the plug-in can modify
the information in the Attribute Value and return it to the server.

DeleteLdapOperation The server passes the Delete DN object to an ldapdelete plug-in.
This is the DN to be deleted. As Table 13–7 shows, for all operations except the
post-operation, the plug-in can modify the information in the Delete DN and return it
to the server.

ModdnLdapOperation The server passes the following information to ldapmoddn
plug-ins:

■ New Parent DN

■ New Relative DN

Table 13–5 Behavior of the AttributeName for Each Plug-in Timing

Plug-in Timing Behavior of the Attribute Name Information

Pre

When

When_replace

Both input and output. The plug-in can modify the information
and return it to the server.

Post Input only.

Table 13–6 Behavior of the Attribute Value for Each Plug-in Timing

Plug-in Timing Behavior of the Attribute Value Information

Pre

When

When_replace

Both input and output. The plug-in can modify the information
and return it to the server.

Post Input only.

Table 13–7 Behavior of the Delete DN for Each Plug-in Timing

Plug-in Timing Behavior of the DeleteDN Information

Pre

When

When_replace

Both input and output. The plug-in can modify the information
and return it to the server.

Post Input only.

Java Plug-in API

13-8 Oracle Identity Management Application Developer’s Guide

■ Delete Old RDN

■ New DN

The New Parent DN contains the new parent of the RDN that was specified in the
LdapBaseEntry of the PluginDetail. As Table 13–8 shows, for all operations
except the post-operation, the plug-in can modify the information in the New Parent
DN and return it to the server.

The New Relative DN is the new RDN that is to replace the RDN that was specified in
the LdapBaseEntry of the PluginDetail. As Table 13–9 shows, for all operations
except the post-operation, the plug-in can modify the information in the New Relative
DN and return it to the server.

The Delete Old RDN value specifies whether the old RDN specified in the
LdapBaseEntry of the PluginDetail is to be retained after it is replaced by the
new relative DN. As Table 13–10 shows, for all operations except the post-operation,
the plug-in can modify the value in Delete Old RDN and return it to the server.

The New DN specifies the target DN in of the ldapmoddn operation. This information
is only an input from the server to the plug-in. The plug-in cannot modify this
information and return it to the server.

ModifyLdapOperation The server passes an LdapModification object to ldapmodify
plug-ins. The LdapModification object contains Modification Items, which are
JNDI modification items. As Table 13–11 shows, for all operations except the
post-operation, the plug-in can modify the information in the LdapModification
and return it to the server.

Table 13–8 Behavior of New Parent DN Information for Each Plug-in Timing

Plug-in Timing Behavior of the New Parent DN Information

Pre

When

When_replace

Both input and output. The plug-in can modify the information
and return it to the server.

Post Input only.

Table 13–9 Behavior of New Relative Dn Information for Each Plug-in Timing

Plug-in Timing Behavior of the New Relative Dn Information

Pre

When

When_replace

Both input and output. The plug-in can modify the information
and return it to the server.

Post Input only.

Table 13–10 Behavior of Delete Old RDN Information for Each Plug-in Timing

Plug-in Timing Behavior of the Delete Old RDN Information

Pre

When

When_replace

Both input and output. The plug-in can modify the information
and return it to the server.

Post Input only.

Java Plug-in API

Java Server Plug-ins 13-9

SearchLdapOperation

The SearchLdapOperation object contains the following information:

■ Filter

■ Required Attributes

■ Scope

■ SearchResultSet

The Filter, Required Attributes, and Scope are passed by the server.

The Filter contains the LDAP search filter specified for the ldapsearch operation. This
is only an input to the plug-in. The plug-in cannot modify this information and return
it to the server.

The Required Attributes contains the required attributes specified for the ldapsearch
operation. As Table 13–12 shows, for all operations except the post-operation, the
plug-in can modify the information in the Required Attributes and return it to the
server.

The Scope contains the scope of the search to be performed by the ldapsearch
operation. As Table 13–13 shows, for all operations except the post-operation, the
plug-in can modify the information in the Scope and return it to the server.

The SearchResultSet defines search results returned from the Java plug-in to the
server. A plug-in performing an ldapsearch operation can construct this object. As

Table 13–11 Behavior of LdapModification Information for Each Plug-in Timing

Plug-in Timing Behavior of the LdapModification Information

Pre

When

When_replace

Both input and output. The plug-in can modify the information
and return it to the server.

Post Input only.

Table 13–12 Behavior of the Required Attributes for Each Plug-in Timing

Plug-in Timing Behavior of the Required Attributes Information

Pre

When

When_replace

Both input and output. The plug-in can modify the information
and return it to the server.

Post Input only.

Table 13–13 Behavior of the Scope for Each Plug-in Timing

Plug-in Timing Behavior of the Scope Information

Pre

When

When_replace

Both input and output. The plug-in can modify the information
and return it to the server.

Post Input only.

Java Plug-in API

13-10 Oracle Identity Management Application Developer’s Guide

Table 13–14 shows, only the when and when_replace plug-ins can return a
SearchResult Set to the server.

PluginFlexfield
When you register a plug-in, you can store custom information in the plug-in
configuration entry. When the server invokes the plug-in, it passes this information to
the plug-in in the PluginFlexfield.

There are three schema attributes for storing custom information in the configuration
entry. You can store text information in the orclPluginFlexfield attribute. You
can use sub-types to provide more meaning to the kind of custom information being
stored. For example, you could use the subtype orclPluginFlexfield;ad-host
to store the host name of an Active Directory server that the plug-in must connect to.

 You can store a binary value in the attribute orclPluginBinaryFlexfield
attribute. You can only store one value in orclPluginBinaryFlexfield for a
plug-in because the server does not support attribute subtypes for binary attributes.

You can use orclPluginSecuredFlexfield to store custom text information that
must never be displayed in clear text. The value is stored and displayed in encrypted
form. Be sure that Oracle Internet Directory has privacy mode enabled to ensure that
users cannot retrieve this attribute in clear text. See "Privacy of Retrieved Sensitive
Attributes" in Oracle Internet Directory Administrator’s Guide. You can use sub-types to
provide more meaning to the kind of custom information being stored. Use the same
subtype format as for orclPluginFlexfield.

When the server invokes the plug-in, it passes the information from the
orclPluginFlexfield, orclPluginBinaryFlexfield, and
orclPluginSecuredFlexfield to the plug-in in the PluginFlexfield object.
The plug-in can interpret the information and use it. It cannot return the
PluginFlexfield to the server.

In the following configuration entry example, subtypes of orclPluginFlexfield
specify that the minimum password length is 8 characters, that the password must
contain a digit, and that the password cannot contain repeated characters:

dn: cn=pre_add replace,cn=plugin,cn=subconfigsubentry
orclPluginFlexfield;minPwdLength: 8
orclPluginFlexfield;isDigitPwd: 1
orclPluginFlexfield;isRepeatCharsPwd: 0
objectclass: orclPluginConfig
objectclass: top
orclpluginname: MyJavaPwdCheckPlugin
orclplugintype: operational
orclplugintiming: pre
orclpluginldapoperation: ldapadd
orclpluginenable: 1
orclpluginsubscriberdnlist: cn=users,dc=us,dc=oracle,dc=com
orclpluginattributelist: userpassword
orclPluginKind: Java

Table 13–14 Behavior of the SearchResultSet for Each Plug-in Timing

Plug-in Timing Behavior of the SearchResultSet Information

Pre The plug-in cannot return the object.

When

When_replace

The plug-in can return this object to the server.

Post The plug-in cannot return the object.

Java Plug-in API

Java Server Plug-ins 13-11

PluginResult
To return the results of its execution to the server, a Java plug-in constructs a
PluginResult object and passes it back to the server. The PluginResult contains
one object: an LdapOperation or one of its operation-specific subclasses. These
objects were described in the section "LdapOperation" on page 13-5. As explained in
that section, for some operations and timings, the plug-in can modify the information
in the "LdapOperation" subclass object it received in the PluginDetail and send that
object back to the server in the PluginResult.

ServerPlugin Interface
All Java plug-ins use the ServerPlugin interface. The interface has pre-defined
methods to communicate with the server. It has one method for each LDAP operation
and timing. Each method takes a PluginDetail object as input and returns a
PluginResult object back to the Oracle Internet Directory Server.

The ServerPluginAdapter class implements the ServerPlugin interface. The
ServerPluginAdapter class has default (NULL) implementations of the
ServerPlugin methods. This class enables you to code a Java plug-in without
having to implement every method.

The rest of this section lists the ServerPlugin methods for each LDAP operation. It
includes:

■

■ ServerPlugin Methods for Ldapbind

■ ServerPlugin Methods for Ldapcompare

■ ServerPlugin Methods for Ldapadd

■ ServerPlugin Methods for Ldapmodify

■ ServerPlugin Methods for Ldapmoddn

■ ServerPlugin Methods for Ldapsearch

■ ServerPlugin Methods for Ldapdelete

ServerPlugin Methods for Ldapbind
public PluginResult pre_bind(PluginDetail pc) throws Exception;
public PluginResult when_bind_replace(PluginDetail pc) throws Exception;
public PluginResult post_bind(PluginDetail pc) throws Exception;

ServerPlugin Methods for Ldapcompare
public PluginResult pre_compare(PluginDetail pc) throws Exception;
public PluginResult when_compare_replace(PluginDetail pc) throws Exception;
public PluginResult post_compare(PluginDetail pc) throws Exception;

ServerPlugin Methods for Ldapadd
public PluginResult pre_add(PluginDetail pc) throws Exception;
public PluginResult when_add(PluginDetail pc) throws Exception;
public PluginResult when_add_replace(PluginDetail pc) throws Exception;
public PluginResult post_add(PluginDetail pc) throws Exception;

Java Plug-in Error and Exception Handling

13-12 Oracle Identity Management Application Developer’s Guide

ServerPlugin Methods for Ldapmodify
public PluginResult pre_modify(PluginDetail pc) throws Exception;
public PluginResult when_modify(PluginDetail pc) throws Exception;
public PluginResult when_modify_replace(PluginDetail pc) throws Exception;
public PluginResult post_modify(PluginDetail pc) throws Exception;

ServerPlugin Methods for Ldapmoddn
public PluginResult pre_moddn(PluginDetail pc) throws Exception;
public PluginResult when_moddn(PluginDetail pc) throws Exception;
public PluginResult when_moddn_replace(PluginDetail pc) throws Exception;
public PluginResult post_moddn(PluginDetail pc) throws Exception;

ServerPlugin Methods for Ldapsearch
public PluginResult pre_search(PluginDetail pc) throws Exception;
public PluginResult when_search(PluginDetail pc) throws Exception;
public PluginResult when_search_replace(PluginDetail pc) throws Exception;
public PluginResult post_search(PluginDetail pc) throws Exception;

ServerPlugin Methods for Ldapdelete
public PluginResult pre_delete(PluginDetail pc) throws Exception;
public PluginResult when_delete(PluginDetail pc) throws Exception;
public PluginResult when_delete_replace(PluginDetail pc) throws Exception;
public PluginResult post_delete(PluginDetail pc) throws Exception;Java plug-in AP

Java Plug-in Error and Exception Handling
The Oracle Internet Directory server catches all unhandled exceptions during the
execution of the plug-in. The exception stack trace and message for each exception is
logged in the server log file. These exceptions fall into three categories:

■ Runtime errors and exceptions occur due to faulty plug-in code or logic. The
server catches all runtime errors and exceptions, including
NullPointerExceptions, raised during the execution of the Java plug-in. These
errors and exceptions are logged in the server log file.

■ Expected exceptions thrown by the plug-in are logged in the Oracle Internet
Directory server log file. In addition, a plug-in can catch an exception and throw it
back to the server to log it in the server log file.

■ A plug-in can use the PluginException class to raise an error. The error
message passed to the server with the PluginException object or its subclasses
is passed on to the LDAP client. The server also logs this message in the server log
file along with the exception stack trace and message.

This section includes three examples. They are:

■ Runtime Exception Example

■ Runtime Error Example

■ PluginException Example

Runtime Exception Example
The log entry for a typical exception raised during execution of a plug-in looks
something like this:

….

Java Plug-in Debugging and Logging

Java Server Plug-ins 13-13

06:17:03 *
 ERROR * gslpg_exceptionHndlr * Exception Message : Error
 ERROR * gslpg_exceptionHndlr * Exception Stack Trace :
 MyCompareJavaPlugin.post_compare(Prog2.java:75)
END

BEGIN
2004/10/19:01:52:13 *
 ServerWorker (REG):4 * ConnID:0 * OpID:1 * OpName:compare
 ERROR * gslpg_exceptionHndlr * Exception Stack Trace :
 java.lang.NullPointerException
 java.util.Hashtable.put(Hashtable.java:393)
 oracle.ldap.ospf.PluginDetail.put(PluginDetail.java:41)
END

Runtime Error Example
The error occured because the plug-in MyJavaPlugin did not exist in the $ORACLE_
HOME/ldap/server/plugin directory. The log file entry looks like this:

BEGIN
2004/10/19:01:52:13 *
 ServerWorker (REG):4 * ConnID:0 * OpID:1 * OpName:compare
 ERROR * gslpg_exceptionHndlr * Exception Stack Trace :
 java.lang.NoClassDefFoundError: MyJavaPlugin
END

PluginException Example
The Oracle Internet Directory server returns the standard plug-in error message to the
LDAP client along with the additional error message if a PluginException object is
thrown back to the server. The error displayed by the LDAP client looks something
like this:

ldap_compare: UnKnown Error Encountered
ldap_compare: additional info: Error Message returned by the Java Plug-in

Java Plug-in Debugging and Logging
A plug-in can maintain its own log file and log to it in real time. In addition, a plug-in
can log debug messages in the Oracle Internet Directory server log file during
execution by using the ServerLog class. The method for logging messages in the
ServerLog class is:

public static void log(String message);

Messages logged by the ServerLog.log() method are preceded by the string:

* Server Java Plug-in *

For example:

2006/05/11:01:11:28 * ServerWorker (REG):7
 ConnID:241 * mesgID:2 * OpID:1 * OpName:bind
01:11:28 * Server Java Plug-in * MESSAGE FROM PLUGIN
01:11:28 * Server Java Plug-in * Bind DN :
 cn=ad_user,cn=oiddvusers,cn=oraclecontext,dc=us,dc=oracle,dc=com

Java Plug-in Examples

13-14 Oracle Identity Management Application Developer’s Guide

To log plug-in debug messages to the server log, you must start the Oracle Internet
Directory server using one of the following debug levels:

The ServerLog.log() method is thread safe. Execution of this method can degrade
performance.

Java Plug-in Examples
This sections includes two examples. They are:

■ Example 1: Password Validation Plug-in

■ Example 2: External Authentication Plug-in for Active Directory

Example 1: Password Validation Plug-in
This example illustrates a Java plug-in that validates a userPassword prior to the
ldapmodify operation. A pre Java plug-in is registered with the Oracle Internet
Directory server. The plug-in configuration includes the minimum password length to
be checked for in the plug-in. This information is registered in the plug-in
configuration entry using an orclPluginFlexfield attribute. The subtype
minPwdLength specifies the minimum length. This information is passed to the
plug-in using the PluginFlexfield. The orclPluginName specifies the name of
the Java Plug-in to be invoked by the Oracle Internet Directory server.

The input to the plug-in is a PluginDetail and the output from the plug-in is a
PluginResult.

Password Validation Plug-in Configuration Entry
dn: cn=checkuserpassword,cn=plugin,cn=subconfigsubentry
orclPluginFlexfield;minPwdLength: 8
objectclass: orclPluginConfig
objectclass: top
orclpluginname: CheckPassword
orclplugintype: operational
orclplugintiming: pre
orclpluginldapoperation: ldapmodify
orclpluginenable: 1
orclpluginsubscriberdnlist: cn=users,dc=us,dc=oracle,dc=com
orclpluginattributelist: userPassword
orclPluginKind: Java

Table 13–15 Debug Levels for Java Plug-in Logging

Oracle Internet Directory
Server Debug Level Debug Level Meaning

134217728 All Java plug-in debug messages and internal server messages
related to the Java plug-in framework

268435456 All messages passed by a Java plug-in using the ServerLog
object.

402653184 Both of the above

Note: Do not use System.exit() in a Java plug-in. Doing so might lead
to unpredictable behavior by the Oracle directory server.

Java Plug-in Examples

Java Server Plug-ins 13-15

Password Validation Plug-in Code Example
import java.io.*;
import java.lang.*;
import java.util.*;
import javax.naming.*;
import javax.naming.directory.*;
import oracle.ldap.ospf.*;
/**
 * This PRE modify plug-in will check whether the "userPassword"
 * is greater than 8 characters in length
 */
public class CheckPassword extends ServerPluginAdapter {

 // This PRE modify plug-in takes in a PluginDetail Object
 // and returns a PluginResult Object
 public PluginResult pre_modify(PluginDetail plgObj)
 throws Exception
 {
 try {
 // Retrieve the LdapOperation Object from the PluginDetail
 ModifyLdapOperation opObj = (ModifyLdapOperation)
plgObj.getLdapOperation();

 // Retrieve the LdapModification Object from the LdapOperation
 LdapModification modObj = opObj.getLdapModification();

 // Retrieve the PluginFlexfield Object from the PluginDetail
 PluginFlexfield flxFldObj = plgObj.getPluginFlexfield();

 // Retrieve the custom information from the PluginFlexfield
 // Get the minimum password length
 String passwdlength =
 flxFldObj.getFlexfield("minPwdLength");

 // Create a Result Object to return to the OID server
 PluginResult plgResObj = new PluginResult();

 // Check if the LdapModification Object is a NULL
 // set the appropriate error and error message
 if (modObj==null)
 {
 throw new PluginException("CheckPassword Plug-in Execution
Error");
 }

 // Retrieve the "userPassword" Attribute Value
 ModificationItem modItem = modObj.getModificationItemAt(0);
 BasicAttribute attr = (BasicAttribute)modItem.getAttribute();
 String attrval = null;
 if ((attr.getID()).equals("userpassword"))
 attrval = attr.get(0);

 // Check for the password length and set appropriate error
 // and error message
 if (attrval.length() < Integer.parseInt(passwdlength))
 {
 throw new PluginException("userPassword is less than 8

Java Plug-in Examples

13-16 Oracle Identity Management Application Developer’s Guide

characters");
 }

 // Return the PluginResult Object to the OID Server
 return plgResObj;
 }
 // Catch any unexpected exception which may occur and throw
 // it back to the OID server to log it
 catch (Exception e)
 {
 throw e;
 }
 }
}

Example 2: External Authentication Plug-in for Active Directory
This example illustrates an external authentication plug-in for Active Directory. When
a client requests an ldapcompare operation for userPassword, the server invokes
this Java plug-in to authenticate the user against Active Directory.

External Authentication Plug-in Configuration Entry
dn: cn=when_rep_comp,cn=plugin,cn=subconfigsubentry
orclpluginsubscriberdnlist: cn=users,dc=us,dc=oracle,dc=com;
orclpluginflexfield;ad-host: dlin-pc2.us.oracle.com
orclpluginflexfield;ad-port: 389
orclpluginflexfield;ad-su-dn: administrator@dlin.net
orclpluginflexfield;ad-su-passwd: welcome1
objectclass: orclPluginConfig
objectclass: top
orclpluginname: ExtAuthAD
orclplugintype: operational
orclplugintiming: when
orclpluginisreplace: 1
orclpluginldapoperation: ldapcompare
orclpluginversion: 1.0.1
cn: when_rep_comp
orclpluginkind: Java
orclpluginenable: 1

External Authentication Plug-in Code
public class ExtAuthAD extends ServerPluginAdapter {

public PluginResult when_compare_replace(PluginDetail plgObj)
 throws Exception {
 try {

 // Retrieve the LdapOperation from the PluginDetail
 LdapOperation opObj = (CompareLdapOperation) plgObj.getLdapOperation();

 // Retrieve the Base DN, Attribute and Attribute Value
 String bdn = opObj.getBaseDN().substring(0,
 opObj.getBaseDN().lastIndexOf("cn=users,dc=us,dc=oracle,dc=com")-1)
 +",cn=users,dc=dlin,dc=net";
 String ban = opObj.getAttributeName();
 String bav = opObj.getAttributeValue();

Java Plug-in Examples

Java Server Plug-ins 13-17

 // Retrieve the AD Information from the PluginFlexfield
 PluginFlexfield flxObj = plgObj.getPluginFlexfield();
 String adhost = flxObj.getFlexfield("ad-host");
 String adport = flxObj.getFlexfield("ad-port");
 String adsudn = flxObj.getFlexfield("ad-su-dn");
 String adsupasswd = flxObj.getFlexfield("ad-su-passwd");

 // Create a PluginResult Object to return to the OID server
 PluginResult plgResObj = new PluginResult();

 // Create a Hashtable with values required to connect to AD
 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
 env.put(Context.PROVIDER_URL, "ldap://"+adhost+":"+adport);
 env.put(Context.SECURITY_AUTHENTICATION, "simple");
 env.put(Context.SECURITY_PRINCIPAL, bdn);
 env.put(Context.SECURITY_CREDENTIALS, bav);

 // Try to connect to AD
 DirContext dirContext = null;
 try {
 dirContext = new InitialDirContext(env);
 if (dirContext != null) {
 // User has been successfully authenticated, add the appropriate
 // result code to the LdapOperation
 opObj.setOperationResultCode(6);
 }
 }
 catch(NamingException ne) {
 // Unable to connect to the AD directory server with the given
 // credentials, add the appropriate result code to the LdapOperation
 opObj.setOperationResultCode(5);
 }

 // Add the LdapOperation to the PluginResult
 plgResObj.addLdapOperation(opObj);

 // Return the PluginResult
 return plgResObj;

 } catch(Exception e) {
 // In case of any unexpected errors in the plug-in, throw the Exception
 // back to the OID server to log it
 throw e;
 }
 }
 }

Java Plug-in Examples

13-18 Oracle Identity Management Application Developer’s Guide

Part III
Oracle Internet Directory Programming

Reference

Part III presents the standard APIs and the Oracle extensions to these APIs. It contains
these chapters:

■ Chapter 14, "C API Reference"

■ Chapter 15, "DBMS_LDAP PL/SQL Reference"

■ Chapter 16, "Java API Reference"

■ Chapter 17, "DBMS_LDAP_UTL PL/SQL Reference"

■ Chapter 18, "DAS_URL Interface Reference"

■ Chapter 19, "Oracle Directory Integration Platform User Provisioning Java API
Reference"

■ Chapter 20, "Oracle Directory Integration Platform PL/SQL API Reference"

C API Reference 14-1

14
C API Reference

This chapter introduces the Oracle Internet Directory C API and provides examples of
how to use it.

The chapter contains these topics:

■ About the Oracle Internet Directory C API

■ Functions in the C API

■ Sample C API Usage

■ Required Header Files and Libraries for the C API

■ Dependencies and Limitations of the C API

About the Oracle Internet Directory C API
The Oracle Internet Directory SDK C API is based on LDAP Version 3 C API and
Oracle extensions to support SSL.

You can use the Oracle Internet Directory API 10g (10.1.4.0.1) in the following modes:

■ SSL—All communication secured by using SSL

■ Non-SSL—Client/server communication not secure

The API uses TCP/IP to connect to a directory server. When it does this, it uses, by
default, an unencrypted channel. To use the SSL mode, you must use the Oracle SSL
call interface. You determine which mode you are using by the presence or absence of
the SSL calls in the API usage. You can easily switch between SSL and non-SSL modes.

This section contains these topics:

■ Oracle Internet Directory SDK C API SSL Extensions

■ The Functions at a Glance

Oracle Internet Directory SDK C API SSL Extensions
Oracle SSL extensions to the LDAP API are based on standard SSL protocol. The SSL
extensions provide encryption and decryption of data over the wire and
authentication.

There are three modes of authentication:

See Also: "Sample C API Usage" on page 14-40 for more details on
how to use the two modes.

Functions in the C API

14-2 Oracle Identity Management Application Developer’s Guide

■ None—Neither client nor server is authenticated, and only SSL encryption is used

■ One-way—Only the server is authenticated by the client

■ Two-way—Both the server and the client are authenticated by each other

The type of authentication is indicated by a parameter in the SSL interface call.

SSL Interface Calls
There is only one call required to enable SSL:

int ldap_init_SSL(Sockbuf *sb, char *sslwallet, char *sslwalletpasswd, int
sslauthmode)

The ldap_init_SSL call performs the necessary handshake between client and
server using the standard SSL protocol. If the call is successful, then all subsequent
communication happens over a secure connection.

Wallet Support
depending on which authentication mode is being used, both the server and the client
may require wallets to use the SSL feature. 10g (10.1.4.0.1) of the API supports only the
Oracle Wallet. You can create wallets by using Oracle Wallet Manager.

Functions in the C API
This section examines each of the functions and procedures in the C API. It explains
their purpose and syntax. It also provides tips for using them.

The section contains the following topics:

■ The Functions at a Glance

■ Initializing an LDAP Session

■ LDAP Session Handle Options

■ Authenticating to the Directory

Table 14–1 Arguments for SSL Interface Calls

Argument Description

sb Socket buffer handle returned by the ldap_open call as part of LDAP
handle.

sslwallet Location of the user wallet.

sslwalletpasswd Password required to use the wallet.

sslauthmode SSL authentication mode user wants to use. Possible values are:

■ GSLC_SSL_NO_AUTH—No authentication required

■ GSLC_SSL_ONEWAY_AUTH—Only server authentication required.

■ GSLC_SSL_TWOWAY_AUTH—Both server and client
authentication required.

A return value of 0 indicates success. A nonzero return value
indicates an error. The error code can be decoded by using the
function ldap_err2string.

See Also: "Sample C API Usage" on page 14-40.

Functions in the C API

C API Reference 14-3

■ SASL Authentication Using Oracle Extensions

■ Working With Controls

■ Closing the Session

■ Performing LDAP Operations

■ Abandoning an Operation

■ Obtaining Results and Peeking Inside LDAP Messages

■ Handling Errors and Parsing Results

■ Stepping Through a List of Results

■ Parsing Search Results

The Functions at a Glance
Table 14–2 lists all of the functions and procedures in the C API and briefly explains
their purpose.

Table 14–2 Functions and Procedures in the C API

Function or Procedure Description

ber_free Free the memory allocated for a BerElement structure

ldap_abandon_ext
ldap_abandon

Cancel an asynchronous operation

ldap_add_ext
ldap_add_ext_s
ldap_add
ldap_add_s

Add a new entry to the directory

ldap_compare_ext
ldap_compare_ext_s
ldap_compare
ldap_compare_s

Compare entries in the directory

ldap_count_entries Count the number of entries in a chain of search results

ldap_count_values Count the string values of an attribute

ldap_count_values_len Count the binary values of an attribute

ora_ldap_create_clientctx Create a client context and returns a handle to it.

ora_ldap_create_cred_hdl Create a credential handle.

ldap_delete_ext
ldap_delete_ext_s
ldap_delete
ldap_delete_s

Delete an entry from the directory

ora_ldap_destroy_clientctx Destroy the client context.

ora_ldap_free_cred_hdl Destroy the credential handle.

ldap_dn2ufn Converts the name into a more user friendly format

ldap_err2string Get the error message for a specific error code

ldap_explode_dn Split up a distinguished name into its components

ldap_explode_rdn

ldap_first_attribute Get the name of the first attribute in an entry

Functions in the C API

14-4 Oracle Identity Management Application Developer’s Guide

ldap_first_entry Get the first entry in a chain of search results

ora_ldap_get_cred_props Retrieve properties associated with credential handle.

ldap_get_dn Get the distinguished name for an entry

ldap_get_option Access the current value of various session-wide
parameters

ldap_get_values Get the string values of an attribute

ldap_get_values_len Get the binary values of an attribute

ldap_init
ldap_open

Open a connection to an LDAP server

ora_ldap_init_SASL Perform SASL authentication

ldap_memfree Free memory allocated by an LDAP API function call

ldap_modify_ext
ldap_modify_ext_s
ldap_modify
ldap_modify_s

Modify an entry in the directory

ldap_msgfree Free the memory allocated for search results or other
LDAP operation results

ldap_first_attribute
ldap_next_attribute

Get the name of the next attribute in an entry

ldap_next_entry Get the next entry in a chain of search results

ldap_perror

(Deprecated)

Prints the message supplied in message.

ldap_rename
ldap_rename_s

Modify the RDN of an entry in the directory

ldap_result2error

(Deprecated)

Return the error code from result message.

ldap_result
ldap_msgfree
ldap_msgtype
ldap_msgid

Check the results of an asynchronous operation

ldap_sasl_bind
ldap_sasl_bind_s

General authentication to an LDAP server

ldap_search_ext
ldap_search_ext_s
ldap_search
ldap_search_s

Search the directory

ldap_search_st Search the directory with a timeout value

ldap_get_option
ldap_set_option

Set the value of these parameters

ora_ldap_set_clientctx Add properties to the client context handle.

ora_ldap_set_cred_props Add properties to credential handle.

Table 14–2 (Cont.) Functions and Procedures in the C API

Function or Procedure Description

Functions in the C API

C API Reference 14-5

This section lists all the calls available in the LDAP C API found in RFC 1823.

Initializing an LDAP Session
The calls in this section initialize a session with an LDAP server.

ldap_init and ldap_open
ldap_init() initializes a session with an LDAP server, but does not open a
connection. The server is not actually contacted until an operation is performed that
requires it, allowing various options to be set after initialization. ldap_open()
initializes a session and opens a connection. The two fulfill the same purpose and have
the same syntax, but the first is preferred.

Syntax
LDAP *ldap_init
(
 const char *hostname,
 int portno
)
;

Parameters

ldap_simple_bind
ldap_simple_bind_s
ldap_sasl_bind
ldap_sasl_bind_s

Simple authentication to an LDAP server

ldap_unbind_ext
ldap_unbind
ldap_unbind_s

End an LDAP session

ldap_value_free Free the memory allocated for the string values of an
attribute

ldap_value_free
ldap_value_free_len

Free the memory allocated for the binary values of an
attribute

See Also: The following URL for a more detailed explanation of
these calls:

http://www.ietf.org

Table 14–3 Parameters for Initializing an LDAP Session

Parameter Description

hostname Contains a space-separated list of host names or dotted strings representing
the IP address of hosts running an LDAP server to connect to. Each host
name in the list may include a port number. The two must be separated by a
colon. The hosts are tried in the order listed until a successful connection
occurs.

Note: A suitable representation for including a literal IPv6[10] address in the
host name parameter is desired, but has not yet been determined or
implemented in practice.

Table 14–2 (Cont.) Functions and Procedures in the C API

Function or Procedure Description

Functions in the C API

14-6 Oracle Identity Management Application Developer’s Guide

Usage Notes
ldap_init() and ldap_open() both return a session handle. This is a pointer to an
opaque structure that must be passed to subsequent calls pertaining to the session.
These routines return NULL if the session cannot be initialized. If the session cannot be
initialized, check the error reporting mechanism for the operating system to see why
the call failed.

Note that if you connect to an LDAPv2 server, one of the LDAP bind calls described
later SHOULD be completed before other operations can be performed on the session.
LDAPv3 does not require that a bind operation be completed before other operations
are performed.

The calling program can set various attributes of the session by calling the routines
described in the next section.

LDAP Session Handle Options
The LDAP session handle returned by ldap_init() is a pointer to an opaque data
type representing an LDAP session. In RFC 1823 this data type was a structure
exposed to the caller, and various fields in the structure could be set to control aspects
of the session, such as size and time limits on searches.

In the interest of insulating callers from inevitable changes to this structure, these
aspects of the session are now accessed through a pair of accessor functions, described
in this section.

ldap_get_option and ldap_set_option
ldap_get_option() is used to access the current value of various session-wide
parameters. ldap_set_option() is used to set the value of these parameters. Note
that some options are read only and cannot be set; it is an error to call ldap_set_
option() and attempt to set a read only option.

Note that if automatic referral following is enabled (the default), any connections
created during the course of following referrals will inherit the options associated with
the session that sent the original request that caused the referrals to be returned.

Syntax
int ldap_get_option
(
LDAP *ld,
int option,
void *outvalue
)
;

int ldap_set_option
(
LDAP *ld,
int option,
const void *invalue

portno Contains the TCP port number to connect to. The default LDAP port of 389
can be obtained by supplying the constant LDAP_PORT. If hostname
includes a port number, portno is ignored.

Table 14–3 (Cont.) Parameters for Initializing an LDAP Session

Parameter Description

Functions in the C API

C API Reference 14-7

)
;

#define LDAP_OPT_ON ((void *)1)
#define LDAP_OPT_OFF ((void *)0)

Parameters
Table 14–4 lists and describes the parameters for LDAP session handle options.

Constants
Table 14–5 on page 14-7 lists and describes the constants for LDAP session handle
options.

Table 14–4 Parameters for LDAP Session Handle Options

Parameters Description

ld The session handle. If this is NULL, a set of global defaults is accessed. New
LDAP session handles created with ldap_init() or ldap_open()
inherit their characteristics from these global defaults.

option The name of the option being accessed or set. This parameter should be one
of the constants listed and described in Table 14–5 on page 14-7. The
hexadecimal value of the constant is listed in parentheses after the
constant.

outvalue The address of a place to put the value of the option. The actual type of this
parameter depends on the setting of the option parameter. For outvalues of
type char ** and LDAPControl **, a copy of the data that is associated
with the LDAP session ld is returned. Callers should dispose of the
memory by calling ldap_memfree() or ldap_controls_free(),
depending on the type of data returned.

invalue A pointer to the value the option is to be given. The actual type of this
parameter depends on the setting of the option parameter. The data
associated with invalue is copied by the API implementation to allow
callers of the API to dispose of or otherwise change their copy of the data
after a successful call to ldap_set_option(). If a value passed for
invalue is invalid or cannot be accepted by the implementation, ldap_
set_option() should return -1 to indicate an error.

Table 14–5 Constants

Constant
Type for invalue
parameter

Type for outvalue
parameter Description

LDAP_OPT_API_
INFO(0x00)

Not applicable.
Option is read
only.

LDAPAPIInfo* Used to retrieve some basic information
about the LDAP API implementation at
execution time. Applications need to be
able to determine information about the
particular API implementation they are
using both at compile time and during
execution. This option is read only and
cannot be set.

ORA_LDAP_OPT_RFRL_
CACHE

void* (LDAP_OPT_
ON
void* (LDAP_OPT_
OFF)

int * This option determines whether referral
cache is enabled or not. If this option is set
to LDAP_OPT_ON, the cache is enabled;
otherwise, the cache is disabled.

ORA_LDAP_OPT_RFRL_
CACHE_SZ

int * int * This option sets the size of referral cache.
The size is maximum size in terms of
number of bytes the cache can grow to. It is
set to 1MB by default.

Functions in the C API

14-8 Oracle Identity Management Application Developer’s Guide

LDAP_OPT_
DEREF(0x02)

int * int * Determines how aliases are handled
during search. It should have one of the
following values: LDAP_DEREF_NEVER
(0x00), LDAP_DEREF SEARCHING
(0x01), LDAP_DEREF_FINDING
(0x02), or LDAP_DEREF_ALWAYS
(0x03). The LDAP_DEREF_SEARCHING
value means aliases are dereferenced
during the search but not when locating
the base object of the search. The LDAP_
DEREF_FINDING value means aliases are
dereferenced when locating the base object
but not during the search. The default
value for this option is LDAP_DEREF_
NEVER.

LDAP_OPT_
SIZELIMIT(0x03)

int * int * A limit on the number of entries to return
from a search. A value of LDAP_NO_LIMIT
(0) means no limit. The default value for
this option is LDAP_NO_LIMIT.

LDAP_OPT_
TIMELIMIT(0x04)

int * int * A limit on the number of seconds to spend
on a search. A value of LDAP_NO_LIMIT
(0) means no limit. This value is passed to
the server in the search request only; it
does not affect how long the C LDAP API
implementation itself will wait locally for
search results. The timeout parameter
passed to ldap_search_ext_s() or
ldap_result()—both of which are
described later in this document—can be
used to specify both a local and server side
time limit. The default value for this option
is LDAP_NO_LIMIT.

LDAP_OPT_
REFERRALS(0x08)

void *(LDAP_OPT_
ON)
void *(LDAP_OPT_
OFF)

int * Determines whether the LDAP library
automatically follows referrals returned by
LDAP servers or not. It may be set to one
of the constants LDAP_OPT_ON or LDAP_
OPT_OFF. Any non-null pointer value
passed to ldap_set_option() enables
this option. When the current setting is
read using ldap_get_option(), a zero
value means off and any nonzero value
means on. By default, this option is turned
on.

LDAP_OPT_
RESTART(0X09)

void * (LDAP_
OPT_ON)
void * (LDAP_
OPT_OFF)

int * Determines whether LDAP input and
output operations are automatically
restarted if they stop prematurely. It may
be set to either LDAP_OPT_ON or LDAP_
OPT_OFF. Any non-null pointer value
passed to ldap_set_option() enables
this option. When the current setting is
read using ldap_get_option(), a zero
value means off and any nonzero value
means on. This option is useful if an input
or output operation can be interrupted
prematurely—by a timer going off, for
example. By default, this option is turned
off.

Table 14–5 (Cont.) Constants

Constant
Type for invalue
parameter

Type for outvalue
parameter Description

Functions in the C API

C API Reference 14-9

Usage Notes
Both ldap_get_option() and ldap_set_option() return 0 if successful and -1
if an error occurs. If -1 is returned by either function, a specific error code may be
retrieved by calling ldap_get_option() with an option value of LDAP_OPT_
ERROR_NUMBER. Note that there is no way to retrieve a more specific error code if a
call to ldap_get_option() with an option value of LDAP_OPT_ERROR_NUMBER
fails.

When a call to ldap_get_option() succeeds, the API implementation MUST NOT
change the state of the LDAP session handle or the state of the underlying
implementation in a way that affects the behavior of future LDAP API calls. When a
call to ldap_get_option() fails, the only session handle change permitted is setting
the LDAP error code (as returned by the LDAP_OPT_ERROR_NUMBER option).

When a call to ldap_set_option() fails, it must not change the state of the LDAP
session handle or the state of the underlying implementation in a way that affects the
behavior of future LDAP API calls.

LDAP_OPT_PROTOCOL_
VERSION(0x11)

int * int * This option indicates the version of the
LDAP protocol used when communicating
with the primary LDAP server. The option
should be either LDAP_VERSION2 (2) or
LDAP_VERSION3 (3). If no version is set,
the default is LDAP_VERSION2 (2).

LDAP_OPT_SERVER_
CONTROLS(0x12)

LDAPControl** LDAPControl*** A default list of LDAP server controls to be
sent with each request.

See Also: "Working With Controls" on
page 14-14.

LDAP_OPT_CLIENT_
CONTROLS(0x13)

LDAPControl** LDAPControl*** A default list of client controls that affect
the LDAP session.

See Also: "Working With Controls" on
page 14-14.

LDAP_OPT_API_
FEATURE_INFO(0x15)

Not applicable.
Option is read
only.

LDAPAPIFeatureInfo * Used to retrieve version information about
LDAP API extended features at execution
time. Applications need to be able to
determine information about the particular
API implementation they are using both at
compile time and during execution. This
option is read only. It cannot be set.

LDAP_OPT_HOST_
NAME(0x30)

char * char ** The host name (or list of hosts) for the
primary LDAP server. See the definition of
the hostname parameter for ldap_
init() to determine the syntax.

LDAP_OPT_ERROR_
NUMBER(0x31)

int * int * The code of the most recent LDAP error
during this session.

LDAP_OPT_ERROR_
STRING(0x32)

char * - The message returned with the most recent
LDAP error during this session.

LDAP_OPT_MATCHED_
DN(0x33)

char * char ** The matched DN value returned with the
most recent LDAP error during this
session.

Table 14–5 (Cont.) Constants

Constant
Type for invalue
parameter

Type for outvalue
parameter Description

Functions in the C API

14-10 Oracle Identity Management Application Developer’s Guide

Standards track documents that extend this specification and specify new options
should use values for option macros that are between 0x1000 and 0x3FFF inclusive.
Private and experimental extensions should use values for the option macros that are
between 0x4000 and 0x7FFF inclusive. All values less than 0x1000 and greater than
0x7FFF that are not defined in this document are reserved and should not be used. The
following macro must be defined by C LDAP API implementations to aid extension
implementers:

#define LDAP_OPT_PRIVATE_EXTENSION_BASE 0x4000 /* to 0x7FFF inclusive */

Authenticating to the Directory
The functions in this section are used to authenticate an LDAP client to an LDAP
directory server.

ldap_sasl_bind, ldap_sasl_bind_s, ldap_simple_bind, and ldap_simple_bind_s
The ldap_sasl_bind() and ldap_sasl_bind_s() functions can be used to do
general and extensible authentication over LDAP through the use of the Simple
Authentication Security Layer. The routines both take the DN to bind as, the method
to use, as a dotted-string representation of an object identifier (OID) identifying the
method, and a struct berval holding the credentials. The special constant value
LDAP_SASL_SIMPLE (NULL) can be passed to request simple authentication, or the
simplified routines ldap_simple_bind() or ldap_simple_bind_s() can be
used.

Syntax
int ldap_sasl_bind
(
LDAP *ld,
const char *dn,
const char *mechanism,
const struct berval *cred,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp
);

int ldap_sasl_bind_s(
LDAP *ld,
const char *dn,
const char *mechanism,
const struct berval *cred,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct berval **servercredp
);

int ldap_simple_bind(
LDAP *ld,
const char *dn,
const char *passwd
);

int ldap_simple_bind_s(
LDAP *ld,
const char *dn,

Functions in the C API

C API Reference 14-11

const char *passwd
);

The use of the following routines is deprecated and more complete descriptions can be
found in RFC 1823:

■ int ldap_bind(LDAP *ld, const char *dn, const char *cred,
int method);

■ int ldap_bind_s(LDAP *ld, const char *dn, const char *cred,
int method);

■ int ldap_kerberos_bind(LDAP *ld, const char *dn);

■ int ldap_kerberos_bind_s(LDAP *ld, const char *dn);

Parameters
Table 14–6 lists and describes the parameters for authenticating to the directory.

Usage Notes
Additional parameters for the deprecated routines are not described. Interested
readers are referred to RFC 1823.

The ldap_sasl_bind() function initiates an asynchronous bind operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, ldap_sasl_bind() places the message id of
the request in *msgidp. A subsequent call to ldap_result() can be used to obtain
the result of the bind.

The ldap_simple_bind() function initiates a simple asynchronous bind operation
and returns the message id of the operation initiated. A subsequent call to ldap_
result(), described in, can be used to obtain the result of the bind. In case of error,
ldap_simple_bind() will return -1, setting the session error parameters in the
LDAP structure appropriately.

Table 14–6 Parameters for Authenticating to the Directory

Parameter Description

ld The session handle

dn The name of the entry to bind as

mechanism Either LDAP_SASL_SIMPLE (NULL) to get simple authentication, or
a text string identifying the SASL method

cred The credentials with which to authenticate. Arbitrary credentials can
be passed using this parameter. The format and content of the
credentials depends on the setting of the mechanism parameter.

passwd For ldap_simple_bind(), the password to compare to the entry's
userPassword attribute

serverctrls List of LDAP server controls

clientctrls List of client controls

msgidp This result parameter will be set to the message id of the request if the
ldap_sasl_bind() call succeeds

servercredp This result parameter will be filled in with the credentials passed back
by the server for mutual authentication, if given. An allocated berval
structure is returned that should be disposed of by calling
ber_bvfree(). NULL should be passed to ignore this field.

Functions in the C API

14-12 Oracle Identity Management Application Developer’s Guide

The synchronous ldap_sasl_bind_s() and ldap_simple_bind_s() functions
both return the result of the operation, either the constant LDAP_SUCCESS if the
operation was successful, or another LDAP error code if it was not.

Note that if an LDAPv2 server is contacted, no other operations over the connection
can be attempted before a bind call has successfully completed.

Subsequent bind calls can be used to re-authenticate over the same connection, and
multistep SASL sequences can be accomplished through a sequence of calls to ldap_
sasl_bind() or ldap_sasl_bind_s().

SASL Authentication Using Oracle Extensions
This section contains the following topics:

■ ora_ldap_init_SASL

■ ora_ldap_create_cred_hdl, ora_ldap_set_cred_props, ora_ldap_get_cred_props,
and ora_ldap_free_cred_hdl

ora_ldap_init_SASL
The function ora_ldap_init_SASL() can be used for SASL based authentication. It
performs authentication based on the mechanism specified as one of its input
arguments.

This function encapsulates the SASL handshake between the client and the directory
server for various standard SASL mechanisms thereby reducing the coding effort
involved in establishing a SASL-based connection to the directory server.

Syntax

int ora_ldap_init_SASL
(
OraLdapClientCtx * clientCtx,
LDAP*ld,
char* dn,
char* mechanism,
OraLdapHandle cred,
LDAPControl**serverctrls,
LDAPControl**clientctrls
);

Parameters

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Table 14–7 Parameters passed to ora_ldap_init_sasl()

Parameter Description

clientCtx C API Client context. This can be managed using ora_ldap_init_clientctx()
and ora_ldap_free_clientctx() functions.

ld Ldap session handle.

dn User DN to be authenticated.

mechanism SASL mechanism.

Functions in the C API

C API Reference 14-13

The cred parameter is a SASL credential handle for the user. This handle can be
managed using ora_ldap_create_cred_hdl(), ora_ldap_set_cred_props()
and ora_ldap_free_cred_hdl() functions.

Supported SASL mechanisms:

■ DIGEST-MD5

The Oracle Internet Directory SASL API supports the authentication-only mode of
DIGEST-MD5. The other two authentication modes addressing data privacy and
data integrity are yet to be supported.

While authenticating against Oracle Internet Directory, the DN of the user has to
be normalized before it is sent across to the server. This can be done either outside
the SASL API using the ora_ldap_normalize_dn() function before the DN is
passed on to the SASL API or with the SASL API by setting the ORA_LDAP_CRED_
SASL_NORM_AUTHDN option in SASL credentials handle using ora_ldap_set_
cred_handle().

■ EXTERNAL:

The SASL API and SASL implementation in Oracle Internet Directory use SSL
authentication as one of the external authentication mechanisms.

Using this mechanism requires that the SSL connection (mutual authentication
mode) be established to the directory server by using the ora_ldap_init_
SSL() function. The ora_ldap_init_SASL() function can then be invoked
with the mechanism argument as EXTERNAL. The directory server would then
authenticate the user based on the user credentials in SSL connection.

ora_ldap_create_cred_hdl, ora_ldap_set_cred_props, ora_ldap_get_cred_props,
and ora_ldap_free_cred_hdl
Use these functions to create and manage SASL credential handles. The ora_ldap_
create_cred_hdl function should be used to create a SASL credential handle of
certain type based on the type of mechanism used for SASL authentication. The ora_
ldap_set_cred_props() function can be used to add relevant credentials to the
handle needed for SASL authentication. The ora_ldap_get_cred_props()
function can be used for retrieving the properties stored in the credential handle, and
the ora_ldap_free_cred_hdl() function should be used to destroy the handle
after its use.

Syntax
OraLdapHandle ora_ldap_create_cred_hdl
(
 OraLdapClientCtx * clientCtx,
 int credType
);

OraLdapHandle ora_ldap_set_cred_props
(

cred Credentials needed for SASL authentication.

serverctrls List of LDAP server controls

clientctrls List of client controls

Table 14–7 (Cont.) Parameters passed to ora_ldap_init_sasl()

Parameter Description

Functions in the C API

14-14 Oracle Identity Management Application Developer’s Guide

 OraLdapClientCtx * clientCtx,
 OraLdapHandle cred,
 int String[],
 void * inProperty
);
OraLdapHandle ora_ldap_get_cred_props
(
 OraLdapClientCtx * clientCtx,
 OraLdapHandle cred,
 int String[],
 void * outProperty
);

OraLdapHandle ora_ldap_free_cred_hdl
(
 OraLdapClientCtx * clientCtx,
 OraLdapHandle cred
);

Parameters

Working With Controls
LDAPv3 operations can be extended through the use of controls. Controls can be sent
to a server or returned to the client with any LDAP message. These controls are
referred to as server controls.

The LDAP API also supports a client-side extension mechanism through the use of
client controls. These controls affect the behavior of the LDAP API only and are never
sent to a server. A common data structure is used to represent both types of controls:

typedef struct ldapcontrol
{
char *ldctl_oid;
struct berval ldctl_value;
char ldctl_iscritical;
} LDAPControl;

The fields in the ldapcontrol structure are described in Table 14–9.

Table 14–8 Parameters for Managing SASL Credentials

Parameter Description

clientCtx C API Client context. This can be managed using ora_ldap_
init_clientctx() and ora_ldap_free_clientctx()
functions.

credType Type of credential handle specific to SASL mechanism.

cred Credential handle containing SASL credentials needed for a
specific SASL mechanism for SASL authentication.

String[] Type of credential, which needs to be added to credential
handle.

inProperty One of the SASL Credentials to be stored in credential handle.

outProperty One of the SASL credentials stored in credential handle.

Functions in the C API

C API Reference 14-15

Some LDAP API calls allocate an ldapcontrol structure or a NULL-terminated array
of ldapcontrol structures. The following routines can be used to dispose of a single
control or an array of controls:

void ldap_control_free(LDAPControl *ctrl);
void ldap_controls_free(LDAPControl **ctrls);

If the ctrl or ctrls parameter is NULL, these calls do nothing.

A set of controls that affect the entire session can be set using the ldap_set_
option() function described in "ldap_get_option and ldap_set_option" on page 14-6.
A list of controls can also be passed directly to some LDAP API calls such as ldap_
search_ext(), in which case any controls set for the session through the use of
ldap_set_option() are ignored. Control lists are represented as a NULL-terminated
array of pointers to ldapcontrol structures.

Server controls are defined by LDAPv3 protocol extension documents; for example, a
control has been proposed to support server-side sorting of search results.

One client control is defined in this chapter (described in the following section).

Client-Controlled Referral Processing As described previously in "LDAP Session
Handle Options" on page 14-6, applications can enable and disable automatic chasing
of referrals on a session-wide basic by using the ldap_set_option() function with
the LDAP_OPT_REFERRALS option. It is also useful to govern automatic referral
chasing on per-request basis. A client control with an object identifier (OID) of
1.2.840.113556.1.4.616 exists to provide this functionality.

/* OID for referrals client control */
#define LDAP_CONTROL_REFERRALS "1.2.840.113556.1.4.616"

/* Flags for referrals client control value */
#define LDAP_CHASE_SUBORDINATE_REFERRALS 0x00000020U
#define LDAP_CHASE_EXTERNAL_REFERRALS 0x00000040U

To create a referrals client control, the ldctl_oid field of an LDAPControl structure
must be set to LDAP_CONTROL_REFERRALS ("1.2.840.113556.1.4.616") and
the ldctl_value field must be set to a four-octet value that contains a set of flags.
The ldctl_value.bv_len field must always be set to 4. The ldctl_value.bv_
val field must point to a four-octet integer flags value. This flags value can be set to

Table 14–9 Fields in ldapcontrol Structure

Field Description

ldctl_oid The control type, represented as a string.

ldctl_value The data associated with the control (if any). To specify a zero-length
value, set ldctl_value.bv_len to zero and ldctl_value.bv_val
to a zero-length string. To indicate that no data is associated with the
control, set ldctl_value.bv_val to NULL.

ldctl_iscritical Indicates whether the control is critical of not. If this field is nonzero, the
operation will only be carried out if the control is recognized by the
server or the client. Note that the LDAP unbind and abandon operations
have no server response. Clients should not mark server controls critical
when used with these two operations.

See Also: Chapter 3, "Extensions to the LDAP Protocol" for more
information about controls.

Functions in the C API

14-16 Oracle Identity Management Application Developer’s Guide

zero to disable automatic chasing of referrals and LDAPv3 references altogether.
Alternatively, the flags value can be set to the value LDAP_CHASE_SUBORDINATE_
REFERRALS (0x00000020U) to indicate that only LDAPv3 search continuation
references are to be automatically chased by the API implementation, to the value
LDAP_CHASE_EXTERNAL_REFERRALS (0x00000040U) to indicate that only
LDAPv3 referrals are to be automatically chased, or the logical OR of the two flag
values (0x00000060U) to indicate that both referrals and references are to be
automatically chased.

