

Oracle® OLAP
Application Developer's Guide,

10g Release 2 (10.2)

B14349-05

February 2012

Oracle OLAP Application Developer's Guide, 10g Release 2 (10.2)

B14349-05

Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents ... xi
Conventions .. xii

What's New in Oracle OLAP Applications Development?... xiii

Oracle Database 10g Release 10.2.0.3 Oracle OLAP... xiii
Oracle Database 10g Release 10.2 Oracle OLAP ... xiii
Oracle Database 10g Release 10.1.0.4 Oracle OLAP ... xiv

1 Overview

OLAP Technology in the Oracle Database .. 1-1
Full Integration of Multidimensional Technology .. 1-1
Ease of Administration.. 1-2
Security .. 1-2
Unmatched Performance and Scalability ... 1-2
Reduced Costs .. 1-2

About Multidimensional Data Stores .. 1-2
Creating Analytic Workspaces... 1-3
Structured Data Stores... 1-3
Processing Analytic Queries... 1-3
Creating Summary Data.. 1-3

Using SQL Tools to Query Dimensional Objects .. 1-4
Using OLAP Tools to Query Dimensional Objects ... 1-6

Formulating Queries.. 1-6
Creating Calculations .. 1-7

Overview of the Dimensional Data Model ... 1-8
Cubes.. 1-8
Measures.. 1-8
Dimensions.. 1-9
Hierarchies and Levels .. 1-9

Level-Based Hierarchies .. 1-9
Value-Based Hierarchies.. 1-9

Attributes.. 1-10

iv

Upgrading Oracle Database 10g Release 1 Analytic Workspaces .. 1-10
Upgrading Oracle9i Analytic Workspaces.. 1-10

Upgrading the Physical Storage Format.. 1-11
Upgrading the Standard Form Metadata .. 1-11

2 Getting Started with Oracle OLAP

Installing the Sample Schema ... 2-1
Database Management Tasks ... 2-2
Granting Privileges to DBAs and Application Developers ... 2-2
Getting Started with Analytic Workspace Manager.. 2-2

Installing Analytic Workspace Manager .. 2-2
Opening Analytic Workspace Manager ... 2-3
Defining a Database Connection.. 2-3
Opening a Database Connection.. 2-3
Installing Plug-ins .. 2-4

3 Creating Dimensions and Cubes

Designing a Dimensional Model for Your Data .. 3-1
Introduction to Analytic Workspace Manager.. 3-2

Model View... 3-2
Object View .. 3-3

Creating a Dimensional Data Store Using Analytic Workspace Manager.................................... 3-3
Basic Steps for Creating an Analytic Workspace... 3-3
Adding Functionality to Dimensional Objects .. 3-4
How Analytic Workspace Manager Saves Changes... 3-4

Creating Dimensions ... 3-4
Creating Levels ... 3-6
Creating Hierarchies.. 3-7
Creating Attributes .. 3-8

Automatically Defined Attributes .. 3-8
User-Defined Attributes... 3-9

Mapping Dimensions .. 3-9
Mapping Window.. 3-10
Source Data Query... 3-10

Loading Data Into Dimensions ... 3-11
Displaying the Dimension Members.. 3-12

Creating Cubes... 3-12
Creating Measures .. 3-13
Mapping Cubes ... 3-14
Choosing a Data Storage Strategy .. 3-15

Partitioning a Cube.. 3-15
Choosing a Dimension for Partitioning.. 3-16
Example of a Partitioned Dimension .. 3-17

Loading Data Into a Cube .. 3-18
Displaying the Data in a Cube .. 3-18

Defining Measure Folders ... 3-19
Supporting Multiple Languages .. 3-20

v

Using Templates to Re-Create Dimensional Objects ... 3-21

4 Querying Dimensional Objects Using SQL

Querying Dimensional Data in SQL .. 4-1
Exploring the Shape of OLAP Views ... 4-2

Cube Views ... 4-2
Dimension Views ... 4-4

Creating Basic Queries .. 4-5
Applying a Filter to Every Dimension .. 4-6
Allowing the Cube to Aggregate the Data ... 4-8
Query Processing ... 4-9

Creating Hierarchical Queries ... 4-9
Drilling Down to Children... 4-10
Drilling Up to Parents... 4-10
Drilling Down to Descendants.. 4-10
Drilling Up to Ancestors .. 4-11

Using Calculations in Queries .. 4-11
Using Attributes for Aggregation .. 4-12

Aggregating Measures Over Attributes .. 4-13
Aggregating Calculated Measures Over Attributes .. 4-13

Querying the Active Catalog... 4-14

5 Querying Dimensional Objects Using OLAP Tools

Analyzing Dimensional Data in a Spreadsheet ... 5-1
Getting Started With the OracleBI Spreadsheet Add-In .. 5-2
Creating a Query Using the Add-In .. 5-3
Using Excel Features on Oracle Dimensional Data... 5-4

Creating Reports in Discoverer Plus OLAP .. 5-5
Getting Starting with Discoverer Plus OLAP .. 5-6
Creating a Query .. 5-7
Formatting the Data in Discoverer Plus.. 5-8

6 Enhancing Your Database With Analytic Content

What Is a Calculated Measure?.. 6-1
Functions for Defining Calculations .. 6-1
Creating Calculated Measures ... 6-2
Using the Calculation Wizard .. 6-3

Basic Arithmetic Operations... 6-3
Percent Variance... 6-4
Index... 6-4
Rank ... 6-5
Share... 6-5
Cumulative Total.. 6-6
Prior and Future Time Periods... 6-6
Moving Calculations.. 6-7
Period to Date Calculations .. 6-8

vi

Nested Calculations ... 6-8
Generating Forecasts, Allocations, and Aggregations .. 6-9

7 Generating Forecasts

Introduction to Forecasting Considerations.. 7-1
Choosing a General Forecasting Approach... 7-2

Time Series .. 7-3
Causal Analysis .. 7-3
Expert Opinion ... 7-4

About the Forecasting Engine .. 7-4
Creating a Forecast ... 7-4

Creating the Forecast Time Periods... 7-5
Creating a Forecast Measure .. 7-5
Selecting the Historical Data .. 7-5
Identifying the Levels for the Forecast.. 7-5
Creating a Forecast Step.. 7-6
Generating the Forecast Data ... 7-6
Evaluating the Forecast Results ... 7-6

Designing Your Own Forecast ... 7-7
What is the Expert System? .. 7-7
What is the Verification Window?... 7-8
When Should You Design a Forecast? .. 7-8
Overriding the Expert System.. 7-8

Forecasting Method Descriptions ... 7-9
Automatic .. 7-9
Regressions.. 7-9

Linear Regression.. 7-9
Nonlinear Regression ... 7-9
Advanced Parameter for Regressions... 7-10

Exponential Smoothing .. 7-10
Comparison Among Exponential Smoothing Methods... 7-10
Advanced Parameters for Exponential Smoothing... 7-10

Advanced Parameter Descriptions... 7-11
Setup Parameters... 7-11
General Parameters... 7-12
Historical Data Smoothing Parameters.. 7-13

Case Study: Forecasting Sales for Global Enterprises ... 7-13
Creating the Sales Forecast Target Measure ... 7-13
Creating the Calculation Plan.. 7-14
Creating the Sales Forecast Step ... 7-14
Generating the Forecast.. 7-16
Validating the Forecast... 7-16
Preparing the Sales Forecast Measure for Querying.. 7-17

8 Advanced Aggregations

What is Aggregation?... 8-1
Aggregation Operators .. 8-3

vii

Basic Operators... 8-3
Scaled and Weighted Operators .. 8-3
Hierarchical Operators .. 8-4

When Does Aggregation Order Matter? .. 8-4
Using the Same Operator for All Dimensions of a Cube ... 8-5

Order Has No Effect ... 8-5
Order Changes the Aggregation Results... 8-5
Order May Be Important ... 8-5

Example: Mixing Aggregation Operators .. 8-5
Aggregating Compressed Cubes ... 8-6
Aggregating Uncompressed Cubes... 8-6

Selecting Dimensions for Skip-Level Aggregation ... 8-7
Selecting the Levels to Skip .. 8-7

Aggregating a Slice of a Measure.. 8-7
Improving Aggregation Performance... 8-9

Finish Data Updates on Time.. 8-10
Keep Within Allocated Resources .. 8-10
Provide Good Response Time... 8-10

9 Allocations

What Is an Allocation? .. 9-1
Creating Measures to Support an Allocation.. 9-3

Source Measures... 9-4
Basis Measures.. 9-4
Target Measures ... 9-4
Weight Measures.. 9-4

Selecting Dimension Members for an Allocation ... 9-4
Identifying the Sources and Targets.. 9-5
Identifying the Allocation Path.. 9-7

Creating an Allocation... 9-8
Allocation Operators.. 9-9

Copy Operators .. 9-9
Even Distribution Operators .. 9-9
Proportional Distribution Operator ... 9-10
Relationships Between Allocation and Aggregation Operators .. 9-10

Case Study: Allocating a Budget .. 9-10
Creating the Source Measure .. 9-10
Creating the Target Measure ... 9-11
Creating the Calculation Plan.. 9-11
Creating the Allocate Budget Step.. 9-11
Generating and Validating the Allocation .. 9-12

Case Study: Allocating a Sales Forecast.. 9-13
Creating an Allocation Basis Measure ... 9-13
Creating the Allocate Sales Forecast Step.. 9-14
Generating and Validating the Allocation .. 9-15

viii

10 Developing Reports and Dashboards

Developing SQL Applications for Dimensional Data ... 10-1
Developing a Report Using BI Publisher ... 10-3

Creating an OLAP Report in BI Publisher... 10-3
Creating a Template in Microsoft Word.. 10-5
Generating a Formatted Report .. 10-8
Adding Dimension Choice Lists ... 10-9

Creating a List of Values ... 10-9
Creating a Menu... 10-10
Editing the Query... 10-10

Developing a Dashboard Using Application Express ... 10-11
Creating an OLAP Application in Application Express.. 10-12
Adding Dimension Choice Lists ... 10-13

Creating a Region... 10-14
Creating a List of Values ... 10-15
Creating the Choice List.. 10-15
Editing the Query... 10-16

Drilling on Dimension Columns... 10-17
Creating Hidden Items.. 10-17
Editing the Query... 10-18
Adding Links to the Dimension Columns ... 10-19

11 Developing Java Applications for OLAP

Building Analytical Java Applications ... 11-1
About Java.. 11-1
The Java Solution for OLAP .. 11-2
Oracle Java Development Environment .. 11-2

Introducing OracleBI Beans .. 11-2
Metadata ... 11-3
Navigation.. 11-3
Formatting.. 11-3
Graphs... 11-4
Crosstabs .. 11-4
Data Beans.. 11-4
Wizards... 11-4
JSP Tag Library .. 11-5

Building Java Applications That Manage Analytic Workspaces ... 11-5

12 Administering Oracle OLAP

Setting Database Initialization Parameters.. 12-1
Storage Management .. 12-3

Creating an Undo Tablespace ... 12-3
Creating Permanent Tablespaces for OLAP Use.. 12-3
Creating Temporary Tablespaces for OLAP Use ... 12-3
Spreading Data Across Storage Resources .. 12-4

Security of Multidimensional Data in Oracle Database ... 12-4

ix

Security Management... 12-4
Granting Querying Privileges ... 12-5

Dictionary Views and System Tables .. 12-5
Static Data Dictionary Views... 12-5
System Tables .. 12-5
Analytic Workspace Tables ... 12-6
Build Logs .. 12-7

Partitioned Cubes and Parallelism .. 12-7
Creating and Dropping Partitions .. 12-7
Parallelism.. 12-7

Monitoring Analytic Workspaces... 12-9
Dynamic Performance Views .. 12-10
Basic Queries for Monitoring the OLAP Option .. 12-10

Is the OLAP Option Installed in the Database?... 12-10
What Analytic Workspaces are in the Database?.. 12-11
How Big is the Analytic Workspace?.. 12-11
When Were the Analytic Workspaces Created?.. 12-11

OLAP DBA Scripts .. 12-12
Scripts for Monitoring Performance... 12-13
Scripts for Monitoring Disk Space .. 12-13

Backup and Recovery ... 12-13
Export and Import ... 12-14

A Designing a Dimensional Model

Case Study Scenario.. A-1
Reporting Requirements .. A-2
Business Goals ... A-2
Information Requirements... A-3

Business Analysis Questions.. A-3
What products are profitable?.. A-3
Who are our customers, and what and how are they buying? ... A-3
Which accounts are most profitable? .. A-4
What is the performance of each distribution channel?... A-4
Is there still a seasonal variance to the business? .. A-4
Summary of Information Requirements... A-4

Identifying Required Business Facts... A-5
Designing a Dimensional Model for Global Computing ... A-5

Identifying Dimensions.. A-5
Identifying Levels ... A-6
Identifying Hierarchies .. A-6
Identifying Stored Measures ... A-6

Glossary

Index

x

xi

Preface

The Oracle OLAP Application Developer's Guide explains how SQL and Java applications
can extend their analytic processing capabilities by using the OLAP option in the
Enterprise edition of the Oracle Database. It also provides information for Oracle
DBAs about managing resources for OLAP.

The preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This manual is intended for applications developers and DBAs who perform these
tasks:

■ Develop business intelligence applications

■ Design and develop dimensional data stores (analytic workspaces)

■ Administer Oracle Database with the OLAP option

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following manuals in the Oracle Database 10g
documentation set:

■ Oracle OLAP Reference

xii

Explains the syntax of PL/SQL packages and types and the column structure of
views related to Oracle OLAP.

■ Oracle OLAP DML Reference

Contains a complete description of the OLAP Data Manipulation Language
(OLAP DML) used to define and manipulate analytic workspace objects.

■ Oracle OLAP Developer's Guide to the OLAP API

Introduces the Oracle OLAP API, a Java application programming interface for
Oracle OLAP, which is used to perform online analytical processing of the data
stored in an Oracle database. Describes the API and how to discover metadata,
create queries, and retrieve data.

■ Oracle OLAP Java API Reference

Describes the classes and methods in the Oracle OLAP Java API for querying
analytic workspaces and relational data warehouses.

■ Oracle OLAP Analytic Workspace Java API Reference

Describes the classes and methods in the Oracle OLAP Java API for building and
maintaining analytic workspaces.

For more information about Oracle data warehouse and business intelligence
technology, view the web page at
http://www.oracle.com/technetwork/database/focus-areas/bi-datawarehousing/
index.html.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

http://www.oracle.com/technetwork/database/focus-areas/bi-datawarehousing/index.html
http://www.oracle.com/technetwork/database/focus-areas/bi-datawarehousing/index.html

xiii

What's New in Oracle OLAP
Applications Development?

The following identifies some of the major changes from prior releases.

Oracle Database 10g Release 10.2.0.3 Oracle OLAP
Analytic Workspace Manager in Release 10.2.0.3 provides a Sparsity Advisor, which
examines the source data and makes recommendations for defining OLAP cubes that
provide the best performance. The functionality of calculation plans has been
enhanced to provide post-load forecasting, allocation, and aggregation. Analytic
Workspace Manager also supports Java add-ins, so that any Java developer can extend
and customize the tools in Analytic Workspace Manager.

Oracle Database 10g Release 10.2 Oracle OLAP
Oracle OLAP in Oracle Database 10g Release 2 (10.2) provides numerous performance
enhancements and extensions to the dimensional data model.

Enhanced Data Model in Analytic Workspace Manager
Analytic Workspace Manager 10.2 supports Calculation Plans and multiple languages.
Compressed composites provide support for partial computation and non-additive
operators.

Support for Transportable Tablespaces
Analytic workspaces are included with other database objects in transportable
tablespaces.

See Also:

■ Chapter 3 for information about the Sparsity Advisor and plug-ins

■ Chapter 7 for information about forecasting

■ Chapter 8 for information about aggregation

■ Chapter 9 for information about allocation

See Also:

■ Chapter 1 for upgrade instructions

■ Chapter 3 for new features in Analytic Workspace Manager

xiv

Oracle Database 10g Release 10.1.0.4 Oracle OLAP
Oracle OLAP 10.1.0.4 provides a simpler approach to building and enabling analytic
workspaces while introducing the more powerful analytic tools of the OLAP engine
into the build process.

New Storage Format for Analytic Workspaces
Analytic workspaces are still stored in LOB tables in Oracle Database 10g, but in a
different format that supports partitioning and multiple writers.

New Model View in Analytic Workspace Manager
The Model View in Analytic Workspace Manager 10g enables you to define the logical
model of your analytic workspace directly in database standard form. You no longer
create logical models in the OLAP Catalog for building analytic workspaces. Analytic
Workspace Manager supports a wider range of schema designs than the OLAP
Catalog.

Database Standard Form 10g
Analytic Workspace Manager and the PL/SQL DBMS_AWM package generate a new
version of standard form metadata that supports the new features of Oracle
Database 10g.

Dynamic Enabling for the OLAP API and OracleBI Beans
The SELECT statements for the views of an analytic workspace are stored in the analytic
workspace itself. Enablement no longer requires the creation of database objects.

Direct Metadata Access
The OLAP API and OracleBI Beans query the Active Catalog views, which display the
database standard form metadata stored in analytic workspaces. Enablement no
longer requires the creation of OLAP Catalog CWM2 metadata.

See Also: Chapter 12 for information about backing up analytic
workspaces

See Also:

■ Chapter 1 for upgrade instructions

■ Chapter 12 for a description of the storage format

See Also: Chapter 3 for instructions on using the Model View

1

Overview 1-1

1 Overview

This chapter introduces the powerful analytic resources available in Oracle
Database 10g installed with the OLAP option. It consists of the following topics:

■ OLAP Technology in the Oracle Database

■ About Multidimensional Data Stores

■ Using SQL Tools to Query Dimensional Objects

■ Using OLAP Tools to Query Dimensional Objects

■ Overview of the Dimensional Data Model

■ Upgrading Oracle Database 10g Release 1 Analytic Workspaces

■ Upgrading Oracle9i Analytic Workspaces

OLAP Technology in the Oracle Database
Oracle Database offers the industry's first and only embedded OLAP server. Oracle
OLAP provides native multidimensional storage and speed-of-thought response times
when analyzing data across multiple dimensions. The database provides rich support
for analytics such as time series calculations, forecasting, advanced aggregation with
additive and nonadditive operators, and allocation operators. These capabilities make
the Oracle database a complete analytical platform, capable of supporting the entire
spectrum of business intelligence and advanced analytical applications.

Full Integration of Multidimensional Technology
By integrating multidimensional objects and analytics into the database, Oracle
provides the best of both worlds: the power of multidimensional analysis along with
the reliability, availability, security, and scalability of the Oracle database.

Oracle OLAP is fully integrated into Oracle Database. At a technical level, this means:

■ The OLAP engine runs within the kernel of Oracle Database.

■ Dimensional objects are stored in Oracle Database in their native
multidimensional format.

■ Applications can query dimensional objects using either SQL or Java.

The benefits to your organization are significant. Oracle OLAP offers the power of
simplicity: One database, standard administration, standard interfaces and
development tools.

About Multidimensional Data Stores

1-2 Oracle OLAP Application Developer's Guide

Ease of Administration
Because Oracle OLAP is completely embedded in the Oracle database, there is no
administration learning curve as is typically associated with standalone OLAP servers.
You can leverage your existing DBA staff, rather than invest in specialized
administration skills.

Security
With Oracle OLAP, standard Oracle Database security features are used to secure your
multidimensional data.

In contrast, with a standalone OLAP server, administrators must manage security
twice: once on the relational source system and again on the OLAP server system.
Additionally, they must manage the security of data in transit from the relational
system to the standalone OLAP system.

Unmatched Performance and Scalability
Business intelligence and analytical applications are dominated by actions such as
drilling up and down hierarchies and comparing aggregate values such as
period-over-period, share of parent, projections onto future time periods, and a myriad
of similar calculations. Often these actions are essentially random across the entire
space of potential hierarchical aggregations. Because Oracle OLAP precomputes or
efficiently computes on the fly all aggregates in the defined multidimensional space, it
delivers unmatched performance for typical business intelligence applications.

When Oracle Database is installed with Oracle Real Application Clusters (Oracle
RAC), OLAP applications receive the same benefits in performance, scalability, fail
over, and load balancing as any other application.

Reduced Costs
These features add up to reduced costs. Administrative costs are reduced because
existing personnel skills can be leveraged. Standard security reduces administration
costs as well. Hardware costs are reduced by Oracle OLAP's efficient management of
aggregations and Oracle RAC, which enables highly scalable systems to be built from
low-cost commodity components.

About Multidimensional Data Stores
Multidimensional data is stored in analytic workspaces, where it can be manipulated
by the OLAP engine in Oracle Database. Individual analytic workspaces are stored in
tables in a relational schema, and they can be managed like other relational tables. An
analytic workspace is owned by a particular user ID, and other users can be granted
access to it. Within a single database, many analytic workspaces can be created and
shared among users.

Analytic workspaces have been designed explicitly to handle multidimensionality in
their physical data storage and manipulation of data. The multidimensional
technology that underlies analytic workspaces is based on an indexed
multidimensional array model, which provides direct cell access. This intrinsic
multidimensionality affords analytic workspaces much of their speed and power in
performing multidimensional analysis.

About Multidimensional Data Stores

Overview 1-3

Creating Analytic Workspaces
Creating an analytic workspace involves a physical transformation of the data. The
first step in that transformation is defining dimensional objects such as measures,
dimensions, levels, hierarchies, and attributes. Afterward, you can map the
dimensional objects to the data sources. The analytic workspace instantiates the logical
objects as physical objects, and the data loading process transforms the data from a
relational format into a dimensional format.

The analytic workspaces that are created by Oracle Warehouse Manager and Analytic
Workspace Manager are in database standard form (typically called simply "standard
form"). Standard form specifies the types of physical objects that are used to instantiate
logical objects (such as dimensions and measures), and the type, form, and storage
location of the metadata that describes these logical objects.

This metadata is exposed to SQL in the Active Catalog. The Active Catalog is
composed of views of standard form metadata that is stored in analytic workspaces.
These views are maintained automatically, so that a change to a standard form analytic
workspace is reflected immediately by a change to the Active Catalog. Discoverer Plus
OLAP and Spreadsheet Add-In use the Active Catalog to query data in analytic
workspaces.

Structured Data Stores
The dimensional data model is highly structured. Structure implies rules that govern
the relationships among the data and control how the data can be queried. Analytic
workspaces are the physical implementation of the dimensional model, and thus are
highly optimized for dimensional queries. The OLAP engine leverages the model in
performing highly efficient cross-cube joins (for inter-row calculations), outer joins (for
time series analysis), and indexing. Dimensions are pre-joined to the measures.

Processing Analytic Queries
For data stored in analytic workspaces, the OLAP calculation engine performs analytic
operations and supports sophisticated analysis, such as modeling and what-if analysis.
If you require these types of analysis, then you need analytic workspaces. The OLAP
engine also provides the fastest run-time response to analytic queries, which is
important if you anticipate user sessions that are heavily analytical.

Creating Summary Data
A basic characteristic of business analysis is hierarchically structured data; detail data
is summarized at various levels, which allows trends and patterns to emerge. An
analyst who has detected a pattern can drill down to lower levels to identify the
factors that contributed to this pattern.

The creation and maintenance of summary data is a serious issue for DBAs. If no
summary data is stored, then all summarizations must be performed in response to
individual queries. This can easily result in unacceptably slow response time. At the
other extreme, if all summary data is stored, then the database can quickly multiply in
size.

Analytic workspaces store aggregate data in the same objects as the base level data.
Aggregates can be stored permanently in the analytic workspace, or only for the
duration of an individual session, or only for a single query. Aggregation rules identify
which aggregates are stored for each measure. When an application queries the
analytic workspace, either the aggregate values have already been calculated and can
simply be retrieved, or they can be calculated on the fly from a small number of stored

Using SQL Tools to Query Dimensional Objects

1-4 Oracle OLAP Application Developer's Guide

aggregates. The data is always presented to the application as fully solved; that is, both
detail and summary values are provided, without requiring that calculations be
specified in the query. Analytic workspaces are optimized for multidimensional
calculations, making run-time summarizations extremely fast.

Analytic workspaces provide an extensive list of aggregation methods, including
weighted, hierarchical, and weighted hierarchical methods.

Using SQL Tools to Query Dimensional Objects
Analysts can choose any SQL query and analysis tool for selecting, viewing, and
analyzing the data. You can use your favorite tool or application, or use one of the
tools supplied with Oracle Database.

Figure 1–1 displays a portion of a dashboard created in Oracle Application Express,
which is distributed with Oracle Database. Application Express generates HTML
reports that display the results of SQL queries. It only understands SQL; it has no
special knowledge of dimensional objects.

This dashboard demonstrates information-rich calculations such as ratio, share, prior
period, and cumulative total. Separate tabs on the dashboard present Profitability
Analysis and Sales Analysis. Each tab presents the data in dials, bar charts, horizontal
bar charts, pie charts, and cross-tabular reports. A drop-down list in the upper left
corner provides a choice of Customers.

The dial displays the quarterly profit margin. To the right is a bar chart that compares
current profits with year-ago profits.

Figure 1–1 Dashboard Created in Oracle Application Express

The pie chart in Figure 1–2 displays the percent share that each product family
contributed to the total profits in the last quarter.

Using SQL Tools to Query Dimensional Objects

Overview 1-5

Figure 1–2 Contributions of Product Families to Total Profits

The horizontal bar chart in Figure 1–3 displays ranked results for locations with the
largest gains in profitability from a year ago. Decision makers can see at a glance how
each location improved by the last quarter.

Figure 1–3 Geographic Locations Ranked by Profit

Figure 1–4 compares current profits with prior period and year-to-date profits. The
cross-tabular report features interactive drilling, so that decision makers can easily see
the detailed data that contributed to a parent value of interest.

Using OLAP Tools to Query Dimensional Objects

1-6 Oracle OLAP Application Developer's Guide

Figure 1–4 Comparison of Current Profits With Other Time Periods

Using OLAP Tools to Query Dimensional Objects
Analysts can choose between two query and analysis tools developed specifically for
selecting, viewing, and analyzing dimensional data:

■ OracleBI Spreadsheet Add-In

■ OracleBI Discoverer Plus OLAP

In addition, OracleBI Beans is available for developing custom applications, as
described in Chapter 11.

Formulating Queries
Both Discoverer Plus OLAP and Spreadsheet Add-In use a dimensional data model so
that analysts can formulate their queries in the language of business. Dimensions
provide the context for the data. Consider the following request for information:

For fiscal years 2003 and 2004, show the percent change in sales for the top 10
products for each of the top 10 customers based on sales.

The sales measure is dimensioned by time periods, products, and customers. This
request is articulated in business terms, but easily translates into a query in the
language of dimensional analysis: dimensions, levels, hierarchies, and attributes.

Figure 1–5 shows a step in the Query Wizard in Discoverer Plus OLAP for selecting
the top 10 products. The Query Wizard assists users in selecting by criteria, by value,
and by saved selections. All OLAP tools provide a Query Wizard to assist users in
formulating these queries.

Using OLAP Tools to Query Dimensional Objects

Overview 1-7

Figure 1–5 Selecting Dimension Values By Criteria

Creating Calculations
Multidimensional data types facilitate the creation of calculations. From the measures
stored in your data warehouse, you can use numerous operators and functions to
generate a wealth of information. In addition to the calculated measures created by the
DBA as part of an analytic workspace, users can create their own calculations.
Figure 1–6 shows a step in the Calculation Wizard of Discoverer Plus OLAP for
calculating percent change in sales. Spreadsheet Add-In has the same Calculation
Wizard.

Figure 1–6 Choosing a Calculation Method for a Custom Measure

Overview of the Dimensional Data Model

1-8 Oracle OLAP Application Developer's Guide

Overview of the Dimensional Data Model
The dimensional data model is an integral part of On-Line Analytical Processing, or
OLAP. Because OLAP is on-line, it must provide answers quickly; analysts pose
iterative queries during interactive sessions, not in batch jobs that run overnight. And
because OLAP is also analytic, the queries are complex.

The dimensional data model is composed of cubes, measures, dimensions, hierarchies,
levels, and attributes. The simplicity of the model is inherent because it defines objects
that represent real-world business entities. Analysts know which business measures
they are interested in examining, which dimensions and attributes make the data
meaningful, and how the dimensions of their business are organized into levels and
hierarchies.

Figure 1–7 shows the general relationships among objects.

Figure 1–7 Diagram of the OLAP Dimensional Model

Cubes
Cubes provide a means of organizing measures that have the same shape, that is, they
have the exact same dimensions. Measures in the same cube have the same
relationships to other objects and can easily be analyzed and displayed together.

Measures
Measures populate the cells of a cube with the facts collected about business
operations. Measures are organized by dimensions, which typically include a Time
dimension.

An analytic database contains snapshots of historical data, derived from data in a
transactional database, legacy system, syndicated sources, or other data sources. Three
years of historical data is generally considered to be appropriate for analytic
applications.

Measures are static and consistent while analysts are using them to inform their
decisions. They are updated in a batch window at regular intervals: weekly, daily, or
periodically throughout the day. Some administrators refresh their data by adding
periods to the time dimension of a measure, and may also roll off an equal number of
the oldest time periods. Each update provides a fixed historical record of a particular
business activity for that interval. Other administrators do a full rebuild of their data
rather than performing incremental updates.

Overview of the Dimensional Data Model

Overview 1-9

A critical decision in defining a measure is the lowest level of detail. Users may never
view this base level data, but it determines the types of analysis that can be
performed. For example, market analysts (unlike order entry personnel) do not need
to know that Beth Miller in Ann Arbor, Michigan, placed an order for a size 10 blue
polka-dot dress on July 6, 2005, at 2:34 p.m. But they might want to find out which
color of dress was most popular in the summer of 2005 in the Midwestern United
States.

The base level determines whether analysts can get an answer to this question. For this
particular question, Time could be rolled up into months, Customer could be rolled up
into regions, and Product could be rolled up into items (such as dresses) with an
attribute of color. However, this level of aggregate data could not answer the question:
At what time of day are women most likely to place an order? An important decision
is the extent to which the data has been aggregated before being loaded into a data
warehouse.

Dimensions
Dimensions contain a set of unique values that identify and categorize data. They
form the edges of a cube, and thus of the measures within the cube. Because measures
are typically multidimensional, a single value in a measure must be qualified by a
member of each dimension to be meaningful. For example, the Sales measure has four
dimensions: Time, Customer, Product, and Channel. A particular Sales value
(43,613.50) only has meaning when it is qualified by a specific time period (Feb-01), a
customer (Warren Systems), a product (Portable PCs), and a channel (Catalog).

Hierarchies and Levels
A hierarchy is a way to organize data at different levels of aggregation. In viewing
data, analysts use dimension hierarchies to recognize trends at one level, drill down to
lower levels to identify reasons for these trends, and roll up to higher levels to see
what affect these trends have on a larger sector of the business.

Level-Based Hierarchies
Each level represents a position in the hierarchy. Each level above the base (or most
detailed) level contains aggregate values for the levels below it. The members at
different levels have a one-to-many parent-child relation. For example, Q1-05 and
Q2-05 are the children of 2005, thus 2005 is the parent of Q1-05 and Q2-05.

Suppose a data warehouse contains snapshots of data taken three times a day, that is,
every 8 hours. Analysts might normally prefer to view the data that has been
aggregated into days, weeks, quarters, or years. Thus, the Time dimension needs a
hierarchy with at least five levels.

Similarly, a sales manager with a particular target for the upcoming year might want
to allocate that target amount among the sales representatives in his territory; the
allocation requires a dimension hierarchy in which individual sales representatives are
the child values of a particular territory.

Hierarchies and levels have a many-to-many relationship. A hierarchy typically
contains several levels, and a single level can be included in multiple hierarchies.

Value-Based Hierarchies
Although hierarchies are typically composed of levels, they do not have to be. The
parent-child relations among dimension members may not define meaningful levels.
For example, in an employee dimension, each manager has one or more reports, which

Upgrading Oracle Database 10g Release 1 Analytic Workspaces

1-10 Oracle OLAP Application Developer's Guide

forms a parent-child relation. Creating levels based on these relations (such as
individual contributors, first-level managers, second-level managers, and so forth)
may not be meaningful for analysis. Likewise, the line item dimension of financial data
does not have levels. This type of hierarchy is called a value-based hierarchy.

Attributes
An attribute provides additional information about the data. Some attributes are used
for display. For example, you might have a product dimension that uses Stock
Keeping Units (SKUs) for dimension members. The SKUs are an excellent way of
uniquely identifying thousands of products, but are meaningless to most people if
they are used to label the data in a report or a graph. You would define attributes for
the descriptive labels.

You might also have attributes like colors, flavors, or sizes. This type of attribute can
be used for data selection and answering questions such as: Which colors were the
most popular in women's dresses in the summer of 2005? How does this compare with
the previous summer?

Time attributes can provide information about the Time dimension that may be useful
in some types of analysis, such as identifying the last day or the number of days in
each time period.

Upgrading Oracle Database 10g Release 1 Analytic Workspaces
If you created an analytic workspace in Oracle 10g Release 1, you can upgrade it to
Release 2 using the following procedure. Upgrading is optional. However, upgrading
enables you to use the new features of Analytic Workspace Manager 10.2, such as
additional aggregation operators for compressed composites, support for multiple
languages, and performance improvements.

To upgrade an analytic workspace, take these steps:

1. Open Analytic Workspace Manager in the Model View.

2. In the navigation tree, select the name of the Oracle Database instance where your
analytic workspace is stored.

3. On the Basic tab of the Database property sheet, verify that the database is running
in 10.2 compatibility mode.

4. Right-click the analytic workspace, and select Upgrade Analytic Workspace to
10.2.

5. Complete the Analytic Workspace Upgrade to Version 10.2 dialog box.

Click Help for additional information.

Upgrading Oracle9i Analytic Workspaces
If you have analytic workspaces that were created in Oracle9i, then you should
upgrade them to take advantage of new features such as partitioning and compressed
composites.

Upgrading may break custom OLAP DML programs. For this reason, you can choose
to upgrade at a time that is convenient for you. You can continue to manage your older
analytic workspaces by using an older version of Analytic Workspace Manager (such
as Oracle9i Release 9.2.0.4.1).

Upgrading Oracle9i Analytic Workspaces

Overview 1-11

Any new analytic workspaces that you create using the new Oracle Database 10g
version of Analytic Workspace Manager is automatically in 10g standard form, as long
as Oracle Database is running in 10g compatibility mode.

If Oracle Database is running in 9i compatibility mode, then you continue to work the
same way as before without upgrading the analytic workspaces.

To upgrade an analytic workspace, take these steps:

1. Set the COMPATIBLE parameter to 10.0.0.0 or later in the database initialization file.

2. Upgrade the physical storage format.

3. Upgrade the standard form metadata.

You can upgrade the physical storage format without upgrading the standard form
metadata, if you wish. This change improves performance and supports partitioning.
However, the analytic workspace is not enabled dynamically for OracleBI Beans until
you upgrade the metadata.

You can perform the upgrade steps either in the Object View of Analytic Workspace
Manager or in PL/SQL.

Upgrading the Physical Storage Format
Convert the physical storage format by using either of these methods:

■ Recreate the analytic workspace by following these steps:

1. Export the contents to an EIF file.

2. Delete the old analytic workspace.

3. Create a new, empty analytic workspace.

4. Import the contents from the EIF file.

You can export and import in Analytic Workspace Manager. For more information,
see these topics in Help: "Exporting Workspace Objects" and "Importing
Workspace Objects"

■ Use the PL/SQL conversion program:

EXECUTE dbms_aw.convert('aw_name');

Tip: Use a program such as SQL*Plus to execute this procedure. For the full
syntax, refer to the Oracle OLAP Reference.

Upgrading the Standard Form Metadata
To upgrade the standard form metadata, follow these steps:

1. In Analytic Workspace Manager, open the Object View.

2. Expand the navigation tree until you see the name of the analytic workspace.

3. Right-click the analytic workspace and choose Upgrade Analytic Workspace From
9i to 10g Standard Form from the popup menu.

4. Upgrade to Release 2 by following the instructions in "Upgrading Oracle Database
10g Release 1 Analytic Workspaces" on page 1-10.

Upgrading Oracle9i Analytic Workspaces

1-12 Oracle OLAP Application Developer's Guide

2

Getting Started with Oracle OLAP 2-1

2 Getting Started with Oracle OLAP

This chapter describes the preliminary steps you must take to use Oracle OLAP. It
assumes that you have already installed Oracle Database 10g Enterprise Edition. The
OLAP option is installed automatically as part of a Basic installation of Oracle
Database.

This chapter includes the following topics:

■ Installing the Sample Schema

■ Database Management Tasks

■ Granting Privileges to DBAs and Application Developers

■ Getting Started with Analytic Workspace Manager

Installing the Sample Schema
You can download and install the sample Global schema from the Oracle Web site and
use it to try the examples shown throughout this guide:

http://www.oracle.com/technetwork/database/options/olap/olap-downloads-098
860.html

Instructions for installing the schema are provided in the README file.

Sales History (SH) is a sample star schema that is delivered with Oracle Database.
Although Global is used for most of the examples in this manual, Sales History has a
very different set of data characteristics and demonstrates a correspondingly different
set of build choices.

You can download a template for a Sales History analytic workspace from:

http://www.oracle.com/technetwork/database/options/olap/prevsampschemasfor
doc-085509.html

Then you can simply examine the definitions of various objects instead of creating
them manually. You still must run the Maintenance wizard to load the data.

Note: To start querying dimensional objects immediately, install the
Global analytic workspace, as described in "Installing the Sample
Schema". Then follow the instructions in one of these chapters:

■ Chapter 4, "Querying Dimensional Objects Using SQL"

■ Chapter 5, "Querying Dimensional Objects Using OLAP Tools"

http://www.oracle.com/technetwork/database/options/olap/olap-downloads-098860.html
http://www.oracle.com/technetwork/database/options/olap/olap-downloads-098860.html
http://www.oracle.com/technetwork/database/options/olap/prevsampschemasfordoc-085509.html
http://www.oracle.com/technetwork/database/options/olap/prevsampschemasfordoc-085509.html

Database Management Tasks

2-2 Oracle OLAP Application Developer's Guide

Database Management Tasks
You should create undo, permanent, and temporary tablespaces that are appropriate
for use by dimensional objects. Follow the recommendations in "Storage Management"
on page 12-3.

Granting Privileges to DBAs and Application Developers
Anyone who needs to create or manage dimensional objects in Oracle Database must
have the necessary privileges. These privileges are different from those needed just to
query the data stored in dimensional objects, which are described in "Security of
Multidimensional Data in Oracle Database" on page 12-4.

DBAs and application developers need the following roles and privileges.

To create dimensional objects in the user's own schema:
■ OLAP_USER role

■ CREATE SESSION privilege

To create dimensional objects in different schemas:
■ OLAP_DBA role

■ CREATE SESSION privilege

Users also need an unlimited quota on the tablespace in which the dimensional objects
are stored. The tablespaces should be defined specifically for OLAP use, as described
in Chapter 12.

If the source tables are in a different schema, then the owner of the dimensional objects
needs SELECT object privileges on those tables.

Example 2–1 shows the SQL statements for creating the GLOBAL user.

Example 2–1 SQL Statements for Creating the GLOBAL User

CREATE USER "GLOBAL" IDENTIFIED BY password
 DEFAULT TABLESPACE glo
 TEMPORARY TABLESPACE glotmp
 QUOTA UNLIMITED ON glo
 PASSWORD EXPIRE;

GRANT OLAP_USER TO GLOBAL;
GRANT CREATE SESSION TO GLOBAL;

Getting Started with Analytic Workspace Manager
In this section, you learn how to install Analytic Workspace Manager software and
make a connection to Oracle Database.

Installing Analytic Workspace Manager
You can install Analytic Workspace Manager from the Oracle Database installation
media or from the Oracle Technology Network.

Analytic Workspace Manager is distributed on the Oracle Database Client installation
media.

Getting Started with Analytic Workspace Manager

Getting Started with Oracle OLAP 2-3

If you are installing on the same system as the database, then choose a Custom
installation and install into the same Oracle home directory as the database. Select
OLAP Analytic Workspace Manager and Worksheet from the list of components.

If you are installing on a remote system, then choose either an Administrator or a
Custom installation. The Administrator choice automatically installs Analytic
Workspace Manager on the client.

A more recent version of Analytic Workspace Manager may be available for download
from the Oracle Technology Network. Check the available downloads at

http://www.oracle.com/technetwork/database/options/olap/olap-downloads-098
860.html

Follow the installation instructions provided in the README file.

Opening Analytic Workspace Manager
On Windows, open Analytic Workspace Manager from the Start menu. Choose Oracle
- Oracle_home, then Integrated Management Tools, and then OLAP Analytic
Workspace Manager and Worksheet.

On Linux, open Analytic Workspace Manager from the shell command line:

$ORACLE_HOME/olap/awm/awm.sh

Defining a Database Connection
You can define a connection to each database that you use for OLAP. After you define
a connection, the database instance is listed in the navigation tree for you to access at
any time.

To define a database connection:

1. Right-click the top Databases folder in the navigation tree, then choose Add
Database to Tree from the shortcut menu.

2. Complete the Add Database to Tree dialog box.

Opening a Database Connection
To connect to a database:

1. Click the plus icon (+) next to a database in the navigation tree.

2. Complete the Connect to Database dialog box.

Figure 2–1 shows Analytic Workspace Manager displaying the properties of the
database connection by the Global user.

See Also: An installation guide for your client platform, such as the
Oracle Database Client Quick Installation Guide for 32-Bit Windows.

http://www.oracle.com/technetwork/database/options/olap/olap-downloads-098860.html
http://www.oracle.com/technetwork/database/options/olap/olap-downloads-098860.html

Getting Started with Analytic Workspace Manager

2-4 Oracle OLAP Application Developer's Guide

Figure 2–1 Analytic Workspace Manager Connection to Oracle Database

Installing Plug-ins
Plug-ins extend the functionality of Analytic Workspace Manager. Any Java developer
can create a plug-in. Plug-ins are distributed as JAR files. The developer should
provide information about what the plug-in does and how to use it.

If you have one or more plug-ins, then you only need to identify their location to
Analytic Workspace Manager.

To Use Plug-ins:
1. Create a local directory for storing plug-ins for Analytic Workspace Manager.

2. Copy the JAR files to that directory.

3. Open Analytic Workspace Manager.

4. Choose Configuration from the Tools menu.

The Configuration dialog box opens.

5. Select Enable Plug-ins and identify the plug-in directory. Click OK.

6. Close and reopen Analytic Workspace Manager.

The new functionality provided by the plug-ins is available in the navigator.

See Also: Developing Analytic Workspace Manager Plug-ins, which you
can download from the Oracle Technology Network at
http://www.oracle.com/technetwork/database/options/olap/inde
x.html.

http://www.oracle.com/technetwork/database/options/olap/index.html
http://www.oracle.com/technetwork/database/options/olap/index.html

3

Creating Dimensions and Cubes 3-1

3 Creating Dimensions and Cubes

This chapter explains how to design a dimensional data model and create dimensions
and cubes using Analytic Workspace Manager.

This chapter contains the following topics:

■ Designing a Dimensional Model for Your Data

■ Introduction to Analytic Workspace Manager

■ Creating a Dimensional Data Store Using Analytic Workspace Manager

■ Creating Dimensions

■ Creating Cubes

■ Defining Measure Folders

■ Supporting Multiple Languages

■ Using Templates to Re-Create Dimensional Objects

Designing a Dimensional Model for Your Data
Chapter 1 introduced the dimensional objects: Cubes, measures, dimensions, levels,
hierarchies, and attributes. In this chapter, you learn how to define them in Oracle
Database, but first you must decide upon the dimensional model you want to create.
What are your measures? What are your dimensions? How can you distinguish
between a dimension and an attribute in your data? You can design a dimensional
model using pencil and paper, a database design software package, or any other
method that suits you.

If your source data is already in a star or snowflake schema, then you already have the
elements of a dimensional model:

■ Fact tables correspond to cubes.

■ Data columns in the fact tables correspond to measures.

■ Foreign key constraints in the fact tables identify the dimension tables.

■ Dimension tables identify the dimensions.

■ Primary keys in the dimension tables identify the base-level dimension members.

■ Parent columns in the dimension tables identify the higher level dimension
members.

■ Columns in the dimension tables containing descriptions and characteristics of the
dimension members identify the attributes.

Introduction to Analytic Workspace Manager

3-2 Oracle OLAP Application Developer's Guide

You can also get insights into the dimensional model by looking at the reports
currently being generated from the source data. The reports identify the levels of
aggregation that interest the report consumers and the attributes used to qualify the
data.

While investigating your source data, you may decide to create relational views that
more closely match the dimensional model that you plan to create.

Introduction to Analytic Workspace Manager
Your goal in using Analytic Workspace Manager is to create a multidimensional data
store that supports business analysis. Analytic Workspace Manager is the primary tool
for creating, developing, and managing analytic workspaces. The main window
provides two views: the Model View and the Object View. You can switch between
views using the View menu. In addition, there are menus, a toolbar, a navigation tree,
and property sheets. When you select an object in the navigation tree, the property
sheet to the right provides detailed information about that object. When you right-click
an object, you get a choice of menu items with appropriate actions for that object.

Analytic Workspace Manager has a full online Help system, which includes
context-sensitive Help.

Model View
The Model View enables you to define a multidimensional model composed of
dimensions, levels, hierarchies, attributes, measures, calculated measures, and
measure folders. The model is stored in the analytic workspace as database standard
form metadata.

A drag-and-drop user interface facilitates mapping of the objects to columns in
relational tables, views, and synonyms in Oracle Database. The source columns can be
star, snowflake, or any other schema design that supports the multidimensional
model.

Figure 3–1 shows the dimensions, cubes, and measures created in the GLOBAL analytic
workspace.

See Also:

"Overview of the Dimensional Data Model" on page 1-8 for an
introduction to dimensional objects

Appendix A, "Designing a Dimensional Model," for a case study of
developing a dimensional model for the Global analytic workspace

Creating a Dimensional Data Store Using Analytic Workspace Manager

Creating Dimensions and Cubes 3-3

Figure 3–1 Model View in Analytic Workspace Manager

Object View
The Object View provides a graphical user interface to the OLAP DML. You can create,
modify, and delete individual workspace objects. This view is provided for users who
are familiar with the OLAP DML and want to upgrade from Express databases or
modify custom applications. You should not use this view to manually change a
standard form analytic workspace, because you may create inconsistencies in the
metadata.

Creating a Dimensional Data Store Using Analytic Workspace Manager
An analytic workspace is a container for storing related cubes. You create dimensions,
cubes, and other dimensional objects within the context of an analytic workspace.

Basic Steps for Creating an Analytic Workspace
To create an analytic workspace:

1. Open Analytic Workspace Manager and connect to your database instance as the
user defined for this purpose.

2. Create a new analytic workspace container in your database:

a. In the Model View navigation tree, expand the folders until you see the
schema where you want to create the analytic workspace.

b. Right-click the schema name, then choose Create Analytic Workspace from
the shortcut menu.

c. Complete the Create Analytic Workspace dialog box, then choose Create.

The new analytic workspace appears in the Analytic Workspaces folder for the
schema.

Creating Dimensions

3-4 Oracle OLAP Application Developer's Guide

3. Define the dimensions for the data.

See "Creating Dimensions" on page 3-4.

4. Define the cubes for the data.

See "Creating Cubes" on page 3-12.

When you have finished, you have an analytic workspace populated with the detail
data fetched from relational tables or views. You may also have summarized data and
calculated measures.

Adding Functionality to Dimensional Objects
In addition to the basic steps, you can add functionality to an analytic workspace in
these ways:

■ Define measure folders to simplify access for end users.

See "Defining Measure Folders" on page 3-19.

■ Support multiple languages by adding translations of metadata and dimension
attributes.

See "Supporting Multiple Languages" on page 3-20.

How Analytic Workspace Manager Saves Changes
Analytic Workspace Manager saves changes automatically that you make to the
analytic workspace. You do not explicitly save your changes.

Saves occur when you take an action such as these:

■ Click OK or the equivalent button in a dialog box.

For example, when you click Import in the Import From EIF File dialog box, the
contents are imported, and the revised analytic workspace is committed to the
database. Likewise, when you click Create in the Create Dimension dialog box, the
new dimension is committed to the database.

■ Click Apply in a property sheet.

For example, when you change the labels on the General property page for an
object, the change takes effect when you click Apply.

Creating Dimensions
Dimensions are lists of unique values that identify and categorize data. They form the
edges of a logical cube, and thus of the measures within the cube.

Dimensions are the parents of levels, hierarchies, and attributes in the logical model.
You define these supporting objects, in addition to the dimension itself, in order to
have a fully functional dimension.

You can define dimensions that have any of these common forms:

■ List or flat dimensions that have no levels or hierarchies.

■ Level-based dimensions that use parent-child relationships to group members into
levels. Most dimensions are level-based.

■ Value-based dimensions that have parent-child relationships among their
members, but these relationships do not form meaningful levels.

Creating Dimensions

Creating Dimensions and Cubes 3-5

Dimension Members Must Be Unique
Every dimension member must be a unique value. Depending on your data, you can
create a dimension that uses either natural keys or surrogate keys from the relational
sources for its members.

■ Natural keys are read from the relational sources without modification. To use
natural keys, the values must be unique across levels. Because each level may be
mapped to a different relational column, this uniqueness may not be enforced in
the source data.

For example, a Geography source table might have a value of NEW_YORK in the CITY
column and a value of NEW_YORK in the STATE column. Unless you take steps to
assure uniqueness, the second value for NEW_YORK overwrites the first.

If a dimension is flat or value-based, then it must use natural keys because no
levels are defined as metadata. You must take whatever steps you need to assure
that the dimension members are unique.

■ Surrogate keys ensure uniqueness by adding a level prefix to the members while
loading them into the analytic workspace. For the previous example, surrogate
keys create two dimension members named CITY_NEW_YORK and STATE_NEW_YORK,
instead of a single member named NEW_YORK. A dimension that has surrogate keys
must be defined with at least one level-based hierarchy.

Time Dimensions Have Special Requirements
You can define dimensions as either User or Time dimensions. Business analysis is
performed on historical data, so fully defined time periods are vital. A time dimension
table must have columns for period end dates and time span. These required attributes
support time-series analysis, such as comparisons with earlier time periods. If this
information is not available, then you can define Time as a User dimension, but it will
not support time-based analysis.

You must define a Time dimension with at least one level to support time-based
analysis, such as a custom measure that calculates the difference from the prior period.

To create a dimension:
1. Expand the folder for the analytic workspace.

2. Right-click Dimensions, then choose Create Dimension from the shortcut menu.

The Create Dimension dialog box is displayed.

3. Complete all tabs.

Click Help for specific information about your choices.

4. Click Create.

The new dimension appears as a subfolder under Dimensions.

Figure 3–2 shows the creation of the Time dimension.

Creating Dimensions

3-6 Oracle OLAP Application Developer's Guide

Figure 3–2 Creation of the Time Dimension

Creating Levels
For business analysis, data is typically summarized by level. For example, your
database may contain daily snapshots of a transactional database. Days are thus the
base level. You might summarize this data at the weekly, quarterly, and yearly levels.

Levels have parent-child or one-to-many relationships, which form a level-based
hierarchy. For example, each week summarizes seven days, each quarter summarizes
13 weeks, and each year summarizes four quarters. This hierarchical structure enables
analysts to detect trends at the higher levels, then drill down to the lower levels to
identify factors that contributed to a trend.

For each level that you define, you must identify a data source for dimension members
at that level. Members at all levels are stored in the same dimension. In the previous
example, the Time dimension contains members for weeks, quarters, and years.

To create a level:
1. Expand the folder for the dimension.

2. Right-click Levels, then choose Create Level.

The Create Level dialog box is displayed.

3. Complete all tabs of the Create Level dialog box.

Click Help for specific information about these choices.

4. Click Create.

The new level appears as an item in the Levels folder.

Figure 3–3 shows the creation of the Quarter level for the Time dimension.

Creating Dimensions

Creating Dimensions and Cubes 3-7

Figure 3–3 Creation of the Quarter Level

Creating Hierarchies
Dimensions can have one or more hierarchies. Most hierarchies are level-based.
Analytic Workspace Manager supports these common types of level-based hierarchies:

■ Normal hierarchies consist of one or more levels of aggregation. Members roll up
into the next higher level in a many-to-one relationship, and these members roll
up into the next higher level, and so forth to the top level.

■ Ragged hierarchies contain at least one member with a different base, creating a
"ragged" base level for the hierarchy.

■ Skip-level hierarchies contain at least one member whose parents are multiple
levels above it, creating a hole in the hierarchy. An example of a skip-level
hierarchy is City-State-Country, where at least one city has a country as its parent
(for example, Washington D.C. in the United States).

In relational source tables, a skip-level hierarchy may contain nulls in the level
columns.

You may also have dimensions with parent-child relations that do not support levels.
For example, an employee dimension might have a parent-child relation that identifies
each employee's supervisor. However, levels that group together first-, second-, and
third-level supervisors and so forth may not be meaningful for analysis. Similarly, you
might have a line-item dimension with members that cannot be grouped into
meaningful levels. In this situation, you can create a value-based hierarchy defined by
the parent-child relations, which does not have named levels. You can create
value-based hierarchies only for dimensions that use natural keys, because surrogate
keys are formed with the names of the levels.

To create a hierarchy:
1. Expand the folder for the dimension.

2. Right-click Hierarchies, then choose Create Hierarchy.

The Create Hierarchy dialog box is displayed.

3. Complete all tabs of the Create Hierarchy dialog box.

If you define multiple hierarchies, be sure to define one of them as the default
hierarchy.

Click Help for specific information about these choices.

4. Click Create.

Creating Dimensions

3-8 Oracle OLAP Application Developer's Guide

The new hierarchy appears as an item in the Hierarchies folder.

Figure 3–4 shows creation of the Calendar hierarchy for the Time dimension. Time has
only one hierarchy, so Calendar is the default hierarchy.

Figure 3–4 Creation of the Calendar Hierarchy

Creating Attributes
Attributes provide information about the individual members of a dimension. They
are used for labeling crosstabular and graphical data displays, selecting data,
organizing dimension members, and so forth.

Automatically Defined Attributes
Analytic Workspace Manager creates some attributes automatically when creating a
dimension. These attributes have a unique type, such as "Member Long Description,"
which OLAP client applications expect to find.

All dimensions are created with long and short description attributes. If your source
tables include long and short descriptions, then you can map the attributes to the
appropriate columns. However, if your source tables include only one set of labels,
then you should always map the long description attributes. You can decide whether
to map the short description attributes to the same column. If you do, the data is
loaded twice.

Discoverer Plus OLAP, Spreadsheet Add-In, and OracleBI Beans use long description
attributes in selection lists and for labeling crosstabs and graphs. The Add-In initially
makes limited use of short description attributes, but users can switch to long
descriptions. If the appropriate descriptions are not available, then these tools use
dimension members. For example, if the Product dimension has short descriptions but
no long descriptions, then the tools display Product dimension members.

Creating Dimensions

Creating Dimensions and Cubes 3-9

Time dimensions are created with time-span and end-date attributes. This information
must be provided for all Time dimension members.

Be sure to examine all of these attribute definitions, because you may wish to change
the default settings. In particular, expand the hierarchy tree on the Basic tab to verify
that the correct levels are selected. These choices affect the number of columns that
you can map to the dimension.

User-Defined Attributes
You can create additional "User" attributes that provide supplementary information
about the dimension members.

To create an attribute:
1. Expand the folder for the dimension.

2. Right-click Attributes, then choose Create Attribute.

The Create Attribute dialog box is displayed.

3. Complete all tabs of the Create Attribute dialog box.

Click Help for specific information about these choices.

4. Click Create.

The new attribute appears as an item in the Attributes folder.

Figure 3–5 shows the creation of an attribute that pertains only to dimension members
at the Quarter level of the Time dimension.

Figure 3–5 Creation of the Time Quarter of Year Attribute

Mapping Dimensions
Mapping identifies the relational data source for each dimensional object. After
mapping a dimension to a column of a relational table or view, you can load the data.

Creating Dimensions

3-10 Oracle OLAP Application Developer's Guide

You can create, map, and load each dimension individually, or perform each step for
all dimensions before proceeding to the next step.

Mapping Window
The mapping window has a tabular view and a graphical view.

■ Tabular view. Drag-and-drop the names of individual columns from the schema
navigation tree to the rows for the logical objects.

■ Graphical view. Drag-and-drop icons, which represent tables and views, from the
schema navigation tree onto the mapping canvas. Then you draw lines from the
columns to the logical objects.

Click Help on the Mapping page for more information. When you are done mapping
the dimension, click Apply.

Figure 3–6 shows the TIME dimension mapped in the tabular view. The toolbar
appears across the top and the schema navigation tree is on the left.

Figure 3–6 Time Dimension Mapped in a Tabular View

Source Data Query
You can view the contents of a particular source column without leaving the mapping
window. The information is readily available, eliminating the guesswork when the
names are not adequately descriptive.

To see the values in a particular source table or view:
1. Right-click the source object in either the schema tree or the graphical view of the

mapping canvas.

2. Choose View Data from the shortcut menu.

Figure 3–7 shows the data stored in the TIME_QUARTER_DIM table.

Creating Dimensions

Creating Dimensions and Cubes 3-11

Figure 3–7 Data in a Source Dimension Table

Loading Data Into Dimensions
Analytic Workspace Manager provides several ways to load data into dimensional
objects. The quickest way when developing a data model is using the default choices
of the Maintenance Wizard. Other methods may be more appropriate in a production
environment than the one used here.

To load data into the dimensions:
1. In the navigation tree, right-click the Dimensions folder or the folder for a

particular dimension, then choose Maintain Dimension.

The Maintenance Wizard opens on the Select Objects page.

2. Select one or more dimensions from Available Target Objects and use the shuttle
buttons to move them to Selected Target Objects.

3. Click Finish to load the dimension values immediately.

The additional pages of the wizard enable you to create a SQL script or submit the
load to the Oracle job queue. To use these options, click Next instead.

4. Review the build log, which appears when the build is complete. If the log shows
that errors occurred, then fix them and run the Maintenance Wizard again.

Errors are typically caused by problems in the mapping. Check for incomplete
mappings or changes to the source objects.

Figure 3–8 shows the first page of the Maintenance Wizard. Only the Time dimension
has been selected for maintenance. All the Time dimension members and attributes are
fetched from the mapped relational sources.

Creating Cubes

3-12 Oracle OLAP Application Developer's Guide

Figure 3–8 Loading Dimension Values into the Time Dimension

Displaying the Dimension Members
After loading a dimension, you can see its members by using the dimension viewer.

To display dimension members:
1. In the navigation tree, right-click the name of a dimension.

2. Choose View Data.

Figure 3–9 shows the Time dimension in the dimension viewer.

Figure 3–9 Displaying the Time Dimension

Creating Cubes
Cubes are informational objects that identify measures with the exact same dimensions
and thus are candidates for being processed together at all stages: data loading,
aggregation, storage, and querying.

Creating Cubes

Creating Dimensions and Cubes 3-13

Cubes define the shape of your business measures. They are defined by a set of
ordered dimensions. The dimensions form the edges of a cube, and the measures are
the cells in the body of the cube.

To create a cube:
1. Expand the folder for the analytic workspace.

2. Right-click Cubes, then choose Create Cube.

The Create Cube dialog box is displayed.

3. Complete all tabs except Implementation Details of the Create Cube dialog box.

Important: After mapping the cube, run the Sparsity Advisor to see the
recommended settings for the Implementation Details tab. For more information
about the Summary To tab, refer to Chapter 8.

4. Click Create.

The new cube appears as a subfolder under Cubes.

Figure 3–10 shows the Rules tab for the Units cube, with the list of aggregation
operators displayed.

Figure 3–10 Selecting an Aggregation Operator

Creating Measures
Measures store the facts collected about your business. Each measure belongs to a
particular cube, and thus shares particular characteristics with other measures in the

See Also: For descriptions of the aggregation operators:

■ "Aggregation Operators" on page 8-3

■ Click Help on the Rules tab in Analytic Workspace Manager

Creating Cubes

3-14 Oracle OLAP Application Developer's Guide

cube, such as the same dimensions. The default attributes of a measure are inherited
from the cube.

To create a measure:
1. Expand the folder for the cube that has the dimensions of the new measure.

2. Right-click Measures, then choose Create Measure.

The Create Measure dialog box is displayed.

3. Complete the General tab of the Create Measure dialog box. Complete the other
tabs to override the cube settings.

4. Click Create.

The new measure appears as an item in the Measures folder.

Figure 3–11 shows the General tab of the Create Measure dialog box.

Figure 3–11 Creating the Sales Measure

Mapping Cubes
You use the same interface to map cubes as you did to map dimensions, as described
in "Mapping Dimensions" on page 3-9.

To map a cube in the graphical view:
1. Define the cube and its measures.

2. In the navigation tree, expand the Cubes folder and click Mappings.

The Mapping Window is displayed in the right pane. You see a schema navigation
tree and a table with rows for the measures, dimensions, and levels.

3. Enlarge the mapping window by dragging the divider to the left.

4. In the schema navigation tree, locate the tables with the measures. Drag-and-drop
them onto the mapping canvas.

5. Draw lines from the source columns to the target objects.

Creating Cubes

Creating Dimensions and Cubes 3-15

To draw a line, click the output connector of the source column and drag it to the
input connector of the target object. You must map both the measures and the
related dimension keys.

6. To uncross the lines, click the Auto Arrange Mappings tool.

7. When you have mapped all objects for the dimension, drag the divider to the right
to restore access to the navigation tree.

Figure 3–12 shows the mapping canvas with the Price and Cost cube mapped to
columns in the PRICE_AND_COST_HIST_FACT table. The mapping toolbar is at the top,
and the schema navigation tree is on the left.

Figure 3–12 Units Cube Mapped in Graphical View

Choosing a Data Storage Strategy
The creation of a cube requires several decisions about data storage that affect the
performance of the analytic workspace. These choices are on the Implementation
Details tab for the cube. The Sparsity Advisor in Analytic Workspace Manager
evaluates the data in the relational tables and recommends the appropriate settings.
You can accept the recommendations or modify them before implementing them in the
cube.

Partitioning a Cube
Partitioning is a method of physically storing the measures in a cube. It improves the
performance of large measures in the following ways:

■ Improves scalability by keeping data structures small. Each partition functions like
a smaller measure.

Creating Cubes

3-16 Oracle OLAP Application Developer's Guide

■ Keeps the working set of data smaller both for queries and maintenance, since the
relevant data is stored together.

■ Enables parallel aggregation during data maintenance. Each partition can be
aggregated by a separate process.

■ Simplifies removal of old data from storage. Old partitions can be dropped, and
new partitions can be added.

The number of partitions affects the database resources that can be allocated to loading
and aggregating the data in a cube. Partitions can be aggregated simultaneously when
sufficient resources have been allocated.

The Sparsity Advisor analyzes the source tables and develops a partitioning strategy.
You can accept the recommendations of the Sparsity Advisor, or you can make your
own decisions about partitioning. Analytic Workspace Manager does not partition
cubes by default.

Choosing a Dimension for Partitioning
If your partitioning strategy is driven primarily by life-cycle management
considerations, then you should partition the cube on the Time dimension. Old time
periods can then be dropped as a unit, and new time periods added as a new partition.
In Figure 3–14, for instance, the Quarter level of the Time dimension is used as the
partitioning key.

If life-cycle management is not a primary consideration, then partition on whatever
dimension the Sparsity Advisor recommends. If the source fact table is partitioned,
then the cube is partitioned on the same dimension. Otherwise, the Sparsity Advisor
develops a strategy designed to achieve optimal build and query performance.

To run the Sparsity Advisor:
1. Create a cube and map it to a relational data source.

2. In the navigation tree, right-click the cube and choose Sparsity Advisor.

Wait while the Sparsity Advisor analyzes the cube. When it is done, the Sparsity
Advisor for Cube dialog box displays the recommendations.

3. For compressed cubes, be sure to select a data type for the cube.

4. Look over the recommendations and make any changes.

5. Click Recreate Cube to implement the recommendations.

Figure 3–13 shows the Sparsity Advisor dialog box with settings that are typical for a
real-world cube.

Creating Cubes

Creating Dimensions and Cubes 3-17

Figure 3–13 Storage Strategy for a Cube

Example of a Partitioned Dimension
The Partitioning Advisor might recommend partitioning at the Quarter level of the
Calendar hierarchy of the Time dimension. Each Quarter and its descendants are
stored in a separate partition. If there are three years of data in the analytic workspace,
then partitioning on Quarter produces 12 bottom partitions, in addition to the default
top partition. The top partition contains all remaining levels, that is, those above
Quarter (such as Year) and those in other hierarchies (such as Fiscal Year or
Year-to-Date).

Figure 3–14 illustrates a Time dimension partitioned by Quarter.

Figure 3–14 Partitioning Time by Quarter

Creating Cubes

3-18 Oracle OLAP Application Developer's Guide

Loading Data Into a Cube
You load data into cubes using the same methods as dimensions. However, loading
and aggregating the data for your business measures typically takes more time to
complete. Unless you are developing a dimensional model using a small sample of
data, you may prefer to run the build in one or more background processes.

1. In the navigation tree, right-click the Cubes folder or the name of a particular cube.

2. Choose Maintain Cube.

The Maintenance Wizard opens on the Select Objects page.

3. Select one or more cubes from Available Target Objects and use the shuttle buttons
to move them to Selected Target Objects. If the dimensions are already loaded, you
can omit them from Selected Target Objects.

4. On the Dimension Data Processing Options page, you can choose to do a complete
or a partial refresh of the cube.

5. On the Task Processing Options page, you can submit the build to the Oracle job
queue or create a SQL script that you can run outside of Analytic Workspace
Manager.

You can also select the number of processes to dedicate to this build. The number
of parallel processes is limited by the smallest of these numbers: The number of
partitions in the cube, the number of processes dedicated to the build, and the
setting of the JOB_QUEUE_PROCESSES initialization parameter.

Click Help for information about these choices.

6. Click Finish.

Figure 3–15 shows the build submitted immediately to the Oracle job queue.

Figure 3–15 Selecting the Task Processing Options

Displaying the Data in a Cube
After loading a cube, you can display the data for your business measures in Analytic
Workspace Manager.

Defining Measure Folders

Creating Dimensions and Cubes 3-19

To display the data in a cube:
1. In the navigation tree, right-click the cube.

2. Choose View Data from the shortcut menu.

The Measure Data Viewer displays the selected measure in a crosstab at the top of the
page and a graph at the bottom of the page. On the crosstab, you can expand and
collapse the dimension hierarchies that label the rows and columns. You can also
change the location of a dimension by pivoting or swapping it. If you wish, you can
use multiple dimensions to label the columns and rows, by nesting one dimension
under another.

■ To pivot, drag a dimension from one location and drop it at another location,
usually above or below another dimension.

■ To swap dimensions, drag and drop one dimension directly over another
dimension, so they exchange locations.

To make extensive changes to the selection of data, choose Query Builder from the File
menu.

Figure 3–16 shows the Units cube in the Measure Viewer.

Figure 3–16 Displaying the Units Cube

Defining Measure Folders
You can define a measure folder for use by OLAP tools, so that the measures can be
located and identified quickly by users. They may have access to several analytic
workspaces or relational schemas with measures named Sales or Costs, and they have

Supporting Multiple Languages

3-20 Oracle OLAP Application Developer's Guide

no means of differentiating them outside of a measure folder. The Cube Viewer in
Analytic Workspace Manager also uses measure folders.

To create a measure folder:
1. Expand the folder for the analytic workspace.

2. Right-click Measure Folders, then choose Create Measure Folder.

3. Complete the General tab of the Create Measure Folder dialog box.

Click Help for specific information about these choices.

The new measure folder appears in the navigation tree under Measure Folders. You
can also create subfolders.

Figure 3–17 shows creation of a measure folder.

Figure 3–17 Creating a Measure Folder

Supporting Multiple Languages
A single analytic workspace can support multiple languages. This support enables
users of OLAP applications and tools to view the metadata in their native languages.
For example, you can provide translations for the display names of measures, cubes,
and dimensions. You can also map attributes to multiple columns, one for each
language.

The number and choice of languages is restricted only by the database character set
and your ability to provide translated text. Languages can be added or removed at any
time.

To add support for multiple languages:
1. In the navigation tree, expand the folder for the analytic workspace.

2. Click Languages and select the languages for the analytic workspace on the Basic
tab.

Using Templates to Re-Create Dimensional Objects

Creating Dimensions and Cubes 3-21

3. For each dimension, level, hierarchy, attribute, cube, measure, calculated measure,
and measure folder, select the Translations tab of the property sheet. Enter the
object labels and descriptions in each language.

4. For each dimension, open the Mappings window. Map the attributes to columns
for each language.

Figure 3–18 shows the selection of languages.

Figure 3–18 Adding Language Support

Using Templates to Re-Create Dimensional Objects
Analytic Workspace Manager enables you to save all or part of the multidimensional
model as a text file. This text file contains the XML definitions of the dimensional
objects, such as dimensions, levels, hierarchies, attributes, and measures. Only the
metadata is saved, not the data or any customizations. Templates are small files, so
you can easily distribute them by e-mail or on a Web site, just as the templates for
Global and Sales History are distributed on the Oracle Web site. To re-create the logical
objects, you simply identify the templates in Analytic Workspace Manager.

You can save the following types of objects as XML templates:

■ Analytic workspace: Saves all logical objects. You can save measure folders and
calculation plans only by saving the complete analytic workspace.

■ Cube: Saves the cube and its measures, calculated measures, and mappings.

■ Calculated measure: Saves just the calculated measure.

■ Dimension: Saves the dimension and its levels, hierarchies, attributes, and
mappings.

To create a template:
In the navigation tree, right-click the object and choose Save object to Template.

Using Templates to Re-Create Dimensional Objects

3-22 Oracle OLAP Application Developer's Guide

To create logical objects from a template:
In the navigation tree, right-click the object type and choose Create object From
Template.

4

Querying Dimensional Objects Using SQL 4-1

4Querying Dimensional Objects Using SQL

You can query the rich data stored in dimensional objects using SQL. This chapter
explains the basics of querying relational views of cubes and dimensions.

This chapter includes the following topics:

■ Querying Dimensional Data in SQL

■ Exploring the Shape of OLAP Views

■ Creating Basic Queries

■ Creating Hierarchical Queries

■ Using Calculations in Queries

■ Using Attributes for Aggregation

■ Querying the Active Catalog

Querying Dimensional Data in SQL
Oracle OLAP adds power to your SQL applications by providing extensive analytic
content and fast query response times. A SQL query interface enables any application
to query cubes and dimensions without any knowledge of OLAP.

You can generate relational views of cubes and dimensions. SQL applications query
these views to display the information-rich contents of dimensional objects to analysts
and decision makers.

The SQL OLAP_TABLE function provides the basic technology for querying OLAP
dimensional objects in SQL. You can use it for querying the objects directly or for
creating views that can be queried with standard SQL SELECT statements. There are
also some example programs for generating views available on the Oracle Technology
Network.

See Also:

■ Chapter 5, "Querying Dimensional Objects Using OLAP Tools"

■ Chapter 10, "Developing Reports and Dashboards"

See Also:

■ Oracle OLAP Reference for more information about OLAP_TABLE

■ Oracle Technology Network for a sample view generator at

http://www.oracle.com/technetwork/database/options/olap/i
ndex.html

http://www.oracle.com/technetwork/database/options/olap/index.html
http://www.oracle.com/technetwork/database/options/olap/index.html

Exploring the Shape of OLAP Views

4-2 Oracle OLAP Application Developer's Guide

Exploring the Shape of OLAP Views
You can create views of OLAP cubes and dimensions. For querying the data, you only
need cube views. Cube views are denormalized views of all the measures, dimensions,
levels, and attributes. They contain all of the data found in the tables of a star schema.

If you are developing an application, you can use dimension views as a convenient
way to populate choice lists. Dimension views are equivalent to the dimension tables
of a star schema.

Cube Views
Like a fact table, a cube view contains a column for each measure, calculated measure,
and dimension of the cube. A cube view also contains columns for the parents, levels,
and attributes of all the dimensions, so that the view is fully denormalized. These are
the types of columns that should be included in a cube view:

■ Dimensions: The dimension columns contain all the dimension keys at all levels
of the dimension. Example 4–1 describes the columns of a view of the Global Units
Cube. There are columns for TIME, CUSTOMER, PRODUCT, and CHANNEL. The TIME
column contains dimension keys for months, quarters, and years.

■ Parents: The parent columns define the parent-child relationships in a particular
hierarchy. Example 4–1 shows a column name TIME_CALENDAR_YEA_PRNT that
identifies the parent in the Calendar Year hierarchy of the dimension key in the
TIME column. In this hierarchy, every month has a quarter for a parent, and every
quarter has a year.

■ Hierarchy: The hierarchy columns provide the ancestor at each level of a
particular dimension, using the description instead of the dimension key.
Example 4–1 shows hierarchy columns named TIME_YEAR_LVLDSC, TIME_QUARTER_
LVLDSC, and TIME_MONTH_LVLDSC. A TIME value at the quarter level has values at
the year and quarter levels, but not at the month level.

■ Levels: The level columns identify the level of the dimension key. The TIME_LEVEL
column in Example 4–1 has values of MONTH, QUARTER, and YEAR.

■ Attributes: The attribute columns contain the attribute values for the dimensions.
Example 4–1 has attribute columns named TIME_END_DATE, TIME_TIME_SPAN, TIME_
LDSC, TIME_SDSC, TIME_QUARTER_OF_YEAR, TIME_MONTH_OF_QUARTER, and TIME_
MONTH_OF_YEAR.

■ Measures: The measure columns contain the facts for all combinations of
dimension keys at all levels of the hierarchy. Thus, a cube view returns data at all
levels of aggregation, from the detail level to the topmost level of consolidation.
Example 4–1 has columns for the UNITS and SALES measures.

■ Calculated Measures: These columns contain the calculated measures that have
been defined for the cube. Like the measure columns, they contain business facts
at all levels of aggregation. Example 4–1 shows that the Units Cube has calculated
measures named SALES_PCT_CHG_PP, SALES_CHG_PP, PROD_SALES_SHARE_WITHIN_
TOTAL, PROD_SALES_SHARE_WITHIN_PARENT, AND THREE_PERIOD_MOVING_AVG_
SALES.

The DSO and OLAP_CALC columns shown in Example 4–1 are not queried by SQL.

Example 4–1 Cube View of the Global Units Cube

SQL> DESCRIBE units_cube_cubeview
 Name Null? Type
 --- -------- ----------------------------

Exploring the Shape of OLAP Views

Querying Dimensional Objects Using SQL 4-3

 TIME VARCHAR2(4000)
 CUSTOMER VARCHAR2(4000)
 PRODUCT VARCHAR2(4000)
 CHANNEL VARCHAR2(4000)
 TIME_CALENDAR_YEA_PRNT VARCHAR2(4000)
 TIME_YEAR_LVLDSC VARCHAR2(4000)
 TIME_QUARTER_LVLDSC VARCHAR2(4000)
 TIME_MONTH_LVLDSC VARCHAR2(4000)
 TIME_END_DATE DATE
 TIME_TIME_SPAN NUMBER
 TIME_LDSC VARCHAR2(4000)
 TIME_SDSC VARCHAR2(4000)
 TIME_QUARTER_OF_YEAR VARCHAR2(4000)
 TIME_MONTH_OF_QUARTER VARCHAR2(4000)
 TIME_MONTH_OF_YEAR VARCHAR2(4000)
 TIME_TIME_DSO_1 NUMBER
 TIME_LEVEL VARCHAR2(4000)
 .
 .
 .
 UNITS NUMBER
 SALES NUMBER
 SALES_PCT_CHG_PP NUMBER
 SALES_CHG_PP NUMBER
 PROD_SALES_SHARE_WITHIN_TOTAL NUMBER
 PROD_SALES_SHARE_WITHIN_PARENT NUMBER
 THREE_PERIOD_MOVING_AVG_SALES NUMBER
 OLAP_CALC RAW(16)

You can display the facts in a cube view quickly with a query like the one shown in
Example 4–2.

Example 4–2 Querying the Facts in a Cube View

SQL> SELECT time, customer, product, channel, units, sales
 FROM units_cube_cubeview WHERE rownum < 15;

TIME CUSTOMER PRODUCT CHANNEL UNITS SALES
---------------- ---------------- ---------------- ---------------- ---------- ----------
YEAR_145 TOTAL_CUSTOMER_1 TOTAL_PRODUCT_1 TOTAL_CHANNEL_1
YEAR_4 TOTAL_CUSTOMER_1 TOTAL_PRODUCT_1 TOTAL_CHANNEL_1 415392 116931479
YEAR_2 TOTAL_CUSTOMER_1 TOTAL_PRODUCT_1 TOTAL_CHANNEL_1 330425 134109248
YEAR_3 TOTAL_CUSTOMER_1 TOTAL_PRODUCT_1 TOTAL_CHANNEL_1 364233 124173522
YEAR_1 TOTAL_CUSTOMER_1 TOTAL_PRODUCT_1 TOTAL_CHANNEL_1 253816 100870877
YEAR_85 TOTAL_CUSTOMER_1 TOTAL_PRODUCT_1 TOTAL_CHANNEL_1 364965 92515295
YEAR_119 TOTAL_CUSTOMER_1 TOTAL_PRODUCT_1 TOTAL_CHANNEL_1 339831 80846147.8
YEAR_102 TOTAL_CUSTOMER_1 TOTAL_PRODUCT_1 TOTAL_CHANNEL_1 534069 130276515
QUARTER_12 TOTAL_CUSTOMER_1 TOTAL_PRODUCT_1 TOTAL_CHANNEL_1 87521 33761936.8
QUARTER_13 TOTAL_CUSTOMER_1 TOTAL_PRODUCT_1 TOTAL_CHANNEL_1 88484 31522409.5
QUARTER_81 TOTAL_CUSTOMER_1 TOTAL_PRODUCT_1 TOTAL_CHANNEL_1 84100 21499269.6
QUARTER_141 TOTAL_CUSTOMER_1 TOTAL_PRODUCT_1 TOTAL_CHANNEL_1
QUARTER_143 TOTAL_CUSTOMER_1 TOTAL_PRODUCT_1 TOTAL_CHANNEL_1
QUARTER_6 TOTAL_CUSTOMER_1 TOTAL_PRODUCT_1 TOTAL_CHANNEL_1 61320 24993273.3

14 rows selected.