Closing the Session
Use the functions in this section to unbind from the directory, to close open
connections, and to dispose of the session handle.

ldap_unbind, ldap_unbind_ext, and ldap_unbind_s
ldap_unbind_ext(), ldap_unbind(), and ldap_unbind_s() all work
synchronously in the sense that they send an unbind request to the server, close all
open connections associated with the LDAP session handle, and dispose of all
resources associated with the session handle before returning. Note, however, that
there is no server response to an LDAP unbind operation. All three of the unbind
functions return LDAP_SUCCESS (or another LDAP error code if the request cannot be
sent to the LDAP server). After a call to one of the unbind functions, the session
handle ld is invalid and it is illegal to make any further LDAP API calls using ld.

The ldap_unbind() and ldap_unbind_s() functions behave identically. The
ldap_unbind_ext() function allows server and client controls to be included
explicitly, but note that since there is no server response to an unbind request there is
no way to receive a response to a server control sent with an unbind request.

Syntax
int ldap_unbind_ext(LDAP *ld, LDAPControl **serverctrls,
LDAPControl **clientctrls);
int ldap_unbind(LDAP *ld);
int ldap_unbind_s(LDAP *ld);

Parameters

Performing LDAP Operations
Use the functions in this section to search the LDAP directory and to return a
requested set of attributes for each entry matched.

See Also: "Directory Schema Administration" in Oracle Internet
Directory Administrator’s Guide for more information about object
identifiers.

Table 14–10 Parameters for Closing the Session

Parameter Description

ld The session handle

serverctrls List of LDAP server controls

clientctrls List of client controls

Functions in the C API

C API Reference 14-17

ldap_search_ext, ldap_search_ext_s, ldap_search, and ldap_search_s
The ldap_search_ext() function initiates an asynchronous search operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, ldap_search_ext() places the message id of
the request in *msgidp. A subsequent call to ldap_result() can be used to obtain
the results from the search. These results can be parsed using the result parsing
routines described in detail later.

Similar to ldap_search_ext(), the ldap_search() function initiates an
asynchronous search operation and returns the message id of the operation initiated.
As for ldap_search_ext(), a subsequent call to ldap_result() can be used to
obtain the result of the bind. In case of error, ldap_search() will return -1, setting
the session error parameters in the LDAP structure appropriately.

The synchronous ldap_search_ext_s(), ldap_search_s(), and ldap_search_
st() functions all return the result of the operation, either the constant LDAP_
SUCCESS if the operation was successful, or another LDAP error code if it was not.
Entries returned from the search, if any, are contained in the res parameter. This
parameter is opaque to the caller. Entries, attributes, values, and so on, can be
extracted by calling the parsing routines described in this section. The results
contained in res should be freed when no longer in use by calling ldap_msgfree(),
which is described later.

The ldap_search_ext() and ldap_search_ext_s() functions support LDAPv3
server controls, client controls, and allow varying size and time limits to be easily
specified for each search operation. The ldap_search_st() function is identical to
ldap_search_s() except that it takes an additional parameter specifying a local
timeout for the search. The local search timeout is used to limit the amount of time the
API implementation will wait for a search to complete. After the local search timeout
expires, the API implementation will send an abandon operation to stop the search
operation.

Syntax
int ldap_search_ext
(
LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeout,
int sizelimit,
int *msgidp
);

int ldap_search_ext_s
(
LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Functions in the C API

14-18 Oracle Identity Management Application Developer’s Guide

int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeout,
int sizelimit,
LDAPMessage **res
);

int ldap_search
(
LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly
);

int ldap_search_s
(
LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
LDAPMessage **res
);

int ldap_search_st
);

LDAP *ld,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
struct timeval *timeout,
LDAPMessage **res
);

Parameters
Table 14–11 lists and describes the parameters for search operations.

Table 14–11 Parameters for Search Operations

Parameter Description

ld The session handle.

base The DN of the entry at which to start the search.

scope One of LDAP_SCOPE_BASE (0x00), LDAP_SCOPE_ONELEVEL (0x01), or
LDAP_SCOPE_SUBTREE (0x02), indicating the scope of the search.

filter A character string representing the search filter. The value NULL can be passed to
indicate that the filter "(objectclass=*)" which matches all entries is to be
used. Note that if the caller of the API is using LDAPv2, only a subset of the filter
functionality can be successfully used.

Functions in the C API

C API Reference 14-19

Reading an Entry
LDAP does not support a read operation directly. Instead, this operation is emulated
by a search with base set to the DN of the entry to read, scope set to LDAP_SCOPE_

attrs A NULL-terminated array of strings indicating which attributes to return for each
matching entry. Passing NULL for this parameter causes all available user
attributes to be retrieved. The special constant string LDAP_NO_ATTRS ("1.1")
may be used as the only string in the array to indicate that no attribute types are to
be returned by the server. The special constant string LDAP_ALL_USER_ATTRS
("*") can be used in the attrs array along with the names of some operational
attributes to indicate that all user attributes plus the listed operational attributes
are to be returned.

attrsonly A boolean value that must be zero if both attribute types and values are to be
returned, and nonzero if only types are wanted.

timeout For the ldap_search_st() function, this specifies the local search timeout value
(if it is NULL, the timeout is infinite). If a zero timeout (where tv_sec and tv_
usec are both zero) is passed, API implementations should return LDAP_
PARAM_ERROR. For the ldap_search_ext() and ldap_search_ext_s()
functions, the timeout parameter specifies both the local search timeout value and
the operation time limit that is sent to the server within the search request. Passing
a NULL value for timeout causes the global default timeout stored in the LDAP
session handle (set by using ldap_set_option() with the LDAP_OPT_
TIMELIMIT parameter) to be sent to the server with the request but an infinite
local search timeout to be used. If a zero timeout (where tv_sec and tv_usec are
both zero) is passed in, API implementations should return LDAP_PARAM_ERROR.
If a zero value for tv_sec is used but tv_usec is nonzero, an operation time
limit of 1 should be passed to the LDAP server as the operation time limit. For
other values of tv_sec, the tv_sec value itself should be passed to the LDAP
server.

sizelimit For the ldap_search_ext() and ldap_search_ext_s() calls, this is a limit
on the number of entries to return from the search. A value of LDAP_NO_LIMIT
(0) means no limit.

res For the synchronous calls, this is a result parameter which will contain the results
of the search upon completion of the call. If no results are returned, *res is set to
NULL.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the request if the ldap_
search_ext() call succeeds.There are three options in the session handle ld
which potentially affect how the search is performed. They are:

■ LDAP_OPT_SIZELIMIT—A limit on the number of entries to return from the
search. A value of LDAP_NO_LIMIT (0) means no limit. Note that the value
from the session handle is ignored when using the ldap_search_ext() or
ldap_search_ext_s() functions.

■ LDAP_OPT_TIMELIMIT—A limit on the number of seconds to spend on the
search. A value of LDAP_NO_LIMIT (0) means no limit. Note that the value
from the session handle is ignored when using the ldap_search_ext() or
ldap_search_ext_s() functions.

■ LDAP_OPT_DEREF—One of LDAP_DEREF_NEVER (0x00), LDAP_DEREF_
SEARCHING (0x01), LDAP_DEREF_FINDING (0x02), or LDAP_DEREF_
ALWAYS (0x03), specifying how aliases are handled during the search. The
LDAP_DEREF_SEARCHING value means aliases are dereferenced during the
search but not when locating the base object of the search. The LDAP_DEREF_
FINDING value means aliases are dereferenced when locating the base object
but not during the search.

Table 14–11 (Cont.) Parameters for Search Operations

Parameter Description

Functions in the C API

14-20 Oracle Identity Management Application Developer’s Guide

BASE, and filter set to "(objectclass=*)" or NULL. The attrs parameter contains
the list of attributes to return.

Listing the Children of an Entry
LDAP does not support a list operation directly. Instead, this operation is emulated by
a search with base set to the DN of the entry to list, scope set to LDAP_SCOPE_
ONELEVEL, and filter set to "(objectclass=*)" or NULL. The parameter attrs
contains the list of attributes to return for each child entry.

ldap_compare_ext, ldap_compare_ext_s, ldap_compare, and ldap_compare_s
Use these routines to compare an attribute value assertion against an LDAP entry.

The ldap_compare_ext() function initiates an asynchronous compare operation
and returns the constant LDAP_SUCCESS if the request was successfully sent, or
another LDAP error code if not. If successful, ldap_compare_ext() places the
message id of the request in *msgidp. A subsequent call to ldap_result() can be
used to obtain the result of the compare.

Similar to ldap_compare_ext(), the ldap_compare() function initiates an
asynchronous compare operation and returns the message id of the operation initiated.
As for ldap_compare_ext(), a subsequent call to ldap_result() can be used to
obtain the result of the bind. In case of error, ldap_compare() will return -1, setting
the session error parameters in the LDAP structure appropriately.

The synchronous ldap_compare_ext_s() and ldap_compare_s() functions both
return the result of the operation, either the constant LDAP_SUCCESS if the operation
was successful, or another LDAP error code if it was not.

The ldap_compare_ext() and ldap_compare_ext_s() functions support
LDAPv3 server controls and client controls.

Syntax
int ldap_compare_ext
(
LDAP *ld,
const char *dn,
const char *attr,
const struct berval *bvalue,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp
);

int ldap_compare_ext_s
(
LDAP *ld,
const char *dn,
const char *attr,
const struct berval *bvalue,
LDAPControl **serverctrls,
LDAPControl **clientctrls
);

int ldap_compare
(

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Functions in the C API

C API Reference 14-21

LDAP *ld,
const char *dn,
const char *attr,
const char *value
);
int ldap_compare_s
(
LDAP *ld,
const char *dn,
const char *attr,
const char *value
);

Parameters
Table 14–12 lists and describes the parameters for compare operations.

ldap_modify_ext, ldap_modify_ext_s, ldap_modify, and ldap_modify_s
Use these routines to modify an existing LDAP entry.

The ldap_modify_ext() function initiates an asynchronous modify operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, ldap_modify_ext() places the message id of
the request in *msgidp. A subsequent call to ldap_result() can be used to obtain
the result of the modify.

Similar to ldap_modify_ext(), the ldap_modify() function initiates an
asynchronous modify operation and returns the message id of the operation initiated.
As for ldap_modify_ext(), a subsequent call to ldap_result() can be used to
obtain the result of the modify. In case of error, ldap_modify() will return -1,
setting the session error parameters in the LDAP structure appropriately.

The synchronous ldap_modify_ext_s() and ldap_modify_s() functions both
return the result of the operation, either the constant LDAP_SUCCESS if the operation
was successful, or another LDAP error code if it was not.

The ldap_modify_ext() and ldap_modify_ext_s() functions support LDAPv3
server controls and client controls.

Table 14–12 Parameters for Compare Operations

Parameter Description

ld The session handle.

dn The name of the entry to compare against.

attr The attribute to compare against.

bvalue The attribute value to compare against those found in the given entry. This
parameter is used in the extended routines and is a pointer to a struct
berval so it is possible to compare binary values.

value A string attribute value to compare against, used by the ldap_compare()
and ldap_compare_s() functions. Use ldap_compare_ext() or
ldap_compare_ext_s() if you need to compare binary values.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the request if the
ldap_compare_ext() call succeeds.

Functions in the C API

14-22 Oracle Identity Management Application Developer’s Guide

Syntax
typedef struct ldapmod
{
int mod_op;
char *mod_type;
union mod_vals_u
 {
 char **modv_strvals;
 struct berval **modv_bvals;
 } mod_vals;
} LDAPMod;
#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

int ldap_modify_ext
(
LDAP *ld,
const char *dn,
LDAPMod **mods,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp
);

int ldap_modify_ext_s
(
LDAP *ld,
const char *dn,
LDAPMod **mods,
LDAPControl **serverctrls,
LDAPControl **clientctrls
);

int ldap_modify
(
LDAP *ld,
const char *dn,
LDAPMod **mods
);

int ldap_modify_s
(
LDAP *ld,
const char *dn,
LDAPMod **mods
);

Parameters
Table 14–13 lists and describes the parameters for modify operations.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Table 14–13 Parameters for Modify Operations

Parameter Description

ld The session handle

dn The name of the entry to modify

Functions in the C API

C API Reference 14-23

Table 14–14 lists and describes the fields in the LDAPMod structure.

Usage Notes
For LDAP_MOD_ADD modifications, the given values are added to the entry, creating
the attribute if necessary.

For LDAP_MOD_DELETE modifications, the given values are deleted from the entry,
removing the attribute if no values remain. If the entire attribute is to be deleted, the
mod_vals field can be set to NULL.

For LDAP_MOD_REPLACE modifications, the attribute will have the listed values after
the modification, having been created if necessary, or removed if the mod_vals field is
NULL. All modifications are performed in the order in which they are listed.

ldap_rename and ldap_rename_s
Use these routines to change the name of an entry.

The ldap_rename() function initiates an asynchronous modify DN operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, ldap_rename() places the DN message id of
the request in *msgidp. A subsequent call to ldap_result() can be used to obtain
the result of the rename.

The synchronous ldap_rename_s() returns the result of the operation, either the
constant LDAP_SUCCESS if the operation was successful, or another LDAP error code
if it was not.

The ldap_rename() and ldap_rename_s() functions both support LDAPv3 server
controls and client controls.

mods A NULL-terminated array of modifications to make to the entry

serverctrls List of LDAP server controls

clientctrls List of client controls

msgidp This result parameter will be set to the message id of the request if the
ldap_modify_ext() call succeeds

Table 14–14 Fields in LDAPMod Structure

Field Description

mod_op The modification operation to perform. It must be one of LDAP_MOD_ADD
(0x00), LDAP_MOD_DELETE (0x01), or LDAP_MOD_REPLACE (0x02). This
field also indicates the type of values included in the mod_vals union. It is
logically ORed with LDAP_MOD_BVALUES (0x80) to select the
mod_bvalues form. Otherwise, the mod_values form is used.

mod_type The type of the attribute to modify.

mod_vals The values (if any) to add, delete, or replace. Only one of the mod_values or
mod_bvalues variants can be used, selected by ORing the mod_op field with
the constant LDAP_MOD_BVALUES. mod_values is a NULL-terminated array of
zero-terminated strings and mod_bvalues is a NULL-terminated array of
berval structures that can be used to pass binary values such as images.

Table 14–13 (Cont.) Parameters for Modify Operations

Parameter Description

Functions in the C API

14-24 Oracle Identity Management Application Developer’s Guide

Syntax
int ldap_rename
(
LDAP *ld,
const char *dn,
const char *newrdn,
const char *newparent,
int deleteoldrdn,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp
);

int ldap_rename_s
(
LDAP *ld,
const char *dn,
const char *newrdn,
const char *newparent,
int deleteoldrdn,
LDAPControl **serverctrls,
LDAPControl **clientctrls
);

The use of the following routines is deprecated and more complete descriptions can be
found in RFC 1823:

int ldap_modrdn
(
LDAP *ld,
const char *dn,
const char *newrdn
);

int ldap_modrdn_s
(
LDAP *ld,
const char *dn,
const char *newrdn
);

int ldap_modrdn2
(
LDAP *ld,
const char *dn,
const char *newrdn,
int deleteoldrdn
);

int ldap_modrdn2_s
(
LDAP *ld,
const char *dn,
const char *newrdn,
int deleteoldrdn
);

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Functions in the C API

C API Reference 14-25

Parameters
Table 14–15 lists and describes the parameters for rename operations.

ldap_add_ext, ldap_add_ext_s, ldap_add, and ldap_add_s
Use these functions to add entries to the LDAP directory.

The ldap_add_ext() function initiates an asynchronous add operation and returns
the constant LDAP_SUCCESS if the request was successfully sent, or another LDAP
error code if not. If successful, ldap_add_ext() places the message id of the request
in *msgidp. A subsequent call to ldap_result() can be used to obtain the result of
the add.

Similar to ldap_add_ext(), the ldap_add() function initiates an asynchronous
add operation and returns the message id of the operation initiated. As for ldap_
add_ext(), a subsequent call to ldap_result() can be used to obtain the result of
the add. In case of error, ldap_add() will return -1, setting the session error
parameters in the LDAP structure appropriately.

The synchronous ldap_add_ext_s() and ldap_add_s() functions both return the
result of the operation, either the constant LDAP_SUCCESS if the operation was
successful, or another LDAP error code if it was not.

The ldap_add_ext() and ldap_add_ext_s() functions support LDAPv3 server
controls and client controls.

Syntax
int ldap_add_ext
(
LDAP *ld,
const char *dn,
LDAPMod **attrs,
LDAPControl **serverctrls,

Table 14–15 Parameters for Rename Operations

Parameter Description

ld The session handle.

dn The name of the entry whose DN is to be changed.

newrdn The new RDN to give the entry.

newparent The new parent, or superior entry. If this parameter is NULL, only the RDN of
the entry is changed. The root DN should be specified by passing a zero
length string, "". The newparent parameter should always be NULL when
using version 2 of the LDAP protocol; otherwise the server's behavior is
undefined.

deleteoldrdn This parameter only has meaning on the rename routines if newrdn is
different than the old RDN. It is a boolean value, if nonzero indicating that
the old RDN value is to be removed, if zero indicating that the old RDN
value is to be retained as non-distinguished values of the entry.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the request if the ldap_
rename() call succeeds.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Functions in the C API

14-26 Oracle Identity Management Application Developer’s Guide

LDAPControl **clientctrls,
int *msgidp
);

int ldap_add_ext_s
(
LDAP *ld,
const char *dn,
LDAPMod **attrs,
LDAPControl **serverctrls,
LDAPControl **clientctrls
);

int ldap_add
(
LDAP *ld,
const char *dn,
LDAPMod **attrs
);

int ldap_add_s
(
LDAP *ld,
const char *dn,
LDAPMod **attrs
);

Parameters
Table 14–16 lists and describes the parameters for add operations.

Usage Notes
Note that the parent of the entry being added must already exist or the parent must be
empty—that is, equal to the root DN—for an add to succeed.

ldap_delete_ext, ldap_delete_ext_s, ldap_delete, and ldap_delete_s
Use these functions to delete a leaf entry from the LDAP directory.

The ldap_delete_ext() function initiates an asynchronous delete operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, ldap_delete_ext() places the message id of

Table 14–16 Parameters for Add Operations

Parameter Description

ld The session handle.

dn The name of the entry to add.

attrs The entry attributes, specified using the LDAPMod structure defined for ldap_
modify(). The mod_type and mod_vals fields must be filled in. The mod_op
field is ignored unless ORed with the constant LDAP_MOD_BVALUES, used to
select the mod_bvalues case of the mod_vals union.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the request if the ldap_
add_ext() call succeeds.

Functions in the C API

C API Reference 14-27

the request in *msgidp. A subsequent call to ldap_result() can be used to obtain
the result of the delete.

Similar to ldap_delete_ext(), the ldap_delete() function initiates an
asynchronous delete operation and returns the message id of the operation initiated.
As for ldap_delete_ext(), a subsequent call to ldap_result() can be used to
obtain the result of the delete. In case of error, ldap_delete() will return -1, setting
the session error parameters in the LDAP structure appropriately.

The synchronous ldap_delete_ext_s() and ldap_delete_s() functions both
return the result of the operation, either the constant LDAP_SUCCESS if the operation
was successful, or another LDAP error code if it was not.

The ldap_delete_ext() and ldap_delete_ext_s() functions support LDAPv3
server controls and client controls.

Syntax
int ldap_delete_ext
(
LDAP *ld,
const char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp
);

int ldap_delete_ext_s
(
LDAP *ld,
const char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls
);

int ldap_delete

(
LDAP *ld,
const char *dn
);

int ldap_delete_s
(
LDAP *ld,
const char *dn
);

Parameters
Table 14–17 lists and describes the parameters for delete operations.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Table 14–17 Parameters for Delete Operations

Parameter Description

ld The session handle.

dn The name of the entry to delete.

Functions in the C API

14-28 Oracle Identity Management Application Developer’s Guide

Usage Notes
Note that the entry to delete must be a leaf entry—that is, it must have no children.
Deletion of entire subtrees in a single operation is not supported by LDAP.

ldap_extended_operation and ldap_extended_operation_s
These routines enable extended LDAP operations to be passed to the server, providing
a general protocol extensibility mechanism.

The ldap_extended_operation()function initiates an asynchronous extended
operation and returns the constant LDAP_SUCCESS if the request was successfully
sent, or another LDAP error code if not. If successful, ldap_extended_
operation() places the message id of the request in *msgidp. A subsequent call to
ldap_result() can be used to obtain the result of the extended operation which can
be passed to ldap_parse_extended_result() to obtain the object identifier (OID)
and data contained in the response.

The synchronous ldap_extended_operation_s() function returns the result of
the operation, either the constant LDAP_SUCCESS if the operation was successful, or
another LDAP error code if it was not. The retoid and retdata parameters are
filled in with the OID and data from the response. If no OID or data was returned,
these parameters are set to NULL.

The ldap_extended_operation() and ldap_extended_operation_s()
functions both support LDAPv3 server controls and client controls.

Syntax
int ldap_extended_operation
(
LDAP *ld,
const char *requestoid,
const struct berval *requestdata,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp
);

int ldap_extended_operation_s
(
LDAP *ld,
const char *requestoid,
const struct berval *requestdata,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
char **retoidp,
struct berval **retdatap

serverctrls List of LDAP server controls.

clientctrls List of client controls.

msgidp This result parameter will be set to the message id of the request if the ldap_
delete_ext() call succeeds.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Table 14–17 (Cont.) Parameters for Delete Operations

Parameter Description

Functions in the C API

C API Reference 14-29

);

Parameters
Table 14–18 lists and describes the parameters for extended operations.

Abandoning an Operation
Use the functions in this section to abandon an operation in progress:

ldap_abandon_ext and ldap_abandon
ldap_abandon_ext() abandons the operation with message id msgid and returns
the constant LDAP_SUCCESS if the abandon was successful or another LDAP error
code if not.

ldap_abandon() is identical to ldap_abandon_ext() except that it does not
accept client or server controls and it returns zero if the abandon was successful, -1
otherwise.

After a successful call to ldap_abandon() or ldap_abandon_ext(), results with
the given message id are never returned from a subsequent call to ldap_result().
There is no server response to LDAP abandon operations.

Syntax
int ldap_abandon_ext
(
LDAP *ld,
int msgid,
LDAPControl **serverctrls,
LDAPControl **clientctrls
);

int ldap_abandon
(
LDAP *ld,
int msgid
);

Table 14–18 Parameters for Extended Operations

Parameter Description

ld The session handle

requestoid The dotted-OID text string naming the request

requestdata The arbitrary data needed by the operation (if NULL, no data is sent to the
server)

serverctrls List of LDAP server controls

clientctrls List of client controls

msgidp This result parameter will be set to the message id of the request if the ldap_
extended_operation() call succeeds.

retoidp Pointer to a character string that will be set to an allocated, dotted-OID text
string returned by the server. This string should be disposed of using the
ldap_memfree() function. If no OID was returned, *retoidp is set to
NULL.

retdatap Pointer to a berval structure pointer that will be set an allocated copy of the
data returned by the server. This struct berval should be disposed of
using ber_bvfree(). If no data is returned, *retdatap is set to NULL.

Functions in the C API

14-30 Oracle Identity Management Application Developer’s Guide

Parameters
Table 14–19 lists and describes the parameters for abandoning an operation.

Obtaining Results and Peeking Inside LDAP Messages
Use the functions in this section to return the result of an operation initiated
asynchronously. They identify messages by type and by ID.

ldap_result, ldap_msgtype, and ldap_msgid
ldap_result() is used to obtain the result of a previous asynchronously initiated
operation. Note that depending on how it is called, ldap_result() can actually
return a list or "chain" of result messages. The ldap_result() function only returns
messages for a single request, so for all LDAP operations other than search only one
result message is expected; that is, the only time the "result chain" can contain more
than one message is if results from a search operation are returned.

Once a chain of messages has been returned to the caller, it is no longer tied in any
caller-visible way to the LDAP request that produced it. Therefore, a chain of messages
returned by calling ldap_result() or by calling a synchronous search routine will
never be affected by subsequent LDAP API calls (except for ldap_msgfree() which
is used to dispose of a chain of messages).

ldap_msgfree() frees the result messages (possibly an entire chain of messages)
obtained from a previous call to ldap_result() or from a call to a synchronous
search routine.

ldap_msgtype() returns the type of an LDAP message. ldap_msgid() returns the
message ID of an LDAP message.

Syntax
int ldap_result
(
LDAP *ld,
int msgid,
int all,
struct timeval *timeout,
LDAPMessage **res
);
int ldap_msgfree(LDAPMessage *res);
int ldap_msgtype(LDAPMessage *res);
int ldap_msgid(LDAPMessage *res);

Table 14–19 Parameters for Abandoning an Operation

Parameter Description

ld The session handle.

msgid The message id of the request to be abandoned.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Functions in the C API

C API Reference 14-31

Parameters
Table 14–20 on page 14-31 lists and describes the parameters for obtaining results and
peeling inside LDAP messages.

Usage Notes
Upon successful completion, ldap_result() returns the type of the first result
returned in the res parameter. This will be one of the following constants.

LDAP_RES_BIND (0x61)

LDAP_RES_SEARCH_ENTRY (0x64)

LDAP_RES_SEARCH_REFERENCE (0x73)-- new in LDAPv3

LDAP_RES_SEARCH_RESULT (0x65)

LDAP_RES_MODIFY (0x67)

LDAP_RES_ADD (0x69)

LDAP_RES_DELETE (0x6B)

LDAP_RES_MODDN (0x6D)

LDAP_RES_COMPARE (0x6F)

LDAP_RES_EXTENDED (0x78) -- new in LDAPv3

ldap_result() returns 0 if the timeout expired and -1 if an error occurs, in which
case the error parameters of the LDAP session handle will be set accordingly.

ldap_msgfree() frees each message in the result chain pointed to by res and
returns the type of the last message in the chain. If res is NULL, then nothing is done
and the value zero is returned.

ldap_msgtype() returns the type of the LDAP message it is passed as a parameter.
The type will be one of the types listed previously, or -1 on error.

Table 14–20 Parameters for Obtaining Results and Peeking Inside LDAP Messages

Parameter Description

ld The session handle.

msgid The message id of the operation whose results are to be returned, the constant
LDAP_RES_UNSOLICITED (0) if an unsolicited result is desired, or the
constant LDAP_RES_ANY (-1) if any result is desired.

all Specifies how many messages will be retrieved in a single call to ldap_
result(). This parameter only has meaning for search results. Pass the
constant LDAP_MSG_ONE (0x00) to retrieve one message at a time. Pass
LDAP_MSG_ALL (0x01) to request that all results of a search be received
before returning all results in a single chain. Pass LDAP_MSG_RECEIVED
(0x02) to indicate that all messages retrieved so far are to be returned in the
result chain.

timeout A timeout specifying how long to wait for results to be returned. A NULL value
causes ldap_result() to block until results are available. A timeout value of
zero seconds specifies a polling behavior.

res For ldap_result(), a result parameter that will contain the result of the
operation. If no results are returned, *res is set to NULL. For ldap_
msgfree(), the result chain to be freed, obtained from a previous call to
ldap_result(), ldap_search_s(), or ldap_search_st(). If res is
NULL, nothing is done and ldap_msgfree() returns zero.

Functions in the C API

14-32 Oracle Identity Management Application Developer’s Guide

ldap_msgid() returns the message ID associated with the LDAP message passed as
a parameter, or -1 on error.

Handling Errors and Parsing Results
Use the functions in this section to extract information from results and to handle
errors returned by other LDAP API routines.

ldap_parse_result, ldap_parse_sasl_bind_result, ldap_parse_extended_result, and
ldap_err2string
 Note that ldap_parse_sasl_bind_result() and ldap_parse_extended_
result() must typically be used in addition to ldap_parse_result() to retrieve
all the result information from SASL Bind and Extended Operations respectively.

The ldap_parse_result(), ldap_parse_sasl_bind_result(), and ldap_
parse_extended_result() functions all skip over messages of type LDAP_RES_
SEARCH_ENTRY and LDAP_RES_SEARCH_REFERENCE when looking for a result
message to parse. They return the constant LDAP_SUCCESS if the result was
successfully parsed and another LDAP error code if not. Note that the LDAP error
code that indicates the outcome of the operation performed by the server is placed in
the errcodep ldap_parse_result() parameter. If a chain of messages that contains
more than one result message is passed to these routines they always operate on the
first result in the chain.

ldap_err2string() is used to convert a numeric LDAP error code, as returned by
ldap_parse_result(), ldap_parse_sasl_bind_result(), ldap_parse_
extended_result() or one of the synchronous API operation calls, into an
informative zero-terminated character string message describing the error. It returns a
pointer to static data.

Syntax
int ldap_parse_result
(
LDAP *ld,
LDAPMessage *res,
int *errcodep,
char **matcheddnp,
char **errmsgp,
char ***referralsp,
LDAPControl ***serverctrlsp,
int freeit
);

int ldap_parse_sasl_bind_result
(
LDAP *ld,
LDAPMessage *res,
struct berval **servercredp,
int freeit
);

int ldap_parse_extended_result
(
LDAP *ld,
LDAPMessage *res,
char **retoidp,

Functions in the C API

C API Reference 14-33

struct berval **retdatap,
int freeit
);
#define LDAP_NOTICE_OF_DISCONNECTION "1.3.6.1.4.1.1466.20036"
char *ldap_err2string(int err);

The routines immediately following are deprecated. To learn more about them, see
RFC 1823.

int ldap_result2error
(
LDAP *ld,
LDAPMessage *res,
int freeit
);
void ldap_perror(LDAP *ld, const char *msg);

Parameters
Table 14–21 lists and describes parameters for handling errors and parsing results.

Table 14–21 Parameters for Handling Errors and Parsing Results

Parameter Description

ld The session handle.

res The result of an LDAP operation as returned by ldap_result() or one of the
synchronous API operation calls.

errcodep This result parameter will be filled in with the LDAP error code field from the
LDAPMessage message. This is the indication from the server of the outcome
of the operation. NULL should be passed to ignore this field.

matcheddnp In the case of a return of LDAP_NO_SUCH_OBJECT, this result parameter will
be filled in with a DN indicating how much of the name in the request was
recognized. NULL should be passed to ignore this field. The matched DN string
should be freed by calling ldap_memfree() which is described later in this
document.

errmsgp This result parameter will be filled in with the contents of the error message
field from the LDAPMessage message. The error message string should be
freed by calling ldap_memfree() which is described later in this document.
NULL should be passed to ignore this field.

referralsp This result parameter will be filled in with the contents of the referrals field
from the LDAPMessage message, indicating zero or more alternate LDAP
servers where the request is to be retried. The referrals array should be freed
by calling ldap_value_free() which is described later in this document.
NULL should be passed to ignore this field.

serverctrlsp This result parameter will be filled in with an allocated array of controls copied
out of the LDAPMessage message. The control array should be freed by calling
ldap_controls_free() which was described earlier.

freeit A Boolean that determines whether the res parameter is disposed of or not.
Pass any nonzero value to have these routines free res after extracting the
requested information. This is provided as a convenience; you can also use
ldap_msgfree() to free the result later. If freeit is nonzero, the entire
chain of messages represented by res is disposed of.

servercredp For SASL bind results, this result parameter will be filled in with the
credentials passed back by the server for mutual authentication, if given. An
allocated berval structure is returned that should be disposed of by calling
ber_bvfree(). NULL should be passed to ignore this field.

Functions in the C API

14-34 Oracle Identity Management Application Developer’s Guide

Usage Notes
See RFC 1823 for a description of parameters peculiar to the deprecated routines.

Stepping Through a List of Results
Use the routines in this section to step through the list of messages in a result chain
returned by ldap_result().

ldap_first_message and ldap_next_message
The result chain for search operations can include referral messages, entry messages,
and result messages.

ldap_count_messages() is used to count the number of messages returned. The
ldap_msgtype() function, described previously, can be used to distinguish between
the different message types.

LDAPMessage *ldap_first_message(LDAP *ld, LDAPMessage *res);
LDAPMessage *ldap_next_message(LDAP *ld, LDAPMessage *msg);
int ldap_count_messages(LDAP *ld, LDAPMessage *res);

Parameters
Table 14–22 lists and describes the parameters for stepping through a list of results.

Usage Notes
ldap_first_message() and ldap_next_message() will return NULL when no
more messages exist in the result set to be returned. NULL is also returned if an error
occurs while stepping through the entries, in which case the error parameters in the
session handle ld will be set to indicate the error.

retoidp For extended results, this result parameter will be filled in with the dotted-OID
text representation of the name of the extended operation response. This string
should be disposed of by calling ldap_memfree(). NULL should be passed to
ignore this field. The LDAP_NOTICE_OF_DISCONNECTION macro is defined as
a convenience for clients that wish to check an OID to see if it matches the one
used for the unsolicited Notice of Disconnection (defined in RFC 2251[2]
section 4.4.1).

retdatap For extended results, this result parameter will be filled in with a pointer to a
struct berval containing the data in the extended operation response. It
should be disposed of by calling ber_bvfree(). NULL should be passed to
ignore this field.

err For ldap_err2string(), an LDAP error code, as returned by ldap_
parse_result() or another LDAP API call.

Table 14–22 Parameters for Stepping Through a List of Results

Parameter Description

ld The session handle.

res The result chain, as obtained by a call to one of the synchronous search
routines or ldap_result().

msg The message returned by a previous call to ldap_first_message() or
ldap_next_message().

Table 14–21 (Cont.) Parameters for Handling Errors and Parsing Results

Parameter Description

Functions in the C API

C API Reference 14-35

If successful, ldap_count_messages() returns the number of messages contained
in a chain of results; if an error occurs such as the res parameter being invalid, -1 is
returned. The ldap_count_messages() call can also be used to count the number
of messages that remain in a chain if called with a message, entry, or reference
returned by ldap_first_message(), ldap_next_message(), ldap_first_
entry(), ldap_next_entry(), ldap_first_reference(), ldap_next_
reference().

Parsing Search Results
Use the functions in this section to parse the entries and references returned by ldap_
search functions. These results are returned in an opaque structure that may be
accessed by calling the routines described in this section. Routines are provided to step
through the entries and references returned, step through the attributes of an entry,
retrieve the name of an entry, and retrieve the values associated with a given attribute
in an entry.

ldap_first_entry, ldap_next_entry, ldap_first_reference, ldap_next_reference, ldap_
count_entries, and ldap_count_references
The ldap_first_entry() and ldap_next_entry() routines are used to step
through and retrieve the list of entries from a search result chain. The ldap_first_
reference() and ldap_next_reference() routines are used to step through
and retrieve the list of continuation references from a search result chain. ldap_
count_entries() is used to count the number of entries returned. ldap_count_
references() is used to count the number of references returned.

LDAPMessage *ldap_first_entry(LDAP *ld, LDAPMessage *res);
LDAPMessage *ldap_next_entry(LDAP *ld, LDAPMessage *entry);
LDAPMessage *ldap_first_reference(LDAP *ld, LDAPMessage *res);
LDAPMessage *ldap_next_reference(LDAP *ld, LDAPMessage *ref);
int ldap_count_entries(LDAP *ld, LDAPMessage *res);
int ldap_count_references(LDAP *ld, LDAPMessage *res);

Parameters
Table 14–23 lists and describes the parameters or retrieving entries and continuation
references from a search result chain, and for counting entries returned.

Usage Notes
ldap_first_entry(), ldap_next_entry(), ldap_first_reference(), and
ldap_next_reference() all return NULL when no more entries or references exist
in the result set to be returned. NULL is also returned if an error occurs while stepping

Table 14–23 Parameters for Retrieving Entries and Continuation References from a
Search Result Chain, and for Counting Entries Returned

Parameter Description

ld The session handle.

res The search result, as obtained by a call to one of the synchronous search
routines or ldap_result().

entry The entry returned by a previous call to ldap_first_entry() or ldap_
next_entry().

ref The reference returned by a previous call to ldap_first_reference() or
ldap_next_reference().

Functions in the C API

14-36 Oracle Identity Management Application Developer’s Guide

through the entries or references, in which case the error parameters in the session
handle ld will be set to indicate the error.

ldap_count_entries() returns the number of entries contained in a chain of
entries; if an error occurs such as the res parameter being invalid, -1 is returned. The
ldap_count_entries() call can also be used to count the number of entries that
remain in a chain if called with a message, entry or reference returned by ldap_
first_message(), ldap_next_message(), ldap_first_entry(), ldap_
next_entry(), ldap_first_reference(), ldap_next_reference().

ldap_count_references() returns the number of references contained in a chain
of search results; if an error occurs such as the res parameter being invalid, -1 is
returned. The ldap_count_references() call can also be used to count the
number of references that remain in a chain.

ldap_first_attribute and ldap_next_attribute
Use the functions in this section to step through the list of attribute types returned
with an entry.

Syntax
char *ldap_first_attribute
(
LDAP *ld,
LDAPMessage *entry,
BerElement **ptr
);

char *ldap_next_attribute
(
LDAP *ld,
LDAPMessage *entry,
BerElement *ptr
);
void ldap_memfree(char *mem);

Parameters
Table 14–24 lists and describes the parameters for stepping through attribute types
returned with an entry.

Table 14–24 Parameters for Stepping Through Attribute Types Returned with an Entry

Parameter Description

ld The session handle.

entry The entry whose attributes are to be stepped through, as returned by ldap_
first_entry() or ldap_next_entry().

ptr In ldap_first_attribute(), the address of a pointer used internally to
keep track of the current position in the entry. In ldap_next_attribute(),
the pointer returned by a previous call to ldap_first_attribute(). The
BerElement type itself is an opaque structure.

mem A pointer to memory allocated by the LDAP library, such as the attribute type
names returned by ldap_first_attribute() and ldap_next_attribute,
or the DN returned by ldap_get_dn(). If mem is NULL, the ldap_memfree()
call does nothing.

Functions in the C API

C API Reference 14-37

Usage Notes
ldap_first_attribute() and ldap_next_attribute() returns NULL when
the end of the attributes is reached, or if there is an error. In the latter case, the error
parameters in the session handle ld are set to indicate the error.

Both routines return a pointer to an allocated buffer containing the current attribute
name. This should be freed when no longer in use by calling ldap_memfree().

ldap_first_attribute() will allocate and return in ptr a pointer to a
BerElement used to keep track of the current position. This pointer may be passed in
subsequent calls to ldap_next_attribute() to step through the entry's attributes.
After a set of calls to ldap_first_attribute() and ldap_next_attribute(), if
ptr is non-null, it should be freed by calling ber_free(ptr, 0). Note that it is very
important to pass the second parameter as 0 (zero) in this call, since the buffer
associated with the BerElement does not point to separately allocated memory.

The attribute type names returned are suitable for passing in a call to ldap_get_
values() and friends to retrieve the associated values.

ldap_get_values, ldap_get_values_len, ldap_count_values, ldap_count_values_len,
ldap_value_free, and ldap_value_free_len
ldap_get_values() and ldap_get_values_len() are used to retrieve the
values of a given attribute from an entry. ldap_count_values() and ldap_count_
values_len() are used to count the returned values.

ldap_value_free() and ldap_value_free_len() are used to free the values.

Syntax
char **ldap_get_values
(
LDAP *ld,
LDAPMessage *entry,
const char *attr
);

struct berval **ldap_get_values_len
(
LDAP *ld,
LDAPMessage *entry,
const char *attr
);

int ldap_count_values(char **vals);
int ldap_count_values_len(struct berval **vals);
void ldap_value_free(char **vals);
void ldap_value_free_len(struct berval **vals);

Parameters
Table 14–25 lists and describes the parameters for retrieving and counting attribute
values.

Table 14–25 Parameters for Retrieving and Counting Attribute Values

Parameter Description

ld The session handle.

entry The entry from which to retrieve values, as returned by ldap_first_
entry() or ldap_next_entry().

Functions in the C API

14-38 Oracle Identity Management Application Developer’s Guide

Usage Notes
Two forms of the various calls are provided. The first form is only suitable for use with
non-binary character string data. The second _len form is used with any kind of data.

ldap_get_values() and ldap_get_values_len() return NULL if no values are
found for attr or if an error occurs.

ldap_count_values() and ldap_count_values_len() return -1 if an error
occurs such as the vals parameter being invalid.

If a NULL vals parameter is passed to ldap_value_free() or ldap_value_free_
len(), nothing is done.

Note that the values returned are dynamically allocated and should be freed by calling
either ldap_value_free() or ldap_value_free_len() when no longer in use.

ldap_get_dn, ldap_explode_dn, ldap_explode_rdn, and ldap_dn2ufn
ldap_get_dn() is used to retrieve the name of an entry. ldap_explode_dn() and
ldap_explode_rdn() are used to break up a name into its component parts. ldap_
dn2ufn() is used to convert the name into a more user friendly format.

Syntax
char *ldap_get_dn(LDAP *ld, LDAPMessage *entry);
char **ldap_explode_dn(const char *dn, int notypes);
char **ldap_explode_rdn(const char *rdn, int notypes);
char *ldap_dn2ufn(const char *dn);

Parameters
Table 14–26 lists and describes the parameters for retrieving, exploding, and
converting entry names.

attr The attribute whose values are to be retrieved, as returned by ldap_first_
attribute() or ldap_next_attribute(), or a caller-supplied string (for
example, "mail").

vals The values returned by a previous call to ldap_get_values() or ldap_
get_values_len().

Table 14–26 Parameters for Retrieving, Exploding, and Converting Entry Names

Parameter Description

ld The session handle.

entry The entry whose name is to be retrieved, as returned by ldap_first_
entry() or ldap_next_entry().

dn The DN to explode, such as returned by ldap_get_dn().

rdn The RDN to explode, such as returned in the components of the array
returned by ldap_explode_dn().

notypes A Boolean parameter, if nonzero indicating that the DN or RDN components
are to have their type information stripped off: cn=Babs would become Babs.

Table 14–25 (Cont.) Parameters for Retrieving and Counting Attribute Values

Parameter Description

Functions in the C API

C API Reference 14-39

Usage Notes
ldap_get_dn() returns NULL if a DN parsing error occurs. The function sets error
parameters in the session handle ld to indicate the error. It returns a pointer to newly
allocated space that the caller should free by calling ldap_memfree() when it is no
longer in use.

ldap_explode_dn() returns a NULL-terminated char * array containing the RDN
components of the DN supplied, with or without types as indicated by the notypes
parameter. The components are returned in the order they appear in the DN. The array
returned should be freed when it is no longer in use by calling ldap_value_free().

ldap_explode_rdn() returns a NULL-terminated char * array containing the
components of the RDN supplied, with or without types as indicated by the notypes
parameter. The components are returned in the order they appear in the rdn. The array
returned should be freed when it is no longer in use by calling ldap_value_free().

ldap_dn2ufn() converts the DN into a user friendly format. The UFN returned is
newly allocated space that should be freed by a call to ldap_memfree() when no
longer in use.

ldap_get_entry_controls
ldap_get_entry_controls() is used to extract LDAP controls from an entry.

Syntax
int ldap_get_entry_controls
(
LDAP *ld,
LDAPMessage *entry,
LDAPControl ***serverctrlsp
);

Parameters
Table 14–27 lists and describes the parameters for extracting LDAP control from an
entry.

Usage Notes
ldap_get_entry_controls() returns an LDAP error code that indicates whether
the reference could be successfully parsed (LDAP_SUCCESS if all goes well).

ldap_parse_reference
Use ldap_parse_reference() to extract referrals and controls from a
SearchResultReference message.

Table 14–27 Parameters for Extracting LDAP Controls from an Entry

Parameters Description

ld The session handle.

entry The entry to extract controls from, as returned by ldap_first_entry() or
ldap_next_entry().

serverctrlsp This result parameter will be filled in with an allocated array of controls
copied out of entry. The control array should be freed by calling ldap_
controls_free(). If serverctrlsp is NULL, no controls are returned.

Sample C API Usage

14-40 Oracle Identity Management Application Developer’s Guide

Syntax
int ldap_parse_reference
(
LDAP *ld,
LDAPMessage *ref,
char ***referralsp,
LDAPControl ***serverctrlsp,
int freeit
);

Parameters
Table 14–28 lists and describes parameters for extracting referrals and controls from a
SearchResultReference message.

Usage Notes
ldap_parse_reference() returns an LDAP error code that indicates whether the
reference could be successfully parsed (LDAP_SUCCESS if all goes well).

Sample C API Usage
The following examples show how to use the C API both with and without SSL and
for SASL authentication. More complete examples are given in RFC 1823. The sample
code for the command-line tool to perform an LDAP search also demonstrates use of
the API in both the SSL and the non-SSL mode.

This section contains these topics:

■ C API Usage with SSL

■ C API Usage Without SSL

■ C API Usage for SASL-Based DIGEST-MD5 Authentication

C API Usage with SSL
#include <stdio.h>
#include <ldap.h>

Table 14–28 Parameters for Extracting Referrals and Controls from a
SearchResultReference Message

Parameter Description

ld The session handle.

ref The reference to parse, as returned by ldap_result(), ldap_first_
reference(), or ldap_next_reference().

referralsp This result parameter will be filled in with an allocated array of character
strings. The elements of the array are the referrals (typically LDAP URLs)
contained in ref. The array should be freed when no longer in used by calling
ldap_value_free(). If referralsp is NULL, the referral URLs are not
returned.

serverctrlsp This result parameter will be filled in with an allocated array of controls
copied out of ref. The control array shouldbe freed by calling ldap_
controls_free(). If serverctrlsp is NULL, no controls are returned.

freeit A Boolean that determines whether the ref parameter is disposed of or not.
Pass any nonzero value to have this routine free ref after extracting the
requested information. This is provided as a convenience. You can also use
ldap_msgfree() to free the result later.

Sample C API Usage

C API Reference 14-41

main()
{
LDAP *ld;
int ret = 0;
….
/* open a connection */
if ((ld = ldap_open("MyHost", 636)) == NULL)
 exit(1);

/* SSL initialization */
ret = ldap_init_SSL(&ld->ld_sb, "file:/sslwallet", "welcome",
 GSLC_SSL_ONEWAY_AUTH);
if(ret != 0)
{
printf(" %s \n", ldap_err2string(ret));
exit(1);
}

/* authenticate as nobody */
if (ldap_bind_s(ld, NULL, NULL) != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_bind_s");
 exit(1);
}

.

.

.
}

Because the user is making the ldap_init_SSL call, the client/server
communication in the previous example is secured by using SSL.

C API Usage Without SSL
#include <stdio.h>
#include <ldap.h>

main()
{
LDAP *ld;
int ret = 0;
.
.
.
/* open a connection */
if ((ld = ldap_open("MyHost", LDAP_PORT
)) == NULL)
 exit(1);

/* authenticate as nobody */
if (ldap_bind_s(ld, NULL, NULL) != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_bind_s");
 exit(1);
}
.
.
.
}

Sample C API Usage

14-42 Oracle Identity Management Application Developer’s Guide

In the previous example, the user is not making the ldap_init_SSL call, and the
client-to-server communication is therefore not secure.

C API Usage for SASL-Based DIGEST-MD5 Authentication
This sample program illustrates the usage of LDAP SASL C-API for SASL-based
DIGEST-MD5 authentication to a directory server.

/*
 EXPORT FUNCTION(S)
 NONE

 INTERNAL FUNCTION(S)
 NONE

 STATIC FUNCTION(S)
 NONE

 NOTES
 Usage:
 saslbind -h ldap_host -p ldap_port -D authentication_identity_dn \
 -w password
 options
 -h LDAP host
 -p LDAP port
 -D DN of the identity for authentication
 -p Password

 Default SASL authentication parameters used by the demo program
 SASL Security Property : Currently only "auth" security property
 is supported by the C-API. This demo
 program uses this security property.
 SASL Mechanism : Supported mechanisms by OID
 "DIGEST-MD5" - This demo program
 illustrates it's usage.
 "EXTERNAL" - SSL authentication is used.
 (This demo program does
 not illustrate it's usage.)
 Authorization identity : This demo program does not use any
 authorization identity.

 MODIFIED (MM/DD/YY)
 ****** 06/12/03 - Creation

*/

/*---
 PRIVATE TYPES AND CONSTANTS
 ---*/

/*---
 STATIC FUNCTION DECLARATIONS
 ---*/

#include <stdio.h>
#include <stdlib.h>
#include <ldap.h>

static int ldap_version = LDAP_VERSION3;

Sample C API Usage

C API Reference 14-43

main (int argc, char **argv)
{
 LDAP* ld;
 extern char* optarg;
 char* ldap_host = NULL;
 char* ldap_bind_dn = NULL;
 char* ldap_bind_pw = NULL;
 int authmethod = 0;
 char ldap_local_host[256] = "localhost";
 int ldap_port = 389;
 char* authcid = (char *)NULL;
 char* mech = "DIGEST-MD5"; /* SASL mechanism */
 char* authzid = (char *)NULL;
 char* sasl_secprops = "auth";
 char* realm = (char *)NULL;
 int status = LDAP_SUCCESS;
 OraLdapHandle sasl_cred = (OraLdapHandle)NULL;
 OraLdapClientCtx *cctx = (OraLdapClientCtx *)NULL;
 int i = 0;

 while ((i = getopt(argc, argv,
 "D:h:p:w:E:P:U:V:W:O:R:X:Y:Z"
)) != EOF) {
switch(i) {

case 'h':/* ldap host */
 ldap_host = (char *)strdup(optarg);
 break;
case 'D':/* bind DN */
 authcid = (char *)strdup(optarg);
 break;

case 'p':/* ldap port */
 ldap_port = atoi(optarg);
 break;
case 'w':/* Password */
 ldap_bind_pw = (char *)strdup(optarg);
 break;

 default:
 printf("Invalid Arguments passed\n");
}
 }

 /* Get the connection to the LDAP server */
 if (ldap_host == NULL)
 ldap_host = ldap_local_host;

 if ((ld = ldap_open (ldap_host, ldap_port)) == NULL)
 {
 ldap_perror (ld, "ldap_init");
 exit (1);
 }

 /* Create the client context needed by LDAP C-API Oracle Extension functions*/
 status = ora_ldap_init_clientctx(&cctx);

Required Header Files and Libraries for the C API

14-44 Oracle Identity Management Application Developer’s Guide

 if(LDAP_SUCCESS != status) {
 printf("Failed during creation of client context \n");
 exit(1);
 }

 /* Create SASL credentials */
 sasl_cred = ora_ldap_create_cred_hdl(cctx, ORA_LDAP_CRED_HANDLE_SASL_MD5);

 ora_ldap_set_cred_props(cctx, sasl_cred, ORA_LDAP_CRED_SASL_REALM,
 (void *)realm);
 ora_ldap_set_cred_props(cctx, sasl_cred, ORA_LDAP_CRED_SASL_AUTH_PASSWORD,
 (void *)ldap_bind_pw);
 ora_ldap_set_cred_props(cctx, sasl_cred, ORA_LDAP_CRED_SASL_AUTHORIZATION_ID,
 (void *)authzid);
 ora_ldap_set_cred_props(cctx, sasl_cred, ORA_LDAP_CRED_SASL_SECURITY_PROPERTIES,
 (void *)sasl_secprops);

 /* If connecting to the directory using SASL DIGEST-MD5, the Authentication ID
 has to be normalized before it's sent to the server,
 the LDAP C-API does this normalization based on the following flag set in
 SASL credential properties */
 ora_ldap_set_cred_props(cctx, sasl_cred, ORA_LDAP_CRED_SASL_NORM_AUTHDN, (void
*)NULL);

 /* SASL Authetication to LDAP Server */
 status = (int)ora_ldap_init_SASL(cctx, ld, (char *)authcid, (char *)ORA_LDAP_
SASL_MECH_DIGEST_MD5,
 sasl_cred, NULL, NULL);

 if(LDAP_SUCCESS == status) {
 printf("SASL bind successful \n");
 }else {
 printf("SASL bind failed with status : %d\n", status);
 }

 /* Free SASL Credentials */
 ora_ldap_free_cred_hdl(cctx, sasl_cred);

 status = ora_ldap_free_clientctx(cctx);

 /* Unbind from LDAP server */
 ldap_unbind (ld);

 return (0);
}

/* end of file saslbind.c */

Required Header Files and Libraries for the C API
To build applications with the C API, you need to:

■ Include the header file located at $ORACLE_HOME/ldap/public/ldap.h.

■ Dynamically link to the library located at

– $ORACLE_HOME/lib/libclntsh.so.10.1 on UNIX operating systems

– %ORACLE_HOME%\bin\oraldapclnt10.dll on Windows operating
systems

Dependencies and Limitations of the C API

C API Reference 14-45

Dependencies and Limitations of the C API
This API can work against any release of Oracle Internet Directory. It requires either
an Oracle environment or, at minimum, globalization support and other core libraries.

To use the different authentication modes in SSL, the directory server requires
corresponding configuration settings.

Oracle Wallet Manager is required for creating wallets if you are using the C API in
SSL mode.

TCP/IP Socket Library is required.