A query like the one in Example 4–3 displays the level, ancestry, and attributes of each
dimension key.

Exploring the Shape of OLAP Views

4-4 Oracle OLAP Application Developer's Guide

Example 4–3 Querying a Dimension in a Cube View

SQL> SELECT time, time_level, time_calendar_yea_prnt parent, time_year_lvldsc year,
 time_quarter_lvldsc quarter, time_month_lvldsc month, time_ldsc description,
 time_end_date end_date, time_time_span time_span
 FROM units_cube_cubeview WHERE rownum < 15;

TIME TIME_LEVEL PARENT YEAR QUARTER MONTH DESCRIPTION END_DATE TIME_SPAN
------------ ---------- ---------- -------- -------- -------- ------------ --------- ----------
YEAR_145 YEAR 2005 2005 31-DEC-05 365
YEAR_4 YEAR 2001 2001 31-DEC-01 365
YEAR_2 YEAR 1999 1999 31-DEC-99 365
YEAR_3 YEAR 2000 2000 31-DEC-00 366
YEAR_1 YEAR 1998 1998 31-DEC-98 365
YEAR_85 YEAR 2002 2002 31-DEC-02 365
YEAR_119 YEAR 2004 2004 31-DEC-04 366
YEAR_102 YEAR 2003 2003 31-DEC-03 365
QUARTER_12 QUARTER YEAR_2 1999 Q4-99 Q4-99 31-DEC-99 92
QUARTER_13 QUARTER YEAR_3 2000 Q1-00 Q1-00 31-MAR-00 91
QUARTER_81 QUARTER YEAR_85 2002 Q1-02 Q1-02 31-MAR-02 90
QUARTER_141 QUARTER YEAR_145 2005 Q1-05 Q1-05 31-MAR-05 90
QUARTER_143 QUARTER YEAR_145 2005 Q3-05 Q3-05 30-SEP-05 92
QUARTER_6 QUARTER YEAR_1 1998 Q2-98 Q2-98 30-JUN-98 91

14 rows selected.

Dimension Views
A dimension view contains all the information typically found in a dimension table of
a star schema. The view contains a column for the dimension keys, parents, levels,
hierarchies, and attributes. All of these columns are also found in the cube views, so
there is no need to join a cube view to the dimension views. However, you may want
to create dimension views to support user interface components such as choice lists.

Example 4–4 shows the columns of a dimension view for the Global Time dimension.
For descriptions of these columns, refer to "Cube Views" on page 4-2.

Example 4–4 Dimension View for the Global Time Dimension

SQL> DESCRIBE time_dimview

 Name Null? Type
 --- -------- ----------------------------
 TIME VARCHAR2(4000)
 TIME_LEVEL VARCHAR2(4000)
 TIME_TIME_DSO_1 NUMBER
 TIME_MONTH_OF_YEAR VARCHAR2(4000)
 TIME_MONTH_OF_QUARTER VARCHAR2(4000)
 TIME_QUARTER_OF_YEAR VARCHAR2(4000)
 TIME_SDSC VARCHAR2(4000)
 TIME_LDSC VARCHAR2(4000)
 TIME_TIME_SPAN NUMBER
 TIME_END_DATE DATE
 TIME_MONTH_LVLDSC VARCHAR2(4000)
 TIME_QUARTER_LVLDSC VARCHAR2(4000)
 TIME_YEAR_LVLDSC VARCHAR2(4000)
 TIME_CALENDAR_YEA_PRNT VARCHAR2(4000)

You can display the hierarchical information provided in a dimension view with a
query like the one shown in Example 4–5.

Creating Basic Queries

Querying Dimensional Objects Using SQL 4-5

Example 4–5 Querying the Global Time Calendar Hierarchy

SQL> SELECT time, time_level, time_calendar_yea_prnt parent,
 time_year_lvldsc year,time_quarter_lvldsc quarter, time_month_lvldsc month
 FROM time_dimview WHERE rownum < 15;

TIME TIME_LEVEL PARENT YEAR QUARTER MONTH
------------ ---------- ---------- -------- -------- --------
YEAR_145 YEAR 2005
YEAR_4 YEAR 2001
YEAR_2 YEAR 1999
YEAR_3 YEAR 2000
YEAR_1 YEAR 1998
YEAR_85 YEAR 2002
YEAR_119 YEAR 2004
YEAR_102 YEAR 2003
QUARTER_12 QUARTER YEAR_2 1999 Q4-99
QUARTER_13 QUARTER YEAR_3 2000 Q1-00
QUARTER_81 QUARTER YEAR_85 2002 Q1-02
QUARTER_141 QUARTER YEAR_145 2005 Q1-05
QUARTER_143 QUARTER YEAR_145 2005 Q3-05
QUARTER_6 QUARTER YEAR_1 1998 Q2-98

14 rows selected.

A query like the one shown in Example 4–6 displays the attributes of the dimension.

Example 4–6 Querying the Global Time Attributes

SQL> SELECT time, time_ldsc description, time_month_of_year mo_of_yr,
 time_month_of_quarter mo_of_qtr, time_end_date end_date,
 time_time_span time_span
 FROM time_dimview
 WHERE time_month_of_year IS NOT NULL AND rownum < 15
 ORDER BY end_date;

TIME DESCRIPTION MO_OF_YR MO_OF_QTR END_DATE TIME_SPAN
------------ ------------ ---------- ---------- --------- ----------
MONTH_29 Nov-98 11 2 30-NOV-98 30
MONTH_35 May-99 5 2 31-MAY-99 31
MONTH_36 Jun-99 6 3 30-JUN-99 30
MONTH_40 Oct-99 10 1 31-OCT-99 31
MONTH_41 Nov-99 11 2 30-NOV-99 30
MONTH_52 Oct-00 10 1 31-OCT-00 31
MONTH_55 Jan-01 1 1 31-JAN-01 31
MONTH_66 Dec-01 12 3 31-DEC-01 31
MONTH_75 Jul-02 7 1 31-JUL-02 31
MONTH_120 Jun-04 6 3 30-JUN-04 30
MONTH_123 Sep-04 9 3 30-SEP-04 30
MONTH_126 Dec-04 12 3 31-DEC-04 31
MONTH_127 Jan-05 1 1 31-JAN-05 31
MONTH_135 Sep-05 9 3 30-SEP-05 30

14 rows selected.

Creating Basic Queries
When querying a cube, remember these guidelines:

■ Apply a filter to every dimension.

Creating Basic Queries

4-6 Oracle OLAP Application Developer's Guide

The cube contains both detail level and aggregated data. A query with an
unfiltered dimension typically returns more data than users need, which
negatively impacts performance.

■ Let the cube aggregate the data.

Because the aggregations are already calculated in the cube, a typical query does
not need a GROUP BY clause. Simply select the aggregations you want by using the
appropriate filters on the dimension keys or attributes.

Applying a Filter to Every Dimension
To create a level filter, you must know the names of the dimension levels. You can
easily acquire them by querying the cube or dimension views:

SQL> SELECT DISTINCT time_level FROM units_cube_cubeview;

TIME_LEVEL

QUARTER
MONTH
YEAR

To see the importance of applying a filter to every dimension, consider the query in
Example 4–7, which has no filter on the time dimension.

Example 4–7 Displaying Aggregates at All Levels of Time

/* Select key descriptions and facts */
SELECT time_ldsc time,
 ROUND(sales) sales
/* From cube view */
 FROM units_cube_cubeview
/* No filter on Time */
 WHERE product_level = 'TOTAL_PRODUCT'
 AND customer_level = 'TOTAL_CUSTOMER'
 AND channel_level = 'TOTAL_CHANNEL'
 ORDER BY time_end_date;

Without a filter on the Time dimension, the query returns values for every level of
time. This is more data than users typically want to see, and the volume of data
returned can degrade performance.

TIME SALES
------------ ----------
Jan-98 8338545
Feb-98 7972132
Q1-98 24538588
Mar-98 8227911
Apr-98 8470315
May-98 8160573
Q2-98 24993273
Jun-98 8362386
Jul-98 8296226
Aug-98 8377587
Sep-98 8406728
Q3-98 25080541
Oct-98 8316169
Nov-98 8984156
Q4-98 26258474
1998 100870877

Creating Basic Queries

Querying Dimensional Objects Using SQL 4-7

 .
 .
 .

Now consider the results when a filter restricts Time to yearly data.

Example 4–8 shows a basic query. It selects the long description attributes of Time and
the Sales measure from UNITS_CUBE_VIEW, and joins the keys from the cube view to the
hierarchy views to get descriptions of the keys.

Example 4–8 Basic Cube View Query

/* Select key descriptions and facts */
SELECT time_ldsc time,
 ROUND(sales) sales
/* From cube view */
 FROM units_cube_cubeview
/* Filters on all dimensions */
 WHERE time_level = 'YEAR'
 AND product_level = 'TOTAL_PRODUCT'
 AND customer_level = 'TOTAL_CUSTOMER'
 AND channel_level = 'TOTAL_CHANNEL'
 ORDER BY time_end_date;

Example 4–8 selects the following rows. For CUSTOMER, PRODUCT, and CHANNEL, only one
value is at the top level. TIME has a value for each calendar year.

TIME SALES
------------ ----------
1998 100870877
1999 134109248
2000 124173522
2001 116931479
2002 92515295
2003 130276515
2004 80846148
2005

8 rows selected.

Dimension attributes also provide a useful way to select the data for a query. The
WHERE clause in Example 4–9 uses attributes values to filter all of the dimensions.

Example 4–9 Selecting Data With Attribute Filters

/* Select key descriptions and facts */
SELECT time_ldsc time,
 product_ldsc product,
 customer_ldsc customer,
 ROUND(sales) sales
/* From dimension views and cube view */
FROM units_cube_cubeview
/* Create attribute filters */
WHERE time_ldsc IN ('2001', '2002')
 AND product_package = 'Laptop Value Pack'
 AND customer_ldsc LIKE '%Boston%'
 AND channel_ldsc = 'Internet'
ORDER BY time, customer;

The query selects two calendar years, the products in the Laptop Value Pack, the
customers in Boston, and the Internet channel.

Creating Basic Queries

4-8 Oracle OLAP Application Developer's Guide

TIME PRODUCT CUSTOMER SALES
---------- ------------------------------ ---------------------- ----------
2001 Laptop carrying case KOSH Entrpr Boston 4995
2001 56Kbps V.92 Type II Fax/Modem KOSH Entrpr Boston 9683
2001 Internal 48X CD-ROM KOSH Entrpr Boston 2122
2001 Envoy Standard KOSH Entrpr Boston 24335
2001 Standard Mouse KOSH Entrpr Boston 419
2001 Laptop carrying case Warren Systems Boston 747
2001 Standard Mouse Warren Systems Boston 107
2001 56Kbps V.92 Type II Fax/Modem Warren Systems Boston 1743
2001 Envoy Standard Warren Systems Boston 14438
2001 Internal 48X CD-ROM Warren Systems Boston 129
2002 Internal 48X CD-ROM KOSH Entrpr Boston 2161
2002 56Kbps V.92 Type II Fax/Modem KOSH Entrpr Boston 17573
2002 Envoy Standard KOSH Entrpr Boston
2002 Standard Mouse KOSH Entrpr Boston 487
2002 Laptop carrying case KOSH Entrpr Boston 5584
2002 Laptop carrying case Warren Systems Boston 3357
2002 Envoy Standard Warren Systems Boston 24511
2002 56Kbps V.92 Type II Fax/Modem Warren Systems Boston 1249
2002 Standard Mouse Warren Systems Boston 142
2002 Internal 48X CD-ROM Warren Systems Boston

20 rows selected.

Allowing the Cube to Aggregate the Data
A cube contains all of the aggregate data. As shown in this chapter, a query against a
cube just needs to select the aggregate data, not calculate the values.

The following is a basic query against a fact table:

/* Querying a fact table */
SELECT t.year_dsc time,
 SUM(sales) sales
 FROM time_dim t, units_history_fact f
 WHERE t.year_dsc IN ('2001', '2002')
 AND t.month_id = f.month_id
 GROUP BY t.year_dsc;

The next query fetches the exact same results from a cube using filters:

/* Querying a cube */
SELECT time_ldsc time, sales
 FROM units_cube_cubeview
/* Apply filters to every dimension */
 WHERE time_ldsc IN ('2001', '2002')
 AND product_level = 'TOTAL_PRODUCT'
 AND customer_level = 'TOTAL_CUSTOMER'
 AND channel_level = 'TOTAL_CHANNEL'
 ORDER BY time;

Both queries return these results:

TIME SALES
---------- ----------
2001 116931479
2002 92515295

The query against the cube does not compute the aggregate values with a SUM operator
and GROUP BY clause. Because the aggregates exist already in the cube, this would

Creating Hierarchical Queries

Querying Dimensional Objects Using SQL 4-9

re-aggregate previously aggregated data. Instead, the query selects the aggregates
directly from the cube and specifies the desired aggregates by applying the
appropriate filter to each dimension.

Query Processing
The most efficient queries allow the OLAP engine to filter the data, so that the
minimum number of rows required by the query are returned to SQL.

The following are among the WHERE clause operations that are pushed into the OLAP
engine for processing:

■ =

■ !=

■ >

■ !>

■ <

■ !<

■ IN

■ NOT IN

■ IS NULL

■ LIKE

■ NOT LIKE

The OLAP engine also processes nested character functions, including INSTR, LENGTH,
NVL, LOWER, UPPER, LTRIM, RTRIM, TRIM, LPAD, RPAD, and SUBSTR.

SQL processes other operations and functions in the WHERE clause, and all operations in
other parts of the SELECT syntax.

Creating Hierarchical Queries
Drilling is an important capability in business analysis. In a dashboard or an
application, users click a dimension key to change the selection of data. Decision
makers frequently want to drill down to see the contributors to a data value, or drill
up to see how a particular data value contributes to the whole. For example, the
Boston regional sales manager might start at total Boston sales, drill down to see the
contributions of each sales representative, then drill up to see how the Boston region
contributes to the New England sales total.

The views include a parent column that identifies the parent of every dimension key.
This column encapsulates all of the hierarchical information of the dimension. If you
know the parent of every key, then you can derive the ancestors, the children, and the
descendants.

For level-based hierarchies, the level column supplements this information by
providing a convenient way to identify all the keys at the same depth in the hierarchy,
from the top to the base. For value-based hierarchies, the parent column provides all
the information about the hierarchy.

See Also: Chapter 10, "Developing Reports and Dashboards," about
using bind variables to support drilling

Creating Hierarchical Queries

4-10 Oracle OLAP Application Developer's Guide

Drilling Down to Children
You can use the parent column of a view to select only the children of a particular
value. The following WHERE clause selects the children of calendar year 2001.

/* Select children of calendar year 2001 */
WHERE time_calendar_yea_prnt = 'YEAR_4'
 AND product = 'TOTAL_PRODUCT_1'
 AND customer = 'TOTAL_CUSTOMER_1'
 AND channel = 'TOTAL_CHANNEL_1'

The query drills down from Year to Quarter. The four quarters Q1-05 to Q4-05 are the
children of year CY2005 in the Calendar hierarchy.

TIME SALES
---------- ----------
Q1-01 27595330
Q2-01 27798427
Q3-01 29691668
Q4-01 3184605

Drilling Up to Parents
The parent column of a hierarchy view identifies the parent of each dimension key.
The following WHERE clause selects the parent of a Time key based on its long
description attribute.

WHERE time =
 (SELECT DISTINCT time_calendar_yea_prnt
 FROM units_cube_cubeview
 WHERE time_ldsc='Sep-01')
 AND product = 'TOTAL_PRODUCT_1'
 AND customer = 'TOTAL_CUSTOMER_1'
 AND channel = 'TOTAL_CHANNEL_1'

The query drills up from Month to Quarter. The parent of month Sep-01 is the quarter
Q3-01 in the Calendar Year hierarchy.

TIME SALES
---------- ----------
Q3-01 29691668

Drilling Down to Descendants
The following WHERE clause selects the descendants of calendar year 2001 by selecting
the rows with a Time level of MONTH and a year of 2001.

/* Select Time level and ancestor */
WHERE time_level = 'MONTH'
 AND time_year_lvldsc = '2001'
 AND product = 'TOTAL_PRODUCT_1'
 AND customer = 'TOTAL_CUSTOMER_1'
 AND channel = 'TOTAL_CHANNEL_1'

The query drills down two levels, from year to quarter to month. The 12 months
Jan-01 to Dec-01 are the descendants of year 2001 in the Calendar Year hierarchy.

TIME SALES
---------- ----------
Jan-01 9377798
Feb-01 9080969
Mar-01 9136563

Using Calculations in Queries

Querying Dimensional Objects Using SQL 4-11

Apr-01 9145284
May-01 9028805
Jun-01 9624338
Jul-01 9789531
Aug-01 9581753
Sep-01 10320384
Oct-01 10117410
Nov-01 10866341
Dec-01 10862303

12 rows selected.

Drilling Up to Ancestors
The hierarchy views provide the full ancestry of each dimension key. The following
WHERE clause uses the year level key column to identify the ancestor of a MONTH
dimension key.

/* Select the ancestor of a Time key based on its Long Description attribute */
WHERE time_ldsc =
 (SELECT distinct time_year_lvldsc
 FROM units_cube_cubeview
 WHERE time_ldsc = 'Sep-01')
 AND product = 'TOTAL_PRODUCT_1'
 AND customer = 'TOTAL_CUSTOMER_1'
 AND channel = 'TOTAL_CHANNEL_1'

The query drills up two levels from month to quarter to year. The ancestor of month
Sep-01 is the year 2001 in the Calendar hierarchy.

TIME SALES
---------- ----------
2001 116931479

Using Calculations in Queries
A DBA can create calculated measures in Analytic Workspace Manager, so they are
available to all applications. This not only simplifies application development, but
ensures that all applications use the same name for the same calculation.

Nonetheless, you may want to develop queries that include your own calculations. In
this case, you can use an inner query to select aggregate data from the cube, then
perform calculations in an outer query. You can select data from cubes that use any
type of aggregation operators, and you can use any functions or operators in the query.
You only need to make sure that you select the data from the cube at the appropriate
levels for the calculation, and that the combination of operators in the cube and in the
query create the calculation you want.

Example 4–10 shows a query that answers the question, What was the average sales of
Sentinel Standard computers to Government customers for the third quarter of
calendar year 2001. UNITS_CUBE is summed over all dimensions, so that QUARTER_67
(Q3-01) is a total for July, August, and September. The inner query extracts the data for
these months, and the outer query uses the MIN, MAX, and AVG operators and a GROUP BY
clause to calculate the averages.

Example 4–10 Calculating Average Sales Across Customers

SELECT customer, ROUND(MIN(sales)) minimum, ROUND(MAX(sales)) maximum,
 ROUND(AVG(sales)) average

Using Attributes for Aggregation

4-12 Oracle OLAP Application Developer's Guide

 FROM
 (SELECT customer_ldsc customer, time_ldsc time, sales
 FROM units_cube_cubeview
 WHERE time_calendar_yea_prnt = 'QUARTER_67'
 AND product_ldsc = 'Sentinel Standard'
 AND customer_market_segme_prnt = 'MARKET_SEGMENT_4'
 AND channel_level = 'TOTAL_CHANNEL'
)
 GROUP BY customer
 ORDER BY customer;

This is the data extracted from the cube by the inner query:

CUSTOMER TIME SALES
------------------------------ ---------- ----------
Dept. of Communication Aug-01 1752.06
Dept. of Communication Jul-01 5344.2
Dept. of Communication Sep-01 3507.06
Dept. of Labor Aug-01
Dept. of Labor Sep-01 1753.53
Dept. of Labor Jul-01 3562.8
Ministry of Finance Jul-01 1781.4
Ministry of Finance Aug-01 3504.12
Ministry of Finance Sep-01 7014.12
Ministry of Intl Trade Jul-01 5344.2
Ministry of Intl Trade Sep-01 5260.59
Ministry of Intl Trade Aug-01 5256.18
Royal Air Force Jul-01 3562.8
Royal Air Force Sep-01 3507.06
Royal Air Force Aug-01 8760.3
UK Environmental Department Aug-01
UK Environmental Department Sep-01
UK Environmental Department Jul-01 3562.8
US Dept. of Research Jul-01 1781.4
US Dept. of Research Aug-01 1752.06
US Dept. of Research Sep-01 1753.53
US Marine Services Sep-01
US Marine Services Aug-01
US Marine Services Jul-01

The outer query calculates the minimum, maximum, and average sales for each
customer:

CUSTOMER MINIMUM MAXIMUM AVERAGE
------------------------------ ---------- ---------- ----------
Dept. of Communication 1752 5344 3534
Dept. of Labor 1754 3563 2658
Ministry of Finance 1781 7014 4100
Ministry of Intl Trade 5256 5344 5287
Royal Air Force 3507 8760 5277
UK Environmental Department 3563 3563 3563
US Dept. of Research 1752 1781 1762
US Marine Services

Using Attributes for Aggregation
An OLAP cube aggregates the data within its hierarchies, using the parent-child
relationships revealed in the hierarchy views. The OLAP engine does not calculate
aggregates over dimension attribute values.

Using Attributes for Aggregation

Querying Dimensional Objects Using SQL 4-13

Nonetheless, you may want to aggregate products over color or size, or customers by
age, zip code, or population density. This is the situation when you can use a GROUP BY
clause when querying a cube. Your query can extract data from the cube, then use SQL
to aggregate by attribute value.

The cube must use the same aggregation operator for all dimensions, and the
aggregation operator in the SELECT list of the query must match the aggregation
operator of the cube. You can use a GROUP BY clause to query cubes that use these
operators:

■ First Non-NA Value

■ Last Non-NA Value

■ Maximum

■ Minimum

■ Sum

Aggregating Measures Over Attributes
Example 4–11 shows a query that aggregates over an attribute named Package. It
returns these results:

TIME PACKAGE SALES
---------- -------------------- ----------
2001 All 2176753.8
2001 Executive 25793371.5
2001 Laptop Value Pack 16118203.4
2001 Multimedia 19887248.8

Units Cube uses the SUM operator for all dimensions, and the query uses the SUM
operator to aggregate over Sales. The Package attribute applies only to the Item level
of the Product dimension, so the query selects the Item level of Product. It also
eliminates nulls for Package, so that only products that belong to a package are
included in the calculation. The GROUP BY clause breaks out Total Sales by Time and
Package

Example 4–11 Aggregating Over an Attribute

SELECT time_ldsc time,
 product_package package,
 SUM(sales) sales
/* From cube view */
 FROM units_cube_cubeview
/* Filters on all dimensions */
 WHERE time_ldsc = '2001'
 AND product_level = 'ITEM'
 AND product_package IS NOT NULL
 AND customer_level = 'TOTAL_CUSTOMER'
 AND channel_level = 'TOTAL_CHANNEL'
 GROUP BY time_ldsc, product_package
 ORDER BY product_package;

Aggregating Calculated Measures Over Attributes
Before using the technique described in "Aggregating Measures Over Attributes" on
page 4-13, be sure that the calculation is meaningful. For example, the common
calculation Percent Change might be defined as a calculated measure in a cube.

Querying the Active Catalog

4-14 Oracle OLAP Application Developer's Guide

Summing over Percent Change would produce unexpected results, because the
calculation for Percent Change ((a-b)/b,) is not additive.

Consider the following rows of data. The correct Total Percent Change is .33, whereas
the sum of the percent change for the first two rows is .75.

Example 4–12 shows a query that aggregates over the Package attribute and calculates
Percent Change From Prior Period. The inner query aggregates Sales and Sales Prior
Period over the attributes, and the outer query uses the results to compute the percent
change. These are the results of the query, which show the expected results for PCT_
CHG:

TIME PACKAGE SALES PRIOR_PERIOD PCT_CHG
---------- -------------------- ---------- ------------ ----------
2001 All 2176753.8 2048166.74 .06
2002 All 1840963.8 2176753.8 -.15
2001 Executive 25793371.5 26391852.4 -.02
2002 Executive 18717348.1 25793371.5 -.27
2001 Laptop Value Pack 16118203.4 18884919 -.15
2002 Laptop Value Pack 11085266.8 16118203.4 -.31
2001 Multimedia 19887248.8 21262926.7 -.06
2002 Multimedia 16218667.2 19887248.8 -.18

8 rows selected.

Example 4–12 Querying Over Attributes Using Calculated Measures

/* Calculate Percent Change */
SELECT time, package, sales, prior_period,
 round((sales - prior_period) / prior_period, 2) pct_chg
 FROM
 (SELECT time_ldsc time, product_package package,
 sum(sales) sales, sum(sales_pp) prior_period
 FROM units_cube_cubeview
 WHERE product_level = 'ITEM'
 AND product_package IS NOT NULL
 AND time_ldsc IN ('2001', '2002')
 AND customer_level = 'TOTAL_CUSTOMER'
 AND channel_level = 'TOTAL_CHANNEL'
 GROUP BY time_ldsc, product_package
 ORDER BY package);

Querying the Active Catalog
If you are developing a generic application -- that is, one where the names of the
dimensional objects are not known -- then your application can retrieve this
information from the Active Catalog.

The Active Catalog is a set of views that display metadata for dimensional objects.
These views always reflect the current state of the analytic workspace. You can query
the views using standard SQL.

Row Sales Sales Prior Period Percent Change

1 15 10 .50

2 25 20 .25

Total 40 30 .33

Querying the Active Catalog

Querying Dimensional Objects Using SQL 4-15

Active Catalog views provide information about dimensional objects in all analytic
workspaces accessible to the current user. The public synonyms for these views are
named with the ALL_OLAP2_AW prefix.

Table 4–1 provides brief descriptions of the Active Catalog views.

Table 4–1 Active Catalog Views

PUBLIC Synonym Description

ALL_OLAP2_AW_ATTRIBUTES List of dimension attributes in analytic workspaces

ALL_OLAP2_AW_CATALOG_MEASURES Lists the measures in the measure folders

ALL_OLAP2_AW_CATALOGS Lists the measure folders in analytic workspaces

ALL_OLAP2_AW_CUBE_AGG_LVL List of levels in aggregation plans in analytic workspaces

ALL_OLAP2_AW_CUBE_AGG_MEAS List of measures in aggregation plans in analytic workspaces

ALL_OLAP2_AW_CUBE_AGG_OP List of aggregation operators in aggregation plans in analytic
workspaces

ALL_OLAP2_AW_CUBE_AGG_SPECS List of aggregation plans in analytic workspaces

ALL_OLAP2_AW_CUBE_DIM_USES List of cubes with their associated dimensions in analytic
workspaces

ALL_OLAP2_AW_CUBE_MEASURES List of cubes with their associated measures in analytic workspaces

ALL_OLAP2_AW_CUBES List of cubes in analytic workspaces

ALL_OLAP2_AW_DIM_HIER_LVL_ORD List of hierarchical levels in analytic workspaces

ALL_OLAP2_AW_DIM_LEVELS List of levels in analytic workspaces

ALL_OLAP2_AW_DIMENSIONS List of dimensions in analytic workspaces

ALL_OLAP2_AW_OBJ_PROP List of properties associated with standard form objects in analytic
workspaces

ALL_OLAP2_AW_PHYS_OBJ List of standard form objects in analytic workspaces

ALL_OLAP2_AWS Lists the analytic workspaces

See Also: Oracle OLAP Reference for more information about the
Active Catalog

Querying the Active Catalog

4-16 Oracle OLAP Application Developer's Guide

5

Querying Dimensional Objects Using OLAP Tools 5-1

5Querying Dimensional Objects
Using OLAP Tools

OLAP tools are designed specifically to locate all cubes and dimensions that are
accessible to the current user. They automatically use the implicit relationships among
cubes, dimensions, hierarchies, levels, and attributes. For example, drilling is
automatically supported, children are clearly identified under their parent values, and
description attributes are used as labels instead of dimension keys.

This chapter introduces two OLAP querying tools, the Oracle Business Intelligence
Spreadsheet Add-In and Discoverer Plus OLAP.

This chapter includes the following topics:

■ Analyzing Dimensional Data in a Spreadsheet

■ Creating Reports in Discoverer Plus OLAP

Analyzing Dimensional Data in a Spreadsheet
OracleBI Spreadsheet Add-In enables analysts to work with live dimensional data in
the familiar spreadsheet environment of Microsoft Excel. The Add-In fetches data
using an active connection to an OLAP data store, and displays the data in a
spreadsheet. Users can use the Add-In to perform OLAP operations such as drilling,
rotation, and data selection.

You can obtain the software, tutorials, and documentation from the Oracle Technology
Network at

http://www.oracle.com/technetwork/middleware/bi-foundation/downloads/downl
oad-088181.html

Figure 5–1 shows data from the Global Units Cube displayed in a spreadsheet. The
title, data formatting, and pie charts were implemented in Excel. The Add-In
maintains a live connection with Oracle Database, which can be reactivated in later
sessions. This figure shows the results from a single query, but you can insert
numerous queries into a single worksheet.

By clicking a plus (+) next to a dimension member in the crosstab, you can drill down
to the contributing members. The charts change dynamically to show the same
selection of data as the crosstab. In Figure 5–1, Asia Pacific is expanded under

See Also:

■ Chapter 4, "Querying Dimensional Objects Using SQL"

■ Chapter 11, "Developing Java Applications for OLAP"

http://www.oracle.com/technetwork/middleware/bi-foundation/downloads/download-088181.html
http://www.oracle.com/technetwork/middleware/bi-foundation/downloads/download-088181.html

Analyzing Dimensional Data in a Spreadsheet

5-2 Oracle OLAP Application Developer's Guide

Hardware but not under Software. The difference in data selection appears in the
charts also.

Figure 5–1 Displaying Oracle Dimensional Data in a Spreadsheet

Getting Started With the OracleBI Spreadsheet Add-In
Installation of the Add-In creates a new OracleBI menu on the Excel menu bar, as
shown in Figure 5–2. You can add queries to any spreadsheet. The currently selected
cell in Excel identifies the upper left cell of the crosstab that will be downloaded from
Oracle Database. A warning message appears if the Oracle data will overwrite any
data already entered in the spreadsheet.

On the OracleBI menu, click Supplementary Information for links to the tutorials and
demonstrations. The Online Tutorial provides detailed instructions for the tasks shown
briefly in this chapter.

Analyzing Dimensional Data in a Spreadsheet

Querying Dimensional Objects Using OLAP Tools 5-3

Figure 5–2 Spreadsheet Add-In Menu

Creating a Query Using the Add-In
The Spreadsheet Add-In uses the same query wizard as the Measure Viewer in
Analytic Workspace Manager. You select the measures, the layout, and the dimension
members. The first page of the wizard lists all the measures that you have privileges to
query.

To create a query:
1. On the OracleBI menu, choose New Query.

The Connect Query to Oracle OLAP Data Source dialog box opens.

2. On the Connection Editor tab, define a connection to Oracle Database.

Click Help for information about your choices.

3. On the OLAP Connection tab, provide your credentials to log in to Oracle
Database.

The OracleBI Query Wizard opens.

4. Follow the steps of the wizard. When you are done, the data is displayed in Excel.

5. Choose Edit Query from the OracleBI menu, if you want to change the data
selection or any other aspect of the query.

If this choice is not available, click any cell with data returned by the query.

Figure 5–3 shows the first page of the Query Wizard. In this example, a measure folder
named "Global Enterprises" contains the measures and calculated measures in the
Global analytic workspace.

Analyzing Dimensional Data in a Spreadsheet

5-4 Oracle OLAP Application Developer's Guide

Figure 5–3 Selecting Measures in the Query Wizard

Figure 5–4 shows the downloaded data from Oracle. It appears with the default Excel
formatting for the font, size, justification, decimal places, and so forth.

Figure 5–4 Oracle Data Downloaded to a Spreadsheet

Using Excel Features on Oracle Dimensional Data
You can change all of the default settings in Excel the same as for any other data.
Figure 5–5 shows the same data as Figure 5–4, but with the following changes:

■ All data is displayed to two decimal places after using the Increase Decimal tool
on the Excel toolbar.

■ The PctChg Sales PP column displays the data as percentages instead of decimals
after using the Percent Style tool.

Creating Reports in Discoverer Plus OLAP

Querying Dimensional Objects Using OLAP Tools 5-5

■ A new row contains data calculated in Excel using the Sum function on Sales,
Sales PP, and Chg Sales PP, and the Average function on PctChg Sales PP. The row
has the label "Total."

You can also add charts in Excel using the Chart Wizard. Figure 5–1 shows the
addition of two pie charts.

Figure 5–5 Using Excel to Format the Data

Creating Reports in Discoverer Plus OLAP
Discoverer Plus OLAP provides various wizards to guide you through the entire
process of building and publishing sophisticated reports containing crosstabs and
graphs. You can choose from multiple layout options to create a visual representation
of the query results. You can create queries, drill, pivot, slice and dice data, add
analytic calculations, graph the data, share results with other users, and export your
Discoverer reports in various data formats. Discoverer reports can also be published in
dashboards where other users can access them from their browsers.

You can obtain the software, tutorials, and documentation from the Oracle Technology
Network at

http://www.oracle.com/technetwork/developer-tools/discoverer/overview/inde
x.html

Figure 5–6 shows a report developed in Discoverer, exported in HTML format, and
displayed in a browser.

http://www.oracle.com/technetwork/developer-tools/discoverer/overview/index.html
http://www.oracle.com/technetwork/developer-tools/discoverer/overview/index.html

Creating Reports in Discoverer Plus OLAP

5-6 Oracle OLAP Application Developer's Guide

Figure 5–6 Sales Report Generated by Discoverer Plus OLAP

Getting Starting with Discoverer Plus OLAP
Discoverer organizes worksheets into workbooks, like a spreadsheet package. After
you open Discoverer and log in, the Workbook Wizard opens automatically, as shown
in Figure 5–7. You can open an existing workbook, or you can create a new workbook
and define the contents of the first worksheet.

Figure 5–7 Defining a New Discoverer Workbook

Creating Reports in Discoverer Plus OLAP

Querying Dimensional Objects Using OLAP Tools 5-7

Creating a Query
When creating a new worksheet, you can specify in the first step of the Workbook
Wizard which options you want, such as a title or a graph. The wizard then steps you
through the creation of these options. You can add or delete these optional
components at any time.

The Workbook Wizard uses the same query wizard as the Spreadsheet Add-In and the
Measure Viewer in Analytic Workspace Manager. You select the measures, the layout,
and the dimension members.

To create a new workbook and a worksheet:
1. Open Discoverer Plus OLAP and log in to Oracle Database.

The Workbook Wizard opens to the Create/Open Workbook page.

2. Select Create a New Workbook, the select the optional components of the first
worksheet.

3. Follow the steps of the wizard. When you are done, the data is displayed in the
main window as a crosstab, or a graph, or both.

4. Modify the worksheet as you like, changing the data selection or the data formats,
adding calculations, and so forth.

5. To add another worksheet to the workbook, choose Add Worksheet from the Edit
menu.

Figure 5–8 shows a worksheet that was defined in the Workbook Wizard. It appears
with the default formatting for the font, justification, decimal places, and so forth.

Figure 5–8 Default Query Results in Discoverer

Creating Reports in Discoverer Plus OLAP

5-8 Oracle OLAP Application Developer's Guide

Formatting the Data in Discoverer Plus
You can change every aspect of the query and its formatting using the menus and
toolbars. Figure 5–9 shows the same basic query as Figure 5–8, but with the following
changes:

■ A new title appears in a custom font and background color. Click the default title.

■ All data is displayed to two decimal places. Use the Add Decimal tool.

■ The Percent Change in Sales From Prior Period column displays the data as
percentages instead of decimals. Use the Format As Percent tool.

■ Stoplight formatting of the Percent Change in Sales From Prior Period column
highlights products that are outside the target range in some areas. Select New
Stoplight Format from the Format menu.

■ The Time selection changed from 2003 to Q4-03. Use the Members tab on the
Available Items pane.

■ A pie chart for Sales replaced the bar charts for all measures. Use the Edit Graph
Type and Properties tool.

You can also perform calculations on the data, define new calculated measures, and
create saved selections of dimension members.

Figure 5–9 Changing the Default Formatting in Discoverer

6

Enhancing Your Database With Analytic Content 6-1

6Enhancing Your Database With
Analytic Content

Oracle OLAP provides an extensive set of analytic functions for enhancing your
database with information-rich content. This chapter explains how you can use
Analytic Workspace Manager to enhance your database by defining calculated
measures and calculation plans.

This chapter contains the following topics:

■ What Is a Calculated Measure?

■ Functions for Defining Calculations

■ Creating Calculated Measures

■ Using the Calculation Wizard

■ Generating Forecasts, Allocations, and Aggregations

What Is a Calculated Measure?
Calculated measures return values that are computed at run-time from data stored in
one or more measures. Like relational views, calculated measures store queries against
data stored in other objects. Because calculated measures do not store data, you can
create dozens of them without increasing the size of the database. You can use them as
the basis for defining other calculated measures, which adds depth to the types of
calculations you can create in Analytic Workspace Manager.

Because calculated measures do not contain data, they are not associated with a build
process. You can create a calculated measure at any time, and it is available
immediately for querying.

Functions for Defining Calculations
Oracle OLAP offers an extensive range of functions and operators that can be used to
define calculated measures. Analytic Workspace Manager provides a Calculation
Wizard, which provides both arithmetic and analytic calculations. The calculations in
the cube are performed on a cell-by-cell basis at all levels of the dimension hierarchies.
The analytic functions provide the most powerful computations and fuel the most
useful queries for business intelligence and similar applications. By enriching your
database with an extensive list of calculated measures, you enable analysts and
decision makers to make comparisons, identify trends, and make solid decisions based
on the best information available.

The Calculation Wizard provides these arithmetic calculations:

Creating Calculated Measures

6-2 Oracle OLAP Application Developer's Guide

■ Basic Arithmetic: Addition, subtraction, multiplication, and division, using two
measures or a measure and a number

■ Advanced Arithmetic: Cumulative total, index, percent markup, percent variance,
rank, share, variance

The Calculation Wizard provides these analytic functions:

■ Prior/Future Comparison: Prior value, difference from prior period, percent
difference from prior period, future value

■ Time Frame: Moving average, moving maximum, moving minimum, moving
total, year to date

Analytic functions provided by Oracle OLAP leverage the knowledge associated with
the dimensions about levels and family relationships. Time dimensions have
additional information that enables them to support time series methods such as lags,
leads, moving and year-to-date calculations. Because the knowledge is stored with the
dimension, you do not need to specify these relationships when creating a calculated
measure.

Creating Calculated Measures
Using the Calculation Wizard, you can create calculated measures in the same cube
with the source measures or in a separate cube.

To create a calculated measure:
1. Expand the folder for the cube that contains the base measures that will be used in

the calculation.

2. Right-click Calculated Measures, then choose Create Calculated Measure from
the shortcut menu.

The Calculation Wizard Welcome page is displayed.