The following Oracle libraries are required:

■ Oracle SSL-related libraries

■ Oracle system libraries

Sample libraries are included in the release for the sample command line tool. You
should replace these libraries with your own versions of the libraries.

The product supports only those authentication mechanisms described in LDAP SDK
specifications (RFC 1823).

All strings input to the C API must be in UTF-8 format. If the strings are not in the
UTF-8 format, you can use the OCI function OCINlsCharSetConvert to perform the
conversion. Please see the Oracle Call Interface Programmer's Guide in the Oracle
Database Library at http://www.oracle.com/technology/documentation.

See Also: Oracle Internet Directory Administrator’s Guide for details
about how to set the directory server in various SSL authentication
modes.

Dependencies and Limitations of the C API

14-46 Oracle Identity Management Application Developer’s Guide

DBMS_LDAP PL/SQL Reference 15-1

15
DBMS_LDAP PL/SQL Reference

DBMS_LDAP contains the functions and procedures that enable PL/SQL programmers
to access data from LDAP servers. This chapter examines all of the API functions in
detail.

The chapter contains these topics:

■ Summary of Subprograms

■ Exception Summary

■ Data Type Summary

■ Subprograms

Summary of Subprograms

Note: Sample code for the DBMS_LDAP package is available at this
URL:

http://www.oracle.com/technology/sample_code/

Look for the Oracle Identity Management link under Sample
Applications—Fusion Middleware.

Table 15–1 DBMS_LDAP API Subprograms

Function or Procedure Description

FUNCTION init init() initializes a session with an LDAP server. This actually
establishes a connection with the LDAP server.

FUNCTION simple_bind_s The function simple_bind_s() can be used to perform
simple user name and password authentication to the directory
server.

FUNCTION bind_s The function bind_s() can be used to perform complex
authentication to the directory server.

FUNCTION unbind_s The function unbind_s() is used for closing an active LDAP
session.

FUNCTION compare_s The function compare_s() can be used to test if a particular
attribute in a particular entry has a particular value.

FUNCTION search_s The function search_s() performs a synchronous search in
the LDAP server. It returns control to the PL/SQL environment
only after all of the search results have been sent by the server
or if the search request is 'timed-out by the server.

Summary of Subprograms

15-2 Oracle Identity Management Application Developer’s Guide

FUNCTION search_st The function search_st() performs a synchronous search in
the LDAP server with a client side time out. It returns control
to the PL/SQL environment only after all of the search results
have been sent by the server or if the search request is
'timed-out' by the client or the server.

FUNCTION first_entry The function first_entry is used to retrieve the first entry in the
result set returned by either search_s() or search_st.

FUNCTION next_entry The function next_entry() is used to iterate to the next entry
in the result set of a search operation.

FUNCTION count_entries This function is used to count the number of entries in the
result set. It can also be used to count the number of entries
remaining during a traversal of the result set using a
combination of the functions first_entry() and next_
entry.

FUNCTION first_attribute The function first_attribute() fetches the first attribute
of a given entry in the result set.

FUNCTION next_attribute The function next_attribute()fetches the next attribute of
a given entry in the result set.

FUNCTION get_dn The function get_dn() retrieves the X.500 distinguished name
of a given entry in the result set.

FUNCTION get_values The function get_values()can be used to retrieve all of the
values associated with a given attribute in a given entry.

FUNCTION get_values_len The function get_values_len() can be used to retrieve
values of attributes that have a 'Binary' syntax.

FUNCTION delete_s This function can be used to remove a leaf entry in the LDAP
Directory Information Tree.

FUNCTION modrdn2_s The function modrdn2_s() can be used to rename the relative
distinguished name of an entry.

FUNCTION err2string The function err2string() can be used to convert an LDAP
error code to a string in the local language in which the API is
operating.

FUNCTION create_mod_array The function create_mod_array() allocates memory for
array modification entries that will be applied to an entry using
the modify_s() functions.

PROCEDURE populate_mod_
array (String Version)

Populates one set of attribute information for add or modify
operations. This procedure call has to happen after DBMS_
LDAP.create_mod_array() is called.

PROCEDURE populate_mod_
array (Binary Version)

Populates one set of attribute information for add or modify
operations. This procedure call has to occur after DBMS_
LDAP.create_mod_array() is called.

PROCEDURE populate_mod_
array (Binary Version. Uses
BLOB Data Type)

Populates one set of attribute information for add or modify
operations. This procedure call has to happen after DBMS_
LDAP.create_mod_array() is called.

FUNCTION get_values_blob The function get_values_blob() can be used to retrieve
larger values of attributes that have a binary syntax.

FUNCTION count_values_blob Counts the number of values returned by DBMS_LDAP.get_
values_blob().

FUNCTION value_free_blob Frees the memory associated with the BLOB_COLLECTION
returned by DBMS_LDAP.get_values_blob().

Table 15–1 (Cont.) DBMS_LDAP API Subprograms

Function or Procedure Description

Exception Summary

DBMS_LDAP PL/SQL Reference 15-3

Exception Summary
DBMS_LDAP can generate the exceptions described in Table 15–2 on page 15-3.

FUNCTION modify_s Performs a synchronous modification of an existing LDAP
directory entry. Before calling add_s, you must call DBMS_
LDAP.creat_mod_array() and DBMS_LDAP.populate_
mod_array().

FUNCTION add_s Adds a new entry to the LDAP directory synchronously. Before
calling add_s, you must call DBMS_LDAP.creat_mod_
array() and DBMS_LDAP.populate_mod_array().

PROCEDURE free_mod_array Frees the memory allocated by DBMS_LDAP.create_mod_
array().

FUNCTION count_values Counts the number of values returned by DBMS_LDAP.get_
values().

FUNCTION count_values_len Counts the number of values returned by DBMS_LDAP.get_
values_len ().

FUNCTION rename_s Renames an LDAP entry synchronously.

FUNCTION explode_dn Breaks a DN up into its components.

FUNCTION open_ssl Establishes an SSL (Secure Sockets Layer) connection over an
existing LDAP connection.

FUNCTION msgfree This function frees the chain of messages associated with the
message handle returned by synchronous search functions.

FUNCTION ber_free This function frees the memory associated with a handle to
BER_ELEMENT.

FUNCTION nls_convert_to_
utf8

The nls_convert_to_utf8 function converts the input
string containing database character set data to UTF-8 character
set data and returns it.

FUNCTION nls_convert_from_
utf8

The nls_convert_from_utf8 function converts the input
string containing UTF-8 character set data to database character
set data and returns it.

FUNCTION nls_get_
dbcharset_name

The nls_get_dbcharset_name function returns a string
containing the database character set name.

See Also:

■ "Searching the Directory" in Chapter 3 for more about DBMS_
LDAP.search_s() and DBMS_LDAP.search_st().

■ "Terminating the Session by Using DBMS_LDAP" in Chapter 3 for
more about DBMS_LDAP.unbind_s().

Table 15–2 DBMS_LDAP Exception Summary

Exception Name

Oracle
Error
Number Cause of Exception

general_error 31202 Raised anytime an error is encountered that does not
have a specific PL/SQL exception associated with it.
The error string contains the description of the problem
in the user's language.

Table 15–1 (Cont.) DBMS_LDAP API Subprograms

Function or Procedure Description

Exception Summary

15-4 Oracle Identity Management Application Developer’s Guide

init_failed 31203 Raised by DBMS_LDAP.init() if there are problems.

invalid_session 31204 Raised by all functions and procedures in the DBMS_
LDAP package if they are passed an invalid session
handle.

invalid_auth_method 31205 Raised by DBMS_LDAP.bind_s()if the authentication
method requested is not supported.

invalid_search_scope 31206 Raised by all search functions if the scope of the search
is invalid.

invalid_search_time_val 31207 Raised by DBMS_LDAP.search_st()if it is given an
invalid value for a time limit.

invalid_message 31208 Raised by all functions that iterate through a result-set
for getting entries from a search operation if the
message handle given to them is invalid.

count_entry_error 31209 Raised by DBMS_LDAP.count_entries if it cannot
count the entries in a given result set.

get_dn_error 31210 Raised by DBMS_LDAP.get_dn if the DN of the entry
it is retrieving is NULL.

invalid_entry_dn 31211 Raised by all functions that modify, add, or rename an
entry if they are presented with an invalid entry DN.

invalid_mod_array 31212 Raised by all functions that take a modification array as
an argument if they are given an invalid modification
array.

invalid_mod_option 31213 Raised by DBMS_LDAP.populate_mod_array if the
modification option given is anything other than MOD_
ADD, MOD_DELETE or MOD_REPLACE.

invalid_mod_type 31214 Raised by DBMS_LDAP.populate_mod_array if the
attribute type that is being modified is NULL.

invalid_mod_value 31215 Raised by DBMS_LDAP.populate_mod_array if the
modification value parameter for a given attribute is
NULL.

invalid_rdn 31216 Raised by all functions and procedures that expect a
valid RDN and are provided with an invalid one.

invalid_newparent 31217 Raised by DBMS_LDAP.rename_s if the new parent of
an entry being renamed is NULL.

invalid_deleteoldrdn 31218 Raised by DBMS_LDAP.rename_s if the
deleteoldrdn parameter is invalid.

invalid_notypes 31219 Raised by DBMS_LDAP.explode_dn if the notypes
parameter is invalid.

invalid_ssl_wallet_loc 31220 Raised by DBMS_LDAP.open_ssl if the wallet
location is NULL but the SSL authentication mode
requires a valid wallet.

invalid_ssl_wallet_
password

31221 Raised by DBMS_LDAP.open_ssl if the wallet
password given is NULL.

invalid_ssl_auth_mode 31222 Raised by DBMS_LDAP.open_ssl if the SSL
authentication mode is not 1, 2 or 3.

Table 15–2 (Cont.) DBMS_LDAP Exception Summary

Exception Name

Oracle
Error
Number Cause of Exception

Subprograms

DBMS_LDAP PL/SQL Reference 15-5

Data Type Summary
The DBMS_LDAP package uses the data types described in Table 15–3.

Subprograms
This section takes a closer look at each of the DBMS_LDAP subprograms.

FUNCTION init
init() initializes a session with an LDAP server. This actually establishes a
connection with the LDAP server.

Syntax
FUNCTION init
(
hostname IN VARCHAR2,
portnum IN PLS_INTEGER
)
RETURN SESSION;

Parameters

Table 15–3 DBMS_LDAP Data Type Summary

Data-Type Purpose

SESSION Used to hold the handle of the LDAP session. Nearly all of the
functions in the API require a valid LDAP session to work.

MESSAGE Used to hold a handle to the message retrieved from the result set. This
is used by all functions that work with entry attributes and values.

MOD_ARRAY Used to hold a handle to the array of modifications being passed to
either modify_s() or add_s().

TIMEVAL Used to pass time limit information to the LDAP API functions that
require a time limit.

BER_ELEMENT Used to hold a handle to a BER structure used for decoding incoming
messages.

STRING_COLLECTION Used to hold a list of VARCHAR2 strings that can be passed on to the
LDAP server.

BINVAL_COLLECTION Used to hold a list of RAW data, which represent binary data.

BERVAL_COLLECTION Used to hold a list of BERVAL values that are used for populating a
modification array.

BLOB_COLLECTION Used to hold a list of BLOB data, which represent binary data.

Table 15–4 INIT Function Parameters

Parameter Description

hostname Contains a space-separated list of host names or dotted strings
representing the IP address of hosts running an LDAP server to
connect to. Each host name in the list may include a port
number, which is separated from the host by a colon. The hosts
are tried in the order listed, stopping with the first one to
which a successful connection is made.

Subprograms

15-6 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
DBMS_LDAP.init() is the first function that should be called because it establishes a
session with the LDAP server. Function DBMS_LDAP.init() returns a session
handle, a pointer to an opaque structure that must be passed to subsequent calls
pertaining to the session. This routine will return NULL and raise the INIT_FAILED
exception if the session cannot be initialized. After init() has been called, the
connection has to be authenticated using DBMS_LDAP.bind_s or DBMS_
LDAP.simple_bind_s().

See Also
DBMS_LDAP.simple_bind_s(), DBMS_LDAP.bind_s().

FUNCTION simple_bind_s
The function simple_bind_s can be used to perform simple user name and
password authentication to the directory server.

Syntax
FUNCTION simple_bind_s
(
ld IN SESSION,
dn IN VARCHAR2,
passwd IN VARCHAR2
)
RETURN PLS_INTEGER;

portnum Contains the TCP port number to connect to. If the port
number is included with the host name, this parameter is
ignored. If the parameter is not specified, and the host name
does not contain the port number, a default port number of
389 is assumed.

Table 15–5 INIT Function Return Values

Value Description

SESSION A handle to an LDAP session that can be used for further calls
to the API.

Table 15–6 INIT Function Exceptions

Exception Description

init_failed Raised when there is a problem contacting the LDAP server.

general_error For all other errors. The error string associated with the
exception describes the error in detail.

Table 15–4 (Cont.) INIT Function Parameters

Parameter Description

Subprograms

DBMS_LDAP PL/SQL Reference 15-7

Parameters

Return Values

Exceptions

Usage Notes
DBMS_LDAP.simple_bind_s() can be used to authenticate a user whose directory
distinguished name and directory password are known. It can be called only after a
valid LDAP session handle is obtained from a call to DBMS_LDAP.init().

FUNCTION bind_s
The function bind_s can be used to perform complex authentication to the directory
server.

Syntax
FUNCTION bind_s
(
ld IN SESSION,
dn IN VARCHAR2,
cred IN VARCHAR2,
meth IN PLS_INTEGER
)
RETURN PLS_INTEGER;

Parameters

Table 15–7 SIMPLE_BIND_S Function Parameters

Parameter Description

ld A valid LDAP session handle.

dn The Distinguished Name of the User that we are trying to login
as.

passwd A text string containing the password.

Table 15–8 SIMPLE_BIND_S Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS on a successful completion. If there was
a problem, one of the following exceptions will be raised.

Table 15–9 SIMPLE_BIND_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Table 15–10 BIND_S Function Parameters

Parameter Description

ld A valid LDAP session handle.

dn The distinguished name of the user.

Subprograms

15-8 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
DBMS_LDAP.bind_s() can be used to authenticate a user. It can be called only after a
valid LDAP session handle is obtained from a call to DBMS_LDAP.init().

See Also
DBMS_LDAP.init(), DBMS_LDAP.simple_bind_s().

FUNCTION unbind_s
The function unbind_s is used for closing an active LDAP session.

Syntax
FUNCTION unbind_s
(
ld IN OUT SESSION
)
RETURN PLS_INTEGER;

Parameters

cred A text string containing the credentials used for authentication.

meth The authentication method. The only valid value is DBMS_
LDAP_UTL.AUTH_SIMPLE.

Table 15–11 BIND_S Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS upon successful completion. One of the
following exceptions is raised if there is a problem.

Table 15–12 BIND_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_auth_method Raised if the authentication method requested is not
supported.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Table 15–13 UNBIND_S Function Parameters

Parameter Description

ld A valid LDAP session handle.

Table 15–10 (Cont.) BIND_S Function Parameters

Parameter Description

Subprograms

DBMS_LDAP PL/SQL Reference 15-9

Return Values

Exceptions

Usage Notes
The unbind_s() function sends an unbind request to the server, closes all open
connections associated with the LDAP session, and disposes of all resources associated
with the session handle before returning. After a call to this function, the session
handle ld is invalid.

See Also
DBMS_LDAP.bind_s(), DBMS_LDAP.simple_bind_s().

FUNCTION compare_s
The function compare_s can be used to test if a particular attribute in a particular
entry has a particular value.

Syntax
FUNCTION compare_s
(
ld IN SESSION,
dn IN VARCHAR2,
attr IN VARCHAR2,
value IN VARCHAR2
)
RETURN PLS_INTEGER;

Parameters

Table 15–14 UNBIND_S Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS on proper completion. One of the
following exceptions is raised otherwise.

Table 15–15 UNBIND_S Function Exceptions

Exception Description

invalid_session Raised if the sessions handle ld is invalid.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Table 15–16 COMPARE_S Function Parameters

Parameter Description

ld A valid LDAP session handle.

dn The name of the entry to compare against.

attr The attribute to compare against.

value A string attribute value to compare against.

Subprograms

15-10 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
The function compare_s can be used to assert that an attribute in the directory has a
certain value. This operation can be performed only on attributes whose syntax
enables them to be compared. The compare_s function can be called only after a valid
LDAP session handle has been obtained from the init() function and authenticated
by the bind_s() or simple_bind_s() functions.

See Also
DBMS_LDAP.bind_s().

FUNCTION search_s
The function search_s performs a synchronous search in the directory. It returns
control to the PL/SQL environment only after all of the search results have been sent
by the server or if the search request is timed out by the server.

Syntax
FUNCTION search_s
(
ld IN SESSION,
base IN VARCHAR2,
scope IN PLS_INTEGER,
filter IN VARCHAR2,
attrs IN STRING_COLLECTION,
attronly IN PLS_INTEGER,
res OUT MESSAGE
)
RETURN PLS_INTEGER;

Parameters

Table 15–17 COMPARE_S Function Return Values

Value Description

PLS_INTEGER COMPARE_TRUE if the given attribute has a matching value.

COMPARE_FALSE if the given attribute does not have a
matching value.

Table 15–18 COMPARE_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Table 15–19 SEARCH_S Function Parameters

Parameter Description

ld A valid LDAP session handle.

base The DN of the entry at which to start the search.

Subprograms

DBMS_LDAP PL/SQL Reference 15-11

Return Values

Exceptions

Usage Notes
The function search_s() issues a search operation and does not return control to the
user environment until all of the results have been returned from the server. Entries
returned from the search, if any, are contained in the res parameter. This parameter is
opaque to the caller. Entries, attributes, and values can be extracted by calling the
parsing routines described in this chapter.

See Also
DBMS_LDAP.search_st(), DBMS_LDAP.first_entry(), DBMS_LDAP.next_
entry.

scope One of SCOPE_BASE (0x00), SCOPE_ONELEVEL (0x01), or
SCOPE_SUBTREE (0x02), indicating the scope of the search.

filter A character string representing the search filter. The value NULL can be
passed to indicate that the filter "(objectclass=*)", which
matches all entries, is to be used.

attrs A collection of strings indicating which attributes to return for each
matching entry. Passing NULL for this parameter causes all available
user attributes to be retrieved. The special constant string NO_ATTRS
("1.1") may be used as the only string in the array to indicate that
no attribute types are to be returned by the server. The special constant
string ALL_USER_ATTRS ("*") can be used in the attrs array along
with the names of some operational attributes to indicate that all user
attributes plus the listed operational attributes are to be returned.

attrsonly A boolean value that must be zero if both attribute types and values
are to be returned, and nonzero if only types are wanted.

res This is a result parameter that contains the results of the search upon
completion of the call. If no results are returned, *res is set to NULL.

Table 15–20 SEARCH_S Function Return Value

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS if the search operation succeeded. An
exception is raised in all other cases.

res If the search succeeded and there are entries, this parameter is
set to a non-null value which can be used to iterate through the
result set.

Table 15–21 SEARCH_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_search_scope Raised if the search scope is not one of SCOPE_BASE, SCOPE_
ONELEVEL, or SCOPE_SUBTREE.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Table 15–19 (Cont.) SEARCH_S Function Parameters

Parameter Description

Subprograms

15-12 Oracle Identity Management Application Developer’s Guide

FUNCTION search_st
The function search_st() performs a synchronous search in the LDAP server with a
client-side time out. It returns control to the PL/SQL environment only after all of the
search results have been sent by the server or if the search request is timed out by the
client or the server.

Syntax
FUNCTION search_st
(
ld IN SESSION,
base IN VARCHAR2,
scope IN PLS_INTEGER,
filter IN VARCHAR2,
attrs IN STRING_COLLECTION,
attronly IN PLS_INTEGER,
tv IN TIMEVAL,
res OUT MESSAGE
)
RETURN PLS_INTEGER;

Parameters

Table 15–22 SEARCH_ST Function Parameters

Parameter Description

ld A valid LDAP session handle.

base The DN of the entry at which to start the search.

scope One of SCOPE_BASE (0x00), SCOPE_ONELEVEL (0x01), or
SCOPE_SUBTREE (0x02), indicating the scope of the search.

filter A character string representing the search filter. The value
NULL can be passed to indicate that the filter
"(objectclass=*)", which matches all entries, is to be
used.

attrs A collection of strings indicating which attributes to return for
each matching entry. Passing NULL for this parameter causes
all available user attributes to be retrieved. The special constant
string NO_ATTRS ("1.1") may be used as the only string in
the array to indicate that no attribute types are to be returned
by the server. The special constant string ALL_USER_ATTRS
("*") can be used in the attrs array along with the names of
some operational attributes to indicate that all user attributes
plus the listed operational attributes are to be returned.

attrsonly A boolean value that must be zero if both attribute types and
values are to be returned, and nonzero if only types are
wanted.

tv The time out value, expressed in seconds and microseconds,
that should be used for this search.

res This is a result parameter which will contain the results of the
search upon completion of the call. If no results are returned,
*res is set to NULL.

Subprograms

DBMS_LDAP PL/SQL Reference 15-13

Return Values

Exceptions

Usage Notes
This function is very similar to DBMS_LDAP.search_s() except that it requires a
time out value to be given.

See Also
DBMS_LDAP.search_s(), DBML_LDAP.first_entry(), DBMS_LDAP.next_
entry.

FUNCTION first_entry
The function first_entry() is used to retrieve the first entry in the result set
returned by either search_s() or search_st().

Syntax
FUNCTION first_entry
(
ld IN SESSION,
msg IN MESSAGE
)
RETURN MESSAGE;

Parameters

Table 15–23 SEARCH_ST Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS if the search operation succeeded. An
exception is raised in all other cases.

res If the search succeeded and there are entries, this parameter is
set to a non-null value which can be used to iterate through the
result set.

Table 15–24 SEARCH_ST Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_search_scope Raised if the search scope is not one of SCOPE_BASE, SCOPE_
ONELEVEL or SCOPE_SUBTREE.

invalid_search_time_
value

Raised if the time value specified for the time out is invalid.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Table 15–25 FIRST_ENTRY Function Parameters

Parameter Description

ld A valid LDAP session handle.

msg The search result, as obtained by a call to one of the
synchronous search routines.

Subprograms

15-14 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
The function first_entry() should always be the first function used to retrieve the
results from a search operation.

See Also
DBMS_LDAP.next_entry(), DBMS_LDAP.search_s(), DBMS_LDAP.search_
st().

FUNCTION next_entry
The function next_entry() is used to iterate to the next entry in the result set of a
search operation.

Syntax
FUNCTION next_entry
(
ld IN SESSION,
msg IN MESSAGE
)
RETURN MESSAGE;

Parameters

Table 15–26 FIRST_ENTRY Return Values

Value Description

MESSAGE A handle to the first entry in the list of entries returned from
the LDAP server. It is set to NULL if there was an error and an
exception is raised.

Table 15–27 FIRST_ENTRY Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.

Table 15–28 NEXT_ENTRY Function Parameters

Parameter Description

ld A valid LDAP session handle.

msg The search result, as obtained by a call to one of the
synchronous search routines.

Subprograms

DBMS_LDAP PL/SQL Reference 15-15

Return Values

Exceptions

Usage Notes
The function next_entry() should always be called after a call to the function
first_entry(). Also, the return value of a successful call to next_entry() should
be used as msg argument used in a subsequent call to the function next_entry() to
fetch the next entry in the list.

See Also
DBMS_LDAP.first_entry(), DBMS_LDAP.search_s(), DBMS_LDAP.search_
st().

FUNCTION count_entries
This function is used to count the number of entries in the result set. It can also be used
to count the number of entries remaining during a traversal of the result set using a
combination of the functions first_entry() and next_entry().

Syntax
FUNCTION count_entries
(
ld IN SESSION,
msg IN MESSAGE
)
RETURN PLS_INTEGER;

Parameters

Table 15–29 NEXT_ENTRY Function Return Values

Value Description

MESSAGE A handle to the next entry in the list of entries returned from
the LDAP server. It is set to null if there was an error and an
exception is raised.

Table 15–30 NEXT_ENTRY Function Exceptions

Exception Description

invalid_session Raised if the session handle, ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.

Table 15–31 COUNT_ENTRY Function Parameters

Parameter Description

ld A valid LDAP session handle.

msg The search result, as obtained by a call to one of the
synchronous search routines.

Subprograms

15-16 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
count_entries() returns the number of entries contained in a chain of entries; if an
error occurs such as the res parameter being invalid, -1 is returned. The count_
entries() call can also be used to count the number of entries that remain in a chain
if called with a message, entry, or reference returned by first_message(), next_
message(), first_entry(), next_entry(), first_reference(), next_
reference().

See Also
DBMS_LDAP.first_entry(), DBMS_LDAP.next_entry().

FUNCTION first_attribute
The function first_attribute() fetches the first attribute of a given entry in the
result set.

Syntax
FUNCTION first_attribute
(
ld IN SESSION,
ldapentry IN MESSAGE,
ber_elem OUT BER_ELEMENT
)
RETURN VARCHAR2;

Parameters

Table 15–32 COUNT_ENTRY Function Return Values

Value Description

PLS_INTEGER Nonzero if there are entries in the result set. -1 if there was a
problem.

Table 15–33 COUNT_ENTRY Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.

count_entry_error Raised if there was a problem in counting the entries.

Table 15–34 FIRST_ATTRIBUTE Function Parameters

Parameter Description

ld A valid LDAP session handle.

ldapentry The entry whose attributes are to be stepped through, as
returned by first_entry() or next_entry().

ber_elem A handle to a BER_ELEMENT that is used to keep track of
attributes in the entry that have already been read.

Subprograms

DBMS_LDAP PL/SQL Reference 15-17

Return Values

Exceptions

Usage Notes
The handle to the BER_ELEMENT returned as a function parameter to first_
attribute() should be used in the next call to next_attribute() to iterate
through the various attributes of an entry. The name of the attribute returned from a
call to first_attribute() can in turn be used in calls to the functions get_
values() or get_values_len() to get the values of that particular attribute.

See Also
DBMS_LDAP.next_attribute(), DBMS_LDAP.get_values(), DBMS_LDAP.get_
values_len(), DBMS_LDAP.first_entry(), DBMS_LDAP.next_entry().

FUNCTION next_attribute
The function next_attribute() retrieves the next attribute of a given entry in the
result set.

Syntax
FUNCTION next_attribute
(
ld IN SESSION,
ldapentry IN MESSAGE,
ber_elem IN BER_ELEMENT
)
RETURN VARCHAR2;

Parameters

Table 15–35 FIRST_ATTRIBUTE Function Return Values

Value Description

VARCHAR2 The name of the attribute if it exists.

NULL if no attribute exists or if an error occurred.

ber_elem A handle used by DBMS_LDAP.next_attribute() to iterate
over all of the attributes

Table 15–36 FIRST_ATTRIBUTE Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.

Table 15–37 NEXT_ATTRIBUTE Function Parameters

Parameter Description

ld A valid LDAP session handle.

ldapentry The entry whose attributes are to be stepped through, as
returned by first_entry() or next_entry().

ber_elem A handle to a BER_ELEMENT that is used to keep track of
attributes in the entry that have been read.

Subprograms

15-18 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
The handle to the BER_ELEMENT returned as a function parameter to first_
attribute() should be used in the next call to next_attribute() to iterate
through the various attributes of an entry. The name of the attribute returned from a
call to next_attribute() can in turn be used in calls to the functions get_
values() or get_values_len() to get the values of that particular attribute.

See Also
DBMS_LDAP.first_attribute(), DBMS_LDAP.get_values(), DBMS_
LDAP.get_values_len(), DBMS_LDAP.first_entry(), DBMS_LDAP.next_
entry().

FUNCTION get_dn
The function get_dn() retrieves the X.500 distinguished name of given entry in the
result set.

Syntax
FUNCTION get_dn
(
ld IN SESSION,
ldapentrymsg IN MESSAGE
)
RETURN VARCHAR2;

Parameters

Table 15–38 NEXT_ATTRIBUTE Function Return Values

Value Description

VARCHAR2

(function return)

The name of the attribute if it exists.

Table 15–39 NEXT_ATTRIBUTE Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.

Table 15–40 GET_DN Function Parameters

Parameter Description

ld A valid LDAP session handle.

ldapentry The entry whose DN is to be returned.

Subprograms

DBMS_LDAP PL/SQL Reference 15-19

Return Values

Exceptions

Usage Notes
The function get_dn() can be used to retrieve the DN of an entry as the program
logic is iterating through the result set. This can in turn be used as an input to
explode_dn() to retrieve the individual components of the DN.

See Also
DBMS_LDAP.explode_dn().

FUNCTION get_values
The function get_values() can be used to retrieve all of the values associated with a
given attribute in a given entry.

Syntax
FUNCTION get_values
(
ld IN SESSION,
ldapentry IN MESSAGE,
attr IN VARCHAR2
)
RETURN STRING_COLLECTION;

Parameters

Table 15–41 GET_DN Function Return Values

Value Description

VARCHAR2 The X.500 Distinguished name of the entry as a PL/SQL string.

NULL if there was a problem.

Table 15–42 GET_DN Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.

get_dn_error Raised if there was a problem in determining the DN.

Table 15–43 GET_VALUES Function Parameters

Parameter Description

ld A valid LDAP session handle.

ldapentry A valid handle to an entry returned from a search result.

attr The name of the attribute for which values are being sought.

Subprograms

15-20 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
The function get_values() can only be called after the handle to entry has been first
retrieved by call to either first_entry() or next_entry(). The name of the
attribute may be known beforehand or can be determined by a call to first_
attribute() or next_attribute().The function get_values() always assumes
that the data type of the attribute it is retrieving is a string. For retrieving binary data
types, get_values_len() should be used.

See Also
DBMS_LDAP.first_entry(), DBMS_LDAP.next_entry(), DBMS_LDAP.count_
values(), DBMS_LDAP.get_values_len().

FUNCTION get_values_len
The function get_values_len() can be used to retrieve values of attributes that
have a binary syntax.

Syntax
FUNCTION get_values_len
(
ld IN SESSION,
ldapentry IN MESSAGE,
attr IN VARCHAR2
)
RETURN BINVAL_COLLECTION;

Parameters

Table 15–44 GET_VALUES Function Return Values

Value Description

STRING_COLLECTION A PL/SQL string collection containing all of the values of the
given attribute.

NULL if there are no values associated with the given attribute.

Table 15–45 GET_VALUES Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming entry handle is invalid.

Table 15–46 GET_VALUES_LEN Function Parameters

Parameter Description

ld A valid LDAP session handle.

ldapentrymsg A valid handle to an entry returned from a search result.

attr The string name of the attribute for which values are being
sought.

Subprograms

DBMS_LDAP PL/SQL Reference 15-21

Return Values

Exceptions

Usage Notes
The function get_values_len() can only be called after the handle to an entry has
been retrieved by a call to either first_entry() or next_entry().The name of the
attribute may be known beforehand or can also be determined by a call to first_
attribute() or next_attribute().This function can be used to retrieve both
binary and non-binary attribute values.

See Also
DBMS_LDAP.first_entry(), DBMS_LDAP.next_entry(), DBMS_LDAP.count_
values_len(), DBMS_LDAP.get_values().

FUNCTION delete_s
The function delete_s() can be used to remove a leaf entry in the DIT.

Syntax
FUNCTION delete_s
(
ld IN SESSION,
entrydn IN VARCHAR2
)
RETURN PLS_INTEGER;

Parameters

Table 15–47 GET_VALUES_LEN Function Return Values

Value Description

BINVAL_COLLECTION A PL/SQL 'Raw' collection containing all the values of the
given attribute.

NULL if there are no values associated with the given attribute.

Table 15–48 GET_VALUES_LEN Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming entry handle is invalid.

Table 15–49 DELETE_S Function Parameters

Parameter Name Description

ld A valid LDAP session.

entrydn The X.500 distinguished name of the entry to delete.

Subprograms

15-22 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
The function delete_s() can be used to remove only leaf entries in the DIT. A leaf
entry is an entry that does not have any entries under it. This function cannot be used
to delete non-leaf entries.

See Also
DBMS_LDAP.modrdn2_s().

FUNCTION modrdn2_s
The function modrdn2_s() can be used to rename the relative distinguished name of
an entry.

Syntax
FUNCTION modrdn2_s
(
ld IN SESSION,
entrydn in VARCHAR2
newrdn in VARCHAR2
deleteoldrdn IN PLS_INTEGER
)
RETURN PLS_INTEGER;

Parameters

Table 15–50 DELETE_S Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS if the delete operation was successful.
An exception is raised otherwise.

Table 15–51 DELETE_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_entry_dn Raised if the distinguished name of the entry is invalid.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Table 15–52 MODRDN2_S Function Parameters

Parameter Description

ld A valid LDAP session handle.

entrydn The distinguished name of the entry (This entry must be a leaf
node in the DIT.).

newrdn The new relative distinguished name of the entry.

deleteoldrdn A boolean value that, if nonzero, indicates that the attribute
values from the old name should be removed from the entry.

Subprograms

DBMS_LDAP PL/SQL Reference 15-23

Return Values

Exceptions

Usage Notes
The function nodrdn2_s() can be used to rename the leaf nodes of a DIT. It simply
changes the relative distinguished name by which they are known. The use of this
function is being deprecated in the LDAP v3 standard. Please use rename_s(), which
fulfills the same purpose.

See Also
DBMS_LDAP.rename_s().

FUNCTION err2string
The function err2string() can be used to convert an LDAP error code to a string in
the local language in which the API is operating.

Syntax
FUNCTION err2string
(
ldap_err IN PLS_INTEGER
)
RETURN VARCHAR2;

Parameters

Table 15–53 MODRDN2_S Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS if the operation was successful. An
exception is raised otherwise.

Table 15–54 MODRDN2_S Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_entry_dn Raised if the distinguished name of the entry is invalid.

invalid_rdn Invalid LDAP RDN.

invalid_deleteoldrdn Invalid LDAP deleteoldrdn.

general_error For all other errors. The error string associated with this
exception will explain the error in detail.

Table 15–55 ERR2STRING Function Parameters

Parameter Description

ldap_err An error number returned from one of the API calls.

Subprograms

15-24 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions
err2string() raises no exceptions.

Usage Notes
In this release, the exception handling mechanism automatically invokes this function
if any of the API calls encounter an error.

FUNCTION create_mod_array
The function create_mod_array() allocates memory for array modification entries
that are applied to an entry using the modify_s() or add_s() functions.

Syntax
FUNCTION create_mod_array
(
num IN PLS_INTEGER
)
RETURN MOD_ARRAY;

Parameters

Return Values

Exceptions
create_mod_array() raises no exceptions.

Usage Notes
This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s. It calls DBMS_LDAP.free_mod_array to free memory after the
calls to add_s or modify_s have completed.

See Also
DBMS_LDAP.populate_mod_array(), DBMS_LDAP.modify_s(), DBMS_
LDAP.add_s(), and DBMS_LDAP.free_mod_array().

Table 15–56 ERR2STRING Function Return Values

Value Description

VARCHAR2 A character string translated to the local language. The string
describes the error in detail.

Table 15–57 CREATE_MOD_ARRAY Function Parameters

Parameter Description

num The number of the attributes that you want to add or modify.

Table 15–58 CREATE_MOD_ARRAY Function Return Values

Value Description

MOD_ARRAY The data structure holds a pointer to an LDAP mod array.

Returns NULL if there was a problem.

Subprograms

DBMS_LDAP PL/SQL Reference 15-25

PROCEDURE populate_mod_array (String Version)
Populates one set of attribute information for add or modify operations.

Syntax
PROCEDURE populate_mod_array
(
modptr IN DBMS_LDAP.MOD_ARRAY,
mod_op IN PLS_INTEGER,
mod_type IN VARCHAR2,
modval IN DBMS_LDAP.STRING_COLLECTION
);

Parameters

Exceptions

Usage Notes
This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s. It has to happen after DBMS_LDAP.create_mod_array is called.

See Also
DBMS_LDAP.create_mod_array(), DBMS_LDAP.modify_s(), DBMS_LDAP.add_
s(), and DBMS_LDAP.free_mod_array().

PROCEDURE populate_mod_array (Binary Version)
Populates one set of attribute information for add or modify operations. This
procedure call occurs after DBMS_LDAP.create_mod_array() is called.

Syntax
PROCEDURE populate_mod_array
(
modptr IN DBMS_LDAP.MOD_ARRAY,
mod_op IN PLS_INTEGER,

Table 15–59 POPULATE_MOD_ARRAY (String Version) Procedure Parameters

Parameter Description

modptr The data structure holds a pointer to an LDAP mod array.

mod_op This field specifies the type of modification to perform.

mod_type This field indicates the name of the attribute type to which the
modification applies.

modval This field specifies the attribute values to add, delete, or
replace. It is for string values only.

Table 15–60 POPULATE_MOD_ARRAY (String Version) Procedure Exceptions

Exception Description

invalid_mod_array Invalid LDAP mod array

invalid_mod_option Invalid LDAP mod option

invalid_mod_type Invalid LDAP mod type

invalid_mod_value Invalid LDAP mod value

Subprograms

15-26 Oracle Identity Management Application Developer’s Guide

mod_type IN VARCHAR2,
modbval IN DBMS_LDAP.BERVAL_COLLECTION
);

Parameters

Exceptions

Usage Notes
This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s. It is invoked after DBMS_LDAP.create_mod_array is called.

See Also
DBMS_LDAP.create_mod_array(), DBMS_LDAP.modify_s(), DBMS_LDAP.add_
s(), and DBMS_LDAP.free_mod_array().

PROCEDURE populate_mod_array (Binary Version. Uses BLOB Data Type)
Populates one set of attribute information for add or modify operations. This
procedure call occurs after DBMS_LDAP.create_mod_array() is called.

Syntax
PROCEDURE populate_mod_array
(
modptr IN DBMS_LDAP.MOD_ARRAY,
mod_op IN PLS_INTEGER,
mod_type IN VARCHAR2,
modbval IN DBMS_LDAP.BLOB_COLLECTION
);

Table 15–61 POPULATE_MOD_ARRAY (Binary Version) Procedure Parameters

Parameter Description

modptr This data structure holds a pointer to an LDAP mod array.

mod_op This field specifies the type of modification to perform.

mod_type This field indicates the name of the attribute type to which the
modification applies.

modbval This field specifies the attribute values to add, delete, or
replace. It is for the binary values.

Table 15–62 POPULATE_MOD_ARRAY (Binary Version) Procedure Exceptions

Exception Description

invalid_mod_array Invalid LDAP mod array.

invalid_mod_option Invalid LDAP mod option.

invalid_mod_type Invalid LDAP mod type.

invalid_mod_value Invalid LDAP mod value.

Subprograms

DBMS_LDAP PL/SQL Reference 15-27

Parameters

Exceptions

Usage Notes
This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s. It is invoked after DBMS_LDAP.create_mod_array is called.

See Also
DBMS_LDAP.create_mod_array(), DBMS_LDAP.modify_s(), DBMS_LDAP.add_
s(), and DBMS_LDAP.free_mod_array().

FUNCTION get_values_blob
The function get_values_blob() can be used to retrieve larger values of attributes
that have a binary syntax.

Syntax
Syntax
FUNCTION get_values_blob
(
ld IN SESSION,
ldapentry IN MESSAGE,
attr IN VARCHAR2
)
RETURN BLOB_COLLECTION;

Parameters

Table 15–63 POPULATE_MOD_ARRAY (Binary) Parameters

Parameter Description

modptr This data structure holds a pointer to an LDAP mod array.

mod_op This field specifies the type of modification to perform.

mod_type This field indicates the name of the attribute type to which the
modification applies.

modbval This field specifies the binary attribute values to add, delete, or
replace.

Table 15–64 POPULATE_MOD_ARRAY (Binary) Exceptions

Exception Description

invalid_mod_array Invalid LDAP mod array.

invalid_mod_option Invalid LDAP mod option.

invalid_mod_type Invalid LDAP mod type.

invalid_mod_value Invalid LDAP mod value.

Table 15–65 GET_VALUES_BLOB Parameters

Parameter Description

ld A valid LDAP session handle.

ldapentrymsg A valid handle to an entry returned from a search result.

Subprograms

15-28 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
The function get_values_blob() can only be called after the handle to an entry has
been retrieved by a call to either first_entry() or next_entry(). The name of
the attribute may be known beforehand or can also be determined by a call to first_
attribute() or next_attribute(). This function can be used to retrieve both
binary and nonbinary attribute values.

See Also
DBMS_LDAP.first_entry(), DBMS_LDAP.next_entry(), DBMS_LDAP.count_
values_blob(), DBMS_LDAP.get_values().

FUNCTION count_values_blob
Counts the number of values returned by DBMS_LDAP.get_values_blob().

Syntax
FUNCTION count_values_blob
(
values IN DBMS_LDAP.BLOB_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

attr The string name of the attribute for which values are being
sought.

Table 15–66 get_values_blob Return Values

Value Description

BLOB_COLLECTION A PL/SQL BLOB collection containing all the values of the given
attribute.

NULL No values are associated with the given attribute.

Table 15–67 get_values_blob Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid message Raised if the incoming entry handle is invalid.

Table 15–68 COUNT_VALUES_BLOB Parameters

Parameter Description

values The collection of large binary values.

Table 15–65 (Cont.) GET_VALUES_BLOB Parameters

Parameter Description

Subprograms

DBMS_LDAP PL/SQL Reference 15-29

Return Values

Exceptions
The function count_values_blob() raises no exceptions.

See Also
DBMS_LDAP.count_values(), DBMS_LDAP.get_values_blob().

FUNCTION value_free_blob
Frees the memory associated with BLOB_COLLECTION returned by DBMS_LDAP.get_
values_blob().

Syntax
PROCEDURE value_free_blob
(
vals IN OUT DBMS_LDAP.BLOB_COLLECTION
);

Parameters

Exceptions
value_free_blob() raises no exceptions.

See Also
DBMS_LDAP.get_values_blob().

FUNCTION modify_s
Performs a synchronous modification of an existing LDAP directory entry.

Syntax
FUNCTION modify_s
(
ld IN DBMS_LDAP.SESSION,
entrydn IN VARCHAR2,
modptr IN DBMS_LDAP.MOD_ARRAY
)
RETURN PLS_INTEGER;

Table 15–69 COUNT_VALUES_BLOB Return Values

Values Description

PLS_INTEGER Indicates the success or failure of the operation.

Table 15–70 VALUE_FREE_BLOB Parameters

Parameter Description

vals The collection of large binary values returned by DBMS_
LDAP.get_values_blob().

Subprograms

15-30 Oracle Identity Management Application Developer’s Guide

Parameters

Return Values

Exceptions

Usage Notes
This function call has to follow successful calls of DBMS_LDAP.create_mod_
array() and DBMS_LDAP.populate_mod_array().

See Also
DBMS_LDAP.create_mod_array(),DBMS_LDAP.populate_mod_array(),
DBMS_LDAP.add_s(), and DBMS_LDAP.free_mod_array().

FUNCTION add_s
Adds a new entry to the LDAP directory synchronously. Before calling add_s, DBMS_
LDAP.create_mod_array() and DBMS_LDAP.populate_mod_array() must be
called.

Syntax
FUNCTION add_s
(
ld IN DBMS_LDAP.SESSION,
entrydn IN VARCHAR2,
modptr IN DBMS_LDAP.MOD_ARRAY
)
RETURN PLS_INTEGER;

Table 15–71 MODIFY_S Function Parameters

Parameter Description

ld This parameter is a handle to an LDAP session returned by a
successful call to DBMS_LDAP.init().

entrydn This parameter specifies the name of the directory entry whose
contents are to be modified.

modptr This parameter is the handle to an LDAP mod structure, as
returned by successful call to DBMS_LDAP.create_mod_
array().

Table 15–72 MODIFY_S Function Return Values

Value Description

PLS_INTEGER Indicates the success or failure of the modification operation.

Table 15–73 MODIFY_S Function Exceptions

Exception Description

invalid_session Invalid LDAP session.

invalid_entry_dn Invalid LDAP entry dn.

invalid_mod_array Invalid LDAP mod array.

Subprograms

DBMS_LDAP PL/SQL Reference 15-31

Parameters

Return Values

Exceptions

Usage Notes
The parent entry of the entry to be added must already exist in the directory. This
function call has to follow successful calls to DBMS_LDAP.create_mod_array()
and DBMS_LDAP.populate_mod_array().

See Also
DBMS_LDAP.create_mod_array(), DBMS_LDAP.populate_mod_array(),
DBMS_LDAP.modify_s(), and DBMS_LDAP.free_mod_array().

PROCEDURE free_mod_array
Frees the memory allocated by DBMS_LDAP.create_mod_array().

Syntax
PROCEDURE free_mod_array
(
modptr IN DBMS_LDAP.MOD_ARRAY
);

Table 15–74 ADD_S Function Parameters

Parameter Description

ld This parameter is a handle to an LDAP session, as returned by
a successful call to DBMS_LDAP.init().

entrydn This parameter specifies the name of the directory entry to be
created.

modptr This parameter is the handle to an LDAP mod structure, as
returned by successful call to DBMS_LDAP.create_mod_
array().

Table 15–75 ADD_S Function Return Values

Value Description

PLS_INTEGER Indicates the success or failure of the modification operation.

Table 15–76 ADD_S Function Exceptions

Exception Description

invalid_session Invalid LDAP session.

invalid_entry_dn Invalid LDAP entry dn.

invalid_mod_array Invalid LDAP mod array.

Subprograms

15-32 Oracle Identity Management Application Developer’s Guide

Parameters

Exceptions
free_mod_array raises no exceptions.

See Also
DBMS_LDAP.populate_mod_array(), DBMS_LDAP.modify_s(), DBMS_
LDAP.add_s(), and DBMS_LDAP.create_mod_array().

FUNCTION count_values
Counts the number of values returned by DBMS_LDAP.get_values().

Syntax
FUNCTION count_values
(
values IN DBMS_LDAP.STRING_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

Exceptions
count_values raises no exceptions.

See Also
DBMS_LDAP.count_values_len(), DBMS_LDAP.get_values().

FUNCTION count_values_len
Counts the number of values returned by DBMS_LDAP.get_values_len().

Syntax
FUNCTION count_values_len
(

Table 15–77 FREE_MOD_ARRAY Procedure Parameters

Parameter Description

modptr This parameter is the handle to an LDAP mod structure
returned by a successful call to DBMS_LDAP.create_mod_
array().

Table 15–78 COUNT_VALUES Function Parameters

Parameter Description

values The collection of string values.

Table 15–79 COUNT_VALUES Function Return Values

Value Description

PLS_INTEGER Indicates the success or failure of the operation.

Subprograms

DBMS_LDAP PL/SQL Reference 15-33

values IN DBMS_LDAP.BINVAL_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

Exceptions
count_values_len raises no exceptions.

See Also
DBMS_LDAP.count_values(), DBMS_LDAP.get_values_len().

FUNCTION rename_s
Renames an LDAP entry synchronously.

Syntax
FUNCTION rename_s
(
ld IN SESSION,
dn IN VARCHAR2,
newrdn IN VARCHAR2,
newparent IN VARCHAR2,
deleteoldrdn IN PLS_INTEGER,
serverctrls IN LDAPCONTROL,
clientctrls IN LDAPCONTROL
)
RETURN PLS_INTEGER;

Parameters

Table 15–80 COUNT_VALUES_LEN Function Parameters

Parameter Description

values The collection of binary values.

Table 15–81 COUNT_VALUES_LEN Function Return Values

Value Description

PLS_INTEGER Indicates the success or failure of the operation.

Table 15–82 RENAME_S Function Parameters

Parameter Description

ld This parameter is a handle to an LDAP session returned by a
successful call to DBMS_LDAP.init().

dn This parameter specifies the name of the directory entry to be
renamed or moved.

newrdn This parameter specifies the new RDN.

newparent This parameter specifies the DN of the new parent.

deleteoldrdn This parameter specifies whether the old RDN should be
retained. If this value is 1, the old RDN is removed.

Subprograms

15-34 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

See Also
DBMS_LDAP.modrdn2_s().

FUNCTION explode_dn
Breaks a DN up into its components.

Syntax
FUNCTION explode_dn
(
dn IN VARCHAR2,
notypes IN PLS_INTEGER
)
RETURN STRING_COLLECTION;

Parameters

serverctrls Currently not supported.

clientctrls Currently not supported.

Table 15–83 RENAME_S Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the operation.

Table 15–84 RENAME_S Function Exceptions

Exception Description

invalid_session Invalid LDAP Session.

invalid_entry_dn Invalid LDAP DN.

invalid_rdn Invalid LDAP RDN.

invalid_newparent Invalid LDAP newparent.

invalid_deleteoldrdn Invalid LDAP deleteoldrdn.

Table 15–85 EXPLODE_DN Function Parameters

Parameter Description

dn This parameter specifies the name of the directory entry to be
broken up.

notypes This parameter specifies whether the attribute tags will be
returned. If this value is not 0, no attribute tags are returned.

Table 15–82 (Cont.) RENAME_S Function Parameters

Parameter Description

Subprograms

DBMS_LDAP PL/SQL Reference 15-35

Return Values

Exceptions

See Also
DBMS_LDAP.get_dn().

FUNCTION open_ssl
Establishes an SSL (Secure Sockets Layer) connection over an existing LDAP
connection.

Syntax
FUNCTION open_ssl
(
ld IN SESSION,
sslwrl IN VARCHAR2,
sslwalletpasswd IN VARCHAR2,
sslauth IN PLS_INTEGER
)
RETURN PLS_INTEGER;

Parameters

Table 15–86 EXPLODE_DN Function Return Values

Value Description

STRING_COLLECTION An array of strings. If the DN cannot be broken up, NULL will
be returned.

Table 15–87 EXPLODE_DN Function Exceptions

Exception Description

invalid_entry_dn Invalid LDAP DN.

invalid_notypes Invalid LDAP notypes value.

Table 15–88 OPEN_SSL Function Parameters

Parameter Description

ld This parameter is a handle to an LDAP session that is returned
by a successful call to DBMS_LDAP.init().

sslwrl This parameter specifies the wallet location. Required for
one-way or two-way SSL connections.

sslwalletpasswd This parameter specifies the wallet password. Required for
one-way or two-way SSL connections.

sslauth This parameter specifies the SSL Authentication Mode. (1 for no
authentication, 2 for one-way authentication required, 3 for
two-way authentication).

Subprograms

15-36 Oracle Identity Management Application Developer’s Guide

Return Values

Exceptions

Usage Notes
Need to call DBMS_LDAP.init() first to acquire a valid ldap session.

See Also
DBMS_LDAP.init().

FUNCTION msgfree
This function frees the chain of messages associated with the message handle returned
by synchronous search functions.

Syntax
FUNCTION msgfree
(
res IN MESSAGE
)
RETURN PLS_INTEGER;

Parameters

Table 15–89 OPEN_SSL Function Return Values

Value Description

PLS_INTEGER Indicates the success or failure of the operation.

Table 15–90 OPEN_SSL Function Exceptions

Exception Description

invalid_session Invalid LDAP Session.

invalid_ssl_wallet_loc Invalid LDAP SSL wallet location.

invalid_ssl_wallet_
passwd

Invalid LDAP SSL wallet password.

invalid_ssl_auth_mode Invalid LDAP SSL authentication mode.

Table 15–91 MSGFREE Function Parameters

Parameter Description

res The message handle obtained by a call to one of the synchronous
search routines.

Subprograms

DBMS_LDAP PL/SQL Reference 15-37

Return Values

Exceptions
msgfree raises no exceptions.

See Also
DBMS_LDAP.search_s(), DBMS_LDAP.search_st().

FUNCTION ber_free
This function frees the memory associated with a handle to BER ELEMENT.

Syntax
FUNCTION ber_free
(
ber_elem IN BER_ELEMENT,
freebuf IN PLS_INTEGER
)

Parameters

Return Values
ber_free returns no values.

Exceptions
ber_free raises no exceptions.

Table 15–92 MSGFREE Return Values

Value Description

PLS_INTEGER Indicates the type of the last message in the chain.

The function might return any of the following values:

■ DBMS_LDAP.LDAP_RES_BIND

■ DBMS_LDAP.LDAP_RES_SEARCH_ENTRY

■ DBMS_LDAP.LDAP_RES_SEARCH_REFERENCE

■ DBMS_LDAP.LDAP_RES_SEARCH_RESULT

■ DBMS_LDAP.LDAP_RES_MODIFY

■ DBMS_LDAP.LDAP_RES_ADD

■ DBMS_LDAP.LDAP_RES_DELETE

■ DBMS_LDAP.LDAP_RES_MODDN

■ DBMS_LDAP.LDAP_RES_COMPARE

■ DBMS_LDAP.LDAP_RES_EXTENDED

Table 15–93 BER_FREE Function Parameters

Parameter Description

ber_elem A handle to BER ELEMENT.

freebuf The value of this flag should be 0 while the BER ELEMENT
returned from DBMS_LDAP.first_attribute() is being
freed. For any other case, the value of this flag should be 1.

The default value of this parameter is zero.

Subprograms

15-38 Oracle Identity Management Application Developer’s Guide

See Also
DBMS_LDAP.first_attribute(),DBMS_LDAP.next_attribute().

FUNCTION nls_convert_to_utf8
The nls_convert_to_utf8() function converts the input string containing
database character set data to UTF-8 character set data and returns it.

Syntax
Function nls_convert_to_utf8
(
data_local IN VARCHAR2
)
RETURN VARCHAR2;

Parameters

Return Values

Usage Notes
The functions in DBMS_LDAP package expect the input data to be UTF-8 character set
data if the UTF8_CONVERSION package variable is set to FALSE. The nls_convert_
to_utf8() function converts database character set data to UTF-8 character set data.

If the UTF8_CONVERSION package variable of the DBMS_LDAP package is set to TRUE,
functions in the DBMS_LDAP package expect input data to be database character set
data.

See Also
DBMS_LDAP.nls_convert_from_utf8(), DBMS_LDAP.nls_get_dbcharset_
name().

FUNCTION nls_convert_to_utf8
The nls_convert_to_utf8() function converts the input string collection
containing database character set data to UTF-8 character set data. It then returns the
converted data.

Syntax
Function nls_convert_to_utf8
(
data_local IN STRING_COLLECTION
)
RETURN STRING_COLLECTION;

Table 15–94 Parameters for nls_convert_to_utf8

Parameter Description

data_local Contains the database character set data.

Table 15–95 Return Values for nls_convert_to_utf8

Value Description

VARCHAR2 UTF-8 character set data string.

Subprograms

DBMS_LDAP PL/SQL Reference 15-39

Parameters

Return Values

Usage Notes
The functions in the DBMS_LDAP package expect the input data to be in the UTF-8
character set if the UTF8_CONVERSION package variable is set to FALSE. The nls_
convert_to_utf8() function converts the input data from the database character
set to the UTF-8 character set.

If the UTF8_CONVERSION package variable of the DBMS_LDAP package is set to TRUE,
functions in the DBMS_LDAP package expect the input data to be in the database
character set.

See Also
DBMS_LDAP.nls_convert_from_utf8(), DBMS_LDAP.nls_get_dbcharset_
name().

FUNCTION nls_convert_from_utf8
The nls_convert_from_utf8() function converts the input string containing
UTF-8 character set to database character set data. It then returns this data.

Syntax
Function nls_convert_from_utf8
(
data_utf8 IN VARCHAR2
)
RETURN VARCHAR2;

Parameters

Return Values

Table 15–96 Parameters for nls_convert_to_utf8

Parameter Description

data_local Collection of strings containing database character set data.

Table 15–97 Return Values for nls_convert_to_utf8

Value Description

STRING_COLLECTION Collection of strings containing UTF-8 character set data.

Table 15–98 Parameter for nls_convert_from_utf8

Parameter Description

data_utf8 Contains UTF-8 character set data.

Table 15–99 Return Value for nls_convert_from_utf8

Value Description

VARCHAR2 Data string in the database character set.

Subprograms

15-40 Oracle Identity Management Application Developer’s Guide

Usage Notes
The functions in the DBMS_LDAP package return UTF-8 character set data if the UTF8_
CONVERSION package variable is set to FALSE. The nls_convert_from_utf8()
function converts the output data from the UTF-8 character set to the database
character set.

If the UTF8_CONVERSION package variable of the DBMS_LDAP package is set to TRUE,
functions in the DBMS_LDAP package return database character set data.

See Also
DBMS_LDAP.nls_convert_to_utf8(), DBMS_LDAP.nls_get_dbcharset_
name().

FUNCTION nls_convert_from_utf8
The nls_convert_from_utf8() function converts the input string collection
containing UTF-8 character set data to database character set data. It then returns this
data.

Syntax
Function nls_convert_from_utf8
(
data_utf8 IN STRING_COLLECTION
)
RETURN STRING_COLLECTION;

Parameters

Return Values

Usage Notes
The functions in the DBMS_LDAP package return UTF-8 character set data if the UTF8_
CONVERSION package variable is set to FALSE. nls_convert_from_utf8()
converts the output data from the UTF-8 character set to the database character set. If
the UTF8_CONVERSION package variable of the DBMS_LDAP package is set to TRUE,
functions in the DBMS_LDAP package return database character set data.

See Also
DBMS_LDAP.nls_convert_to_utf8(), DBMS_LDAP.nls_get_dbcharset_
name().

Table 15–100 Parameter for nls_convert_from_utf8

Parameter Description

data_utf8 Collection of strings containing UTF-8 character set data.

Table 15–101 Return Value for nls_convert_from_utf8

Value Description

VARCHAR2 Collection of strings containing database character set data.

Subprograms

DBMS_LDAP PL/SQL Reference 15-41

FUNCTION nls_get_dbcharset_name
The nls_get_dbcharset_name() function returns a string containing the database
character set name.

Syntax
Function nls_get_dbcharset_name

RETURN VARCHAR2;

Parameters
None.

Return Values

See Also
DBMS_LDAP.nls_convert_to_utf8(), DBMS_LDAP.nls_convert_from_
utf8().

Table 15–102 Return Value for nls_get_dbcharset_name

Value Description

VARCHAR2 String containing the database character set name.

Subprograms

15-42 Oracle Identity Management Application Developer’s Guide

Java API Reference 16-1

16
Java API Reference

The standard Java APIs for Oracle Internet Directory are available as the Java Naming
and Directory Interface (JNDI) from Sun Microsystems. The JNDI is found at this link:

http://java.sun.com/products/jndi

The Oracle extensions to the standard APIs are found in Oracle Internet Directory API
Reference.

Sample code for the Java APIs is available at this URL:

http://www.oracle.com/technology/sample_code/

Look for the Oracle Identity Management link under Sample Applications–Oracle
Application Server.

16-2 Oracle Identity Management Application Developer’s Guide

DBMS_LDAP_UTL PL/SQL Reference 17-1

17
DBMS_LDAP_UTL PL/SQL Reference

This chapter contains reference material for the DBMS_LDAP_UTL package, which
contains Oracle Extension utility functions. The chapter contains these topics:

■ Summary of Subprograms

■ Subprograms

■ Function Return Code Summary

■ Data Type Summary

Summary of Subprograms

Note: Sample code for the DBMS_LDAP_UTL package is available at
this URL:

http://www.oracle.com/technology/sample_code/

Look for the Oracle Identity Management link under Sample
Applications—Fusion Middleware.

Table 17–1 DBMS_LDAP_UTL User-Related Subprograms

Function or Procedure Purpose

Function authenticate_user Authenticates a user against an LDAP server.

Function create_user_handle Creates a user handle.

Function set_user_handle_properties Associates the given properties to the user handle.

Function get_user_properties Retrieves user properties from an LDAP server.

Function set_user_properties Modifies the properties of a user.

Function get_user_extended_properties Retrieves user extended properties.

Function get_user_dn Retrieves a user DN.

Function check_group_membership Checks whether a user is member of a given group.

Function locate_subscriber_for_user Retrieves the subscriber for the given user.

Function get_group_membership Retrieves a list of groups of which the user is a
member.

Subprograms

17-2 Oracle Identity Management Application Developer’s Guide

Subprograms
This section contains the following topics:

■ User-Related Subprograms

■ Group-Related Subprograms

■ Subscriber-Related Subprograms

■ Property-Related Subprograms

■ Miscellaneous Subprograms

Table 17–2 DBMS_LDAP_UTL Group-Related Subprograms

Function or Procedure Purpose

Function create_group_handle Creates a group handle.

Function set_group_handle_properties Associates the given properties with the group handle.

Function get_group_properties Retrieves group properties from an LDAP server.

Function get_group_dn Retrieves a group DN.

Table 17–3 DBMS_LDAP_UTL Subscriber-Related Subprograms

Function or Procedure Purpose

Function create_subscriber_handle Creates a subscriber handle.

Function get_subscriber_properties Retrieves subscriber properties from an LDAP
server.

Function get_subscriber_dn Retrieves a subscriber DN.

Table 17–4 DBMS_LDAP_UTL Miscellaneous Subprograms

Function or Procedure Purpose

Function normalize_dn_with_case Normalizes the DN string.

Function get_property_names Retrieves a list of property names in a PROPERTY_SET.

Function get_property_values Retrieves a list of values for a property name.

Function get_property_values_blob Retrieves a list of large binary values for a property
name.

Procedure property_value_free_blob Frees the memory associated with BLOB_COLLECTION
returned by DBMS_LDAP_UTL.get_property_
values_blob().

Function get_property_values_len Retrieves a list of binary values for a property name.

Procedure free_propertyset_collection Frees PROPERTY_SET_COLLECTION.

Function create_mod_propertyset Creates a MOD_PROPERTY_SET.

Function populate_mod_propertyset Populates a MOD_PROPERTY_SET structure.

Procedure free_mod_propertyset Frees a MOD_PROPERTY_SET.

Procedure free_handle Frees handles.

Function check_interface_version Checks for support of the interface version.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 17-3

User-Related Subprograms
A user is represented by the DBMS_LDAP_UTL.HANDLE data type. You can create a
user handle by using a DN, GUID, or simple name, along with the appropriate
subscriber handle. When a simple name is used, additional information from the root
Oracle Context and the subscriber Oracle Context is used to identify the user. This
example shows a user handle being created:

retval := DBMS_LDAP_UTL.create_user_handle(
user_handle,
DBMS_LDAP_UTL.TYPE_DN,
"cn=user1,cn=users,o=acme,dc=com"
);

This user handle must be associated with an appropriate subscriber handle. If, for
example, subscriber_handle is o=acme,dc=com, the subscriber handle can be
associated in the following way:

retval := DBMS_LDAP_UTL.set_user_handle_properties(
user_handle,
DBMS_LDAP_UTL.SUBSCRIBER_HANDLE,
subscriber_handle
);

Common uses of user handles include setting and getting user properties and
authenticating the user. Here is a handle that authenticates a user:

retval := DBMS_LDAP_UTL.authenticate_user(
my_session
user_handle
DBMS_LDAP_UTL.AUTH_SIMPLE,
"welcome"
NULL
);

In this example, the user is authenticated using a clear text password welcome.

Here is a handle that retrieves a user's telephone number:

--my_attrs is of type DBMS_LDAP.STRING_COLLECTION
my_attrs(1) :='telephonenumber';
retval := DBMS_LDAP_UTL.get_user_properties(
my_session,
my_attrs,
DBMS_LDAP_UTL.ENTRY_PROPERTIES,
my_pset_coll
);

Function authenticate_user
The function authenticate_user()authenticates the user against Oracle Internet
Directory.

Syntax
FUNCTION authenticate_user
(
ld IN SESSION,
user_handle IN HANDLE,
auth_type IN PLS_INTEGER,
credentials IN VARCHAR2,
binary_credentials IN RAW

Subprograms

17-4 Oracle Identity Management Application Developer’s Guide

)
RETURN PLS_INTEGER;

Parameters

Return Values

Usage Notes
This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBMS_LDAP.init(), DBMS_LDAP_UTL.create_user_handle().

Table 17–5 authenticate_user Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

auth_type PLS_INTEGER Type of authentication. The only valid value is
DBMS_LDAP_UTL.AUTH_SIMPLE

credentials VARCHAR2 The user credentials.

binary_credentials RAW The binary credentials. This parameter is optional.
It can be NULL by default.

Table 17–6 authenticate_user Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR Authentication failed.

DBMS_LDAP_UTL.NO_SUCH_USER User does not exist.

DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES The user has multiple DN entries.

DBMS_LDAP_UTL.INVALID_SUBSCRIBER_
ORCL_CTX

Invalid Subscriber Oracle Context.

DBMS_LDAP_UTL.NO_SUCH_SUBSCRIBER Subscriber doesn't exist.

DBMS_LDAP_UTL.MULTIPLE_SUBSCRIBER_
ENTRIES

The subscriber has multiple DN entries.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid Root Oracle Context.

DBMS_LDAP_UTL.ACCT_TOTALLY_LOCKED_
EXCP

User account is locked.

DBMS_LDAP_UTL.AUTH_PASSWD_CHANGE_WARN This return value is deprecated.

DBMS_LDAP_UTL.AUTH_FAILURE_EXCP Authentication failed.

DBMS_LDAP_UTL.PWD_EXPIRED_EXCP User password has expired.

DBMS_LDAP_UTL.PWD_GRACELOGIN_WARN Grace login for user.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures that occurred when LDAP
operations were carried out.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 17-5

Function create_user_handle
The function create_user_handle() creates a user handle.

Syntax
FUNCTION create_user_handle
(
user_hd OUT HANDLE,
user_type IN PLS_INTEGER,
user_id IN VARCHAR2,
)
RETURN PLS_INTEGER;

Parameters

Return Values

See Also
DBMS_LDAP_UTL.get_user_properties(), DBMS_LDAP_UTL.set_user_
handle_properties().

Function set_user_handle_properties
The function set_user_handle_properties() configures the user handle
properties.

Syntax
FUNCTION set_user_handle_properties
(
user_hd IN HANDLE,
property_type IN PLS_INTEGER,
property IN HANDLE
)
RETURN PLS_INTEGER;

Table 17–7 CREATE_USER_HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description

user_hd HANDLE A pointer to a handle to a user.

user_type PLS_INTEGER The type of user ID that is passed. Valid values for this
argument are as follows:

■ DBMS_LDAP_UTL.TYPE_DN

■ DBMS_LDAP_UTL.TYPE_GUID

■ DBMS_LDAP_UTL.TYPE_NICKNAME

user_id VARCHAR2 The user ID representing the user entry.

Table 17–8 CREATE_USER_HANDLE Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

Subprograms

17-6 Oracle Identity Management Application Developer’s Guide

Parameters

Return Values

Usage Notes
The subscriber handle does not have to be set in User Handle Properties if the user
handle is created with TYPE_DN or TYPE_GUID as the user type.

See Also
DBMS_LDAP_UTL.get_user_properties().

Function get_user_properties
The function get_user_properties() retrieves the user properties.

Syntax
FUNCTION get_user_properties
(
ld IN SESSION,
user_handle IN HANDLE,
attrs IN STRING_COLLECTION,
ptype IN PLS_INTEGER,
ret_pset_coll OUT PROPERTY_SET_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Table 17–9 SET_USER_HANDLE_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

user_hd HANDLE A pointer to a handle to a user.

property_type PLS_INTEGER The type of property that is passed. Valid values for
this argument are as follows: - DBMS_LDAP_
UTL.SUBSCRIBER_HANDLE.

property HANDLE The property describing the user entry.

Table 17–10 SET_USER_HANDLE_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.RESET_HANDLE When a caller tries to reset the existing handle properties.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

Table 17–11 GET_USER_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

attrs STRING_COLLECTION The list of user attributes to retrieve.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 17-7

Return Values

Usage Notes
This function requires the following:

■ A valid LDAP session handle, which must be obtained from the DBMS_
LDAP.init() function.

■ A valid subscriber handle to be set in the group handle properties if the user type
is of DBMS_LDAP_UTL.TYPE_NICKNAME.

This function does not identify a NULL subscriber handle as a default subscriber. The
default subscriber can be obtained from DBMS_LDAP_UTL.create_subscriber_
handle(), where a NULL subscriber_id is passed as an argument.

If the group type is either DBMS_LDAP_UTL.TYPE_GUID or DBMS_LDAP_UTL.TYPE_
DN, the subscriber handle need not be set in the user handle properties. If the
subscriber handle is set, it is ignored.

See Also
DBMS_LDAP.init(), DBMS_LDAP_UTL.create_user_handle().

Function set_user_properties
The function set_user_properties() modifies the properties of a user.

Syntax
FUNCTION set_user_properties
(

ptype PLS_INTEGER Type of properties to return. These are
valid values:

■ DBMS_LDAP_UTL.ENTRY_
PROPERTIES

■ DBMS_LDAP_UTL.NICKNAME_
PROPERTY

ret-pset_collection PROPERTY_SET_COLLECTION User details contained in attributes
requested by the caller.

Table 17–12 GET_USER_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.NO_SUCH_USER User does not exist.

DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES The user has multiple DN entries.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid root Oracle Context.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures that occur when LDAP
operations are carried out.

Table 17–11 (Cont.) GET_USER_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

Subprograms

17-8 Oracle Identity Management Application Developer’s Guide

ld IN SESSION,
user_handle IN HANDLE,
pset_type IN PLS_INTEGER,
mod_pset IN PROPERTY_SET,
mod_op IN PLS_INTEGER
)
RETURN PLS_INTEGER;

Parameters

Return Values

Usage Notes
This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

Table 17–13 SET_USER_PROPERTIES Function Parameters

Parameter Name Parameter Type Description

ld SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

pset_type PLS_INTEGER The type of property set being modified. A valid
value is ENTRY_PROPERTIES.

mod_pset PROPERTY_SET Data structure containing modify operations to
perform on the property set.

mod_op PLS_INTEGER The type of modify operation to be performed on
the property set. Here are valid values:

■ ADD_PROPERTYSET

■ MODIFY_PROPERTYSET

■ DELETE_PROPERTYSET

Table 17–14 SET_USER_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.NO_SUCH_USER User does not exist.

DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES The user has multiple DN entries.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid root Oracle Context.

DBMS_LDAP_UTL.PWD_MIN_LENGTH_ERROR Password length is less than the minimum required
length.

DBMS_LDAP_UTL.PWD_NUMERIC_ERROR Password must contain numeric characters.

DBMS_LDAP_UTL.PWD_NULL_ERROR Password cannot be NULL.

DBMS_LDAP_UTL.PWD_INHISTORY_ERROR Password cannot be the same as the one that is being
replaced.

DBMS_LDAP_UTL.PWD_ILLEGALVALUE_ERROR Password contains illegal characters.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures while carrying out LDAP
operations by the LDAP server.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 17-9

See Also
DBMS_LDAP.init(), DBMS_LDAP_UTL.get_user_properties().

Function get_user_extended_properties
The function get_user_extended_properties() retrieves user extended
properties.

Syntax
FUNCTION get_user_extended_properties
(
ld IN SESSION,
user_handle IN HANDLE,
attrs IN STRING_COLLECTION
ptype IN PLS_INTEGER,
filter IN VARCHAR2,
rep_pset_coll OUT PROPERTY_SET_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

Table 17–15 GET_USER_EXTENDED_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

attrs STRING_COLLECTION A list of attributes to fetch for the
user.

ptype PLS_INTEGER The type of properties to return.
Here is a valid value: - DBMS_
LDAP_UTL.EXTPROPTYPE_RAD

filter VARCHAR2 An LDAP filter to further refine the
user properties returned by the
function.

ret_pset_collection PROPERTY_SET_COLLECTION The user details containing the
attributes requested by the caller.

Table 17–16 GET_USER_EXTENDED_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.NO_SUCH_USER User does not exist.

DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES The user has multiple DN entries.

USER_PROPERTY_NOT_FOUND User extended property does not exist.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid root Oracle Context.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

Subprograms

17-10 Oracle Identity Management Application Developer’s Guide

Usage Notes
This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBMS_LDAP.init(), DBMS_LDAP_UTL.get_user_properties().

Function get_user_dn
The function get_user_dn() returns the user DN.

Syntax
FUNCTION get_user_dn
(
ld IN SESSION,
user_handle IN HANDLE,
dn OUT VARCHAR2
)
RETURN PLS_INTEGER;

Parameters

Return Values

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures that occur when LDAP
operations are carried out.

Table 17–17 GET_USER_DN Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

dn VARCHAR2 The user DN.

Table 17–18 GET_USER_DN Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR Authentication failed.

DBMS_LDAP_UTL.NO_SUCH_USER User does not exist.

DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES The user has multiple DN entries.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid root Oracle Context.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures that occur when LDAP
operations are carried out.

Table 17–16 (Cont.) GET_USER_EXTENDED_PROPERTIES Function Return Values

Value Description

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 17-11

Usage Notes
This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBMS_LDAP.init().

Function check_group_membership
The function check_group_membership() checks whether the user belongs to a
group.

Syntax
FUNCTION check_group_membership
(
ld IN SESSION,
user_handle IN HANDLE,
group_handle IN HANDLE,
nested IN PLS_INTEGER
)
RETURN PLS_INTEGER;

Parameters

Return Values

Usage Notes
This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBMS_LDAP.get_group_membership().

Table 17–19 CHECK_GROUP_MEMBERSHIP Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

group_handle HANDLE The group handle.

nested PLS_INTEGER The type of membership the user holds in groups.
Here are valid values:

■ DBMS_LDAP_UTL.NESTED_MEMBERSHIP

■ DBMS_LDAP_UTL.DIRECT_MEMBERSHIP

Table 17–20 CHECK_GROUP_MEMBERSHIP Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS If user is a member.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GROUP_MEMBERSHIP If user is not a member.

Subprograms

17-12 Oracle Identity Management Application Developer’s Guide

Function locate_subscriber_for_user
The function locate_subscriber_for_user() retrieves the subscriber for the
given user and returns a handle to it.

Syntax
FUNCTION locate_subscriber_for_user
(
ld IN SESSION,
user_handle IN HANDLE,
subscriber_handle OUT HANDLE
)
RETURN PLS_INTEGER;

Parameters

Return Values

Usage Notes
This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBMS_LDAP.init(), DBMS_LDAP_UTL.create_user_handle().

Table 17–21 LOCATE_SUBSCRIBER_FOR_USER Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

subscriber_handle HANDLE The subscriber handle.

Table 17–22 LOCATE SUBSCRIBER FOR USER Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.NO_SUCH_SUBSCRIBER Subscriber doesn't exist.

DBMS_LDAP_UTL.MULTIPLE_SUBSCRIBER_ENTRIES Multiple number of subscriber DN entries
exist in the directory for the given subscriber.

DBMS_LDAP_UTL.NO_SUCH_USER User doesn't exist.

DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES Multiple number of user DN entries exist in
the directory for the given user.

DBMS_LDAP_UTL.SUBSCRIBER_NOT_FOUND Unable to locate subscriber for the given user.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid Root Oracle Context.

DBMS_LDAP_UTL.ACCT_TOTALLY_LOCKED_EXCP User account is locked.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures while carrying out
LDAP operations by the LDAP server.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 17-13

Function get_group_membership
The function get_group_membership() returns the list of groups to which the user
is a member.

Syntax
FUNCTION get_group_membership
(
user_handle IN HANDLE,
nested IN PLS_INTEGER,
attr_list IN STRING_COLLECTION,
ret_groups OUT PROPERTY_SET_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

Usage Notes
This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBMS_LDAP.init().

Group-Related Subprograms
A group is represented using by using the DBMS_LDAP_UTL.HANDLE data type. A
group handle represents a valid group entry. You can create a group handle by using a
DN, GUID or a simple name, along with the appropriate subscriber handle. When a

Table 17–23 GET_GROUP_MEMBERSHIP Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

nested PLS_INTEGER The type of membership the user holds
in groups. Here are valid values:

■ DBMS_LDAP_UTL.NESTED_
MEMBERSHIP

■ DBMS_LDAP_UTL.DIRECT_
MEMBERSHIP

attr_list STRING_COLLECTION A list of attributes to be returned.

ret_groups PROPERTY_SET_COLLECTION A pointer to a pointer to an array of
group entries.

Table 17–24 GET_GROUP_MEMBERSHIP Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

Subprograms

17-14 Oracle Identity Management Application Developer’s Guide

simple name is used, additional information from the Root Oracle Context and the
Subscriber Oracle Context is used to identify the group. Here is an example of a group
handle creation:

retval := DBMS_LDAP_UTL.create_group_handle(
group_handle,
DBMS_LDAP_UTL.TYPE_DN,
"cn=group1,cn=Groups,o=acme,dc=com"
);

This group handle has to be associated with an appropriate subscriber handle. For
example, given a subscriber handle: subscriber_handle representing
o=acme,dc=com, the subscriber handle can be associated in the following way:

retval := DBMS_LDAP_UTL.set_group_handle_properties(
group_handle,
DBMS_LDAP_UTL.SUBSCRIBER_HANDLE,
subscriber_handle
);

A sample use of group handle is getting group properties. Here is an example:

my_attrs is of type DBMS_LDAP.STRING_COLLECTION
my_attrs(1) :='uniquemember';
retval := DBMS_LDAP_UTL.get_group_properties(
my_session,
my_attrs,
DBMS_LDAP_UTL.ENTRY_PROPERTIES,
my_pset_coll
);

The group-related subprograms also support membership-related functionality. Given
a user handle, you can find out if it is a direct or a nested member of a group by using
the DBMS_LDAP_UTL.check_group_membership() function. Here is an example:

retval := DBMS_LDAP_UTL.check_group_membership(
session,
user_handle,
group_handle,
DBMS_LDAP_UTL.DIRECT_MEMBERSHIP

You can also obtain a list of groups that a particular group belongs to, using the DBMS_
LDAP_UTL.get_group_membership() function. For example:

my_attrs is of type DBMS_LDAP.STRING_COLLECTION
my_attrs(1) :='cn';
retval := DBMS_LDAP_UTL.get_group_membership(
my_session,
user_handle,
DBMS_LDAP_UTL.DIRECT_MEMBERSHIP,
my_attrs
my_pset_coll
);

Function create_group_handle
 The function create_group_handle() creates a group handle.

Syntax
FUNCTION create_group_handle
(

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 17-15

group_hd OUT HANDLE,
group_type IN PLS_INTEGER,
group_id IN VARCHAR2
)
RETURN PLS_INTEGER;

Parameters

Return Values

See Also
DBMS_LDAP_UTL.get_group_properties(), DBMS_LDAP_UTL.set_group_
handle_properties().

Function set_group_handle_properties
The function set_group_handle_properties() configures the group handle
properties.

Syntax
FUNCTION set_group_handle_properties
(
group_hd IN HANDLE,
property_type IN PLS_INTEGER,
property IN HANDLE
)
RETURN PLS_INTEGER;

Parameters

Table 17–25 CREATE_GROUP_HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description

group_hd HANDLE A pointer to a handle to a group.

group_type PLS_INTEGER The type of group ID that is passed. Valid
values for this argument are as follows:

■ DBMS_LDAP_UTL.TYPE_DN

■ DBMS_LDAP_UTL.TYPE_GUID

■ DBMS_LDAP_UTL.TYPE_NICKNAME

group_id VARCHAR2 The group ID representing the group entry.

Table 17–26 CREATE_GROUP_HANDLE Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

Table 17–27 SET_GROUP_HANDLE_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

group_hd HANDLE A pointer to the handle to the group.

Subprograms

17-16 Oracle Identity Management Application Developer’s Guide

Return Values

Usage Notes
The subscriber handle doesn't need to be set in Group Handle Properties if the group
handle is created with TYPE_DN or TYPE_GUID as the group type.

See Also
DBMS_LDAP_UTL.get_group_properties().

Function get_group_properties
The function get_group_properties() retrieves the group properties.

Syntax
FUNCTION get_group_properties
(
ld IN SESSION,
group_handle IN HANDLE,
attrs IN STRING_COLLECTION,
ptype IN PLS_INTEGER,
ret_pset_coll OUT PROPERTY_SET_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

property_type PLS_INTEGER The type of property that is passed. Valid values
for this argument are as follows: DBMS_LDAP_
UTL.GROUP_HANDLE

property HANDLE The property describing the group entry.

Table 17–28 SET_GROUP_HANDLE_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.RESET_HANDLE When a caller tries to reset the existing handle properties.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

Table 17–29 GET_GROUP_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

group_handle HANDLE The group handle.

attrs STRING_COLLECTION A list of attributes that must be fetched for
the group.

ptype PLS_INTEGER The type of properties to be returned. The
valid value is DBMS_LDAP_UTL.ENTRY_
PROPERTIES

Table 17–27 (Cont.) SET_GROUP_HANDLE_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 17-17

Return Values

Usage Notes
This function requires the following:

■ A valid LDAP session handle which must be obtained from the DBMS_
LDAP.init() function.

■ A valid subscriber handle to be set in the group handle properties if the group
type is of: DBMS_LDAP_UTL.TYPE_NICKNAME.

This function does not identify a NULL subscriber handle as a default subscriber. The
default subscriber can be obtained from DBMS_LDAP_UTL.create_subscriber_
handle(), where a NULL subscriber_id is passed as an argument.

If the group type is either DBMS_LDAP_UTL.TYPE_GUID or DBMS_LDAP_UTL.TYPE_
DN, the subscriber handle does not have to be set in the group handle properties. If the
subscriber handle is set, it is ignored.

See Also
DBMS_LDAP.init(), DBMS_LDAP_UTL.create_group_handle().

Function get_group_dn
The function get_group_dn()returns the group DN.

Syntax
FUNCTION get_group_dn
(
ld IN SESSION,
group_handle IN HANDLE
dn OUT VARCHAR2
)
RETURN PLS_INTEGER;

ret_pset_coll PROPERTY_SET_COLLECTION The group details containing the attributes
requested by the caller.

Table 17–30 GET_GROUP_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.NO_SUCH_GROUP Group doesn't exist.

DBMS_LDAP_UTL.MULTIPLE_GROUP_ENTRIES Multiple number of group DN entries exist in the
directory for the given group.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid Root Oracle Context.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures while carrying out LDAP
operations by the LDAP server.

Table 17–29 (Cont.) GET_GROUP_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

Subprograms

17-18 Oracle Identity Management Application Developer’s Guide

Parameters

Return Values

Usage Notes
This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBMS_LDAP.init().

Subscriber-Related Subprograms
A subscriber is represented by using dbms_ldap_utl.handle data type. You can
create a subscriber handle by using a DN, GUID or simple name. When a simple name
is used, additional information from the root Oracle Context is used to identify the
subscriber. This example shows a subscriber handle being created:

retval := DBMS_LDAP_UTL.create_subscriber_handle(
subscriber_handle,
DBMS_LDAP_UTL.TYPE_DN,
"o=acme,dc=com"
);

subscriber_handle is created by it's DN: o=oracle,dc=com.

Getting subscriber properties is one common use of a subscriber handle. Here is an
example:

my_attrs is of type DBMS_LDAP.STRING_COLLECTION
 my_attrs(1) :='orclguid';

Table 17–31 GET_GROUP_DN Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

group_handle HANDLE The group handle.

dn VARCHAR2 The group DN.

Table 17–32 GET_GROUP_DN Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.NO_SUCH_GROUP Group doesn't exist.

DBMS_LDAP_UTL.MULTIPLE_GROUP_ENTRIES Multiple number of group DN
entries exist in the directory for
the given group.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid Root Oracle Context.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error
codes for unconditional failures
that are encountered when LDAP
operations are carried out.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 17-19

 retval := DBMS_LDAP_UTL.get_subscriber_properties(
my_session,
my_attrs,
DBMS_LDAP_UTL.ENTRY_PROPERTIES,
my_pset_coll
);

Function create_subscriber_handle
The function create_subscriber_handle() creates a subscriber handle.

Syntax
FUNCTION create_subscriber_handle
(
subscriber_hd OUT HANDLE,
subscriber_type IN PLS_INTEGER,
subscriber_id IN VARCHAR2
)
RETURN PLS_INTEGER;

Parameters

Return Values

See Also
DBMS_LDAP_UTL.get_subscriber_properties().

Function get_subscriber_properties
The function get_subscriber_properties()retrieves the subscriber properties
for the given subscriber handle.

Table 17–33 CREATE_SUBSCRIBER_HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description

subscriber_hd HANDLE A pointer to a handle to a subscriber.

subscriber_type PLS_INTEGER The type of subscriber ID that is passed. Valid
values for this argument are:

■ DBMS_LDAP_UTL.TYPE_DN

■ DBMS_LDAP_UTL.TYPE_GUID

■ DBMS_LDAP_UTL.TYPE_NICKNAME

■ DBMS_LDAP_UTL.TYPE_DEFAULT

subscriber_id VARCHAR2 The subscriber ID representing the subscriber
entry. This can be NULL if subscriber_
type is DBMS_LDAP_UTL.TYPE_DEFAULT.
In this case, the default subscriber is retrieved
from the root Oracle Context.

Table 17–34 CREATE_SUBSCRIBER_HANDLE Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

Subprograms

17-20 Oracle Identity Management Application Developer’s Guide

Syntax
FUNCTION get_subscriber_properties
(
ld IN SESSION,
subscriber_handle IN HANDLE,
attrs IN STRING_COLLECTION,
ptype IN PLS_INTEGER,
ret_pset_coll OUT PROPERTY_SET_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

Usage Notes
This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

Table 17–35 GET_SUBSCRIBER_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

subscriber_handle HANDLE The subscriber handle.

attrs STRING_COLLECTION A list of attributes that must be
retrieved for the subscriber.

ptype PLS_INTEGER Properties of the subscriber's Oracle
Context to return. These are valid
values:

■ DBMS_LDAP_UTL.ENTRY_
PROPERTIES

■ DBMS_LDAP_UTL.COMMON_
PROPERTIES

ret_pset_coll PROPERTY_SET_COLLECTION The subscriber details containing the
attributes requested by the caller.

Table 17–36 GET_SUBSCRIBER_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.NO_SUCH_SUBSCRIBER Subscriber doesn't exist.

DBMS_LDAP_UTL.MULTIPLE_SUBSCRIBER_ENTRIES Subscriber has a multiple
number of DN entries.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid root Oracle Context.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error
codes for unconditional failures
encountered while LDAP
operations are carried out.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 17-21

See Also
DBMS_LDAP.init(), DBMS_LDAP_UTL.create_subscriber_handle().

Function get_subscriber_dn
The function get_subscriber_dn() returns the subscriber DN.

Syntax
FUNCTION get_subscriber_dn
(
ld IN SESSION,
subscriber_handle IN HANDLE,
dn OUT VARCHAR2
)
RETURN PLS_INTEGER;

Parameters

Return Values

Usage Notes
This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also
DBMS_LDAP.init().

Table 17–37 GET_SUBSCRIBER_DN Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session handle.

subscriber_handle HANDLE The subscriber handle.

dn VARCHAR2 The subscriber DN.

Table 17–38 GET_SUBSCRIBER_DN Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.NO_SUCH_SUBSCRIBER Subscriber doesn't exist.

DBMS_LDAP_UTL.MULTIPLE_SUBSCRIBER_ENTRIES Multiple number of subscriber DN
entries exist in the directory for the
given subscriber.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid root Oracle Context.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes
for unconditional failures encountered
when LDAP operations are carried
out.

Subprograms

17-22 Oracle Identity Management Application Developer’s Guide

Function get_subscriber_ext_properties
The function get_subscriber_ext_properties() retrieves the subscriber
extended properties. Currently this can be used to retrieve the subscriber-wide default
Resource Access Descriptors.

Syntax
FUNCTION get_subscriber_ext_properties
(
ld IN SESSION,
subscriber_handle IN HANDLE,
attrs IN STRING_COLLECTION,
ptype IN PLS_INTEGER,
filter IN VARCHAR2,
rep_pset_coll OUT PROPERTY_SET_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

Table 17–39 GET_SUBSCRIBER_EXT_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

ld SESSION A valid LDAP session
handle.

subscriber_handle HANDLE The subscriber handle.

attrs STRING_COLLECTION A list of subscriber attributes
to retrieve.

ptype PLS_INTEGER The type of properties to
return. A valid value is
DBMS_LDAP_
UTL.DEFAULT_RAD_
PROPERTIES

filter VARCHAR2 An LDAP filter to further
refine the subscriber
properties returned by the
function.

ret_pset_collection PROPERTY_SET_COLLECTION The subscriber details
containing the attributes
requested by the caller.

Table 17–40 GET_USER_EXTENDED_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.NO_SUCH_USER User does not exist.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid root Oracle Context.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures encountered when
LDAP operations are carried out.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 17-23

Usage Notes
This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init().

See Also DBMS_LDAP.init(), DBMS_LDAP_UTL.get_subscriber_
properties().

Property-Related Subprograms
Many of the user-related, subscriber-related, and group-related subprograms return
DBMS_LDAP_UTL.PROPERTY_SET_COLLECTION, which is a collection of one or more
LDAP entries representing results. Each of these entries is represented by a DBMS_
LDAP_UTL.PROPERTY_SET. A PROPERTY_SET may contain attributes—that is,
properties—and its values. Here is an example that illustrates the retrieval of
properties from DBMS_LDAP_UTL.PROPERTY_SET_COLLECTION:

my_attrs is of type DBMS_LDAP.STRING_COLLECTION
my_attrs(1) :='cn';

retval := DBMS_LDAP_UTL.get_group_membership(
my_session,
user_handle,
DBMS_LDAP_UTL.DIRECT_MEMBERSHIP,
my_attrs,
my_pset_coll
);

IF my_pset_coll.count > 0 THEN
 FOR i in my_pset_coll.first .. my_pset_coll.last LOOP
-- my_property_names is of type DBMS_LDAP.STRING_COLLECTION
 retval := DBMS_LDAP_UTL.get_property_names(
pset_coll(i),
property_names
 IF my_property_names.count > 0 THEN
 FOR j in my_property_names.first .. my_property_names.last LOOP
 retval := DBMS_LDAP_UTL.get_property_values(
pset_coll(i),
property_names(j),
property_values
 if my_property_values.COUNT > 0 then
 FOR k in my_property_values.FIRST..my_property_values.LAST LOOP
 DBMS_OUTPUT.PUT_LINE(my_property_names(j) || ':'
 ||my_property_values(k));
 END LOOP; -- For each value
 else
 DBMS_OUTPUT.PUT_LINE('NO VALUES FOR' || my_property_names(j));
 end if;
 END LOOP; -- For each property name
 END IF; -- IF my_property_names.count > 0
 END LOOP; -- For each propertyset
 END IF; -- If my_pset_coll.count > 0

use_handle is a user handle. my_pset_coll contains all the nested groups that
user_handle belongs to. The code loops through the resulting entries and prints out
the cn of each entry.

Subprograms

17-24 Oracle Identity Management Application Developer’s Guide

Miscellaneous Subprograms
The miscellaneous subprograms in the DBMS_LDAP_UTL package perform a variety of
different functions.

Function normalize_dn_with_case
The function normalize_dn_with_case() removes unnecessary white space
characters from a DN and converts all characters to lower case based on a flag.

Syntax
FUNCTION normalize_dn_with_case
(
dn IN VARCHAR2,
lower_case IN PLS_INTEGER,
norm_dn OUT VARCHAR2
)
RETURN PLS_INTEGER;

Parameters

Return Values

Usage Notes
This function can be used while comparing two DNs.

Function get_property_names
The function get_property_names() retrieves the list of property names in the
property set.

Syntax
FUNCTION get_property_names
(
pset IN PROPERTY_SET,
property_names OUT STRING_COLLECTION
)
RETURN PLS_INTEGER;

Table 17–41 NORMALIZE_DN_WITH_CASE Function Parameters

Parameter Name Parameter Type Parameter Description

dn VARCHAR2 The DN.

lower_case PLS_INTEGER If set to 1: The normalized DN returns in
lower case. If set to 0: The case is preserved in
the normalized DN string.

norm_dn VARCHAR2 The normalized DN.

Table 17–42 NORMALIZE_DN_WITH_CASE Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR On failure.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 17-25

Parameters

Return Values

See Also
DBMS_LDAP_UTL.get_property values().

Function get_property_values
The function get_property_values() retrieves the property values (the strings)
for a given property name and property.

Syntax
FUNCTION get_property_values
(
pset IN PROPERTY_SET,
property_name IN VARCHAR2,
property_values OUT STRING_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Table 17–43 GET_PROPERTY_NAMES Function Parameters

Parameter Name Parameter Type Parameter Description

pset PROPERTY_SET The property set in the property set
collection returned from any of the
following functions:

■ DBMS_LDAP_UTL.get_group_
membership()

■ DBMS_LDAP_UTL.get_
subscriber_properties()

■ DBMS_LDAP_UTL.get_user_
properties()

■ DBMS_LDAP_UTL.get_group_
properties()

property_names STRING_COLLECTION A list of property names associated
with the property set.

Table 17–44 GET_PROPERTY_NAMES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR On error.

Table 17–45 GET_PROPERTY_VALUES Function Parameters

Parameter Name Parameter Type Parameter Description

property_name VARCHAR2 The property name.

Subprograms

17-26 Oracle Identity Management Application Developer’s Guide

Return Values

See Also
DBMS_LDAP_UTL.get_property_values_len().

Function get_property_values_len
The function get_property_values_len() retrieves the binary property values
for a given property name and property.

Syntax
FUNCTION get_property_values_len
(
pset IN PROPERTY_SET,
property_name IN VARCHAR2,
auth_type IN PLS_INTEGER,
property_values OUT BINVAL_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

pset PROPERTY_SET The property set in the property set
collection obtained from any of the
following function returns:

■ DBMS_LDAP_UTL.get_group_
membership()

■ DBMS_LDAP_UTL.get_
subscriber_properties()

■ DBMS_LDAP_UTL.get_user_
properties()

■ DBMS_LDAP_UTL.get_group_
properties()

property_values STRING_COLLECTION A list of property values (strings).

Table 17–46 GET_PROPERTY_VALUES Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR On failure.

Table 17–47 GET_PROPERTY_VALUES_LEN Function Parameters

Parameter Name Parameter Type Parameter Description

property_name VARCHAR2 A property name.

Table 17–45 (Cont.) GET_PROPERTY_VALUES Function Parameters

Parameter Name Parameter Type Parameter Description

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 17-27

Return Values

See Also
DBMS_LDAP_UTL.get_property_values().

Procedure free_propertyset_collection
The procedure free_propertyset_collection() frees the memory associated
with property set collection.

Syntax
PROCEDURE free_propertyset_collection
(
pset_collection IN OUT PROPERTY_SET_COLLECTION
);

pset PROPERTY_SET The property set in the property set collection
obtained from any of the following function
returns:

■ DBMS_LDAP_UTL.get_group_
membership()

■ DBMS_LDAP_UTL.get_subscriber_
properties()

■ DBMS_LDAP_UTL.get_user_
properties()

■ DBMS_LDAP_UTL.get_group_
properties()

property_values BINVAL_COLLECTION A list of binary property values.

Table 17–48 GET_PROPERTY_VALUES_LEN Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_
ERROR

Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_
ERROR

On failure.

Table 17–47 (Cont.) GET_PROPERTY_VALUES_LEN Function Parameters

Parameter Name Parameter Type Parameter Description

Subprograms

17-28 Oracle Identity Management Application Developer’s Guide

Parameters

See Also
DBMS_LDAP_UTL.get_group_membership(), DBMS_LDAP_UTL.get_
subscriber_properties(), DBMS_LDAP_UTL.get_user_properties(),
DBMS_LDAP_UTL.get_group_properties().

Function create_mod_propertyset
The function create_mod_propertyset() creates a MOD_PROPERTY_SET data
structure.

Syntax
FUNCTION create_mod_propertyset
(
pset_type IN PLS_INTEGER,
pset_name IN VARCHAR2,
mod_pset OUT MOD_PROPERTY_SET
)
RETURN PLS_INTEGER;

Parameters

Return Values

Table 17–49 FREE_PROPERTYSET_COLLECTION Procedure Parameters

Parameter Name Parameter Type Parameter Description

pset_collection PROPERTY_SET_
COLLECTION

The property set collection returned from one
of the following functions:

■ DBMS_LDAP_UTL.get_group_
membership()

■ DBMS_LDAP_UTL.get_subscriber_
properties()

■ DBMS_LDAP_UTL.get_user_
properties()

■ DBMS_LDAP_UTL.get_group_
properties()

Table 17–50 CREATE_MOD_PROPERTYSET Function Parameters

Parameter Name Parameter Type Parameter Description

pset_type PLS_INTEGER The type of property set being modified. Here is
a valid value: ENTRY_PROPERTIES

pset_name VARCHAR2 The name of the property set. This can be NULL
if ENTRY_PROPERTIES are being modified.

mod_pset MOD_PROPERTY_SET The data structure to contain modify operations
to be performed on the property set.

Table 17–51 CREATE_MOD_PROPERTYSET Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 17-29

See Also
DBMS_LDAP_UTL.populate_mod_propertyset().

Function populate_mod_propertyset
The function populate_mod_propertyset() populates the MOD_PROPERTY_SET
data structure.

Syntax
FUNCTION populate_mod_propertyset
(
mod_pset IN MOD_PROPERTY_SET,
property_mod_op IN PLS_INTEGER,
property_name IN VARCHAR2,
property_values IN STRING_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

See Also
DBMS_LDAP_UTL.create_mod_propertyset().

Procedure free_mod_propertyset
The procedure free_mod_propertyset() frees the MOD_PROPERTY_SET data
structure.

Syntax
PROCEDURE free_mod_propertyset
(
mod_pset IN MOD_PROPERTY_SET

Table 17–52 POPULATE_MOD_PROPERTYSET Function Parameters

Parameter Name Parameter Type Parameter Description

mod_pset MOD_PROPERTY_SET Mod-PropertySet data structure.

property_mod_op PLS_INTEGER The type of modify operation to perform on
a property. These are valid values:

■ ADD_PROPERTY

■ REPLACE_PROPERTY

■ DELETE_PROPERTY

property_name VARCHAR2 The name of the property

property_values STRING_COLLECTION Values associated with the property.

Table 17–53 POPULATE_MOD_PROPERTYSET Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.GENERAL_ERROR Authentication failed.

DBMS_LDAP_UTL.PWD_GRACELOGIN_WARN Grace login for user.

Subprograms

17-30 Oracle Identity Management Application Developer’s Guide

);

Parameters

See Also
DBMS_LDAP_UTL.create_mod_propertyset().

Procedure free_handle
The procedure free_handle() frees the memory associated with the handle.

Syntax
PROCEDURE free_handle
(
handle IN OUT HANDLE
);

Parameters

See Also
DBMS_LDAP_UTL.create_user_handle(), DBMS_LDAP_UTL.create_
subscriber_handle(), DBMS_LDAP_UTL.create_group_handle().

Function check_interface_version
The function check_interface_version() checks the interface version.

Syntax
FUNCTION check_interface_version
(
interface_version IN VARCHAR2
)
RETURN PLS_INTEGER;

Parameters

Table 17–54 FREE_MOD_PROPERTYSET Procedure Parameters

Parameter Name Parameter Type Parameter Description

mod_pset PROPERTY_SET Mod_PropertySet data structure.

Table 17–55 FREE_HANDLE Procedure Parameters

Parameter Name Parameter Type Parameter Description

handle HANDLE A pointer to a handle.

Table 17–56 CHECK_INTERFACE_VERSION Function Parameters

Parameter Name Parameter Type Parameter Description

interface_version VARCHAR2 Version of the interface.

Subprograms

DBMS_LDAP_UTL PL/SQL Reference 17-31

Return Values

Function get_property_values_blob
The function get_property_values_blob() retrieves large binary property values
for a given property name and property.

Syntax
FUNCTION get_property_values_blob
(
pset IN PROPERTY_SET,
property_name IN VARCHAR2,
auth_type IN PLS_INTEGER,
property_values OUT BLOB_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Return Values

See Also
DBMS_LDAP_UTL.get_property_values().

Table 17–57 CHECK_VERSION_INTERFACE Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS Interface version is supported.

DBMS_LDAP_UTL.GENERAL_ERROR Interface version is not supported.

Table 17–58 GET_PROPERTY_VALUES_BLOB Function Parameters

Parameters Parameter Type Description

property_name VARCHAR2 A property name.

pset PROPERTY_SET The property set in the property set collection
obtained from any of the following function
returns:

■ DBMS_LDAP_UTL.get_group_
membership()

■ DBMS_LDAP_UTL.get_subscriber_
properties()

■ DBMS_LDAP_UTL.get_user_
properties()

■ DBMS_LDAP_UTL.get_group_
properties()

property_values BLOB_COLLECTION A list of binary property values.

Table 17–59 GET_PROPERTY_VALUES_BLOB Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR On failure.

Function Return Code Summary

17-32 Oracle Identity Management Application Developer’s Guide

Procedure property_value_free_blob
Frees the memory associated with BLOB_COLLECTION returned by DBMS_LDAP.get_
property_values_blob().

Syntax
Syntax
PROCEDURE property_value_free_blob
(
vals IN OUT DBMS_LDAP.BLOB_COLLECTION
);

Parameters

See Also
DBMS_LDAP.get_property_values_blob().

Function Return Code Summary
The DBMS_LDAP_UTL functions can return the values in the following table

Table 17–60 PROPERTY_VALUE_FREE_BLOB Function Parameters

Parameter Description

vals The collection of large binary values returned by DBMS_
LDAP.get_property_values_blob().

Table 17–61 Function Return Codes

Name
Return
Code Description

SUCCESS 0 Operation successful.

GENERAL_ERROR -1 This error code is returned on failure conditions other
than those conditions listed here.

PARAM_ERROR -2 Returned by all functions when an invalid input
parameter is encountered.

NO_GROUP_MEMBERSHIP -3 Returned by user-related functions and group
functions when the user is not a member of a group.

NO_SUCH_SUBSCRIBER -4 Returned by subscriber-related functions when the
subscriber does not exist in the directory.

NO_SUCH_USER -5 Returned by user-related functions when the user
does not exist in the directory.

NO_ROOT_ORCL_CTX -6 Returned by most functions when the root oracle
context does not exist in the directory.

MULTIPLE_SUBSCRIBER_ENTRIES -7 Returned by subscriber-related functions when
multiple subscriber entries are found for the given
subscriber nickname.

INVALID_ROOT_ORCL_CTX -8 Root Oracle Context does not contain all the required
information needed by the function.

NO_SUBSCRIBER_ORCL_CTX -9 Oracle Context does not exist for the subscriber.

INVALID_SUBSCRIBER_ORCL_CTX -10 Oracle Context for the subscriber is invalid.

MULTIPLE_USER_ENTRIES -11 Returned by user-related functions when multiple
user entries exist for the given user nickname.

Function Return Code Summary

DBMS_LDAP_UTL PL/SQL Reference 17-33

NO_SUCH_GROUP -12 Returned by group related functions when a group
does not exist in the directory.

MULTIPLE_GROUP_ENTRIES -13 Multiple group entries exist for the given group
nickname in the directory.

ACCT_TOTALLY_LOCKED_EXCEPTION -14 Returned by DBMS_LDAP_UTL.authenticate_
user() function when a user account is locked. This
error is based on the password policy set in the
subscriber oracle context.

AUTH_PASSWD_CHANGE_WARN -15 This return code is deprecated.

AUTH_FAILURE_EXCEPTION -16 Returned by DBMS_LDAP_UTL.authenticate_
user() function when user authentication fails.

PWD_EXPIRED_EXCEPTION -17 Returned by DBMS_LDAP_UTL.authenticate_
user() function when the user password has
expired. This is a password policy error.

RESET_HANDLE -18 Returned when entity handle properties are being
reset by the caller.

SUBSCRIBER_NOT_FOUND -19 Returned by DBMS_LDAP-UTL.locate_
subscriber_for_user() function when it is
unable to locate the subscriber.

PWD_EXPIRE_WARN -20 Returned by DBMS_LDAP_UTL.authenticate_
user() function when the user password is about to
expire. This is a password policy error.

PWD_MINLENGTH_ERROR -21 Returned by DBMS_LDAP_UTL.set_user_
properties() function while changing the user
password and the new user password is less than the
minimum required length. This is a password policy
error.

PWD_NUMERIC_ERROR -22 Returned by DBMS_LDAP_UTL.set_user_
properties() function while changing the user
password and the new user password does not
contain at least one numeric character. This is a
password policy error.

PWD_NULL_ERROR -23 Returned by DBMS_LDAP_UTL.set_user_
properties() function while changing the user
password and the new user password is an empty
password. This is a password policy error.

PWD_INHISTORY_ERROR -24 Returned by DBMS_LDAP_UTL.set_user_
properties() function while changing the user
password and the new user password is the same as
the previous password. This is a password policy
error.

PWD_ILLEGALVALUE_ERROR -25 Returned by DBMS_LDAP_UTL.set_user_
properties() function while changing the user
password and the new user password has an illegal
character. This is a password policy error.

PWD_GRACELOGIN_WARN -26 Returned by DBMS_LDAP_UTL.authenticate_
user() function to indicate that the user password
has expired and the user has been given a grace login.
This is a password policy error.

Table 17–61 (Cont.) Function Return Codes

Name
Return
Code Description

Data Type Summary

17-34 Oracle Identity Management Application Developer’s Guide

Data Type Summary
The DBMS_LDAP_UTL package uses the data types in the following table

PWD_MUSTCHANGE_ERROR -27 Returned by DBMS_LDAP_UTL.authenticate_
user() function when user password needs to be
changed. This is a password policy error.