3. Follow the steps of the wizard.

Click Help for specific information about these choices. When you are done, the
name of the new calculated measure appears as an item in the Calculated
Measures folder.

Figure 6–1 displays the Name and Type page of the Calculation Wizard.

Using the Calculation Wizard

Enhancing Your Database With Analytic Content 6-3

Figure 6–1 Selecting a Calculation Type

Using the Calculation Wizard
The Calculation Wizard supports all of the calculations typically in demand for
business intelligence applications. The following topics describe the types of
calculations available through the Calculation Wizard.

Basic Arithmetic Operations
Basic arithmetic operations enable you to perform cell-by-cell calculations on two
measures or a measure and a number, using addition, subtractions, multiplication, or
division.

Multiplication Example
The Multiplication page defines a calculated measure using these parameters, as
shown in Figure 6–2:

Multiply: Sales
By: 1.06

These are the results of a query against this calculated measure, which generates sales
targets based on the results for the current year:

 Sales Sales Budget
Memory 5,272,678 5,589,038
CD/DVD 15,083,555 15,988,568
Portable PCs 19,155,814 20,305,162
Desktop PCs 67,900,544 71,974,577
Monitors 4,346,492 4,607,281
Modems/Fax 5,977,011 6,335,632

Using the Calculation Wizard

6-4 Oracle OLAP Application Developer's Guide

Figure 6–2 Defining a Calculation

Percent Variance
Percent Variance calculates the percent difference between two measures.

Percent Variance Example
The Percent Variance page defines a calculated measure using these parameters:

Base Measure: Unit Price
Target Measure: Unit Cost

These are the results of a query against this calculated measure:

 Unit Price Unit Cost Pct Variance
Memory 404 366 10.51
CD/DVD 191 156 22.55
Portable PCs 2,425 2,408 0.72
Desktop PCs 1,652 1,663 (0.66)
Monitors 388 324 19.79
Modems/Fax 111 98 14.05

Index
Index calculates the percent difference between the values of a measure and a selected
value that serves as a base number.

Index Example
The Index page defines a calculation using these parameters:

Index: Sales
Starting at Time for: 2003
Customer: All Customers
Product: Desktop PCs
Channel: All Channels

Using the Calculation Wizard

Enhancing Your Database With Analytic Content 6-5

These are the results of a query against this calculated measure, which uses Desktop
PCs as the index for hardware products.

 Sales Sales Index
Desktop PCs 67,900,544 100%
Portable PCs 19,155,814 28%
CD/DVD 15,083,555 22%
Modems/Fax 5,977,011 9%
Memory 5,272,678 8%
Monitors 4,346,492 6%

Rank
Rank orders the values of a dimension based on the values of the selected measure.
When defining a rank calculation, you choose the dimension, a hierarchy, and the
measure. You also choose the group in which the dimension members are ranked:

■ Total: Ranks all members of the hierarchy.

■ Parent: Ranks members with the same parent.

■ Level: Ranks members at the same level.

Rank Example
The Rank page defines a calculated measure using these parameters:

Rank: Product
In: Primary
Within: Parent
Based On: Units Sold
Order: Lowest to Highest

These are the results of a query against this calculated measure in which the products
are ranked from lowest to highest based on units sold.

 Units Sold Rank
Portable PCs 8,259 1
Monitors 14,520 2
Memory 15,093 3
Desktop PCs 40,729 4
Modems/Fax 48,743 5
CD/DVD 64,160 6

Share
Share calculates the ratio of a measure's value for the current dimension member to a
baseline, which is one of the following:

■ Total: The total of all values for members on the same level as the current member.

■ Parent: The total of all values for members on the same level as parent of the
current member.

■ Level: The total of all values for members on a specified level.

■ Member: The value of a specified dimension member.

When creating a share calculation, you also select the measure, dimension, and
hierarchy.

Using the Calculation Wizard

6-6 Oracle OLAP Application Developer's Guide

Share Example
The Share page defines a calculated measure using these parameters:

Share of: Sales
For: Product
In: Primary
As a Percent of: Member Total Product

These are the results of a query against this calculated measure. The Total Share
column displays the percent share of the total for the selected products.

 Sales Total Share
Total Product 130,276,515 1.00
 Hardware 117,736,092 0.90
 Software/Other 12,540,422 0.10

Cumulative Total
Cumulative totals start with the first time period within a particular rank and calculate
a running total up to the current member. The range can be all members of the level or
just members with the same parent.

Cumulative Total Example
The Cumulative Total page defines a calculated measure using these parameters:

Accumulate: Sales
Over Time In: Calendar Year
Within: Parent

These are the results of a query against this calculated measure.

 Sales Cumulative Sales
2003 130,276,515 698,876,935
 Q1-03 26,946,411 26,946,411
 Jan-03 8,400,440 8,400,440
 Feb-03 8,953,827 17,354,267
 Mar-03 9,592,144 26,946,411
 Q2-03 33,247,676 60,194,087
 Apr-03 10,457,165 10,457,165
 May-03 11,373,236 21,830,401
 Jun-03 11,417,275 33,247,676
 Q3-03 33,636,358 93,830,445
 Jul-03 10,705,642 10,705,642
 Aug-03 10,268,927 20,974,569
 Sep-03 12,661,790 33,636,358
 Q4-03 36,446,070 130,276,515
 Oct-03 11,705,602 11,705,602
 Nov-03 12,084,512 23,790,114
 Dec-03 12,655,955 36,446,070

Prior and Future Time Periods
Prior and future time period calculations are an important gauge for detecting and
analyzing trends. Oracle OLAP provides several calculations under Prior/Future
Comparison:

■ Prior Value: Returns the value of a measure from an earlier time period.

■ Difference From Prior Period: Calculates the difference between values for the
current time period and an earlier time period.

Using the Calculation Wizard

Enhancing Your Database With Analytic Content 6-7

■ Percent Difference From Prior Period: Calculates the percent difference between
values for the current time period and an earlier time period.

■ Future Value: Returns the value of a measure from a later time period.

When creating a calculation for prior or future time periods, you choose the measure,
the time dimension, the hierarchy, and the distance from the current period. The
distance can be calculated as any of the following:

■ Year Ago

■ Period Ago

■ Number of Years, Quarters, Months, Weeks, or Days

Prior Period Example
The Prior Value page defines a calculated measure using these parameters:

Measure: Sales
Over Time in: Calendar Year
From: Period Ago

These are the results of a query against this calculated measure. The Prior Period
column shows the value of Sales for the preceding period at the same level in the
Calendar Year hierarchy.

 Sales Prior Period
2002 92,515,295 116,931,479
 Q1-02 21,499,270 31,846,054
 Q2-02 22,586,748 21,499,270
 Q3-02 23,845,942 22,586,748
 Q4-02 24,583,335 23,845,942
2003 130,276,515 92,515,295
 Q1-03 26,946,411 24,583,335
 Q2-03 33,247,676 26,946,411
 Q3-03 33,636,358 33,247,676
 Q4-03 36,446,070 33,636,358

Moving Calculations
Moving calculations are performed over the time periods surrounding the current
period. They smooth the fluctuations in the data, so that you can more easily detect
trends. Oracle OLAP provides several aggregation methods under Time Frame for
moving calculations:

■ Moving Average: Calculates the average value for a measure over a fixed number
of time periods.

■ Moving Maximum: Calculates the maximum value for a measure over a fixed
number of time periods.

■ Moving Minimum: Calculates the minimum value for a measure over a fixed
number of time periods.

■ Moving Total: Returns the total value for a measure over a fixed number of time
periods.

You choose the measure, the time dimension, and the hierarchy. You can also select the
number of previous time periods to include in the calculations.

Using the Calculation Wizard

6-8 Oracle OLAP Application Developer's Guide

Moving Minimum Example
The Prior Value page defines a calculated measure using these parameters:

Measure: Sales
Over Time in: Calendar Year
Include Previous: 1 period

These are the results of a query against this calculated measure for quarterly data.
Each value of Minimum Sales is the smaller of the current and the previous values.

 Sales Minimum Sales
Q1-03 26,946,411 24,583,335
Q2-03 33,247,676 26,946,411
Q3-03 33,636,358 33,247,676
Q4-03 36,446,070 33,636,358
Q1-04 32,977,875 32,977,875
Q2-04 35,797,920 32,977,875

Period to Date Calculations
Period-to-date calculations generate a running total of the data within a particular
time period. Oracle OLAP provides period-to-date under Time Frame. You select the
measure, the time dimension, the hierarchy, and the level.

Period to Date Example
The Period to Date page defines a calculated measure using these parameters:

Measure: Sales
Over Time in: Calendar Year
At Level: Year

These are the results of a query against this calculated measure. The Year to Date
column shows a running total of sales for the months within the year.

 Sales Year to Date
2003 130,276,515 130,276,515
 Q1-03 26,946,411 26,946,411
 Jan-03 8,400,440 8,400,440
 Feb-03 8,953,827 17,354,267
 Mar-03 9,592,144 26,946,411
 Q2-03 33,247,676 60,194,087
 Apr-03 10,457,165 37,403,576
 May-03 11,373,236 48,776,812
 Jun-03 11,417,275 60,194,087
 Q3-03 33,636,358 93,830,445
 Jul-03 10,705,642 70,899,728
 Aug-03 10,268,927 81,168,656
 Sep-03 12,661,790 93,830,445
 Q4-03 36,446,070 130,276,515
 Oct-03 11,705,602 105,536,047
 Nov-03 12,084,512 117,620,559
 Dec-03 12,655,955 130,276,515

Nested Calculations
You can extend the variety of functions available through the Calculation Wizard by
using a calculated measure as the basis for another calculated measure.

Generating Forecasts, Allocations, and Aggregations

Enhancing Your Database With Analytic Content 6-9

For example, the Calculation Wizard can create rank and prior period calculations. You
can create a calculated measure that calculates rank, then use it to calculate the rank of
the prior period.

Nested Calculations Example
The Rank page creates a Rank calculation named Units Rank using these parameters:

Rank: Product
In: Product Rollup
Within: Parent
Based on: Units Sold
Order: Lowest to Highest

The Prior Value page creates a Prior Year calculation from Units Rank:

Measure: Units Rank
Over Time in: Calendar Year
Go Back by: 1 Year

These are the results of a query against the calculated measures.

 Units Sold Units Rank Prior Year
Q1-03 Portable PCs 2,051 1 1
 Monitors 3,153 2 2
 Memory 3,468 3 3
 Desktop PCs 7,721 4 4
 Modems/Fax 11,349 5 5
 CD/DVD 13,225 6 6
Q1-04 Portable PCs 2,082 1 1
 Monitors 3,685 2 2
 Memory 3,846 3 3
 Desktop PCs 9,429 4 4
 Modems/Fax 13,106 5 5
 CD/DVD 18,320 6 6

Generating Forecasts, Allocations, and Aggregations
Analytic Workspace Manager provides the tools for generating advanced analytic
content:

■ Forecast: Uses statistical time-series forecasting methods to predict future
performance based on past results

■ Allocation: Distributes data down the dimension hierarchies using a selected
allocation method

■ Aggregation: Consolidates data up the dimension hierarchies using a selected
aggregation method

You create these types of calculations by developing a calculation plan. Calculation
plans are composed of an ordered list of steps that generate additional analytical data.
Each step performs a specific type of calculation. Unlike calculated measures, these

See Also: Chapter 7, "Generating Forecasts"

See Also: Chapter 9, "Allocations"

See Also: Chapter 8, "Advanced Aggregations"

Generating Forecasts, Allocations, and Aggregations

6-10 Oracle OLAP Application Developer's Guide

steps generate data that is stored in the cube. By specifying the order in which these
steps are performed, you can allow for interdependencies.

You execute calculation plans using the Maintenance Wizard, typically after loading
and aggregating new data.

To create a calculation plan:
1. Expand the folder for the analytic workspace.

2. Right-click Calculation Plans, then choose Create Calculation Plan from the
shortcut menu.

The Create Calculation Plan dialog box is displayed.

3. Complete the General tab.

Click Help for specific information about these choices.

4. To create a new step, click New Step.

5. Choose the type of step: Forecast, allocation, or aggregation.

The New Step dialog box is displayed for that type of calculation.

6. Complete all tabs, then click Create.

The new step is listed on the Calculation Plan General tab.

7. Click Create.

The new calculation plan appears as an item in the Calculation Plans folder.

8. To run the calculation plan:

a. Right-click it on the navigation tree and choose Execute Calculation Plan.

The Maintenance wizard opens.

b. Follow the steps of the wizard.

Figure 6–3 shows the Create Calculation Plan dialog box with three steps defined.

Figure 6–3 Creating a Calculation Plan

7

Generating Forecasts 7-1

7 Generating Forecasts

Forecasting is a natural extension to the types of data analysis typically performed on
the historical data stored in analytic workspaces. Using Analytic Workspace Manager,
you can quickly generate forecasts of your measures. This chapter provides a basic
framework for generating and using quantitative forecasting methods for those who
do not have a strong statistical background. It also provides specific information about
the particular forecasting engine provided with Oracle OLAP.

This chapter contains the following topics:

■ Introduction to Forecasting Considerations

■ Choosing a General Forecasting Approach

■ About the Forecasting Engine

■ Creating a Forecast

■ Designing Your Own Forecast

■ Forecasting Method Descriptions

■ Advanced Parameter Descriptions

■ Case Study: Forecasting Sales for Global Enterprises

Introduction to Forecasting Considerations
Forecasts are predictions about future events. They provide a basis for making
decisions in a timely manner, which is often in advance of the facts. There are many
ways of creating forecasts, and the best method for a particular forecast depends on
many factors. Consider this question: Will it rain tomorrow?

The degree of difficulty in correctly predicting tomorrow's weather depends on where
you live. You may live where the weather is extremely stable, with little or no variation
from one day to the next. In this situation, if it is raining today, then you can be fairly
certain that it will rain tomorrow.

However, if you live where the weather is in constant flux, with sudden and dramatic
changes, then today's rainfall is not a reliable predictor. You may just make an
informed guess, based on your analysis of the current weather pattern, or you might
consult an arthritis sufferer whose joints ache with changes in the weather.
Nonetheless, all of these methods (today's rainfall, informed guess, or swollen joints)
should over time prove to be more accurate than just flipping a coin.

Now consider this question: Will it rain three months from today? Instead of basing
your prediction on today's weather, you must consider the frequency of rainfall for the
forecast period in previous years. If you live where rainy seasons and dry seasons are

Choosing a General Forecasting Approach

7-2 Oracle OLAP Application Developer's Guide

clearly defined, then you can probably answer this question with relative certainty
based on the season. Otherwise, your ability to predict rainfall on a particular day that
far into the future may be no better than a coin toss. To make a meaningful prediction,
you may need to expand the forecast period to a week or more. You may also need to
expand the size of the area in which you are predicting rain from your neighborhood
to a larger region.

Finally, how important is it to correctly predict the weather on a particular day and at
a particular place? If accuracy is critical -- such as planning a large outdoor event --
then an accurate forecast is worth some effort, and you might try several forecasting
methods to see if their predictions converge. Regardless, you might still plan to erect a
tent in case you get a downpour instead of the forecasted clear skies.

This simple example demonstrates several characteristics of forecasting:

■ Stable patterns in historical data are more likely to generate an accurate forecast.

■ Different methods are appropriate for different forecasts, depending on how far
into the future you want to make a forecast and how stable your data is.

■ Some forecasting methods are experiential or qualitative (informed guess or
aching joints), and others are quantitative (historical data).

■ The season may be an important factor in the forecast.

■ Forecasting is not 100% accurate.

■ The more precise the forecast, the more prone it is to error.

■ Longer-range forecasts should generate data at higher levels to offset the
increasing likelihood of error.

■ The degree of error may be offset by your tolerance for error.

■ If you have a low tolerance for error, then you may want to make some provisions
that lessen the consequences of forecasting incorrectly.

These observations may help give you a perspective on what you want to forecast,
how you want to design the forecast, and how you want to use the forecast in making
decisions about your business.

Choosing a General Forecasting Approach
The first step in generating a forecast is to decide how far into the future you want to
make your predictions. The approach that produces the best results for short-term
forecasts is not a good predictor of long-term performance. The opposite is also true.

The critical question is, of course, how far into the future these time frames reach. Is
"short" five weeks or five months? Is "long" five quarters or five years? As illustrated
by the rain prediction example in "Introduction to Forecasting Considerations" on
page 7-1, it all depends on a variety of factors:

■ What are you trying to forecast?

■ How stable is the historical data?

■ How are you going to use this information?

These are just a few of the questions that you must answer in order to define the
forecasting time frames for your specific business. Table 7–1 provides some general
guidelines for these time periods.

Choosing a General Forecasting Approach

Generating Forecasts 7-3

Time Series
Time series forecasting methods are based on the premise that you can predict future
performance of a measure simply by analyzing its past results. These methods identify
a pattern in the historical data and use that pattern to extrapolate future values.

Past results can, in fact, be a very reliable predictor for a short period into the future.
You can generate this type of forecast very quickly and easily, and you do not need
either forecasting expertise or an in-depth knowledge of your data. The modeling
techniques used by the time-series methods are relatively simple and run very fast.
Time-series forecasting is extremely useful when hundreds or thousands of items must
be forecast.

You may also use time-series methods to generate forecast data further into the future.
However, the results are not as accurate, because factors other than past performance
have a greater impact over time. For example, you or your competitors may change
the pricing structure or run advertising campaigns, competitive products may come
onto the market, or shifts in the economy or political events may affect performance.
You should consider the forecast data generated by time series methods to be one
component of a medium- or long-range forecast, which may be adjusted by expert
opinion and other factors.

Analytic Workspace Manager provides access to a time-series forecasting engine,
which is described in this chapter.

Causal Analysis
Causal analysis takes into consideration the external factors (the causes) that can affect
a forecast, as described previously under "Time Series". Statistical regression methods
are the basis for causal analysis. They use the forecasts for several independent
measures to forecast a dependent measure. This type of forecast requires considerable
skill and understanding of forecasting methodology and the relationships between
independent and dependent variables. A good regression model produces the best
results for medium-range forecasts.

However, because of the time, expense, and expertise needed to develop a model,
most businesses restrict regression analysis to a few key business measures. For the
other measures, they use a combination of methods including time-series and expert
opinion.

The forecasting engine used by Analytic Workspace Manager does not support causal
analysis. The linear and nonlinear regression methods in the forecasting engine are
time-series regression methods that use historical data from a single measure.

Table 7–1 Guidelines for Choosing a Forecasting Approach

Time Frame Typical Forecasting Horizon Best Approach

Short Up to 18 months Time Series

Medium 6 to 36 months Causal Analysis

Long 19 months to 5 years Expert Opinion

Note: Oracle Data Mining supports both time series and causal
analysis methods for data stored in a relational format. This type of
forecasting is done using the SQL PREDICTION function within a Data
Mining model. Refer to Oracle Data Mining Concepts.

About the Forecasting Engine

7-4 Oracle OLAP Application Developer's Guide

Expert Opinion
As the time horizon for the forecast moves further out into the future, expert opinion
becomes the most reliable predictor. The experts, who are usually corporate
executives, have their fingers on the pulse of myriad factors that may influence future
performance, such as the general direction of the market and plans for new products.
Customer surveys also provide input to long-term forecasts. An equivalent computer
model to rival expert opinion for long-term forecasts would be too complex to
generate within a usable time frame.

About the Forecasting Engine
Oracle OLAP incorporates a statistical forecasting engine that is used extensively for
demand planning applications. This engine has a variety of time-series forecasting
methods, which are described in "Forecasting Method Descriptions" on page 7-9.

The forecasting engine incorporates advanced filtering technology to identify and
process outliers, which are data values that are extremely high or low in relation to the
mean. Exception handing is a critical component of forecasting efficiency, and the
forecasting engine reduces the time and money spent analyzing exceptions. This
technology also enables the forecasting engine to produce accurate short-term
forecasts using wildly fluctuating historical data.

Typical applications for OLAP forecasting include the following:

■ Distribution requirements planning for seasonal monthly forecasts of retail sales
for products reaching market saturation.

■ Business planning with seasonal quarterly forecasts of expenses with upward
linear trends.

■ Sales quota management by forecasting exponential decay in company sales for
aging products.

■ Materials requirement planning with trends in raw material prices with cyclical
behavior.

■ Sales forecasts with exponential growth in industry sales.

■ Inventory control planning by forecasting S-curve demand growth from increasing
distribution.

Creating a Forecast
You can create forecasts in Analytic Workspace Manager by defining a forecast step in
a Calculation Plan. These are the steps for creating a forecast. Each one is discussed in
more detail in the sections that follow.

1. Creating the Forecast Time Periods

2. Creating a Forecast Measure

3. Selecting the Historical Data

4. Identifying the Levels for the Forecast

5. Creating a Forecast Step

6. Generating the Forecast Data

7. Evaluating the Forecast Results

Creating a Forecast

Generating Forecasts 7-5

Creating the Forecast Time Periods
The future time periods that you want to forecast must be defined as members of the
time dimension in your analytic workspace. If they do not exist already, you must:

1. Add the new time periods and attributes to the relational tables in the source
schema.

2. Use the Maintenance Wizard in Analytic Workspace Manager to add the new
members to the Time dimension in the analytic workspace.

Use whatever mechanism guarantees that these Time dimension members are
identical to those for loading actual data at a later date.

Creating a Forecast Measure
You can store the forecast data in the same measure as the actual data, or you can store
it in a separate measure. If you store the forecast in the same measure, then the actual
data eventually overwrites it. This prevents you from monitoring the accuracy of the
forecast. For this reason, you should create a separate forecast measure in the same
cube as the source measure.

To create a forecast measure:

1. In the navigation tree, expand the cube for the actual data.

2. Right-click Measures and choose Create Measure.

3. Complete the Create Measure property sheet. Do not map the measure to a data
source.

Selecting the Historical Data
The forecasting engine needs only a year of data to detect trends and seasonality.
Business cycles may take two or three years of data to detect.

If your business has experienced a paradigm shift, then you should exclude previous
data from your forecast as irrelevant. The following are examples of events that might
cause a paradigm shift:

■ Cellular telephones on the telecommunications industry

■ Digital cameras on the photography industry

■ The Internet on the book and music publishing industries

You select the historical data when creating the forecast step.

Identifying the Levels for the Forecast
To generate consistent data at all levels of a hierarchy, you must generate the forecast
data at a single level and use it to populate the other forecast levels by aggregation or
allocation. If you generate a forecast from multiple levels, then the aggregate forecast
data may be inconsistent with the lower levels of forecast data.

The "correct" levels are determined by the time frame of your forecast and by your
reasons for making the forecast. For example, you may forecast Customers at the Total
level for manufacturing, but at a lower level for marketing. Table 7–2 shows the
recommended dimension levels for forecasting products over various time frames.

If you set the levels too low, then large variations in the data may decrease accuracy.
These inaccuracies may be magnified in the aggregated forecasts. If you set the levels

Creating a Forecast

7-6 Oracle OLAP Application Developer's Guide

too high, then the aggregated forecasts may smooth out localized trends and allocate
them incorrectly. You select the levels when creating the forecast step.

Creating a Forecast Step
To create a forecast step in Analytic Workspace Manager:

1. In the navigation tree, create a new Calculation Plan or open an existing plan.

2. On the General tab of the Calculation Plan, click New Step, then select New
Forecast Step.

The New Forecast Step property pages are displayed.

3. Complete the General page. For the forecast method, select Automatic.

For information about using other methods, refer to "Designing Your Own
Forecast" on page 7-7. For information about completing the other fields, click
Help.

4. Keep the default values on the Advanced Settings page unless you have expertise
in time-series forecasting.

5. On the Status page, select the historical time periods and other dimension values
to use as the basis for the forecast. Select only one level for each dimension.

6. Save the forecast step, then save the Calculation Plan.

7. Create allocation and aggregation steps for the forecast.

Generating the Forecast Data
If all the time periods and data are already loaded into the analytic workspace, then
right-click the Calculation Plan and choose Execute Calculation Plan.

or

If you must load new data, then add the Calculation Plan to the regular maintenance
process using the Maintenance Wizard.

Afterward, you can view the forecast data in the Measure Viewer.

Evaluating the Forecast Results
If the forecast does not initially look plausible to you, then check that there are no
errors in the design of the forecast:

■ Compare the first few forecast periods to the last few historical periods to verify
that a discrepancy exists.

■ Use the forecast step editor to check the number of forecast periods against the
status of the Time dimension. The forecast periods are the last ones in status. For
example, if the Time dimension has dimension members defined through the next

Table 7–2 Example of Dimension Levels for Forecasts

Time Frame Time Level Product Level
Other Dimension
Levels

Short Week, Biweek, or
Month

UPC, SKU, NDC, ISBN Level of interest

Medium Month or Quarter Brand Level of interest

Long Quarter or higher Brand, Company, Market Level of interest

Designing Your Own Forecast

Generating Forecasts 7-7

five months and you designed a 4-month forecast, then you must remove the last
month from status. Otherwise, the forecast is based on a month of null historical
data.

■ Use the Measure Viewer to verify that all of the historical data has been loaded in
the source measure. If several periods immediately prior to the forecast period are
not loaded, then the forecast is 0.

■ If you used a specific forecasting method (not Automatic):

– Compare its results with those of the Automatic option.

– Verify that you set Forecast Approach to Manual and Data Filter to the
appropriate choice.

■ If you set any of the advanced parameters, then compare the results against a
forecast that uses the default settings.

A standard part of forecasting is to continually monitor the accuracy of the forecast
data. The easiest way to compare the forecast data with the actual data is to set up a
standard report that includes a line graph. Then you can see how closely the forecast
data converges with the actual data.

Short-term forecasts should be fairly precise, with only a small difference between
forecast and actual data. If this is not the case, then you should consider modifying the
forecast using some of the suggestions listed previously. You may even want to create
several forecasts and compare their results over time.

Medium- and long-range forecasts generated by time-series forecasting methods
should be qualified by other input, such as expert opinion, because external factors
affect performance in these time frames.

Designing Your Own Forecast
The OLAP forecast engine provides an Expert System that generates the best
short-term forecasts over the long run, so you should use the Automatic method and
the default parameters for most forecasts. However, there may be times when you
should override the Expert System and design the forecast yourself.

What is the Expert System?
The Expert System supports the Automatic method by identifying the best statistical
method and selecting the best parameter settings for your data. It also distinguishes
outliers from factors like trend and seasonality.

The Expert System separates the data into seasonal effects and trend effects. It then
uses an iterative approximation method to forecast the seasonal component of the
data. After completing the trend forecast, it factors the seasonality portion into the
trend forecast for all methods except Holt-Winters, which calculates its own seasonal
factors.

The Expert System represents a type of artificial intelligence for statistical forecasting
that has been in common use ever since computers took over the task of performing
complex and lengthy numerical calculations. Instead of the analyst's having to
evaluate the data and make an educated guess as to the best method, the software can
quickly try all methods and select the best one based on the results.

You can override the Expert System by setting the Forecast Approach parameter to
Manual. The default value of Automatic gives the Expert System the most control in

Designing Your Own Forecast

7-8 Oracle OLAP Application Developer's Guide

overriding your choices. This is the appropriate setting when using the Automatic
method, but it invalidates your attempt to design a forecast.

What is the Verification Window?
The Expert System always tests the accuracy of a forecast method using a portion of
the historical data called a verification window. For the Automatic method, the Expert
System uses this window to select the best statistical method. For the other methods, it
verifies that your selection of a method and the parameter settings provide a good fit
to the historical data.

For this test, the Expert System divides the historical time periods into two groups.
The older time periods retain their role as historical data. The newer historical time
periods become the "forecast" periods and form the verification window. The Expert
System generates forecast data for the newer time periods, using the older time
periods as the basis for the forecast.

The Expert System calculates the precision of the method by comparing the forecast
data to the actual data in the verification window. The precision is the distance
between the forecast data and the actual data.

The Expert System uses several standard calculations to compare the precision of
different forecasting methods: Mean Absolute Deviation (MAD), Mean Absolute
Percentage Error (MAPE), and Root Mean Square Error (RMSE).

When Should You Design a Forecast?
You may want to control the forecast when you have special knowledge that future
performance will deviate from past results.

For example, you may recently have entered an agreement for a major national chain
of stores to carry your products, so you anticipate a dramatic increase in sales. Or your
company might have been an innovator in developing a new product line, but your
competitors are about to introduce rival products. In this case, you expect sales to level
off. You or your competitors might also be negotiating a corporate merger, and you
expect that transaction to affect performance.

Under circumstances like these, your special knowledge may enable you to design a
more accurate forecast than the Expert System.

Overriding the Expert System
To override the Expert System, take these steps:

1. Create or edit a forecast step, as described in "Creating a Forecast Step" on
page 7-6.

2. On the General page, select the method that best describes the future performance
that you expect, based on your expert knowledge.

3. On the Advanced Settings page, set Forecast Approach to Manual.

4. Set the Data Filter parameter to an appropriate setting for your data.

5. Change the Verification Window Size parameter as desired.

6. Make whatever other changes to the parameter settings are appropriate.

7. Complete the definition of the forecast, and run it as described in "Creating a
Forecast" on page 7-4.

Forecasting Method Descriptions

Generating Forecasts 7-9

Forecasting Method Descriptions
The forecasting methods represent several basic approaches to time-series forecasting.
This topic provides descriptions of the various approaches, the methods that use each
approach, and the optimization parameters that apply specifically to them.

Automatic
The Expert System identifies the best fit by quickly testing each statistical method
against the portion of historical data specified by the Verification Window Size
parameter. The Expert System selects the method and the parameter settings that
would have generated the most accurate forecast in the past. It automatically detects
and handles outliers, removing noise so that it can better detect trends and seasonality.

The forecasting engine generates a forecast for every combination of dimension
members. The Expert System evaluates each forecast separately and picks the best
method and parameter settings for each one.

In general, Automatic is the best choice unless you have knowledge that future
performance will deviate from the past. Under these special circumstances, you can
substitute your own expert judgment for the Expert System.

"What is the Verification Window?" on page 7-8 provides more information about how
the Expert System selects a method.

Regressions
Time series regression methods relate a variable (measure) to functions of time
describing trend and seasonal components. Regression generates the most reliable
forecasts when the trend or seasonal components remain constant.

OLAP forecasting provides both linear and nonlinear regression models.

Linear Regression
Linear regression attempts to fit the historical data to a straight line (y=ax+b), and
extends that line into future time periods for the forecast. All data points have equal
weight. This method identifies steady, long-term trends in the data.

Nonlinear Regression
Nonlinear regression attempts to fit the historical data to a curve, and extrapolates that
curve into the forecast time periods. All data points have equal weight. The curved
lines are defined by mathematical equations. You can choose from the following types
of curves:

■ Polynomial Fit: Fits data that fluctuates with a rise and a drop (x'=log(x); y'=log(y)).

■ Exponential Fit: Fits data points that rise or drop at an increasingly faster rate
(x'=x; y'=ln(y)).

■ Logarithmic Fit: Fits data points that rise or drop quickly and then level off
(x'=log(x); y'=y).

■ Asymptotic Fit: Fits data points that rise or drop until they approach a fixed value
and then level off (x'=1/x; y'=1/y).

■ Exponential Asymptotic Fit: Fits data points that rise or drop at an increasingly
faster rate until they approach a fixed value and then level off (x'=x; y'=ln(y/(K-y))).

Forecasting Method Descriptions

7-10 Oracle OLAP Application Developer's Guide

For more information about the equations used by each method, refer to the topic
"Equations for Forecasting Methods" in Analytic Workspace Manager Help.

Advanced Parameter for Regressions
The Cyclical Decay smoothing constant is used in the equations for linear and
nonlinear regression. This constant determines how quickly a cycle reverts to the
mean. A higher value implies slower decay while a lower value implies faster decay.
The smaller the value, the less effect cyclical activity has on the forecast.

You can specify a maximum value and a minimum value. You can specify the same
value for both the maximum and the minimum. Keep the default settings unless you
have a strong background in time-series forecasting.

Exponential Smoothing
The exponential smoothing methods weight the historical data using exponentially
decreasing weights. The prior period has the most weight and each period prior to it
has comparatively less weight. The decline in weight is expressed mathematically as
an exponential function. The smoothing parameters determine the weights.

Comparison Among Exponential Smoothing Methods
You can choose from the following methods of exponential smoothing:

■ Single Exponential Smoothing: Identifies the percentage of weight given to the
prior period and all other historical periods. It does not adjust for trend or for
seasonal variance.

■ Double Exponential Smoothing: Identifies the trend, and adjusts the forecast data
to reflect this trend instead of generating a single parameter for all forecast
periods.

■ Holt-Winters: Identifies both trend and seasonal variance, and adjusts the forecast
data to reflect these factors. This method is particularly sensitive to both high and
low outliers. A better choice for handling seasonality is Double Exponential
Smoothing with the Data Filters parameter set to Seasonal Adjustment.

Advanced Parameters for Exponential Smoothing
These smoothing constants are used in the equations for exponential smoothing
methods. Keep the default settings unless you have a strong background in time-series
forecasting.

■ Alpha: Determines how responsive a forecast is to sudden jumps and drops. It is
the percentage weight given to the prior period, and the remainder is distributed
to the other historical periods. Alpha is used in all exponential smoothing
methods.

The lower the value of alpha, the less responsive the forecast is to sudden change.
A value of 0.5 is very responsive. A value of 1.0 gives 100% of the weight to the
prior period, and gives the same results as a prior period calculation. A value of
0.0 eliminates the prior period from the analysis.

■ Beta: Determines how sensitive a forecast is to the trend. The smaller the value of
beta, the less weight is given to the trend. The value of beta is usually small,
because trend is a long-term effect. Beta is not used in Single Exponential
Smoothing.

Advanced Parameter Descriptions

Generating Forecasts 7-11

■ Gamma: Determines how sensitive a forecast is to seasonal factors. The smaller the
value of gamma, the less weight is given to seasonal factors. Gamma is used only
by the Holt-Winters method.

■ Trend Dampening: Determines how sensitive the forecast is to large trends in
recent time periods. Dampening identifies how quickly the trend reverts to the
mean. A higher value implies slower dampening while a lower value implies
faster dampening. The smaller the value, the less effect the trend has on the
forecast.

For each constant, you can specify a maximum value, a minimum value, and an
interval. The interval is an incremental value between the maximum and minimum,
which the forecasting engine uses to find the optimal value of the constant.

Advanced Parameter Descriptions
Following are descriptions of the advanced parameters that can be used with all
methods.

Parameters that are specific to a particular approach are described in "Forecasting
Method Descriptions" on page 7-9.

Setup Parameters
These parameters provide the forecasting engine with basic information about how
you want it to approach a forecast. Always set the Forecast Approach and Data Filter
parameters when using a specific forecasting method.

■ Forecast Approach: Specifies whether the forecasting engine gives control to the
Expert System.

– Automatic: Give control to the Expert System. Use this setting with the
Automatic method.

– Manual: Give control to the user. It enables you to choose a method and set
the parameters that are appropriate for the historical data. Use this setting
with all methods other than Automatic.

■ Data Filter: Identifies a basic characteristic of the data.

– Non-Seasonal Data: No seasonality.

– Seasonal Data: Adjust for seasonal patterns in the data. You can use this filter
with Double Exponential Smoothing to get a more accurate forecast than
Holt-Winters.

– Intermittent Data Adjusts for sporadic or intermittent data and, if
appropriate, seasonal patterns. Intermittent data has null or zero for over 50%
of the values. Do not use median smoothing with this filter, because
smoothing eliminates the intermittent characteristic of the data. The purpose
of the intermittent data filter is to forecast intermittent demand.

Set the Moving Total Decay parameter when using this filter.

Note: When using a specific forecasting method (not Automatic), be
sure to set the following parameters:

■ Forecast Approach

■ Data Filter

Advanced Parameter Descriptions

7-12 Oracle OLAP Application Developer's Guide

■ Verification Window Size: The Expert System uses the verification window to
determine the best method and parameter settings, as described in "What is the
Verification Window?" on page 7-8.

The verification window is specified as a fraction of the total number of historical
periods. For example, assume that you have three years of historical data for 2004,
2005, and 2006. The default window size is .3333, so the Expert System uses 1/3 of
the historical data for the verification window. Thus, the data for 2004 and 2005 are
used to generate a "forecast" for 2006. The difference between the forecast data and
the actual data for 2006 indicates the precision of the method.

You may want to adjust the window size, depending on the granularity of the
data. For monthly data, use a window size of 20% (1/5) or more. For weekly data,
use a window size of 12.5% (1/8) or more. For daily or hourly data, you can use a
window size of 11.1% (1/9) or less.

General Parameters
These parameters apply to all of the specific forecasting methods.

■ Allocate Last Cycle: Controls whether the last cycle is calculated by forecasting
alone or with allocation. Allocation may reduce the risk of overadjustment for
trend or seasonality.

Allocation forecasts an average value for one period of the last cycle. That average
value is then multiplied by factors to give the remaining points in that period. For
example, a forecast at the day level would calculate an average for all days in the
last week rather than forecasting individual days.

Set Periodicity to a value greater than 1 when using this parameter.

■ Boundary Maximum and Minimum: A constant that constrains the forecasting
engine from occasionally generating unreasonably high or low values. The upper
boundary is calculated by multiplying Boundary Maximum by the largest value in
the historical series. The lower boundary is calculated by multiplying Boundary
Minimum by the smallest value in the historical series.

For example, if the Boundary Maximum parameter is 100.0 and the largest
historical value 5,600, then no forecast value can be greater than 560,000. If the
Boundary Minimum parameter is 0.5 and the smallest historical value 300, then no
forecast value can be less than 150.

■ Moving Total Decay Maximum and Minimum: A constant that is inversely
related to noise, random deviation, and stability in the history of intermittent data.
Set this value higher when the history is evolving rapidly from one cycle to the
next or when the noise level is low. This parameter is used only with the
Intermittent Data filter. The difference between the maximum and the minimum
must be evenly divisible by 0.4.

■ Periodicity: The number of periods in a single cycle or the number of periods in
each set of nested cycles. The default value of 1 does not group the periods at all,
so each period is logically independent.

For example, if you are using Month as the base level for the forecast, and the time
hierarchy has levels for Month, Quarter, and Year, then the cycles are 12 months in
a year and 3 months in a quarter. For a single cycle, enter the number of periods.
For nested cycles, list the cycles in parentheses from the most aggregate to the least
aggregate, separated by commas, such as (12,3).

■ Trials: The number of trials that are run to determine the best method and
combination of parameter settings.

Case Study: Forecasting Sales for Global Enterprises

Generating Forecasts 7-13

Historical Data Smoothing Parameters
These parameters help generate a smoother forecast from intermittent historical data.
Alternatively, you can use the intermittent data filter to forecast intermittent demand.
Do not combine the smoothing parameters with the intermittent demand filter,
because these adjustments are contradictory.

■ Use Smoothed Historical Data: Controls whether the historical data is smoothed.
Smoothing is typically used for weekly or finer-grained data that has many
missing values. Smoothing the historical data produces a smoother baseline
forecast.

■ Interpolate Missing Values: Specifies whether you want to smooth the data by
inserting estimates for missing values instead of by averaging. This parameter is
useful when missing values indicate incomplete data instead of a lack of activity.