USER_ACCT_DISABLED_ERROR -29 Returned by DBMS_LDAP_UTL.authenticate_
user() function when user account has been
disabled. This is a password policy error.

PROPERTY_NOT_FOUND -30 Returned by user-related functions while searching
for a user property in the directory.

Table 17–62 DBMS_LDAP_UTL Data Types

Data Type Purpose

HANDLE Used to hold the entity.

PROPERTY_SET Used to hold the properties of an entity.

PROPERTY_SET_COLLECTION List of PROPERTY_SET structures.

MOD_PROPERTY_SET Structure to hold modify operations on an entity.

Table 17–61 (Cont.) Function Return Codes

Name
Return
Code Description

DAS_URL Interface Reference 18-1

18
DAS_URL Interface Reference

This chapter describes the Oracle extensions to the DAS_URL Service Interface. It
contains these sections:

■ Directory Entries for the Service Units

■ Service Units and Corresponding URL Parameters

■ DAS URL API Parameter Descriptions

■ Search-and-Select Service Units for Users or Groups

Directory Entries for the Service Units
Table 18–1 lists the Oracle Delegated Administration Services units and the directory
entries that store relative URLs for these units.

Table 18–1 Service Units and Corresponding Entries

Service Unit Entry

Create User cn=Create User,cn=OperationURLs,cn=DAS,cn=Products,cn=OracleContext

Edit User cn=Edit User,cn=OperationURLs,cn=DAS,cn=Products,cn=OracleContext

Edit User when
GUID is passed as a
parameter

cn=Edit UserGivenGUID,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Delete User cn=DeleteUser,cn=OperationURLs,cn=DAS,cn=Products,cn=OracleContext

Delete User when
GUID of the user to
be deleted is passed
as a parameter

cn=DeleteUserGivenGUID,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Create Group cn=Create Group,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Edit Group cn=Edit Group,cn=OperationURLs,cn=DAS,cn=Products,cn=OracleContext

Edit the group
whose GUID is
passed through a
parameter

cn=Edit GroupGivenGUID,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Delete Group cn=DeleteGroup,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Delete group with
the GUID passed
through a parameter

cn=DeleteGroupGivenGUID,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Service Units and Corresponding URL Parameters

18-2 Oracle Identity Management Application Developer’s Guide

Service Units and Corresponding URL Parameters
Table 18–2 lists the service units and the URL parameters that can be passed to these
units.

Assign privileges to
a user

cn=User Privilege,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Assign privileges to
a user with the
GUID passed
through a parameter

cn=User Privilege Given GUID,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Assign privilege to a
group

cn=Group Privilege,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Assign privilege to a
group with the given
GUID

cn=Group Privilege Given GUID,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

View User account
information/Profile

cn=Account Info,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Edit User account
Information/Profile

cn=Edit My Profile,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Change Password cn=Password Change,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Search User cn=User Search,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Search Group cn=Group Search,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Search User LOV cn=User LOV,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Search Group LOV cn=Group LOV,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

EUS Console cn=EUS Console,cn=OperationURLs,cn=DAS,cn=Products,cn=OracleContext"

Delegation Console cn=Delegation Console,cn=OperationURLs,cn=DAS,cn=Products,
cn=OracleContext

Password Reset cn=Reset Password,cn=OperationURLs,cn=DAS,cn=Products,cn=OracleContex

View User Profile cn=View User Profile,cn=OperationURLs,cn=DAS,cn=Products,cn=OracleContext

Table 18–2 Service Units and Corresponding URL Parameters

Service Unit Parameter Return Values

Create User doneURL
homeURL
cancelURL
enablePA
parentDN
enableHomeURL
enableHelpURL

returnGUID

Table 18–1 (Cont.) Service Units and Corresponding Entries

Service Unit Entry

Service Units and Corresponding URL Parameters

DAS_URL Interface Reference 18-3

Edit User homeURL
doneURL
cancelURL
enablePA
enableHomeURL
enableHelpURL

-

Edit UserGivenGUID homeURL
doneURL
cancelURL
enablePA
userGUID
enableHomeURL
enableHelpURL

-

Edit My Profile homeURL
doneURL
cancelURL
enableHomeURL
enableHelpURL

-

Delegation Console - -

DeleteUser homeURL
doneURL
cancelURL
enableHomeURL
enableHelpURL

-

DeleteUserGivenGUID homeURL
doneURL
cancelURL
userGUID
enableHomeURL
enableHelpURL

-

User Privilege homeURL
doneURL
cancelURL
enableHomeURL
enableHelpURL

User Privilege Given
GUID

homeURL
doneURL
cancelURL
userGUID
enableHomeURL
enableHelpURL

-

Create Group homeURL
doneURL
cancelURL
enablePA
parentDN
enableHomeURL
enableHelpURL

returnGUID

Table 18–2 (Cont.) Service Units and Corresponding URL Parameters

Service Unit Parameter Return Values

Service Units and Corresponding URL Parameters

18-4 Oracle Identity Management Application Developer’s Guide

Edit Group homeURL
doneURL
cancelURL
enablePA
enableHomeURL
enableHelpURL

-

Edit GroupGivenGUID homeURL
doneURL
cancelURL
enablePA
groupGUID
enableHomeURL
enableHelpURL

-

DeleteGroup homeURL
doneURL
cancelURL
enableHomeURL
enableHelpURL

-

DeleteGroupGivenGUID homeURL
doneURL
cancelURL
groupGUID
enableHomeURL
enableHelpURL

-

Group Privilege homeURL
doneURL
cancelURL
enableHomeURL
enableHelpURL

-

Group Privilege Given
GUID

homeURL
doneURL
cancelURL
groupGUID
enableHomeURL
enableHelpURL

-

Account Info homeURL
doneURL
cancelURL
enableHomeURL
enableHelpURL

-

Password Change homeURL
doneURL
cancelURL
enableHomeURL
enableHelpURL

-

User Search homeURL
doneURL
cancelURL
enableHomeURL
enableHelpURL

-

Table 18–2 (Cont.) Service Units and Corresponding URL Parameters

Service Unit Parameter Return Values

DAS URL API Parameter Descriptions

DAS_URL Interface Reference 18-5

DAS URL API Parameter Descriptions
The parameters described in Table 18–3 are used with DAS units.

Group Search homeURL
doneURL
cancelURL
enableHomeURL
enableHelpURL

-

Password Reset cancelURL
doneURL
enableHomeURL
enableHelpURL

-

View User Profile userGuid
doneURL
homeURL
nableHomeURL
enableHelpURL

-

User LOV base
cfilter
title
dasdomain
callbackURL

userDn
userGuid
userName
nickName
userEmail

Group LOV otype
base
cfilter
title
dasdomain
callbackURL

groupDN
groupGuid
groupName
groupDescription

Table 18–3 DAS URL Parameter Descriptions

Parameter Description

homeURL The URL that is linked to the global button Home. When the calling
application specifies this value, clicking Home redirects the DAS unit to
the URL specified by this parameter.

doneURL This URL is used by DAS to redirect the DAS page at the end of each
operation. In the case of Create User, once the user is created, clicking
OK redirects the URL to this location.

callbackURL DAS uses this URL to send return values to the invoking application.
For UserLOV and GroupLOV units, the return values are submitted as
HTML form parameters through the HTTP POST method.

cancelURL This URL is linked with all the Cancel buttons shown in the DAS units.
Any time the user clicks Cancel, the page is redirected to the URL
specified by this parameter.

enablePA This parameter takes a Boolean value of true or false. Set to true, the
parameter enables the Assign Privileges in User or Group operation. If
the enablePA is passed with value of true in the Create User page, the
Assign Privileges to User section also appears in the Create User page.

userGUID This is the GUID of the user to be edited or deleted. This corresponds to
the orclguid attribute. Specifying the GUID causes the search for the
user step in either editUser or deleteUser units to be skipped.

Table 18–2 (Cont.) Service Units and Corresponding URL Parameters

Service Unit Parameter Return Values

Search-and-Select Service Units for Users or Groups

18-6 Oracle Identity Management Application Developer’s Guide

Search-and-Select Service Units for Users or Groups
DAS provides service units for searching and selecting users or groups. These service
units are sometimes referred to as user or group List Of Values (LOV).

Invoking Search-and-Select Service Units for Users or Groups
A custom application can open a popup window and populate its contents by
supplying a search-and-select URL for a user or group by using a URL of the form:

http://das_host:das_port/oiddas/ui/oracle/ldap/das/search/LOVUserSearch
?title=User&callbackurl=http://app_host:app_port/custapp/Callback

or

http://das_host:das_port/oiddas/ui/oracle/ldap/das/search/LOVGroupSearch
?title=User&callbackurl=http://app_host:app_port/custapp/Callback

respectively. For example:

http://server02.example.com:7777/oiddas/ui/oracle/ldap/das/search/LOVUserSearch?
Mary.Smith=User&callbackurl=http://server04.example.com:7778/custapp/Callback

GroupGUID This is the GUID of the group to be edited or deleted. This corresponds
to the orclguid attribute. Specifying the GUID causes the search for the
group step in either editGroup or deleteGroup units to be skipped.

parentDN When this parameter is specified in CreateGroup, the group is created
under this container. If the parameter is not specified, group creation
defaults to the group search base.

base This parameter represents the search base in the case of search
operations.

cfilter This parameter represents the filter to be used for the search. This filter
is LDAP compliant.

title This parameter represents the title to be shown in the Search and Select
LOV page.

otype This parameter represents the object type used for search. Values
supported are Select, Edit, and Assign.

returnGUID This parameter is appended to the done URL in case of a create
operation. The value will be the orclguid of the new object.

dasdomain This parameter is needed only when the browser is Internet Explorer
and the calling URL and the DAS URL are on different hosts and in the
same domain. An example value is us.oracle.com. Note the calling
application also needs to set the document.domain parameter on the
formload. For more details, refer to Microsoft support at:

http://support.microsoft.com/

enableHomeUR When this parameter is passed with a value of false, the service unit will
be rendered without the home button and home link. By default, the
parameter is set to true.

enableHelpURL When this parameter is passed with a value of false, the service unit will
be rendered without the help button and help link. By default, the
parameter is set to true.

Table 18–3 (Cont.) DAS URL Parameter Descriptions

Parameter Description

Search-and-Select Service Units for Users or Groups

DAS_URL Interface Reference 18-7

In this example, server02.example.com:7777 is the host name and port of the
Oracle Internet Directory DAS application server. server04.example.com:7778 is
the host name and port of the custom application server. Mary.Smith is a string that
appears in the title of the Search and Select page.
http://server04.example.com:7778/custapp/Callback is a URL of the
custom application server that receives the selected parameters for users or groups.

Receiving Data from the User or Group Search-and-Select Service Units
After a User or Group has been selected through the Oracle Internet Directory DAS
User or Group Search-and-Select Service Unit, an HTTP form will be submitted to the
callbackurl page using the POST method. The parameters defined in Table 18–4 and
Table 18–5 are available to the callbackurl page:

The callbackurl page in the popup window may transfer the form parameters to the
invoking page in the opener window using JavaScript. It may then close the popup
window.

Note: To avoid popup blocking, the custom application may open
the popup window with a URL on the local custom application server
and immediately redirect to the Oracle Internet Directory DAS User or
Group Search-and-Select URL.

Table 18–4 User Search and Select

Parameter Description

userDn User's distinguished name.

userGuid User's global unique ID.

userName User's name.

nickName User's nickname

userEmail User's email.

Table 18–5 Group Search and Select

Parameter Description

groupDn Group's distinguished name.

groupGuid Group's global unique ID.

groupName Group's name.

groupDescription Group's description.

Note: To avoid JavaScript security problems, the custom application
may supply the callbackurl page on the same server as the invoking
page. This enables the callbackurl page in the popup window and the
invoking page in the opener window to communicate directly through
JavaScript.

Search-and-Select Service Units for Users or Groups

18-8 Oracle Identity Management Application Developer’s Guide

Oracle Directory Integration Platform User Provisioning Java API Reference 19-1

19
Oracle Directory Integration Platform User

Provisioning Java API Reference

As of 10g (10.1.4.0.1), Oracle offers two complementary provisioning products,
optimized for different use cases.

■ Oracle Identity Manager, formerly known as Oracle Xellerate IP, is an enterprise
provisioning platform designed to manage complex environments with highly
heterogeneous technologies that can include directories, databases, mainframes,
proprietary technologies, and flat files. Oracle Identity Manager offers
full-functioned workflow and policy capabilities along with a rich set of audit and
compliance features.

■ Oracle Directory Integration Platform, a component of the Identity Management
infrastructure, is a meta-directory technology designed to perform directory
synchronization as well as provisioning tasks in a directory-centric environment.
Oracle Directory Integration Platform is designed to manage a more homogeneous
environment consisting of directories and compatible Oracle products. Oracle
Directory Integration Platform performs provisioning tasks by using data
synchronization. Oracle Directory Integration Platform offers a small deployment
footprint when workflow and a full feature policy engine are not required.

The Oracle Internet Directory SDK includes an Oracle Directory Integration Platform
user provisioning API, which enables you to manage users and their application
properties in the Oracle Identity Management infrastructure. This chapter describes
the main features of the API and explains how to use them.

This chapter contains the following sections:

■ Application Configuration

■ User Management

■ Debugging

■ Sample Code

Application Configuration
Applications must register with the provisioning system in order to be recognized as
provisionable. They must also create their own configuration in Oracle Internet
Directory using the command-line interface. Java classes exist for viewing application
configurations.

This section contains the following topics:

■ Application Registration and Provisioning Configuration

Application Configuration

19-2 Oracle Identity Management Application Developer’s Guide

■ Application Configuration Classes

Application Registration and Provisioning Configuration
In order to register with the provisioning system, an application must create a
provisioning configuration. Once the provisioning configuration exists, the
provisioning system identifies the application as directory-enabled and provisionable.

The application must perform the following steps to create a provisioning
configuration:

1. Application Registration

2. Provisioning Configuration

Application Registration
Oracle applications typically register themselves by using the repository APIs in the
repository.jar file under $ORACLE_HOME/jlib. This file is provided during
installation specifically for application registration. In addition to creating an
application entry in Oracle Internet Directory, repository APIs can be used to add the
application to privileged groups.

Applications written by customers, however, cannot use the repository.jar APIs
to perform application registration. So application developers must use LDIF
templates and create application entries in Oracle Internet Directory using LDAP
commands.

An application must create a container for itself under one of these containers:

■ "cn=Products,cn=OracleContext"—for applications that service users in
multiple realms

■ "cn=Products,cn=OracleContext,RealmDN"—for applications that service
users in a specific realm

If an application is configured for a specific realm, then that application cannot
manage users in other realms. In most cases, you should create the application outside
any identity management realm so that the application is not tied to a specific realm in
Oracle Internet Directory.

Whenever a new instance of the application installs, a separate entry for the
application instance is created under the application's container. Some of the
provisioning configuration is common to all the instances of a particular type and
some is specific to the instance. When multiple instances of an application are
deployed in an enterprise, each instance is independent of the others. Each instance is
defined as a separate provisionable application. Users can be provisioned for one or
more instances of this application, so that the user can get access to one or more
instances of this application.

The examples in this section are for a sample application similar to Oracle Files. When
the first instance of this application installs, specific entries must be created in Oracle
Internet Directory. In the following example, the name of this application, chosen at
run time, is Files-App1 and the type of the application is FILES. The application
can have LDIF templates that can be instantiated if required and then uploaded to
Oracle Internet Directory. In this example, the application identity is outside any
realm. That is, it is under the "cn=Products,cn=OracleContext" container.

dn: cn=FILES,cn=Products,cn=OracleContext
changetype: add
objectclass: orclContainer

Application Configuration

Oracle Directory Integration Platform User Provisioning Java API Reference 19-3

dn: orclApplicationCommonName=Files-App1,cn=FILES,cn=Products,cn=OracleContext
changetype: add
orclappfullname: Files Application Instance 1
userpassword: welcome123
description: This is a test Appliction instance.
protocolInformation: xxxxx
orclVersion: 1.0
orclaci: access to entry by group="cn=odisgroup,cn=DIPAdmins,
 cn=Directory Integration Platform,cn=Products,
 cn=OracleContext" (browse,proxy) by group="cn=User Provisioning Admins,
 cn=Groups,cn=OracleContext" (browse,proxy)
orclaci: access to attr=(*) by group="cn=odisgroup,cn=DIPAdmins,
 cn=Directory Integration Platform,cn=Products,
 cn=OracleContext" (search,read,write,compare)
 by group="cn=User Provisioning Admins,
 cn=Groups,cn=OracleContext" (search,read,write,compare)

The ACLs shown in the example are discussed in the "Application User Data Location"
section.

The application is expected to grant certain privileges to some provisioning services as
well as provisioning administrators.

When the second instance of this application installs, the following entries must be
created in Oracle Directory Integration Platform, assuming the name of this
application, decided at run time, is Files-App2.

dn: orclApplicationCommonName=Files-App2,cn=FILES,cn=Products,cn=OracleContext
changetype: add
orclappfullname: Files Application Instance 2
userpassword: welcome123
description: This is a test Appliction instance.
orclVersion: 1.0
orclaci: access to entry by group="cn=odisgroup,
 cn=DIPAdmins,cn=Directory Integration Platform,cn=Products,
 cn=OracleContext" (browse,proxy) by group="cn=User Provisioning Admins,
 cn=Groups,cn=OracleContext" (browse,proxy)
orclaci: access to attr=(*) by group="cn=odisgroup,cn=DIPAdmins,
 cn=Directory Integration Platform,cn=Products,
 cn=OracleContext" (search,read,write,compare) by
 group="cn=User Provisioning Admins,cn=Groups,cn=OracleContext"
 (search,read,write,compare)

Once the application creates its entries successfully, the application's identity is
registered in Oracle Internet Directory. At this point, the application can add itself to
certain privileged groups in Oracle Internet Directory, if it needs specific privileges.
Table 19–1, " Some Useful Privilege Groups" shows some of the privileged groups that
an application can add itself to. Each of these groups exists in every realm and also in
the RootOracleContext. The RootOracleContext Group is a member of the group in all
the realms

Table 19–1 Some Useful Privilege Groups

Group Name Privilege

OracleDASCreateUser Create a public user

OracleDASEditUser Edit a public user

OracleDASDeleteUser Delete a public user

OracleDASCreateGroup Create a new public group

Application Configuration

19-4 Oracle Identity Management Application Developer’s Guide

For example, the following LDIF file adds the Files-App1 application to
cn=OracleCreateUser, which gives it the privilege to create users in all realms.

dn:cn=OracleCreateUser,cn=Groups,cn=OracleContext
changetype: modify
add: uniquemember
uniquemember:
orclApplicationCommonName=Files-App1,cn=FILES,cn=Products,cn=OracleContext

Provisioning Configuration
An application's provisioning configuration is maintained in its provisioning profile.
The provisioning system supports three different provisioning profile versions:
Versions 1.1, 2.0 and 3.0. The provisioning service provides different service for the
different profile version. Some generic configuration details are common to all
applications, regardless of version.

Differences Between Provisioning Configuration Versions
The differences between the Version 3.0 profile and the Version 2.0 and Version 1.1
profiles are as follows:

■ The new provisioning framework recognizes only Version 3.0 applications.
Therefore, only applications with provisioning profile Version 3.0 show up as
target applications to be provisioned in Oracle Provisioning Console. Applications
with Version 2.0 and Version 1.1 profiles do not show them up as applications to
be provisioned in the Provisioning Console. Still, the applications are notified
about the events that the applications have configured for.

■ Creating the provisioning configuration of an application is a multi step process
for Version 3.0 profiles. For the earlier version profiles, provisioning registration
requires only a single step, running the oidprovtool command.

■ Applications can subscribe for provisioning events using different interfaces. Two
of the interfaces, Java and OID-LDAP, are available only for interface Version 3.0,
which is coupled with provisioning configuration Version 3.0. See Table 19–2,
" Interfaces and Their Configuration".

■ An application can specify its application-specific user attributes configuration in
an LDIF file. This is supported only for interface Version 3.0, which is coupled
with provisioning configuration Version 3.0. See "Application User Attribute and
Defaults Configuration" on page 19-9

■ The provisioning status of the user, discussed in the Oracle Identity Management
Integration Guide, is maintained only for Version 3.0 applications. It is not
maintained for applications having profiles earlier than Version 3.0.

■ Event propagation configuration parameters vary from one version to another. See
Table 19–5, " Event propagation parameters".

Version 3.0-Specific Provisioning Configuration
Unless otherwise stated, the remainder of this section describes the Version 3.0-specific
provisioning configuration. Figure 19–1 shows the DIT in Oracle Internet Directory

OracleDASEditGroup Edit a public group

OracleDASDeleteGroup Delete a public group

Table 19–1 (Cont.) Some Useful Privilege Groups

Group Name Privilege

Application Configuration

Oracle Directory Integration Platform User Provisioning Java API Reference 19-5

used to store the provisioning configuration. All the provisioning configuration
information is located under the following container:

cn=Provisioning,cn=Directory Integration Platform,cn=Products,cn=OracleContext

Common provisioning configuration information is stored in entries under the
container:

cn=Profiles,cn=Provisioning,cn=Directory Integration Platform,
 cn=Products,cn=OracleContext

The rest of the provisioning configuration for an application is located under:

cn=ApplicationType,cn=Applications,cn=Provisioning,
 cn=Directory Integration Platform,cn=Products,cn=OracleContext

All the instances of a specific application type share the configuration under this
container. That is, whenever a second instance of an existing application type creates a
provisioning profile, all the configuration information under the
"cn=ApplicationType" container is shared.

Figure 19–1 The Directory Information Tree for Provisioning Configuration Data

The Profiles container contains the following types of configuration information:

Provisioning Profile
(per application)
Managed by
oidprovtool

EMAIL Provisioning
Profile

Configuration Common to all applications of the same type.
This includes Plug Ins and Attribute Configurations.

cn=Profiles

cn=Provisioning

cn=EMAIL

cn=Applications

cn=Plug Ins
cn=Attribute
Configuration

cn=User Configuration

cn=Attributes

cn=
PRE_DATA_ENTRY

cn=
DATA_
ACCESS

cn=Directory Integration Platform

cn=Products

cn=OracleContext

Root

cn=Plug Ins

cn=
POST_DATA_

ENTRY

entry for
orclmailstore

Entry for
orlmailquota

Application Configuration

19-6 Oracle Identity Management Application Developer’s Guide

■ Application Identity Information

■ Application Identity Realm Information

■ Application Provisioning and Default Policy

■ Application User Data Location

■ Event Interface Configuration

■ Application User Attribute and Defaults Configuration

■ Application Provisioning Plug-in Configuration

■ Application Propagation Configuration

■ Application Event Propagation Run Time Status

Whenever an instance of an application creates a profile, the new profile is stored as a
separate entry under the Profiles container in the following naming format:

orclODIPProfileName=GUID_of_the_Realm_Entry_GUID_of_the_Application_Identity,….

An application must specify the following information when creating a provisioning
configuration:

Application Identity Information An instance of an application is uniquely identified by
the following parameters:

■ Application DN—A unique DN in the Oracle Internet Directory representing the
application. This is a mandatory parameter.

■ Application Type— A parameter that is common to all instances of the same
application. Multiple instances of a particular type can share some configuration.
This is a mandatory parameter.

■ Application Name—This can be separately specified. If not specified, it is
extracted from the DN. This is an optional parameter.

■ Application Display Name—A user-friendly name for the application. This shows
up on the Provisioning Console as a target provisionable application. This is an
optional parameter.

You provide these application identity parameters while creating the provisioning
profile by using the following arguments to the $ORACLE_HOME/bin/oidprovtool
command line utility, respectively:

■ application_type

■ application_dn

■ application_name

■ application_display_name

Application Identity Realm Information An application registers for a specific realm in
order to provide services to the users of that realm only. An application must create a
separate provisioning profile for each of the realms it provides services for. In a multi
realm scenario, such as a hosted OracleAS Portal scenario, applications must register
for individual realms.

See Also: The oidprovtool command-line tool reference in Oracle
Identity Management User Reference.

Application Configuration

Oracle Directory Integration Platform User Provisioning Java API Reference 19-7

Whenever a provisioning administrator for a realm accesses the Provisioning Console,
only the applications that are registered for that realm are shown as provisionable
target applications.

The application specifies realm information while creating the provisioning profile by
using the $ORACLE_HOME/bin/oidprovtool command line utility with the
argument organization_dn.

Application Provisioning and Default Policy While creating a provisioning profile, an
application can specify whether the Provisioning Console should manage provisioning
to that application or not. If not, the application does not show up on the Provisioning
Console as an application to be provisioned. However, Oracle Directory Integration
Platform still processes this profile and propagates the events as expected.

An application specifies this information while creating the provisioning profile by
using the application_isdasvisible argument to the $ORACLE_
HOME/bin/oidprovtool command line utility. The default value is TRUE.

An application can configure a default policy determining whether all the users in that
realm should be provisioned for that application by default or no users should be
provisioned by default. The valid values are

■ PROVISIONING_REQUIRED—all users will be provisioned by default

■ PROVISIONING_NOT_REQUIRED—no users will be provisioned by default

The default is set to PROVISIONING_REQUIRED

You can override the default policy with application-provided policy plug-ins at run
time. In addition, an administrator can override both the default policy and the
decision of the policy plug-in.

An application provides the default policy information by using the default_
provisioning_policy argument to the $ORACLE_HOME/bin/oidprovtool
command line utility.

Application User Data Location Application-specific user information is stored in the
application-specific containers. If this data is to be managed by the provisioning
system, the application must specify the location of these containers during
provisioning registration. An application specifies its user data location by using the
user_data_location argument to the $ORACLE_HOME/bin/oidprovtool
command line utility. The application must ensure that the ACLs on this container
allow Oracle Delegated Administration Services and Oracle Directory Integration
Platform to manage the information in this container.

Event Interface Configuration Applications can subscribe for provisioning events using
different interfaces: PLSQL, Java, and OID-LDAP. Table 19–2, " Interfaces and Their
Configuration" lists the supported interfaces and their associated configuration. Note
that INTERFACE_VERSION is coupled with provisioning profile version.

See Also: The oidprovtool command-line tool reference in Oracle
Identity Management User Reference.

Table 19–2 Interfaces and Their Configuration

Configuration
Parameter PLSQL Java OID-LDAP

INTERFACE_VERSION 1.1, 2.0, 3.0 3.0 3.0

Application Configuration

19-8 Oracle Identity Management Application Developer’s Guide

Applications can use the following arguments to $ORACLE_
HOME/bin/oidprovtool when specifying an event interface configuration:

■ interface_type (Default is PLSQL)

■ interface_version (Default is 2.0)

■ interface_name

■ interface_connect_info

■ interface_additional_info

Table 19–3, " Information Formats Supported by the PLSQL Interface" lists the
interface connection information formats that the PL/SQL interface supports when it
connects to a remote database. All the formats are supported for all interface versions.

INTERFACE_NAME The name of the PLSQL
package that implements
the Interface

Not used Not used

INTERFACE_
CONNECT_INFO

The Database Connect
String. Multiple formats
supported for all
versions.

Not used Not used

INTERFACE_
ADDITIONAL_INFO

Not used Not used Not used

Plugin types PRE_DATA_ENTRY,
POST_DATA_ENTRY,
DATA_ACCESS

PRE_DATA_ENTRY,
POST_DATA_ENTRY,
DATA_ACCESS,
EVENT_DELIVERY
(MUST)

PRE_DATA_ENTRY,
POST_DATA_ENTRY,
DATA_ACCESS

Description Mainly for applications
that have an Oracle
Database backend. The
DIP Server pushes the
event to the remote
Database by invoking the
PLSQL procedure.

If the Interface Type is
JAVA, an event
delivering plug-in must
be configured or the
server will give errors.
The plug-in
configuration determines
the rest of the
configuration. See
Application Provisioning
Plug-in Configuration.

Mainly used in cases
where the application is
very tightly bound to
Oracle Internet Directory
and event delivery
through the PLSQL
interface or the JAVA
Event Delivery Plug-in is
unnecessary. This
interface will be
deprecated in future.
Please use the JAVA
Interface instead.

Table 19–3 Information Formats Supported by the PLSQL Interface

Format Description

dbHost:dbPort:dbSID:username:password Old format, not recommended. Oracle Directory
Integration Platform passes this to the thin JDBC Driver.

dbHost:dbPort:dbServiceName:username:password Newer format. Not Recommended for High Availability
implementations, as the database host and port might
change in such scenarios. DIP passes this to the thin JDBC
Driver.

Table 19–2 (Cont.) Interfaces and Their Configuration

Configuration
Parameter PLSQL Java OID-LDAP

Application Configuration

Oracle Directory Integration Platform User Provisioning Java API Reference 19-9

Some examples of supported formats are:

 localhost:1521:iasdb:scott:tiger

 localhost:1521:iasdbsvc:scott:tiger

 DBSVC=TNSALIAS:scott:tiger

 DBURL=ldap://acme.com:389/samplegdbname:scott:tiger

Application User Attribute and Defaults Configuration An application can specify its
application-specific user attributes configuration in an LDIF file. This is supported
only for interface version 3.0.

As shown in Figure 19–1, "The Directory Information Tree for Provisioning
Configuration Data", the configuration for a particular attribute is stored as a separate
entry under the container:

"cn=Attributes,cn=User Configuration,cn=Attribute configuration,
 cn=Application_Type,cn=Applications,cn=Provisioning,
 cn=Directory Integration Platform,cn=Products,cn=OracleContext"

There is no argument to oidprovtool for uploading this information. The
application must use an LDAP file and command-line tools to upload its attribute
configuration information to Oracle Internet Directory.

Each application-specific attribute is represented as a separate entry. The following
example is for the attribute orclFilesDomain:

dn: cn=orclFilesDomain,cn=Attributes,cn=User configuration,cn=Attribute
configuration,……
changetype: add
orcldasadminmodifiable: 1
orcldasviewable: 1
displayname: Files Domain
orcldasismandatory: 1
orcldasuitype: LOV
orcldaslov: us.oracle.com
orcldaslov: oraclecorp.com
orclDASAttrIsUIField: 1
orclDASAttrIsFieldForCreate: 1
orclDASAttrIsFieldForEdit: 1
orclDASAttrToDisplayByDefault: 1
orclDASSelfModifiable: 1
orclDASAttrDisplayOrder: 1
orclDASAttrDefaultValue: oraclecorp.com
orclDASAttrObjectClass: orclFILESUser
objectclass: orclDASConfigAttr

DBSVC=DB_TNS_Connect_Sring_
Alias:username:password

Used by JDBC thick OCI Driver. The local
tnsnames.ora file must contain this alias on the node
where DIP is running.

DBURL=ldap://LDAP_host:LDAP_
port/ServiceName,cn=OracleContext

Recommended format, as it takes care of High
Availability requirements. DIP passes this to the thin
JDBC Driver and the driver looks up the Database
Registration entry in Oracle Internet Directory to get the
actual Database connection information.

Table 19–3 (Cont.) Information Formats Supported by the PLSQL Interface

Format Description

Application Configuration

19-10 Oracle Identity Management Application Developer’s Guide

Table 19–4, " Properties Stored as Attributes in the Attribute Configuration Entry"
explains the significance of each of the properties that are stored as attributes in the
attribute configuration entry.

If an application has application-specific attributes, you can specify that the
provisioning system manage its attributes defaults. You do that by using the manage_

Table 19–4 Properties Stored as Attributes in the Attribute Configuration Entry

Property Name Description Comments

orclDASIsUIField Whether this property is to be shown
in the DAS Console or not

Not Used in 10g (10.1.4.0.1). All
attributes are shown.

orclDASUIType The Type of the UI Field: singletext,
multitext, LOV, DATE, Number,
password

Used by Oracle Internet Directory
Self-Service Console only

orclDASAdminModifiable Whether the field is modifiable by
the administrator or not

Not Used in 10g (10.1.4.0.1). All
attributes are modifiable by
administrator.

orclDASViewAble Whether this attribute is a read-only
attribute in the Oracle Internet
Directory Self-Service Console

Not Used in 10g (10.1.4.0.1)

displayName The Localized Name of the attribute
as it shows on the Oracle Internet
Directory Self-Service Console

orclDASIsMandatory Whether this attribute is mandatory
or not

If a mandatory attribute is not
populated, the Oracle Internet
Directory Self-Service Console
complains

orclDASAttrIsFieldForCreate Whether to expose this attribute only
during user creation

Not Used in 10g (10.1.4.0.1)

orclDASAttrIsFieldForEdit Whether to expose this attribute only
during user editing

Not Used in 10g (10.1.4.0.1)

orclDASAttrToDisplayByDef
ault

Whether to hide the attribute by
default under a collapsed section

Not Used in 10g (10.1.4.0.1)

orclDASSelfModifiable Whether this attribute is modifiable
by the user or not

Not Used in 10g (10.1.4.0.1), as Oracle
Internet Directory Self-Service
Console is only for
application-specific attributes. Users
cannot change their user preferences
from the Oracle Internet Directory
Self-Service Console.

OrclDASAttrDisplayOrder The order is which the attribute is to
be displayed in the
application-specific section

Not Used in 10g (10.1.4.0.1)

OrclDASAttrDefaultValue The initial default value for the
attribute that is used by the
provisioning components: Oracle
Internet Directory Self-Service
Console, Oracle Directory
Integration Platform, Bulk
Provisioning Tool

Can be changed using the Oracle
Internet Directory Self-Service
Console Application Management
Page. The Plug-ins or the
administrator can override the initial
default values.

OrclDASAttrObjectClass The LDAP object class that the
attribute belongs to.

Used to create the
application-specific user entries that
the provisioning system maintains.

Application Configuration

Oracle Directory Integration Platform User Provisioning Java API Reference 19-11

application_defaults argument to $ORACLE_HOME/bin/oidprovtool. This
argument is TRUE by default.

Application Provisioning Plug-in Configuration Application provisioning plug-ins are
discussed in

Appendix A, "Java Plug-ins for User Provisioning".

Application Propagation Configuration Event propagation configuration parameters vary
from one profile version to another. Table 19–5, " Event propagation parameters" lists
and describes configuration parameters for event propagation.

Table 19–5 Event propagation parameters

Parameter

Supported
Provisioning
Profile Version Description

profile_mode 2.0,.3.0 Whether the application is to receive outbound
provisioning events from Oracle Internet Directory, to send
inbound events, or both. Values are OUTBOUND (default),
INBOUND, and BOTH.

Schedule 1.1, 2.0, 3.0 The scheduling interval after which pending events are
propagated

enable_bootstrap 3.0 Enables events for application bootstrapping. This specifies
that the application should be notified of users that existed
in Oracle Internet Directory before the application created
its provisioning profile.

enable_upgrade 3.0 Enables events for application user upgrade. This specifies
that the application should be notified of users that existed
in Oracle Internet Directory before the upgrade. If the
application was present before the upgrade, users might
already exist in the application. For such users, Oracle
Directory Integration Platform sends an Upgrade Event to
the application so that the user is handled differently from
a normal new user.

lastchangenumber 3.0 The change number in Oracle Internet Directoryfrom which
the events need to be sent to the application.

max_prov_failure_
limit

3.0 The maximum number of retries that the Oracle Directory
Integration Platform server attempts when provisioning a
user for that application.

max_events_per_
invocation

2.0, 3.0 For bulk event propagation, this specifies the maximum
number of events that can be packaged and sent during one
invocation of the event interface.

max_events_per_
schedule

2.0 Maximum number of events that Oracle Directory
Integration Platform sends to an application in one
execution of the profile. The default is 25. In deployments
with many profiles and applications, this enables Oracle
Directory Integration Platform, which is multithreaded, to
execute threads for multiple profiles.

Application Configuration

19-12 Oracle Identity Management Application Developer’s Guide

event_subscription 1.1, 2.0, 3.0 Defines the types of OUTBOUND events an application is
to receive from the event propagation service. The format
is:

Object_Type:Domain:Operation(Attributes,…)

For example:

USER:cn=users,dc=acme,dc=com:ADD(*)

specifies that USER_ADD event should be sent if the user
that was created is under the specified domain and that all
attributes should also be sent.

USER:cn=users,dc=acme,dc=com:MODIFY(cn,sn.mail,tele
phonenumber)

specifies that USER_MODIFY event should be sent if the
user that was modified is under the specified domain and
any of the listed attributes were modified

USER:cn=users,dc=acme,dc=com:DELETE

specifies that USER_DELETE event should be sent if a user
under the specified domain was deleted

event_permitted_
operations

2.0 Defines the types of INBOUND events an application is
privileged to send to the Oracle Directory Integration
Platform server. The format is:

Object_Type:Domain:Operation(Attributes,…)

For example:

IDENTITY:cn=users,dc=acme,dc=com:ADD(*)

specifies that IDENTITY_ADD event is allowed for the
specified domain and all attributes are also allowed. This
means that the application is allowed to create users in
Oracle Internet Directory.

IDENTITY:cn=users,dc=acme,dc=com:MODIFY(cn,sn.mail,
telephonenumber)

Specifies that IDENTITY_MODIFY is allowed for only the
attributes in the list. Other attributes are silently ignored.
This means that the application is allowed to modify the
listed attributes of the users in Oracle Internet Directory.

IDENTITY:cn=users,dc=acme,dc=com:DELETE

Specifies that the application is allowed to delete users in
Oracle Internet Directory

Table 19–5 (Cont.) Event propagation parameters

Parameter

Supported
Provisioning
Profile Version Description

User Management

Oracle Directory Integration Platform User Provisioning Java API Reference 19-13

Application Event Propagation Run Time Status The Oracle Provisioning Service records a
user's provisioning status in Oracle Internet Directory for each provisioning-integrated
application. This is described in the Deploying and Configuring Provisioning chapter
of Oracle Identity Management Integration Guide.

Application Configuration Classes
The oracle.idm.user.provisioning.configuration.Configuration class
enables you to obtain provisioning schema information. The
oracle.idm.user.provisioning.configuration.Application class enables
you to obtain metadata for registered applications. These classes are documented
under the package oracle.idm.provisioning.configuration.

The Configuration class provides access to application configurations. To construct,
a Configuration object, you must specify the realm. For example:

Configuration cfg = new Configuration ("us");

Then you use Configuration class methods to get one or all application
configurations in a realm. You must supply the LDAP context of the realm.

The Configuration object is a fairly heavy weight object, as its creation requires
access to the Oracle Internet Directory metadata. Best practice is to create a
Configuration object once during initialization of an application, then to reuse it for
all operations that require it.

The Application object represents an application instance. Its methods provide
metadata about a registered application in the infrastructure.

User Management
When Oracle Directory Integration Platform or Oracle Delegated Administration
Services invokes a provisioning plugin, it passes information about the user being
provisioned. A deployed application can use the user object to modify the user.

The user management provisioning classes provide the following operations:

■ Create, modify, and delete a base user

event_mapping_
rules

2.0 For INBOUND profiles, this specifies the type of object
received from an application and a qualifying filter
condition to determine the domain of interest for this event.
Multiple rules are allowed. The format is:

Object_Type: Filter_condition: Domain_Of_Interest

For example:

EMP::cn=users,dc=acme,dc=com

specifies that if the object type received is EMP, the event is
meant for the domain "cn=users,dc=acme,dc=com".

EMP:l=AMERICA:l=AMER,cn=users,dc=acme,dc=com

specifies that if the object type received is EMP, and the
event has the attribute l (locality) and its value is
AMERICA, the event is meant for the domain
"l=AMER,cn=users,dc=acme,dc=com".

Table 19–5 (Cont.) Event propagation parameters

Parameter

Supported
Provisioning
Profile Version Description

User Management

19-14 Oracle Identity Management Application Developer’s Guide

■ Create, modify, and delete application-specific user information

■ Search base users

■ Retrieve user provisioning status for applications

This section includes the following topics:

■ Creating a User

■ Modifying a User

■ Deleting a User

■ Looking Up a User

Creating a User
Creating a user in the Oracle Identity Management repository consists of two steps:

1. Creating basic user information in the specified realm. This information is referred
to as the base user.

2. Creating the application-specific user attributes, or footprint. This information is
referred to as the application user.

The combination of the base user and application user in the repository is referred to
as the Oracle Identity Management user. Some methods create only the base user and
other create both components of the Oracle Identity Management user.

The minimum information required to create a user is a set of attributes representing
the base user. The attributes are in the form of name-value pairs. These user attributes
are represented as Java objects using the class
oracle.ldap.util.ModPropertySet.

Some user creation methods require you to specify the DN of the entry that you want
to create in the Oracle Identity Management user repository. Other methods do not
require the DN. Instead, they construct the Oracle Identity Management user using the
metadata configuration information from the Realm in which the user is created.

If the creation of the base user and application user succeeds, then the creation method
returns an IdmUser object. You use this object to manage the attributes of the base
user and application user.

Modifying a User
Modifying a base user in the Oracle Identity Management repository results in

■ Modifying the base user information

■ Creating or modifying application user information

 You must supply the following information in order to modify an Oracle Identity
Management user:

1. The user's DN, GUID, or IdmUser object reference

2. The desired changes to the base user attributes, represented as an
oracle.ldap.util.ModPropertySet

Some user modification methods modify only the base user attributes. Others modify
the application user attributes as well.

Sample Code

Oracle Directory Integration Platform User Provisioning Java API Reference 19-15

Deleting a User
Deleting a base user in the Oracle Identity Management repository produces the
following results:

■ Deleting the base user information

■ Deleting the application user information

To modify an Oracle Identity Management user, you must supply the DN, GUID, or
IdmUser object reference.

As result of this operation, the base user and the application user attributes are
deleted.

Looking Up a User
 The lookup methods provide two lookup options:

■ Look up a specific Oracle Identity Management user using GUID or DN

■ Look up a set of Oracle Identity Management users using a search filter

 In order to look up Oracle Identity Management users, you must provide the DN or
GUID.

 The output of a lookup method is one of the following:

■ A single IdmUser object

■ A list of IdmUser objects

Debugging
Set UtilDebug.MODE_PROVISIONING_API mode to enable debugging and trace
information. If you do not specify an output stream for the log messages, they are
written to standard output.

The following snippet shows how to set UtilDebug.MODE_PROVISIONING_API
mode and specify an output stream:

Import oracle.ldap.util.UtilDebug;
FileOutputStream logStream = new FileOutputStream("ProvAPI.log")
…
UtilDebug.setDebugMode(UtilDebug.MODE_PROVISIONING_API);
UtilDebug.setPrintStream(logStream);

Sample Code
The following code example shows how to create, modify, and look up a user and how
to get user provisioning status for an application.

UtilDebug.setDebugMode(UtilDebug.MODE_PROVISIONING_API);
…
Configuration cfg = new Configuration(realm);
 try {
 debug("Connecting...");
 InitialLdapContext ctx =
 ConnectionUtil.getDefaultDirCtx(hostName, port, bindDn, passwd);
 debug("Connected...");
 UserFactory factory = UserFactoryBuilder.createUserFactory(ctx, cfg);

Sample Code

19-16 Oracle Identity Management Application Developer’s Guide

 // Create
 ModPropertySet mpSet = new ModPropertySet();
 mpSet.addProperty("cn","Heman");
 mpSet.addProperty("sn","The Master");
 mpSet.addProperty("uid","Heman");
 IdmUser idmUser = factory.createUser(mpSet);

 // Modify
 mpSet = new ModPropertySet();
 mpSet.addProperty(LDIF.ATTRIBUTE_CHANGE_TYPE_REPLACE,"sn",
 "Heman The Master");
 mpSet.addProperty("givenName","Master of the Universe");
 factory.modifyUser(idmUser, mpSet);

 // Lookup
 List users = factory.searchUsers(Util.IDTYPE_SIMPLE, "Hema*", null);
….

 // Get user provisioning status for an application.
 Application app = cfg.getApplication(lCtx, "Files", "FilesInstace");
 String status = idmUser.getProvisioningStatus(app);

 // Another way to get user provisioning status
 String userDn = idmUser.getDNn();
 String status = ProvUtil.getUserProvisioningStatus(dirctx,
 Util.IDTYPE_DN, userDn, app.getType(), app.getName());
 } catch (Exception ex) {
 ex.printStackTrace();
 //
 }

Oracle Directory Integration Platform PL/SQL API Reference 20-1

20
Oracle Directory Integration Platform PL/SQL

API Reference

This chapter describes the registration API for the Directory Integration Platform. It
contains the following sections:

■ Versioning of Provisioning Files and Interfaces

■ Extensible Event Definition Configuration

■ Inbound and Outbound Events

■ PL/SQL Bidirectional Interface (Version 3.0)

■ PL/SQL Bidirectional Interface (Version 2.0)

■ Provisioning Event Interface (Version 1.1)

Versioning of Provisioning Files and Interfaces
In release 9.0.2, the default interface version was version 1.1. In releases 9.0.4 and
10.1.2.0.0, the interface version defaults to version 2.0. Release 10.1.2.0.1 adds yet a
third version. The administrator can use any one of these.

Extensible Event Definition Configuration
This feature is only for outbound events. It addresses the ability to define a new event
at run time so that the provisioning integration service can interpret a change in Oracle
Internet Directory and determine whether an appropriate event is to be generated and
propagated to an application. The following events will be the only configured events
at installation time.

An event definition (entry) consists of the following attributes.

■ Event object type (orclODIPProvEventObjectType): This specifies the type of
object the event is associated with. For example, the object could be a USER,
GROUP, or IDENTITY.

■ LDAP change type (orclODIPProvEventChangeType): This indicates that all
kinds of LDAP operations can generate an event for this type of object. (e.g ADD,
MODIFY, DELETE)

■ Event criteria (orclODIPProvEventCriteria): The additional selection criteria
that qualify an LDAP entry to be of a specific object type. For example,
Objectclass=orclUserV2 means that any LDAP entry that satisfies this
criteria can be qualified as this Object Type and any change to this entry can
generate appropriate events.

Extensible Event Definition Configuration

20-2 Oracle Identity Management Application Developer’s Guide

The object class that holds these attributes is orclODIPProvEventTypeConfig. The
container cn=ProvisioningEventTypeConfig,cn=odi,cn=oracle internet
directory is used to store all the event type configurations.

Table 20–1 lists the event definitions predefined as a part of the installation.

The container cn=ProvisioningEventTypeConfig,cn=odi,cn=oracle
internet directory is used to store all the event definition configurations. LDAP
configuration of the predefined event definitions is as follows:

dn: orclODIPProvEventObjectType=ENTRY,cn=ProvisioningEventTypeConfig,cn=odi,
cn=oracle internet directory
orclODIPProvEventObjectType: ENTRY
orclODIPProvEventLDAPChangeType: Add
orclODIPProvEventLDAPChangeType: Modify
orclODIPProvEventLDAPChangeType: Delete
orclODIPProvEventCriteria: objectclass=*
objectclass: orclODIPProvEventTypeConfig

dn:
orclODIPProvEventObjectType=USER,cn=ProvisioningEventTypeConfig,cn=odi,cn=oracle
internet directory
orclODIPProvEventObjectType: USER
orclODIPProvEventLDAPChangeType: Add
orclODIPProvEventLDAPChangeType: Modify
orclODIPProvEventLDAPChangeType: Delete
orclODIPProvEventCriteria: objectclass=InetOrgPerson
orclODIPProvEventCriteria: objectclass=orcluserv2
objectclass: orclODIPProvEventTypeConfig

dn: orclODIPProvEventObjectType=IDENTITY,cn=ProvisioningEventTypeConfig,cn=odi,
cn=oracle internet directory
orclODIPProvEventObjectType: IDENTITY
orclODIPProvEventLDAPChangeType: Add
orclODIPProvEventLDAPChangeType: Modify

Table 20–1 Predefined Event Definitions

Event Object Type LDAP Change Type Event Criteria

ENTRY ADD
MODIFY
DELETE

objectclass=*

USER ADD
MODIFY
DELETE

objectclass=interorgperson
objectclass=orcluserv2

IDENTITY ADD
MODIFY
DELETE

objectclass=interorgperson
objectclass=orcluserv2

GROUP ADD
MODIFY
DELETE

objectclass=orclgroup
objectclass=groupofuniquenames

SUBSCRPTION ADD
MODIFY
DELETE

objectclass=orclservicerecepient

SUBSCRIBER ADD
MODIFY
DELETE

objectclass=orclsubscriber

Inbound and Outbound Events

Oracle Directory Integration Platform PL/SQL API Reference 20-3

orclODIPProvEventLDAPChangeType: Delete
orclODIPProvEventCriteria: objectclass=inetorgperson
orclODIPProvEventCriteria: objectclass=orcluserv2
objectclass: orclODIPProvEventTypeConfig

dn: orclODIPProvEventObjectType=GROUP,cn=ProvisioningEventTypeConfig,cn=odi,
cn=oracle internet directory
orclODIPProvEventObjectType: GROUP
orclODIPProvEventLDAPChangeType: Add
orclODIPProvEventLDAPChangeType: Modify
orclODIPProvEventLDAPChangeType: Delete
orclODIPProvEventCriteria: objectclass=orclgroup
orclODIPProvEventCriteria: objectclass=groupofuniquenames
objectclass: orclODIPProvEventTypeConfig

dn:
orclODIPProvEventObjectType=SUBSCRIPTION,cn=ProvisioningEventTypeConfig,cn=odi,
cn=oracle internet directory
orclODIPProvEventObjectType: SUBSCRIPTION
orclODIPProvEventLDAPChangeType: Add
orclODIPProvEventLDAPChangeType: Modify
orclODIPProvEventLDAPChangeType: Delete
orclODIPProvEventCriteria: objectclass=orclservicerecepient
objectclass: orclODIPProvEventTypeConfig

dn: orclODIPProvEventObjectType=SUBSCRIBER,cn=ProvisioningEventTypeConfig,cn=odi,
cn=oracle internet directory
orclODIPProvEventObjectType: SUBSCRIBER
orclODIPProvEventLDAPChangeType: Add
orclODIPProvEventLDAPChangeType: Modify
orclODIPProvEventLDAPChangeType: Delete
orclODIPProvEventCriteria: objectclass=orclsubscriber
objectclass: orclODIPProvEventTypeConfig

To define a new event of Object type XYZ (which is qualified with the object class
objXYZ), create the following entry in Oracle Internet Directory. The DIP server
recognizes this new event definition and propagates events if necessary to applications
that subscribe to this event.

dn: orclODIPProvEventObjectType=XYZ,cn=ProvisioningEventTypeConfig,cn=odi,
cn=oracle internet directory
orclODIPProvEventObjectType: XYZ
orclODIPProvEventLDAPChangeType: Add
orclODIPProvEventLDAPChangeType: Modify
orclODIPProvEventLDAPChangeType: Delete
orclODIPProvEventCriteria: objectclass=objXYZ
objectclass: orclODIPProvEventTypeConfig

This means that if an LDAP entry with the object class objXYZ is added, modified, or
deleted, DIP will propagate the XYZ_ADD, XYZ_MODIFY, or XYZ_DELETE event to any
application concerned.

Inbound and Outbound Events
An application can register as a supplier as well as a consumer of events. The
provisioning subscription profile has the attributes described in Table 20–2 on
page 20-4.

PL/SQL Bidirectional Interface (Version 3.0)

20-4 Oracle Identity Management Application Developer’s Guide

PL/SQL Bidirectional Interface (Version 3.0)
Before attempting to use Version 3.0 of the PL/SQL interface, please refer to:

■ Appendix A, "Java Plug-ins for User Provisioning"

■ The Oracle Provisioning Service Concepts chapter in Oracle Identity Management
Integration Guide

■ The Deploying Provisioning-Integrated Applications chapter in Oracle Identity
Management Integration Guide

The PL/SQL callback interface requires you to develop a PL/SQL package that Oracle
Directory Provisioning Integration Service invokes in the application specific database.
Choose any name for the package, but be sure to use the same name when you register
the package at subscription time. Implement the package by using the following
PL/SQL package specification:

DROP TYPE LDAP_EVENT_LIST_V3;
DROP TYPE LDAP_EVENT_V3;
DROP TYPE LDAP_EVENT_STATUS_LIST_V3;
DROP TYPE LDAP_ATTR_LIST_V3;
DROP TYPE LDAP_ATTR_V3;

Table 20–2 Attributes of the Provisioning Subscription Profile

Attribute Description

EventSubscriptions Outbound events only (multivalued).

Events for which DIP should send notification to this application. The format of
this string is [USER]GROUP]:[domain_of_
interest]:[DELETE|ADD|MODIFY(list_of_attributes_separated_by_
comma)]

Multiple values may be specified by listing the string multiple times, each time
with different values. If parameters are not specified, the following defaults are
assumed: USER:organization_DN:DELETEGROUP:organization_
DN:DELETE—that is, send user and group delete notifications under the
organization DN.