■ Median Smoothing Window: The number of time periods used in a median
smoothing window to identify outliers and replace them with adjusted data
values. Median smoothing eliminates extreme variations in the data by replacing
each data point in a series by the median value of itself and its neighbors. This
setting must be an odd number, so that the current time period is in the center of
the window.

The larger the window, the smoother the data. If the window is too large,
smoothing may eliminate important data patterns. If the window is too small, then
smoothing may include outliers that could not be filtered out. As a rule, you
should not set this parameter below 3; setting it to 1 has the effect of turning off
smoothing.

For monthly data, use a maximum value of 5 to prevent excessive flattening of the
data. For weekly data, use a maximum of 13. Use a longer window (15 or more)
for daily or hourly data.

Case Study: Forecasting Sales for Global Enterprises
The GLOBAL analytic workspace has historical data from January 1998 to July 2004.
Thus, the last five months of 2004 and all of 2005 is NA. This example creates a
Calculation Plan that generates a four-month Sales forecast from August 2004 to
December 2005. An allocation step distributes the forecast data down to the base levels
of all dimensions. An aggregation step generates and stores some of the aggregate
values to improve runtime performance.

Creating the Sales Forecast Target Measure
This example stores the forecast data in a separate measure from the historical data so
that the results of the forecast can be evaluated more easily.

To create the target measure:

1. In the UNITS_CUBE folder, right-click Measures and select Create Measure.

The Create Measure dialog box opens.

2. On the General page, create a measure named SALES_FORECAST.

3. Select Override the Aggregation Specification of the Cube.

4. On the Summarize To page, deselect all levels for all dimensions.

5. Click Create.

Case Study: Forecasting Sales for Global Enterprises

7-14 Oracle OLAP Application Developer's Guide

Creating the Calculation Plan
The Calculation Plan for this forecast has a forecast step, an allocation step, and an
aggregation step.

To create a new Calculation Plan:
1. Right-click Calculation Plans and select Create Calculation Plan.

The Create Calculation Plan dialog box opens.

2. Create a new plan named SALES_PLAN. Click Create.

SALES_PLAN appears as a new item in the Calculation Plans folder. It does not yet
contain any steps.

Creating the Sales Forecast Step
This sample forecast uses the Automatic forecast method, which takes the guesswork
out of choosing an appropriate forecast method.

To create the forecast step:
1. On the General page of SALES_PLAN, click New Step, then select New Forecast

Step.

The Create Forecast Step dialog box opens.

2. Complete the General page with these values, as shown in Figure 7–1

■ Name: forecast_sales_step

■ Cube: UNITS_CUBE

■ Source Measure: SALES

■ Target Measure: SALES_FORECAST

■ Time Dimension: TIME

■ Forecast Method: Automatic

■ Number of Forecast Periods: 5

Case Study: Forecasting Sales for Global Enterprises

Generating Forecasts 7-15

Figure 7–1 Forecasting Global Sales

3. Keep the default settings on the Advanced Parameters page.

4. On the Status page, set the Time dimension:

a. On the Selected Steps tab, click All Levels and select Month from the
drop-down list.

b. On the Available Conditions tab, expand the Hierarchy folder. Select Children
of Jan-98 and click the Edit Step icon.

The Edit Step dialog box opens, as shown in Figure 7–2.

c. Set Action to Remove, and set Relation to Descendants.

d. Click Member and choose More from the list.

The Select Members dialog box opens.

e. Select 2005.

f. Click OK to close the Select Members dialog box, then click OK to close the
Edit Step dialog box.

g. Add this condition to the Selected Steps.

h. On the Members tab, verify that only months are in the list and Dec-04 is the
last value.

Case Study: Forecasting Sales for Global Enterprises

7-16 Oracle OLAP Application Developer's Guide

Figure 7–2 Selecting Time Dimension Members

5. Keep the default selection, which is the top level, for the other dimensions.

6. Click Create to save the forecast step.

7. Click Apply to save the Calculation Plan.

Generating the Forecast
To generate the forecast:

1. Expand the Calculation Plans folder. Right-click SALES_PLAN and choose
Execute Calculation Plan SALES_PLAN.

The Maintenance Wizard opens, and SALES_PLAN is a selected target object.

2. Click Finish.

The build log is displayed when the Calculation Plan is done executing.

Validating the Forecast
This forecast generated values at the base level of Time and at the top level of all other
dimensions. To view the forecast data and evaluate whether you are satisfied with
these results, you must select this particular portion of the data and compare it to
historical results.

1. Fully expand the UNITS_CUBE folder, right-click the SALES_FORECAST
measure, and choose View Data SALES_FORECAST.

The Measure Data Viewer opens. No data is displayed, because the base levels for
Product, Customer, and Channel are NA.

2. From the File menu, choose Query Builder.

Case Study: Forecasting Sales for Global Enterprises

Generating Forecasts 7-17

The Query Builder opens.

3. On the Items tab, add Sales to the Selected list.

4. On the Layout tab, arrange the dimensions so that Measure identifies the rows and
Time identifies the columns. Click Help for instructions.

5. On the Dimensions tab, set the status of Time:

a. On the Steps tab, remove the initial selection.

b. On the Conditions tab, expand the Hierarchy folder.

c. Change Children of 1998 to Children of Q3-04, Q4-04, and add this condition
to the Selected Steps.

d. On the Members tab, verify that only months are in the list from Jul-04 to
Dec-04.

6. Click OK to close the Query Builder.

Figure 7–3 shows the results of the forecast, which are displayed in the Measure
Viewer.

Figure 7–3 Forecast Data Displayed in the Measure Viewer

Preparing the Sales Forecast Measure for Querying
This sample forecast only generated five data values, which is only a small slice of the
Sales Forecast measure. Before users can query this measure, you must generate
additional data from the forecast values:

1. Allocate the forecast data down the Product, Customer, and Channel dimensions.

The forecast generated a single, top-level value for these dimensions. For the Time
dimension, the forecast generated data at the detail Month level, so allocation is
not possible.

Case Study: Forecasting Sales for Global Enterprises

7-18 Oracle OLAP Application Developer's Guide

2. Precompute some of the aggregate values to improve querying performance.

The measure is not mapped to a data source, so a refresh of the cube does not
aggregate a forecast measure. The data is entirely aggregated on the fly unless you
precompute some of the values in a separate step. A forecast measure can use the
same rules as the other measures in the cube, but you must specify the rules in an
Aggregation Step.

To prepare the forecast data:
1. Add an Allocation Step to the Calculation Plan.

2. Add an Aggregation Step.

Refer to "Case Study: Allocating a Sales Forecast" on page 9-13.

3. Run the Maintenance Wizard as described in "Generating the Forecast Data" on
page 7-6.

Figure 7–4 shows data in the middle levels of Time, Product, and Customer after
allocation and aggregation of the forecast data.

Figure 7–4 Allocated Forecast Data

8

Advanced Aggregations 8-1

8 Advanced Aggregations

A cube always returns summary data to a query as needed. While the cube may store
data at the day level, for example, it returns a result at the quarter or year level
without requiring a calculation in the query. This chapter explains how to optimize the
unique aggregation subsystem of Oracle OLAP to provide the best performance for
both data maintenance and querying.

This chapter contains the following topics:

■ What is Aggregation?

■ Aggregation Operators

■ When Does Aggregation Order Matter?

■ Aggregating Compressed Cubes

■ Aggregating Uncompressed Cubes

■ Aggregating a Slice of a Measure

■ Improving Aggregation Performance

What is Aggregation?
Aggregation is the process of consolidating multiple values into a single value. For
example, data can be collected on a daily basis and aggregated into a value for the
week, the weekly data can be aggregated into a value for the month, and so on.
Aggregation allows patterns in the data to emerge, and these patterns are the basis for
analysis and decision making. When you define a data model with hierarchical
dimensions, you are providing the framework in which aggregate data can be
calculated.

Aggregation is frequently called summarization, and aggregate data is called
summary data. While the most frequently used aggregation operator is Sum, there are
many other operators, such as Average, First, Last, Minimum, and Maximum. Oracle
OLAP also supports weighted and hierarchical methods. Following are some simple
diagrams showing how the basic types of operators work. For descriptions of all the
operators, refer to "Aggregation Operators" on page 8-3.

Figure 8–1 shows a simple hierarchy with four children and one parent value. Three of
the children have values, while the fourth is empty. This empty cell has a null or NA
value. The Sum operator calculates a value of (2 + 4 + 6)=12 for the parent value.

What is Aggregation?

8-2 Oracle OLAP Application Developer's Guide

Figure 8–1 Summary Aggregation in a Simple Hierarchy

The Average operator calculates the average of all real data, producing an aggregate
value of ((2 + 4 + 6)/3)=4, as shown in Figure 8–2.

Figure 8–2 Average Aggregation in a Simple Hierarchy

The hierarchical operators include null values in the count of cells. In Figure 8–3, the
Hierarchical Average operator produces an aggregate value of ((2 + 4 + 6 +NA)/4)=3.

Figure 8–3 Hierarchical Average Aggregation in a Simple Hierarchy

The weighted operators use the values in another measure to generate weighted
values before performing the aggregation.Figure 8–4 shows how the simple sum of 12
in Figure 8–1 changes to 20 by using weights ((3*2) + (2*4) + (NA*6) +(4*NA)).

Aggregation Operators

Advanced Aggregations 8-3

Figure 8–4 Weighted Sum Aggregation in a Simple Hierarchy

Aggregation Operators
Analytic workspaces provide an extensive list of aggregation methods, including
weighted, hierarchical, and weighted hierarchical methods.

Basic Operators
The following are descriptions of the basic aggregation operators:

■ Average: Adds non-null data values, then divides the sum by the number of data
values that were added together.

■ First Non-NA Data Value: Returns the first real data value.

■ Last Non-NA Data Value: Returns the last real data value.

■ Maximum: Returns the largest data value among the children of each parent.

■ Minimum: Returns the smallest non-null data value among the children of each
parent.

■ Nonadditive: Does not aggregate the data.

■ Sum: Adds data values.

Scaled and Weighted Operators
These are the scaled and weighted aggregation operators.

These operators require a measure providing the weight or scale values in the same
cube. In a weight measure, an NA (null) is calculated like a 1. In a scale measure, an
NA is calculated like a 0.

The weighted operators use outer joins, as described in "When Does Aggregation
Order Matter?" on page 8-4.

■ Scaled Sum: Adds the value of a weight object to each data value, then adds the
data values.

■ Weighted Average: Multiplies each data value by a weight factor, adds the data
values, and then divides that result by the sum of the weight factors.

When Does Aggregation Order Matter?

8-4 Oracle OLAP Application Developer's Guide

■ Weighted First: Multiplies the first non-null data value by its corresponding
weight value.

■ Weighted Last: Multiplies the last non-null data value by its corresponding weight
value.

■ Weighted Sum: Multiplies each data value by a weight factor, then adds the data
values.

Hierarchical Operators
The following are descriptions of the hierarchical operators. They include all cells
identified by the hierarchy in the calculations, whether the cells contain data or not .

Hierarchical Average and the Hierarchical Weighted operators use outer joins.

■ Hierarchical Average: Adds data values, then divides the sum by the number of
the children in the dimension hierarchy. Unlike Average, which counts only
non-null children, hierarchical average counts all of the logical children of a
parent, regardless of whether each child does or does not have a value.

■ Hierarchical First Member: Returns the first data value in the hierarchy, even
when that value is null.

■ Hierarchical Last Member: Returns the last data value in the hierarchy, even when
that value is null.

■ Hierarchical Weighted Average: Multiplies non-null child data values by their
corresponding weight values, then divides the result by the sum of the weight
values. Unlike Weighted Average, Hierarchical Weighted Average includes weight
values in the denominator sum even when the corresponding child values are
null.

■ Hierarchical Weighted First: Multiplies the first data value in the hierarchy by its
corresponding weight value, even when that value is null.

■ Hierarchical Weighted Last: Multiplies the last data value in the hierarchy by its
corresponding weight value, even when that value is null.

When Does Aggregation Order Matter?
The OLAP engine aggregates a cube across one dimension at a time. When the
aggregation operators are the same for all dimensions, the order in which they are
aggregated may or may not make a difference in the calculated aggregate values,
depending on the operator.

You should specify the order of aggregation when a cube uses multiple aggregation
methods. The only exceptions are that you can combine Sum and Weighted Sum, or
Average and Weighted Average, when the weight measure is only aggregated over the
same dimension. For example, a weight measure used to calculate weighted averages
across Customer is itself only aggregated across Customer.

The weight operators are uncompressible for the specified dimension and all
preceding dimensions. For a compressed cube, you should list the weighted operators
as early as possible to minimize the number of outer joins. For example, suppose that a
cube uses Weighted Sum across Customer, and Sum across all other dimensions.
Performance is best if Customer is aggregated first.

When Does Aggregation Order Matter?

Advanced Aggregations 8-5

Using the Same Operator for All Dimensions of a Cube
The following information provides guidelines for when you must specify the order of
the dimensions as part of defining the aggregation rules for a cube.

Order Has No Effect
When these operators are used for all dimension of a cube, the order does not affect
the results:

■ Maximum

■ Minimum

■ Sum

■ Hierarchical First Member

■ Hierarchical Last Member

■ Hierarchical Average

Order Changes the Aggregation Results
Even when these operators are used for all dimensions of a cube, the order can affect
the results:

■ Average

■ First Non-NA Data Value

■ Last Non-NA Data Value

■ Weighted First

■ Weighted Last

■ Hierarchical Weighted First

■ Hierarchical Weighted Last

■ Scaled Sum

Order May Be Important
When the following weighted operators are used for all dimensions of a cube, the
order affects the results only if the weight measure is aggregated over multiple
dimensions:

■ Weighted Average

■ Weighted Sum

■ Hierarchical Weighted Average

Example: Mixing Aggregation Operators
Even though you can use the Sum and Maximum operators alone without ordering
the dimensions, you cannot use them together without specifying the order. The
following figures show how they calculate different results depending on the order of
aggregation. Figure 8–5 shows a cube with two dimensions. Sum is calculated first
across one dimension of the cube, then Maximum is calculated down the other
dimension.

Aggregating Compressed Cubes

8-6 Oracle OLAP Application Developer's Guide

Figure 8–5 Sum Method Followed by Maximum Method

Figure 8–6 shows the same cube, except Maximum is calculated first down one
dimension of the cube, then Sum is calculated across the other dimension. The
maximum value of the sums in Figure 8–5 is 15, while the sum of the maximum values
in Figure 8–6 is 19.

Figure 8–6 Max Method Followed by Sum Method

Aggregating Compressed Cubes
Compressed composites are used to store extremely sparse data. Use this aggregation
strategy for compressed cubes:

■ Identify the dimension with the most members. If several dimensions have about
the same number, then choose the dimension with the most levels. Do not
pre-aggregate this dimension.

■ Pre-aggregate all other dimensions up to, but not including, the top level, unless
the next level down has a large number of members.

You can adjust these basic guidelines to the particular characteristics of your data. For
example, you may skip levels that are seldom queried from pre-aggregation. Or you
may need to pre-aggregate a level with a large number of child values, to provide
acceptable run-time performance.

Aggregating Uncompressed Cubes
Uncompressed cubes are used to store data that is either moderately sparse or dense.
The strategy for aggregating noncompressed cubes is called skip-level aggregation,
because some levels are stored and others are skipped until runtime. The success of
this strategy depends on choosing the right levels to skip, which are those that can be
calculated quickly in response to a query.

Aggregating a Slice of a Measure

Advanced Aggregations 8-7

Selecting Dimensions for Skip-Level Aggregation
As a general rule, you should skip levels for only one or two dimensions and for no
more than half of the dimensions of the cube. Choose the dimensions with the most
levels in their hierarchies for skip-level aggregation.

Slower varying dimensions take longer to aggregate because the data is scattered
throughout its storage space. If you are optimizing for data maintenance, then fully
aggregate the faster varying dimensions and use skip-level aggregation on the slower
varying dimensions.

Selecting the Levels to Skip
You can identify the best levels to skip by determining the ratio of dimension members
at each level, and keeping the ratio of members to be rolled up on the fly at
approximately 10:1 or less. This ratio assures that all answer sets can be returned
quickly. Either a data value is stored in the analytic workspace so it can simply be
retrieved, or it can be calculated quickly from 10 stored values.

This 10:1 rule is best applied with some judgment. You might want to permit a higher
ratio for levels that you know are seldom accessed. Or you might want to store levels
at a lower ratio if you know they have heavy use. Generally, you should strive for a
lower ratio instead of a higher one to maintain the best performance.

Aggregation rules identify how and when the aggregate values are calculated. You
define the aggregation rules for each cube, and you can override these rules by
defining new ones for a particular measure.

Aggregating a Slice of a Measure
The aggregation rules defined for a cube or a measure are always performed over all
dimension members. You can perform a partial aggregation only in a calculation plan
and only for regular composites.

To aggregate over a portion of a measure, you select the dimension members that
identify the cells containing the source data, using the Status page of the Aggregation
property sheet. You do not need to select the target cells. All of the cells identified by
the ancestors of the selected dimension members are aggregated, either when you
execute the cube script or when a user queries the measure.

When you select the dimension members, they are in status. This means that the
dimension members have been selected for use in a calculation, a query, or other data
manipulation. Likewise, out of status means that the dimension members have been
excluded from use.

Figure 8–7 shows an aggregation in which the 12 months of 2006 are in status. Neither
the quarters nor the year are in status, but aggregates are generated for all levels.

Note: Do not set status for a compressed cube. All members must be
in status.

Aggregating a Slice of a Measure

8-8 Oracle OLAP Application Developer's Guide

Figure 8–7 Sum Aggregation With All Source Values in Status

Figure 8–8 shows the same portion of data, but with only Feb to Jun in status.
Aggregates are calculated only for Q1, Q2, and 2006. Note that Jan is included in the
aggregation, even though it is out of status. The aggregation engine adds the
ancestors, then the children to status before aggregating the data, as a means of
maintaining the integrity of the data. The values for Q3 and Q4 are not included in the
aggregation.

Figure 8–8 Sum Aggregation With Some Source Values Out of Status

You may need to aggregate data that is stored in the middle of a hierarchy, perhaps if
the data for a particular measure is not available or needed at the base level. You must
be sure that the cells with the data are the lowest levels in the hierarchy in status.
Figure 8–9 shows quarterly forecast data in status and aggregated to the year. The
monthly values are not in status, and thus are excluded from the aggregation.

Improving Aggregation Performance

Advanced Aggregations 8-9

Figure 8–9 Sum Aggregation From the Quarterly Level

Aggregation begins at the lowest level in status and rolls up the hierarchy. The
aggregate values overwrite any pre-existing values higher in the hierarchy.
Figure 8–10 shows that when the Month level is in status, those values overwrite the
forecast values at the Quarter level. The status of Quarter and Year has no effect on the
aggregation.

Figure 8–10 Sum Aggregation From the Month Level Overwrites Quarters

Improving Aggregation Performance
The previous guidelines provide an approach to aggregation that should help you
meet these basic goals:

■ Finish Data Updates on Time

■ Keep Within Allocated Resources

■ Provide Good Response Time

If you anticipate problems with one or more of these goals, then you should keep them
in mind while devising your aggregation rules. Otherwise, you may need to make

Improving Aggregation Performance

8-10 Oracle OLAP Application Developer's Guide

adjustments after the initial build, if you experience problems meeting all of these
goals.

Often the problem can be solved by changing factors other than the aggregation rules,
as described in the following topics.

Finish Data Updates on Time
Most organizations allocate a batch window in which all data maintenance must be
complete. If you are unable to finish refreshing the data in the allotted time, then you
can make the following adjustments.

Be sure that you have set the database initialization parameters correctly for data
maintenance, as described in "Setting Database Initialization Parameters" on page 12-1.
You can make significant improvements in build performance by setting SGA_TARGET,
PGA_AGGREGATE_TARGET, and JOB_QUEUE_PROCESSES.

After the initial build, you can save time by aggregating only newly loaded values,
instead of aggregating all of them again. Partial aggregation is a choice you can make
in the Maintenance Wizard.

Analytic workspaces are stored in partitioned tables, and you can create partitioned
cubes. You can use these partitions to distribute the data across several disks, thus
avoiding bottlenecks in I/O operations.

Keep Within Allocated Resources
Your analytic workspace must fit within the allocated resources. The more levels of
aggregate data that you store, the larger the tablespaces must be to store the analytic
workspace.

The data type is an important consideration when estimating the size of an analytic
workspace. The most commonly used data types for measures are NUMBER and
DECIMAL. The difference in size is significant: an unscaled NUMBER value is 22 bytes and
a DECIMAL value is 8 bytes.

Provide Good Response Time
An analytic workspace must provide good performance for end users. When
pre-aggregation is done correctly, the response time for queries does not noticeably
slow down. Analytic workspaces are optimized for multidimensional calculations, so
that run-time summarizations should be extremely fast. However, runtime
performance suffers if the wrong choices are made.

If response time is poor, then review the decisions you made in skipping levels and
find those that should be pre-aggregated. Try to identify and pre-aggregate those areas
of the data that are queried heavily. Check the level on which you partitioned the cube.
Remember that all levels above the partition are calculated on the fly. When
partitioning over Time, the Month level is a much better choice than Day.

Read the recommendations given in the previous topics. The savings in maintenance
time and disk storage may be used to pre-aggregate more of the data.

Note: Be sure to run the Sparsity Advisor so that the data is
structured in the most efficient way. Refer to "Choosing a Data
Storage Strategy" on page 3-15.

See Also: Chapter 12, "Administering Oracle OLAP"

9

Allocations 9-1

9 Allocations

In Analytic Workspace Manager, you can create forecasts, set goals, and create budgets
at a high level, and then allocate those numbers down a hierarchy to see how those
numbers impact the contributing values.

This chapter contains the following topics:

■ What Is an Allocation?

■ Creating Measures to Support an Allocation

■ Selecting Dimension Members for an Allocation

■ Creating an Allocation

■ Allocation Operators

■ Case Study: Allocating a Budget

■ Case Study: Allocating a Sales Forecast

What Is an Allocation?
Allocations distribute aggregate level data to detail level data, sometimes using an
existing set of data as the basis for the allocation. This technology is often used in
forecasting and budgeting systems. An example of a financial allocation is the
automated distribution of a bonus pool, based on the current salaries and performance
ratings of the employees.

You can think of allocations as inverse aggregations.

■ In aggregations, a group of child values are aggregated into a single parent value
using an aggregation method, such as Sum.

■ In allocations, a parent value is distributed to a group of child cells using an
allocation method that is the inverse of the aggregation method, such as Average.

One important difference between aggregation and allocation is that an aggregation
has one defined answer. An allocation has many possible answers for the same source
value.

For example, consider the hierarchy in Figure 9–1. The value 9 is derived by
aggregating the values 2, 3 and 4 using the Sum operator.

What Is an Allocation?

9-2 Oracle OLAP Application Developer's Guide

Figure 9–1 Aggregation in a Simple Hierarchy

Now change the value of 9 to 18 and allocate the results to the children. The Even
allocation operator divides the source value evenly by the number of children, and so
assigns each child a value of 6, as shown in Figure 9–2.

Figure 9–2 Even Allocation In a Simple Hierarchy

In contrast, the Proportional allocation operator divides the value into proportions
based on the current value of each target cell, and so assigns values of 4, 6 and 8, as
shown in Figure 9–3.

Figure 9–3 Proportional Allocation In a Simple Hierarchy

The previous examples show direct allocation, that is, where there is a parent-child
relation between the source cell and the target cells. However, most hierarchies have
multiple levels, and an allocation may assign values down the hierarchy, as shown in
Figure 9–4.

Creating Measures to Support an Allocation

Allocations 9-3

Figure 9–4 Even Allocation in a Multilevel Hierarchy

Next, consider a skip level hierarchy. The source value is allocated down the hierarchy,
as shown in Figure 9–5. The relationship of the target cell to the allocation source, not
the hierarchical level of a cell, determines the allocation. Note that, as the result of an
intermediate value in one branch, the base-level cells are allocated different values
than in the simple hierarchy shown in Figure 9–2.

Figure 9–5 Even Allocation in a Skip Level Hierarchy

Creating Measures to Support an Allocation
Source, basis, and target are the most fundamental terms for describing allocation. You
may use the same measure for all three roles or assign a different measure to each role.
All allocation operators require a source and a target, but some operators do not use a
basis. You can also multiply the results of an allocation by a weight measure.

Selecting Dimension Members for an Allocation

9-4 Oracle OLAP Application Developer's Guide

Source Measures
The source measure contains the set of numbers that you want to allocate. You may
use an existing measure, or you may perform some computation on existing data to
construct new source values. For instance, you might want to budget 30 percent
growth over the next year and perform an allocation to see the sales targets required
for each product to meet that budget. You would create a calculated measure based on
actual sales to use as the allocation source. Alternatively, you might generate a forecast
at the middle or top of a hierarchy and then allocate the forecast results down to the
lower levels.

Basis Measures
Depending on the type of allocation, the basis measure may identify which cells are
the targets of an allocation, and what proportion of the allocation each target cell
receives. Different operators use the basis measure in different ways, as illustrated by
the diagrams of Even and Proportional operators in "What Is an Allocation?" on
page 9-1. Note that a basis measure is not used by the hierarchical operators. Refer to
"Allocation Operators" on page 9-9 for descriptions of all the operators and their use of
a basis measure.

The basis measure can be the same as the target measure, or it can be a different
measure. For example, suppose you want to calculate the sales of each individual
product for an increase in total sales of 15 percent. You would create a calculated
measure from Sales that contains the desired aggregate values, and use it as the
allocation source. By using the original Sales measure as both the target and the
allocation basis, and allocating with the Proportional distribution method, you can
generate the individual product sales figures that are needed to produce the desired
total sales figure.

If, however, you want to write the results of the allocation to a completely new
measure, you would still use the Sales measure as the basis. The new target enables
you to preview the allocated results before overwriting the original data. Similarly,
you may want to allocate data into a Budget target measure and use an Actuals
measure as the basis of the allocation.

Target Measures
The target measure stores the results of an allocation. By default, the target and the
basis are the same measure. However, you may prefer to use a different target measure
so that you can preview the results of an allocation before overwriting any original
values.

Weight Measures
You can perform a calculation on the allocated values before they are stored in the
target measure. For example, you might need to convert Sales numbers to a different
currency. You might create a budget in US dollars, and then translate the allocation
target into local currencies. To accomplish this, you would multiply the target values
by a weight measure that contains the currency translation rates.

Selecting Dimension Members for an Allocation
You can perform an allocation over an entire measure or over selected branches of the
hierarchy. You must restrict the allocation to a portion of the measure under these
circumstances:

Selecting Dimension Members for an Allocation

Allocations 9-5

■ You want to allocate some of the values at the top of the hierarchy, but not all the
values.

For example, you may need to restrict the Time dimension to a few future periods
to prevent allocating over all the historical data.

■ You want to allocate some values that are in the middle of the hierarchy.

For example, you may have generated a forecast at the Month level of Time and
the Brand level of Product, and you want to allocate those numbers down to the
base.

■ You want to allocate down to the middle of the hierarchy, not to the base.

For example, you do not want to proliferate data to the Day level of Time and the
SKU level of Product, because you are setting sales quotas, which do not need that
level of detail.

Identifying the Sources and Targets
The dimension members that you select for the allocation is used to identify the source
and the target cells. The selection must include:

■ In the source measure, the cells at the top of the hierarchy that contain the values
to be allocated.

■ In the target measure, the cells down the hierarchy that are allocated values.

Figure 9–6 shows a portion of a Time hierarchy with the source allocation values at the
Quarter level. How the allocation is performed depends on which members are
selected (or in status). Table 9–1 describes various status settings and their effect on
the allocation.

Figure 9–6 Allocating at the Quarter Level

Table 9–1 Results of Status on Allocation at the Quarter Level

Status Allocation Explanation

All None The top member of the hierarchy (2006) has no value,
so there is no source value to allocate.

Selecting Dimension Members for an Allocation

9-6 Oracle OLAP Application Developer's Guide

Figure 9–7 shows the correct status for allocating only Q1.

Figure 9–7 Status for Allocating One Mid-Level Branch of a Hierarchy

When calculating the allocation, the OLAP engine expands the current status to
include siblings, if necessary. Figure 9–8 shows an even allocation when Q2, Apr and
May are in status. Jun is not a target and does not get a value. Nonetheless, the engine
divides the allocated value of 12 by all three children, not just the two targets, to
calculate the values for Apr and May.

All quarters None The children of Q1 and Q2 are not in status, so there is
no target for allocation.

All quarters, all months Jan to Jun Q1 and Q2 are in status, so the value 9 is allocated to
Jan, Feb, and Mar, and the value 12 is allocated to
Apr, May, and Jun.

Q1, Jan to Mar Jan to Mar Q1 and its children are in status, so the value 9 is
allocated to Jan, Feb, and Mar. Q2 is not in status and
is not allocated.

Table 9–1 (Cont.) Results of Status on Allocation at the Quarter Level

Status Allocation Explanation

Selecting Dimension Members for an Allocation

Allocations 9-7

Figure 9–8 Even Allocation to Selected Child Members

Identifying the Allocation Path
When the allocation path from the source to the target cells is not defined by the
current status, the engine may populate the siblings of cells along the path. This
information is important only if you want to avoid overwriting existing values or
unnecessarily proliferating data.

Figure 9–9 shows the results of an allocation from 2006 to the three months in Q2.
Only 2006, Apr, May, and Jun are in status. This status does not define a path from the
source to the target. Because the Quarter level is on the path to the target, all of the
quarters are allocated a value.

Figure 9–9 Even Allocation Without a Defined Allocation Path

However, when Q2 is included in status, it is the only quarter to get an allocated value,
as shown in Figure 9–10.

Creating an Allocation

9-8 Oracle OLAP Application Developer's Guide

Figure 9–10 Even Allocation With a Defined Allocation Path

Creating an Allocation
You can create allocations in Analytic Workspace Manager by defining an allocation
step in a Calculation Plan. Take these steps:

1. Create the source, basis, target, and weight measures. They must be in the same
cube. The source, basis, and weight measures can be either stored measures or
calculated measures. The target measure must be a stored measure.

2. Create an allocation step:

a. In the navigation tree, create a new Calculation Plan or open an existing plan.

b. On the General tab of the Calculation Plan property page, click New Step,
then choose New Allocation Step.

The New Allocation Step property pages are displayed.

c. Complete the General page, being careful to select the correct source, target,
and basis measures.

d. On the Rules page, use the up- and down-arrows to list the dimensions in the
order you want them calculated. If you assign different operators to different
dimensions, then the allocated values may be different depending on the
order.

e. Select an operator for each dimension that you want to allocate, and a weight
measure if desired.

f. On the Status page, select the members for each dimension of the measure. To
allocate values from the top down to the base, retain the default selection of
All Levels. Otherwise, select the dimension members with the source data and
the target members.

Refer to "Selecting Dimension Members for an Allocation" on page 9-4 for
information on selecting the dimension values.

g. Click Create to save the allocation step, then Apply to save the Calculation
Plan.

3. To allocate the data, right-click the Calculation Plan in the navigation tree, then
choose Execute Calculation Plan.

Allocation Operators

Allocations 9-9

4. To view the results of the allocation, right-click the target measure and choose
View Data.

Allocation Operators
Allocation operators determine the methodology for distributing source values to their
targets. There are three basic types of allocation operators: Copy, Even Distribution,
and Proportional Distribution.

Within these basic types are regular operators and hierarchical operators. The regular
operators only assign values to cells identified by the basis measure as having a value.
The hierarchical operators do not use a basis measure. They assign values to all target
cells.

Copy Operators
These are the copy operators:

■ Copy: Copies the allocation source to all of the target cells that have a basis value
that is not NA (null).

■ Hierarchical Copy: Copies the allocation source to all of the target cells specified
by the hierarchy, regardless of the basis value.

■ Minimum: Copies the allocation source to the target that has the smallest basis
value.

■ Maximum: Copies the allocation source to the target that has the largest basis
value.

■ First non-NA Data Value: Copies the allocation source to the first target cell that
has a non-NA basis value.

■ Hierarchical First Member: Copies the allocation source to the first target cell
specified by the hierarchy, regardless of the basis value.

■ Last non-NA Data Value: Copies the allocation source to the last target cell that
has a non-NA basis value.

■ Hierarchical Last Member: Copies the allocation source to the last target cell
specified by the hierarchy, regardless of the basis value.

Even Distribution Operators
These are the even distribution operators:

Even: Divides the allocation source by the number of target cells that have non-NA
basis values and applies the quotient to each target cell.

Hierarchical Even: Divides the allocation source by the number of target cells,
including the ones that have NA values, and applies the quotient to each target cell.

Note: Always follow an Allocation Step with an Aggregation Step.

Note: The hierarchical operators may increase the size of a measure
dramatically by allocating values to previously empty cells. Be careful
to set the status of all dimensions.

Case Study: Allocating a Budget

9-10 Oracle OLAP Application Developer's Guide

Proportional Distribution Operator
The proportional distribution operator is:

Proportional: Divides the allocation source by the sum of the basis values, then
multiplies the quotient by the individual basis value for each target cell.

Relationships Between Allocation and Aggregation Operators
The allocation system operates as the logical inverse of the aggregation system. In
other words, if you allocate down from a middle level of a hierarchy, you can
aggregate up to the top of the hierarchy using an aggregation operator that
corresponds to the allocation operator. Table 9–2 shows the correspondence between
allocation operators and aggregation operators.

Case Study: Allocating a Budget
This example creates a sales budget that is 10% higher than the previous year's sales. It
uses a calculated measure to generate the increase, then distributes the total increase
evenly down the dimension hierarchies.

Creating the Source Measure
To create the source measure:

1. Expand the UNITS_CUBE folder, right-click Calculated Measures, and choose
Create Calculated Measure.

The Calculation Wizard opens.

2. Complete the Name and Type page with these values:

■ Name: sales_py

■ Calculation Type: Prior Value (under Prior/Future Comparison)

3. Complete the Prior Value page with these values:

■ Measure: Sales

■ Over Time in: Calendar Year

Table 9–2 Corresponding Allocation and Aggregation Operators

Allocation Operator Aggregation Operator

Copy Average

Hierarchical Copy Average

Minimum Minimum

Maximum Maximum

First non-NA Data Value First Non-NA Data Value

Last non-NA Data Value Last Non-NA Data Value

Hierarchical First Member Hierarchical First Member

Hierarchical Last Member Hierarchical Last Member

Even Sum or Average

Hierarchical Even Hierarchical Average

Proportional Sum

Case Study: Allocating a Budget

Allocations 9-11

■ Go back by: 1 Year

4. Create a second calculated measure with the name SALES_BUDGET.

5. For the calculation, expand the Basic Arithmetic folder and choose Multiplication.

6. On the Multiplication page, multiply SALES_PY by 1.06 for a 6% increase in Sales
over the prior year.

Creating the Target Measure
This example stores the allocated data in a separate measure from the source data to
assure that the allocated data does not overwrite any source data.

To create the target measure:
1. In the UNITS_CUBE folder, right-click Measures and select Create Measure.

The Create Measure dialog box opens.

2. On the General page, create a measure named ALLOC_SALES_BUDGET.

3. Select Override the Aggregation Specification of the Cube.

4. On the Summarize To page, deselect all levels for all dimensions.

The measure is not mapped to a data source, so no aggregation needs to be done
during regular builds. Instead, aggregation is defined in the Calculation Plan. The
aggregation step is not shown in this example; refer to "Case Study: Forecasting Sales
for Global Enterprises" on page 7-13 for an example that shows forecasting, allocation,
and aggregation.

Creating the Calculation Plan
Budget Plan has an allocation step and an aggregation step (not shown).

To create a new Calculation Plan:

1. Right-click Calculation Plans and select Create Calculation Plan.

The Create Calculation Plan dialog box opens.

2. Create a new plan named BUDGET_PLAN. Click Create.

BUDGET_PLAN appears as a new item in the Calculation Plans folder. It does not yet
contain any steps.

Creating the Allocate Budget Step
The SALES_BUDGET calculated measures generates data at all levels. The allocation
redistributes the data from the top of the hierarchy to the lowest levels and stores it in
the target measure.

To create an allocation step:

1. On the General page of Sales Plan, click New Step, then select New Allocation
Step.

The Create Allocation Step dialog box opens.

2. Complete the General page with these values:

■ Name: allocate_budget_step

■ Cube: UNITS_CUBE

Case Study: Allocating a Budget

9-12 Oracle OLAP Application Developer's Guide

■ Source Measure: SALES_BUDGET

■ Target Measure: ALLOC_SALES_BUDGET

■ Basis Measure: SALES_BUDGET

3. On the Rules page, assign Hierarchical Even for the Time operator. For the other
dimensions, assign the Proportional operator.

4. On the Status page, keep the default status of All Levels for all dimensions.

5. Click Create to save the allocation step.

6. Click Apply to save the Calculation Plan.

Generating and Validating the Allocation
To generate the allocation:

1. Expand the Calculation Plans folder. Right-click BUDGET_PLAN and choose Execute
Calculation Plan BUDGET_PLAN.

The Maintenance Wizard opens, and BUDGET_PLAN is a selected target object.

2. Click Finish.

The build log is displayed when the Calculation Plan is done executing.

To view the allocation results, take these steps:

1. Fully expand the UNITS_CUBE folder, right-click the ALLOC_SALES_BUDGET measure,
and choose View Data ALLOC_SALES_BUDGET.

The Measure Data Viewer opens. No data is displayed, because the top dimension
levels provide the source data, not the allocated data.

2. From the File menu, choose Query Builder.

The Query Builder opens.

3. On the Layout tab, switch Product and Customer. Click Help for instructions.

4. On the Dimensions tab, set the status of all dimensions to the base level. You may
wish to select just a few values from these lists. For Time, limit the months to 2004,
since that it is only allocated year.

5. Click OK to close the Query Builder.

Figure 9–11 shows a sample of the allocated data. The allocated data should be
aggregated from these base levels to the top by an aggregation step.

Note: Always follow an Allocation Step with an Aggregation Step.

Case Study: Allocating a Sales Forecast

Allocations 9-13

Figure 9–11 Allocated Sales Budget Data

Case Study: Allocating a Sales Forecast
"Case Study: Forecasting Sales for Global Enterprises" on page 7-13 generates a
four-month Sales forecast from August 2004 to December 2005. The forecast data is at
the Month level for Time, and at the topmost level for Product, Customer, and
Channel. An allocation step distributes the forecast data down to the base levels of
these three dimensions.

Creating an Allocation Basis Measure
This example uses the Proportional method to distribute the values based on the sales
performance for the previous year. The Proportional method uses another measure as
the basis for the allocation. This example uses a calculated measure for sales values for
the prior year as the basis measure. If you did not create Sales_PY for "Case Study:
Allocating a Budget" on page 9-10, you should do so now.

Figure 9–12 compares Prior Year Sales to Sales. The Prior Year Sales measure has data
for the forecast periods, while the Sales measure does not.

Case Study: Allocating a Sales Forecast

9-14 Oracle OLAP Application Developer's Guide

Figure 9–12 Creating a Basis Measure for Allocating Forecast Data

Creating the Allocate Sales Forecast Step
The forecast created the data only for a single level of each dimension. Only Time is
populated at the base level. The data must be allocated to the base levels of the other
dimensions before it can be aggregated by the OLAP engine.