MappingRules Inbound events Only (multivalued).

This attribute is used to map the type of object received from an application and a
qualifying filter condition to determine the domain of interest for this event. The
mapping takes this form:

OBJECT_TYPE: Filter_condition: domain_of_interest

Multiple rules are allowed. In the mapping EMP:cn=users,dc=acme,dc=com,
the object type received is EMP. The event is meant for the domain
cn=users,dc=acme,dc=com. In the mapping
EMP:l=AMERICA:l=AMER,cn=users,dc=acme,dc=com, the object type
received is EMP. The event is meant for the domain
l=AMER,cn=users,dc=acme,dc=com.

permittedOperations Inbound events only (multi valued).

This attribute is used to define the types of events an application is privileged to
send to the provisioning integration service. The mapping takes this form:

Event_Object: affected_domain:operation(attributes, . . .)

In the mapping IDENTITY:cn=users,dc=acme,dc=com:ADD(*) the
IDENTITY_ADD event is allowed for the specified domain and all attributes are
also allowed. In the mapping
IDENTITY:cn=users,dc=acme,dc=com:MODIFY(cn,sn.mail,telephonen
umber), the IDENTITY_MODIFY event is allowed only for the attributes in the
list. Any extra attributes are silently ignored.

PL/SQL Bidirectional Interface (Version 3.0)

Oracle Directory Integration Platform PL/SQL API Reference 20-5

DROP TYPE LDAP_ATTR_VALUE_LIST_V3;
DROP TYPE LDAP_ATTR_VALUE_V3;
--

-- Name: LDAP_ATTR_VALUE_V3
-- Data Type: OBJECT
-- DESCRIPTION: This structure contains values of an attribute. A list of one or
more of this object is passed in any event.
--

CREATE TYPE LDAP_ATTR_VALUES_V3 AS OBJECT (
 attr_value VARCHAR2(4000),
 attr_bvalue RAW(2048),
 attr_value_len INTEGER
);

GRANT EXECUTE ON LDAP_ATTR_VALUE_V3 to public;

CREATE TYPE LDAP_ATTR_VALUE_LIST_V3 AS TABLE OF LDAP_ATTR_VALUE_V3;
/
GRANT EXECUTE ON LDAP_ATTR_VALUE_LIST_V3 to public;
--

-- Name: LDAP_ATTR_V3
-- Data Type: OBJECT
-- DESCRIPTION: This structure contains details regarding an attribute. A list of
one or more of this object is passed in any event.
--

CREATE TYPE LDAP_ATTR_V3 AS OBJECT (
 attr_name VARCHAR2(256),
 attr_type INTEGER ,
 attr_mod_op INTEGER,
 attr_values LDAP_ATTR_VALUE_LIST_V3
);

GRANT EXECUTE ON LDAP_ATTR_V3 to public;

CREATE TYPE LDAP_ATTR_LIST_V3 AS TABLE OF LDAP_ATTR_V3;
/
GRANT EXECUTE ON LDAP_ATTR_LIST_V3 to public;
--

-- Name: LDAP_EVENT_V3
-- Data Type: OBJECT
-- DESCRIPTION: This structure contains event information plus the attribute List.
--

CREATE TYPE LDAP_EVENT_V3 AS OBJECT (
 event_type VARCHAR2(32),
 event_id VARCHAR2(32),
 event_src VARCHAR2(1024),
 event_time VARCHAR2(32),
 object_name VARCHAR2(1024),
 object_type VARCHAR2(32),
 object_guid VARCHAR2(32),
 object_dn VARCHAR2(1024),
 profile_id VARCHAR2(1024),

PL/SQL Bidirectional Interface (Version 3.0)

20-6 Oracle Identity Management Application Developer’s Guide

 attr_list LDAP_ATTR_LIST_V3) ;
/

GRANT EXECUTE ON LDAP_EVENT_V3 to public;
CREATE TYPE LDAP_EVENT_LIST_V3 AS TABLE OF LDAP_EVENT_V3;
/
GRANT EXECUTE ON LDAP_EVENT_LIST_V3 to public;
--

-- Name: LDAP_EVENT_STATUS_V3
-- Data Type: OBJECT
-- DESCRIPTION: This structure contains information that is sent by the consumer
of an event to the supplier in response to the actual event.

--

CREATE TYPE LDAP_EVENT_STATUS_V3 AS OBJECT (
 event_id VARCHAR2(32),
 status VARCHAR2(32),
 status_msg VARCHAR2(2048),
 object_guid VARCHAR(32)
) ;
/

GRANT EXECUTE ON LDAP_EVENT_STATUS_V3 to public;
CREATE TYPE LDAP_EVENT_STATUS_LIST_V3 AS TABLE OF LDAP_EVENT_STATUS_V3;
/
GRANT EXECUTE ON LDAP_EVENT_STATUS_LIST_V3 to public;
--

-- Name: LDAP_NTFY
-- DESCRIPTION: This is the interface to be implemented by provisioning integrated
applications to send information to and receive information from the directory.
The name of the package can be customized as needed. The function and procedure
names within this package should not be changed.

--

CREATE OR REPLACE PACKAGE LDAP_NTFY AS

 -- The Predefined Event Types

 ENTRY_ADD CONSTANT VARCHAR2 (32) :='ENTRY_ADD';
 ENTRY_DELETE CONSTANT VARCHAR2 (32) :='ENTRY_DELETE';
 ENTRY_MODIFY CONSTANT VARCHAR2 (32) :='ENTRY_MODIFY';

 USER_ADD CONSTANT VARCHAR2 (32) :='USER_ADD';
 USER_DELETE CONSTANT VARCHAR2 (32) :='USER_DELETE';
 USER_MODIFY CONSTANT VARCHAR2 (32) :='USER_MODIFY';

 IDENTITY_ADD CONSTANT VARCHAR2 (32) :='IDENTITY_ADD';
 IDENTITY_DELETE CONSTANT VARCHAR2 (32) :='IDENTITY_DELETE';
 IDENTITY_MODIFY CONSTANT VARCHAR2 (32) :='IDENTITY_MODIFY';

 GROUP_ADD CONSTANT VARCHAR2 (32) :='GROUP_ADD';
 GROUP_DELETE CONSTANT VARCHAR2 (32) :='GROUP_DELETE';
 GROUP_MODIFY CONSTANT VARCHAR2 (32) :='GROUP_MODIFY';

PL/SQL Bidirectional Interface (Version 3.0)

Oracle Directory Integration Platform PL/SQL API Reference 20-7

 SUBSCRIPTION_ADD CONSTANT VARCHAR2(32) :='SUBSCRIPTION_ADD';
 SUBSCRIPTION_DELETE CONSTANT VARCHAR2(32) :='SUBSCRIPTION_DELETE';
 SUBSCRIPTION_MODI CONSTANT VARCHAR2(32) :='SUBSCRIPTION_MODIFY';

 SUBSCRIBER_ADD CONSTANT VARCHAR2(32) :='SUBSCRIBER_ADD';
 SUBSCRIBER_DELETE CONSTANT VARCHAR2(32) :='SUBSCRIBER_DELETE';
 SUBSCRIBER_MODIFY CONSTANT VARCHAR2(32) :='SUBSCRIBER_MODIFY';

 -- The Attribute Type

 ATTR_TYPE_STRING CONSTANT NUMBER := 0;
 ATTR_TYPE_BINARY CONSTANT NUMBER := 1;
 ATTR_TYPE_ENCRYPTED_STRING CONSTANT NUMBER := 2;

 -- The Attribute Modification Type

 MOD_ADD CONSTANT NUMBER := 0;
 MOD_DELETE CONSTANT NUMBER := 1;
 MOD_REPLACE CONSTANT NUMBER := 2;

 -- The Event dispostions constants

 EVENT_SUCCESS CONSTANT VARCHAR2(32) :='EVENT_SUCCESS';
 EVENT_IN_PROGRESS CONSTANT VARCHAR2(32) :='EVENT_IN_PROGRESS’;
 EVENT_USER_NOT_REQUIRED CONSTANT VARCHAR2(32) :='EVENT_USER_NOT_REQUIRED’;
 EVENT_ERROR CONSTANT VARCHAR2(32) :='EVENT_ERROR';
 EVENT_ERROR_ALERT CONSTANT VARCHAR2(32) :='EVENT_ERROR_ALERT';
 EVENT_ERROR_ABORT CONSTANT VARCHAR2(32) :='EVENT_ERROR_ABORT';

 -- The Actual Callbacks

 FUNCTION GetAppEvents (events OUT LDAP_EVENT_LIST_V3)
 RETURN NUMBER;

 -- Return CONSTANTS
 EVENT_FOUND CONSTANT NUMBER:= 0;
 EVENT_NOT_FOUND CONSTANT NUMBER:= 1403;

If the provisioning server is unable to process an inbound event, it triggers an EVENT_
ERROR_ALERT status, which generates a trigger in Oracle Enterprise Manager.

If the provisioning server is able to process the event, but finds that the event cannot
be processed—for example, the user to be modified, subscribed, or deleted does not
exist—it responds with EVENT_ERROR to indicate to the application that something is
wrong. It is again up to the application to handle the status event.

EVENT_ERROR means no errors in directory operations. The event cannot be processed
for other reasons.

-- PutAppEventStatus() : DIP Server invokes this callback in the remote Data
base after processing an event it had received using the GetAppEvents()
callback. For every event received, the DIP server sends the status event
back after processing the event. This API will NOT be required by the
Oracle Collaboration Suite release 3.0 components.

PROCEDURE PutAppEventStatus (event_status IN LDAP_EVENT_STATUS_LIST_V3);

-- PutOIDEvents() : DIP Server invokes this API in the remote Database. DIP
server sends event to applications using this callback. It also expects a status
event object in response as an OUT parameter. This API needs to be implemented
by all the Oracle Collaboration Suite release 3.0 components.

PL/SQL Bidirectional Interface (Version 2.0)

20-8 Oracle Identity Management Application Developer’s Guide

PROCEDURE PutOIDEvents (event IN LDAP_EVENT_LIST_V3,
 event_status OUT LDAP_EVENT_STATUS_LIST_V3);

END LDAP_NTFY;
/

PL/SQL Bidirectional Interface (Version 2.0)
The PL/SQL callback interface requires that you develop a PL/SQL package that the
provisioning integration service invokes in the application-specific database. Choose
any name for the package, but be sure to use the same name when you register the
package at subscription time. Implement the package using the following PL/SQL
package specification:

DROP TYPE LDAP_EVENT;
DROP TYPE LDAP_EVENT_STATUS;
DROP TYPE LDAP_ATTR_LIST;
DROP TYPE LDAP_ATTR;
--
-- Name: LDAP_ATTR
-- Data Type: OBJECT

DESCRIPTION: This structure contains details regarding an attribute. A list of one
-- or more of this object is passed in any event.
--

CREATE TYPE LDAP_ATTR AS OBJECT (
 attr_name VARCHAR2(256),
 attr_value VARCHAR2(4000),
 attr_bvalue RAW(2048),
 attr_value_len INTEGER,
 attr_type INTEGER ,
 attr_mod_op INTEGER
);

GRANT EXECUTE ON LDAP_ATTR to public;

CREATE TYPE LDAP_ATTR_LIST AS TABLE OF LDAP_ATTR;
/
GRANT EXECUTE ON LDAP_ATTR_LIST to public;

--

-- Name: LDAP_EVENT
-- Data Type: OBJECT
-- DESCRIPTION: This structure contains event information plus the attribute
-- list.
--

CREATE TYPE LDAP_EVENT AS OBJECT (
 event_type VARCHAR2(32),
 event_id VARCHAR2(32),
 event_src VARCHAR2(1024),
 event_time VARCHAR2(32),
 object_name VARCHAR2(1024),
 object_type VARCHAR2(32),
 object_guid VARCHAR2(32),
 object_dn VARCHAR2(1024),

Provisioning Event Interface (Version 1.1)

Oracle Directory Integration Platform PL/SQL API Reference 20-9

 profile_id VARCHAR2(1024),
 attr_list LDAP_ATTR_LIST) ;
/

GRANT EXECUTE ON LDAP_EVENT to public;

--

-- Name: LDAP_EVENT_STATUS
-- Data Type: OBJECT
-- DESCRIPTION: This structure contains information that is sent by the
-- consumer of an event to the supplier in response to the
-- actual event.

--

CREATE TYPE LDAP_EVENT_STATUS AS OBJECT (
 event_id VARCHAR2(32),
 orclguid VARCHAR(32),
 error_code INTEGER,
 error_String VARCHAR2(1024),
 error_disposition VARCHAR2(32)) ;
/

GRANT EXECUTE ON LDAP_EVENT_STATUS to public;

Provisioning Event Interface (Version 1.1)
You must develop logic to consume events generated by the provisioning integration
service. The interface between the application and the provisioning integration service
can be table-based, or it can use PL/SQL callbacks.

The PL/SQL callback interface requires that you develop a PL/SQL package that the
provisioning integration service invokes in the application-specific database. Choose
any name for the package, but be sure to use the same name when you register the
package at subscription time. Implement the package using the following PL/SQL
package specification:

Rem
Rem NAME
Rem ldap_ntfy.pks - Provisioning Notification Package Specification.
Rem

DROP TYPE LDAP_ATTR_LIST;
DROP TYPE LDAP_ATTR;

-- LDAP ATTR
--
--
-- Name : LDAP_ATTR
-- Data Type : OBJECT
-- DESCRIPTION : This structure contains details regarding
-- an attribute.
--
--
CREATE TYPE LDAP_ATTR AS OBJECT (
 attr_name VARCHAR2(255),
 attr_value VARCHAR2(2048),
 attr_bvalue RAW(2048),

Provisioning Event Interface (Version 1.1)

20-10 Oracle Identity Management Application Developer’s Guide

 attr_value_len INTEGER,
 attr_type INTEGER -- (0 - String, 1 - Binary)
 attr_mod_op INTEGER
);
/
 GRANT EXECUTE ON LDAP_ATTR to public;

--
-- Name : LDAP_ATTR_LIST
-- Data Type : COLLECTION
-- DESCRIPTION : This structure contains collection
-- of attributes.
--

CREATE TYPE LDAP_ATTR_LIST AS TABLE OF LDAP_ATTR;
/
 GRANT EXECUTE ON LDAP_ATTR_LIST to public;

--
-- NAME : LDAP_NTFY
-- DESCRIPTION : This is a notifier interface implemented by Provisioning System
-- clients to receive information about changes in Oracle Internet
-- Directory. The name of package can be customized as needed.
-- The function names within this package should not be changed.
--
--

CREATE OR REPLACE PACKAGE LDAP_NTFY AS

--
-- LDAP_NTFY data type definitions
--

-- Event Types
USER_DELETE CONSTANT VARCHAR2(256) := 'USER_DELETE';
USER_MODIFY CONSTANT VARCHAR2(256) := 'USER_MODIFY';
GROUP_DELETE CONSTANT VARCHAR2(256) := 'GROUP_DELETE';
GROUP_MODIFY CONSTANT VARCHAR2(256) := 'GROUP_MODIFY';

-- Return Codes (Boolean)
SUCCESS CONSTANT NUMBER := 1;
FAILURE CONSTANT NUMBER := 0;

-- Values for attr_mod_op in LDAP_ATTR object.
MOD_ADD CONSTANT NUMBER := 0;
MOD_DELETE CONSTANT NUMBER := 1;
MOD_REPLACE CONSTANT NUMBER := 2;
--

-- Name: LDAP_NTFY
-- DESCRIPTION: This is the interface to be implemented by Provisioning System
-- clients to send information to and receive information from
-- Oracle Internet Directory. The name of the package can be
-- customized as needed. The function names within this package
-- should not be changed.

--

Provisioning Event Interface (Version 1.1)

Oracle Directory Integration Platform PL/SQL API Reference 20-11

CREATE OR REPLACE PACKAGE LDAP_NTFY AS

Predefined Event Types
ENTRY_ADD CONSTANT VARCHAR2 (32) := 'ENTRY_ADD';
ENTRY_DELETE CONSTANT VARCHAR2 (32) := 'ENTRY_DELETE';
ENTRY_MODIFY CONSTANT VARCHAR2 (32) := 'ENTRY_MODIFY';

USER_ADD CONSTANT VARCHAR2 (32) := 'USER_ADD';
USER_DELETE CONSTANT VARCHAR2 (32) := 'USER_DELETE';
USER_MODIFY CONSTANT VARCHAR2(32) := 'USER_MODIFY';

IDENTITY_ADD CONSTANT VARCHAR2 (32) := 'IDENTITY_ADD';
IDENTITY_DELETE CONSTANT VARCHAR2 (32) := 'IDENTITY_DELETE';
IDENTITY_MODIFY CONSTANT VARCHAR2 (32) := 'IDENTITY_MODIFY';

GROUP_ADD CONSTANT VARCHAR2 (32) := 'GROUP_ADD';
GROUP_DELETE CONSTANT VARCHAR2 (32) := 'GROUP_DELETE';
GROUP_MODIFY CONSTANT VARCHAR2 (32) := 'GROUP_MODIFY';

SUBSCRIPTION_ADD CONSTANT VARCHAR2(32) := 'SUBSCRIPTION_ADD';
SUBSCRIPTION_DELETE CONSTANT VARCHAR2(32) := 'SUBSCRIPTION_DELETE';
SUBSCRIPTION_MODI CONSTANT VARCHAR2(32) := 'SUBSCRIPTION_MODIFY';

SUBSCRIBER_ADD CONSTANT VARCHAR2(32) := 'SUBSCRIBER_ADD';
SUBSCRIBER_DELETE CONSTANT VARCHAR2(32) := 'SUBSCRIBER_DELETE';
SUBSCRIBER_MODIFY CONSTANT VARCHAR2(32) := 'SUBSCRIBER_MODIFY';

Attribute Type
ATTR_TYPE_STRING CONSTANT NUMBER := 0;
ATTR_TYPE_BINARY CONSTANT NUMBER := 1;
ATTR_TYPE_ENCRYPTED_STRING CONSTANT NUMBER := 2;

Attribute Modification Type
MOD_ADD CONSTANT NUMBER := 0;
MOD_DELETE CONSTANT NUMBER := 1;
MOD_REPLACE CONSTANT NUMBER := 2;

Event Dispositions Constants
EVENT_SUCCESS CONSTANT VARCHAR2(32) := 'EVENT_SUCCESS';
EVENT_ERROR CONSTANT VARCHAR2(32) := 'EVENT_ERROR';
EVENT_RESEND CONSTANT VARCHAR2(32) := 'EVENT_RESEND';

Callbacks
A callback is a function invoked by the provisioning integration service to send or
receive notification events. While transferring events for an object, the related
attributes can also be sent along with other details. The attributes are delivered as a
collection (array) of attribute containers, which are in unnormalized form: if an
attribute has two values, two rows are sent in the collection.

Provisioning Event Interface (Version 1.1)

20-12 Oracle Identity Management Application Developer’s Guide

GetAppEvent()
The Oracle Directory Integration Platform server invokes this API in the remote
database. It is up to the application to respond with an event. The Oracle Directory
Integration Platform processes the event and sends the status back using the
PutAppEventStatus() callback. The return value of GetAppEvent() indicates
whether an event is returned or not.

FUNCTION GetAppEvent (event OUT LDAP_EVENT)
RETURN NUMBER;

-- Return CONSTANTS
EVENT_FOUND CONSTANT NUMBER := 0;
EVENT_NOT_FOUND CONSTANT NUMBER := 1403;

If the provisioning server is not able to process the event—that is, it runs into some
type of LDAP error—it responds with EVENT_RESEND. The application is expected to
resend that event when GetAppEvent() is invoked again.

If the provisioning server is able to process the event, but finds that the event cannot
be processed—for example, the user to be modified does not exist, or the user to be
subscribed does not exist, or the user to be deleted does not exist—then it responds
with EVENT_ERROR to indicate to the application that something was wrong.
Resending the event is not required. It is up to the application to handle the event.

Note the difference between EVENT_RESEND and EVENT_ERROR in the previous
discussion. EVENT_RESEND means that it was possible to apply the event but the
server could not. If it gets the event again, it might succeed.

EVENT_ERROR means there is no error in performing directory operations, but the
event could not be processed due to other reasons.

PutAppEventStatus()
The Oracle Directory Integration Platform server invokes this callback in the remote
database after processing an event it has received using the GetAppEvent() callback.
For every event received, the Oracle Directory Integration Platform server sends the
status event back after processing the event.

PROCEDURE PutAppEventStatus (event_status IN LDAP_EVENT_STATUS);

PutOIDEvent()
The Oracle Directory Integration Platform server invokes this API in the remote
database. It sends event to applications using this callback. It also expects a status
event object in response as an OUT parameter. If a valid event status object is not sent
back, or it indicates a RESEND, the Oracle Directory Integration Platform server
resends the event. In case of EVENT_ERROR, the server does not resend the event.

PROCEDURE PutOIDEvent (event IN LDAP_EVENT, event_status OUT LDAP_EVENT_
STATUS);
END LDAP_NTFY;
/

Part IV
Appendixes

Part IV presents plug-ins that can be used to customize provisioning in Oracle
Collaboration Suite. In addition, this section contains an appendix about DSML syntax
and usage.

■ Appendix A, "Java Plug-ins for User Provisioning"

■ Appendix B, "DSML Syntax"

Java Plug-ins for User Provisioning A-1

A
Java Plug-ins for User Provisioning

This appendix explains how to use plug-ins to customize provisioning policy
evaluation, data validation, data manipulation, and event delivery in typical
deployments of Oracle Directory Integration Platform Provisioning Service version 3.0.

The Oracle provisioning server cannot support all of the provisioning needs of a
deployment. Hence, hooks are provided at various stages of user creation,
modification, and deletion. These hooks enable an enterprise to incorporate its own
business rules and to tailor information creation to its needs. The hooks take the form
of Java plug-ins.

This appendix contains these topics:

■ Provisioning Plug-in Types and Their Purpose

■ Provisioning Plug-in Requirements

■ Data Entry Provisioning Plug-in

■ Data Access Provisioning Plug-in

■ Event Delivery Provisioning Plug-in

■ Provisioning Plug-in Return Status

■ Configuration Template for Provisioning Plug-ins

■ Sample Code for a Provisioning Plug-in

Provisioning Plug-in Types and Their Purpose
There are three types of provisioning plug-ins:

■ Data entry plug-ins

■ Data manipulation and data access plug-ins

■ Event Delivery plug-ins

The data entry plug-ins can be used by applications that integrate with the
provisioning framework using either synchronous or asynchronous provisioning. The
data access plug-ins are used only by applications that are integrated with the
provisioning framework for synchronous provisioning. The event delivery plug-ins
are used only by applications that integrate with the provisioning framework using
asynchronous provisioning.

Oracle Provisioning Console, Oracle Directory Integration Platform server, and other
mechanisms that affect the base user information in the directory invoke these plug-ins
when the information is created. By configuring a data entry plug-in, a deployment
can do any of the following:

Provisioning Plug-in Requirements

A-2 Oracle Identity Management Application Developer’s Guide

■ Validate attribute values for application users

■ Validate attribute values for base users

■ Enhance attribute values for application users

■ Enhance attribute values for base users

■ Evaluate provisioning policies

If you want the deployed application to maintain application user information you
must configure a data access plug-in for it. This type of plug-in enables you to
maintain the application information either outside of the directory or within it as
several entries.

Data entry and data access plug-ins are typically invoked from one of these
environments:

■ User provisioning console for Oracle Delegated Administration Services

■ Oracle Directory Integration Platform server

■ Provisioning API

■ Bulk Provisioning Tools

The event delivery plug-ins are required by applications that have the JAVA interface
type and that subscribe for provisioning events. Applications that have synchronous
provisioning should not implement event delivery plug-ins.

Provisioning Plug-in Requirements
All of the plug-ins that you provide for an application must be in a JAR file that can be
uploaded to the directory with the standard LDIF template. See the section
"Configuration Template for Provisioning Plug-ins" for an example. The plug-in
interface definitions are found in $ORACLE_HOME/jlib/ldapjclnt10.jar. Refer
to Oracle Internet Directory API Reference and the public interfaces for a more detailed
description. If the application requires additional jar files, you can upload them too.

Data Entry Provisioning Plug-in
Data entry plug-ins take two forms:

■ Pre–data-entry plug-ins

■ Post–data-entry plug-ins

If you want to use either of these plug-ins, you must implement the
oracle.idm.provisioning.plugin.IdataEntryPlugin interface. This
interface has three methods. Here it is:

/**
 * The applications can perform a post data entry operation by
 * implementing this method.
 *
 * @param appCtx the application context
 * @param idmUser the IdmUser object
 * @param baseUserAttr Base user properties
 * @param appUserAttr App user properties
 * @throws PluginException when an exception occurs.
 */
 public PluginStatus process(ApplicationContext appCtx,
 IdmUser idmUser, ModPropertySet baseUserAttr,

Data Entry Provisioning Plug-in

Java Plug-ins for User Provisioning A-3

 ModPropertySet appUserAttr)throws PluginException;
 /**
 * Returns the Modified Base User properties
 *
 * @return ModPropertySet modified base user properties.
 */
 public ModPropertySet getBaseAttrMods();

 /**
 * Returns the Modified App User properties
 *
 * @return ModPropertySet modified app user properties.
 */
 public ModPropertySet getAppAttrMods();

Typically the plug-in implementer uses these methods for data validation or policy
evaluation. In the latter case, a base user attribute is used to make the decision.

The application context object contains this information:

■ LDAP directory context

If you want the application to perform a directory operation, you can have it
obtain the LDAP context from the application object. Note that this LDAP context
should not be closed in the plug-in.

■ Plug-in call mode

The plug-in is called from Oracle Provisioning Console, Oracle Directory
Integration Platform server, or another environment that invokes the provisioning
API. If the calling environment is Oracle Directory Integration Platform, the
provisioning service calls the plug-in. The two possible values are INTERACTIVE_
MODE and AUTOMATIC_MODE. The first indicates that the plug-in was invoked
through interaction between Oracle Delegated Administration Services and a
client application. The second indicates that the plug-in was invoked by Oracle
Directory Integration Platform, where user intervention does not occur.

■ Client locale

The plug-in may want to know what the client locale is, especially if it is invoked
from Oracle Delegated Administration Services.

■ Plug-in call operation

You may decide to have data entry plug-ins for both create and modify user
operations. You may even implement these plug-ins in the same class. Under these
conditions, the plug-in must determine which operation is invoked. The
application context object uses the values OP_CREATE and OP_MODIFY to identify
the operation.

■ Plug-in invocation point

The data entry plug-in is typically used to determine whether a user needs to be
provisioned for an application. The policy evaluation and data validation that
occurs can be performed in either a pre–data-entry plug-in or a post–data-entry
plug-in. You may choose either or both. If you choose both, you can implement
them in the same class. The application context object specifies which one is
actually invoked. It uses the values PRE_DATA_ENTRY and POST_DATA_ENTY to
do this.

■ Callback context

Data Entry Provisioning Plug-in

A-4 Oracle Identity Management Application Developer’s Guide

If you decide to have both pre and post plug-ins for an operation and you want
the pre plug-in to share information with the post plug-in, you can set the callback
context in the application context object of the pre–data-entry plug-in. The post–
data-entry plug-in can then obtain and use this callback context.

■ Logging

You can use the log methods provided in the application context object to log
information for the plug-in.

The calling sequence looks like this:

1. Download and instantiate a plug-in object based on the configuration
information object in Oracle Internet Directory

2. Construct an application context object that will be passed to the plug-in.

3. Call process method()

4. Call getBaseAttrMods() to obtain base user attributes that are modified in
process().

5. Merge the base user attributes returned by getBaseAttrMods() with the
base user attributes, depending on the plug-in execution status. The execution
status can be either success or failure. The plug-in implementer must
return a valid plug-in execution status object. If null is returned, the execution
status is considered a failure.

6. Merging of the base user will only be done if the plug-in execution status is
successful.

7. Call getAppAttrMods() for the plug-in. This method obtains application
user attributes that are modified in process().

8. Merge the application user attributes returned by getAppAttrMods() with
the application user attributes, depending on the user provisioning status
returned by the plug-in.

Pre–Data-Entry Provisioning Plug-in
The pre–data-entry plug-in generates values for application attributes. The attribute
defaults specified during application registration are passed to this plug in along with
the current base user attributes. The returned values are displayed in the UI if the
invocation environment is interactive like Oracle Delegated Administration Services.

The pre–data-entry plug-in can decide whether the user should be provisioned for an
application. The plug-in examines base user attributes to make the decision. It is
invoked during create and modify operations. You can support both operations with
one plug-in class, or you can assign one class to each.

If the application decides to have pre–data- entry plug-ins for create and modify
operations, two configuration entries must be created in Oracle Internet Directory
under the application container. The first entry is for the create operation:

dn: cn=PRE_DATA_ENTRY_CREATE, cn=Plugins, cn=FILES, cn=Applications,
 cn=Provisioning, cn=Directory Integration Platform, cn=Products,
 cn=OracleContext
changetype: add
objectClass: orclODIPPlugin
orclStatus: ENABLE
orclODIPPluginExecName: oracle.myapp.provisioning.UserCreatePlugin
orclODIPPluginAddInfo: Pre Data Entry Plugin for CREATE operation

Data Access Provisioning Plug-in

Java Plug-ins for User Provisioning A-5

The second entry is for the modify operation:

dn: cn=PRE_DATA_ENTRY_MODIFY, cn=Plugins, cn=FILES, cn=Applications,
 cn=Provisioning, cn=Directory Integration Platform, cn=Products,
 cn=OracleContext
changetype: add
objectClass: orclODIPPlugin
orclStatus: ENABLE
orclODIPPluginExecName: oracle.myapp.provisioning.UserModifyPlugin
orclODIPPluginAddInfo: Pre Data Entry Plugin for MODIFY operation

In this example, separate classes for create and modify plug-ins are shown.

Post–Data-Entry Provisioning Plug-in
The post–data-entry plug-in validates data entered by the user in the UI. In addition, it
generates derived attribute values. If the plug in fails for any one application, the UI
does not proceed. All applications must successfully validate the data before a user
entry can be created in the directory. However, in the case of non-UI environment or
automatic route, the plug-in implementer can decide to raise an error or continue,
based on the plug-in call mode (INTERACTIVE_MODE or AUTOMATIC_MODE).

Like the pre–data-entry plug-in, the post–data-entry plug-in is invoked during create
and modify operations. The application can decide to implement one plug-in class for
both operations or a separate class for each.

If you decide to have post–data-entry plug-ins for create and modify operations, create
two configuration entries in Oracle Internet Directory under the application container.
The first entry is for the create operation:

dn: cn=POST_DATA_ENTRY_CREATE, cn=Plugins, cn=FILES, cn=Applications,
 cn=Provisioning, cn=Directory Integration Platform, cn=Products,
 cn=OracleContext
changetype: add
objectClass: orclODIPPlugin
orclStatus: ENABLE
orclODIPPluginExecName: oracle.myapp.provisioning.UserMgmtPlugin
orclODIPPluginAddInfo: Post Data Entry Plugin for CREATE and MODIFY
 operations

The second entry is for the modify operation:

dn: cn=POST_DATA_ENTRY_MODIFY, cn=Plugins, cn=FILES, cn=Applications,
 cn=Provisioning, cn=Directory Integration Platform, cn=Products,
 cn=OracleContext
changetype: add
objectClass: orclODIPPlugin
orclStatus: ENABLE
orclODIPPluginExecName: oracle.myapp.provisioning.UserMgmtPlugin
orclODIPPluginAddInfo: Post Data Entry Plugin for MODIFY and CREATE operation

In this example, too, separate classes for create and modify plug-ins are shown.

Data Access Provisioning Plug-in
The primary purpose of the data access plug in is to manage the application-specific
information of the user in the directory. You can use this plug-in to create and retrieve
the information.

Data Access Provisioning Plug-in

A-6 Oracle Identity Management Application Developer’s Guide

The data access plug-in is invoked whenever a user is created and is requesting
provisioning for an application—whether by Oracle Delegated Administration
Services, by Oracle Directory Integration Platform, or by bulk provisioning tools.

The data access plug-in is invoked during modify and delete operations as well. It can
update the application information or remove it.

If you want to use the data access plug-in, implement the interface
oracle.idm.provisioning.plugin.IDataAccessPlugin. Here is the interface:

 /**
 * The applications can create/modify/delete the user footprint by
 * implementing this method.
 *
 * @param appCtx the application context
 * @param idmUser IdmUser object
 * @param baseUserAttr Base user properties
 * @param appUserAttr App user properties
 *
 * @return PluginStatus a plugin status object, which must contain
 * the either <codE>IdmUser.PROVISION_SUCCESS</CODE> or
 * <codE>IdmUser.PROVISION_FAILURE</CODE> provisioning status
 *
 * @throws PluginException when an exception occurs.
 */
 public PluginStatus process(ApplicationContext appCtx,
 IdmUser idmUser, ModPropertySet baseUserAttr,
 ModPropertySet ppUserAttr) throws PluginException;

 /**
 * The applications can return their user footprint by
 * implementing this method. Use <CODE>
 * oracle.ldap.util.VarPropertySet </CODE>
 * as the return object
 *
 * <PRE>
 * For Ex.
 * PropertySet retPropertySet = null;
 * retPropertySet = new VarPropertySet();
 *
 * //Fetch the App data and add it to retPropertySet
 * retPropertySet.addProperty("name", "value");
 * ..
 * return retPropertySet;
 * </PRE>
 *
 * @throws PluginException when an exception occurs.
 */
 public PropertySet getAppUserData(ApplicationContext appCtx,
 IdmUser user, String reqAttrs[]) throws PluginException;

If you want to manage the user information for an application, create a plug-in
configuration entry in the directory under the application container. The example that
follows shows what this entry looks like:

dn: cn=DATA_ACCESS, cn=Plugins, cn=FILES, cn=Applications,
 cn=Provisioning, cn=Directory Integration Platform, cn=Products,
 cn=OracleContext
changetype: add
objectClass: orclODIPPlugin
orclStatus: ENABLE

Event Delivery Provisioning Plug-in

Java Plug-ins for User Provisioning A-7

orclODIPPluginExecName: oracle.myapp.provisioning.UserDataAccPlugin
orclODIPPluginAddInfo: Data Access Plugin

Event Delivery Provisioning Plug-in
The primary purpose of the event delivery plug-in is to use the events notified by the
Oracle Directory Integration Platform server. Events are delivered to the plug-in by the
Oracle Directory Integration Platform server. Based on the event type and the action to
be performed in the application repository, the plug-in performs the required
operations. The interface definitions for this plug-in are as follows:

/* $Header: IEventPlugin.java 09-jun-2005.12:45:53 *
/* Copyright (c) 2004, 2005, Oracle. All rights reserved. */
/*
 DESCRIPTION
 All of the plug-in interfaces must extend this common interface.
 PRIVATE CLASSES
 None
 NOTES
 None
*/
package oracle.idm.provisioning.plugin;
/**
 * This is the base interface
 */
public interface IEventPlugin
{
 /**
 * The applications can perform the initialization logic in this method.
 *
 * @param Object For now it is the provisioning Profile that will be passed.
 * look at oracle.ldap.odip.engine.ProvProfile for more details.
 *
 *
 * @throws PluginException when an exception occurs.
 */
 public void initialize(Object profile) throws PluginException;
 /**
 * The applications can perform the termination logic in this method.
 *
 * @param void Provisioning Profile Object will be sent.
 * refer to oracle.ldap.odip.engine.ProvProfile for more details
 * @throws PluginException when an exception occurs.
 */
 public void terminate(Object profile) throws PluginException;
 /**
 * Set Additional Info.
 * Since we pass on the complete profile, there is no requirement to set
 * the additiona
 * @param addInfo Plugin additional info
 */
 //public void setAddInfo(Object addInfo);
}

/* $Header: IEventsFromOID.java 09-jun-2005.12:45:53 */
/* Copyright (c) 2004, 2005, Oracle. All rights reserved. */
/*
 DESCRIPTION
 Applications interested in receiving changes from OID should
implement this

Event Delivery Provisioning Plug-in

A-8 Oracle Identity Management Application Developer’s Guide

 interface.
 PRIVATE CLASSES
 <None>
 NOTES
*/
package oracle.idm.provisioning.plugin;
import oracle.idm.provisioning.event.Event;
import oracle.idm.provisioning.event.EventStatus;

/**
 * Applications interested in receiving changes from OID should implement this
 * interface. The applications register with the OID for the changes occurring
 * at OID. The DIP engine would instantiate an object of this class and invoke
 * the initialize(), sendEventsToApp(), and truncate() method in the same
 * sequence. The initialize method would provide the appropriate information
 * from the profile in the form of a java.util.Hashtable object.
 * The property names, that is, the hash table key that could be used by the
 * interface implementer will be defined as constants in this interface.
 *
 * @version $Header: IEventsFromOID.java 09-jun-2005.12:45:53 $
 */
public interface IEventsFromOID extends IEventPlugin
{

 /**
 * Initialize. The application would provide any initialization logic
 * through method. The DIP engine after instantiating a class that
 * implements this interface will first invoke this method.
 *
 * @param prop A HashMap that would contain necessary information exposed
 * to the applications
 * @throws EventInitializationException the applications must throw this
 * exception in case of error.
 */
 public void initialize(Object provProfile)
 throws EventPluginInitException;

 /**
 * OID Events are deliverd to the application through this method.
 *
 * @param evts an array of LDAPEvent objects returned by the DIP engine
 * @return the application logc must process these events and return the
 * status of the processed events
 * @throws EventDeliveryException the applications must throw this exception
 * in case of any error.
 */
 public EventStatus[] sendEventsToApp(Event [] evts)
 throws EventDeliveryException;
}

/* $Header: IEventsToOID.java 09-jun-2005.12:45:53 $ */
/* Copyright (c) 2004, 2005, Oracle. All rights reserved. */

/*
 DESCRIPTION
 Applications interested in sending changes to OID should implement this
 interface.
*/
package oracle.idm.provisioning.plugin;
import oracle.idm.provisioning.event.Event;

Event Delivery Provisioning Plug-in

Java Plug-ins for User Provisioning A-9

import oracle.idm.provisioning.event.EventStatus;

/**
 * Applications interested in sending changes to OID should implement this
 * interface. The applications must register with the OID for the sending
 * changes at their end to DIP. The DIP engine would instantiate an object
 * of this class and invoke the initialize(), sendEventsFromApp(), and
 * truncate() method in the same sequence. The initialize method would
 * provide the appropriate information from the profile in the form of
 * a java.util.Hashtable object. The property names, that is, the hash table key
 * that could be used by the interface implementer will be defined as
 * constants in this interface.
 *
 */
public interface IEventsToOID extends IEventPlugin
{
 /**
 * Initialize. The application would provide any initialization logic
 * through method. The DIP engine after instantiating a class that
 * implements this interface will first invoke this method.
 *
 * @param prop ProvProfile
 * oracle.ldap.odip.engine.ProvProfile
 * @throws EventPluginInitException the applications must throw this
 * exception in case of error.
 */
 public void initialize(Object profile) throws EventPluginInitException;

 /**
 * Application Events are deliverd to OID through this method.
 *
 * @return an array of Event objects returned to be processed by the
 * DIP engine.
 * @throws EventDeliveryException the applications must throw this exception
 * in case of any error.
 */
 public Event[] receiveEventsFromApp()
 throws EventDeliveryException;

 /**
 * Application can let the DIP engine know whether there are more event to
 * follow through this method
 *
 * @return ture if there are more events to be returned and false otherwise
 * @throws PluginException the applications must throw this exception
 * in case of any error.
 */
 public boolean hasMore() throws PluginException;

 /**
 * The status of the application events are intimated through this method.
 * i.e the DIP engine after processing the events calls this method to set
 * the event status.
 *
 * @param an array of Event status objects describing the processed event
 * status by the DIP engine.
 * @throws EventDeliveryException the applications must throw this exception
 * in case of any error.
 */
 public void setAppEventStatus(EventStatus[] evtStatus)

Provisioning Plug-in Return Status

A-10 Oracle Identity Management Application Developer’s Guide

 throws EventDeliveryException;
}

To perform directory operations from a plug-in, you need the application context. You
can use ProvProfile.getApplicationContext() in the event delivery plug-in
initialize() method to get an instance of
oracle.idm.provisioning.plugin.ApplicationContext.You can use this
applicationContext to perform any directory operation in any plug-in method.

Provisioning Plug-in Return Status
Each of the provisioning plug-ins must return an object of the class
oracle.idm.provisioning.plugin.PluginStatus This object indicates the
execution status, which is either success or failure. The object can return the user
provisioning status as well.

Configuration Template for Provisioning Plug-ins
The LDIF template provided here is used in Oracle Internet Directory 10g (10.1.4.0.1) to
specify the application plug-in. You must create a directory entry for the application
and upload the JAR file that contains the classes that implement the plug-in.

dn: cn=Plugins, cn=APPTYPE, cn=Applications, cn=Provisioning,
 cn=Directory Integration Platform,cn=Products,cn=OracleContext
changetype: add
add: orclODIPPluginExecData
orclODIPPluginExecData: full_path_name_of_the_JAR_file
objectclass: orclODIPPluginContainer

dn: cn=PRE_DATA_ENTRY_CREATE, cn=Plugins, cn=APPTYPE, cn=Applications,
 cn=Provisioning, cn=Directory Integration Platform, cn=Products,
 cn=OracleContext
 cn=Provisioning, cn=Directory Integration Platform, cn=Products,
 cn=OracleContext
changetype: add
objectClass: orclODIPPlugin
orclStatus: ENABLE
orclODIPPluginExecName: Name_of_the_class_that_implements_the_plug-in
orclODIPPluginAddInfo: Pre Data Entry Plugin for CREATE operation

dn: cn=PRE_DATA_ENTRY_MODIFY, cn=Plugins, cn=APPTYPE, cn=Applications,
 cn=Provisioning, cn=Directory Integration Platform, cn=Products,
 cn=OracleContext
changetype: add
objectClass: orclODIPPlugin
orclStatus: ENABLE
orclODIPPluginExecName: Name_of_the_class_that_implements_the_plug-in
orclODIPPluginAddInfo: Pre Data Entry Plugin for MODIFY operation

dn: cn=POST_DATA_ENTRY_CREATE, cn=Plugins, cn=APPTYPE, cn=Applications,
 cn=Provisioning, cn=Directory Integration Platform, cn=Products,
 cn=OracleContext
changetype: add
objectClass: orclODIPPlugin
orclStatus: ENABLE
orclODIPPluginExecName: Name_of_the_class_that_implements_the_plug-in
orclODIPPluginAddInfo: Post Data Entry Plugin for CREATE and modify operations

Sample Code for a Provisioning Plug-in

Java Plug-ins for User Provisioning A-11

dn: cn=POST_DATA_ENTRY_MODIFY, cn=Plugins, cn=APPTYPE, cn=Applications,
 cn=Provisioning, cn=Directory Integration Platform, cn=Products,
 cn=OracleContext
changetype: add
objectClass: orclODIPPlugin
orclStatus: ENABLE
orclODIPPluginExecName: Name_of_the_class_that_implements_the_plug-in
orclODIPPluginAddInfo: Post Data Entry Plugin for MODIFY and CREATE operation

dn: cn=DATA_ACCESS, cn=Plugins, cn=APPTYPE, cn=Applications,
 cn=Provisioning, cn=Directory Integration Platform, cn=Products,
 cn=OracleContext
changetype: add
objectClass: orclODIPPlugin
orclStatus: ENABLE
orclODIPPluginExecName: Name_of_the_class_that_implements_the_plug-in
orclODIPPluginAddInfo: Data Access Plugin

dn: cn=EVENT_DELIVERY_OUT, cn=Plugins, cn=APPTYPE, cn=Applications,
 cn=Provisioning, cn=Directory Integration Platform, cn=Products,
 cn=OracleContext
changetype: add
objectClass: orclODIPPlugin
orclStatus: ENABLE
orclODIPPluginExecName: Name_of_the_class_that_implements_the_plug-in
orclODIPPluginAddInfo: Event Delivery Plugin for Outbound

dn: cn=EVENT_DELIVERY_IN, cn=Plugins, cn=APPTYPE, cn=Applications,
 cn=Provisioning, cn=Directory Integration Platform, cn=Products,
 cn=OracleContext
changetype: add
objectClass: orclODIPPlugin
orclStatus: ENABLE
orclODIPPluginExecName: Name_of_the_class_that_implements_the_plug-in
orclODIPPluginAddInfo: Event Delivery Plugin for Inbound

Sample Code for a Provisioning Plug-in
/* Copyright (c) 2004, Oracle. All rights reserved. */
/**
 DESCRIPTION
 Sample PRE DATA Entry Plugin for CREATE operation that
 validates the attribute.
 PRIVATE CLASSES
 None.
 NOTES
 This class implements the PRE_DATA_ENTRY_CREATE plugin ONLY
 MODIFIED (MM/DD/YY)
 12/15/04 \226 Creation
*/
package oracle.ldap.idm;

import java.util.*;
import javax.naming.*;
import javax.naming.ldap.*;
import javax.naming.directory.*;
import oracle.ldap.util.*;
import oracle.idm.provisioning.plugin.*;
/**
 * This class implements the PRE_DATA_ENTRY_CREATE plugin ONLY

Sample Code for a Provisioning Plug-in

A-12 Oracle Identity Management Application Developer’s Guide

 *
 */
public class SamplePreDataEntryCreatePlugin implements IDataEntryPlugin
{
 public ModPropertySet mpBaseUser = null;
 public ModPropertySet mpAppUser = null;

 public PluginStatus process(ApplicationContext appCtx,IdmUser idmuser,
 ModPropertySet baseUserAttr, ModPropertySet appUserAttr)
 throws PluginException
 {
 PluginStatus retPluginStatus = null;
 String retProvStatus = null;
 String retProvStatusMsg = null;

 LDIFRecord lRec = null;
 LDIFAttribute lAttr = null;
 String val = null;
 if(null == baseUserAttr.getModPropertyValue(\223departmentNumber\224))
 {
 mpBaseUser = new ModPropertySet();
 mpBaseUser.addProperty("departmentNumber","ST");
 appCtx.log(\223Base user attribute \226 departmentNumber missing\224 +
 \223Setting default - ST\224);
 }
 else if (baseUserAttr.getModPropertyValue(\223departmentNumber\224)
 .notIn(\223ST\224, \223APPS\224, \224CRM\224))
 {
 throw new PluginException(\223Invalid department Number\224);
 }
 if((null == appUserAttr) ||
 null == appUserAttr.getModPropertyValue(\223emailQouta\224))
 {
 mpAppUser = new ModPropertySet();
 mpAppUser.addProperty("emailQouta","50M");
 appCtx.log(\223Application user attribute - email Qouta missing \224 +
 \223Setting default - 50M\224);
 }
 return new PluginStatus(PluginStatus.SUCCESS, null, null);
 }

 public ModPropertySet getBaseAttrMods()
 {
 return mpBaseUser;
 }

 public ModPropertySet getAppAttrMods()
 {
 return mpAppUser;
 }
}

/* Copyright (c) 2004, Oracle. All rights reserved. */
/**
 DESCRIPTION
 Sample POST DATA Entry Plugin for CREATE operation. Implementing a
 policy check to provision only those users who belong to \223SALES\224.
 PRIVATE CLASSES
 None.
 NOTES

Sample Code for a Provisioning Plug-in

Java Plug-ins for User Provisioning A-13

 This class implements the POST_DATA_ENTRY_CREATE plugin ONLY
 MODIFIED (MM/DD/YY)
 12/15/04 \226 Creation
*/
package oracle.ldap.idm;

import java.util.*;
import javax.naming.*;
import javax.naming.ldap.*;
import javax.naming.directory.*;
import oracle.ldap.util.*;
import oracle.idm.provisioning.plugin.*;
/**
 * This class implements the POST_DATA_ENTRY_CREATE plugin ONLY
 *
 */
public class SamplePostDataEntryCreatePlugin
{
 public ModPropertySet mpBaseUser = null;
 public ModPropertySet mpAppUser = null;

 public PluginStatus process(ApplicationContext appCtx,IdmUser idmuser,
 ModPropertySet baseUserAttr, ModPropertySet appUserAttr)
 throws PluginException
 {
 PluginStatus retPluginStatus = null;
 String retProvStatus = null;
 String retProvStatusMsg = null;

 if(null == baseUserAttr.getModPropertyValue(\223deptartmentNumber\224))
 {
 mpBaseUser = new ModPropertySet();
 mpBaseUser.addProperty("deptartmentNumber ","SALES");
 appCtx.log("Base user attribute \221c\222 is missing");

 retProvStatus = IdmUser.PROVISION_ REQUIRED;
 retProvStatusMsg = "Provision policy: Only \221SALES\222\224.
 }
 else if (baseUserAttr.getModPropertyValue(\223deptartmentNumber\224)
 .equals(\223SALES\224))
 {
 retProvStatus = IdmUser.PROVISION_ REQUIRED;
 retProvStatusMsg = "Provision policy: Only \221SALES\222\224.
 }
 else
 {
 // do not provision those users who do not belong to SALES.
 retProvStatus = IdmUser.PROVISION_NOT_REQUIRED;
 retProvStatusMsg =
 "Do not provision the person who is not from \221SALES\222";
 }

 return new PluginStatus(PluginStatus. SUCCESS, retProvStatusMsg,
 retProvStatus);
 }

 public ModPropertySet getBaseAttrMods()
 {
 return mpBaseUser;
 }

Sample Code for a Provisioning Plug-in

A-14 Oracle Identity Management Application Developer’s Guide

 public ModPropertySet getAppAttrMods()
 {
 return mpAppUser;
 }
}

/* Copyright (c) 2004, Oracle. All rights reserved. */
/**
 DESCRIPTION
 Sample DATA Access Plugin.
 NOTES
 This class implements the DATA_ACCESS plugin
 MODIFIED (MM/DD/YY)
 12/15/04 \226 Creation
*/
package oracle.ldap.idm;

import javax.naming.*;
import javax.naming.ldap.*;
import javax.naming.directory.*;
import oracle.ldap.util.*;
import oracle.idm.provisioning.plugin.*;
/**
 * This class implements the DATA_ACCESS plugin ONLY
 *
 */
public class SampleDataAccessPlugin
{
 public PluginStatus process(ApplicationContext appCtx,IdmUser idmuser,
 ModPropertySet baseUserAttr,ModPropertySet appUserAttr)
 throws PluginException
 {
 try {
 DirContext dirCtx = appCtx.getDirCtx();
 if (appCtx.getCallOp().equals(ApplicationContext.OP_CREATE)
 {
 // Use the directory context and create the entry.
 }
 elseif (appCtx.getCallOp().equals(ApplicationContext.OP_MODIFY)
 {
 // Use the directory context and modify the entry.
 }
 } catch (Exception e) {
 throw new PluginException(e);
 }
 return new PluginStatus(PluginStatus.SUCCESS, null, null);
 }

 public PropertySet getAppUserData(ApplicationContext appCtx,
 IdmUser idmuser, String [] reqAttrs) throws PluginException
 {
 VarPropertySet vpSet = null;
 DirContext dirCtx = appCtx.getDirCtx();

 try {
 Attributes attrs= dirCtx.getAttributes(\223myAppContainer\224);
 vpSet = new VarPropertySet(); // Populate the VarPropertySet from attrs
 } catch(Exception ne) {
 throw new PluginException(e);

Sample Code for a Provisioning Plug-in

Java Plug-ins for User Provisioning A-15

 }
 return vpSet; }
}

Sample Code for a Provisioning Plug-in

A-16 Oracle Identity Management Application Developer’s Guide

DSML Syntax B-1

B
DSML Syntax

This appendix contains the following sections:

■ Capabilities of DSML

■ Benefits of DSML

■ DSML Syntax

■ Tools Enabled for DSML

Capabilities of DSML
Directory services form a core part of distributed computing. XML is becoming the
standard markup language for Internet applications. As directory services are brought
to the Internet, there is a pressing and urgent need to express the directory information
as XML data. This caters to the growing breed of applications that are not
LDAP-aware yet require information exchange with a LDAP directory server.

Directory Services Mark-up Language (DSML) defines the XML representation of
LDAP information and operations. The LDAP Data Interchange Format (LDIF) is
used to convey directory information, or a set of changes to be applied to directory
entries. The former is called Attribute Value Record and the latter is called Change
Record.

Benefits of DSML
Using DSML with Oracle Internet Directory and Internet applications makes it easier
to flexibly integrate data from disparate sources. Also, DSML enables applications that
do not use LDAP to communicate with LDAP-based applications, easily operating on
data generated by an Oracle Internet Directory client tool or accessing the directory
through a firewall.

DSML is based on XML, which is optimized for delivery over the Web. Structured data
in XML will be uniform and independent of application or vendors, thus making
possible numerous new flat file type synchronization connectors. Once in XML format,
the directory data can be made available in the middle tier and have more meaningful
searches performed on it.

DSML Syntax
A DSML version 1 document describes either directory entries, a directory schema or
both. Each directory entry has a unique name called a distinguished name (DN). A
directory entry has a number of property-value pairs called directory attributes. Every
directory entry is a member of a number of object classes. An entry's object classes

DSML Syntax

B-2 Oracle Identity Management Application Developer’s Guide

constrain the directory attributes the entry can take. Such constraints are described in a
directory schema, which may be included in the same DSML document or may be in a
separate document.

The following subsections briefly explain the top-level structure of DSML and how to
represent the directory and schema entries.

Top-Level Structure
The top-level document element of DSML is of the type dsml, which may have child
elements of the following types:

directory-entries
directory-schema

The child element directory-entries may in turn have child elements of the type entry.
Similarly the child element directory-schema may in turn have child elements of the
types class and attribute-type.

At the top level, the structure of a DSML document looks like this:

<!- a document with directory & schema entries -->
 <dsml:directory-entries>
 <dsml:entry dn="...">...</dsml:entry>
 .
 .
 .
 </dsml:directory-entries>
 .
 .
 .
 <dsml:directory-schema>
 <dsml:class id="..." ...>...</dsml:class>
 <dsml:attribute-type id="..." ...>...</dsml:attribute-type>
 .
 .
 .
 </dsml:directory-schema>
</dsml:dsml>

Directory Entries
The element type entry represents a directory entry in a DSML document. The
entry element contains elements representing the entry's directory attributes. The
distinguished name of the entry is indicated by the XML attribute dn.

Here is an XML entry to describe the directory entry:

<dsml:entry dn="uid=Heman, c=in, dc=oracle, dc=com">
<dsml:objectclass>
 <dsml:oc-value>top</dsml:oc-value>
 <dsml:oc-value ref="#person">person</dsml:oc-value>
 <dsml:oc-value>organizationalPerson</dsml:oc-value>
 <dsml:oc-value>inetOrgPerson</dsml:oc-value>
</dsml:objectclass>
<dsml:attr name="sn">
<dsml:value>Siva</dsml:value></dsml:attr>
<dsml:attr name="uid">
<dsml:value>Heman</dsml:value></dsml:attr>
<dsml:attr name="mail">

Tools Enabled for DSML

DSML Syntax B-3

<dsml:attr name="givenname">
<dsml:value>Siva V. Kumar</dsml:value></dsml:attr>
<dsml:attr name="cn">
<dsml:value>SVK@oracle.com</dsml:value></dsml:attr>
<dsml:value>Siva Kumar</dsml:value></dsml:attr>

The oc-value's ref is a URI Reference to a class element that defines the object
class. In this case it is a URI [9] Reference to the element that defines the person object
class. The child elements objectclass and attr are used to specify the object
classes and the attributes of a directory entry.

Schema Entries
The element type class represents a schema entry in a DSML document. The class
element takes an XML attribute id to make referencing easier.

For example, the object class definition for the person object class might look like the
following:

<dsml:class id="person" superior="#top" type="structural">
 <dsml:name>person</dsml:name>
 <dsml:description>...</dsml:description>
 <dsml:object-identifier>2.5.6.6</object-identifier>
 <dsml:attribute ref="#sn" required="true"/>
 <dsml:attribute ref="#cn" required="true"/>
 <dsml:attribute ref="#userPassword" required="false"/>
 <dsml:attribute ref="#telephoneNumber" required="false"/>
 <dsml:attribute ref="#seeAlso" required="false"/>
 <dsml:attribute ref="#description" required="false"/>
</dsml:class>

The directory attributes are described in a similar way. For example, the attribute
definition for the cn attribute may look like this:

<dsml:attribute-type id="cn">
 <dsml:name>cn</dsml:name>
 <dsml:description>...</dsml:description>
 <dsml:object-identifier>2.5.4.3</object-identifier>
 <dsml:syntax>1.3.6.1.4.1.1466.115.121.1.44</dsml:syntax>
</dsml:attribute-type>

Tools Enabled for DSML
With the XML framework, you can now use non-ldap applications to access directory
data. The XML framework broadly defines the access points and provides the
following tools:

■ ldapadd

■ ldapaddmt

■ ldapsearch

The client tool ldifwrite generates directory data and schema LDIF files. If you
convert these LDIF files to XML, you can store the XML file on an application server

See Also: "Oracle Internet Directory Server Administration Tools"
in Oracle Identity Management User Reference for information about
syntax and usage.

Tools Enabled for DSML

B-4 Oracle Identity Management Application Developer’s Guide

and query it. The query and response time is small compared to performing an LDAP
operation against an LDAP server.

Migrating from Netscape LDAP SDK API to Oracle LDAP SDK API C-1

C
Migrating from Netscape LDAP SDK API to

Oracle LDAP SDK API

The Oracle Internet Directory SDK C API is described in Chapter 14, "C API
Reference". This Appendix outlines differences between the Netscape LDAP SDK and
the Oracle Internet Directory LDAP SDK that are important when migrating code.

Features
The following features of the Oracle Internet Directory LDAP SDK are different from
Netscape’s SDK.

■ In the Netscape SDK, a client must register an LDAP Rebind Call Back to handle a
referral. This is automatically handled in the Oracle LDAP SDK.

■ Access to the LDAP Structure is different. The LDAP handle in Netscape LDAP
SDK is type opaque. Accessory functions are required to access individual fields
within this handle. In the Oracle Internet Directory LDAP SDK, the LDAP
structure is exposed and a client can modify individual fields within the structure.

■ Use ldap_open() instead of ldap_init() with the Oracle LDAP SDK.

■ SSL connection initialization requires different function calls and procedures in the
Oracle LDAP SDK. See Chapter 14, "C API Reference"for information about Oracle
Internet Directory function calls for SSL.

■ The Oracle Internet Directory C API depends on the Oracle environment,
including libraries and other files.You must install Oracle Application Server or
Oracle Database and set the environment variable $ORACLE_HOME to an
appropriate location before you build your application.

■ An LDAP SDK user must use an allocation function that clears memory, such as
calloc(), to allocate an LDAPMod structure().

■ The Oracle Internet Directory API is not thread-safe.

Functions
 The following functions are available in Netscape LDAP SDK and not in Oracle LDAP
SDK:

■ The Oracle LDAP SDK does not have the function ldap_ber_free(). Use ber_free()
instead.

■ The Oracle LDAP SDK does not have the function ldap_get_lderrno() for
retrieving the ld error and matched string. You can retrieve this information

Macros

C-2 Oracle Identity Management Application Developer’s Guide

directly by accessing the field LDAP.ld_matched and LDAP.ld_error. These are the
only fields of the LDAP structure that you should ever need to access.

Macros
■ LDAPS_PORT is not defined in the Oracle LDAP SDK. Use LDAP_SSL_PORT

instead.

■ LDAP_AFFECT_MULTIPLE_DSA is not defined in the Oracle LDAP SDK. This is
a Nestcape-specific macro.

Glossary-1

Glossary

3DES

See Triple Data Encryption Standard (3DES).

access control item (ACI)

Access control information represents the permissions that various entities or subjects
have to perform operations on a given object in the directory. This information is
stored in Oracle Internet Directory as user-modifiable operational attributes, each of
which is called an access control item (ACI). An ACI determines user access rights to
directory data. It contains a set of rules for controlling access to entries (structural
access items) and attributes (content access items). Access to both structural and
content access items may be granted to one or more users or groups.

access control list (ACL)

A list of resources and the usernames of people who are permitted access to those
resources within a computer system. In Oracle Internet Directory, an ACL is a list of
access control item (ACI) attribute values that is associated with directory objects.
The attribute values on that list represent the permissions that various directory user
entities (or subjects) have on a given object.

access control policy point (ACP)

A directory entry that contains access control policy information that applies
downward to all entries at lower positions in the directory information tree (DIT).
This information affects the entry itself and all entries below it. In Oracle Internet
Directory, you can create ACPs to apply an access control policy throughout a subtree
of your directory.

account lockout

A security feature that locks a user account if repeated failed logon attempts occur
within a specified amount of time, based on security policy settings. Account lockout
occurs in OracleAS Single Sign-On when a user submits an account and password
combination from any number of workstations more times than is permitted by Oracle
Internet Directory. The default lockout period is 24 hours.

ACI

See access control item (ACI).

ACL

See access control list (ACL).

Glossary-2

ACP

See access control policy point (ACP).

administrative area

A subtree on a directory server whose entries are under the control of a single
administrative authority. The designated administrator controls each entry in that
administrative area, as well as the directory schema, access control list (ACL), and
attributes for those entries.

Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES) is a symmetric cryptography algorithm that is
intended to replace Data Encryption Standard (DES). AES is a Federal Information
Processing Standard (FIPS) for the encryption of commercial and government data.

advanced replication

See Oracle Database Advanced Replication.

advanced symmetric replication (ASR)

See Oracle Database Advanced Replication.

AES

See Advanced Encryption Standard (AES).

anonymous authentication

The process by which a directory authenticates a user without requiring a user name
and password combination. Each anonymous user then exercises the privileges
specified for anonymous users.

API

See application programming interface (API).

application programming interface (API)

A series of software routines and development tools that comprise an interface
between a computer application and lower-level services and functions (such as the
operating system, device drivers, and other software applications). APIs serve as
building blocks for programmers putting together software applications. For example,
LDAP-enabled clients access Oracle Internet Directory information through
programmatic calls available in the LDAP API.

application service provider

Application Service Providers (ASPs) are third-party entities that manage and
distribute software-based services and solutions to customers across a wide area
network from a central data center. In essence, ASPs are a way for companies to
outsource some or almost all aspects of their information technology needs.

ASN.1

Abstract Syntax Notation One (ASN.1) is an International Telecommunication Union
(ITU) notation used to define the syntax of information data. ASN.1 is used to describe
structured information, typically information that is to be conveyed across some
communications medium. It is widely used in the specification of Internet protocols.

ASR

See Oracle Database Advanced Replication.

Glossary-3

asymmetric algorithm

A cryptographic algorithm that uses different keys for encryption and decryption.

See also: public key cryptography.

asymmetric cryptography

See public key cryptography.

attribute

Directory attributes hold a specific data element such as a name, phone number, or job
title. Each directory entry is comprised of a set of attributes, each of which belongs to
an object class. Moreover, each attribute has both a type, which describes the kind of
information in the attribute, and a value, which contains the actual data.

attribute configuration file

In an Oracle Directory Integration Platform environment, a file that specifies attributes
of interest in a connected directory.

attribute type

Attribute types specify information about a data element, such as the data type,
maximum length, and whether it is single-valued or multivalued. The attribute type
provides the real-world meaning for a value, and specifies the rules for creating and
storing specific pieces of data, such as a name or an e-mail address.

attribute uniqueness

An Oracle Internet Directory feature that ensures that no two specified attributes have
the same value. It enables applications synchronizing with the enterprise directory to
use attributes as unique keys.

attribute value

Attribute values are the actual data contained within an attribute for a particular
entry. For example, for the attribute type email, an attribute value might be
sally.jones@oracle.com.

authentication

The process of verifying the identity claimed by an entity based on its credentials.
Authentication of a user is generally based on something the user knows or has (for
example, a password or a certificate).

Authentication of an electronic message involves the use of some kind of system (such
as public key cryptography) to ensure that a file or message which claims to originate
from a given individual or company actually does, and a check based on the contents
of a message to ensure that it was not modified in transit.

authentication level

An OracleAS Single Sign-On parameter that enables you to specify a particular
authentication behavior for an application. You can link this parameter with a specific
authentication plugin.

authentication plugin

An implementation of a specific authentication method. OracleAS Single Sign-On has
Java plugins for password authentication, digital certificates, Windows native
authentication, and third-party access management.

Glossary-4

authorization

The process of granting or denying access to a service or network resource. Most
security systems are based on a two step process. The first stage is authentication, in
which a user proves his or her identity. The second stage is authorization, in which a
user is allowed to access various resources based on his or her identity and the defined
authorization policy.

authorization policy

Authorization policy describes how access to a protected resource is governed. Policy
maps identities and objects to collections of rights according to some system model.
For example, a particular authorization policy might state that users can access a sales
report only if they belong to the sales group.

basic authentication

An authentication protocol supported by most browsers in which a Web server
authenticates an entity with an encoded user name and password passed via data
transmissions. Basic authentication is sometimes called plaintext authentication
because the base-64 encoding can be decoded by anyone with a freely available
decoding utility. Note that encoding is not the same as encryption.

Basic Encoding Rules (BER)

Basic Encoding Rules (BER) are the standard rules for encoding data units set forth in
ASN.1. BER is sometimes incorrectly paired with ASN.1, which applies only to the
abstract syntax description language, not the encoding technique.

BER

See Basic Encoding Rules (BER).

binding

In networking, binding is the establishment of a logical connection between
communicating entities.

In the case of Oracle Internet Directory, binding refers to the process of authenticating
to the directory.

The formal set of rules for carrying a SOAP message within or on top of another
protocol (underlying protocol) for the purpose of exchange is also called a binding.

block cipher

Block ciphers are a type of symmetric algorithm. A block cipher encrypts a message
by breaking it down into fixed-size blocks (often 64 bits) and encrypting each block
with a key. Some well known block ciphers include Blowfish, DES, and AES.

See also: stream cipher.

Blowfish

Blowfish is a symmetric cryptography algorithm developed by Bruce Schneier in 1993
as a faster replacement for DES. It is a block cipher using 64-bit blocks and keys of up
to 448 bits.

CA

See Certificate Authority (CA).

Glossary-5

CA certificate

A Certificate Authority (CA) signs all certificates that it issues with its private key.
The corresponding Certificate Authority's public key is itself contained within a
certificate, called a CA Certificate (also referred to as a root certificate). A browser
must contain the CA Certificate in its list of trusted root certificates in order to trust
messages signed by the CA's private key.

cache

Generally refers to an amount of quickly accessible memory in your computer.
However, on the Web it more commonly refers to where the browser stores
downloaded files and graphics on the user's computer.

CBC

See cipher block chaining (CBC).

central directory

In an Oracle Directory Integration Platform environment, the directory that acts as the
central repository. In an Oracle Directory Integration Platform environment, Oracle
Internet Directory is the central directory.

certificate

A certificate is a specially formatted data structure that associates a public key with
the identity of its owner. A certificate is issued by a Certificate Authority (CA). It
contains the name, serial number, expiration dates, and public key of a particular
entity. The certificate is digitally signed by the issuing CA so that a recipient can verify
that the certificate is real. Most digital certificates conform to the X.509 standard.

Certificate Authority (CA)

A Certificate Authority (CA) is a trusted third party that issues, renews, and revokes
digital certificates. The CA essentially vouches for a entity's identity, and may delegate
the verification of an applicant to a Registration Authority (RA). Some well known
Certificate Authorities (CAs) include Digital Signature Trust, Thawte, and VeriSign.

certificate chain

An ordered list of certificates containing one or more pairs of a user certificate and its
associated CA certificate.

certificate management protocol (CMP)

Certificate Management Protocol (CMP) handles all relevant aspects of certificate
creation and management. CMP supports interactions between public key
infrastructure (PKI)) components, such as the Certificate Authority (CA),
Registration Authority (RA), and the user or application that is issued a certificate.

certificate request message format (CRMF)

Certificate Request Message Format (CRMF) is a format used for messages related to
the life-cycle management of X.509 certificates, as described in the RFC 2511
specification.

certificate revocation list (CRL)

A Certificate Revocation List (CRL) is a list of digital certificates which have been
revoked by the Certificate Authority (CA) that issued them.

Glossary-6

change logs

A database that records changes made to a directory server.

cipher

See cryptographic algorithm.

cipher block chaining (CBC)

Cipher block chaining (CBC) is a mode of operation for a block cipher. CBC uses what
is known as an initialization vector (IV) of a certain length. One of its key
characteristics is that it uses a chaining mechanism that causes the decryption of a
block of ciphertext to depend on all the preceding ciphertext blocks. As a result, the
entire validity of all preceding blocks is contained in the immediately previous
ciphertext block.

cipher suite

In Secure Sockets Layer (SSL), a set of authentication, encryption, and data integrity
algorithms used for exchanging messages between network nodes. During an SSL
handshake, the two nodes negotiate to see which cipher suite they will use when
transmitting messages back and forth.

ciphertext

Ciphertext is the result of applying a cryptographic algorithm to readable data
(plaintext) in order to render the data unreadable by all entities except those in
possession of the appropriate key.

circle of trust

A circle of trust is a federation of service providers and identity providers that have
business relationships based on Liberty Alliance architecture and operational
agreements, and with whom users can transact business in a secure and apparently
seamless environment.

claim

A claim is a declaration made by an entity (for example, a name, identity, key, group,
and so on).

client SSL certificates

A type of certificate used to identify a client machine to a server through Secure
Sockets Layer (SSL) (client authentication).

cluster

A collection of interconnected usable whole computers that is used as a single
computing resource. Hardware clusters provide high availability and scalability.

CMP

See certificate management protocol (CMP).

CMS

See Cryptographic Message Syntax (CMS).

code signing certificates

A type of certificate used to identify the entity who signed a Java program, Java Script,
or other signed file.

Glossary-7

cold backup

In Oracle Internet Directory, this refers to the procedure of adding a new directory
system agent (DSA) node to an existing replicating system by using the database copy
procedure.

concurrency

The ability to handle multiple requests simultaneously. Threads and processes are
examples of concurrency mechanisms.

concurrent clients

The total number of clients that have established a session with Oracle Internet
Directory.

concurrent operations

The number of operations that are being executed on Oracle Internet Directory from all
of the concurrent clients. Note that this is not necessarily the same as the concurrent
clients, because some of the clients may be keeping their sessions idle.

confidentiality

In cryptography, confidentiality (also known as privacy) is the ability to prevent
unauthorized entities from reading data. This is typically achieved through
encryption.

configset

See configuration set entry.

configuration set entry

An Oracle Internet Directory entry holding the configuration parameters for a specific
instance of the directory server. Multiple configuration set entries can be stored and
referenced at runtime. The configuration set entries are maintained in the subtree
specified by the subConfigsubEntry attribute of the directory-specific entry (DSE),
which itself resides in the associated directory information base (DIB) against which
the servers are started.

connect descriptor

A specially formatted description of the destination for a network connection. A
connect descriptor contains destination service and network route information.

The destination service is indicated by using its service name for the Oracle Database
or its Oracle System Identifier (SID) for Oracle release 8.0 or version 7 databases. The
network route provides, at a minimum, the location of the listener through use of a
network address.

connected directory

In an Oracle Directory Integration Platform environment, an information repository
requiring full synchronization of data between Oracle Internet Directory and
itself—for example, an Oracle human resources database.

consumer

A directory server that is the destination of replication updates. Sometimes called a
slave.

contention

Competition for resources.

Glossary-8

context prefix

The distinguished name (DN) of the root of a naming context.

CRL

See certificate revocation list (CRL).

CRMF

See certificate request message format (CRMF).

cryptographic algorithm

A cryptographic algorithm is a defined sequence of processes to convert readable data
(plaintext) to unreadable data (ciphertext) and vice versa. These conversions require
some secret knowledge, normally contained in a key. Examples of cryptographic
algorithms include DES, AES, Blowfish, and RSA.

Cryptographic Message Syntax (CMS)

Cryptographic Message Syntax (CMS) is a syntax defined in RFC 3369 for signing,
digesting, authenticating, and encrypting digital messages.

cryptography

The process of protecting information by transforming it into an unreadable format.
The information is encrypted using a key, which makes the data unreadable, and is
then decrypted later when the information needs to be used again. See also public key
cryptography and symmetric cryptography.

dads.conf

A configuration file for Oracle HTTP Server that is used to configure a database access
descriptor (DAD).

DAS

See Oracle Delegated Administration Services. (DAS).

Data Encryption Standard (DES)

Data Encryption Standard (DES) is a widely used symmetric cryptography algorithm
developed in 1974 by IBM. It applies a 56-bit key to each 64-bit block of data. DES and
3DES are typically used as encryption algorithms by S/MIME.

data integrity

The guarantee that the contents of the message received were not altered from the
contents of the original message sent.

See also: integrity.

database access descriptor (DAD)

Database connection information for a particular Oracle Application Server
component, such as the OracleAS Single Sign-On schema.

decryption

The process of converting the contents of an encrypted message (ciphertext) back into
its original readable format (plaintext).

Glossary-9

default identity management realm

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and stores
information for them. In such hosted environments, the enterprise performing the
hosting is called the default identity management realm, and the enterprises that are
hosted are each associated with their own identity management realm in the directory
information tree (DIT).

default knowledge reference

A knowledge reference that is returned when the base object is not in the directory,
and the operation is performed in a naming context not held locally by the server. A
default knowledge reference typically sends the user to a server that has more
knowledge about the directory partitioning arrangement.

default realm location

An attribute in the root Oracle Context that identifies the root of the default identity
management realm.

Delegated Administration Services

See Oracle Delegated Administration Services.

delegated administrator

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and stores
information for them. In such an environment, a global administrator performs
activities that span the entire directory. Other administrators—called delegated
administrators—may exercise roles in specific identity management realms, or for
specific applications.

DER

See Distinguished Encoding Rules (DER).

DES

See Data Encryption Standard (DES).

DIB

See directory information base (DIB).

Diffie-Hellman

Diffie-Hellman (DH) is a public key cryptography protocol that allows two parties to
establish a shared secret over an unsecure communications channel. First published in
1976, it was the first workable public key cryptographic system.

See also: symmetric algorithm.

digest

See message digest.

digital certificate

See certificate.

digital signature

A digital signature is the result of a two-step process applied to a given block of data.
First, a hash function is applied to the data to obtain a result. Second, that result is

Glossary-10

encrypted using the signer's private key. Digital signatures can be used to ensure
integrity, message authentication, and non-repudiation of data. Examples of digital
signature algorithms include DSA, RSA, and ECDSA.

Digital Signature Algorithm (DSA)

The Digital Signature Algorithm (DSA) is an asymmetric algorithm that is used as
part of the Digital Signature Standard (DSS). It cannot be used for encryption, only for
digital signatures. The algorithm produces a pair of large numbers that enable the
authentication of the signatory, and consequently, the integrity of the data attached.
DSA is used both in generating and verifying digital signatures.

See also: Elliptic Curve Digital Signature Algorithm (ECDSA).

directory

See Oracle Internet Directory, Lightweight Directory Access Protocol (LDAP), and
X.500.

directory information base (DIB)

The complete set of all information held in the directory. The DIB consists of entries
that are related to each other hierarchically in a directory information tree (DIT).

directory information tree (DIT)

A hierarchical tree-like structure consisting of the DNs of the entries.

directory integration platform server

In an Oracle Directory Integration Platform environment, the server that drives the
synchronization of data between Oracle Internet Directory and a connected directory.

directory integration profile

In an Oracle Directory Integration Platform environment, an entry in Oracle Internet
Directory that describes how Oracle Directory Integration Platform communicates
with external systems and what is communicated.

Directory Manager

See Oracle Directory Manager.

directory naming context

See naming context.

directory provisioning profile

A special kind of directory integration profile that describes the nature of
provisioning-related notifications that Oracle Directory Integration Platform sends to
the directory-enabled applications.

directory replication group (DRG)

The directory servers participating in a replication agreement.

directory server instance

A discrete invocation of a directory server. Different invocations of a directory server,
each started with the same or different configuration set entries and startup flags, are
said to be different directory server instances.

Glossary-11

directory synchronization profile

A special kind of directory integration profile that describes how synchronization is
carried out between Oracle Internet Directory and an external system.

directory system agent (DSA)

The X.500 term for a directory server.

directory-specific entry (DSE)

An entry specific to a directory server. Different directory servers may hold the same
directory information tree (DIT) name, but have different contents—that is, the
contents can be specific to the directory holding it. A DSE is an entry with contents
specific to the directory server holding it.

directory user agent (DUA)

The software that accesses a directory service on behalf of the directory user. The
directory user may be a person or another software element.

DIS

See directory integration platform server.

Distinguished Encoding Rules (DER)

Distinguished Encoding Rules (DER) are a set of rules for encoding ASN.1 objects in
byte-sequences. DER is a special case of Basic Encoding Rules (BER).

distinguished name (DN)

A X.500 distinguished name (DN) is a unique name for a node in a directory tree. A
DN is used to provide a unique name for a person or any other directory entry. A DN
is a concatenation of selected attributes from each node in the tree along the path from
the root node to the named entry's node. For example, in LDAP notation, the DN for a
person named John Smith working at Oracle's US office would be: "cn=John Smith,
ou=People, o=Oracle, c=us".

DIT

See directory information tree (DIT).

DN

See distinguished name (DN).

Document Type Definition (DTD)

A Document Type Definition (DTD) is a document that specifies constraints on the
tags and tag sequences that are valid for a given XML document. DTDs follow the
rules of Simple Generalized Markup Language (SGML), the parent language of XML.

domain component attribute

The domain component (dc) attribute can be used in constructing a distinguished
name (DN) from a domain name. For example, using a domain name such as
"oracle.com", one could construct a DN beginning with "dc=oracle, dc=com", and then
use this DN as the root of its subtree of directory information.

DRG

See directory replication group (DRG).

Glossary-12

DSA

See Digital Signature Algorithm (DSA) or directory system agent (DSA).

DSE

See directory-specific entry (DSE).

DTD

See Document Type Definition (DTD).

ECC

See Elliptic Curve Cryptography (ECC).

ECDSA

See Elliptic Curve Digital Signature Algorithm (ECDSA).

EJB

See Enterprise Java Bean (EJB).

Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography (ECC) is an alternative to the RSA encryption system
which is based on the difficulty of solving elliptic curve discrete logarithm problems
rather than on factoring large numbers. Developed and marketed by Certicom, ECC is
especially suitable for environments, such as wireless devices and PC cards, where
computational power is limited and high speed is required. For any given key size
(measured in bits) ECC provides more security (is harder to decrypt without the key)
than RSA.

Elliptic Curve Digital Signature Algorithm (ECDSA)

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analog of
the Digital Signature Algorithm (DSA) standard. The advantages of ECDSA
compared to RSA-like schemes are shorter key lengths and faster signing and
decryption. For example, a 160 (210) bit ECC key is expected to give the same security
as a 1024 (2048) bit RSA key, and the advantage increases as level of security is raised.

encryption

Encryption is the process of converting plaintext to ciphertext by applying a
cryptographic algorithm.

encryption certificate

An encryption certificate is a certificate containing a public key that is used to encrypt
electronic messages, files, documents, or data transmission, or to establish or exchange
a session key for these same purposes.

end-to-end security

This is a property of message-level security that is established when a message
traverses multiple applications within and between business entities and is secure over
its full route through and between the business entities.

Enterprise Java Bean (EJB)

Enterprise JavaBeans (EJBs) are a Java API developed by Sun Microsystems that
defines a component architecture for multi-tier client/server systems. Because EJB
systems are written in Java, they are platform independent. Being object oriented, they

Glossary-13

can be implemented into existing systems with little or no recompiling and
configuring.

Enterprise Manager

See Oracle Enterprise Manager.

entry

An entry is a unique record in a directory that describes an object, such as a person. An
entry consists of attributes and their associated attribute values, as dictated by the
object class that describes that entry object. All entries in an LDAP directory structure
are uniquely identified through their distinguished name (DN).

export agent

In an Oracle Directory Integration Platform environment, an agent that exports data
out of Oracle Internet Directory.

export data file

In an Oracle Directory Integration Platform environment, the file that contains data
exported by an export agent.

export file

See export data file.

external agent

A directory integration agent that is independent of Oracle Directory Integration
Platform server. Oracle Directory Integration Platform server does not provide
scheduling, mapping, or error handling services for it. An external agent is typically
used when a third party metadirectory solution is integrated with Oracle Directory
Integration Platform.

external application

Applications that do not delegate authentication to the OracleAS Single Sign-On
server. Instead, they display HTML login forms that ask for application user names
and passwords. At the first login, users can choose to have the OracleAS Single
Sign-On server retrieve these credentials for them. Thereafter, they are logged in to
these applications transparently.

failover

The process of failure recognition and recovery. In an Oracle Application Server Cold
Failover Cluster (Identity Management), an application running on one cluster node is
transparently migrated to another cluster node. During this migration, clients
accessing the service on the cluster see a momentary outage and may need to
reconnect once the failover is complete.

fan-out replication

Also called a point-to-point replication, a type of replication in which a supplier
replicates directly to a consumer. That consumer can then replicate to one or more
other consumers. The replication can be either full or partial.

Federal Information Processing Standards (FIPS)

Federal Information Processing Standards (FIPS) are standards for information
processing issued by the US government Department of Commerce's National
Institute of Standards and Technology (NIST).

Glossary-14

federated identity management (FIM)

The agreements, standards, and technologies that make identity and entitlements
portable across autonomous domains. FIM makes it possible for an authenticated user
to be recognized and take part in personalized services across multiple domains. It
avoids pitfalls of centralized storage of personal information, while allowing users to
link identity information between different accounts. Federated identity requires two
key components: trust and standards. The trust model of federated identity
management is based on circle of trust. The standards are defined by the Liberty
Alliance Project.

federation

A federation is a group of entities (companies and organizations) that have a shared
user base, and have agreed to provide identity and authorization tokens so that their
users only have to logon once to access all of the services in their circle of trust. Within
the federation, at least one entity serves as the identity provider who is responsible for
authenticating users. Entities that provide services to the user are referred to as service
providers.

filter

A filter is an expression that defines the entries to be returned from a request or search
on a directory. Filters are typically expressed as DNs, for example: cn=susie
smith,o=acme,c=us.

FIM

See federated identity management (FIM).

FIPS

See Federal Information Processing Standards (FIPS).

forced authentication

The act of forcing a user to reauthenticate if he or she has been idle for a preconfigured
amount of time. Oracle Application Server Single Sign-On enables you to specify a
global user inactivity timeout. This feature is intended for installations that have
sensitive applications.

GET

An authentication method whereby login credentials are submitted as part of the login
URL.

global administrator

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and stores
information for them. In such an environment, a global administrator performs
activities that span the entire directory.

global unique identifier (GUID)

An identifier generated by the system and inserted into an entry when the entry is
added to the directory. In a multimaster replicated environment, the GUID, not the
DN, uniquely identifies an entry. The GUID of an entry cannot be modified by a user.

Glossary-15

global user inactivity timeout

An optional feature of Oracle Application Server Single Sign-On that forces users to
reauthenticate if they have been idle for a preconfigured amount of time. The global
user inactivity timeout is much shorter than the single sign-out session timeout.

globalization support

Multilanguage support for graphical user interfaces. Oracle Application Server Single
Sign-On supports 29 languages.

globally unique user ID

A numeric string that uniquely identifies a user. A person may change or add user
names, passwords, and distinguished names, but her globally unique user ID always
remains the same.

grace login

A login occurring within the specified period before password expiration.

group search base

In the Oracle Internet Directory default directory information tree (DIT), the node in
the identity management realm under which all the groups can be found.

guest user

One who is not an anonymous user, and, at the same time, does not have a specific
user entry.

GUID

See global unique identifier (GUID).

handshake

A protocol two computers use to initiate a communication session.

hash

A number generated from a string of text with an algorithm. The hash value is
substantially smaller than the text itself. Hash numbers are used for security and for
faster access to data.

See also: hash function.

hash function

In cryptography, a hash function or one-way hash function is an algorithm that
produces a given value when applied to a given block of data. The result of a hash
function can be used to ensure the integrity of a given block of data. For a hash
function to be considered secure, it must be very difficult, given a known data block
and a known result, to produce another data block that produces the same result.

Hashed Message Authentication Code (HMAC)

Hashed Message Authentication Code (HMAC) is a hash function technique used to
create a secret hash function output. This strengthens existing hash functions such as
MD5 and SHA. It is used in transport layer security (TLS).

HMAC

See Hashed Message Authentication Code (HMAC).

Glossary-16

HTTP

The Hyper Text Transfer Protocol (HTTP) is the protocol used between a Web browser
and a server to request a document and transfer its contents. The specification is
maintained and developed by the World Wide Web Consortium.

HTTP Server

See Oracle HTTP Server.

httpd.conf

The file used to configure Oracle HTTP Server.

iASAdmins

The administrative group responsible for user and group management functions in
Oracle Application Server. The OracleAS Single Sign-On administrator is a member of
the group iASAdmins.

identity management

The process by which the complete security lifecycle for network entities is managed
in an organization. It typically refers to the management of an organization's
application users, where steps in the security life cycle include account creation,
suspension, privilege modification, and account deletion. The network entities
managed may also include devices, processes, applications, or anything else that needs
to interact in a networked environment. Entities managed by an identity management
process may also include users outside of the organization, for example customers,
trading partners, or Web services.

identity management infrastructure database

The database that contains data for OracleAS Single Sign-On and Oracle Internet
Directory.

identity management realm

A collection of identities, all of which are governed by the same administrative
policies. In an enterprise, all employees having access to the intranet may belong to
one realm, while all external users who access the public applications of the enterprise
may belong to another realm. An identity management realm is represented in the
directory by a specific entry with a special object class associated with it.

identity management realm-specific Oracle Context

An Oracle Context contained in each identity management realm. It stores the
following information:

■ User naming policy of the identity management realm—that is, how users are
named and located.

■ Mandatory authentication attributes.

■ Location of groups in the identity management realm.

■ Privilege assignments for the identity management realm—for example: who has
privileges to add more users to the realm.

■ Application specific data for that realm including authorizations.

identity provider

These are organizations recognized by the members of a circle of trust as the entity
responsible for authenticating users and providing the digital identity information of

Glossary-17

users to other parties in a federation. Identity providers enter into partnerships with
service providers and provide services that follow agreed-upon practices set by all
parties in a federation.

import agent

In an Oracle Directory Integration Platform environment, an agent that imports data
into Oracle Internet Directory.

import data file

In an Oracle Directory Integration Platform environment, the file containing the data
imported by an import agent.

infrastructure tier

The Oracle Application Server components responsible for identity management.
These components are OracleAS Single Sign-On, Oracle Delegated Administration
Services, and Oracle Internet Directory.

inherit

When an object class has been derived from another class, it also derives, or inherits,
many of the characteristics of that other class. Similarly, an attribute subtype inherits
the characteristics of its supertype.

instance

See directory server instance.

integrity

In cryptography, integrity is the ability to detect if data has been modified by entities
that are not authorized to modify it.

Internet Directory

See Oracle Internet Directory.

Internet Engineering Task Force (IETF)

The principal body engaged in the development of new Internet standard
specifications. It is an international community of network designers, operators,
vendors, and researchers concerned with the evolution of the Internet architecture and
the smooth operation of the Internet.

Internet Message Access Protocol (IMAP)

A protocol allowing a client to access and manipulate electronic mail messages on a
server. It permits manipulation of remote message folders, also called mailboxes, in a
way that is functionally equivalent to local mailboxes.

J2EE

See Java 2 Platform, Enterprise Edition (J2EE).

Java 2 Platform, Enterprise Edition (J2EE)

Java 2 Platform, Enterprise Edition (J2EE) is an environment for developing and
deploying enterprise applications, defined by Sun Microsystems Inc. The J2EE
platform consists of a set of services, application programming interfaces (APIs), and
protocols that provide the functionality for developing multitiered, Web-based
applications.

Glossary-18

Java Server Page (JSP)

JavaServer Pages (JSP), a server-side technology, are an extension to the Java servlet
technology that was developed by Sun Microsystems. JSPs have dynamic scripting
capability that works in tandem with HTML code, separating the page logic from the
static elements (the design and display of the page). Embedded in the HTML page, the
Java source code and its extensions help make the HTML more functional, being used
in dynamic database queries, for example.

JSP

See Java Server Page (JSP).

key

A key is a data structure that contains some secret knowledge necessary to
successfully encrypt or decrypt a given block of data. The larger the key, the harder it
is to crack a block of encrypted data. For example, a 256-bit key is more secure than a
128-bit key.

key pair

A public key and its associated private key.

See also: public/private key pair.

knowledge reference

The access information (name and address) for a remote directory system agent
(DSA) and the name of the directory information tree (DIT) subtree that the remote
DSA holds. Knowledge references are also called referrals.

latency

The time a client has to wait for a given directory operation to complete. Latency can
be defined as wasted time. In networking discussions, latency is defined as the travel
time of a packet from source to destination.

LDAP

See Lightweight Directory Access Protocol (LDAP).

LDAP connection cache

To improve throughput, the OracleAS Single Sign-On server caches and then reuses
connections to Oracle Internet Directory.

LDAP Data Interchange Format (LDIF)

A common, text-based format for exchanging directory data between systems. The set
of standards for formatting an input file for any of the LDAP command-line utilities.

LDIF

See LDAP Data Interchange Format (LDIF).

legacy application

Older application that cannot be modified to delegate authentication to the OracleAS
Single Sign-On server. Also known as an external application.

Liberty Alliance

The Liberty Alliance Project is an alliance of more than 150 companies, non-profit, and
government organizations from around the globe. The consortium is committed to
developing an open standard for federated network identity that supports all current

Glossary-19

and emerging network devices. The Liberty Alliance is the only global body working
to define and drive open technology standards, privacy, and business guidelines for
federated identity management (FIM).

Lightweight Directory Access Protocol (LDAP)

A set of protocols for accessing information in directories. LDAP supports TCP/IP,
which is necessary for any type of Internet access. Its framework of design conventions
supports industry-standard directory products, such as Oracle Internet Directory.
Because it is a simpler version of the X.500 standard, LDAP is sometimes called X.500
light.

load balancer

Hardware devices and software that balance connection requests between two or more
servers, either due to heavy load or failover. BigIP, Alteon, or Local Director are all
popular hardware devices. Oracle Application Server Web Cache is an example of load
balancing software.

logical host

In an Oracle Application Server Cold Failover Cluster (Identity Management), one or
more disk groups and pairs of host names and IP addresses. It is mapped to a physical
host in the cluster. This physical host impersonates the host name and IP address of
the logical host.

MAC

See message authentication code (MAC).

man-in-the-middle

A security attack characterized by the third-party, surreptitious interception of a
message. The third-party, the man-in-the-middle, decrypts the message, re-encrypts it
(with or without alteration of the original message), and retransmits it to the
originally-intended recipient—all without the knowledge of the legitimate sender and
receiver. This type of security attack works only in the absence of authentication.

mapping rules file

In an Oracle Directory Integration Platform environment, the file that specifies
mappings between Oracle Internet Directory attributes and those in a connected
directory.

master definition site (MDS)

In replication, a master definition site is the Oracle Internet Directory database from
which the administrator runs the configuration scripts.

master site

In replication, a master site is any site other than the master definition site (MDS) that
participates in LDAP replication.

matching rule

In a search or compare operation, determines equality between the attribute value
sought and the attribute value stored. For example, matching rules associated with the
telephoneNumber attribute could cause "(650) 123-4567" to be matched with either
"(650) 123-4567" or "6501234567" or both. When you create an attribute, you associate a
matching rule with it.

Glossary-20

MD2

Message Digest Two (MD2) is a message digest hash function. The algorithm
processes input text and creates a 128-bit message digest which is unique to the
message and can be used to verify data integrity. MD2 was developed by Ron Rivest
for RSA Security and is intended to be used in systems with limited memory, such as
smart cards.

MD4

Message Digest Four (MD4) is similar to MD2 but designed specifically for fast
processing in software.

MD5

Message Digest Five (MD5) is a message digest hash function. The algorithm
processes input text and creates a 128-bit message digest which is unique to the
message and can be used to verify data integrity. MD5 was developed by Ron Rivest
after potential weaknesses were reported in MD4. MD5 is similar to MD4 but slower
because more manipulation is made to the original data.

MDS

See master definition site (MDS).

message authentication

The process of verifying that a particular message came from a particular entity.

See also: authentication.

message authentication code (MAC)

The Message Authentication Code (MAC) is a result of a two-step process applied to a
given block of data. First, the result of a hash function is obtained. Second, that result
is encrypted using a secret key. The MAC can be used to authenticate the source of a
given block of data.

message digest

The result of a hash function.

See also: hash.

metadirectory

A directory solution that shares information between all enterprise directories,
integrating them into one virtual directory. It centralizes administration, thereby
reducing administrative costs. It synchronizes data between directories, thereby
ensuring that it is consistent and up-to-date across the enterprise.

middle tier

That portion of a OracleAS Single Sign-On instance that consists of the Oracle HTTP
Server and OC4J. The OracleAS Single Sign-On middle tier is situated between the
identity management infrastructure database and the client.

mod_osso

A module on the Oracle HTTP Server that enables applications protected by OracleAS
Single Sign-On to accept HTTP headers in lieu of a user name and password once the
user has logged into the OracleAS Single Sign-On server. The values for these headers
are stored in the mod_osso cookie.

Glossary-21

mod_osso cookie

User data stored on the HTTP server. The cookie is created when a user authenticates.
When the same user requests another application, the Web server uses the information
in the mod_osso cookie to log the user in to the application. This feature speeds server
response time.

mod_proxy

A module on the Oracle HTTP Server that makes it possible to use mod_osso to enable
single sign-on to legacy, or external applications.

MTS

See shared server.

multimaster replication

Also called peer-to-peer or n-way replication, a type of replication that enables
multiple sites, acting as equals, to manage groups of replicated data. In a multimaster
replication environment, each node is both a supplier and a consumer node, and the
entire directory is replicated on each node.

naming attribute

The attribute used to compose the RDN of a new user entry created through Oracle
Delegated Administration Services or Oracle Internet Directory Java APIs. The default
value for this is cn.

naming context

A subtree that resides entirely on one server. It must be contiguous, that is, it must
begin at an entry that serves as the top of the subtree, and extend downward to either
leaf entries or knowledge references (also called referrals) to subordinate naming
contexts. It can range in size from a single entry to the entire directory information
tree (DIT).

native agent

In an Oracle Directory Integration Platform environment, an agent that runs under the
control of the directory integration platform server. It is in contrast to an external
agent.

net service name

A simple name for a service that resolves to a connect descriptor. Users initiate a
connect request by passing a user name and password along with a net service name
in a connect string for the service to which they wish to connect, for example:

CONNECT username/password@net_service_name

Depending on your needs, net service names can be stored in a variety of places,
including:

■ Local configuration file, tnsnames.ora, on each client

■ Directory server

■ Oracle Names server

■ External naming service, such as NDS, NIS or CDS

Net Services

See Oracle Net Services.

Glossary-22

nickname attribute

The attribute used to uniquely identify a user in the entire directory. The default value
for this is uid. Applications use this to resolve a simple user name to the complete
distinguished name. The user nickname attribute cannot be multi-valued—that is, a
given user cannot have multiple nicknames stored under the same attribute name.

non-repudiation

In cryptography, the ability to prove that a given digital signature was produced with
a given entity's private key, and that a message was sent untampered at a given point
in time.

OASIS

Organization for the Advancement of Structured Information Standards. OASIS is a
worldwide not-for-profit consortium that drives the development, convergence and
adoption of e-business standards.

object class

In LDAP, object classes are used to group information. Typically an object class models
a real-world object such as a person or a server. Each directory entry belongs to one or
more object classes. The object class determines the attributes that make up an entry.
One object class can be derived from another, thereby inheriting some of the
characteristics of the other class.

OC4J

See Oracle Containers for J2EE (OC4J).

OCA

See Oracle Certificate Authority.

OCI

See Oracle Call Interface (OCI).

OCSP

See Online Certificate Status Protocol (OCSP).

OEM

See Oracle Enterprise Manager.

OID

See Oracle Internet Directory.

OID Control Utility

A command-line tool for issuing run-server and stop-server commands. The
commands are interpreted and executed by the OID Monitor process.

OID Database Password Utility

The utility used to change the password with which Oracle Internet Directory connects
to an Oracle Database.

OID Monitor

The Oracle Internet Directory component that initiates, monitors, and terminates the
Oracle Internet Directory Server processes. It also controls the replication server if one
is installed, and Oracle Directory Integration Platform Server.

Glossary-23

Online Certificate Status Protocol (OCSP)

Online Certificate Status Protocol (OCSP) is one of two common schemes for checking
the validity of digital certificates. The other, older method, which OCSP has
superseded in some scenarios, is certificate revocation list (CRL). OCSP is specified in
RFC 2560.

one-way function

A function that is easy to compute in one direction but quite difficult to reverse
compute, that is, to compute in the opposite direction.

one-way hash function

A one-way function that takes a variable sized input and creates a fixed size output.

See also: hash function.

Oracle Application Server Single Sign-On

OracleAS Single Sign-On consists of program logic that enables you to log in securely
to applications such as expense reports, mail, and benefits. These applications take two
forms: partner applications and external applications. In both cases, you gain access
to several applications by authenticating only once.

Oracle Call Interface (OCI)

An application programming interface (API) that enables you to create applications
that use the native procedures or function calls of a third-generation language to
access an Oracle Database server and control all phases of SQL statement execution.

Oracle Certificate Authority

Oracle Application Server Certificate Authority is a Certificate Authority (CA) for use
within your Oracle Application Server environment. OracleAS Certificate Authority
uses Oracle Internet Directory as the storage repository for certificates. OracleAS
Certificate Authority integration with OracleAS Single Sign-On and Oracle Internet
Directory provides seamless certificate provisioning mechanisms for applications
relying on them. A user provisioned in Oracle Internet Directory and authenticated in
OracleAS Single Sign-On can choose to request a digital certificate from OracleAS
Certificate Authority.

Oracle CMS

Oracle CMS implements the IETF Cryptographic Message Syntax (CMS) protocol.
CMS defines data protection schemes that allow for secure message envelopes.

Oracle Containers for J2EE (OC4J)

A lightweight, scalable container for Java 2 Platform, Enterprise Edition (J2EE).

Oracle Context

See identity management realm-specific Oracle Context and root Oracle Context.

Oracle Crypto

Oracle Crypto is a pure Java library that provides core cryptography algorithms.

Oracle Database Advanced Replication

A feature in the Oracle Database that enables database tables to be kept synchronized
across two Oracle databases.

Glossary-24

Oracle Delegated Administration Services

A set of individual, pre-defined services—called Oracle Delegated Administration
Services units—for performing directory operations on behalf of a user. Oracle Internet
Directory Self-Service Console makes it easier to develop and deploy administration
solutions for both Oracle and third-party applications that use Oracle Internet
Directory.

Oracle Directory Integration Platform

A collection of interfaces and services for integrating multiple directories by using
Oracle Internet Directory and several associated plug-ins and connectors. A feature of
Oracle Internet Directory that enables an enterprise to use an external user repository
to authenticate to Oracle products.

Oracle Directory Integration Platform Server

In an Oracle Directory Integration Platform environment, a daemon process that
monitors Oracle Internet Directory for change events and takes action based on the
information present in the directory integration profile.

Oracle Directory Integration Platform

A component of Oracle Internet Directory. It is a framework developed to integrate
applications around a central LDAP directory like Oracle Internet Directory.

Oracle Directory Manager

A Java-based tool with a graphical user interface for administering Oracle Internet
Directory.

Oracle Enterprise Manager

A separate Oracle product that combines a graphical console, agents, common
services, and tools to provide an integrated and comprehensive systems management
platform for managing Oracle products.

Oracle HTTP Server

Software that processes Web transactions that use the Hypertext Transfer Protocol
(HTTP). Oracle uses HTTP software developed by the Apache Group.

Oracle Identity Management

An infrastructure enabling deployments to manage centrally and securely all
enterprise identities and their access to various applications in the enterprise.

Oracle Internet Directory

A general purpose directory service that enables retrieval of information about
dispersed users and network resources. It combines Lightweight Directory Access
Protocol (LDAP) Version 3 with the high performance, scalability, robustness, and
availability of the Oracle Database.

Oracle Liberty SDK

Oracle Liberty SDK implements the Liberty Alliance Project specifications enabling
federated single sign-on between third-party Liberty-compliant applications.

Oracle Net Services

The foundation of the Oracle family of networking products, allowing services and
their client applications to reside on different computers and communicate. The main
function of Oracle Net Services is to establish network sessions and transfer data

Glossary-25

between a client application and a server. Oracle Net Services is located on each
computer in the network. Once a network session is established, Oracle Net Services
acts as a data courier for the client and the server.

Oracle PKI certificate usages

Defines Oracle application types that a certificate supports.

Oracle PKI SDK

Oracle PKI SDK implements the security protocols that are necessary within public
key infrastructure (PKI) implementations.

Oracle SAML

Oracle SAML provides a framework for the exchange of security credentials among
disparate systems and applications in an XML-based format as outlined in the OASIS
specification for the Security Assertions Markup Language (SAML).

Oracle Security Engine

Oracle Security Engine extends Oracle Crypto by offering X.509 based certificate
management functions. Oracle Security Engine is a superset of Oracle Crypto.

Oracle S/MIME

Oracle S/MIME implements the Secure/Multipurpose Internet Mail Extension
(S/MIME) specifications from the Internet Engineering Task Force (IETF) for secure
e-mail.

Oracle Wallet Manager

A Java-based application that security administrators use to manage public-key
security credentials on clients and servers.

See also: Oracle Advanced Security Administrator's Guide.

Oracle Web Services Security

Oracle Web Services Security provides a framework for authentication and
authorization using existing security technologies as outlined in the OASIS
specification for Web Services Security.

Oracle XML Security

Oracle XML Security implements the W3C specifications for XML Encryption and
XML Signature.

OracleAS Portal

An OracleAS Single Sign-On partner application that provides a mechanism for
integrating files, images, applications, and Web sites. The External Applications portlet
provides access to external applications.

other information repository

In an Oracle Directory Integration Platform environment, in which Oracle Internet
Directory serves as the central directory, any information repository except Oracle
Internet Directory.

OWM

See Oracle Wallet Manager.

Glossary-26

partition

A unique, non-overlapping directory naming context that is stored on one directory
server.

partner application

An Oracle Application Server application or non-Oracle application that delegates the
authentication function to the OracleAS Single Sign-On server. This type of application
spares users from reauthenticating by accepting mod_osso headers.

peer-to-peer replication

Also called multimaster replication or n-way replication. A type of replication that
enables multiple sites, acting as equals, to manage groups of replicated data. In such a
replication environment, each node is both a supplier and a consumer node, and the
entire directory is replicated on each node.

PKCS#1

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS#1 provides recommendations for the implementation of
public-key cryptography based on the RSA algorithm, covering the following aspects:
cryptographic primitives; encryption schemes; signature schemes; ASN.1 syntax for
representing keys and for identifying the schemes.

PKCS#5

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS#5 provides recommendations for the implementation of
password-based cryptography.

PKCS#7

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS #7 describes general syntax for data that may have cryptography
applied to it, such as digital signatures and digital envelopes.

PKCS#8

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS #8 describes syntax for private key information, including a
private key for some public key algorithms and a set of attributes. The standard also
describes syntax for encrypted private keys.

PKCS#10

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS #10 describes syntax for a request for certification of a public key, a
name, and possibly a set of attributes.

PKCS#12

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS #12 describes a transfer syntax for personal identity information,
including private keys, certificates, miscellaneous secrets, and extensions. Systems
(such as browsers or operating systems) that support this standard allow a user to
import, export, and exercise a single set of personal identity information—typically in
a format called a wallet.

PKI

See public key infrastructure (PKI).

Glossary-27

plaintext

Plaintext is readable data prior to a transformation to ciphertext using encryption, or
readable data that is the result of a transformation from ciphertext using decryption.

point-to-point replication

Also called fan-out replication is a type of replication in which a supplier replicates
directly to a consumer. That consumer can then replicate to one or more other
consumers. The replication can be either full or partial.

policy precedence

In Oracle Application Server Certificate Authority (OCA), policies are applied to
incoming requests in the order that they are displayed on the main policy page. When
the OCA policy processor module parses policies, those that appear toward the top of
the policy list are applied to requests first. Those that appear toward the bottom of the
list are applied last and take precedence over the others. Only enabled policies are
applied to incoming requests.

policy.properties

A multipurpose configuration file for Oracle Application Server Single Sign-On that
contains basic parameters required by the single sign-on server. Also used to configure
advanced features of OracleAS Single Sign-On, such as multilevel authentication.

POSIX

Portable Operating System Interface for UNIX. A set of programming interface
standards governing how to write application source code so that the applications are
portable between operating systems. A series of standards being developed by the
Internet Engineering Task Force (IETF).