To create an allocation step:
1. On the General page of Sales Plan, click New Step, then select New Allocation

Step.

The Create Allocation Step dialog box opens.

2. Complete the General page with these values:

■ Name: allocate_sales_forecast_step

■ Cube: UNITS_CUBE

■ Source Measure: SALES_FORECAST

■ Target Measure: SALES_FORECAST

■ Basis Measure: SALES_PY

3. On the Rules page, select None for the Time operator. For the other dimensions,
select Proportional.

4. On the Status page, set the dimension status using conditions:

■ Time: Start with Month

On the Members tab, verify that only months are listed.

■ Customer: Start with All Levels

On the Members tab, verify that all members are listed.

■ Product: Start with Descendants of Total Product

Case Study: Allocating a Sales Forecast

Allocations 9-15

On the Members tab, verify that all members except Total Products are
listed.

■ Channel: Start with All Levels

On the Members tab, verify that all members are listed.

5. Click Create to save the allocation step.

6. Click Apply to save the Calculation Plan.

Generating and Validating the Allocation
Rerun the Calculation Plan, as described in "Generating and Validating the Allocation"
on page 9-12. Both the forecast step and the allocation step are executed.

To view the allocation results, use the Measure Viewer to see the data in the Sales
Forecast measure. The allocation populated all levels of Product, Customer, and
Channel.

Figure 9–13 compares the forecast data with the basis measure at the middle levels of
the dimensions used in the allocation.

Figure 9–13 Forecast Data After Allocation

Case Study: Allocating a Sales Forecast

9-16 Oracle OLAP Application Developer's Guide

10

Developing Reports and Dashboards 10-1

10 Developing Reports and Dashboards

You can use any SQL development tool or application to create reports and
dashboards populated with data from OLAP cubes. This chapter shows the basic steps
for working with the tools provided with Oracle Database: Oracle Business
Intelligence Publisher (BI Publisher) and Oracle Application Express. You can try these
tools, or you can apply the methods shown here to your favorite SQL tool.

This chapter contains the following topics:

■ Developing SQL Applications for Dimensional Data

■ Developing a Report Using BI Publisher

■ Developing a Dashboard Using Application Express

Developing SQL Applications for Dimensional Data
You can use any SQL query against a cube as the content for a report or dashboard.
Both BI Publisher and Application Express contain a Query Builder, which you can use
to develop queries against both relational and dimensional objects. You can also
cut-and-paste queries from a SQL script or another source, which is the method used
in this chapter.

If your goal is to create static reports and dashboards, then you do not need to read
any further. You can start developing OLAP applications immediately using your
favorite tool. This chapter explains how to create applications with dynamic content. It
focuses on ways to leverage the unique capabilities of cubes and dimensions to create
drillable reports and graphs using a single query. In this chapter, you learn how to
create two types of drillable interfaces:

■ Choice Lists: You can create a drop-down list for each dimension to drill on the
dimensions in a report or dashboard.

■ Linked Dimension Columns: In Application Express, you can add links to the
dimension columns of a crosstab to drill down to the bottom of a hierarchy, and
use a Reset button to return to the top level.

These user interfaces set the values of bind variables in the WHERE clause of the source
query. When a user changes the current selection in a choice list or clicks a link in a
crosstab, that action dynamically changes the value of the variable. When the variable
changes, so does the condition of the query and the contents of the report or
dashboard.

When the variable sets the value of a parent column in a cube view, users can drill on a
parent to view its children.

See Also: Chapter 4, "Querying Dimensional Objects Using SQL"

Developing SQL Applications for Dimensional Data

10-2 Oracle OLAP Application Developer's Guide

Example 10–1 shows a basic SQL query against a cube view of the Units Cube in the
Global sample schema. The query selects the SALES measure and three calculated
measures that use SALES as the basis for the calculations:

■ SALES_PP: Sales from the prior period.

■ SALES_CHG_PP: Difference in sales between the current period and the prior period.

■ SALES_PCT_CHG_PP: Percent difference in sales between the current period and the
prior period.

This query is used in the sample applications developed in this chapter. The parent
columns for the Product, Customer, and Time dimensions support drilling in these
applications. The Channel dimension remains anchored at the TOTAL_CHANNEL level.

Example 10–1 SQL Query Against the Sales Cube

SELECT product_ldsc "Product",
 customer_ldsc "Customer",
 time_ldsc "Time",
 round(sales) "Sales",
 round(sales_pp) "Prior Period",
 round(sales_chg_pp) "Change",
 round(sales_pct_chg_pp * 100) "Percent Change"
/* From cube view */
 FROM units_cube_cubeview
/* Filters on all dimensions */
 WHERE product_primary_prnt = 'TOTAL_PRODUCT_1'
 AND customer_shipments_prnt = 'TOTAL_CUSTOMER_1'
 AND time_calendar_yea_prnt = 'YEAR_4'
 AND channel_level = 'TOTAL_CHANNEL'
 ORDER BY product, customer, time_end_date;

Product Customer Time Sales Prior Period Change Percent Change
--------------- --------------- -------- ---------- ------------ ---------- --------------
Hardware North America Q1-01 15029369 16225669 -1196300 -7
Hardware North America Q2-01 14873260 15029369 -156108 -1
Hardware North America Q3-01 15951726 14873260 1078465 7
Hardware North America Q4-01 17228528 15951726 1276802 8
Hardware Asia Pacific Q1-01 6282186 7040505 -758319 -11
Hardware Asia Pacific Q2-01 6661802 6282186 379616 6
Hardware Asia Pacific Q3-01 6936356 6661802 274554 4
Hardware Asia Pacific Q4-01 7371841 6936356 435486 6
Hardware Europe Q1-01 4183166 4509289 -326123 -7
Hardware Europe Q2-01 4165212 4183166 -17954 0
Hardware Europe Q3-01 4521921 4165212 356710 9
Hardware Europe Q4-01 4785698 4521921 263777 6
Software/Other North America Q1-01 1229455 1260900 -31445 -2
Software/Other North America Q2-01 1233716 1229455 4261 0
Software/Other North America Q3-01 1333084 1233716 99368 8
Software/Other North America Q4-01 1446759 1333084 113675 9
Software/Other Asia Pacific Q1-01 519562 517674 1888 0
Software/Other Asia Pacific Q2-01 509705 519562 -9857 -2
Software/Other Asia Pacific Q3-01 566745 509705 57040 11
Software/Other Asia Pacific Q4-01 596995 566745 30250 5
Software/Other Europe Q1-01 351592 364827 -13235 -4
Software/Other Europe Q2-01 354732 351592 3140 1
Software/Other Europe Q3-01 381837 354732 27105 8
Software/Other Europe Q4-01 416232 381837 34395 9

24 rows selected.

Developing a Report Using BI Publisher

Developing Reports and Dashboards 10-3

Developing a Report Using BI Publisher
BI Publisher is an efficient, scalable reporting solution for generating and delivering
information through a variety of distribution methods. It reduces the high costs
associated with the development and maintenance of business documents, while
increasing the efficiency of reports management. BI Publisher generates reports in a
variety of formats, including HTML, PDF, and Excel.

If you have not used BI Publisher, you can download the software, tutorials, and full
documentation from the Oracle Technology Network at

http://www.oracle.com/technetwork/middleware/bi-publisher/overview/index.h
tml

Figure 10–1 shows a report in PDF format based on the query shown in Example 10–1.
When generating a report for distribution, you can select any combination of Products,
Customers, and Time Periods from the choice lists. The selection for this report is
Hardware products, customers in Europe, and months in Q2-01. This chapter explains
how you can create a report like this one using drillable dimensions.

Figure 10–1 Sales Report in BI Publisher

Creating an OLAP Report in BI Publisher
A report consists of a report entry, which you create in BI Publisher, and a layout
template, which you create using an application such as Microsoft Word or Adobe
Acrobat. You can organize your reports in folders.

BI Publisher is a middleware application and can derive data from multiple sources.
These procedures assume that you can access one or more cubes from BI Publisher. If
you cannot, contact your BI Publisher administrator about defining a new data source.

See Also: Chapter 6, "Enhancing Your Database With
Analytic Content," for information about calculated measures

http://www.oracle.com/technetwork/middleware/bi-publisher/overview/index.html
http://www.oracle.com/technetwork/middleware/bi-publisher/overview/index.html

Developing a Report Using BI Publisher

10-4 Oracle OLAP Application Developer's Guide

To create a report entry:
1. Open a browser to the BI Publisher home page and log in.

2. Click My Folders.

3. Open an existing folder.

or

To create a new folder:

a. Click Create a New Folder.

b. Enter a name for the folder in the text box, such as OLAP Reports.

c. Click Create.

4. Click the new folder to open it.

5. Create a new report:

a. Click Create a New Report.

b. Enter a report name in the text box.

This example creates a report named Global Sales.

c. Click Create.

The new report appears in the folder, as shown in Figure 10–2.

Figure 10–2 Creating a New Report

To configure the report entry:
1. To define the contents of the report, click Edit.

The Report Editor opens.

2. For General Settings, enter a description and select a default data source.

If the list does not include a connection to the database and schema containing
your cubes, contact your BI Publisher administrator.

3. Select Data Model, then click New.

Developing a Report Using BI Publisher

Developing Reports and Dashboards 10-5

The Data Set page opens.

4. Enter a name for the data set and enter a SQL query like the one shown in
Example 10–1. Do not end semicolon.

5. Click Save.

6. Click View.

BI Publisher checks the report definition for errors. If there are none, then it
generates the XML for the report.

Figure 10–3 shows the Report Editor with the Data Set page displayed.

Figure 10–3 Creating a Data Model in the BI Publisher Report Editor

Creating a Template in Microsoft Word
BI Publisher does not contain formatting tools. Instead, it enables you to design a
report using familiar desktop applications. This example uses Microsoft Word. A
report template can contain:

■ Static text and graphics that you enter like any other Word document.

■ Dynamic fields such as the date and time or page numbers, which are processed
by Word.

■ Codes that identify the XML tags for your data, which are processed by BI
Publisher. When BI Publisher generates a report, it replaces the codes with the data
identified by these tags.

You can format all parts of the report template in Word, selecting the fonts, text and
background colors, table design, and so forth.

Example 10–2 shows the XML for a row of data returned by the sample query. The
tags match the column names in the select list, except that underscores replace the

Developing a Report Using BI Publisher

10-6 Oracle OLAP Application Developer's Guide

spaces. The tags are Product, Customer, Time, Sales, Prior_Period, Change, and
Percent_Change. XML tags are case-sensitive. You use the HTML tag names as the
codes in the Word document.

Example 10–2 XML for a SQL Query

<ROW>
 <Product>Hardware</Product>
 <Customer>North America</Customer>
 <Time>Q1-01</Time>
 <Sales>15029369</Sales>
 <Prior_Period>16225669</Prior_Period>
 <Change>-1196300</Change>
 <Percent_Change>-7</Percent_Change>
</ROW>

Figure 10–4 shows the Word document that is used as the template for the sample
report. It contains these elements:

■ A table used to format the banner, which consists of a graphic, the company name,
and a horizontal line. (Static)

■ The name of the report. (Static)

■ A table for the query results that contains two rows:

– A heading row. (Static)

– A body row containing text form fields, which identify the XML tags and the
appropriate formatting for the data. BI Publisher replaces these fields with
data from the query. Note that the first and last columns contain two fields.
The first (for each) and last (end) fields identify the range of repeating
columns. (Dynamic)

■ A date field. Word updates this field with the current date. (Dynamic)

This example uses a blank Word template, but you could use a template with, for
example, the banner already defined.

Figure 10–4 Sample Report Template Created in Word for BI Publisher

The following procedure defines the template manually. Alternatively, you can use a
Word plugin called Oracle BI Publisher Desktop. On the BI Publisher My Folders page,
click Template Builder to download the plugin.

Developing a Report Using BI Publisher

Developing Reports and Dashboards 10-7

To create a BI Publisher template in Word:
1. Open a new document in Word.

2. Compose the page according to your preferences.

3. For the query results, create a table.

The table shown in Figure 10–4 is very simple. You can use much more elaborate
formatting if you wish, including nested columns and tables.

4. From the View menu, choose Toolbars, then Forms.

The Forms toolbar opens.

5. Enter a field in the body row of each column:

a. Position the cursor in the appropriate cell.

b. On the Forms toolbar, click the Text Form Field icon.

The Text Form Field Options dialog box opens.

c. Choose an appropriate Type, generally Regular Text for dimension labels and
Number for measures.

d. Enter a default value and a format.

e. Click Add Help Text.

The Form Field Help Text dialog box opens.

f. Type the appropriate XML tag in the Type Your Own box, using the format
<?tag?>.

Enter the tag name exactly as it appears in the XML report. For example, enter
<?Product?> for the XML tag <Product>.

g. Click OK to close the Form Field Help dialog box.

h. Click OK to close the Text Form Field Options dialog box.

6. Insert an additional form field at the beginning of the first column:

a. In the Text Form Field Options dialog box, enter any default value, such as
For-Each.

b. In the Form Field Help Text dialog box, enter this text:

<?for-each:ROW?>

7. Insert an additional form field at the end of the last column:

a. In the Text Form Field Options dialog box, enter any default value, such as
End.

b. In the Form Field Help Text dialog box, enter this text:

<?end for-each?>

8. Make any additional formatting changes in Word, such as the appropriate
justification of the table headings and data columns.

9. Save the document as an RTF file.

Developing a Report Using BI Publisher

10-8 Oracle OLAP Application Developer's Guide

Generating a Formatted Report
After creating a report template in Word, you can upload it to BI Publisher and
associate it with your report definition. Then you can generate reports in a variety of
formats.

Create a Report Layout:
1. Open the report editor in BI Publisher.

2. Select Layouts.

The Create Layouts page opens.

3. Click New.

The Layout page opens.

4. Enter a name and select RTF for the template type.

5. Select Layouts again, and select the new layout as the default template for this
report.

6. Under Manage Template Files, click Browse. Select the RTF file you created.

7. Click Upload.

The uploaded file is listed under Manage Template Files. Whenever you change
the file in Word, upload it again. Otherwise, BI Publisher continues to use its copy
of the previous version.

8. Click Save.

9. Click View.

The report is displayed.

10. To change the format, select a new format from the list and click View.

To see the XML, select Data.

Figure 10–5 shows the report in HTML format.

Developing a Report Using BI Publisher

Developing Reports and Dashboards 10-9

Figure 10–5 BI Publisher Report Displayed in HTML Format

Adding Dimension Choice Lists
You can add choice lists for the dimensions to a report. When generating a report, you
can change the selection of data without changing the query. To add choice lists, take
these steps:

■ Create one or more Lists of Values (LOV) to be displayed in the menu.

■ Create menus for displaying the LOVs.

■ Edit the query to use the bind variables created for the menus.

Creating a List of Values
For an LOV, use a SQL query that selects the dimension keys that you want to display.
Include the long description and dimension key columns. This example creates a list
for the Product Primary hierarchy using a dimension view:

SELECT product_ldsc, product
 FROM product_dimview
 WHERE product_primary_prnt = 'TOTAL_PRODUCT_1'
 OR product = 'TOTAL_PRODUCT_1'
 ORDER BY product_level, product_ldsc;

PRODUCT_LDSC PRODUCT
-------------------- --------------------
Hardware CLASS_2
Software/Other CLASS_3
Total Product TOTAL_PRODUCT_1

To create a list of values:
1. Open the Report Editor in BI Publisher.

Developing a Report Using BI Publisher

10-10 Oracle OLAP Application Developer's Guide

2. Select List of Values, then click New.

The List of Values page opens.

3. Define the list:

a. Enter a name for the list, such as Product_LOV.

b. For the type, select SQL Query.

c. Enter a query against a dimension view, as shown previously.

4. Click Save.

Repeat these steps for the other dimensions. This example uses lists for Product,
Customer, and Time.

Creating a Menu
In BI Publisher, a menu is a type of parameter. Creating a parameter automatically
creates a bind variable that you can use in the query for the report.

To create a menu:
1. Select Parameters, then click New.

The Parameter page opens.

2. Define the parameter:

a. For the Identifier, enter a name such as product.

This is the case-sensitive name of the bind variable that you use in the query.

b. Select an appropriate data type, typically String.

c. For the Default Value, enter the dimension key used in the WHERE clause of the
LOV query.

The menu initially displays the label for this key.

d. For the Parameter Type, select Menu.

e. Select the appropriate List of Values.

f. Clear all options.

3. Click Save.

Repeat these steps for the other dimensions. This example uses menus for Product,
Customer, and Time.

Editing the Query
To activate the menus, you change the WHERE clause in the query so that the report uses
the bind variables. The value of a bind variable is the current menu choice.

This is the format for the conditions of the WHERE clause:

parent_column = :bind_variable

In this example, the WHERE clause uses the bind variables for Time, Product, and
Customer:

WHERE product_primary_prnt = :product
 AND customer_shipments_prnt = :customer
 AND time_calendar_yea_prnt = :time
 AND channel_level = 'TOTAL_CHANNEL'

Developing a Dashboard Using Application Express

Developing Reports and Dashboards 10-11

To edit the query:
1. Under Data Model, select the data set you defined for this report.

The Data Set page opens.

2. In the SQL Query box, edit the WHERE clause to use the bind variables created by
the parameter definitions.

3. Click Save.

Figure 10–6 shows a report in HTML format displayed in BI Publisher. The choice lists
for Product, Customer, and Time appear across the top. The crosstab lists the
Hardware products, the countries in Asia Pacific, and the months in Q4-01. To see a
different selection of data, you can choose a Time Period, Product, and Customer from
the menus, then click View. This report was generated by the same report entry, using
the same query, as the reports shown in Figure 10–1 and Figure 10–5.

You can continue working on this report, adding charts and other tables.

Figure 10–6 Sales Report With Choice Lists in BI Publisher

Developing a Dashboard Using Application Express
Oracle Application Express is a rapid Web application development tool for Oracle
Database. Application Express offers built-in features such as user interface themes,
navigational controls, form handlers, and flexible reports, which simplify the
development process. You can easily create dashboards from your cubes that display
the rich analytical content generated by Oracle OLAP.

If you have not used Application Express, you can download the software, tutorials,
and full documentation from the Oracle Technology Network at

http://www.oracle.com/technetwork/developer-tools/apex/overview/index.html

http://www.oracle.com/technetwork/developer-tools/apex/overview/index.html

Developing a Dashboard Using Application Express

10-12 Oracle OLAP Application Developer's Guide

Figure 10–7 shows a crosstab with display lists for Product and Customer, and links in
all three dimension columns. Choosing a new Product or Customer changes the
related column to show the children for the selected key. Clicking a dimension key in
any column displays its children. The Reset button refreshes the page with the initial
selection of data.

Figure 10–7 Drillable Dimensions in Application Express

Creating an OLAP Application in Application Express
In Application Express, the Administrator creates a workspace in which you can
develop your Web applications. An application consists of one or more HTML pages,
a page consists of regions that identify specific locations on the page, and a region
contains a report (crosstab), a chart, or some other item.

Application Express runs in Oracle Database. If your dimensional objects are stored in
a different database, then you must use a database link in your queries. The following
procedure assumes that you have a workspace and access to at least one cube. It
creates an application with one page containing a crosstab.

To create a Web page from a SQL query:
1. Open a browser to the Application Express home page and log in.

2. Click the Application Builder icon.

The Application Builder opens.

3. Click Create.

The Create Application wizard opens.

4. Select Create Application, then Next.

5. On the Name page, enter a title for the application such as Global Dashboard and
select From Scratch.

Developing a Dashboard Using Application Express

Developing Reports and Dashboards 10-13

6. On the Pages page, select the Report page type, then define the page:

a. For Page Source, select SQL Query.

b. For Page Name, enter a name such as Sales Analysis.

This title is displayed on the page.

c. For Query, enter a SQL SELECT statement for your cube, like the one shown in
Example 10–1. Do not include an ORDER BY clause or a semicolon.

d. Click Add Page.

The page definition appears in the Create Application Box.

7. Click Next, then complete the Create Application wizard according to your own
preferences.

This example was created with no tabs, no shared components, no authentication,
and Theme 15 (Light Blue).

8. On the Confirm page, click Create.

9. On the Application Builder home page, click the Run Application icon.

Figure 10–8 shows the results of the query displayed in Application Express. Several
items are automatically added to the page: breadcrumbs, Search box, Display list, Go
button, Reset button, and Spread Sheet link. This application only needs the Reset
button, so you can delete the other items if you wish.

Figure 10–8 Basic Sales Report in Application Express

Adding Dimension Choice Lists
Like BI Publisher, Application Express enables you to drill on the dimensions by
adding choice lists of dimension keys. The dashboard user can choose a particular

Tip: To continue working on this page, click the Edit Page 1 link at
the bottom of the display.

Developing a Dashboard Using Application Express

10-14 Oracle OLAP Application Developer's Guide

item from the list and dynamically change the selection of data displayed in one or
more graphics and crosstabs on the page. To implement a choice list, take these steps:

■ Create a new region on the page to display the list.

■ Create a list of values (LOV).

■ Create a list item with a bind variable to display the LOV.

■ Create an unconditional branch for the list.

■ Edit the query to use the bind variable.

The Page Definition is where you can create new pages and edit existing ones,
including adding new graphical items and modifying existing ones. The items are
organized in three columns: Page Rendering, Page Processing, and Shared
Components.

To open the Page Definition:
After running the application, click the Edit Page link at the bottom of the page.

or

On the Application home page, click the icon for the page where the report is defined.

Figure 10–9 shows an area of the Page Definition.

Figure 10–9 Application Express Page Definition

Creating a Region
You can create the choice list in a plain HTML area at the top of the page.

Developing a Dashboard Using Application Express

Developing Reports and Dashboards 10-15

To create an empty HTML region:
1. On the Page Definition under Regions, click the Create icon.

The Create Region wizard opens.

2. On the Region pages, select HTML, click Next, then select HTML again.

3. On the Display Attributes page, enter a descriptive title and select an appropriate
template and location on the page for the lists.

For this example, the title is lov_region, the region template is No Template, and
the location is Page Template Body (1 items below region content). The name can
be displayed on the rendered page, but it is hidden in this example.

4. Click Next, then Create Region.

The new region appears on the Page Definition under Regions.

Creating a List of Values
For a list of values, use a SQL query like the one shown here. Include the description
and key columns from the dimension view. This query creates a list for the Global
Customer Shipments hierarchy:

SELECT customer_ldsc, customer
 FROM customer_dimview
 WHERE customer_shipments_prnt = 'TOTAL_CUSTOMER_1'
 OR customer = 'TOTAL_CUSTOMER_1'
 ORDER BY customer_level, customer_ldsc;

CUSTOMER_LDSC CUSTOMER
-------------------- --------------------
Asia Pacific REGION_8
Europe REGION_9
North America REGION_10
All Customers TOTAL_CUSTOMER_1

To create a List of Values
1. On the Page Definition under Lists of Values, click the Create icon.

The Create List of Values wizard opens.

2. On the Source page, select From Scratch.

3. On the Name and Type page, enter a descriptive name and select Dynamic.

This example uses the name CUSTOMER_LOV.

4. On the Query page, enter a query like the one shown previously. Do not use a
semicolon.

5. Click Create List of Values.

The new LOV appears in the Page Definition under List of Values.

For additional LOVs, repeat these steps. This example creates LOVs for the Product
and Customer dimensions.

Creating the Choice List
For a choice list, you create a list item that displays the LOV.

To create a list item:
1. On the Page Definition under Items, click the Create icon.

Developing a Dashboard Using Application Express

10-16 Oracle OLAP Application Developer's Guide

The Create Item wizard opens.

2. On the Item Type page, select Select List.

3. For Control Type, select Select List with Submit.

4. On the Display Position and Name page:

■ Enter a name that identifies the dimension, such as P1_CUSTOMER for the name
of the Customer bind variable. P1 is the page number, and CUSTOMER identifies
the Customer dimension.

■ Choose the new HTML region for the location of the list.

5. On the List of Values page, set these values:

■ Named LOV to the List Of Values created for this dimension, such as
CUSTOMER_LOV.

■ Display Null Option to No.

6. Select the Item attributes according to your own preferences.

7. On the Source page, enter the name of the top dimension key for the default value.

For the Global Customer dimension, the value is TOTAL_CUSTOMER_1.

8. Click Create Item.

Repeat these steps for other lists. This example creates lists for the Product and
Customer dimensions.

To activate the list item:
1. On the Page Definition under Branches, click the Create icon.

The Edit Branch wizard opens.

2. On the Point and Type page, accept the default settings.

3. On the Target page:

■ Set Branch Target to Page in This Application.

■ Set Page to the page with the list item, which is 1 in this example.

■ Select Reset Pagination For This Page.

4. On the Branch Conditions page, accept the default settings to create an
unconditional branch.

5. Click Create Branch.

The Edit Branch page closes, and you return to the Page Definition. The new
unconditional branch is listed under Branches.

Editing the Query
This is the format for the dynamic conditions in the WHERE clause:

parent_column = NVL(:bind_variable, 'top_key')

The NVL function substitutes the name of the top dimension key in the hierarchy for
null values. The dimension keys at the top have no parent key.

To edit the query:
1. Open the Page Definition.

Developing a Dashboard Using Application Express

Developing Reports and Dashboards 10-17

2. Under Regions, click the Edit Region link. In this example, the region is named
Sales Report.

The Edit Region page opens.

3. Under Source, modify the query:

■ Change the WHERE clause to use the bind variables.

■ Delete the outer SELECT added by Application Express.

4. Click Apply Changes.

For this example, the WHERE clause now looks like this:

WHERE product_primary_prnt = NVL(:P1_PRODUCT, 'TOTAL_PRODUCT_1')
 AND customer_shipments_prnt = NVL(:P1_CUSTOMER, 'TOTAL_CUSTOMER_1')
 AND time_calendar_yea_prnt = 'YEAR_4'
 AND channel_level = 'TOTAL_CHANNEL'

Figure 10–10 shows the modified page with choice lists for Product and Customer.

Figure 10–10 Dashboard With Choice Lists for Drilling

Drilling on Dimension Columns
You can enable users to drill down from the top of a hierarchy to the detail level using
a single query. To implement drilling in Application Express, take these steps:

■ Create hidden items with bind variables.

■ Edit the query to use the bind variables.

■ Add links to the dimension columns of the crosstab.

This example adds drilling to all displayed dimensions.

Creating Hidden Items
You can create various types of items in Application Express that provide bind
variables. They store the session state for a particular element, in this case, the current
selection of a parent dimension key.

Developing a Dashboard Using Application Express

10-18 Oracle OLAP Application Developer's Guide

Each dimension that supports drilling needs a bind variable. In this example, Product
and Customer already have bind variables created with the list items. Time is the only
displayed dimension in the report that does not have a bind variable. Because links in
the Time dimension column provide the user interface for changing the session state,
Time does not need any other graphical user interface. A hidden item serves the
purpose.

To create a hidden item:
1. Open the Page Definition.

2. Under Items, click the Create icon.

The Create Item wizard opens.

3. On the Item Type page, select Hidden.

4. On the Display Position and Name page:

■ Enter a name that identifies the dimension, such as P1_TIME for the name of
the Time bind variable.

■ Choose the region where the report is defined.

5. On the Source page, enter the dimension key at the top of the hierarchy as the
default value.

TOTAL is the top of all hierarchies in the Global schema. For this example, Time is
set to YEAR_4 to restrict the selection to 2001.

6. Click Create Item.

7. Repeat these steps for any other dimensions that supports drilling only on the
column links.

For this example, a hidden item is defined for Time.

Editing the Query
To add column links to a report, you must change two areas of the SELECT statement:

■ Select list: Application Express manages only those columns that appear in the
select list. You can choose to display or hide the columns. For defining the column
links, add the key and parent columns in the cube view to the query select list.

■ WHERE clause: Add the bind variables for the hidden items like you did for the
choice lists in "Editing the Query" on page 10-10.

Example 10–3 shows the modified sample query.

Example 10–3 Revised Query for Column Links in Application Express

SELECT product_ldsc "Product",
 customer_ldsc "Customer",
 time_ldsc "Time",
 round(sales) "Sales",
 round(sales_pp) "Prior Period",
 round(sales_chg_pp) "Change",
 round(sales_pct_chg_pp * 100) "Percent Change",
/* Add dimension keys and parents */
 product product_key,
 product_primary_prnt product_parent,
 customer customer_key,
 customer_shipments_prnt customer_parent,
 time time_key,

Developing a Dashboard Using Application Express

Developing Reports and Dashboards 10-19

 time_calendar_yea_prnt time_parent
/* From cube view */
 FROM units_cube_cubeview
/* Use parent columns and bind variables for drilling */
 WHERE product_primary_prnt = NVL(:P1_PRODUCT, 'TOTAL_PRODUCT_1')
 AND customer_shipments_prnt = NVL(:P1_CUSTOMER, 'TOTAL_CUSTOMER_1')
 AND time_calendar_yea_prnt = NVL(:P1_TIME, 'YEAR_4')
 AND channel_level = 'TOTAL_CHANNEL'

Adding Links to the Dimension Columns
When a dashboard user clicks a linked dimension key in the crosstab, the value of the
bind variable changes, causing the crosstab to change also. After drilling down a
hierarchy, the user can restore the display to its original selection of data by pressing
the Reset button. To implement these column links, you must add the column links
and activate the Reset button.

To add a link to a dimension column:
1. Open the Page Definition.

2. Under Regions, click the Report link.

The Report Attributes page opens.

3. Under Column Attributes, modify the report display:

■ Clear the Show check boxes for columns that you want to hide, such as the
dimension key and parent columns.

■ Set the Sort and Sort Sequence check boxes for appropriate sorting for the
report. In this example, the sort order is Product (1), Customer (2), and Time
(3).

4. Click the Edit icon for a dimension column.

The Column Attributes page opens.

5. Under Column Link, define the link as follows:

■ Link Text: Choose the dimension name.

■ Page: Enter the page number.

■ Name: List the dimensions in the order they appear in the report. Item is the
name of the bind variable. Value is the key column for the dimension being
defined or the parent column for the other dimensions.

Figure 10–11 shows the link definition for the Time dimension.

6. Click Apply Changes.

The Column Attributes page closes, and you return to the Report Attributes page.

7. Define links on the other dimension columns.

8. Click Apply Changes.

The Report Attributes page closes, and you return to the Page Definition.

Developing a Dashboard Using Application Express

10-20 Oracle OLAP Application Developer's Guide

Figure 10–11 Definition of the Time Link

To activate the Reset button:
1. Open the Page Definition.

2. Under Branches, click the Go to Page conditional link.

The Reset button was created on the page automatically along with its conditional
branch. The Edit Branch page opens.

3. Under Action, set Clear Cache to the page number (in this example, 1).

4. Under Conditions, set When Button Pressed to RESET.

5. Click Apply Changes.

The Edit Branch page closes, and you return to the Page Definition.

6. Click Run to display the page.

Figure 10–12 shows the finished page displaying months in Q3.01. You can continue
working on this application, adding more reports and charts to the page. For the SQL
queries providing data to those reports and charts, you can reuse the same bind
variables for the dimensions.

Developing a Dashboard Using Application Express

Developing Reports and Dashboards 10-21

Figure 10–12 Sales Report With Column Links in Application Express

Developing a Dashboard Using Application Express

10-22 Oracle OLAP Application Developer's Guide

11

Developing Java Applications for OLAP 11-1

11 Developing Java Applications for OLAP

This chapter presents the rich development environment and the powerful tools that
you can use to create OLAP-aware applications in Java. It includes the following
topics:

■ Building Analytical Java Applications

■ Introducing OracleBI Beans

■ Building Java Applications That Manage Analytic Workspaces

Building Analytical Java Applications
Java is the language of the Internet. Using Java, application developers can write
standalone Java applications (which can be launched from a browser with Java's
WebStart technology) or HTML applications that access live data from Oracle
Database, through servlets, JavaServer Pages (JSP), and Oracle User Interface XML
(UIX).

About Java
Java is the preferred programming language for an ever-increasing number of
professional software developers. For those who have been programming in C or C++,
the move to Java is easy because it provides a familiar environment while avoiding
many of the shortcomings of the C language. Developed by Sun Microsystems, Java is
fast superseding C++ and Visual Basic as the language of choice for application
developers, for the following reasons:

■ Object oriented. Java enables application developers to focus on the data and
methods of manipulating that data, rather than on abstract procedures; the
programmer defines the desired object rather than the steps needed to create that
object. Almost everything in Java is defined as an object.

■ Platform independent. The Java compiler creates byte code that is interpreted at
runtime by the Java Virtual Machine (JVM). As the result, the same software can
run on all Windows, Linux, Unix, and Macintosh platforms where the JVM has
been installed. All major browsers have the JVM built in.

■ Network based. Java was designed to work over a network, which enables Java
programs to handle remote resources as easily as local resources.

■ Secure. Java code is either trusted or untrusted, and access to system resources is
determined by this characteristic. Local code is trusted to have full access to
system resources, but downloaded remote code (that is, an applet) is not trusted.
The Java "sandbox" security model provides a very restricted environment for
untrusted code.

Introducing OracleBI Beans

11-2 Oracle OLAP Application Developer's Guide

The Java Solution for OLAP
To develop an OLAP application, you can use the Java programming language. Java
enables you to write applications that are platform-independent and easily deployed
over the Internet.

The OLAP API is a Java-based application programming interface that provides access
to dimensional data for analytical business applications. Java classes in the OLAP API
provide all of the functions required of an OLAP application: Connection to an OLAP
instance; authentication of user credentials; access to data in the RDBMS controlled by
the permissions granted to those credentials; and selection and manipulation of that
data for business analysis.

OracleBI Beans simplifies application development by providing these functions as
JavaBeans. Moreover, OracleBI Beans includes JavaBeans for presenting the data in
graphs and crosstabs.

The OLAP API has a companion interface that can be used to build applications for
OLAP DBAs. The OLAP Analytic Workspace Java API is a set of Java classes and an
XML schema for designing, building, and updating analytic workspaces in the Oracle
Database. For more information, see "Building Java Applications That Manage
Analytic Workspaces" on page 11-5.

Oracle Java Development Environment
Oracle JDeveloper provides an integrated development environment (IDE) for
developing Java applications. Although third-party Java IDEs can also be used
effectively, only JDeveloper achieves full integration with the Oracle Database and
OracleBI Beans wizards. The following are a few JDeveloper features:

■ Remote graphical debugger with break points, watches, and an inspector.

■ Multiple document interface (MDI)

■ Codecoach feature that helps you to optimize your code

■ Generation of 100% Pure Java applications, applets, servlets, Java beans, and so
forth with no proprietary code or markers

■ Oracle Database browser

Introducing OracleBI Beans
OracleBI Beans provides reusable components that are the basic building blocks for
OLAP decision support applications. Using OracleBI Beans, developers can rapidly
develop and deploy new applications, because these large functional units have
already been developed and tested — not only for their robustness, but also for their
ease of use. And because OracleBI Beans provides a common look and feel to OLAP
applications, the learning curve for end users is greatly reduced.

OracleBI Beans includes the following:

Note: Oracle JDeveloper and OracleBI Beans are not packaged
with the Oracle RDBMS.

Note: Oracle JDeveloper is an application and is not packaged
with Oracle Database.

Introducing OracleBI Beans

Developing Java Applications for OLAP 11-3

■ Presentation beans display the data in a rich variety of formats so that trends and
variations can easily be detected. Among the presentation beans currently
available are Graph and Crosstab.

■ Data beans acquire and manipulate the data. The data beans use the OLAP API to
connect to a data source, define a query, manipulate the resultant data set, and
return the results to the presentation beans for display. Data beans include a
QueryBuilder, a CalcBuilder, and a Metadata Manager.

■ Persistence Service is a set of packages that support the storage and retrieval of
objects in the OracleBI Beans Catalog, not only so that you can save your work,
but also so that you can share the work with others who have access to the
Catalog.

OracleBI Beans can be incorporated in a Java client or an HTML client application.
Java clients best support users who do immersed analyses, that is, use the system for
extensive periods of time with a lot of interaction. For example, users who create
reports benefit from a Java client. HTML clients best support remote users who use a
low bandwidth connection and have basic analytical needs. Thin clients can be
embedded in a portal or other Web site for these users.

Metadata
The OLAP API and OracleBI Beans use the logical model that is projected by the
Active Catalog to obtain the information they need about dimensional objects defined
in analytic workspaces. They use OLAP Catalog metadata to obtain information about
dimensional objects defined in Oracle relational data warehouses.

OracleBI Beans generates additional metadata to support its additional functionality.
This additional metadata is contained in the OracleBI Beans Catalog. The Metadata
Manager presents applications with a consolidated view of metadata from the Active
Catalog, OLAP Catalog, and the OracleBI Beans Catalog. For example, in the
QueryBuilder, the measures obtained from the Active Catalog and the custom
measures obtained from the OracleBI Beans Catalog appear together.

Navigation
The presentation beans support navigation techniques such as drilling, pivoting, and
paging.

■ Drilling displays lower-level values that contribute to a higher-level aggregate,
such as the cities that contribute to a state total.

■ Pivoting rotates the data cube so that the dimension members that labeled a graph
series now label groups, or the dimension members that labeled columns in a
crosstab now label rows instead. For example, if products label the rows and
regions label the columns, then you can pivot the data cube so that products label
the columns and regions label the rows.

■ Paging handles additional dimensions by showing each member in a separate
graph, crosstab, or table rather than nesting them in the columns or rows. For
example, you might want to see each time period in a separate graph rather than
all time periods on the same graph.

Formatting
The presentation beans enable you to change the appearance of a particular display. In
addition, the values of the data itself can affect the format.

Introducing OracleBI Beans

11-4 Oracle OLAP Application Developer's Guide

■ Number formatting. Numerical displays can be modified by changing their scale,
number of decimal digits and leading zeros, currency symbol, negative notation,
and so forth.

■ Stoplight formatting. The formatting of the cell background color, border, font, and
so forth can be data driven so that outstanding or problematic results stand out
visually from the other data values.

Graphs
The Graph bean presents data in a large selection of two- and three-dimensional
business graph types, such as bar, area, line, pie, ring, scatter, bubble, pyramid, and
stock market. Most graph types have several subtypes, such as clustered bar, stacked
bar, and percent bar.

Bar, line, and area graphs can be combined so that individual rows in the data cube
can be specified as one of these graph types. You can also assign marker shape and
type, data line type, color, fill color, and width and on a row-by-row basis, depending
on the type of graph.

The graph image can be exported in PNG and other image formats.

Users can zoom in and out of selected areas of a graph. They can also scroll across the
axes.

Crosstabs
The Crosstab bean presents data in a two-dimensional grid similar to a spreadsheet.
Multiple dimensions can be nested along the rows or columns, and additional
dimensions can appear as separate pages. Among the available customizations are:
Font style, size, and color; data-driven formatting, stoplight reporting, and
underlining; individual cell background colors; border formats; and text alignment.

Users can navigate through the data using either a mouse or the keyboard.

Data Beans
The data beans use the OLAP API to provide the basic services needed by an
application. They enable clients to identify a database, present credentials for accessing
that database, and make a connection. The application can then access the metadata
and identify the available data. Users can select the measures they want to see and the
specific slice of data that is of interest to them. That data can then be modified and
manipulated.

Wizards
OracleBI Beans offers wizards that can be used both by application developers in
creating an initial environment and by end users in customizing applications to suit
their particular needs. The wizards lead you step-by-step so that you provide all of the
information needed by an application. The following are some of the tasks that can be
done using wizards.

■ Building a query. Fact tables and materialized views often contain much more
data than users are interested in viewing. Fetching vast quantities of data can also
degrade performance unnecessarily. In addition to selecting measures, you can
limit the amount of data fetched in a query by selecting dimension members from
a list or using a set of conditions. Selections can be saved, and these saved
selections can be used again just by picking their names from a list.

Building Java Applications That Manage Analytic Workspaces

Developing Java Applications for OLAP 11-5

OracleBI Beans takes advantage of all of the new OLAP functions in the database,
including ranking, lag, lead, and windowing. End users can create powerful
queries that ask sophisticated analytical questions, without knowing SQL at all.

■ Generating custom measures. You can define new "custom" measures whose
values are calculated from data stored within the database. For example, a user
might create a custom measure that shows the percent of change in sales from a
year ago. The data in the custom measure would be calculated using the lag
method on data in the Sales measure. Because a DBA cannot anticipate and create
all of the calculations required by all users, OracleBI Beans enables users to create
their own.

JSP Tag Library
OracleBI Beans includes an extensive JSP tag library that enables the development of
applications without writing custom code. After you use wizards to create the
presentations that are needed for an application, you can use JSP tags to insert the
presentations in HTML pages and to create additional pages for the user interface.

The tags in this library are grouped in the following categories:

■ General tags. Used to represent objects such as graphs, crosstabs, formatting tools,
explorers for the OracleBI Beans Catalog, and controls for displaying messages;
also includes a tag that lets you link the queries of graphs and crosstabs.

■ Dialog and wizard tags. Used to create user interface elements that let end users
manipulate presentations. For example, these tags let users change the type of a
graph or export crosstab data.

■ List tags. Used to create lists that let end users perform the following kinds of
tasks: Modify queries by selecting dimensions or measures; browse for graphs or
crosstabs in the Catalog; and navigate pages in an application.

OracleBI Beans also includes an extensive UIX tag library.

Building Java Applications That Manage Analytic Workspaces
The Analytic Workspace application programming interface is a companion API to the
OLAP API and OracleBI Beans. You can use the Analytic Workspace API to build Java
applications that create and maintain analytic workspaces.

The Analytic Workspace API provides a set of Java classes that:

■ Create a logical dimensional model of cubes, dimensions, measures, and attributes

■ Define a set of mappings for loading data from relational columns into objects in
the logical model

■ Define the aggregation rules for data in the logical model

■ Define advanced analytics such as allocations, forecasts, and models on objects in
the logical model

■ Instantiate the logical model in an analytic workspace

The Analytic Workspace API supports two deployment modes: It can be embedded in
a Java application; or it can be used to generate XML that is executable by the DBMS_
AW_XML.EXECUTE PL/SQL function. DBMS_AW_XML.EXECUTE can process any XML
document that has been validated against the OLAP XML schema.

Building Java Applications That Manage Analytic Workspaces

11-6 Oracle OLAP Application Developer's Guide

See Also:

■ Oracle OLAP Analytic Workspace Java API Reference

■ Oracle OLAP Reference for information on DBMS_AW_XML.EXECUTE

12

Administering Oracle OLAP 12-1

12 Administering Oracle OLAP

This chapter describes the various administrative tasks that are associated with Oracle
OLAP. It contains the following topics:

■ Setting Database Initialization Parameters

■ Storage Management

■ Security of Multidimensional Data in Oracle Database

■ Dictionary Views and System Tables

■ Partitioned Cubes and Parallelism

■ Monitoring Analytic Workspaces

■ Backup and Recovery

■ Export and Import

Setting Database Initialization Parameters
Table 12–1 identifies the parameters that affect the performance of Oracle OLAP. Alter
your server parameter file or init.ora file to these values, then restart your database
instance. You can monitor the effectiveness of these settings and adjust them as
necessary.

See Also:

■ Oracle Database Performance Tuning Guide for information about
tuning parameter settings

■ Oracle Database Reference for descriptions of individual
parameters

Setting Database Initialization Parameters

12-2 Oracle OLAP Application Developer's Guide

To set the system parameters:
1. Open the init.ora initialization file in a text editor.

2. Add or change the settings in the file.

3. Stop and restart the database, using commands such as the following. Be sure to
identify the initialization file in the STARTUP command.

SQLPLUS '/ AS SYSDBA'
SHUTDOWN IMMEDIATE
STARTUP pfile=$ORACLE_BASE/admin/orcl/pfile/init.ora.724200516420

Parameter Settings for BI Beans
OracleBI Beans performs best when the configuration parameters for the database are
optimized for its use. During installation of Oracle Database, an OLAP configuration
table is created and populated with ALTER SESSION commands that have been tested to
optimize the performance of OracleBI Beans. Each time OracleBI Beans opens a
session, it executes these ALTER SESSION commands.

If a database instance is being used only to support Java applications that use
OracleBI Beans, then you can modify your server parameter file or init.ora file to
include these settings. Alternatively, you might want to include some of the settings in
the server parameter file and leave others in the table, depending upon how your
database instance is going to be used. These are your choices:

■ Keep all of the parameters in the configuration table, so that they are set as part of
the initialization of a OracleBI Beans session. This method fully isolates these
configuration settings solely for OracleBI Beans. (Default)

■ Add some of the configuration parameters to the server parameter file or init.ora
file, and delete those rows from the configuration table. This is useful if your
database is being used by other applications that require the same settings.

Table 12–1 Initial Settings for Database Parameter Files

Parameter Default Value Recommended Setting Description

JOB_QUEUE_PROCESSES 0 Number of CPUs, plus one
additional process for every three
CPUs; in a multi-core CPU, each
core counts as a CPU

For example, JOB_QUEUE_
PROCESSES=5 for a four-processor
computer

Controls the degree of parallelism
in OLAP builds

PGA_AGGREGATE_TARGET 10 MB or 20%
SGA

50% of physical memory to start,
then tune as indicated by
performance statistics

SGA_TARGET 0 25% or less of physical memory to
start, then tune as indicated by
performance statistics

SESSIONS Derived 2.5 * maximum number of
simultaneous OLAP users

Provides sufficient background
processes for each user

UNDO_MANAGEMENT MANUAL AUTO Specifies use of an undo
tablespace

UNDO_TABLESPACE Derived Name of the undo tablespace, which
must already be defined

Identifies the undo tablespace
defined for OLAP use, as shown
in "Creating an Undo Tablespace"
on page 12-3

Storage Management

Administering Oracle OLAP 12-3

■ Add all of the configuration parameters to the server parameter file or init.ora
file, and delete all rows from the configuration table. This is the most convenient if
your database instance is being used only by OracleBI Beans.

Regardless of where these parameters are set, you should check the Oracle Technology
Network for updated recommendations.

Storage Management
Analytic workspaces are stored in the owner's default tablespace, unless the owner
specifies otherwise. All tablespaces for OLAP use should specify EXTENT MANAGEMENT
LOCAL. Tablespaces created using default parameters may use resources inefficiently.
You should create undo, permanent, and temporary tablespaces that are appropriate
for storing analytic workspaces.

Creating an Undo Tablespace
Create an undo tablespace with the EXTENT MANAGEMENT LOCAL clause, as shown in this
example:

CREATE UNDO TABLESPACE olapundo DATAFILE '$ORACLE_BASE/oradata/undo.dbf'
 SIZE 64M REUSE AUTOEXTEND ON NEXT 8M
 MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL;

After creating the undo tablespace, change your system parameter file to include the
following settings, then restart the database as described in "Setting Database
Initialization Parameters" on page 12-1.

UNDO_TABLESPACE=tablespace
UNDO_MANAGEMENT=AUTO

Creating Permanent Tablespaces for OLAP Use
Each dimensional object occupies at least one extent. A fixed extent size may waste
most of the allocated space. For example, if an object is 64K and the extents are set to a
uniform size of 1M (the default), then only a small portion of the extent is used.

Create permanent tablespaces with the EXTENT MANAGEMENT LOCAL and SEGMENT SPACE
MANAGEMENT AUTO clauses, as shown in this example:

CREATE TABLESPACE glo DATAFILE '$ORACLE_BASE/oradata/glo.dbf'
 SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

Creating Temporary Tablespaces for OLAP Use
Oracle OLAP uses the temporary tablespace to store all changes to the data in a cube,
whether the changes are the result of a data load or data analysis. Saving the cube
moves the changes into the permanent tablespace and clears the temporary tablespace.

This usage creates numerous extents within the tablespace. A temporary tablespace
suitable for use by Oracle OLAP should specify the EXTENT MANAGEMENT LOCAL clause
and a UNIFORM SIZE clause with a small size, as shown in this example:

CREATE TEMPORARY TABLESPACE glotmp TEMPFILE '$ORACLE_BASE/oradata/glotmp.tmp'
 SIZE 50M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED

See Also: Oracle Database SQL Reference for descriptions of
initialization parameters that can be set by the ALTER SESSION
command

Security of Multidimensional Data in Oracle Database

12-4 Oracle OLAP Application Developer's Guide

 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K;

Spreading Data Across Storage Resources
Oracle Database provides excellent storage management tools to simplify routine
tasks. Automatic Storage Management (ASM) provides a simple storage management
interface that virtualizes database storage into disk groups. You can manage a small
set of disk groups, and ASM automates the placement of the database files within
those disk groups.

ASM spreads data evenly across all available storage resources to optimize
performance and utilization. After you add or drop disks, ASM automatically
rebalances files across the disk group.

Because OLAP is part of Oracle Database, you can use ASM to manage both relational
and dimensional data.

ASM is highly recommended for analytic workspaces. A system managed with ASM is
faster than a file system and easier to manage than raw devices. ASM optimizes the
performance of analytic workspaces both on systems with Oracle RAC and those
without Oracle RAC.

However, you do not need ASM to use Oracle OLAP. You can still spread your data
across multiple disks, just by defining the tablespaces like in this example:

CREATE TABLESPACE glo DATAFILE
 'disk1/oradata/glo1.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE 1024M
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

ALTER TABLESPACE glo ADD DATAFILE
 'disk2/oradata/glo2.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE 1024M,
 'disk3/oradata/glo3.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 8M
 MAXSIZE UNLIMITED;

Security of Multidimensional Data in Oracle Database
Your company's data is a valuable asset. The information must be secure, private, and
protected. Analytic data is particularly vulnerable because it is highly organized, easy
to navigate, and summarized into meaningful units of measurement.

When you use Oracle OLAP, your data is stored in the database. It has the security
benefits of Oracle Database, which leads the industry in security. You do not need to
expose the data by transferring it to a standalone database. You do not need to
administer security on a separate system. And you do not need to compromise your
data by storing it in a less secure environment than Oracle Database.

Security Management
Because you have just one system to administer, you do not have to replicate basic
security tasks such as these:

■ Creating user accounts

■ Creating and administering rules for password protection

■ Securing network connections

■ Detecting and eliminating security vulnerabilities

■ Safeguarding the system from intruders

Dictionary Views and System Tables

Administering Oracle OLAP 12-5

The cornerstone of data security is the administration of user accounts and roles. Users
open a connection with Oracle Database with a user name and password, and they
have access to both dimensional and relational objects in the same session.

Users by default have no access rights to an analytic workspace or any other data type
in another user's schema. The owner or an administrator must grant them, or a role to
which they belong, any access privileges.

Granting Querying Privileges
To access the cubes in an analytic workspace, users must have the SELECT privilege on
the table in which the analytic workspace is stored. The name of the table is the name
of the analytic workspace with an AW$ prefix. For example, the GLOBAL analytic
workspace is stored in the AW$GLOBAL relational table.

To access the relational views of dimensional objects, users must have SELECT
privileges explicitly on those views.

Dictionary Views and System Tables
Oracle Database data dictionary views and system tables contain extensive
information about analytic workspaces.

Static Data Dictionary Views
Among the static views of the database data dictionary are several that provide
information about analytic workspaces. Table 12–2 provides brief descriptions of
them. All data dictionary views have corresponding DBA and USER views.

System Tables
The SYS user owns several tables associated with analytic workspaces. Table 12–3
provides brief descriptions.

Table 12–2 Static Data Dictionary Views for OLAP

View Description

ALL_AWS Describes all analytic workspaces accessible to the current user.

ALL_AW_OBJ Describes the current objects in all analytic workspaces accessible to the
current user.

ALL_AW_PROP Describes the properties defined in all analytic workspaces accessible to
the current user.

ALL_AW_PS Describes the page spaces currently in use by all analytic workspaces
accessible to the current user.

See Also:

■ "Querying the Active Catalog" on page 4-14 for a list of views that
describe OLAP dimensional objects

■ Oracle Database Reference for full descriptions of all data dictionary
views

Dictionary Views and System Tables

12-6 Oracle OLAP Application Developer's Guide

Analytic Workspace Tables
Analytic workspaces are stored in tables in the Oracle database. The names of these
tables always begin with AW$.

For example, if the GLOBAL user creates two analytic workspaces, one named
MARKETING and the other named FINANCIALS, then these tables are created in the
GLOBAL schema:

AW$FINANCIALS
AW$MARKETING

Important: These tables are vital for the operation of Oracle OLAP.
Do not delete them or attempt to modify them directly without
being fully aware of the consequences.

Table 12–3 OLAP Tables Owned By SYS

Table Description

AW$ Maintains a record of all analytic workspaces in the database,
recording its name, owner, and other information.

AW$AWCREATE Stores the AWCREATE analytic workspace, which contains
programs for using OLAP Catalog metadata in Oracle Database
10g Release 10.1.0.2 and earlier releases. It exists only for
backward compatibility.

AW$AWCREATE10G Stores the AWCREATE10G analytic workspace, which contains
programs for using OLAP Catalog metadata in Oracle Database
10g Release 10.1.0.3. The OLAP Catalog is not used by later
releases. It exists only for backward compatibility.

AW$AWMD Stores the AWMD analytic workspace, which contains programs for
creating metadata catalogs.

AW$AWREPORT Stores the AWREPORT analytic workspace, which contains a
program named AWREPORT for generating a summary space
report.

AW$AWXML Stores the AWXML analytic workspace, which contains programs
for creating and managing analytic workspaces for Oracle
Database 10g Release 10.1.0.4 and later.

AW$EXPRESS Stores the EXPRESS analytic workspace. It contains objects and
programs that support basic operations. EXPRESS is used any
time a session is open.

AW_OBJ$ Describes the objects stored in analytic workspaces.

AW_PRG$ Stores program data. Not currently used.

AW_PROP$ Stores analytic workspace object properties.

PS$ Maintains a history of all page spaces. A page space is an
ordered series of bytes equivalent to a file. Oracle OLAP
manages a cache of workspace pages. Pages are read from
storage in a table and written into the cache in response to a
query. The same page can be accessed by several sessions.

The information stored in PS$ enables Oracle OLAP to discard
pages that are no longer in use, and to maintain a consistent
view of the data for all users, even when the workspace is being
modified during their sessions. When changes to a workspace
are saved, unused pages are purged and the corresponding rows
are deleted from PS$.

Partitioned Cubes and Parallelism

Administering Oracle OLAP 12-7

The tables store all of the object definitions and data.

Build Logs
When submitting a maintenance task to the job queue, be sure to note the job number
so that you can verify that the job completed successfully. Runtime messages are
stored in a table named XML_LOAD_LOG, which is owned by OLAPSYS. You must have
either the OLAP_USER or the OLAP_DBA role to access this file.

Messages in XML_LOAD_LOG are identified by the digits in the job number. The following
SQL statement returns the messages for job 54:

SELECT xml_message FROM olapsys.xml_load_log WHERE xml_loadid='54';

You can manage these jobs using tools such as Oracle Enterprise Manager Scheduler or
the DBMS_SCHEDULER PL/SQL package. Example 12–1 shows a sample log file.

Partitioned Cubes and Parallelism
Cubes are often partitioned to improve build and maintenance times. For information
about creating a partitioned cube, refer to "Choosing a Data Storage Strategy" on
page 3-15.

Creating and Dropping Partitions
The OLAP engine automatically creates and drops partitions as part of data
maintenance, as members are added and deleted from the partitioning dimension.

For example, assume that in the sample Global analytic workspace, the Units cube is
partitioned on the Time dimension, using the Calendar hierarchy, and at the Calendar
Quarter level. The OLAP engine creates a partition for each Calendar Quarter and its
children. The default top partition contains Calendar Years and all members of the
Fiscal hierarchy. If Global has three years of data, then the Units cube has 13 partitions:
Four bottom partitions for each Calendar Year, plus the top partition.

A data refresh typically creates new time periods and deletes old ones. Whenever a
Calendar Quarter value is loaded into the Time dimension, a corresponding new
partition is added to the cube. Whenever a Calendar Quarter value is deleted from the
Time dimension, the corresponding empty partition is deleted from the cube.

Parallelism
You can improve the performance of data maintenance by enabling parallel
processing. There are two levels of parallelism:

■ Parallel job execution: Loading and aggregating the data using multiple processes.

■ Parallel update: Moving the data from temporary to permanent tablespaces using
multiple processes.

This number of parallel processes is controlled by these factors:

■ The number of objects that can be aggregated in parallel. Each cube and each
partition (including the top partition) can use a separate process.

You can control the number of partitions in a cube on the Implementation Details
tab of the cube property sheet in Analytic Workspace Manager.

■ The number of simultaneous database processes the user is authorized to run.

Partitioned Cubes and Parallelism

12-8 Oracle OLAP Application Developer's Guide

This number is controlled by the JOB_QUEUE_PROCESSES parameter. The setting for
this parameter is based on the number of processors, as described in "Setting
Database Initialization Parameters" on page 12-1. You can obtain the current
parameter setting with the following SQL command:

SHOW parameter job_queue_processes

■ For parallel update, the number of processes you allocate to the job. You can
specify the number of processes in the Maintenance Wizard of Analytic Workspace
Manager when specifying the task processing options.

Suppose that a cube is partitioned on the Quarter level of Time, and the cube contains
three years of data. The cube has 3*4=12 bottom partitions, JOB_QUEUE_PROCESSES is set
to 8, and you set the parallelism option to 4 for the build. Oracle Database processes
the cube in this way:

1. Load and build the dimensions of the cube serially using a single process.

2. Load and build the 12 bottom partitions in parallel using 4 processes. As soon as
one process finishes, another begins until all 12 are complete.

This cube could use the 8 processes allowed by JOB_QUEUE_PROCESSES, but it is
limited to 4 by the build setting.

3. Load and build the top partition.

Oracle Database allocates the specified number of processes regardless of whether all
of them can be used simultaneously at any point in the job. For example, if your job
can use up to three processes, but you specify five, then two of the processes allocated
to your job cannot be used by it or by any other job.

If Oracle Database is installed with Oracle RAC, then a script submitted to the job
queue is distributed across all nodes in the cluster. The performance gains can be
significant. For example, a job running on four nodes in a cluster may run up to four
times faster than the same job running on a single computer.

The build log is stored in a file named XML_LOAD_LOG, which is owned by OLAPSYS.
Example 12–1 shows excerpts from the job log for a completed build that used two
parallel processes.

Example 12–1 Job Log Verifying Parallel Processing

SQL> SELECT xml_message FROM olapsys.xml_load_log WHERE xml_loadid='4';

XML_MESSAGE

11:13:02 Job# AWXML$_4 to Build(Refresh) Analytic Workspace GLOBAL.GLOBAL Submitted to the Queue.
11:13:05 Started Build(Refresh) of GLOBAL.GLOBAL Analytic Workspace.
11:13:10 Attached AW GLOBAL.GLOBAL in RW Mode.
11:13:10 Started Loading Dimensions.
11:13:20 Started Loading Dimension Members.
 .
 .
 .
11:13:27 Finished Loading Dimension Members.
11:13:27 Started Loading Hierarchies.
 .
 .
 .
11:13:33 Finished Loading Hierarchies.
11:13:33 Started Loading Attributes.
 .

Monitoring Analytic Workspaces

Administering Oracle OLAP 12-9

 .
 .
11:13:44 Finished Loading Attributes.
11:13:44 Finished Loading Dimensions.
11:13:44 Started Updating Partitions.
11:13:46 Finished Updating Partitions.
11:14:37 Detached AW GLOBAL.GLOBAL.
11:14:37 Starting Parallel Processing.
11:14:42 Attached AW GLOBAL.GLOBAL in MULTI Mode.
11:14:44 Started Load of Measures: UNIT_PRICE, UNIT_COST from Cube PRICE_AND_COST_CUBE.CUBE.
11:14:45 Finished Load of Measures: UNIT_PRICE, UNIT_COST from Cube PRICE_AND_COST_CUBE.CUBE.
 Processed 5046 Records. Rejected 0 Records.
11:14:45 Started Auto Solve for Measures: UNIT_COST from Cube PRICE_AND_COST_CUBE.CUBE.
11:14:46 Finished Auto Solve for Measures: UNIT_COST from Cube PRICE_AND_COST_CUBE.CUBE.
11:14:46 Started Auto Solve for Measures: UNIT_PRICE from Cube PRICE_AND_COST_CUBE.CUBE.
11:14:46 Finished Auto Solve for Measures: UNIT_PRICE from Cube PRICE_AND_COST_CUBE.CUBE.
11:14:53 Attached AW GLOBAL.GLOBAL in MULTI Mode.
11:14:54 Started Load of Measures: UNITS, SALES from Cube UNITS_CUBE.CUBE.
11:15:17 Finished Load of Measures: UNITS, SALES from Cube UNITS_CUBE.CUBE.
 Processed 222589 Records.Rejected 0 Records.
11:15:17 Started Auto Solve for Measures: SALES from Cube UNITS_CUBE.CUBE.
11:15:26 Finished Auto Solve for Measures: SALES from Cube UNITS_CUBE.CUBE.
11:15:26 Started Auto Solve for Measures: UNITS from Cube UNITS_CUBE.CUBE.
11:15:35 Finished Auto Solve for Measures: UNITS from Cube UNITS_CUBE.CUBE.
11:14:38 Started 1 Finished 0 out of 2 Tasks.
11:14:38 Running Jobs: AWXML$_4_1.
11:14:38 Started 2 Finished 0 out of 2 Tasks.
11:14:38 Running Jobs: AWXML$_4_1, AWXML$_4_2.
11:14:38 Started 2 Finished 0 out of 2 Tasks.
11:14:38 Running Jobs: AWXML$_4_1, AWXML$_4_2. Waiting for Tasks to Finish...
11:15:39 Finished Parallel Processing.
11:15:39 Completed Build(Refresh) of GLOBAL.GLOBAL Analytic Workspace.

Monitoring Analytic Workspaces
Oracle Database provides various tools to help you diagnose performance problems.
As an Oracle DBA, you may find these tools useful in tuning the database:

■ Oracle Enterprise Manager Database Control (Database Control) is a general
database management and administration tool. In addition to facilitating basic
tasks like adding users and modifying datafiles, Database Control presents a
graphic overview of a database's current status. It also provides an interface to
troubleshooting and performance tuning utilities.

■ Automatic Workload Repository collects database performance statistics and
metrics for analysis and tuning, shows the exact time spent in the database, and
saves session information.

■ Automatic Database Diagnostic Monitor watches database performance statistics
to identify bottlenecks, analyze SQL statements, and offer suggestions to improve
performance.

Oracle Database also provides system views to help you diagnose performance
problems. The following topics identify views that are either specific to OLAP or
provide database information that is pertinent to OLAP.

Monitoring Analytic Workspaces

12-10 Oracle OLAP Application Developer's Guide

Dynamic Performance Views
Each Oracle Database instance maintains fixed tables that record current database
activity. These tables collect data on internal disk structures and memory structures.
Among them are tables that collect data on Oracle OLAP.

These tables are available to users through a set of dynamic performance views. By
monitoring these views, you can detect usage trends and diagnose system bottlenecks.
Table 12–4 provides a brief description of each view. Global dynamic performance
views (GV$) are also provided.

Table 12–5 describes some other dynamic performance views that are not specific to
OLAP, but which you may want to use when tuning your database for OLAP.

Basic Queries for Monitoring the OLAP Option
The following queries extract OLAP information from the data dictionary.

More complex queries are provided in a script that you can download from the Oracle
OLAP Web site on the Oracle Technology Network. For descriptions of these scripts
and download instructions, refer to "OLAP DBA Scripts" on page 12-12.

Is the OLAP Option Installed in the Database?
The OLAP option is provided with Oracle Database Enterprise Edition. To verify that
the OLAP components have been installed, issue this SQL command:

SELECT comp_name, version, status FROM dba_registry WHERE comp_name LIKE '%OLAP%';

See Also: Oracle Database Reference for full descriptions of the OLAP
dynamic performance views.

Table 12–4 OLAP Dynamic Performance Views

View Description

V$AW_AGGREGATE_OP Lists the aggregation operators available in analytic workspaces.

V$AW_ALLOCATE_OP Lists the allocation operators available in analytic workspaces.

V$AW_CALC Collects information about the use of cache space and the status
of dynamic aggregation.

V$AW_LONGOPS Collects status information about SQL fetches.

V$AW_OLAP Collects information about the status of active analytic
workspaces.

V$AW_SESSION_INFO Collects information about each active session.

Table 12–5 Selected Database Performance Views

View Description

V$LOG Displays log file information from the control file.

V$LOGFILE Contains information about redo log files.

V$PGASTAT Provides PGA memory usage statistics as well as statistics about
the automatic PGA memory manager when PGA_AGGREGATE_
TARGET is set.

V$ROWCACHE Displays statistics for data dictionary activity. Each row contains
statistics for one data dictionary cache.

V$SYSSTAT Lists system statistics.

Monitoring Analytic Workspaces

Administering Oracle OLAP 12-11

COMP_NAME VERSION STATUS
------------------------- ------------ -----------
OLAP Analytic Workspace 10.2.0.4.0 VALID
Oracle OLAP API 10.2.0.4.0 VALID
OLAP Catalog 10.2.0.4.0 VALID

What Analytic Workspaces are in the Database?
The DBA_AWS view provides information about all analytic workspaces. Use the
following SQL command to get a list of names, their owners, and the version:

SELECT owner, aw_name, aw_version FROM dba_aws;

OWNER AW_NAME AW_VERSION
---------- ------------------------------ ----------
SYS EXPRESS 9.1
SYS AWMD 9.1
SYS AWCREATE 9.1
SYS AWCREATE10G 9.1
SYS AWXML 9.1
SYS AWREPORT 9.1
GLOBAL GLOBAL 10.2

How Big is the Analytic Workspace?
To find out the size in bytes of the tablespace extents for a particular analytic
workspace, use the following SQL statements, replacing GLOBAL with the name of your
analytic workspace.

SELECT extnum, sum(dbms_lob.getlength(awlob)) bytes FROM global.aw$global
 GROUP BY extnum;

 EXTNUM BYTES
---------- ----------
 0 80254708

 To see the size of the LOB table containing an analytic workspace, use a SQL
command like the following, replacing GLOBAL.AW$GLOBAL with the qualified name of
your analytic workspace.

SELECT ROUND(sum(dbms_lob.getlength(awlob))/1024,0) kb
 FROM global.aw$global;

 KB

 78374

When Were the Analytic Workspaces Created?
The DBA_OBJECTS view provides the creation date of the objects in your database. The
following SQL command generates an easily readable report for analytic workspaces.

SELECT owner, object_name, created, status FROM dba_objects
 WHERE object_name LIKE 'AW$%' AND object_name!='AW$'
 GROUP BY owner, object_name, created, status
 ORDER BY owner, object_name;

OWNER OBJECT_NAME CREATED STATUS

See Also: "System Tables" on page 12-5 for descriptions of the
analytic workspaces owned by SYS.

Monitoring Analytic Workspaces

12-12 Oracle OLAP Application Developer's Guide

---------- --------------- --------- -------
GLOBAL AW$GLOBAL 10-AUG-07 VALID
SYS AW$AWCREATE 01-AUG-07 VALID
SYS AW$AWCREATE10G 01-AUG-07 VALID
SYS AW$AWMD 01-AUG-07 VALID
SYS AW$AWREPORT 01-AUG-07 VALID
SYS AW$AWXML 01-AUG-07 VALID
SYS AW$EXPRESS 01-AUG-07 VALID

OLAP DBA Scripts
You can download a file that contains several SQL scripts from the Oracle OLAP Web
site on the Oracle Technology Network. These scripts typically extract information
from two or more system views and generate a report that may be useful in
monitoring and tuning a database. To download the file, use this URL:

http://www.oracle.com/technetwork/database/options/olap/olap-dba-scripts-3
93636.zip

Table 12–6 describes these scripts. For more information, refer to the README file
provided with the scripts.

Table 12–6 OLAP DBA Scripts

SQL Script Description

aw_objects_in_cache Identifies the objects in the buffer cache that are related to
analytic workspaces.

aw_reads_writes Tallies the reads from temporary and permanent tablespaces, the
writes to cache, and the rows processed in analytic workspaces.

aw_segment_size Calculates the size of analytic workspace segments in
tablespaces on disk.

aw_size Displays the amount of disk space used by each analytic
workspace.

aw_tablespaces Provides extensive information about the tablespaces used by
analytic workspaces.

aw_total_size Tallies the sizes of all analytic workspaces accessible to the
current user.

aw_users Identifies the users of analytic workspaces.

aw_wait_events Describes the wait events experienced by users of analytic
workspaces over the previous hour.

buffer_cache_hits Calculates the buffer cache hit ratio.

cursor_parameters Indicates whether the database parameters that limit the number
of open cursors are set too low.

olap_hit_ratio Identifies the PGA, OLAP page pool, and OLAP hit/miss ratio
for every user of analytic workspaces in the database.

olap_pga_performance Determines how much PGA is in use, the size of the OLAP page
pool, and the hit/miss ratio for OLAP pages for each user.

olap_pga_use Determines how much PGA is consumed by the OLAP page
pool to perform operations on analytic workspaces.

session_resources Identifies the use of cursors, PGA, and UGA for each open
session.

shared_pool_hits Calculates the shared pool hit ratio.

http://www.oracle.com/technetwork/database/options/olap/olap-dba-scripts-393636.zip
http://www.oracle.com/technetwork/database/options/olap/olap-dba-scripts-393636.zip

Backup and Recovery

Administering Oracle OLAP 12-13

Scripts for Monitoring Performance
Several of the scripts listed in "OLAP DBA Scripts" on page 12-12 provide detailed
information about the use of memory and other database resources by OLAP sessions.
You can use these scripts as is, or you can use them as the starting point for developing
your own scripts.

Example 12–2 shows the information returned by the session_resources script. It lists
the use of resources such as cursors, PGA, and UGA.

Example 12–2 Querying Session Resources

SQL> @session_resources

USERNAME NAME VALUE
-------------------- ------------------------------ ----------
GLOBAL:95 opened cursors cumulative 101
 opened cursors current 3
 session cursor cache count 31
 session cursor cache hits 68
 session pga memory 1219292
 session pga memory max 1219292
 session stored procedure space 0
 session uga memory 432700
 session uga memory max 432700

9 rows selected.

Scripts for Monitoring Disk Space
Several of the scripts listed in "OLAP DBA Scripts" on page 12-12 provide detailed
information about the use of disk space by analytic workspaces. Example 12–3 shows
the information returned by the aw_size script. It lists all of the analytic workspaces in
the database, the disk space they consume, and the tablespaces in which they are
stored.

Example 12–3 Querying the Use of Disk Space By Analytic Workspaces

SQL> @aw_size

Analytic Workspace On Disk MB Tablespace
-- --------------- --------------------
GLOBAL.GLOBAL 239.38 GLOBAL
SYS.AWCREATE 9.81 SYSAUX
SYS.AWCREATE10G 1.38 SYSAUX
SYS.AWMD 7.00 SYSAUX
SYS.AWREPORT 1.50 SYSAUX
SYS.AWXML 12.00 SYSAUX
SYS.EXPRESS 2.69 SYSAUX

Total Disk: 273.75

7 rows selected.

Backup and Recovery
You can backup and recover analytic workspaces using the same tools and procedures
as the rest of your database.

Export and Import

12-14 Oracle OLAP Application Developer's Guide

Oracle Recovery Manager (RMAN) is a powerful tool that simplifies, automates, and
improves the performance of backup and recovery operations. RMAN enables one
time backup configuration, automatic management of backups, and archived logs
based on a user-specified recovery window, restartable backups and restores, and test
restore/recovery.

RMAN implements a recovery window to control when backups expire. This lets you
establish a period of time during which it is possible to discover logical errors and fix
the affected objects by doing a database or tablespace point-in-time recovery. RMAN
also automatically expires backups that are no longer required to restore the database
to a point-in-time within the recovery window. Control file auto backup also allows for
restoring or recovering a database, even when an RMAN repository is not available.

Export and Import
You can copy analytic workspaces in several different ways, either to replicate them on
another computer or to back them up.

■ Data Pump. Analytic workspaces are copied with the other objects in a schema or
database export. Use the expdp/impdp database utilities.

■ Transportable Tablespaces. Analytic workspaces are copied with the other objects
to a transportable tablespace. However, you can only transport the tablespace to
the same platform (for example, from Linux to Linux, Solaris to Solaris, or
Windows to Windows) because the OLAP DECIMAL data type is hardware
dependent. Use the expdp/impdp database utilities. Transportable tablespaces are
much faster than dump files.

■ XML Templates. A template saves the XML definition of objects in an analytic
workspace. You can save the entire analytic workspace, or individual cubes,
dimensions, and calculated measures. Using a saved template, you can create a
new analytic workspace exactly like an existing one. The template does not save
any data, nor does it save any customizations to the analytic workspace. You can
copy a template to a different platform.

The owner of an analytic workspace can create an XML template, or export the schema
to a dump file. Only users with the EXP_FULL_DATABASE privilege or a privileged user
(such as SYS or a user with the DBA role) can export the full database or create a
transportable tablespace.

See Also:

■ "Using Templates to Re-Create Dimensional Objects" on page 3-21
for information about XML templates

■ Oracle Database Utilities for information about Oracle Data Pump
and the expdp/impdp commands

A

Designing a Dimensional Model A-1

A Designing a Dimensional Model

This guide uses the Global schema for its examples. This appendix explores the
business requirements of the fictitious Global Computing Company and discusses
how the design of a data model emerges from these requirements.

This appendix contains the following topics:

■ Case Study Scenario

■ Identifying Required Business Facts

■ Designing a Dimensional Model for Global Computing

Case Study Scenario
The fictional Global Computing Company was established in 1990. Global Computing
distributes computer hardware and software components to customers on a
worldwide basis. The Sales and Marketing department has not been meeting its
budgeted numbers. As a result, this department has been challenged to develop a
successful sales and marketing strategy.

Global Computing operates in an extremely competitive market. Competitors are
numerous, customers are especially price-sensitive, and profit margins tend to be
narrow. In order to grow profitably, Global Computing must increase sales of its most
profitable products.

Various factors in Global Computing's current business point to a decline in sales and
profits:

■ Traditionally, Global Computing experiences low third-quarter sales (July through
September). However, recent sales in other quarters have also been lower than
expected. The company has experienced bursts of growth but, for no apparent
reason, has had lower first-quarter sales during the last two years as compared
with prior years.

■ Global has been successful with its newest sales channel, the Internet. Although
sales within this channel are growing, overall profits are declining.

■ Perhaps the most significant factor is that margins on personal computers -
previously the source of most of Global Computing's profits - are declining
rapidly.

Global Computing needs to understand how each of these factors is affecting its
business.

Current reporting is done by the IT department, which produces certain standard
reports on a monthly basis. Any ad hoc reports are handled on an as-needed basis and
are subject to the time constraints of the limited IT staff. Complaints have been

Case Study Scenario

A-2 Oracle OLAP Application Developer's Guide

widespread within the Sales and Marketing department, with regard to the delay in
response to report requests. Complaints have also been numerous in the IT
department, with regard to analysts who change their minds frequently or ask for
further information.

The Sales and Marketing department has been struggling with a lack of timely
information about what it is selling, who is buying, and how they are buying. In a
meeting with the CIO, the VP of Sales and Marketing states, "By the time I get the
information, it's no longer useful. I'm only able to get information at the end of each
month, and it doesn't have the details I need to do my job."

Reporting Requirements
When asked to be more specific about what she needs, the Vice President of Sales and
Marketing identifies the following requirements:

■ Trended sales data for specific customers, regions, and segments.

■ The ability to provide information and some analysis capabilities to the field sales
force. A Web interface would be preferred, since the sales force is distributed
throughout the world.

■ Detail regarding mail-order, phone, and e-mail sales on a monthly and quarterly
basis, as well as a comparison to past time periods. Information must identify
when, how, and what is being sold by each channel.

■ Margin information on products in order to understand the dollar contribution for
each sale.

■ Knowledge of percent change versus the prior and year-ago period for sales, units,
and margin.

■ The ability to perform analysis of the data by ad hoc groupings.

The CIO has discussed these requirements with his team and has come to the
conclusion that a standard reporting solution against the production order entry
system would not be flexible enough to provide the required analysis capabilities. The
reporting requirements for business analysis are so diverse that the projected cost of
development, along with the expected turnaround time for requests, would make this
solution unacceptable.

The CIO's team recommends using an analytic workspace to support analysis. The
team suggests that the Sales and Marketing department's IT group work with
Corporate IT to build an analytic workspace that meets their needs for information
analysis.

Business Goals
The development team identifies the following high-level business goals that the
project must meet:

■ Global Computing's strategic goal is to increase company profits by increasing
sales of higher margin products and by increasing sales volume overall.

■ The Sales and Marketing department objectives are to:

– Analyze industry trends and target specific market segments

– Analyze sales channels and increase profits

– Identify product trends and create a strategy for developing the appropriate
channels

Case Study Scenario

Designing a Dimensional Model A-3

Information Requirements
Once you have established business goals, you can determine the type of information
that helps achieve these goals. To understand how end users examine the data in the
analytic workspace, it is important to conduct extensive interviews. From interviews
with key end users, you can determine how they look at the business, and what types
of business analysis questions they want to answer

Business Analysis Questions
Interviews with the VP of Sales and Marketing, salespeople, and market analysts at
Global Computing reveal the following business analysis questions:

■ What products are profitable?

■ Who are our customers, and what and how are they buying?

■ What accounts are most profitable?

■ What is the performance of each distribution channel?

■ Is there still a seasonal variance to the business?

We can examine each of these business analysis questions in detail.

What products are profitable?
This business analysis question consists of the following questions:

■ What is the percent of total sales for any item, product family, or product class in
any month, quarter or year, and in any distribution channel? How does this
percent of sales differ from a year ago?

■ What is the unit price, unit cost, and margin for each unit for any item in any
particular month? What are the price, cost, and margin trends for any item in any
month?

■ What items were most profitable in any month, quarter, or year, in any distribution
channel, and in any geographic area or market segment? How did profitability
change from the prior period? What was the percent change in profitability from
the prior period?

■ What items experienced the greatest change in profitability from the prior period?

■ What items contributed the most to total profitability in any month, quarter, or
year, in any distribution channel, and in any geographic area or market segment?

■ What items have the highest per unit margin for any particular month?

■ In summary, what are the trends?