POST

An authentication method whereby login credentials are submitted within the body of
the login form.

predicates

In Oracle Application Server Certificate Authority (OCA), a policy predicate is a
logical expression that can be applied to a policy to limit how it is applied to incoming
certificate requests or revocations. For example, the following predicate expression
specifies that the policy in which it appears can have a different effect for requests or
revocations from clients with DNs that include "ou=sales,o=acme,c=us":

Type=="client" AND DN=="ou=sales,o=acme,c=us"

primary node

In an Oracle Application Server Cold Failover Cluster (Identity Management), the
cluster node on which the application runs at any given time.

See also: secondary node.

private key

A private key is the secret key in a public/private key pair used in public key
cryptography. An entity uses its private key to decrypt data that has been encrypted
with its public key. The entity can also use its private key to create digital signatures.
The security of data encrypted with the entity's public key as well as signatures
created by the private key depends on the private key remaining secret.

Glossary-28

private key cryptography

See symmetric cryptography.

profile

See directory integration profile.

provisioned applications

Applications in an environment where user and group information is centralized in
Oracle Internet Directory. These applications are typically interested in changes to that
information in Oracle Internet Directory.

provisioning

The process of providing users with access to applications and other resources that
may be available in an enterprise environment.

provisioning agent

An application or process that translates Oracle-specific provisioning events to
external or third-party application-specific events.

provisioning integration profile

A special kind of directory integration profile that describes the nature of
provisioning-related notifications that Oracle Directory Integration Platform sends to
the directory-enabled applications.

proxy server

A server between a client application, such as a Web browser, and a real server. It
intercepts all requests to the real server to see if it can fulfil the requests itself. If not, it
forwards the request to the real server. In OracleAS Single Sign-On, proxies are used
for load balancing and as an extra layer of security.

See also: load balancer.

proxy user

A kind of user typically employed in an environment with a middle tier such as a
firewall. In such an environment, the end user authenticates to the middle tier. The
middle tier then logs into the directory on the end user's behalf. A proxy user has the
privilege to switch identities and, once it has logged into the directory, switches to the
end user's identity. It then performs operations on the end user's behalf, using the
authorization appropriate to that particular end user.

public key

A public key is the non-secret key in a public/private key pair used in public key
cryptography. A public key allows entities to encrypt data that can only then be
decrypted with the public key's owner using the corresponding private key. A public
key can also be used to verify digital signatures created with the corresponding
private key.

public key certificate

See certificate.

public key cryptography

Public key cryptography (also known as asymmetric cryptography) uses two keys, one
public and the other private. These keys are called a key pair. The private key must be
kept secret, while the public key can be transmitted to any party. The private key and

Glossary-29

the public key are mathematically related. A message that is signed by a private key
can be verified by the corresponding public key. Similarly, a message encrypted by the
public key can be decrypted by the private key. This method ensures privacy because
only the owner of the private key can decrypt the message.

public key encryption

The process in which the sender of a message encrypts the message with the public
key of the recipient. Upon delivery, the message is decrypted by the recipient using the
recipient's private key.

public key infrastructure (PKI)

A public key infrastructure (PKI) is a system that manages the issuing, distribution,
and authentication of public keys and private keys. A PKI typically comprises the
following components:

■ A Certificate Authority (CA) that is responsible for generating, issuing,
publishing and revoking digital certificates.

■ A Registration Authority (RA) that is responsible for verifying the information
supplied in requests for certificates made to the CA.

■ A directory service where a certificate or certificate revocation list (CRL) gets
published by the CA and where they can be retrieved by relying third parties.

■ Relying third parties that use the certificates issued by the CA and the public keys
contained therein to verify digital signatures and encrypt data.

public/private key pair

A mathematically related set of two numbers where one is called the private key and
the other is called the public key. Public keys are typically made widely available,
while private keys are available only to their owners. Data encrypted with a public key
can only be decrypted with its associated private key and vice versa. Data encrypted
with a public key cannot be decrypted with the same public key.

RC2

Rivest Cipher Two (RC2) is a 64-bit block cipher developed by Ronald Rivest for RSA
Security, and was designed as a replacement for Data Encryption Standard (DES).

RC4

Rivest Cipher Four (RC4) is a stream cipher developed by Ronald Rivest for RSA
Security. RC4 allows variable key lengths up to 1024 bits. RC4 is most commonly used
to secure data communications by encrypting traffic between Web sites that use the
Secure Sockets Layer (SSL) protocol.

RDN

See relative distinguished name (RDN).

readable data

Data prior to a transformation to ciphertext via encryption or data that is the result of a
transformation from ciphertext via decryption.

realm

See identity management realm.

Glossary-30

realm search base

An attribute in the root Oracle Context that identifies the entry in the directory
information tree (DIT) that contains all identity management realms. This attribute is
used when mapping a simple realm name to the corresponding entry in the directory.

referral

Information that a directory server provides to a client and which points to other
servers the client must contact to find the information it is requesting.

See also: knowledge reference.

Registration Authority (RA)

The Registration Authority (RA) is responsible for verifying and enrolling users before
a certificate is issued by a Certificate Authority (CA). The RA may assign each
applicant a relative distinguished value or name for the new certificate applied. The
RA does not sign or issue certificates.

registry entry

An entry containing runtime information associated with invocations of Oracle
Internet Directory servers, called a directory server instance. Registry entries are
stored in the directory itself, and remain there until the corresponding directory server
instance stops.

relational database

A structured collection of data that stores data in tables consisting of one or more
rows, each containing the same set of columns. Oracle makes it very easy to link the
data in multiple tables. This is what makes Oracle a relational database management
system, or RDBMS. It stores data in two or more tables and enables you to define
relationships between the tables. The link is based on one or more fields common to
both tables.

relative distinguished name (RDN)

The local, most granular level entry name. It has no other qualifying entry names that
would serve to uniquely address the entry. In the example, cn=Smith,o=acme,c=US,
the RDN is cn=Smith.

remote master site (RMS)

In a replicated environment, any site, other than the master definition site (MDS),
that participates in Oracle Database Advanced Replication.

replica

Each copy of a naming context that is contained within a single server.

replication agreement

A special directory entry that represents the replication relationship among the
directory servers in a directory replication group (DRG).

response time

The time between the submission of a request and the completion of the response.

RFC

The Internet Request For Comments (or RFC) documents are the written definitions of
the protocols and policies of the Internet. The Internet Engineering Task Force (IETF)
facilitates the discussion, development, and establishment of new standards. A

Glossary-31

standard is published using the RFC acronym and a reference number. For example,
the official standard for e-mail is RFC 822.

root CA

In a hierarchical public key infrastructure (PKI), the root Certificate Authority (CA)
is the CA whose public key serves as the most trusted datum for a security domain.

root directory specific entry (DSE)

An entry storing operational information about the directory. The information is stored
in a number of attributes.

root DSE

See root directory specific entry (DSE).

root Oracle Context

In the Oracle Identity Management infrastructure, the root Oracle Context is an entry
in Oracle Internet Directory containing a pointer to the default identity management
realm in the infrastructure. It also contains information on how to locate an identity
management realm given a simple name of the realm.

RSA

RSA is a public key cryptography algorithm named after its inventors (Rivest, Shamir,
and Adelman). The RSA algorithm is the most commonly used encryption and
authentication algorithm and is included as part of the Web browsers from Netscape
and Microsoft, and many other products.

RSAES-OAEP

The RSA Encryption Scheme - Optimal Asymmetric Encryption Padding
(RSAES-OAEP) is a public key encryption scheme combining the RSA algorithm with
the OAEP method. Optimal Asymmetric Encryption Padding (OAEP) is a method for
encoding messages developed by Mihir Bellare and Phil Rogaway.

S/MIME

See Secure/Multipurpose Internet Mail Extension (S/MIME).

SAML

See Security Assertions Markup Language (SAML).

SASL

See Simple Authentication and Security Layer (SASL).

scalability

The ability of a system to provide throughput in proportion to, and limited only by,
available hardware resources.

schema

The collection of attributes, object classes, and their corresponding matching rules.

secondary node

In an Oracle Application Server Cold Failover Cluster (Identity Management), the
cluster node to which an application is moved during a failover.

See also: primary node.

Glossary-32

secret key

A secret key is the key used in a symmetric algorithm. Since a secret key is used for
both encryption and decryption, it must be shared between parties that are
transmitting ciphertext to one another but must be kept secret from all unauthorized
entities.

secret key cryptography

See symmetric cryptography.

Secure Hash Algorithm (SHA)

Secure Hash Algorithm (SHA) is a hash function algorithm that produces a 160-bit
message digest based upon the input. The algorithm is used in the Digital Signature
Standard (DSS). With the introduction of the Advanced Encryption Standard (AES)
which offers three key sizes: 128, 192 and 256 bits, there has been a need for a
companion hash algorithm with a similar level of security. The newer SHA-256,
SHA-284 and SHA-512 hash algorithms comply with these enhanced requirements.

Secure Sockets Layer (SSL)

Secure Sockets Layer (SSL) is a protocol designed by Netscape Communications to
enable encrypted, authenticated communications across networks (such as the
Internet). SSL uses the public key encryption system from RSA, which also includes
the use of a digital certificate. SSL provides three elements of secure communications:
confidentiality, authentication, and integrity.

SSL has evolved into Transport Layer Security (TLS). TLS and SSL are not
interoperable. However, a message sent with TLS can be handled by a client that
handles SSL.

Secure/Multipurpose Internet Mail Extension (S/MIME)

Secure/Multipurpose Internet Mail Extension (S/MIME) is an Internet Engineering
Task Force (IETF) standard for securing MIME data through the use of digital
signatures and encryption.

Security Assertions Markup Language (SAML)

Security Assertions Markup Language (SAML) is an XML-based framework for
exchanging security information over the Internet. SAML enables the exchange of
authentication and authorization information between various security services
systems that otherwise would not be able to interoperate. The SAML 1.0 specification
was adopted by OASIS in 2002.

server certificate

A certificate that attests to the identity of an organization that uses a secure Web
server to serve data. A server certificate must be associated with a public/private key
pair issued by a mutually trusted Certificate Authority (CA). Server certificates are
required for secure communications between a browser and a Web server.

service provider

These are organizations recognized by the members of a circle of trust as the entities
that provide Web-based services to users. Service providers enter into partnerships
with other service providers and identity providers with the goal of providing their
common users with secure single sign-on between all parties of the federation.

Glossary-33

service time

The time between the initiation of a request and the completion of the response to the
request.

session key

A secret key that is used for the duration of one message or communication session.

SGA

See System Global Area (SGA).

SHA

See Secure Hash Algorithm (SHA).

shared server

A server that is configured to allow many user processes to share very few server
processes, so the number of users that can be supported is increased. With shared
server configuration, many user processes connect to a dispatcher. The dispatcher
directs multiple incoming network session requests to a common queue. An idle
shared server process from a shared pool of server processes picks up a request from
the queue. This means a small pool of server processes can server a large amount of
clients. Contrast with dedicated server.

sibling

An entry that has the same parent as one or more other entries.

Signed Public Key And Challenge (SPKAC)

Signed Public Key And Challenge (SPKAC) is a proprietary protocol used by the
Netscape Navigator browser to request certificates.

simple authentication

The process by which the client identifies itself to the server by means of a DN and a
password which are not encrypted when sent over the network. In the simple
authentication option, the server verifies that the DN and password sent by the client
match the DN and password stored in the directory.

Simple Authentication and Security Layer (SASL)

A method for adding authentication support to connection-based protocols. To use this
specification, a protocol includes a command for identifying and authenticating a user
to a server and for optionally negotiating a security layer for subsequent protocol
interactions. The command has a required argument identifying a SASL mechanism.

single key-pair wallet

A PKCS#12-format wallet that contains a single user certificate and its associated
private key. The public key is imbedded in the certificate.

single sign-off

The process by which you terminate an OracleAS Single Sign-On session and log out
of all active partner applications simultaneously. You can do this by logging out of the
application that you are working in.

single sign-on (SSO)

A process or system that enables a user to access multiple computer platforms or
application systems after being authenticated only once.

Glossary-34

single sign-on SDK

Legacy APIs to enable OracleAS Single Sign-On partner applications for single
sign-on. The SDK consists of PL/SQL and Java APIs as well as sample code that
demonstrates how these APIs are implemented. This SDK is now deprecated and
mod_osso is used instead.

single sign-on server

Program logic that enables users to log in securely to single sign-on applications such
as expense reports, mail, and benefits.

SLAPD

Standalone LDAP daemon. An LDAP directory server service that is responsible for
most functions of a directory except replication.

slave

See consumer.

smart knowledge reference

A knowledge reference that is returned when the knowledge reference entry is in the
scope of the search. It points the user to the server that stores the requested
information.

SOAP

Simple Object Access Protocol (SOAP) is an XML-based protocol that defines a
framework for passing messages between systems over the Internet via HTTP. A
SOAP message consists of three parts — an envelope that describes the message and
how to process it, a set of encoding rules for expressing instances of
application-defined datatypes, and a convention for representing remote procedure
calls and responses.

specific administrative area

Administrative areas control:

■ Subschema administration

■ Access control administration

■ Collective attribute administration

A specific administrative area controls one of these aspects of administration. A specific
administrative area is part of an autonomous administrative area.

SPKAC

See Signed Public Key And Challenge (SPKAC).

sponsor node

In replication, the node that is used to provide initial data to a new node.

SSL

See Secure Sockets Layer (SSL).

stream cipher

Stream ciphers are a type of symmetric algorithm. A stream cipher encrypts in small
units, often a bit or a byte at a time, and implements some form of feedback

Glossary-35

mechanism so that the key is constantly changing. RC4 is an example of a stream
cipher.

See also: block cipher.

subACLSubentry

A specific type of subentry that contains access control list (ACL) information.

subclass

An object class derived from another object class. The object class from which it is
derived is called its superclass.

subentry

A type of entry containing information applicable to a group of entries in a subtree.
The information can be of these types:

■ Access control policy points

■ Schema rules

■ Collective attributes

Subentries are located immediately below the root of an administrative area.

subordinate CA

In a hierarchical public key infrastructure (PKI), the subordinate Certificate
Authority (CA) is a CA whose certificate signature key is certified by another CA, and
whose activities are constrained by that other CA.

subordinate reference

A knowledge reference pointing downward in the directory information tree (DIT)
to a naming context that starts immediately below an entry

subschema DN

The list of directory information tree (DIT) areas having independent schema
definitions.

subSchemaSubentry

A specific type of subentry containing schema information.

subtree

A section of a directory hierarchy, which is also called a directory information tree
(DIT). The subtree typically starts at a particular directory node and includes all
subdirectories and objects below that node in the directory hierarchy.

subtype

An attribute with one or more options, in contrast to that same attribute without the
options. For example, a commonName (cn) attribute with American English as an
option is a subtype of the commonName (cn) attribute without that option. Conversely,
the commonName (cn) attribute without an option is the supertype of the same
attribute with an option.

success URL

When using Oracle Application Server Single Sign-On, the URL to the routine
responsible for establishing the session and session cookies for an application.

Glossary-36

super user

A special directory administrator who typically has full access to directory
information.

superclass

The object class from which another object class is derived. For example, the object
class person is the superclass of the object class organizationalPerson. The
latter, namely, organizationalPerson, is a subclass of person and inherits the
attributes contained in person.

superior reference

A knowledge reference pointing upward to a directory system agent (DSA) that
holds a naming context higher in the directory information tree (DIT) than all the
naming contexts held by the referencing DSA.

supertype

An attribute without options, in contrast to the same attribute with one or more
options. For example, the commonName (cn) attribute without an option is the
supertype of the same attribute with an option. Conversely, a commonName (cn)
attribute with American English as an option is a subtype of the commonName (cn)
attribute without that option.

supplier

In replication, the server that holds the master copy of the naming context. It supplies
updates from the master copy to the consumer server.

symmetric algorithm

A symmetric algorithm is a cryptographic algorithm that uses the same key for
encryption and decryption. There are essentially two types of symmetric (or secret
key) algorithms — stream ciphers and block ciphers.

symmetric cryptography

Symmetric cryptography (or shared secret cryptography) systems use the same key to
encipher and decipher data. The problem with symmetric cryptography is ensuring a
secure method by which the sender and recipient can agree on the secret key. If a third
party were to intercept the secret key in transit, they could then use it to decipher
anything it was used to encipher. Symmetric cryptography is usually faster than
asymmetric cryptography, and is often used when large quantities of data need to be
exchanged. DES, RC2, and RC4 are examples of symmetric cryptography algorithms.

symmetric key

See secret key.

System Global Area (SGA)

A group of shared memory structures that contain data and control information for
one Oracle database instance. If multiple users are concurrently connected to the same
instance, the data in the instance SGA is shared among the users. Consequently, the
SGA is sometimes referred to as the "shared global area." The combination of the
background processes and memory buffers is called an Oracle instance.

system operational attribute

An attribute holding information that pertains to the operation of the directory itself.
Some operational information is specified by the directory to control the server, for

Glossary-37

example, the time stamp for an entry. Other operational information, such as access
information, is defined by administrators and is used by the directory program in its
processing.

think time

The time the user is not engaged in actual use of the processor.

third-party access management system

Non-Oracle single sign-on system that can be modified to use OracleAS Single
Sign-On to gain access to Oracle Application Server applications.

throughput

The number of requests processed byOracle Internet Directory for each unit of time.
This is typically represented as "operations per second."

Time Stamp Protocol (TSP)

Time Stamp Protocol (TSP), as specified in RFC 3161, defines the participating entities,
the message formats, and the transport protocol involved in time stamping a digital
message. In a TSP system, a trusted third-party Time Stamp Authority (TSA) issues
time stamps for messages.

TLS

See Transport Layer Security (TLS).

Transport Layer Security (TLS)

A protocol providing communications privacy over the Internet. The protocol enables
client/server applications to communicate in a way that prevents eavesdropping,
tampering, or message forgery.

Triple Data Encryption Standard (3DES)

Triple Data Encryption Standard (3DES) is based on the Data Encryption Standard
(DES) algorithm developed by IBM in 1974, and was adopted as a national standard in
1977. 3DES uses three 64-bit long keys (overall key length is 192 bits, although actual
key length is 56 bits). Data is encrypted with the first key, decrypted with the second
key, and finally encrypted again with the third key. This makes 3DES three times
slower than standard DES but also three times more secure.

trusted certificate

A third party identity that is qualified with a level of trust. The trust is used when an
identity is being validated as the entity it claims to be. Typically, trusted certificates
come from a Certificate Authority (CA) you trust to issue user certificates.

trustpoint

See trusted certificate.

TSP

See Time Stamp Protocol (TSP).

Unicode

A type of universal character set, a collection of 64K characters encoded in a 16-bit
space. It encodes nearly every character in just about every existing character set
standard, covering most written scripts used in the world. It is owned and defined by
Unicode Inc. Unicode is canonical encoding which means its value can be passed

Glossary-38

around in different locales. But it does not guarantee a round-trip conversion between
it and every Oracle character set without information loss.

UNIX Crypt

The UNIX encryption algorithm.

URI

Uniform Resource Identifier (URI). A way to identify any point of content on the Web,
whether it be a page of text, a video or sound clip, a still or animated image, or a
program. The most common form of URI is the Web page address, which is a
particular form or subset of URI called a URL.

URL

Uniform Resource Locator (URL). The address of a file accessible on the Internet. The
file can be a text file, HTML page, image file, a program, or any other file supported by
HTTP. The URL contains the name of the protocol required to access the resource, a
domain name that identifies a specific computer on the Internet, and a hierarchical
description of the file location on the computer.

URLC token

The OracleAS Single Sign-On code that passes authenticated user information to the
partner application. The partner application uses this information to construct the
session cookie.

user name mapping module

A OracleAS Single Sign-On Java module that maps a user certificate to the user's
nickname. The nickname is then passed to an authentication module, which uses this
nickname to retrieve the user's certificate from the directory.

user search base

In the Oracle Internet Directory default directory information tree (DIT), the node in
the identity management realm under which all the users are placed.

UTC (Coordinated Universal Time)

The standard time common to every place in the world. Formerly and still widely
called Greenwich Mean Time (GMT) and also World Time, UTC nominally reflects the
mean solar time along the Earth's prime meridian. UTC is indicated by a z at the end
of the value, for example, 200011281010z.

UTF-8

A variable-width 8-bit encoding of Unicode that uses sequences of 1, 2, 3, or 4 bytes
for each character. Characters from 0-127 (the 7-bit ASCII characters) are encoded with
one byte, characters from 128-2047 require two bytes, characters from 2048-65535
require three bytes, and characters beyond 65535 require four bytes. The Oracle
character set name for this is AL32UTF8 (for the Unicode 3.1 standard).

UTF-16

16-bit encoding of Unicode.The Latin-1 characters are the first 256 code points in this
standard.

verification

Verification is the process of ensuring that a given digital signature is valid, given the
public key that corresponds to the private key purported to create the signature and
the data block to which the signature purportedly applies.

Glossary-39

virtual host

A single physical Web server machine that is hosting one or more Web sites or
domains, or a server that is acting as a proxy to other machines (accepts incoming
requests and reroutes them to the appropriate server).

In the case of OracleAS Single Sign-On, virtual hosts are used for load balancing
between two or more OracleAS Single Sign-On servers. They also provide an extra
layer of security.

virtual host name

In an Oracle Application Server Cold Failover Cluster (Identity Management), the host
name corresponding to a particular virtual IP address.

virtual IP address

In an Oracle Application Server Cold Failover Cluster (Identity Management), each
physical node has its own physical IP address and physical host name. To present a
single system image to the outside world, the cluster uses a dynamic IP address that
can be moved to any physical node in the cluster. This is called the virtual IP address.

wait time

The time between the submission of the request and initiation of the response.

wallet

An abstraction used to store and manage security credentials for an individual entity.
It implements the storage and retrieval of credentials for use with various
cryptographic services. A wallet resource locator (WRL) provides all the necessary
information to locate the wallet.

Wallet Manager

See Oracle Wallet Manager.

Web service

A Web service is application or business logic that is accessible using standard Internet
protocols, such as HTTP, XML, and SOAP. Web Services combine the best aspects of
component-based development and the World Wide Web. Like components, Web
Services represent black-box functionality that can be used and reused without regard
to how the service is implemented.

Web Services Description Language (WSDL)

Web Services Description Language (WSDL) is the standard format for describing a
Web service using XML. A WSDL definition describes how to access a Web service and
what operations it will perform.

WSDL

See Web Services Description Language (WSDL).

WS-Federation

Web Services Federation Language (WS-Federation) is a specification developed by
Microsoft, IBM, BEA, VeriSign, and RSA Security. It defines mechanisms to allow
federation between entities using different or like mechanisms by allowing and
brokering trust of identities, attributes, and authentication between participating Web
services.

See also: Liberty Alliance.

Glossary-40

X.500

X.500 is a standard from the International Telecommunication Union (ITU) that defines
how global directories should be structured. X.500 directories are hierarchical with
different levels for each category of information, such as country, state, and city.

X.509

X.509 is the most widely used standard for defining digital certificates. A standard
from the International Telecommunication Union (ITU), for hierarchical directories
with authentication services, used in many public key infrastructure (PKI)
implementations.

XML

Extensible Markup Language (XML) is a specification developed by the World Wide
Web Consortium (W3C). XML is a pared-down version of Standard Generalized
Mark-Up Language (SGML), designed especially for Web documents. XML is a
metalanguage (a way to define tag sets) that allows developers to define their own
customized markup language for many classes of documents.

XML canonicalization (C14N)

This is a process by which two logically equivalent XML documents can be resolved to
the same physical representation. This has significance for digital signatures because a
signature can only verify against the same physical representation of the data against
which it was originally computed. For more information, see the W3C's XML
Canonicalization specification.

Index-1

Index

A
abandoning an operation, 14-29
access control, 2-4, 2-5

and authorization, 2-5
access control information (ACI), 2-6

attributes, 2-5
directives

format, 2-6
Access Control List (ACL), 2-5
access control lists (ACLs), 2-5
ACI. See access control information (ACI)
ACLs. See Access Control List (ACL)
anonymous authentication, 2-5
application context

provisioning plug-ins, A-10
application login, 9-11
application logout, 9-11
application session cookie

clearing, 9-9
coding for, 9-9

applications, building
with the C API, 14-44

attributes
types, 2-3
values, 2-3

authentication, 2-4
anonymous, 2-5
certificate-based, 2-5
modes, SSL, 14-1, 14-2
one-way SSL, 2-5
options, 2-4
password-based, 2-5
SSL, 2-5, 14-1

none, 14-2
one-way, 14-2
two-way, 14-2

strong, 2-5
to a directory server

enabling, 2-10
enabling, by using DBMS_LDAP, 2-11
enabling, by using the C API, 2-10

to the directory, 14-10
two-way SSL, 2-5

authentication, simple, 9-6
authorization, 2-4, 2-5

authorization ID, 2-4

B
bulk tools, 1-10

C
C API

functions
abandon, 14-29
abandon_ext, 14-29
add, 14-25
add_ext_s, 14-25
add_s, 14-25
compare, 14-20
compare_ext, 14-20
compare_ext_s, 14-20
compare_s, 14-20
count_entries, 14-35
count_references, 14-35
count_values, 14-37
count_values_len, 14-37
delete, 14-26
delete_ext, 14-26
delete_ext_s, 14-26
delete_s, 14-26
dn2ufn, 14-38
err2string, 14-32
explode_dn, 14-38
explode_rdn, 14-38
extended_operation, 14-28
extended_operation_s, 14-28
first_attribute, 14-36
first_entry, 14-35
first_message, 14-34
first_reference, 14-35
get_dn, 14-38
get_entry_controls, 14-39
get_option, 14-6
get_values, 14-37
get_values_len, 14-37
init_ssl call, 14-2
modify, 14-21
modify_ext, 14-21
modify_ext_s, 14-21

Index-2

modify_s, 14-21
msgid, 14-30
msgtype, 14-30
next_attribute, 14-36
next_entry, 14-35
next_message, 14-34
next_reference, 14-35
parse_extended_result, 14-32
parse_reference, 14-39
parse_result, 14-32
parse_sasl_bind_result, 14-32
rename, 14-23
rename_s, 14-23
result, 14-30
sasl_bind, 14-10
sasl_bind_s, 14-10
search_st, 14-17
set_option, 14-6
simple_bind, 14-10
simple_bind_s, 14-10
unbind_ext, 14-16
unbind_s, 14-16
value_free, 14-37
value_free_len, 14-37

sample usage, 14-40
summary, 14-3
usage with SSL, 14-40
usage without SSL, 14-41

certificate authority, 2-5
certificate-based authentication, 2-5
certificates, 2-5
children of an entry, listing, 14-20
code examples

application login, 9-11
authentication, 9-6, 9-7
forced authentication, 9-11
single sign-off, 9-7, 9-8

components
Oracle Internet Directory SDK, 1-4

CONNECT_BY control, 3-9
controls, working with, 3-7, 3-8, 14-14

D
DAP Information Model, 2-3
DAS units, 8-1
DAS URL Parameter Descriptions, 18-5
DAS URL Parameters, 8-3
DAS URL parameters, 18-2
data

integrity, 2-4, 2-6
privacy, 2-4, 2-6

data-type summary, 15-5
DBMS_LDAP package

searching by using, 2-11
DBMS_LDAP_UTL

data-types, 17-34
function return codes, 17-32
group-related subprograms

about, 17-2

function create_group_handle, 17-14
function get_group_dn, 17-17
function get_group_properties, 17-16
function set_group_handle_properties, 17-15

miscellaneous subprograms
about, 17-2
function check_interface_version, 17-30
function create_mod_propertyset, 17-28
function get_property_names, 17-24
function get_property_values, 17-25
function get_property_values_len, 17-26
function normalize_dn_with_case, 17-24
function populate_mod_propertyset, 17-29
procedure free_handle, 17-30
procedure free_mod_propertyset, 17-29
procedure free_propertyset_collection, 17-27

subscriber-related subprograms
about, 17-2
function create_subscriber_handle, 17-19
function get_subscriber_dn, 17-21
function get_subscriber_properties, 17-19

user-related subprograms
about, 17-1
function authenticate_user, 17-3
function check_group_membership, 17-11
function create_user_handle, 17-5
function get_group_membership, 17-13
function get_user_dn, 17-10
function get_user_extended_properties, 17-9
function get_user_properties, 17-6
function locate_subscriber_for_user, 17-12
function set_user_handle_properties, 17-5
function set_user_properties, 17-7

DBMS_LDAP_UTL PL/SQL Reference, 17-1
dependencies and limitations, 14-45

C API, 14-45
DES40 encryption, 2-6
directives, 2-6
Directory Information Tree, 2-2
directory information tree (DIT), 2-2
directory operations

provisioning plug-ins, A-10
directory server discovery, 4-4
distinguished names, 2-2

components of, 2-2
format, 2-2

DNs. see distinguished names.
documentation, related, 5-xxiv
dynamic directives

common types, 9-3
defined, 9-2, 9-3
programming languages supported, 9-3

dynamic password verifiers
controls, 3-7, 3-8
creating, 3-7 to 3-9
parameters, 3-7

E
encryption

Index-3

DES40, 2-6
levels available in Oracle Internet Directory, 2-6
RC4_40, 2-6

entries
distinguished names of, 2-2
locating by using distinguished names
naming, 2-2
reading, 14-19

errors
handling and parsing results, 14-32

exception summary, 15-3

F
filters, 2-14
forced authentication, 9-11
formats, of distinguished names, 2-2

G
GET authentication method, 9-8
global user inactivity timeout, 9-8

H
header files and libraries, required, 14-44
hierarchical search, 3-9
history of LDAP, 2-1
HTTP headers, 9-1

I
integrity, data, 2-6
interface calls, SSL, 14-2

J
J2EE security APIs, 10-1
JAAS policy management APIs, 10-4
Java, 1-4, 2-8
Java API reference

class descriptions
Property class, 5-2
PropertySet class, 5-2
PropertySetCollection class, 5-2

Java APIs for Oracle Internet Directory, 16-1
Java partner applications

dynamically protected, 9-6
statically protected, 9-6

Java partner applications, statically protected, 9-5
Java plug-in

setting up, 13-1
Java plug-in API, 13-2 to 13-12
JAZN

see Oracle Application Server Java Authentication
and Authorization Service

JNDI, 1-4, 2-8
JNDI location, 16-1

L
LDAP

functional model, 2-3
history, 2-1
information model, 2-3
messages, obtaining results and peeking

inside, 14-30
naming model, 2-2
operations, performing, 14-16
security model, 2-4
session handle options, 14-6

in the C API, 2-10
sessions

initializing, 2-8
version 2 C API, 14-1

LDAP APIs, 1-6
LDAP Functional Model, 2-3
LDAP Models, 2-2

LDAP Naming Model, 2-2
LDAP Security Model, 2-4
ldapadd

plug-in support, 12-15 to 12-17
ldap-bind operation, 2-4
ldapcompare

plug-in support, 12-17 to 12-20
ldapmodify

plug-in support, 12-13 to 12-15
login name

finding, 5-5

M
mod_osso, 9-11

benefits, 9-1
compared with single sign-on SDK, 9-1
definition, 9-1
integration methods, 9-2
sample applications, 9-3

mod_osso cookie, 9-9
modules

mod_osso, 9-11

N
naming entries, 2-2

O
OC4J security APIs, 10-2
one-way SSL authentication, 2-5, 14-2
OpenLDAP Community, 5-xxiv
operational attributes

ACI, 2-5
Oracle Application Server Java Authentication and

Authorization Service
defined, 1-2

Oracle Directory Manager, 1-9
Oracle directory replication server, 1-9
Oracle directory server, 1-9
Oracle extensions

Index-4

application
deinstallation logic, 1-6
runtime logic, 1-6
shutdown logic, 1-6
startup and bootstrap logic, 1-5

group management functionality, 4-3
programming abstractions

for Java language, 5-1, 6-1
for PL/SQL language, 6-1

programming abstractions for Java language, 5-1,
6-1

user management functionality, 5-1, 6-1
Oracle extensions to support SSL, 14-1
Oracle Identity Management

infrastructure
modifying existing applications, 1-2

integrating
new applications, 1-3

integrating applications with, 1-1
benefits of, 1-1
supported services, 1-2

Oracle Internet Directory, components, 1-9
Oracle SSL call interface, 14-1
Oracle SSL extensions, 14-1
Oracle SSL-related libraries, 14-45
Oracle system libraries, 14-45
Oracle wallet, 14-2
Oracle Wallet Manager, 14-2

required for creating wallets, 14-45
Oracle xxtensions

what an LDAP-integrated application looks
like, 1-4

OracleAS Single Sign-On
user attributes, 9-1

overview of LDAP models, 2-2

P
password-based authentication, 2-5
passwords

policies, 2-6
permissions, 2-4, 2-5
PL, 12-1
PL/SQL API, 15-1

contains subset of C API, 2-8
data-type summary, 15-5
exception summary, 15-3
functions

add_s, 15-30
ber_free, 15-37
bind_s, 15-7
compare_s, 15-9
count_entries, 15-15
count_values, 15-32
count_values_len, 15-32
create_mod_array, 15-24
dbms_ldap.init, 15-6
delete_s, 15-21
err2string, 15-23
explode_dn, 15-34

first_attribute, 15-16
first_entry, 15-13
get_dn, 15-18
get_values, 15-19
get_values_len, 15-20
init, 15-5
modify_s, 15-29
modrdn2_s, 15-22
msgfree, 15-36
next_attribute, 15-17
next_entry, 15-14
open_ssl, 15-35, 15-36, 15-37
rename_s, 15-33
search_s, 15-10
search_st, 15-12
simple_bind_s, 15-6
unbind_s, 15-8

loading into database, 2-8
procedures

free_mod_array, 15-31
populate_mod_array (binary version), 15-25
populate_mod_array (string version), 15-25

subprograms, 15-5
summary, 15-1

plug-ins
PL/SQL

binary support, 12-13 to 12-20
provisioning interface, A-1

policy management APIs, 10-4
POST authentication method, 9-8
privacy, data, 2-4, 2-6
privileges, 2-4, 2-5
procedures, PL/SQL

free_mod_array, 15-31
populate_mod_array (binary version), 15-25
populate_mod_array (string version), 15-25

provisioning interface plug-ins, A-1
provisioning plug-ins

directory operations, A-10
getting application context, A-10

R
RC4_40 encryption, 2-6
RDNs. see relative distinguished names (RDNs)
related documentation, 5-xxiv
relative distinguished names (RDNs), 2-2
results, stepping through a list of, 14-34
RFC 1823, 14-45

S
sample C API usage, 14-40
SDK components, 1-4
search

hierarchical, 3-9
results

parsing, 14-35
scope, 2-13

search-related operations, flow of, 2-12

Index-5

security APIs, 10-1, 10-2
security, within Oracle Internet Directory

environment, 2-4
self-service console, 8-2
service location record, 4-4
servlets

dynamically protected, 9-6
statically protected, 9-5, 9-6

sessions
closing, 14-16
enabling termination by using DBMS_

LDAP, 2-17
initializing

by using DBMS_LDAP, 2-9
by using the C API, 2-8

session-specific user identity, 2-4
simple authentication, 2-5
single sign-off, 9-7, 9-8
single sign-on SDK

compared with mod_osso, 9-1
Smith, Mark, 5-xxiv
SSL

authentication modes, 14-1
default port, 2-5
handshake, 14-2
interface calls, 14-2
no authentication, 2-5
one-way authentication, 2-5
Oracle extensions, 14-1

provide encryption and decryption, 14-1
two-way authentication, 2-5
wallets, 14-2

SSO login name
finding, 5-5

static directives
defined, 9-2
writing, 9-2

strong authentication, 2-5

T
TCP/IP socket library, 14-45
two-way authentication, SSL, 14-2
types of attributes, 2-3

U
URLs, protecting, 9-2, 9-3
user attributes, 9-1, 9-2

W
wallets

SSL, 14-2
support, 14-2

Index-6

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in the SDK?
	New Features in the 10g (10.1.4.0.1) SDK
	New Features in the Release 10.1.2 SDK
	New Features in the Release 9.0.4 SDK

	Part I Programming for Oracle Identity Management
	1 Developing Applications for Oracle Identity Management
	Benefits of Integrating with Oracle Identity Management
	Oracle Identity Management Services Available for Application Integration
	Integrating Existing Applications with Oracle Identity Management
	Integrating New Applications with Oracle Identity Management
	Oracle Internet Directory Programming: An Overview
	Programming Languages Supported by the Oracle Internet Directory SDK
	Oracle Internet Directory SDK Components
	Application Development in the Oracle Internet Directory Environment
	Architecture of a Directory-Enabled Application
	Oracle Internet Directory Interactions During the Application Life Cycle
	Services and APIs for Integrating Applications with Oracle Internet Directory
	Integrating Existing Applications with Oracle Internet Directory
	Integrating New Applications with Oracle Internet Directory

	Other Components of Oracle Internet Directory

	2 Developing Applications with Standard LDAP APIs
	Sample Code
	History of LDAP
	LDAP Models
	Naming Model
	Information Model
	Functional Model
	Security Model
	Authentication
	Anonymous Authentication
	Simple Authentication
	Authentication Using Secure Sockets Layer (SSL)

	Access Control and Authorization
	Data Integrity
	Data Privacy
	Password Policies

	About the Standard LDAP APIs
	API Usage Model
	Getting Started with the C API
	Getting Started with the DBMS_LDAP Package
	Getting Started with the Java API

	Initializing an LDAP Session
	Initializing the Session by Using the C API
	Initializing the Session by Using DBMS_LDAP
	Initializing the Session by Using JNDI

	Authenticating an LDAP Session
	Authenticating an LDAP Session by Using the C API
	Authenticating an LDAP Session by Using DBMS_LDAP

	Searching the Directory
	Program Flow for Search Operations
	Search Scope
	Filters
	Searching the Directory by Using the C API
	Searching the Directory by Using DBMS_LDAP

	Terminating the Session
	Terminating the Session by Using the C API
	Terminating the Session by Using DBMS_LDAP

	3 Extensions to the LDAP Protocol
	SASL Authentication
	SASL Authentication by Using DIGEST-MD5
	Steps Involved in SASL Authentication by Using DIGEST-MD5

	SASL Authentication by Using External Mechanism

	Using Controls
	Proxying on Behalf of End Users
	Creating Dynamic Password Verifiers
	Request Control for Dynamic Password Verifiers
	Syntax for DynamicVerifierRequestControl
	Parameters Required by the Hashing Algorithms
	Configuring the Authentication APIs
	Parameters Passed If ldap_search Is Used
	Parameters Passed If ldap_compare Is Used

	Response Control for Dynamic Password Verifiers
	Obtaining Privileges for the Dynamic Verifier Framework

	Performing Hierarchical Searches
	New Features of the CONNECT_BY Control
	Value Fields in the CONNECT_BY Control

	Sorted LDAP Search Results
	Paged LDAP Search Results

	4 Developing Applications With Oracle Extensions to the Standard APIs
	Sample Code
	Using Oracle Extensions to the Standard APIs
	Creating an Application Identity in the Directory
	Creating an Application Identity
	Assigning Privileges to an Application Identity

	Managing Users
	Managing Groups
	Managing Realms
	Discovering a Directory Server
	Benefits of Oracle Internet Directory Discovery Interfaces
	Usage Model for Discovery Interfaces
	Determining Server Name and Port Number From DNS
	Mapping the DN of the Naming Context
	Search by Domain Component of Local Machine
	Search by Default SRV Record in DNS

	Environment Variables for DNS Server Discovery
	Programming Interfaces for DNS Server Discovery

	5 Using the Java API Extensions to JNDI
	Sample Code
	Installing the Java Extensions
	Using the oracle.java.util Package to Model LDAP Objects
	The Classes PropertySetCollection, PropertySet, and Property
	Managing Users
	Authenticating Users
	Creating Users
	Retrieving User Objects
	Retrieving Objects from Realms
	Example: Search for OracleAS Single Sign-On Login Name
	Discovering a Directory Server
	Example: Discovering a Directory Server
	Using DIGEST-MD5 to Perform SASL Authentication
	Example: Using SASL Digest-MD5 auth-int and auth-conf Modes

	6 Using the API Extensions in PL/SQL
	Sample Code
	Installing the PL/SQL Extensions
	Using Handles to Access Directory Data
	Managing Users
	Authenticating Users
	Dependencies and Limitations of the PL/SQL LDAP API

	7 Developing Provisioning-Integrated Applications
	8 Integrating with Oracle Delegated Administration Services
	What Is Oracle Delegated Administration Services?
	How Applications Benefit from Oracle Delegated Administration Services

	Integrating Applications with the Delegated Administration Services
	Integration Profile
	Integration Methodology and Considerations

	Java APIs Used to Access URLs

	9 Developing Applications for Single Sign-On
	What Is mod_osso?
	Protecting Applications Using mod_osso: Two Methods
	Protecting URLs Statically
	Protecting URLs with Dynamic Directives

	Developing Applications Using mod_osso
	Developing Statically Protected PL/SQL Applications
	Developing Statically Protected Java Applications
	Developing Java Applications That Use Dynamic Directives
	Java Example #1: Simple Authentication
	Java Example #2: Single Sign-Off

	A Word About Non-GET Authentication
	Global Inactivity Timeout and Dynamic Directives

	Security Issues
	Single Sign-Off and Application Logout
	Application Login: Code Examples
	Application Logout: Recommended Code

	Secure Transmission of mod_osso Cookies

	Forced Authentication

	10 Integrating J2EE Applications and Oracle Internet Directory
	Standard J2EE Security APIs
	OC4J Security APIs
	JAAS Policy Management APIs
	JAAS Policy Management
	Retrieving User Policies and Permissions using Standard JAAS APIs

	Part II Server Plug-ins
	11 Developing Plug-ins for the Oracle Internet Directory Server
	What is a Server Plug-in?
	Supported Languages for Server Plug-ins
	Server Plug-in Prerequisites
	Server Plug-in Benefits
	Guidelines for Designing Plug-ins
	What Is the Server Plug-in Framework?
	LDAP Operations and Timings Supported by the Directory
	Pre-Operation Server Plug-ins
	Post-Operation Server Plug-ins
	When-Operation Server Plug-ins
	When_Replace-Operation Server Plug-ins

	Registering a Plug-in
	Plug-in Configuration Entry
	Adding a Plug-in Configuration Entry by Using Command-Line Tools

	Managing Plug-ins by Using Oracle Directory Manager
	Registering a Plug-in by Using Oracle Directory Manager
	Editing a Plug-in by Using Oracle Directory Manager
	Deleting a Plug-in by Using Oracle Directory Manager

	12 PL/SQL Server Plug-ins
	Designing, Creating, and Using PL/SQL Server Plug-ins
	PL/SQLPlug-in Caveats
	Types of PL/SQL Plug-in Operations
	Naming PL/SQL Plug-ins

	Creating PL/SQLPlug-ins
	Package Specifications for Plug-in Module Interfaces

	Compiling PL/SQLPlug-ins
	Dependencies
	Recompiling Plug-ins

	Managing PL/SQL Plug-ins
	Modifying Plug-ins
	Debugging Plug-ins

	Enabling and Disabling PL/SQL Plug-ins
	Exception Handling in a PL/SQL Plug-in
	Error Handling
	Program Control Handling between Oracle Internet Directory and Plug-ins

	PL/SQL Plug-in LDAP API
	PL/SQL Plug-ins and Replication
	PL/SQL Plug-in and Database Tools
	PL/SQL Plug-in Security
	PL/SQL Plug-in Debugging
	PL/SQL Plug-in LDAP API Specifications
	Database Limitations

	Examples of PL/SQL Plug-ins
	Example 1: Search Query Logging
	Example 2: Synchronizing Two DITs

	Binary Support in the PL/SQLPlug-in Framework
	Binary Operations with ldapmodify
	Binary Operations with ldapadd
	Binary Operations with ldapcompare

	Database Object Types Defined
	Specifications for PL/SQL Plug-in Procedures

	13 Java Server Plug-ins
	Advantages of Java Plug-ins
	Setting Up a Java Plug-in
	Java Plug-in API
	Communication Between the Server and Plug-in
	Java Plug-in Structure
	PluginDetail
	Server
	LdapBaseEntry
	LdapOperation
	AddLdapOperation
	BindLdapOperation
	CompareLdapOperation
	DeleteLdapOperation
	ModdnLdapOperation
	ModifyLdapOperation
	SearchLdapOperation

	PluginFlexfield

	PluginResult
	ServerPlugin Interface
	ServerPlugin Methods for Ldapbind
	ServerPlugin Methods for Ldapcompare
	ServerPlugin Methods for Ldapadd
	ServerPlugin Methods for Ldapmodify
	ServerPlugin Methods for Ldapmoddn
	ServerPlugin Methods for Ldapsearch
	ServerPlugin Methods for Ldapdelete

	Java Plug-in Error and Exception Handling
	Runtime Exception Example
	Runtime Error Example
	PluginException Example

	Java Plug-in Debugging and Logging
	Java Plug-in Examples
	Example 1: Password Validation Plug-in
	Password Validation Plug-in Configuration Entry
	Password Validation Plug-in Code Example

	Example 2: External Authentication Plug-in for Active Directory
	External Authentication Plug-in Configuration Entry
	External Authentication Plug-in Code

	Part III Oracle Internet Directory Programming Reference
	14 C API Reference
	About the Oracle Internet Directory C API
	Oracle Internet Directory SDK C API SSL Extensions
	SSL Interface Calls
	Wallet Support

	Functions in the C API
	The Functions at a Glance
	Initializing an LDAP Session
	ldap_init and ldap_open

	LDAP Session Handle Options
	ldap_get_option and ldap_set_option

	Authenticating to the Directory
	ldap_sasl_bind, ldap_sasl_bind_s, ldap_simple_bind, and ldap_simple_bind_s

	SASL Authentication Using Oracle Extensions
	ora_ldap_init_SASL
	ora_ldap_create_cred_hdl, ora_ldap_set_cred_props, ora_ldap_get_cred_props, and ora_ldap_free_cred_hdl

	Working With Controls
	Closing the Session
	ldap_unbind, ldap_unbind_ext, and ldap_unbind_s

	Performing LDAP Operations
	ldap_search_ext, ldap_search_ext_s, ldap_search, and ldap_search_s
	Reading an Entry
	Listing the Children of an Entry
	ldap_compare_ext, ldap_compare_ext_s, ldap_compare, and ldap_compare_s
	ldap_modify_ext, ldap_modify_ext_s, ldap_modify, and ldap_modify_s
	ldap_rename and ldap_rename_s
	ldap_add_ext, ldap_add_ext_s, ldap_add, and ldap_add_s
	ldap_delete_ext, ldap_delete_ext_s, ldap_delete, and ldap_delete_s
	ldap_extended_operation and ldap_extended_operation_s

	Abandoning an Operation
	ldap_abandon_ext and ldap_abandon

	Obtaining Results and Peeking Inside LDAP Messages
	ldap_result, ldap_msgtype, and ldap_msgid

	Handling Errors and Parsing Results
	ldap_parse_result, ldap_parse_sasl_bind_result, ldap_parse_extended_result, and ldap_err2string

	Stepping Through a List of Results
	ldap_first_message and ldap_next_message

	Parsing Search Results
	ldap_first_entry, ldap_next_entry, ldap_first_reference, ldap_next_reference, ldap_ count_entries, and ldap_count_references
	ldap_first_attribute and ldap_next_attribute
	ldap_get_values, ldap_get_values_len, ldap_count_values, ldap_count_values_len, ldap_value_free, and ldap_value_free_len
	ldap_get_dn, ldap_explode_dn, ldap_explode_rdn, and ldap_dn2ufn
	ldap_get_entry_controls
	ldap_parse_reference

	Sample C API Usage
	C API Usage with SSL
	C API Usage Without SSL
	C API Usage for SASL-Based DIGEST-MD5 Authentication

	Required Header Files and Libraries for the C API
	Dependencies and Limitations of the C API

	15 DBMS_LDAP PL/SQL Reference
	Summary of Subprograms
	Exception Summary
	Data Type Summary
	Subprograms
	FUNCTION init
	FUNCTION simple_bind_s
	FUNCTION bind_s
	FUNCTION unbind_s
	FUNCTION compare_s
	FUNCTION search_s
	FUNCTION search_st
	FUNCTION first_entry
	FUNCTION next_entry
	FUNCTION count_entries
	FUNCTION first_attribute
	FUNCTION next_attribute
	FUNCTION get_dn
	FUNCTION get_values
	FUNCTION get_values_len
	FUNCTION delete_s
	FUNCTION modrdn2_s
	FUNCTION err2string
	FUNCTION create_mod_array
	PROCEDURE populate_mod_array (String Version)
	PROCEDURE populate_mod_array (Binary Version)
	PROCEDURE populate_mod_array (Binary Version. Uses BLOB Data Type)
	FUNCTION get_values_blob
	FUNCTION count_values_blob
	FUNCTION value_free_blob
	FUNCTION modify_s
	FUNCTION add_s
	PROCEDURE free_mod_array
	FUNCTION count_values
	FUNCTION count_values_len
	FUNCTION rename_s
	FUNCTION explode_dn
	FUNCTION open_ssl
	FUNCTION msgfree
	FUNCTION ber_free
	FUNCTION nls_convert_to_utf8
	FUNCTION nls_convert_to_utf8
	FUNCTION nls_convert_from_utf8
	FUNCTION nls_convert_from_utf8
	FUNCTION nls_get_dbcharset_name

	16 Java API Reference
	17 DBMS_LDAP_UTL PL/SQL Reference
	Summary of Subprograms
	Subprograms
	User-Related Subprograms
	Function authenticate_user
	Function create_user_handle
	Function set_user_handle_properties
	Function get_user_properties
	Function set_user_properties
	Function get_user_extended_properties
	Function get_user_dn
	Function check_group_membership
	Function locate_subscriber_for_user
	Function get_group_membership

	Group-Related Subprograms
	Function create_group_handle
	Function set_group_handle_properties
	Function get_group_properties
	Function get_group_dn

	Subscriber-Related Subprograms
	Function create_subscriber_handle
	Function get_subscriber_properties
	Function get_subscriber_dn
	Function get_subscriber_ext_properties

	Property-Related Subprograms
	Miscellaneous Subprograms
	Function normalize_dn_with_case
	Function get_property_names
	Function get_property_values
	Function get_property_values_len
	Procedure free_propertyset_collection
	Function create_mod_propertyset
	Function populate_mod_propertyset
	Procedure free_mod_propertyset
	Procedure free_handle
	Function check_interface_version
	Function get_property_values_blob
	Procedure property_value_free_blob

	Function Return Code Summary
	Data Type Summary

	18 DAS_URL Interface Reference
	Directory Entries for the Service Units
	Service Units and Corresponding URL Parameters
	DAS URL API Parameter Descriptions
	Search-and-Select Service Units for Users or Groups
	Invoking Search-and-Select Service Units for Users or Groups
	Receiving Data from the User or Group Search-and-Select Service Units

	19 Oracle Directory Integration Platform User Provisioning Java API Reference
	Application Configuration
	Application Registration and Provisioning Configuration
	Application Registration
	Provisioning Configuration
	Application Identity Information
	Application Identity Realm Information
	Application Provisioning and Default Policy
	Application User Data Location
	Event Interface Configuration
	Application User Attribute and Defaults Configuration
	Application Provisioning Plug-in Configuration
	Application Propagation Configuration
	Application Event Propagation Run Time Status

	Application Configuration Classes

	User Management
	Creating a User
	Modifying a User
	Deleting a User
	Looking Up a User

	Debugging
	Sample Code

	20 Oracle Directory Integration Platform PL/SQL API Reference
	Versioning of Provisioning Files and Interfaces
	Extensible Event Definition Configuration
	Inbound and Outbound Events
	PL/SQL Bidirectional Interface (Version 3.0)
	PL/SQL Bidirectional Interface (Version 2.0)
	Provisioning Event Interface (Version 1.1)
	Predefined Event Types
	Attribute Type
	Attribute Modification Type
	Event Dispositions Constants
	Callbacks
	GetAppEvent()
	PutAppEventStatus()
	PutOIDEvent()

	Part IV Appendixes
	A Java Plug-ins for User Provisioning
	Provisioning Plug-in Types and Their Purpose
	Provisioning Plug-in Requirements
	Data Entry Provisioning Plug-in
	Pre-Data-Entry Provisioning Plug-in
	Post-Data-Entry Provisioning Plug-in

	Data Access Provisioning Plug-in
	Event Delivery Provisioning Plug-in
	Provisioning Plug-in Return Status
	Configuration Template for Provisioning Plug-ins
	Sample Code for a Provisioning Plug-in

	B DSML Syntax
	Capabilities of DSML
	Benefits of DSML
	DSML Syntax
	Top-Level Structure
	Directory Entries
	Schema Entries

	Tools Enabled for DSML

	C Migrating from Netscape LDAP SDK API to Oracle LDAP SDK API
	Features
	Functions
	Macros

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