Who are our customers, and what and how are they buying?
This business analysis question consists of the following questions:

■ What were sales for any item, product family, or product class in any month,
quarter, or year?

■ What were sales for any item, product family, or product class in any distribution
channel, geographic area, or market segment?

■ How did sales change from the prior period? What was the percent change in sales
from the prior period?

■ How did sales change from a year ago? What was the percent change in sales from
a year ago?

Case Study Scenario

A-4 Oracle OLAP Application Developer's Guide

■ In summary, what are the trends?

Which accounts are most profitable?
This business analysis question consists of the following questions:

■ Which accounts are most profitable in any month, quarter, or year, in any
distribution channel, by any item, product family, or product class?

■ What were sales and extended margin (gross profit) by account for any month,
quarter, or year, for any distribution channel, and for any product?

■ How does account profitability compare to the prior time period?

■ Which accounts experienced the greatest increase in sales as compared to the prior
period?

■ What is the percent change in sales from the prior period? Did the percent change
in profitability increase at the same rate as the percent change in sales?

■ In summary, what are the trends?

What is the performance of each distribution channel?
This business analysis question consists of the following questions:

■ What is the percent of sales to total sales for each distribution channel for any
item, product family, or product class, or for any geographic area or market
segment?

■ What is the profitability of each distribution channel: direct sales, catalog sales,
and the Internet?

■ Is the newest distribution channel, the Internet, "cannibalizing" catalog sales? Are
customers simply switching ordering methods, or is the Internet distribution
channel reaching additional customers?

■ In summary, what are the trends?

Is there still a seasonal variance to the business?
This business analysis question consists of the following questions:

■ Are there identifiable seasonal sales patterns for particular items or product
families?

■ How do seasonal sales patterns vary by geographic location?

■ How do seasonal sales patterns vary by market segment?

■ Are there differences in seasonal sales patterns as compared to last year?

Summary of Information Requirements
By examining the types of analyses that users wish to perform, we can identify the
following key requirements for analysis:

■ Global Computing has a strong need for profitability analysis. The company must
understand profitability by product, account, market segment, and distribution
channel. It also needs to understand profitability trends.

■ Global Computing needs to understand how sales vary by time of year. The
company must understand these seasonal trends by product, geographic area,
market segment, and distribution channel.

Designing a Dimensional Model for Global Computing

Designing a Dimensional Model A-5

■ Global Computing has a need for ad hoc sales analysis. Analysis must identify
what products are sold to whom, when these products are sold, and how
customers buy these products.

■ The ability to perform trend analysis is important to Global Computing.

Identifying Required Business Facts
The key analysis requirements reveal the business facts that are required to support
analysis requirements at Global Computing.

These facts are ordered by time, product, customer shipment or market segment, and
distribution channel:

Sales
Units
Change in sales from prior period
Percent change in sales from prior period
Change in sales from prior year
Percent change in sales from prior year
Product share
Channel share
Market share
Extended cost
Extended margin
Extended margin change from prior period
Extended margin percent change from prior period
Units sold, change from prior period
Units sold, percent change from prior period
Units sold, change from prior year
Units sold, percent change from prior year

These facts are ordered by item and month:

Unit price
Unit cost
Margin per unit

Designing a Dimensional Model for Global Computing
"Business Goals" on page A-2 identifies the business facts that support analysis
requirements at Global Computing. Next, we identify the dimensions, levels, and
attributes in a data model. We will also identify the relationships within each
dimension. The resulting data model is used to design the Global schema, the
dimensional model, and the analytic workspace.

Identifying Dimensions
Four dimensions are used to organize the facts in the database:

■ Product shows how data varies by product.

■ Customer shows how data varies by customer or geographic area.

■ Channel shows how data varies according to each distribution channel.

■ Time shows how data varies over time.

Designing a Dimensional Model for Global Computing

A-6 Oracle OLAP Application Developer's Guide

Identifying Levels
Now that we have identified dimensions, we can identify the levels of summarization
within each dimension. Analysis requirements at Global Computing reveal that:

■ There are three distribution channels: Sales, Catalog, and Internet. These three
values are the lowest level of detail in the data warehouse and are grouped in the
Channel level. From the order of highest level of summarization to the lowest level
of detail, levels are Total and Channel.

■ Global performs customer and geographic analysis along the line of shipments to
customers and by market segmentation. Shipments and Segment are two
hierarchies in the Customer dimension. In each case, the lowest level of detail in
the data model is the Ship To location.

– When analyzing along the line of customer shipments, the levels of
summarization are (highest to lowest): Total, Region, Warehouse, and Ship To.

– When analyzing by market segmentation, the levels of summarization are
(highest to lowest): Total, Market Segment, Account, and Ship To.

■ The Product dimension has four levels (highest to lowest): Total, Class, Family,
and Item.

■ The Time dimension has four levels (highest to lowest): Total, Year, Quarter, and
Month.

All dimensions have a Total level as the highest level of summarization. Adding this
highest level provides additional flexibility as application users analyze data.

Identifying Hierarchies
We will identify the hierarchies that organize the levels within each dimension. To
identify hierarchies, we group the levels in the correct order of summarization and in a
way that supports the identified types of analysis.

For the Channel and Product dimensions, Global Computing requires only one
hierarchy for each dimension. For the Customer dimension, Global Computing
requires two hierarchies. Analysis within the Customer dimension tends to be either
by geographic area or market segment. Therefore, we organize levels into two
hierarchies, Shipments and Segment. Analysis over time also requires two hierarchies,
a Calendar hierarchy and a Fiscal hierarchy.

Identifying Stored Measures
"Identifying Required Business Facts" on page A-5 lists 21 business facts that are
required to support the analysis requirements of Global Computing. Of this number,
only four facts must be acquired from the transactional database:

■ Units

■ Sales

■ Unit Price

■ Unit Cost

All of the other facts can be derived from these basic facts. The derived facts can be
calculated in the analytic workspace on demand. If experience shows that some of
these derived facts are being used heavily and the calculations are putting a noticeable
load on the system, then some of these facts can be calculated and stored in the
analytic workspace as a data maintenance procedure.

Glossary-1

Glossary

Active Catalog

A set of relational views that expose the standard form metadata stored in analytic
workspaces, where it can be accessed by SQL. Applications that use OracleBI Beans
query the Active Catalog.

See also database standard form.

additive

Describes a measure or fact that can be summarized through addition, such as a SUM
function. An additive measure is the most common type. Examples include sales, cost,
and profit.

Contrast with nonadditive.

aggregation

The process of consolidating data values into a single value. For example, sales data
could be collected on a daily basis and then be aggregated to the week level, the week
data could be aggregated to the month level, and so on. The data can then be referred
to as aggregate data.

The term aggregation is often used interchangeably with summarization, and
aggregate data is used interchangeably with summary data. However, there are a wide
range of aggregation methods available in addition to SUM.

allocation

The process of distributing aggregate data down a hierarchy to the detail level,
sometimes using an existing set of data as the basis for the allocation. Allocation is
often used in forecasting and budgeting systems. An example of a financial allocation
is the automated distribution of a bonus pool, based on the current salaries and
performance ratings of the employees.

analytic workspace

A container for storing related dimensional objects, such as dimensions and cubes. An
analytic workspace is stored in a relational table.

See also cube.

ancestor

A dimension member at a higher level of aggregation than a particular member. For
example, in a Time dimension, the year 2007 is the ancestor of the day 06-July-07. The
member immediately above is the parent. In a dimension hierarchy, the data value of
the ancestor is the aggregated value of the data values of its descendants.

attribute

Glossary-2

Contrast with descendant. See also hierarchy, level, parent.

attribute

A database object related to an OLAP cube dimension. An attribute stores descriptive
characteristics for all dimension members, or members of a particular hierarchy, or
only members at a particular level of a hierarchy.

When the values of an attribute are unique, they provide supplementary information
that can be used for display (such as a descriptive name) or in analysis (such as the
number of days in a time period). When the values of an attribute apply to a group of
dimension members, they enable users to select data based on like characteristics. For
example, in a database representing footwear, you might use a color attribute to select
all boots, sneakers, and slippers of the same color.

base level data

See detail data.

base measure

See measure.

calculated measure

A stored expression that executes in response to a query. For example, a calculated
measure might generate the difference in costs from the prior period by using the LAG_
VARIANCE function on the COSTS measure. Another calculated measure might calculate
profits by subtracting the COSTS measure from the SALES measure. The expression
resolves only the values requested by the query.

See also expression, measure.

cell

A single data value of an expression. In a dimensioned expression, a cell is identified
by one value from each of the dimensions of the expression. For example, if you have a
measure with the dimensions MONTH and CUSTOMER, then each combination of a month
and a customer identifies a separate cell of that measure.

child

A dimension member that is part of a more aggregate member in a hierarchy. For
example, in a Time dimension, the month Jan-06 might be the child of the quarter
Q1-2006. A dimension member can be the child of a different parent in each hierarchy.

Contrast with parent. See also descendant, hierarchy.

composite

A compact format for storing sparse multidimensional data. Oracle OLAP provides
two types of composites: a compressed composite for extremely sparse data, and a
regular composite for moderately sparse data.

See also dimension, sparsity.

compressed cube

A cube with very sparse data that is stored in a compressed composite.

See also composite.

compression

See compressed cube.

detail data

Glossary-3

cube

An organization of measures with identical dimensions and other shared
characteristics. The edges of the cube contain the dimension members, and the body of
the cube contains the data values. For example, sales data can be organized into a cube
whose edges contain values from the Time, Product, and Customer dimensions and
whose body contains Volume Sales and Dollar Sales data.

custom measure

See calculated measure.

custom member

A dimension member whose data is calculated from the values of other members of
the same dimension using the rules defined in a model.

See model.

data source

A relational table, view, synonym, or other database object that provides detail data for
cubes and cube dimensions.

data warehouse

A database designed for query and analysis rather than transaction processing. A data
warehouse usually contains historical data that is derived from transaction data, but it
can include data from other sources. It separates analysis workload from transaction
workload and enables a business to consolidate data from several sources.

database standard form

An analytic workspace that has been constructed with a specific set of objects, such as
hierarchy dimensions, level dimensions, parent relations, and level relations. Each
object must be defined with a set of properties that identify its role and its
relationships with other objects in the analytic workspace. Standard form is required
for an analytic workspace to be accessible to OLAP tools, however, it is not a
prerequisite for multidimensional analysis.

denormalized

Permit redundancy in a table. Contrast with normalize.

derived measure

See calculated measure.

descendant

A dimension member at a lower level of aggregation than a particular member. For
example, in a Time dimension, the day 06-July-07 is the descendant of year 2007. The
member immediately below is the child. In a dimension hierarchy, the data values of
the descendants roll up into the data values of the ancestors.

Contrast with ancestor. See also aggregation, child, hierarchy, level.

detail data

Data at the lowest level, which is acquired from another source.

Contrast with aggregation.

dimension

Glossary-4

dimension

A structure that categorizes data. Among the most common dimensions for
sales-oriented data are Time, Geography, and Product. Most dimensions have
hierarchies and levels.

In a cube, a dimension is a list of values at all levels of aggregation. It is an index for
identifying the values of a measure. For example, if Sales data has a separate sales
figure for each month, then the data has a Time dimension that contains month values,
which organize the data by month.

In a relational table, a dimension is a type of object that defines hierarchical
(parent/child) relationships between pairs of column sets.

See also hierarchy.

dimension key

See dimension member.

dimension member

One element in the list that composes a cube dimension. For example, a Time
dimension might have dimension members for days, months, quarters, and years.

dimension table

A relational table that stores all or part of the values for a dimension in a star or
snowflake schema. Dimension tables typically contain columns for the dimension
keys, levels, and attributes.

dimension value

See dimension member.

dimension view

A relational view of data in an analytic workspace that contains the same types of data
as a dimension table in a star schema, that is, columns for dimension members and
attributes. A dimension view typically lists all dimension members in the key column,
regardless of their level in the dimension hierarchy.

See also dimension table, star schema.

drill

To navigate from one item to a set of related items. Drilling typically involves
navigating up and down through the levels in a hierarchy.

Drilling down expands the view to include child values that are associated with parent
values in the hierarchy.

Drilling up collapses the list of descendant values that are associated with a parent
value in the hierarchy.

EIF file

A specially formatted file for transferring data between analytic workspaces, or for
storing versions of an analytic workspace (all of it or selected objects) outside the
database.

embedded total

A list of dimension members at all levels of a hierarchy, such that the aggregate
members (totals and subtotals) are interspersed with the detail members. For example,

level-based hierarchy

Glossary-5

a Time dimension might contain dimension members for days, months, quarters, and
years.

expression

A combination of one or more values (typically provided by a measure or a calculated
measure), operators, and functions that evaluates to a value. An expression generally
assumes the data type of its components.

The following are examples of expressions, where SALES is a measure: SALES,
SALES*1.05, TRUNC(SALES).

fact

See measure.

fact table

A table in a star schema that contains factual data. A fact table typically has two types
of columns: those that contain facts and those that are foreign keys to dimension
tables. The primary key of a fact table is usually a composite key that is made up of all
of its foreign keys.

A fact table might contain either detail facts or aggregated facts. Fact tables that
contain aggregated facts are typically called summary tables or materialized views. A
fact table usually contains facts with the same level of aggregation.

See also materialized view.

hierarchy

A way to organize data at different levels of aggregation. Hierarchies are used to
define data aggregation; for example, in a Time dimension, a hierarchy might be used
to aggregate data from days to months to quarters to years. Hierarchies are also used
to define a navigational drill path.

In a relational table, hierarchies can be defined as part of a dimension object.

See also level-based hierarchy, ragged hierarchy, skip-level hierarchy, value-based
hierarchy.

key

A column or set of columns included in the definition of certain types of integrity
constraints. Keys describe the relationships between the different tables and columns
of a relational database.

See also dimension member.

leaf data

See detail data.

level

A named position in a hierarchy. For example, a Time dimension might have a
hierarchy that represents data at the month, quarter, and year levels. The levels might
be named Month, Quarter, and Year. The names provide an easy way to reference a
group of dimension members at the same distance from the base.

level-based hierarchy

A hierarchy composed of levels. For example, Time is always level based with levels
such as Month, Quarter, and Year. Most hierarchies are level based.

mapping

Glossary-6

See also value-based hierarchy.

mapping

The definition of the relationship and data flow between source and target objects. For
example, the metadata for a cube includes the mappings between each measure and
the columns of a fact table or view.

materialized view

A database object that provides access to aggregate data and can be recognized by the
automatic refresh and the query rewrite subsystems.

measure

Data that represents a business measure, such as sales or cost data. You can select,
display, and analyze the data in a measure. The terms measure and fact are
synonymous; measure is more commonly used in a multidimensional environment
and fact is more commonly used in a relational environment.

Measures are dimensional objects that store data, such as Volume Sales and Dollar
Sales. Measures belong to a cube.

See also calculated measure, fact, cube.

measure folder

A database object that organizes and label groups of measures. Users may have access
to several schemas with measures named Sales or Costs, and measure folders provide
a way to differentiate among them.

measure view

A relational view of data in analytic workspace that contains the same types of data as
a fact table in a star schema. However, in addition to the base-level facts, a measure
view also contains derived data, such as aggregates and inter-row calculations.

See also fact table, star schema.

model

A set of inter-related equations specified using the members of a particular dimension.
Line item dimensions often use models to calculate the values of dimension members.

See also custom member. Contrast with calculated measure.

NA value

A special data value that indicates that data is "not available" (NA) or null. It is the
value of any cell to which a specific data value has not been assigned or for which data
cannot be calculated.

See also cell, sparsity.

nonadditive

Describes a measure or fact that cannot be summarized through addition, such as Unit
Price. Maximum is an example of a nonadditive aggregation method.

Contrast with additive.

normalize

In a relational database, the process of removing redundancy in data by separating the
data into multiple tables. Contrast with denormalized.

parent

Glossary-7

object type

In Oracle object technology, a form of user-defined data type that is an abstraction of a
real-world entity. An object type is a schema object with the following components:

■ A name, which identifies the object type uniquely within a schema

■ Attributes, which model the structure and state of the real-world entity

■ Methods, which implement the behavior of the real-world entity, in either PL/SQL
or Java

OLAP

Online Analytical Processing. OLAP functionality is characterized by dynamic,
dimensional analysis of historical data, which supports activities such as the
following:

■ Calculating across dimensions and through hierarchies

■ Analyzing trends

■ Drilling up and down through hierarchies

■ Rotating to change the dimensional orientation

Contrast with OLTP.

OLAP DML

The internal data definition and manipulation language for analytic workspaces.

OLTP

Online Transaction Processing. OLTP systems are optimized for fast and reliable
transaction handling. Compared to data analysis systems, most OLTP interactions
involve a relatively small number of rows, but a larger group of tables.

Contrast with OLAP.

on the fly

Calculated at run-time in response to a specific query. In a cube, calculated measures
and custom members are typically calculated on the fly. Aggregate data can be
precomputed, calculated on the fly, or a combination of the two methods.

Contrast with precompute.

page

A unit for swapping data in and out of memory.

Also called a block.

page space

A grouping of related data pages.

parent

A dimension member immediately above a particular member in a hierarchy. In a
dimension hierarchy, the data value of the parent is the aggregated total of the data
values of its children.

Contrast with child. See also hierarchy, level.

parent-child relation

Glossary-8

parent-child relation

A one-to-many relationship between one parent and one or more children in a
hierarchical dimension. For example, New York (at the state level) might be the parent
of Albany, Buffalo, Poughkeepsie, and Rochester (at the city level).

See also child, parent.

precalculate

See precompute.

precompute

Calculate and store as a data maintenance procedure. In a cube, aggregate data can be
precomputed, calculated on the fly, or a combination of the two methods.

Contrast with on the fly.

ragged hierarchy

A hierarchy that contains at least one member with a different base level, creating a
"ragged" base level for the hierarchy. Organization dimensions are frequently ragged.

refresh

Load new and changed values from the source tables and recompute the aggregate
values.

skip-level hierarchy

A hierarchy that contains at least one member whose parents are multiple levels above
it, creating a hole in the hierarchy. For example, in a Geography dimension with levels
for City, State, and Country, Washington D.C. is a city that does not have a State value;
its parent is United States at the Country level.

snowflake schema

A type of star schema in which the dimension tables are partly or fully normalized.

See also normalize, star schema.

solved data

A result set in which all derived data has been calculated. Data fetched from an cube is
always fully solved, because all of the data in the result set is calculated before it is
returned to the SQL-based application. The result set from the cube is the same
whether the data was precomputed or calculated on the fly.

See also on the fly, precompute.

source

See data source.

sparsity

A concept that refers to multidimensional data in which a relatively high percentage of
the combinations of dimension values do not contain actual data.

There are two types of sparsity:

■ Controlled sparsity occurs when a range of values of one or more dimensions has
no data; for example, a new measure dimensioned by Month for which you do not
have data for past months. The cells exist because you have past months in the
Month dimension, but the cells are empty.

value-based hierarchy

Glossary-9

■ Random sparsity occurs when nulls are scattered throughout a measure, usually
because some combinations of dimension members never have any data. For
example, a district might only sell certain products and never have sales data for
the other products.

Some dimensions may be sparse while others are dense. For example, every time
period may have at least one data value across the other dimensions, making Time a
dense dimension. However, some products may not be sold in some cities, and may
not be available anywhere for some time periods; both Product and Geography may
be sparse dimensions.

See also composite.

standard form

See database standard form.

star query

A join between a fact table and a number of dimension tables. Each dimension table is
joined to the fact table using a primary key to foreign key join, but the dimension
tables are not joined to each other.

star schema

A relational schema whose design represents a dimensional data model. The star
schema consists of one or more fact tables and one or more dimension tables that are
related through foreign keys.

See also snowflake schema.

status

The list of currently accessible values for a given dimension. The status of a dimension
persists within a particular session, and does not change until it is changed
deliberately. When an analytic workspace is first attached to a session, all members are
in status.

See also dimension member.

summary

See aggregation.

update window

The length of time available for loading new data into a database.

value-based hierarchy

A hierarchy defined only by the parent-child relationships among dimension
members. The dimension members at a particular distance from the base level do not
form a meaningful group for analysis, so the levels are not named. For example, an
employee dimension might have a parent-child relation that identifies each employee's
supervisor. However, levels that group together first-, second-, and third-level
supervisors and so forth may not be meaningful for analysis.

See also hierarchy, level-based hierarchy.

value-based hierarchy

Glossary-10

Index-1

Index

A
Active Catalog, 11-3
aggregation

average operator, 8-2
calculated measures, 4-13
definition, 8-1
hierarchical average operator, 8-2
hierarchical operators, 8-2
over attributes, 4-12
performance issues, 8-9
status (regular composites only), 8-7
sum operator, 8-2
weighted operators, 8-2

aggregation operators, 4-13
comparison with allocation operators, 9-10
defined, 8-3

aggregation strategies
compressed composites, 8-6
regular composites, 8-6
skip-level, 8-7

ALL_AW_OBJ view, 12-5
ALL_AW_PROP view, 12-5
ALL_AW_PS view, 12-5
ALL_AWS view, 12-5
allocation, 9-1

basis measures, 9-4
creating, 9-8
even operator, 9-2, 9-3
proportional operator, 9-2
source measures, 9-4
status, 9-4, 9-5
target measures, 9-4
weight measures, 9-4

allocation operators
comparison with aggregation operators, 9-10
descriptions, 9-9

ALTER SESSION commands, 12-2
analysis tools, 1-4
analytic functions, 6-1
Analytic Workspace Java API, 11-5
Analytic Workspace Manager, 3-1

installation, 2-2
opening, 2-3

analytic workspaces
basic steps for creating, 3-3

creating, 3-3
database storage, 12-6
defined, 1-2
disk space consumption, 12-13
enhancing functionality, 3-4
listing, 12-11
size, 12-11

Application Express, 1-4, 10-11
attribute aggregation, 4-12
attributes

creating, 3-9
description, 3-8
logical, 1-10

authentication, 2-2
Automatic Database Diagnostic Monitor, 12-9
Automatic Storage Management, 12-4
Automatic Workload Repository, 12-9
average operator (aggregation), 8-2
AW$ tables, 12-6
AW$AWCREATE10G table, 12-6
AW$AWMD table, 12-6
AWXML package, 11-5

B
backup and recovery, 12-14
backup options

for analytic workspaces, 12-14
basis measures (allocation), 9-4
batch processing, 12-7
BI Beans

described, 11-2
BI Publisher, 10-3
bind variables, 10-1, 10-10, 10-17, 10-18
branches (Application Express), 10-16
build log, 3-11

C
calculated measures

creating, 6-1
defined, 6-1

calculation plan
allocation step, 9-8
forecast, 7-4

calculation plans

Index-2

creating, 6-10
forecast steps, 7-6

Calculation Wizard, 1-7
calculations

in queries, 4-11
causal analysis, 7-3
changes

saving, 3-4
character functions, 4-9
column links, 10-19
connect string

for Analytic Workspace Manager, 2-3
connections

defining, 2-3
copy allocation operators, 9-9
CREATE SESSION privilege, 2-2
creation

analytic workspaces, 12-11
crosstab bean, 11-4
cubes, 1-2

creating, 3-13
description, 3-12
mapping, 3-14

custom measures
BI Beans support, 11-5

D
dashboard, 1-4
data

displaying, 3-18
data dictionary views, 12-5
data display, 3-12
data formatting, 11-4
data loads, 3-11, 3-18
Data Mining

forecasting, 7-3
data model

designing, 3-1
data models, 1-8
Data Pump, 12-14
data sources

mapping, 3-9
database connections

defining, 2-3
Database Control, 12-9
database integration, 1-1
database security, 2-2
DBA scripts download, 12-12
DBA_AW_OBJ view, 12-5
DBA_AW_PROP view, 12-5
DBA_AW_PS view, 12-5
DBA_AWS view, 12-5, 12-11
DBA_OBJECTS view, 12-11
DBA_REGISTRY view, 12-10
DBMS_LOB PL/SQL package, 12-11
DECIMAL data type

comparison with NUMBER, 8-10
dimension hierarchies

 See hierarchies

dimension members
selecting (allocation), 9-4
selecting for aggregation, 8-7

dimensions
creating, 3-5
description, 3-4
logical, 1-9
viewing members, 3-12

Discoverer Plus OLAP, 1-6, 3-8
disk

spreading data, 12-4
disk space consumption, 12-13
displaying data, 3-18
drillable reports, 10-3
drilling, 4-9, 10-19, 11-3
drilling (Application Express), 10-17
dump files, 12-14
dynamic performance tables, 12-10

E
edits

saving, 3-4
Enterprise Manager Database Control, 12-9
even distribution allocation operators, 9-9
even operator (allocation), 9-2, 9-3
Excel add-in, 5-1
EXP_FULL_DATABASE privilege, 12-14
expert opinion in forecasting, 7-4
Expert System, 7-7
extensibility using plug-ins, 2-4
EXTENT MANAGEMENT LOCAL, 12-3

F
filtering queries, 4-6
forecast steps

creating, 7-6
forecasting, 7-1

applications, 7-4
Data Mining, 7-3
dimension levels, 7-5
Expert System, 7-7
time horizons, 7-2
verification window, 7-8

forecasts
creating, 7-4

formatting
data, 11-4

G
Global Computing Company

data requirements, A-2
Global schema

download, 2-1
graph bean, 11-4

H
hidden items (Application Express), 10-17

Index-3

hierarchical average (aggregation), 8-2
hierarchical average operator (aggregation), 8-2
hierarchical queries, 4-9
hierarchies

creating, 3-7
description, 3-7
logical, 1-9

I
IDE

defined, 11-2
initialization parameters, 12-1, 12-2
init.ora file, 12-1, 12-2
installation

Analytic Workspace Manager, 2-2
installation of OLAP option

validating, 12-10
integration in database, 1-1

J
Java

described, 11-1
sandbox security, 11-1

Java APIs for OLAP, 11-1
JDeveloper, 11-2
JOB_QUEUE_PROCESSES parameter, 12-2, 12-8

L
language support, 3-20
layout template (BI Publisher), 10-3
level-based dimensions, 3-4
levels

creating, 3-6
logical, 1-9

loading data, 3-11, 3-18
localization, 3-20
login names, 2-2
LOVs (list of values), 10-9, 10-15

M
Maintenance Wizard, 3-11, 3-18
mappings

creating, 3-9
MDI

defined, 11-2
measure folders

creating, 3-20
measures

creating, 3-13
custom, 11-5
logical, 1-8

model
saving, 3-21

multidimensional data, 1-2

N
natural keys, 3-5
normal hierarchies, 3-7
NUMBER data type

comparison with DECIMAL, 8-10
number formatting, 11-4

O
objects

mapping, 3-9
OLAP API

described, 11-2
OLAP option

verifying installation, 12-10
OLAP_DBA role, 2-2
OLAP_USER role, 2-2
OLAPSYS.XML_LOAD_LOG file, 12-7
Oracle Application Express, 1-4
Oracle Business Intelligence

OracleBI Discoverer Plus OLAP, 1-6
OracleBI Spreadsheet Add-In, 1-6

Oracle Real Application Clusters, 1-2, 12-8
Oracle Recovery Manager, 12-14
OracleBI Beans, 3-8, 11-3, 11-4
owners

identifying for analytic workspaces, 12-11

P
page definition (Application Express), 10-14
paging, 11-3
parallel processing, 12-7
parameter file, 12-2
parent-child relations, 1-9
partitioning

benefits, 3-15
description, 3-17

Partitioning Advisor, 3-16
partitioning strategies, 3-16
performance checklist, 8-10
performance counters, 12-10
pfile settings, 12-2
PGA_AGGREGATE_TARGET parameter, 8-10, 12-2
PGA_TARGET parameter, 12-2
pivoting, 11-3
plug-ins, 2-4
Presentation Beans, 11-3
proportional allocation operators, 9-10
proportional operator (allocation), 9-2
PS$ tables, 12-6

Q
queries

filtering, 4-6
query builder, 11-4
query tools, 1-4
Query Wizard, 1-6
querying dimensions and cubes, 4-1

Index-4

R
RAC, 1-2, 12-8
ragged hierarchies, 3-7
report entry (BI Publisher), 10-3
report layout (BI Publisher), 10-8
reports, 10-3
response time

improving, 8-10
RMAN, 12-14

S
sample schema

download, 2-1
scheduling maintenance, 12-7
server parameter file, 12-2
SESSIONS parameter, 12-2
SGA_TARGET parameter, 8-10
share, 6-5
size

analytic workspace, 12-11
skip-level aggregation, 8-7
skip-level hierarchies, 3-7
source measures (allocation), 9-4
Sparsity Advisor, 3-15
Spreadsheet Add-In, 1-6, 3-8

described, 5-1
static data dictionary views, 12-5
status

aggregation, 8-7
allocation, 9-4, 9-5

stoplight formatting, 11-4
sum operator (aggregation), 8-2
summary data methods, 1-3
surrogate keys, 3-5
system tables, 12-5

T
tablespaces

defining for OLAP, 12-3
target measures (allocation), 9-4
templates

BI Publisher, 10-5
logical model

saving, 3-21
time dimensions, 3-5
time-series forecasting, 7-3
transportable tablespaces, 12-14

U
UNDO_MANAGEMENT parameter, 12-2
UNDO_TABLESPACE parameter, 12-2
user names, 2-2
USER_AW_OBJ view, 12-5
USER_AW_PROP view, 12-5
USER_AW_PS view, 12-5
USER_AWS view, 12-5

V
V$AW_AGGREGATE_OP view, 12-10
V$AW_ALLOCATE_OP view, 12-10
V$AW_CALC view, 12-10
V$AW_LONGOPS view, 12-10
V$AW_OLAP view, 12-10
V$AW_SESSION_INFO view, 12-10
value-based dimensions, 3-4
value-based hierarchies, 3-7
verification window, 7-8

W
weight measures (allocation), 9-4
weighted sum (aggregation), 8-2
WHERE clause operations, 4-9
wizards

BI Beans, 11-4

X
XML metadata, 11-5
XML Templates, 12-14

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Oracle OLAP Applications Development?
	Oracle Database 10g Release 10.2.0.3 Oracle OLAP
	Oracle Database 10g Release 10.2 Oracle OLAP
	Oracle Database 10g Release 10.1.0.4 Oracle OLAP

	1 Overview
	OLAP Technology in the Oracle Database
	Full Integration of Multidimensional Technology
	Ease of Administration
	Security
	Unmatched Performance and Scalability
	Reduced Costs

	About Multidimensional Data Stores
	Creating Analytic Workspaces
	Structured Data Stores
	Processing Analytic Queries
	Creating Summary Data

	Using SQL Tools to Query Dimensional Objects
	Using OLAP Tools to Query Dimensional Objects
	Formulating Queries
	Creating Calculations

	Overview of the Dimensional Data Model
	Cubes
	Measures
	Dimensions
	Hierarchies and Levels
	Level-Based Hierarchies
	Value-Based Hierarchies

	Attributes

	Upgrading Oracle Database 10g Release 1 Analytic Workspaces
	Upgrading Oracle9i Analytic Workspaces
	Upgrading the Physical Storage Format
	Upgrading the Standard Form Metadata

	2 Getting Started with Oracle OLAP
	Installing the Sample Schema
	Database Management Tasks
	Granting Privileges to DBAs and Application Developers
	Getting Started with Analytic Workspace Manager
	Installing Analytic Workspace Manager
	Opening Analytic Workspace Manager
	Defining a Database Connection
	Opening a Database Connection
	Installing Plug-ins

	3 Creating Dimensions and Cubes
	Designing a Dimensional Model for Your Data
	Introduction to Analytic Workspace Manager
	Model View
	Object View

	Creating a Dimensional Data Store Using Analytic Workspace Manager
	Basic Steps for Creating an Analytic Workspace
	Adding Functionality to Dimensional Objects
	How Analytic Workspace Manager Saves Changes

	Creating Dimensions
	Creating Levels
	Creating Hierarchies
	Creating Attributes
	Automatically Defined Attributes
	User-Defined Attributes

	Mapping Dimensions
	Mapping Window
	Source Data Query

	Loading Data Into Dimensions
	Displaying the Dimension Members

	Creating Cubes
	Creating Measures
	Mapping Cubes
	Choosing a Data Storage Strategy
	Partitioning a Cube
	Choosing a Dimension for Partitioning
	Example of a Partitioned Dimension

	Loading Data Into a Cube
	Displaying the Data in a Cube

	Defining Measure Folders
	Supporting Multiple Languages
	Using Templates to Re-Create Dimensional Objects

	4 Querying Dimensional Objects Using SQL
	Querying Dimensional Data in SQL
	Exploring the Shape of OLAP Views
	Cube Views
	Dimension Views

	Creating Basic Queries
	Applying a Filter to Every Dimension
	Allowing the Cube to Aggregate the Data
	Query Processing

	Creating Hierarchical Queries
	Drilling Down to Children
	Drilling Up to Parents
	Drilling Down to Descendants
	Drilling Up to Ancestors

	Using Calculations in Queries
	Using Attributes for Aggregation
	Aggregating Measures Over Attributes
	Aggregating Calculated Measures Over Attributes

	Querying the Active Catalog

	5 Querying Dimensional Objects Using OLAP Tools
	Analyzing Dimensional Data in a Spreadsheet
	Getting Started With the OracleBI Spreadsheet Add-In
	Creating a Query Using the Add-In
	Using Excel Features on Oracle Dimensional Data

	Creating Reports in Discoverer Plus OLAP
	Getting Starting with Discoverer Plus OLAP
	Creating a Query
	Formatting the Data in Discoverer Plus

	6 Enhancing Your Database With Analytic Content
	What Is a Calculated Measure?
	Functions for Defining Calculations
	Creating Calculated Measures
	Using the Calculation Wizard
	Basic Arithmetic Operations
	Percent Variance
	Index
	Rank
	Share
	Cumulative Total
	Prior and Future Time Periods
	Moving Calculations
	Period to Date Calculations
	Nested Calculations

	Generating Forecasts, Allocations, and Aggregations

	7 Generating Forecasts
	Introduction to Forecasting Considerations
	Choosing a General Forecasting Approach
	Time Series
	Causal Analysis
	Expert Opinion

	About the Forecasting Engine
	Creating a Forecast
	Creating the Forecast Time Periods
	Creating a Forecast Measure
	Selecting the Historical Data
	Identifying the Levels for the Forecast
	Creating a Forecast Step
	Generating the Forecast Data
	Evaluating the Forecast Results

	Designing Your Own Forecast
	What is the Expert System?
	What is the Verification Window?
	When Should You Design a Forecast?
	Overriding the Expert System

	Forecasting Method Descriptions
	Automatic
	Regressions
	Linear Regression
	Nonlinear Regression
	Advanced Parameter for Regressions

	Exponential Smoothing
	Comparison Among Exponential Smoothing Methods
	Advanced Parameters for Exponential Smoothing

	Advanced Parameter Descriptions
	Setup Parameters
	General Parameters
	Historical Data Smoothing Parameters

	Case Study: Forecasting Sales for Global Enterprises
	Creating the Sales Forecast Target Measure
	Creating the Calculation Plan
	Creating the Sales Forecast Step
	Generating the Forecast
	Validating the Forecast
	Preparing the Sales Forecast Measure for Querying

	8 Advanced Aggregations
	What is Aggregation?
	Aggregation Operators
	Basic Operators
	Scaled and Weighted Operators
	Hierarchical Operators

	When Does Aggregation Order Matter?
	Using the Same Operator for All Dimensions of a Cube
	Order Has No Effect
	Order Changes the Aggregation Results
	Order May Be Important

	Example: Mixing Aggregation Operators

	Aggregating Compressed Cubes
	Aggregating Uncompressed Cubes
	Selecting Dimensions for Skip-Level Aggregation
	Selecting the Levels to Skip

	Aggregating a Slice of a Measure
	Improving Aggregation Performance
	Finish Data Updates on Time
	Keep Within Allocated Resources
	Provide Good Response Time

	9 Allocations
	What Is an Allocation?
	Creating Measures to Support an Allocation
	Source Measures
	Basis Measures
	Target Measures
	Weight Measures

	Selecting Dimension Members for an Allocation
	Identifying the Sources and Targets
	Identifying the Allocation Path

	Creating an Allocation
	Allocation Operators
	Copy Operators
	Even Distribution Operators
	Proportional Distribution Operator
	Relationships Between Allocation and Aggregation Operators

	Case Study: Allocating a Budget
	Creating the Source Measure
	Creating the Target Measure
	Creating the Calculation Plan
	Creating the Allocate Budget Step
	Generating and Validating the Allocation

	Case Study: Allocating a Sales Forecast
	Creating an Allocation Basis Measure
	Creating the Allocate Sales Forecast Step
	Generating and Validating the Allocation

	10 Developing Reports and Dashboards
	Developing SQL Applications for Dimensional Data
	Developing a Report Using BI Publisher
	Creating an OLAP Report in BI Publisher
	Creating a Template in Microsoft Word
	Generating a Formatted Report
	Adding Dimension Choice Lists
	Creating a List of Values
	Creating a Menu
	Editing the Query

	Developing a Dashboard Using Application Express
	Creating an OLAP Application in Application Express
	Adding Dimension Choice Lists
	Creating a Region
	Creating a List of Values
	Creating the Choice List
	Editing the Query

	Drilling on Dimension Columns
	Creating Hidden Items
	Editing the Query
	Adding Links to the Dimension Columns

	11 Developing Java Applications for OLAP
	Building Analytical Java Applications
	About Java
	The Java Solution for OLAP
	Oracle Java Development Environment

	Introducing OracleBI Beans
	Metadata
	Navigation
	Formatting
	Graphs
	Crosstabs
	Data Beans
	Wizards
	JSP Tag Library

	Building Java Applications That Manage Analytic Workspaces

	12 Administering Oracle OLAP
	Setting Database Initialization Parameters
	Storage Management
	Creating an Undo Tablespace
	Creating Permanent Tablespaces for OLAP Use
	Creating Temporary Tablespaces for OLAP Use
	Spreading Data Across Storage Resources

	Security of Multidimensional Data in Oracle Database
	Security Management
	Granting Querying Privileges

	Dictionary Views and System Tables
	Static Data Dictionary Views
	System Tables
	Analytic Workspace Tables
	Build Logs

	Partitioned Cubes and Parallelism
	Creating and Dropping Partitions
	Parallelism

	Monitoring Analytic Workspaces
	Dynamic Performance Views
	Basic Queries for Monitoring the OLAP Option
	Is the OLAP Option Installed in the Database?
	What Analytic Workspaces are in the Database?
	How Big is the Analytic Workspace?
	When Were the Analytic Workspaces Created?

	OLAP DBA Scripts
	Scripts for Monitoring Performance
	Scripts for Monitoring Disk Space

	Backup and Recovery
	Export and Import

	A Designing a Dimensional Model
	Case Study Scenario
	Reporting Requirements
	Business Goals
	Information Requirements
	Business Analysis Questions
	What products are profitable?
	Who are our customers, and what and how are they buying?
	Which accounts are most profitable?
	What is the performance of each distribution channel?
	Is there still a seasonal variance to the business?
	Summary of Information Requirements

	Identifying Required Business Facts
	Designing a Dimensional Model for Global Computing
	Identifying Dimensions
	Identifying Levels
	Identifying Hierarchies
	Identifying Stored Measures

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

